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HOMOTOPY COHERENT STRUCTURES

EMILY RIEHL

Abstract. Naturally occurring diagrams in algebraic topology are commutative up to
homotopy, but not on the nose. It was quickly realized that very little can be done with
this information. Homotopy coherent category theory arose out of a desire to catalog the
higher homotopical information required to restore constructibility (or more precisely,
functoriality) in such “up to homotopy” settings. These notes provide a three-part intro-
duction to homotopy coherent category theory. The first part surveys the classical theory
of homotopy coherent diagrams of topological spaces. The second part introduces the
homotopy coherent nerve and connects it to the free resolutions used to define homotopy
coherent diagrams. This connection explains why diagrams valued in homotopy coherent
nerves or more general ∞-categories are automatically homotopy coherent. The final
part ventures into homotopy coherent algebra, connecting the newly discovered notion
of homotopy coherent adjunction to the classical cobar and bar resolutions for homotopy
coherent algebras.

Contents

1 Homotopy coherent diagrams 2
1.1 Historical motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The shape of a homotopy coherent diagram . . . . . . . . . . . . . . . . . 4
1.3 Homotopy coherent diagrams and homotopy coherent natural transforma-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Homotopy coherent realization and the homotopy coherent nerve 13

2.1 Free resolutions are simplicial computads . . . . . . . . . . . . . . . . . . . 13
2.2 Homotopy coherent realization and the homotopy coherent nerve . . . . . . 16
2.3 Further applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Homotopy coherent algebra 21
3.1 From coherent homotopy theory to coherent category theory . . . . . . . . 21
3.2 Homotopy coherent monads . . . . . . . . . . . . . . . . . . . . . . . . . . 23

These lecture notes were prepared to accompany a three-hour mini course entitled “Homotopy co-
herent structures” delivered at the summer school accompanying the “Floer homology and homotopy
theory” conference at UCLA supported by NSF Grant DMS-1563615. I am grateful to the organizers for
this opportunity to speak, to the members of the Australian Category Seminar who suffered through a
preliminary version of these talks, and also for additional support from the National Science Foundation
provided by the grant DMS-1551129 while these notes were being written. An anonymous referee made
several suggestions that improved the exposition.

Received by the editors 2021-04-01 and, in final form, 2022-11-01.
Transmitted by Julie Bergner and Kathryn Hess. Published on 2023-01-10.
2020 Mathematics Subject Classification: 55U35.
Key words and phrases: homotopy coherent.
© Emily Riehl, 2023. Permission to copy for private use granted.

1



2 EMILY RIEHL

3.3 Homotopy coherent adjunctions . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Algebras for a homotopy coherent monad . . . . . . . . . . . . . . . . . . . 29
3.5 Other vistas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
In algebraic topology and related settings it is common to encounter diagrams that

do not commute on the nose but rather commute up to homotopy. Part 1 of these notes
opens with a motivating example. To perform further constructions with a homotopy com-
mutative diagram, it is often necessary to make use of explicit homotopies that witness
the homotopy commutativity together with higher-dimensional homotopies that encode
various coherences between these witnesses. Together this data extends a homotopy com-
mutative diagram to a homotopy coherent diagram, which is the primary example of a
homotopy coherent structure.

Homotopy coherent category theory leads inexorably to the concept of quasi-categories,
first discovered by Boardman and Vogt when exploring the way in which homotopy co-
herent natural transformations compose. Traditionally, homotopy coherent diagrams are
valued in categories enriched over Kan complexes and indexed by simplicial categories
constructed as free resolutions of ordinary 1-categories. In Part 2, we observe that free
resolutions are isomorphic to so-called homotopy coherent resolutions, these being defined
by the left adjoint to the more familiar homotopy coherent nerve functor. The homotopy
coherent nerve takes a Kan complex enriched category to a quasi-category, and indeed,
up to equivalence, all quasi-categories arise in this way. Thus, traditional homotopy co-
herent diagrams transpose to define maps of simplicial sets from the nerve of the indexing
category into the quasi-category defined by the homotopy coherent. This observation
connects the classical theory to a more modern setting for homotopy coherent category
theory and explains the slogan that all diagrams valued in quasi-categories are homotopy
coherent.

In Part 3 we survey a small portion of homotopy coherent algebra by introducing
homotopy coherent analogues of adjunctions, monads, and their algebras, notions which,
somewhat surprisingly, can all be described using the simplicial categories formalism. We
explain how these notions can be understood as part of “model-independent” (∞, 1)-
category theory, applicable to more than just the quasi-categorical setting. This section
concludes with suggestions for further reading that develop other topics in “higher alge-
bra” that are not addressed here.

1. Homotopy coherent diagrams

1.1. Historical motivation. If X is a G-space, for G a discrete group, and Y is
homotopy equivalent to X, then is Y a G-space? The action of a group element g ∈ G
on Y can be defined by transporting along the maps f :X → Y and f−1:Y → X of the
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homotopy equivalence:

Y X

Y X

f−1

g∗ g∗

f

This defines a continuous endomorphism of Y for every g ∈ G, as required by a G-
action, but these maps are not necessarily automorphisms (since f and f−1 need not be
homeomorphisms) nor is the composite of the actions associated to a pair of elements
g, h ∈ G equal to the action by their product: instead

g∗ ◦ h∗ = (f ◦ g∗ ◦ f−1) ◦ (f ◦ h∗ ◦ f−1) = f ◦ g∗ ◦ (f−1 ◦ f) ◦ h∗ ◦ f−1

and (gh)∗ = f ◦ (gh)∗ ◦ f−1

are homotopic via the homotopy f−1 ◦ f ' idX .
So if Y is not a G-space, then what is it? The main aim of Part 1 is to develop

language to describe this sort of situation. A G-space X may be productively considered
as a diagram in the category of topological spaces indexed by a category BG with a single
object and with an endomorphism corresponding to each element in the group.1

By contrast the “up to homotopy G-space” Y is instead a homotopy commutative
diagram. Modulo point-set topological considerations that we sweep under the rug using
a technique that will be described in §1.2, the category of topological spaces is self-
enriched, meaning that the set of continuous functions between any pair of spaces X and
Y is itself a space, which we denote by Map(X, Y ). The points in Map(X, Y ) are the
continuous functions f :X → Y while a path in Map(X, Y ) between points f and g is a
homotopy. Two parallel maps f, g:X → Y are homotopic — in symbols “f ' g” —
just when they are in the same path component in π0Map(X, Y ). The space Map(X, Y )
also has higher structure, the paths between paths, and the paths between paths between
paths and so on, which define higher homotopies.

Importantly, composition of continuous functions itself defines a continuous function
between mapping spaces

Map(Y, Z)×Map(X, Y ) Map(X,Z)◦

so this relation of taking homotopy classes of maps is preserved by pre- and post-composition
with another continuous function. This defines the category hSpace of spaces and homo-
topy classes of continuous functions as a quotient of the enriched category Space of spaces
and mapping spaces Map(X, Y ).

1Here “diagram” is synonymous with “functor”: to define a functor whose domain is the category BG
is to specify an image for the single object together with and endomorphism g∗ for each g ∈ G so that
(gh)∗ = g∗h∗ and e∗ = id.
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1.1.1. Definition. If A is an ordinary category then

� a diagram of spaces is just a functor A→ Space

� a homotopy commutative diagram of spaces is a functor A→ hSpace

Thus, the G-space X defines a diagram X:BG→ Space while the “up-to-homotopy”
G-space Y defines a homotopy commutative diagram Y :BG→ hSpace. This terminology
suggests a related question: can every “up-to-homotopy” G-space be rectified to a homo-
topy equivalent G-space? Or more generally, when does a homotopy commutative diagram
F :A→ hSpace admit a rectification, i.e., a strictly-commutative diagram F ′:A→ Space
together with homotopy equivalences Fa ' F ′a that define a natural transformation2 in
hSpace?

1.1.2. Theorem. [Dwyer–Kan–Smith, 1989, 2.5] A homotopy commutative diagram has
a rectification if and only if it may be lifted to a homotopy coherent diagram. More-
over, equivalence classes of rectifications correspond bijectively with equivalences classes
of homotopy coherent diagrams.

Proof. This result is proven as a corollary of [Dwyer–Kan–Smith, 1989, 2.4] which
demonstrates that appropriately defined spaces of homotopy coherent diagrams and rec-
tifications (defined slightly differently than above) are weak homotopy equivalent.

In particular, since the homotopy commutative G-space Y is homotopy equivalent to
the strict G-space X, it must underlie a homotopy coherent diagram of shape BG. Our
task is now to work out what exactly the phrase homotopy coherent diagram means.

1.2. The shape of a homotopy coherent diagram. To build intuition for the
general notion of a homotopy coherent diagram, it is helpful to consider a special case.
To that end, let

� := 0 1 2 3 · · ·

denote the category whose objects are finite ordinals and with a unique morphism j → k
if and only if j ≤ k.

An �-shaped graph in Space is comprised of spaces Xk for each k ∈ � together with
morphisms fj,k:Xj → Xk whenever j < k.3 This data defines a homotopy commutative
diagram �→ hSpace just when fi,k ' fj,k ◦ fi,j whenever i < j < k.

To extend this data to a homotopy coherent diagram �→ Space requires:

� Chosen homotopies hi,j,k: fi,k ' fj,k ◦fi,j whenever i < j < k. This amounts to specify-
ing a path in Map(Xi, Xk) from the vertex fi,k to the vertex fj,k◦fi,j, which is obtained
as the composite of the two vertices fi,j ∈ Map(Xi, Xj) and fj,k ∈ Map(Xj, Xk).

2See Definition 1.3.4.
3To simplify somewhat we adopt the convention that fj,j is the identity, making this data into a

reflexive directed graph with implicitly designated identities.
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� For i < j < k < `, the chosen homotopies provide four paths in Map(Xi, X`)

fi,` fk,` ◦ fi,k

fj,` ◦ fi,j fk,` ◦ fj,k ◦ fi,j

hi,k,`

hi,j,` fk,`◦hi,j,k

hj,k,`◦fi,j

We then specify a higher homotopy — a 2-homotopy — filling in this square.

� For i < j < k < ` < m, the previous choices provide 12 paths and six 2-homotopies
in Map(Xi, Xm) that assemble into the boundary of a cube. We then specify a 3-
homotopy, a homotopy between homotopies between homotopies, filling in this cube.

� Etc.

Even in this simple case of the category �, this data is a bit unwieldy. Our task is to
define a category to index this homotopy coherent data arising from �: the objects Xi,
the functions Xi → Xj, the 1-homotopies hi,j,k, the 2-homotopies, and so on. This data
will assemble into a simplicial category whose objects are the same as the objects of �
but which will have n-morphisms in each dimension n ≥ 0, to index the n-homotopies.

Because of the convenience of the mechanism of simplicial categories, and to avoid the
point-set topology considerations alluded to above, we should now come clean and admit
that we prefer to assume that our “mapping spaces” are really simplicial sets, or more
precisely Kan complexes. We defer the latter definition to the next section but give the
others now.

1.2.1. Digression. [a crash course on simplicial sets] There is a convenient category
whose objects model topological spaces (at least up to weak homotopy type): the category
sSet of simplicial sets. A simplicial set X is a graded set (Xn)n≥0—with the elements
of Xn called n-simplices—together with maps

X := X0 X1 X2 X3 · · · (1.1)

that fulfill two functions:

� The n+ 1 face maps Xn � Xn−1 identify the faces of an n-simplex.

� The n degeneracy maps Xn � Xn+1 define degenerate n+ 1-simplices that project
onto a given n-simplex.
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There is a slick way to make all of this precise. Let � denote the category of finite non-
empty ordinals [n] = {0, 1 . . . , n} and order-preserving maps. The maps in the category �
are generated under composition by the basic inclusions and surjections displayed here:

� := [0] [1] [2] [3] · · ·

Now a simplicial set is just a functor X:�op → Set.
The category sSet is generated by the standard n-simplices ∆n for each n ≥ 0. The

standard n-simplex may be thought of as an (ordered) n-simplex spanned by the vertices
0, . . . , n. More precisely, ∆n is the functor represented by the object [n] ∈ �; that is an
m-simplex in ∆n is a map α: [m] → [n] in �. There are various maps between these
standard simplices

� := ∆0 ∆1 ∆2 ∆3 · · ·

each of the maps denoted by “�” given by an ordered injection of the vertices and each
of the maps denoted “�” given by an ordered surjection of the vertices. By the Yoneda
lemma, � is isomorphic to the full subcategory of sSet spanned by the standard simplices;
the functor ∆•:� ↪→ sSet sending [n] to the standard n-simplex ∆n is referred to as the
Yoneda embedding.

The standard simplices and maps between them generate the category sSet under gluing.
That is, any simplicial set X may be thought of as a triangulated space built by gluing in
a standard simplex ∆n for each n-simplex of X along the face and degeneracy maps (1.1).
These intuitions can be formalized via a comparison adjunction

sSet Top

|−|

⊥
Sing

(1.2)

obtained by applying Kan’s construction [Riehl, 2014, 1.5.1] to the functor ∆•:� → Top
that sends [n] ∈ � to the geometric n-simplex |∆n|. The right adjoint carries a space Y to
its total singular complex, the simplicial set whose n-simplices are continuous maps
|∆n| → Y . The left adjoint carries a simplicial set X to its geometric realization, a
simplicial complex formed by gluing in a topological n-simplex for each n-simplex of X
along the face and degeneracy maps.4 For a more leisurely introduction to simplicial sets,
see [Riehl, 2011].

4This adjunction defines an “equivalence of homotopy theories” in a sense made precise by the notion
of Quillen equivalence between model categories [Quillen, 1967, §II.3].
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A simplicial category is typically thought of as a category with objects together with
mapping spaces (i.e., simplicial sets) between them. There is an alternate presentation of
this data which will also be convenient in which an n-simplex in a mapping space from a
to b is encoded as an n-arrow from a to b.

1.2.2. Definition. A simplicial category A• is given by categories An for each n ≥ 0
with a common set of objects obA and whose morphisms are called n-arrows that assemble
into a diagram �op → Cat of identity-on-objects functors.

A• := A0 A1 A2 A3 · · · (1.3)

1.2.3. Proposition. The following are equivalent:

� a simplicial category A• with object set obA

� a simplicially enriched category A with objects obA

Proof. For any x, y ∈ obA, an n-arrow in An(x, y) corresponds to an n-simplex in the
mapping space A(x, y).

For any ordinary category A, we now introduce a simplicial category CA whose n-
arrows parametrize the data of a homotopy coherent diagram of shape A.5

1.2.4. Definition. [free resolutions] Forgetting composition, let UA denote the underly-
ing reflexive directed graph of a category A, and let FUA denote the free category on the
underlying reflexive directed graph of A. It has the same objects as A and its non-identity
arrows are strings of composable non-identity arrows of A.

We define a simplicial category CA• with obCA = obA and with the category of n-
arrows CAn := (FU)n+1A. A non-identity n-arrow is a string of composable arrows in
A with each arrow in the string enclosed in exactly n pairs of well-formed parentheses.
In the case n = 0, this recovers the previous description of the non-identity 0-arrows in
FUA, strings of composable non-identity arrows of A.

5Cordier and Porter [Cordier–Porter, 1986] write S(A) for the simplicial category CA. Here we use
notation that some readers might recognize from a related context. In Theorem 2.2.3, we prove that
these two objects are isomorphic.
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It remains to define the required identity-on-objects functors:6

CA• := FUA (FU)2A (FU)3A (FU)4A · · ·

For j ≥ 1, the face maps

(FU)kε(FU)j: (FU)k+j+1A→ (FU)k+jA

remove the parentheses that are contained in exactly k others, while FU · · ·FUε composes
the morphisms inside the innermost parentheses. For j ≥ 1, the degeneracy maps

F (UF )kη(UF )jU : (FU)k+j+1A→ (FU)k+j+2A

double up the parentheses that are contained in exactly k others, while F · · ·UFηU inserts
parentheses around each individual morphism.

1.2.5. Example. In the case of a discrete group G regarded as a one-object category BG,
the free resolution CBG is defined by specifying the single endo-hom-set of each category
(FU)nBG, together with the composition action. The underlying graph of BG is given by
the non-identity elements of G, and thus (FU)BG is the group of words in these letters,
i.e., the free group on the non-identity elements of G. The group (FU)2BG is then the
group of words of words and so on.

1.2.6. Exercise. Compute C� and show that its n-arrows enumerate the data described
at the introduction to this section.7

The category A can also be thought of as a discrete simplicial category in which the
diagram (1.3) is constant at A, so the only n-arrows are degenerated 0-arrows. There is
a canonical “augmentation” map ε:CA → A determined by its degree zero component
ε:FUA→ A which is just given by composition in A.

6More concisely, the free and forgetful functors just described define an adjunction

rDirGph Cat

F

⊥
U

between small categories and reflexive directed graphs inducing a comonad FU on Cat; see Definition
3.3.1. The simplicial object CA• is defined by evaluating the comonad resolution for (FU, ε, FηU) on a
small category A. The face and degeneracy maps are whiskerings of the unit and counit of the adjunction;
hence the notation. This structure will reappear in Part 3 below.

7In fact, it has more n-arrows than the n-homotopies describe above. We will be able to explain this
when we return to this simplicial category in Example 2.1.4.
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1.2.7. Proposition. The functor ε:CA→ A is a local homotopy equivalence of simplicial
sets. That is, for any pair of objects x, y ∈ A, the map ε:CA(x, y)→ A(x, y) is a homotopy
equivalence: CA(x, y) is homotopy equivalent to the discrete set A(x, y) of arrows in A from
x to y.

Proof. The augmented simplicial object

A (FU)A (FU)2A (FU)3A (FU)4A · · ·

is split at the level of reflexive directed graphs (i.e., after applying U). These splittings are
not functors, but that won’t matter. These directed graph morphisms displayed here are
all identity on objects, which means that for any x, y there is a split augmented simplicial
set

A(x, y) (FU)A(x, y) (FU)2A(x, y) (FU)3A(x, y) (FU)4A(x, y) · · ·

and now some classical simplicial homotopy theory proves the claim [Meyer, 1984].

1.3. Homotopy coherent diagrams and homotopy coherent natural trans-
formations. Finally, we can give a precise definition of the key notion of a homotopy
coherent diagram:

1.3.1. Definition. A homotopy coherent diagram of shape A is a functor CA →
Space.

1.3.2. Example. A strictly commutative diagram F :A→ Space gives rise to a homotopy
coherent diagram by composing with the augmentation map

CA A Space.ε F (1.4)

In this case, all n-homotopies are identities.

Not every homotopy commutative diagram can be made homotopy coherent. The
following counterexample was suggested by Thomas Kragh and communicated by Hiro
Tanaka.
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1.3.3. Example. Let p:E → B be a Serre fibration with i:F → E the inclusion of the
fiber over the basepoint ∗ of B. A diagram

X

F E

B

f e

∗

i

∗ p

is homotopy commutative if there exist homotopies α: e ' if and β: pe ' ∗, the other two
triangles being strictly commutative. The diagram is then homotopy coherent if and only
if there exists a 2-homotopy between pα: pe ' ∗ and β. If this is the case, then since p is a
Serre fibration it is possible to lift the 2-homotopy along p to define a homotopy α′: e ' if
so that pα′ = β. Applying the universal property of the fiber F as the homotopy pullback
of p along the inclusion of the basepoint, the homotopy β induces a map g:X → F and
the homotopy α′ then implies that f and g are homotopic.

Applying these observations in the case of the Hopf fibration, consider the diagram

S1

S1 S3

S2

n i

∗

i

∗ p

involving a map n:S1 → S1 of degree n 6= 1. Since π1S
3 = 0, there exists a homotopy

α: i ' in. Both pi and pin equal the constant map ∗ at the basepoint of S2, but pα is not 2-
homotopic to the constant homotopy ∗, for if it were we would obtain a homotopy between
the map of degree n and the identity map S1 → S1. Thus, this homotopy commutative
diagram cannot be made homotopy coherent.

A natural transformation is a type of higher morphism between parallel functors.
Natural transformations are analogous to homotopies with the category [1] = 0 → 1
playing the role of the interval.

1.3.4. Definition. Given a parallel pair of functors F,G:C→ D, a natural transfor-
mation α:F → G is specified by a functor α:C×[1]→ D that restricts on the “endpoints”
of [1] to F and G as follows:

C

C× [1] D

C

0
F

α

1
G
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This suggests the following definition of a homotopy coherent natural transformation.

1.3.5. Definition. A homotopy coherent natural transformation α:F → G be-
tween homotopy coherent diagrams F and G of shape A is a homotopy coherent diagram
of shape A× [1] that restricts on the endpoints of [1] to F and G as follows:

CA

C(A× [1]) Space

CA

0
F

α

1
G

Note that the data of a pair of homotopy coherent natural transformations α:F →
G and β:G → H between homotopy coherent diagrams of shape A does not uniquely
determine a (vertical) “composite” homotopy coherent natural transformation F → H
because this data does not define a homotopy coherent diagram of shape A × [2], where
[2] = 0 → 1 → 2.8 This observation motivated Boardman and Vogt to define, in place
of a category of homotopy coherent diagrams and natural transformations of shape A, a
quasi-category of homotopy coherent diagrams and natural transformations of shape A
[Boardman–Vogt, 1973, §IV.2].

1.3.6. Definition. For any category A, let Coh(A,Space) denote the simplicial set whose
n-simplices are homotopy coherent diagrams of shape A× [n], i.e., are simplicial functors

C(A× [n])→ Space,

where [n] ⊂ � denotes the category freely generated by the reflexive directed graph

[n] := 0 1 2 3 · · · n.

The simplicial category Space has an important property alluded to above: its mapping
spaces Map(X, Y ) are Kan complexes, simplicial sets in which any horn

Λn
k Map(X, Y )

∆n

with 0 ≤ k ≤ n may be filled to a simplex. Any simplicial category, such as Space,
extracted from a topologically-enriched category is automatically Kan complex enriched
because its mapping spaces are defined as total singular complexes of topological spaces
[Riehl, 2014, §16.1]. It is because of this property that:

8In notation to be introduced in Part 2, α and β define a diagram of shape C(A × Λ2
1) rather than

a diagram of shape C(A × [2]), where Λ2
1 is the shape of the generating reflexive directed graph of the

category [2].
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1.3.7. Theorem. [Boardman–Vogt, 1973, 4.9] Coh(A,Space) is a quasi-category, i.e.,
any inner horn

Λn
k Coh(A,Space)

∆n

with 0 < k < n admits a filler.

Proof. This can be checked directly, or deduced as an immediate consequence — see
Corollary 2.2.7 — of a result that we will prove in Part 2.

Boardman and Vogt referred to inner horn filling as the “restricted Kan condition.”
Joyal introduced the name “quasi-categories” for these “weak Kan complexes.” Quasi-
categories define a popular model of (∞, 1)-categories, categories weakly enriched in topo-
logical spaces, about more which in Part 3.

Any quasi-category has a homotopy category whose objects are the vertices and
whose morphisms are 1-simplices up to a homotopy relation f ' g between parallel 1-
simplices f, g:x→ y witnessed by a 2-simplex with boundary:

y

x y

f

g

Composition relations are also witnessed by 2-simplices: the homotopy class of f :x→ y
and the homotopy class of g: y → z compose to the homotopy class of h:x → z if and
only if there is a 2-simplex whose boundary has the form

y

x z

gf

h

The following result was first proven by Vogt and then generalized by Cordier and
Porter:

1.3.8. Theorem. [Vogt, 1973, Cordier–Porter, 1986] The natural map SpaceA → Coh(A,Space)
defined by (1.4) induces an equivalence of homotopy categories

Ho(SpaceA) HoCoh(A,Space),'

where Ho(SpaceA) is defined by localizing at the componentwise homotopy equivalences.

An equivalence of categories is in particular essentially surjective. Theorem 1.3.8 tells
us that any homotopy coherent diagram of shape A is equivalent, via a homotopy coherent
natural transformation, to a strictly commutative diagram of shape A. This result answers
the rectification problem for homotopy commutative diagrams.
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2. Homotopy coherent realization and the homotopy coherent nerve

Recall that a homotopy coherent diagram of shape A is a simplicial functor indexed by
a category CA defined as a free resolution of A, a construction that will be reviewed
momentarily. Explicitly, the data of such a diagram is comprised of objects Xa for each
object a ∈ A plus maps of simplicial sets

CA(a, b)→ Map(Xa, Xb)

for each pair of objects that are functorial in the sense of commuting with the composition
functions:

CA(b, c)× CA(a, b) CA(a, c)

Map(Xb, Xc)×Map(Xa, Xb) Map(Xa, Xc)

◦

◦

Previously we interpreted Xa and Xb as spaces, but this interpretation is actually not
necessary. What we do need is for Map(Xa, Xb) to be a “space,” by which we mean a
Kan complex, because it is in these mapping spaces that we are defining homotopies (as 1-
simplices) and higher homotopies (as higher simplices). So henceforth, we will extend our
notion of homotopy coherent diagram to encompass any simplicial functor CA → S
whose codomain S is a category enriched in Kan complexes.9 Any topological category
can be made into a category enriched in Kan complexes by applying the total singular
complex functor (1.2) to its mapping spaces. In particular, the category Space becomes
a Kan complex enriched category in this way, but there are many other examples as well.

Indeed, many (large) quasi-categories — e.g., of spaces, of spectra, or whatever —
originate as categories enriched in Kan complexes by Theorem 2.2.6 below. Our aim
today is to explain how diagrams that are valued in quasi-categories that arise in this way
are automatically homotopy coherent.

To justify this slogan, we offer a second perspective on the simplicial category CA
defined as the free resolution of a category A, explaining its relationship to the famous
homotopy coherent nerve functor. This work will also allow us to generalize the indexing
shapes for homotopy coherent diagrams to encompass simplicial sets which may or may
not be nerves of categories. This will allow us to distinguish, e.g., between the ordinal
category [2] = 0→ 1→ 2 and its generating reflexive directed graph Λ2

1.

2.1. Free resolutions are simplicial computads. An arrow in a category is atomic
if it is not an identity and if it admits no non-trivial factorizations, i.e., if whenever f = g◦h
then one or other of g and h is an identity. A category is freely generated by a reflexive
directed graph of atomic arrows if and only if each of its non-identity arrows may be
uniquely expressed as a composite of atomic arrows.10

9Categories enriched in Kan complexes are called “locally Kan” in much of the literature.
10This is the case just when the category is in the essential image of the free category functor

F : rDirGph→ Cat.
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The following definition is due to Dwyer and Kan [Dwyer–Kan, 1980, 4.5] who used
the terminology “free simplicial categories.”11

2.1.1. Definition. [simplicial computad] A simplicial category A is a simplicial com-
putad if and only if:

� each category An of n-arrows is freely generated by the graph of atomic n-arrows

� if f is an atomic n-arrow in An and α: [m] � [n] is an epimorphism in � then the
degenerated m-arrow f · α is atomic in Am.

2.1.2. Lemma. A simplicial category A is a simplicial computad if and only if all of its
non-identity arrows f can be expressed uniquely as a composite

f = (f1 · α1) ◦ (f2 · α2) ◦ · · · ◦ (f` · α`)

in which each fi is non-degenerate and atomic and each αi ∈ � is a degeneracy operator.

Proof. This characterization follows immediately from the definition by applying the
Eilenberg-Zilber lemma [Gabriel–Zismann, 1967, II.3.1, pp. 26-27], which says that any
degenerate simplex in a simplicial set may be uniquely expressed as a degenerated image
of a non-degenerate simplex.

Free resolutions define simplicial computads, whose atomic n-arrows index the generat-
ing n-homotopies in a homotopy coherent diagram, such as enumerated for the homotopy
coherent simplex in §1.2.

2.1.3. Proposition. The free resolution CA is a simplicial computad.

Proof. Recall CA is defined to be the free resolution of A, whose category of n-arrows
is (FU)n+1A. The category FUA is the free category on the underlying reflexive directed
graph of A. Its arrows are strings of composable non-identity arrows of A; the atomic
0-arrows are the non-identity arrows of A. An n-arrow is a string of composable arrows
in A with each arrow in the string enclosed in exactly n pairs of parentheses. The atomic
n-arrows are those enclosed in precisely one pair of parentheses on the outside. Since
composition in a free category is by concatenation, the unique factorization property is
clear. Since degeneracy arrows “double up” on parentheses, these preserve atomics as
required.

11The reader familiar with model categorical intuition might find it helpful to note that the simplicial
computads are precisely the cofibrant objects in the Bergner model structure on simplicially enriched
categories; see [Riehl, 2014, §16.2] for proof.
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We will now do the homework assigned in Exercise 1.2.6.

2.1.4. Example. Recall the category

� := 0 1 2 3 · · ·

The free resolution C� has objects n ∈ �.

� A 0-arrow from j to k is a sequence of non-identity composable morphisms from j to
k, the data of which is uniquely determined by the objects being passed through. So
0-arrows from j to k correspond to subsets

{j, k} ⊂ T 0 ⊂ [j, k]

of the closed internal [j, k] = {t ∈ � | j ≤ t ≤ k} containing both endpoints.

� A 1-arrow from j to k is a once bracketed sequence of non-identity composable mor-
phisms from j to k. This data is specified by two nested subsets

{j, k} ⊂ T 1 ⊂ T 0 ⊂ [j, k]

the larger one T 0 specifying the underlying unbracketed sequence and the smaller one
T 1 specifying the placement of the brackets.12

� A n-arrow from j to k is an n times bracketed sequence of non-identity composable
morphisms from j to k, the data of which is specified by nested subsets

{j, k} ⊂ T n ⊂ · · · ⊂ T 0 ⊂ [j, k]

indicating the locations of all of the parentheses.13

What then are the mapping spaces C�(j, k)? When j > k they are empty and when
k = j or k = j + 1 we have {j, k} = [j, k] so C�(j, k) ∼= ∆0 is comprised of a single
point. For k > j, there are k − j − 1 elements of [j, k] excluding the endpoints and so we
see that C�(j, k) has 2k−j−1 vertices. The n-simplices of C�(j, k) are given by specifying
n+ 1 vertices — each a subset {j, k} ⊂ T i ⊂ [j, k] — that respect the ordering of subsets
relation. From this we see that

C�(j, k) ∼= (∆1)k−j−1, 14

12Note the face and degeneracy maps (C�)0 (C�)1 are the obvious ones, either duplicating or

omitting one of the sets T i.
13The nesting is because parenthezations should be “well formed” with open brackets closed in the

reverse order to that in which they were opened.
14More explicitly, this argument shows that the simplicial set C�(j, k) is the nerve of the poset of

subsets {j, k} ⊂ T ⊂ [j, k] ordered by inclusion.
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as displayed for instance in the case j = 0 and k = 4:

C�(0, 4) :=



{0, 4} {0, 1, 4}

{0, 3, 4} {0, 1, 3, 4}

{0, 2, 4} {0, 1, 2, 4}

{0, 2, 3, 4} {0, 1, 2, 3, 4}


The simplicial category C� is a simplicial computad whose atomic n-arrows are those

with a single outermost parenthezation: i.e., for which T n = {j, k}. Geometrically these
are all the simplices in the hom space cube (∆1)k−j−1 that contain the initial vertex {j, k}.

2.2. Homotopy coherent realization and the homotopy coherent nerve.
Employing topological notation, we write [n] ⊂ � for the full subcategory spanned by
0, . . . , n.

[n] := 0 1 2 3 · · · n

These categories define the objects of a diagram � ↪→ Cat that is a full embedding: the only
functors [m]→ [n] are order-preserving maps from [m] = {0, . . . ,m} to [n] = {0, . . . , n}.
Applying the free resolution construction to these categories we get a functor C:�→ sCat
where C[n] is the full simplicial subcategory of C� spanned by those objects 0, . . . , n. In
particular, its hom spaces are the simplicial cubes described in Example 2.1.4.

2.2.1. Definition. [homotopy coherent realization and nerve] The homotopy coherent
nerve N and homotopy coherent realization C are the adjoint pair of functors obtained by
applying Kan’s construction [Riehl, 2014, 1.5.1] to the functor C:� → sCat to construct
an adjunction

sSet sCat

C

⊥
N

The right adjoint, called the homotopy coherent nerve, carries a simplicial category
S to the simplicial set NS whose n-simplices are homotopy coherent diagrams of shape [n]
in S. That is

NSn := {C[n]→ S}.

The left adjoint is defined by pointwise left Kan extension along the Yoneda embedding
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of 1.2.1:

� sSet

sCat

∆•

C
∼=

C

That is, C∆n is defined to be C[n] — a simplicial category that we call the homotopy
coherent n-simplex — and for a generic simplicial set X, CX is defined to be a colimit
of the homotopy coherent simplices indexed by the category of simplices of X.15

Because of the formal similarity with the geometric realization functor of (1.2), an-
other left adjoint defined by Kan’s construction, we refer to C as homotopy coherent
realization.

Left Kan extensions are computed as colimits, providing a formula for the homotopy
coherent realization CX of a simplicial set X as the colimit of a diagram of homotopy
coherent simplices C[n]. However, this does not give very much insight into the mapping
space of CX, colimits of simplicial categories being rather complicated. Work of Dugger
and Spivak [Dugger–Spivak, 2011], redeveloped in [Riehl–Verity, 2018, §4], fills this gap;
see also [Riehl, 2014, §16.2-16.4].

2.2.2. Proposition. [Riehl–Verity, 2018, 4.4.7] For any simplicial set X, its homotopy
coherent realization CX is a simplicial computad in which:

� objects obCX = X0, the vertices of the simplicial set X

� atomic 0-arrows are non-degenerate 1-simplices of X, the source being the initial vertex
and the target being the final vertex of the simplex

� atomic 1-arrows are the non-degenerate k-simplices of X for k > 1, the source being
the initial vertex and the target being the final vertex of the simplex

� atomic n-arrows are pairs comprised of a non-degenerate k-simplex in X for some
k > n together with a set of proper inclusions

{0, k} = T n ( T n−1 ( · · · ( T 1 ( T 0 = [0, k] (2.1)

the data of which defines an atomic n-arrow in C∆k from 0 to k that is not in the
image of any of the face maps. This source of this n-arrow is the initial vertex of the
k-simplex, while the target is the final vertex of the simplex.

Note that the description of atomic n-arrows subsumes those of the atomic 0-arrows
and atomic 1-arrows. The data of a non-degenerate atomic n-arrow from x to y in CX is
given by a “bead,” that is a non-degenerate k-simplex in X from x to y, together with the

15Recall from Digression 1.2.1 that the simplicial set X is obtained by gluing in a ∆n for each n-simplex
∆n → X of X. The functor C preserves these colimits, so CX is obtained by gluing in a C[n] for each
n-simplex of X.
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additional data of a sequence of proper subset inclusions (2.1), which Dugger and Spivak
refer to as a “flag of vertex data.” Non-atomic n-arrows are then “necklaces,” that is
strings of beads in X joined head to tail, together with accompanying “vertex data” for
each simplex.

Proof Proof sketch. This can be proven inductively using the skeletal decomposition
of the simplicial set X and will reveal that for any inclusion of simplicial sets X ⊂ Y ,
the functor CX ↪→ CY of homotopy coherent realizations is a simplicial subcomputad
inclusion: a functor of simplicial computads that is injective on objects and faithful and
also preserves atomic arrows. This is proven by verifying directly that C∂∆k ↪→ C∆k is a
simplicial subcomputad inclusion and then arguing that such inclusions are closed under
coproduct, pushout, and transfinite composition in simplicial categories. It follows that
CX is a simplicial computad, and moreover the analysis of what happens when attaching
an k-simplex provides the description of atomic n-arrows given above. The data (2.1)
represents an n-arrow in C∆k(0, k) that is atomic (since T n = {0, k}) and not contained
in any face (since T 0 = [0, k]).

Applying Kan’s construction to the embedding � ↪→ Cat of the ordinal categories
yields an adjunction

sSet Cat

Ho

⊥

the right adjoint of which is called the nerve and the left adjoint of which, defined by
pointwise left Kan extension along the Yoneda embedding:

� sSet

Cat

∆•

∼=
Ho

defines the homotopy category of a simplicial set, via a mild generalization of the construc-
tion introduced for quasi-categories at the end of Part 1. For a category A, an n-simplex
in the nerve of A is simply a functor [n]→ A, i.e., a string of n-composable morphisms in
A. Note that by fullness of � ↪→ Cat, the nerve of the ordinal category [n] is the standard
n-simplex ∆n.

The nerve functor defines a fully faithful embedding Cat ↪→ sSet of categories into
simplicial sets that lands in the subcategory spanned by the quasi-categories. In quasi-
category theory, it is very convenient to conflate a category with its nerve, which is why
we have not introduced notation for this right adjoint.16

With this convention, we now have two simplicial categories we have denoted CA for
a small category A: the free resolution of A and the homotopy coherent realization of the
nerve of A. This would be confusing were these objects not naturally isomorphic:17

16Note that the nerve of the category BG with a single object and elements of the group G as its
endomorphisms is the Kan complex that typically goes by this name.

17Corollary 2.2.5, which implies Theorem 2.2.3, is stated without proof in [Cordier–Porter, 1986]. The
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2.2.3. Theorem. [Riehl, 2011, 6.7] For any category A, CA ∼= CA. That is, its free
resolution is naturally isomorphic to the homotopy coherent realization of its nerve.

2.2.4. Remark. Note C∆n ∼= C[n] is tautologous. The left Kan extension along the
Yoneda embedding is defined so as to agree with C:�→ sCat on the subcategory of repre-
sentables. Many arguments involving simplicial sets can be reduced to a check on repre-
sentables, with the extension to the general case following formally by “taking colimits.”
This result, however, is not one of them since we are trying to prove something for all
categories and the embedding Cat ↪→ sSet does not preserve colimits.

Proof. Proposition 2.1.3 and Proposition 2.2.2 reveal that both simplicial categories are
simplicial computads. We will argue that they have the same objects and non-degenerate
atomic n-arrows.

Both have obA as objects, these being the vertices in the nerve of A. Atomic 0-
arrows of the free resolution are morphisms in A; while atomic 0-arrows in the coherent
realization are non-degenerate 1-simplices of the nerve — these are the same thing. Atomic
non-degenerate 1-arrows of the free resolution are sequences of at least two morphisms
(enclosed in a single set of outer parentheses), while atomic 1-arrows of the coherent
realization are non-degenerate simplices of dimension at least two — again these are the
same. Finally a non-degenerate atomic n-arrow is a sequence of k composable morphisms
with (n − 1) non-repeating bracketings; this non-degeneracy necessitates k > n. This
data defines a k-simplex in the nerve together with a non-degenerate atomic n-arrow in
C[k](0, k), i.e., an atomic n-arrow in the coherent realization.

Because the homotopy coherent realization was defined to be the left adjoint to the
homotopy coherent nerve, it follows immediately:

2.2.5. Corollary.

i. Homotopy coherent diagrams of shape A in a simplicial category S correspond to
maps from the nerve of A to the homotopy coherent nerve of S: i.e., there is a
natural bijection between simplicial functors CA→ S and simplicial maps A→ NS.

ii. Hence, the simplicial set Coh(A,S) is isomorphic to the simplicial set NSA defined
using the internal hom in sSet.

Note that the homotopy coherent realization functor is defined on all simplicial sets X.
Extending previous terminology, we refer to a simplicial functor CX → S as a homotopy
coherent diagram of shape X in S.

The simplicial computad structure of Proposition 2.2.2 can also be used to prove the
following important result:

2.2.6. Theorem. [Cordier–Porter, 1986, 2.1] If S is Kan complex enriched, then NS is
a quasi-category.

argument given here appears in [Riehl, 2011], though it is highly probable that an earlier proof exists in
the literature.
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Proof. By adjunction, to extend along an inner horn inclusion Λn
k ↪→ ∆n mapping into

the homotopy coherent nerve NS is to extend along simplicial subcomputad inclusions
CΛn

k ↪→ C∆n mapping into the Kan complex enriched category S. This is the simplicial
subcomputad generated by all arrows whose beads are supported by simplices in Λn

k ⊂ ∆n.
The only missing ones are in the mapping space from 0 to n, so we are asked to solve a
single lifting problem

CΛn
k(0, n) Map(X0, Xn)

C∆n(0, n)

In Example 2.1.4, we have seen that C∆n(0, n) ∼= (∆1)n−1 is a cube. One can similarly
check that CΛn

k(0, n) is a cubical horn. Cubical horn inclusions can be filled in the Kan
complex Map(X0, Xn), completing the proof.

2.2.7. Corollary. Coh(A,S) ∼= NSA is a quasi-category.

Proof. By the adjunction of Definition 2.2.1, a simplicial functor CA → S is the same
as a simplicial map A → NS. So Coh(A,S) ∼= NSA and since the quasi-categories define
an exponential ideal in simplicial sets, the fact that NS is a quasi-category implies that
NSA is too.

2.2.8. Remark. [all diagrams in homotopy coherent nerves are homotopy coherent] This
corollary explains that any map of simplicial sets X → NS transposes to define a simplicial
functor CX → S, a homotopy coherent diagram of shape X in S. While not every quasi-
category is isomorphic to a homotopy coherent nerve of a Kan complex enriched category,
a deep theorem shows that every quasi-category is equivalent to a homotopy coherent nerve;
one proof appears as [Riehl–Verity, 2018, 7.2.22]. This explains the slogan introduced at
the beginning of this part, that all diagrams in quasi-categories are homotopy coherent.

2.3. Further applications. Using similar techniques, where a homotopy coherent
realization problem is transposed along the adjunction C a N to an extension problem in
simplicial sets mapping into the homotopy coherent nerve, one can show:

2.3.1. Proposition. [Cordier–Porter, 1988, §2] Given a homotopy coherent diagram
F :CA → S in a locally Kan simplicial category and a family of homotopy equivalences
fa:Fa → Ga for all a ∈ A, there is a homotopy coherent diagram G and coherent map
f :F → G that moreover defines an isomorphism in Coh(A,S).

Proof. By colimits reduce to the case A = ∆n and construct the desired extension

∆n × Λ1
1 ∪ sk0∆n ×∆1 NS

∆n ×∆1

See [Cordier–Porter, 1988, §2] for a very explicit description of what this filling process
looks like in low dimensions.
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2.3.2. Proposition. [Cordier–Porter, 1988, §3] Given a homotopy coherent map f :F →
G of homotopy coherent diagrams F,G:CA→ S in a locally Kan simplicial category and
a family of homotopies fa ' ga:Fa → Ga for all a ∈ A, there is a homotopy coherent
map g:F → G extending these component maps together with a coherent homotopy of
homotopy coherent maps H:C(A× [2])→ S.

Proof. The argument is analogous to the previous inductive one solving the lifting prob-
lems:

∆n × Λ2
0 ∪ sk0∆n ×∆2 NS

∆n ×∆2

3. Homotopy coherent algebra

In §2.2, we saw that the nerve of a 1-category A defines the shape of a homotopy coherent
diagram taking values in a quasi-category. In this final part, we will extend this prin-
ciple, to argue that if A is a 2-category, then its “local nerve” (taking the nerve of the
hom-categories to produce a simplicial category) defines the shape of homotopy coherent
categorical structure in a quasi-categorically enriched category — at least in the case
where the local nerve of A happens to be a simplicial computad. We will pursue this line
of thought in two particular examples, where A indexes a monad or an adjunction.

3.1. From coherent homotopy theory to coherent category theory. We
have observed that categories of “space-like” objects are frequently enriched over Kan
complexes, simplicial sets in which any horn can be filled to a simplex. The 0-arrows
of the mapping objects Map(X, Y ) in such a category S define morphisms X → Y in
the underlying category of S. The Kan complex property implies that all n-arrows for
n > 0 are “invertible” in a suitable sense, so we interpret an n-arrow in a mapping Kan
complex Map(X, Y ) as an n-homotopy, with the case n = 1 defining ordinary homotopies
between parallel morphisms f, g:X → Y . The totality of the data of S may be thought of
as defining an (∞, 1)-category, meaning a category with objects and morphisms in each
dimension, all but the lowest of which are invertible.

There is another context in which we are used to having multiple dimensions of mor-
phisms, namely category theory itself. Famously, the category Cat of ordinary categories
and functors is a 2-category. Here the morphisms between morphisms are the natural
transformations of Definition 1.3.4. As mentioned there, natural transformations are anal-
ogous to homotopies in the sense that they can be expressed as functors H:C× [1]→ D
defined using the interval category [1] = 0 → 1, but unlike homotopies natural transfor-
mations are not typically invertible, an important amount of extra flexibility.

Thus, the appropriate context for homotopy coherent category theory will be a cat-
egory that is simplicially enriched but with two non-invertible dimensions of morphisms
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rather than just one. More precisely, a categorical context for homotopy coherent cate-
gory theory is a simplicial category K that is quasi-categorically enriched as opposed to
Kan complex enriched, in which case it is traditional to write Fun(X, Y ) for the function
complexes instead of Map(X, Y ).

3.1.1. Example. The categories of quasi-categories, Segal categories, complete Segal
spaces, and naturally marked simplicial sets (1-complicial sets) are all enriched over quasi-
categories.

3.1.2. Example. Suitably defined categories of fibrations (isofibrations, cartesian fibra-
tions, cocartesian fibrations) of any of these over a fixed base are also enriched over
quasi-categories.

In each category just mentioned, the objects are a model of an (∞, 1)-category —
which, in deference to Lurie, most people call ∞-categories — or a fibered variant of the
above. So if we develop homotopy coherent category theory in the context of any category
enriched over quasi-categories, we are doing “model independent∞-category” in a rather
strict framework.

3.1.3. Digression. [on model independent ∞-category theory] Some people use “model
independent ∞-category theory” to refer either to some sort of hand-wavy ∞-category
theory or to something that is secretly quasi-category theory but presented in somewhat
different language. The idea in both cases is that an expert could make everything precise.
As an aesthetic and expository philosophy, this approach makes a lot of sense, but my
concern at present is that there may be too few “experts.”

A more conservative deployment of model independent ∞-category theory refers to
mathematics that can be:

� specialized to the case of quasi-categories and so recover a theory that is compatible
with the theory of Joyal and Lurie and

� specialized to other models of (∞, 1)-categories and recover something equivalent to
this in the sense that it is preserved and reflected by “change of universe functors.”18

This is the sense in which “model independent ∞-category” will be used here, referring to
constructions and theorems that can be used for a variety of models of (∞, 1)-categories in
exactly the same way in each instance and without relying upon any details of the models,
except to know that each category of ∞-categories is enriched of quasi-categories.19

A final example of a quasi-categorically enriched category is worth mentioning:

18The right Quillen equivalences between quasi-categories, Segal categories, complete Segal spaces, and
1-complicial sets established by Joyal and Tierney [Joyal–Tierney, 2007] all define biequivalences of quasi-
categorically enriched categories: functors that are surjective on objects up to equivalence and define a
local equivalence of quasi-categories.

19For a considerably more detailed account of what it means to develop ∞-category theory “model
independently” from this point of view see [Riehl–Verity, 2020, Riehl–Verity, 2022].
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3.1.4. Example. The category Cat of categories is self-enriched: for any pair of small
category C and D, we may define the category DC of functors and natural transformations.
Passing to the nerve, this defines a quasi-categorically enriched category of categories,
since nerves of ordinary categories are quasi-categories.

3.2. Homotopy coherent monads. A monad on a category B is a syntactic way
of encoding “algebraic structure” that might be borne by objects in B. Various other
mechanisms for describing finitary algebraic operations satisfying equations exist — for
instance operads or Lawvere theories — but monads are able to capture more general
varieties of algebraic structure.

3.2.1. Definition. A monad on B is given by an endofunctor T :B→ B together with
a pair of natural transformations η: idB → T and µ:T 2 → T so that the following “asso-
ciativity” and “unit” diagrams commute.

T 3 T 2 T T 2 T

T 2 T T

Tµ

µT µ

Tη

µ

ηT

µ

3.2.2. Example. Let {Pn}n∈N be a symmetric operad in sets. Then if B has finite prod-
ucts and the colimits displayed below, the associated monad is defined for b ∈ B by

Tb :=
∑
n∈N

Pn ×Σn b
n.

We will review the notion of an algebra for a monad T on B in Definition 3.4.1. For
now, it suffices to mention that the algebras for the monad construction in Example 3.2.2
are equivalent to the algebras for the operad.

A monad, as just defined, is a diagram inside Cat whose image is comprised of

� a single object, the category B on which the monad acts,

� a 0-arrow T , the monad endofunctor,

� a pair of 1-arrows η: idB → T and µ:T 2 → T , the monad natural transformations,

satisfying the axioms of Definition 3.2.1.
Let us try to naively conjure the data of a homotopy coherent monad before stating the

full definition. That is, let us try to define a simplicial computad Mnd so that simplicial
functors Mnd→ K valued in a quasi-categorically enriched category define a monad on an
object in K.

Firstly, Mnd should have a single object, which we denote by +, whose image identifies
the object of K on which the monad acts. Since Mnd has a single object we only need to
describe the simplicial set Mnd(+,+) of endo-arrows.
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There is a single generating 0-arrow t, whose image defines the endofunctor of the
monad. Then the 0-arrows are tn for all n ≥ 0 with t0 = id+.

Among the generating 1-arrows we should have η: id+ → t and µ: t2 → t. But our
intuition is that to define a “homotopy coherent” algebraic structure, we should avoid
making unnecessary choices. This suggests that it would be better to have a generating
1-arrow µn: tn → t for all n ≥ 0, the n-ary multiplication map, where the case µ1 = idt
and µ0 we think of as the unit η.

By “horizontally” composing the atomic 1-arrows µi1 , . . . , µim we obtain composite
1-arrows t

∑
j ij → tm defined as follows:

+ + + + +

ti1

↓µi1
t

ti2

↓µi2
t

· · ·
tim

↓µim
t

Because each of the generating 1-arrows µn has codomain t, these composite 1-arrows
are uniquely determined by interpreting the codomain tm as m copies of t each of which
receives some map µi. The data of the map µ[α]: tn → tm is then given by an order-
preserving map α: {0, . . . , n− 1} → {0, . . . ,m− 1}, which can be thought of as a specifi-
cation of the cardinality of the fiber over each j ∈ {0, . . . ,m− 1}. This gives a complete
description of the 1-arrows in Mnd(+,+).

What 2-arrows should there be in Mnd(+,+)? Associativity says that “all maps from
tn to t should agree.”. In a homotopy coherent context, relations become data witnessed
by arrows of the next dimension up. This suggests that for any n,m ≥ 0 and any simplicial
map α: {0, . . . , n− 1} → {0, . . . ,m− 1} we should have a 2-arrow with boundary

tm

tn t

µmµ[α]

µn

None of these relations implies the other so they should all be generating. The composite
2-arrows are then of the form

tm

tn tk

µ[β]µ[α]

µ[γ]

for k > 1 whenever γ and βα define the same function [n − 1] → [k − 1]. A similar
description can be given for the m-arrows for m ≥ 3.

So what is Mnd(+,+)? It has 0-arrows indexed by natural numbers n ≥ 0, 1-arrows
corresponding to all order preserving functions, 2-arrows corresponding to composable
pairs of order preserving functions, etc. So we see that Mnd(+,+) is isomorphic to the
nerve of the category �+ of finite ordinals and order-preserving maps.
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3.2.3. Definition. [the free homotopy coherent monad] Let Mnd denote the quasi-cate-
gorically enriched category with a single object + and whose endo-hom quasi-category

Mnd(+,+) := �+

is the nerve of the category of finite ordinals and order-preserving maps. Composition is
given by the ordinal sum

Mnd(+,+)× Mnd(+,+) Mnd(+,+).
⊕

Ignoring the nerve, we can think of Mnd as a strict 2-category. It has a universal
property that is well-known:

3.2.4. Proposition. 2-functors Mnd→ Cat correspond to monads.

Proof. A 2-functor Mnd → Cat picks out a category B as the image of +, and then
defines a strictly monoidal functor Mnd(+,+) = �+ → BB. The category �+ has a
universal property: strictly monoidal functors out of �+ correspond to monoids in the
target, and a monad on B is just a monoid in the category BB of endofunctors!

Thus reassured, we may define a notion of a homotopy coherent monad acting on an
object in a quasi-categorically enriched category K. On account of the examples listed
in 3.1.1, 3.1.2, and 3.1.4, we might think of the objects in a quasi-categorically enriched
category as being “∞-categories” in some sense.

3.2.5. Definition. [Riehl–Verity, 2016] A homotopy coherent monad in a quasi-
categorically enriched category K is a simplicial functor Mnd → K whose domain is the
simplicial computad Mnd. Explicitly, it picks out:

� an object B ∈ K.

� a homotopy coherent diagram �+ → Fun(B,B) that is strictly monoidal with respect
to composition. It sends the generating 0-arrow t: +→ + to a 0-arrow T :B → B and
identifies 1-arrows that assemble into a diagram

idB T T 2 T 3 · · ·η

ηT

Tη

µ

We interpret the simplicial functor �+ → Fun(B,B) defined by a homotopy coherent
monad as being a homotopy coherent version of the monad resolution for (T, η, µ).
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3.3. Homotopy coherent adjunctions. This definition of a homotopy coherent
monad seems reasonable but are there any examples? One is given by the homotopy
coherent monad on the large quasi-category

∏
obB Qcat whose algebras are those obB-

indexed families of quasi-categories that assemble into the fibers for a cartesian fibration
over the quasi-category B [Riehl–Verity, 2021]. This example arises from a familiar path.
In traditional category theory, all monads arise from adjunctions. After reviewing the
classical definitions, we will observe that up to homotopy adjunctions can be extended to
homotopy coherent adjunctions, as defined below. Homotopy coherent adjunctions then
restrict to define homotopy coherent monads. Moreover, monadic homotopy coherent ad-
junctions also recover the algebras for a homotopy coherent monad, to be introduced in
§3.4.

3.3.1. Definition. An adjunction in Cat is comprised of a pair of categories A and B
together with functors U :A→ B and F :B→ A and natural transformations η: idB → UF
and ε:FU → idA, called the unit and counit respectively, so that the diagrams

FUF UFU

F F U U

εF UεFη ηU (3.1)

commute.

3.3.2. Lemma. Any adjunction induces a monad (UF, η, UεF ) on B.

Proof. An exercise in diagram chasing.

There is a free-living 2-category Adj containing an adjunction in the sense of a universal
property analogous to Proposition 3.2.4. It has two objects + and − and the four hom-
categories displayed:

+ −

�⊥∼=�op
>

�+ ⊥ �op
+

�>∼=�op
⊥

Here �>,�⊥ ⊂ � ⊂ �+ are the subcategories of order-preserving maps that preserve the
top or bottom elements, respectively, in each ordinal. The composition maps in Adj are
all restrictions of the ordinal sum operation.

3.3.3. Proposition. [Schanuel–Street, 1986] 2-functors Adj → Cat correspond to ad-
junctions in Cat.

We saw in Definition 3.2.5 that the free homotopy coherent monad Mnd is in fact
the free 2-category containing a monad: when this 2-category is regarded as a simplicial
category by identifying its hom-category �+ with its nerve, this simplicial category turns
out to be a simplicial computad whose atomic n-arrows are those n-simplices whose final
vertex is the 0-arrow t. The following result tells us that the same is true for adjunctions:
the 2-category Adj, when regarded as a simplicial category, is a simplicial computad that
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defines the free homotopy coherent adjunction. Moreover, we present a convenient
graphical description of its n-arrows that establishes this simplicial computad structure.

3.3.4. Proposition. [Riehl–Verity, 2016] The 2-category Adj, when regarded as a sim-
plicial category via the nerve, is a simplicial computad with:

� two objects + and −

� two atomic 0-arrows f : +→ − and u:− → +

� n-arrows given by strictly undulating squiggles on (n + 1)-lines that start and end in
the regions labelled “−” or “+”

that are atomic if and only if there are no “instances of + or −” in their interiors.

Proof. An n-arrow lies in Adj(−,+) if starts in the space labeled − on the right and
ends in the space labeled + on the left; the description of the other hom simplicial sets
is similar. The face and degeneracy maps act on the simplicial sets Adj(+,+), Adj(−,+),
Adj(+,−), and Adj(+,+) by removing and duplicating lines. Composition is by horizontal
juxtaposition, which makes the simplicial computad structure clear.

3.3.5. Remark. Note this gives a graphical calculus on the full subcategory Mnd ↪→ Adj.
The n-arrows are strictly undulating squiggles on (n + 1)-lines that start and end at the
space labeled +; these are atomic if and only if there are no instances of + in their
interiors. This condition implies that if all the lines are removed except the bottom one, a
process that computes the final vertex of the n-simplex, the resulting squiggle looks like a
single hump over one line, which is the graphical representation of the 0-arrow t. Because
atomic arrows in Mnd may pass through −, Mnd ↪→ Adj is not a subcomputad inclusion.

3.3.6. Definition. A homotopy coherent adjunction in a quasi-categorically en-
riched category K is a simplicial functor Adj→ K. Explicitly, it picks out:

� a pair of objects A,B ∈ K.

� homotopy coherent diagrams

�+ → Fun(B,B), �op
+ → Fun(A,A), �> → Fun(A,B), �op

> → Fun(B,A)

that are functorial with respect to the composition action of Adj.
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The 0- and 1-dimensional data of the first and third of these may be depicted as follows

idB UF UFUF UFUFUF · · ·η

ηUF

UFη

UεF

U UFU UFUFU UFUFUFU · · ·
ηU

Uε UFη

ηUF

UεF

UFUε

the remaining two diagrams being dual. We interpret the homotopy coherent diagrams
�+ → Fun(B,B), �op

+ → Fun(A,A), �> → Fun(A,B), and �op
> → Fun(B,A) as defining

homotopy coherent versions of the bar and cobar resolutions of the adjunction (F,U, η, ε).

Any homotopy coherent adjunction has an underlying adjunction in the following
sense. A quasi-categorically enriched category K has an associated homotopy 2-category
defined by applying the homotopy category functor Ho to each hom quasi-category. Now,
an adjunction in a quasi-categorically enriched category is an adjunction the
homotopy 2-category obtained by taking the hom-categories of the function complexes.
Explicitly, an adjunction is given by:

� a pair of objects A and B,

� a pair of 0-arrows U :A→ B and F :B → A,

� a pair of 1-arrows η: idB → UF and ε:FU → idA

so that there exist 2-arrows whose boundaries have the form displayed in (3.1).
The upshot is that an adjunction in a quasi-categorically enriched category is not so

hard to define in practice and this low-dimensional data may be extended to give a full
homotopy coherent adjunction:

3.3.7. Theorem. [Riehl–Verity, 2016, 4.3.11,4.3.13] Any adjunction in a quasi-categorically
enriched category extends to a homotopy coherent adjunction.

Moreover extensions from judiciously chosen basic adjunction data are homotopically
unique [Riehl–Verity, 2016, §4.4].

3.3.8. Remark. It is also fruitful to consider simplicial functors Adj → S valued in a
Kan complex enriched category. Because all 1-arrows in S are invertible, the unit and
counit in this case are natural isomorphisms and this data is more properly referred to as
a homotopy coherent adjoint equivalence. Theorem 3.3.7 implies that any adjoint
equivalence in a Kan complex enriched category extends to a homotopy coherent adjoint
equivalence. Paired with the familiar 2-categorical result that says that any equivalence
can be promoted to an adjoint equivalence, we conclude that any equivalence in a Kan
complex enriched category extends to a homotopy coherent adjoint equivalence.
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3.4. Algebras for a homotopy coherent monad. Finally, we connect these ho-
motopy coherent notions to “algebra.”

3.4.1. Definition. Let (T, η, µ) be a monad acting on a category B. A T -algebra is a
pair (b, β:Tb→ b) so that

b Tb T 2b
η

β Tη

ηT

µ

Tβ

defines a truncated split augmented simplicial object.20

T -algebras in B and T -algebra homomorphisms define the category of algebras,
traditionally denoted by BT .

3.4.2. Proposition. Let (T, η, µ) be a monad acting on a category B. There is an
adjunction

B BT
FT

⊥
UT

whose underlying monad is T .

If B ∈ K is thought of as an∞-category and Mnd→ K is a homotopy coherent monad
on B, then the ∞-category of T -algebras in B may be recovered as an appropriately
defined flexible weighted limit of the diagram Mnd→ K. This limit computes the value of
the right Kan extension along Mnd ↪→ Adj at the object − and so in fact constructs the
entire monadic homotopy coherent adjunction. All of the examples of quasi-categorically
enriched categories K mentioned above are ∞-cosmoi, in which such limits exist.

A full description of the ∞-category of algebras for a homotopy coherent monad is
given in [Riehl–Verity, 2016, §6], but we can at least give an informal description here. To
a rough approximation, a homotopy coherent T -algebra for a homotopy coherent monad
acting on an object B ∈ K is a homotopy coherent diagram of shape �> in B satisfying
various functoriality conditions, which are suggested by the picture

b Tb T 2b T 3b · · ·
η

β Tη

ηT

µ

Tβ

3.5. Other vistas. Homotopy coherent adjunctions, monads, and algebras represent a
rather small part of “higher algebra,” which includes strong shape theory [Porter–Stasheff,
2022], Waldhausen’s notion of “brave new rings” [Vogt, 1999], the∞-operads of Cisinski-
Moerdijk-Weiss [Cisinski–Moerdijk, 2011, Moerdijk–Weiss, 2007] and Lurie [Lurie, 2017],
among other topics. A wonderful survey can be found in [Gepner, 2019].

20The shape of this diagram is given by the full subcategory of �> spanned by the objects [0], [1], and
[2].
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