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THE REPRESENTING LOCALIC GROUPOID
FOR A GEOMETRIC THEORY

GRAHAM MANUELL AND JOSHUA L. WRIGLEY

Abstract. We give an expository, and hopefully approachable, account of the Joyal–
Tierney result that every topos can be represented as a topos of sheaves on a localic
groupoid. We give an explicit presentation of a representing localic groupoid for the
classifying topos of a given geometric theory and discuss links with the topological
groupoids of Forssell.

0. Introduction
In [14] Joyal and Tierney famously proved that every topos can be represented as a topos of
equivariant sheaves on a localic groupoid. This provides a helpful perspective from which
to understand topos theory. However, possibly due to the level of abstraction involved in
the proof, many people [23, 24, 25] seem to be unsure of exactly how to construct such a
localic groupoid in concrete cases. The aim of this paper is to show that it is relatively
straightforward to write down a localic groupoid that represents a topos directly from the
geometric theory the topos classifies.

Topos theory is a powerful mathematical framework which unifies topology and logic
in the language of category theory. In particular, every geometric theory has an associated
classifying topos that encodes information about the models of the theory, not only in Set,
but in every topos. The representation theorem of Joyal and Tierney can be understood as
showing that a topos can be viewed as a topological space (in its ‘point-free’ incarnation)
together with additional automorphisms (as given by the structure of a groupoid). Thus,
we might compare toposes to orbifolds from differential geometry.

While topos theory has a reputation for being difficult at times, we have attempted
to make this paper approachable to non-experts. For this reason we do not include all
the technical details from [14]. Instead we try to give intuition for the essential ideas and
hope to show that the main ideas behind the proof of the representation theorem are not
as difficult as one might fear.
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The explicit localic groupoid we construct is slightly different from the one found in
[14], instead coinciding with the construction briefly sketched in [12, Remark C5.2.8(c)]
(see Remark 3.12). Another exposition of the same construction from the perspective of
mathematical logic is given in Paper III of Lindberg’s Ph.D. thesis [17]. Our paper focuses
on giving a hands-on procedure for turning a geometric theory into a presentation for the
corresponding localic groupoid, which has only been implicit in prior work.

In Section 1 we provide a brief introduction to the concepts needed to understand
the paper. In particular, we discuss locales, internal groupoids, classifying toposes and
sheaves.

In Section 2 we give an explicit description for a localic groupoid associated to the
classifying topos of a geometric theory by coding models as subquotients of N. It is perhaps
surprising that the we do not need to consider any larger models, but this is a consequence
of the localic nature of the construction.

An overview of the proof of the representation theorem from [14] is described in
Section 3. In Section 4 we show how this construction yields the localic groupoid described
in Section 2.

The remainder of Section 4 is devoted to applications of our explicit description of
the representing groupoid. We calculate explicit descriptions of the left adjoints to the
source and target maps in Section 4.5, and use these to demonstrate in Section 4.9 that
the opens in the ‘locale of isomorphism classes’ are precisely the sentences of the theory
(up to provable equivalence).

In Section 4.10, we show that the localic groupoid we construct is spatial when the
theory is countable. Some readers may prefer working with topological groupoids to locales.
We compare the resulting topological groupoid to the construction found in [6].

1. Background
We begin by recalling some background information.

1.1. Locales. A topological space is given by a set of points and a lattice of open sets.
In the pointfree approach to topology a space is described by its lattice of open sets alone
and the points are derived from this. We will give a brief introduction to this approach.
For more details see [22, Chapters II and III].

1.2. Definition. A frame is a complete lattice satisfying the distributivity law

a ∧
∨
α

bα =
∨
α

a ∧ bα.

Frames are (infinitary) algebraic structures with constants 0 and 1, a binary operation
∧, and a join operation ∨ for each cardinality. Frame homomorphisms are maps that
preserve finite meets and arbitrary joins.

Note that a topological space is simply a set X together with a subframe of the powerset
PX. A continuous map of topological spaces induces a frame homomorphism between
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these frames of open sets in the opposite direction by taking preimages. In general, we call
elements of a frame opens.

The category Loc of locales is the opposite of the category Frm of frames and frame
homomorphisms. A locale is simply a frame, but the direction of locale morphisms
emphasises their geometric nature by agreeing with the direction of continuous maps of
topological spaces. We will maintain a notational distinction between a locale X and its
frame of opens OX. If f : X → Y is a locale morphism, we write f ∗ : OY → OX for the
corresponding frame homomorphism. Since f ∗ preserves arbitrary joins, it has a right
adjoint f∗ : OX → OY .

A point of a locale X is given by a locale morphism from the terminal locale 1
(represented by the one-point space) to X. In good cases, the abstract points of a locale
obtained from a topological space recover the concrete points of the space itself. On the
other hand, not every locale arises from a topological space (see Example 1.4). A locale
that does come from a topological space is called spatial.

As with other algebraic structures, frames can be presented by generators and relations.
Such presentations can also be given a logical interpretation as the Lindenbaum–Tarski
algebras for a certain kind of infinitary propositional logic called geometric logic, which
has finite conjunctions and infinitary disjunctions. Let us consider an example.

1.3. Example. [The Dedekind reals] Recall that a Dedekind cut on Q is given by a pair
(L,U) of subsets of Q satisfying certain axioms. Such a pair represents a (unique) real
number that is larger than the rationals in the ‘lower cut’ L and smaller than the rationals
of the ‘upper cut’ U . The theory of Dedekind cuts can be expressed in geometric logic by
taking an atomic proposition with the (suggestive, but purely formal) name [p ∈ L] for
each p ∈ Q, an atomic proposition [p ∈ U ] for each p ∈ Q and the following axioms.

[q ∈ L] ⊢ [p ∈ L] for p ≤ q (L downward closed)
[q ∈ L] ⊢ ∨

p>q [p ∈ L] for q ∈ Q (L rounded)
⊢ ∨

q∈Q [q ∈ L] (L inhabited)
[p ∈ U ] ⊢ [q ∈ U ] for p ≤ q (U upward closed)
[q ∈ U ] ⊢ ∨

p<q [p ∈ U ] for q ∈ Q (U rounded)
⊢ ∨

q∈Q [q ∈ U ] (U inhabited)
[p ∈ L] ∧ [q ∈ U ] ⊢ ⊥ for p ≥ q (L and U disjoint)

⊢ [p ∈ L] ∨ [q ∈ U ] for p < q (locatedness)

Note a sequent φ ⊢ ψ is interpreted as saying that ψ holds whenever φ does. If φ is
missing it is understood to be ⊤ (i.e. true). Sequents are necessary since the logic does
not contain an implication connective. A model of such a theory assigns a truth value
to each basic proposition such that the sequents are satisfied. In this case, such a model
gives a Dedekind cut (L,U) where L is the set of p ∈ Q for which [p ∈ L] is true and U is
the set of p ∈ Q for which [p ∈ U ] is true.

A propositional geometric theory yields a frame presentation by simply taking the
basic propositions to be generators and each axiom φ ⊢ ψ to be a relation φ ≤ ψ (or
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the equivalent equation φ ∧ ψ = φ). We say that the corresponding locale classifies the
geometric theory. The universal property of the presentation ensures that models of the
geometric theory correspond to points of the locale, since the O1 is the frame of truth
values {⊥,⊤}. The classifying locale for the theory of Dedekind cuts on Q is the locale of
real numbers (with their usual topology). The propositions [p ∈ L] and [p ∈ U ] correspond
to the opens (p,∞) and (−∞, p) respectively.

As a second example consider the following more unusual theory.

1.4. Example. [Partial surjections from N to X] Fix a set X and consider the following
geometric theory of partial surjections from N to X. There is a basic proposition denoted
by [f(n) = x] for each n ∈ N and x ∈ X, which is of course interpreted to mean that the
partial function maps n to x. The axioms are as follows.1

[f(n) = x] ∧ [f(n) = y] ⊢ ⊥ for n ∈ N, x, y ∈ X, x ̸= y (functionality)
⊢ ∨

n∈N[f(n) = x] for x ∈ X (surjectivity)

If X is countable, the resulting locale is not so strange. However, if X is PN, say,
then there are no surjections from N to X. Nonetheless, the locale is nontrivial (see [12,
Example C1.2.8]). Thus, this locale is wildly non-spatial.

Many notions from topology have analogues for locales. In particular, we can define a
notion of open locale maps.

1.5. Definition. A locale morphism f : X → Y is open if its associated frame homo-
morphism f ∗ : OY → OX has a left adjoint f! : OX → OY that satisfies the so-called
Frobenius reciprocity condition: f!(f ∗(u) ∧ v) = u ∧ f!(v).

If f ∗f! = idOX (or equivalently f ∗ is surjective), we say f is an open sublocale inclusion.
If f!f

∗ = idOY (or f ∗ is injective), we say f is an open surjection.
The left adjoint can be understood as giving the images of opens of X under f . Open

sublocales of X are in bijection with the elements of the frame OX. Open maps of locales
are stable under composition and pullback, and pulling back open sublocales along a map
h agrees with the action of the frame homomorphism h∗.

1.6. Definition. A locale map f : X → Y is a local homeomorphism if it is open and so
is the ‘diagonal’ map δ : X → X ×Y X, whose codomain is given by the pullback

X ×Y X X

X Y,

π1

π2
⌟

f

f

and which satisfies π1δ = π2δ = idX .

1For simplicity we have assumed classical logic for this definition. Constructively, the functionality
axiom would instead be [f(n) = x] ∧ [f(n) = y] ⊢

∨
{⊤ | x = y} for all x, y ∈ X.
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It is easy to see that open sublocale inclusions are local homeomorphisms. Local
homeomorphisms can also be equivalently defined in terms of restricting to open embeddings
on an open cover of the domain, in a similar way to how they often are for topological
spaces.

1.7. Topos theory. It is difficult to summarise what topos theory is due to the plethora
of perspectives on the subject (the eponymous ‘sketches of an elephant’ of [12]). A
(Grothendieck) topos can either be defined as a category satisfying the abstract Giraud
axioms (see [18, Theorem A1.1]), or the category of sheaves on a site — that is, a category
E which embeds as a left-exact-reflective subcategory of some category of presheaves SetCop

(i.e. a subcategory whose inclusion has a finite-limit-preserving left adjoint SetCop → E).
The specific embedding E ↪→ SetCop is not included as part of the defining data of E .
Indeed, many different sites can present the same topos.

On the surface, the formal definitions of a topos do not appear that exciting. However,
the many desirable properties possessed by toposes lend themselves to other perspectives
on the subject. For example, toposes behave as mathematical universes — they have a
powerful internal language that can interpret constructive mathematics.

For this paper, two aspects of topos theory will prove important: topos theory as a
syntax invariant approach to model theory (discussed in Section 1.12), and topos theory
as a generalisation of locale theory.

1.8. Example. [Sheaves on a space] A fundamental example of a topos is the topos
of sheaves on a locale X, denoted by Sh(X). This is the slice category LH/X, where
LH ⊆ Loc is the category of locales and local homeomorphisms. A topos of the form
Sh(X) is said to be localic.

Given a topos E and an object E ∈ E , the subobjects of E (i.e. equivalence classes of
monomorphisms U ↪→ E) form a frame SubE(E) (see [18, Proposition III.8.1]). For each
arrow g : E → E ′ of E , the map g∗ : SubE(E ′) → SubE(E), given by taking pullbacks of
subobjects along g, is a frame homomorphism (see [18, Proposition III.8.2]).

The morphisms of toposes we consider are geometric morphisms. A geometric morphism
between two toposes f : F → E is an adjoint pair of functors

F E
f∗

f∗

⊣

such that the left adjoint f ∗ preserves finite limits (in addition to colimits). The left
adjoint is commonly called the inverse image functor, while the right adjoint is called the
direct image functor.

1.9. Example. If E is a left-exact-reflective subcategory of SetCop , then the adjoint pair

E SetCop⊣

is a geometric morphism.
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Each locale morphism f : X → Y induces a geometric morphism Sh(f) : Sh(X) →
Sh(Y ), whose inverse image part we write as f ∗. It sends sends a local homeomorphism
q : W → Y to its pullback along f

f ∗(W ) W

X Y,

⌟
q

f

and a morphism g of Sh(Y ) to the induced map

f ∗(W ′) W ′

f ∗(W ) W

X Y.

f∗(g) g

⌟
q

f

Note that this agrees with the definition of f ∗ as a frame homomorphism if we conflate
opens and open sublocales.

In fact, locale theory can be reinterpreted inside topos theory via the full and faithful
functor Sh: Loc ↪→ Topos (see [18, §IX]). The functor Sh has a left adjoint, the localic
reflection, which sends a topos E to the frame SubE(1) of subobjects of the terminal object
of E (see [12, Proposition A4.6.12]).

1.10. Properties of geometric morphisms. Many properties of locale morphisms
generalise to properties of geometric morphisms. For example, a morphism f : X → Y
of locales is open (and surjective) if and only if the corresponding geometric morphism
Sh(f) : Sh(X) → Sh(Y ) is open (and surjective) in the following sense.

1.11. Definition. A geometric morphism f : F → E is open if, for each object E ∈ E,
the induced frame homomorphism on subobjects

f ∗
E : SubE(E) → SubF(f ∗(E))

has a left adjoint fE
! and this left adjoint is natural in E in the sense that, for each arrow

g : E → E ′, the square

SubE(E ′) SubF(f ∗(E ′))

SubE(E) SubF(f ∗(E))

SubE (g)

fE′
!

SubF (f∗(g))
fE

!
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commutes. (Note that in particular, by choosing g : E ↪→ E ′ to be a monomorphism, we
can show that fE′

! satisfies Frobenius reciprocity and so f ∗
E′ is open.) Moreover, the open

geometric morphism f is said to be surjective if f ∗ is a faithful functor.
As is the case for the analogous class of locale morphisms, open (surjective) geometric

morphisms are stable under pullback (see [14, Proposition VII.1.3] or [10, Theorem 4.7]).
The geometric morphism Sh(f) : Sh(X) → Sh(Y ) induced by a locale map f : X → Y

has the property that every object in Sh(X) is a subquotient of something in the inverse
image — that is, for all F ∈ Sh(X) there is a diagram:

F S f ∗(E).

Such geometric morphisms are called localic, so-named because a topos E is localic if and
only if the (necessarily unique) geometric morphism γ : E → Set is a localic geometric
morphism.

Let us see why γ : Sh(X) → Set is a localic geometric morphism for a locale X. Each
object q : Y → X of Sh(X) is a local homeomorphism, and so Y is covered by a collection
(si)i∈I of local sections of q,

Y

Ui X.

q
si

Thus, in Sh(X) there is a diagram

Y
∐

i∈I Ui
∐

i∈I X
∼= γ∗(I)

X

s

as required.
We highlight two important facts about localic geometric morphisms.

1. Localic geometric morphisms are stable under pullback in Topos (see [11, Proposition
2.1]).

2. Localic geometric morphisms are closed under composition (see [11, Lemma 1.1]).
So if h : H′ → H is a localic geometric morphism and H is a localic topos, then H′

is a localic topos too.

Geometric morphisms into toposes can be specified by internal structures in the
codomain topos. A geometric morphism f : F → E is localic if and only if F is the topos
of internal sheaves for an internal locale (see [9, Theorem 5.34]). We won’t seek to make
sense of the phrase ‘internal sheaves for an internal locale’ here, but a precise formulation
can be found in [4] or [27].
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1.12. Classifying toposes. Propositional geometric logic has a first-order generalisation
which involves not just propositions, but also sorts and relation symbols. First-order
geometric logic is the fragment of infinitary predicate logic that includes finite conjunction,
infinitary disjunction, an equality predicate and existential quantification, i.e. the symbols
∧, ∨, = and ∃. Furthermore, sequents are now equipped with contexts which, at a
minimum, contain the free variables of the formulae inside a sequent (equipped with their
types).

1.13. Remark. First-order geometric theories are often defined to also allow function
symbols. However, these can always be defined as binary relations together with func-
tionality and totality axioms. We will nonetheless occasionally find it convenient to use
function notation for such relations.

1.14. Example. An example of such a theory is that of inhabited total orders. This
consists of a single sort X together with a binary relation ≤ ⊆ X × X satisfying the
following axioms.

⊢x,y,z : X x ≤ x (reflexivity)
x ≤ y ∧ y ≤ z ⊢x,y,z : X x ≤ z (transitivity)
x ≤ y ∧ y ≤ x ⊢x,y : X x = y (antisymmetry)

⊢x,y : X x ≤ y ∨ y ≤ x (totality)
⊢∅ ∃x : X. ⊤ (inhabitedness)

Note that, just as with Example 1.3, we must use sequents since geometric logic does not
contain an implication or universal quantification symbol. A sequent φ ⊢x⃗ ψ is understood
as expressing “for all x⃗, φ implies ψ”.

Propositional geometric theories can be understood as the special case of first-order
geometric theories where there are no sorts. Basic propositions are simply understood as
nullary relations.

Just as there is a classifying locale for every propositional geometric theory, there is
a classifying topos for a general geometric theory (see [12, Proposition D3.1.12] or [3,
Theorem 2.1.10]). The classifying topos for a geometry theory T is written Set[T] and
satisfies the universal property

Hom(−,Set[T]) ∼= ModT(−)

where ModT(E) denotes the category of T-models in the topos E . Moreover, every topos
classifies some geometric theory (see [12, Remark D3.1.13] or [3, Theorem 2.1.11]). A
T-model in an arbitrary topos F consists of an object XM for each sort X and, for each
relation symbol, a subobject RM ↪→ XM

1 × . . . × XM
n such that the axioms of T are

satisfied in the following sense. From our basic relation symbols, we can construct the
interpretation of each geometric formula, and a sequent φ ⊢x⃗ ψ is satisfied if φM ≤ ψM as
subobjects of XM

1 × . . . ×XM
n . See [12, §D1] for more details.

The topos Set classifies the theory with no sorts, no symbols, and no axioms. If T
is a propositional theory (i.e. there are no sorts), then the classifying topos Set[T] is
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simply the topos of sheaves on the classifying locale of T. Thus, the geometric morphism
Set[T] → Set is localic.

More generally, if T is a theory with N sorts, then Set[T] is the topos of sheaves
for an internal locale of Set[N · O] — that is, there exists a localic geometric morphism
L : Set[T] → Set[N · O], where N · O denotes the first-order theory with N sorts, no
relations or functions, and no axioms. This is demonstrated for N = 1 in [12, Theorem
D3.2.5] (this appears in [14] in entirely categorical terms as Proposition VII.3.1) or, for
arbitrary N , in [3, Definition 7.1.1 & Theorem 7.1.3]. Thus, in a certain expanded sense,
every topos is a ‘localic’ topos2.

1.15. Equivariant sheaves on a groupoid. A localic groupoid is a groupoid internal
to Loc, just as a topological group is an internal group in the category of topological
spaces.

1.16. Definition. A localic groupoid G is a diagram in Loc of the form

G1 ×G0 G1 G1 G0,

π2

m

π1

i

t

s

e

such that the equations
s ◦ e = t ◦ e = idG0 ,

s ◦m = s ◦ π1, t ◦m = t ◦ π2,

m ◦ (idG1 ×G0 m) = m ◦ (m×G0 idG1),
m ◦ (e ◦ s, idG1) = idG1 = m ◦ (idG1 , e ◦ t),

s ◦ i = t, t ◦ i = s,

m ◦ (idG1 , i) = e ◦ s, m ◦ (i, idG1) = e ◦ t
all hold.

Intuitively, these conditions express that G0 is the locale of objects and G1 is the locale
of arrows of a category in which every arrow is invertible. The ‘source’ map s and ‘target’
map t assign arrows to their domain and codomain respectively. The map e picks out the
identity arrow of an object. The map m gives the composites of composable pairs, while
i yields the inverse of each arrow. The equations imposed on a localic groupoid express
this interpretation, e.g. the equation s ◦ e = t ◦ e = idG0 says that the source and target
of the identity arrow on an object x ∈ G0 is x, as we would expect. Of course, a similar
definition in Set would give the usual notion of a small groupoid.

1.17. Definition. A localic groupoid is said to be open if s and t are both open maps.
We note that since s ◦ i = t and i is an isomorphism, t is open if and only if s is.

2Amusingly, the slogan all topoi are localic was used by Freyd as the title of his paper [7], but for a
different sense in which every topos is ‘localic’!
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1.18. Example. Let us consider four important classes of examples of localic groupoids.

0. Every small groupoid gives localic groupoid by viewing the sets of objects and
morphisms as spaces with the discrete topology. We might call these topologically
discrete groupoids.

1. For each locale X,

X X X
idX

idX

idX

idX

idX

idX

idX (1)

is a localic groupoid. This can be viewed as the ‘discrete’ category on the locale of
objects X. We call this a categorically discrete groupoid.

2. Let (G,m, e) be a localic group. The diagram

G×G G 1,
π1

m

π2

i

!

!
e (2)

defines a localic groupoid. This is exactly like how a group in Set can be viewed as
a one-object category.

3. If G is a localic group acting continuously on a locale X by α : G×X → X, then
the diagram

G×G×X G×X X.

π1,3

m×idX

π2,3

i×idX

α

π2

(e,idX) (3)

is a localic groupoid.

A sheaf Y for a localic groupoid G is a local homeomorphism q : Y → G0 together
with a compatible G1-action (though we will often omit the map q and the action from
our notation). A G1-action is a locale map β : Y ×G0 G1 → Y , where Y ×G0 G1 is the
pullback of q and the source morphism s : G1 → G0, such that the equations

q(β(y, g)) = t(g),
β(β(y, g), h) = β(y,m(g, h)),
β(y, e(q(y))) = y

hold in the internal logic of Loc. Note that although the locales Y , G1 and G0 may not
be spatial, we are able to reason in a suggestive ‘point-set’ theoretic manner. This is
explained further in Section 1.23 below.
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A morphism of sheaves is an ‘equivariant morphisms of bundles’ — that is, a locale
morphism f : Y → Y ′ such that

q′(f(y)) = q(y) and f(β(y, g)) = β′(f(y), g)

hold in the internal logic.

1.19. Definition. We denote the category of sheaves and morphisms of sheaves on a
localic groupoid G by Sh(G).

The category Sh(G) is a topos by [21, Proposition 5.2]. We say that an arbitrary topos
E is represented by the groupoid G if there is an equivalence E ≃ Sh(G).

1.20. Example. We revisit the example groupoids of Example 1.18 and describe the
resulting sheaf toposes.

0. The topos of sheaves on a small groupoid G (viewed as a topologically discrete localic
groupoid) is essentially the category of discrete opfibrations over G and is therefore
equivalent to the functor category SetG.

1. The topos of sheaves on the groupoid (1) is the familiar topos of sheaves Sh(X) on
X.

2. The topos of sheaves on the groupoid (2) is the topos BG of discrete sets with a
continuous action by G and equivariant maps between these. (See [18, §III.9] for
description in terms of topological groups. The localic case is similar.)

3. The topos of sheaves on the groupoid (3) is the topos of G-equivariant sheaves over
X, as seen in [7] and [18, Proposition A4.6].

The objects and morphisms of Sh(G) can be given a more compact definition in terms
of descent data (the reasons for the nomenclature will become apparent in Section 3.1).
A descent datum for G is a pair consisting of a local homeomorphism q : Y → G0 and a
morphism θ : s∗(Y ) → t∗(Y ) such that

e∗(θ) = idY and m∗(θ) = π∗
2(θ) ◦ π∗

1(θ).

A morphism of descent data f : (Y, θ) → (Y ′, θ′) is a commuting triangle

Y Y ′

G0

q

f

q′

(i.e. a morphism f : Y → Y ′ in Sh(G0)) such that the square

s∗(Y ) t∗(Y )

s∗(Y ′) t∗(Y ′)

s∗(f)

θ

t∗(f)

θ′
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commutes.
That the two definitions of sheaves on G are equivalent is a matter of unravelling

definitions. The notational difference arises because, for descent data, we keep track of
the arrow f ∈ G1 once it has been applied to a point y ∈ Y . Indeed, given a G1-action
β : Y ×G0 G1 → Y , the corresponding descent datum is the map θβ that sends the pair
(y, f) ∈ s∗(Y ) to (β(y, f), f) ∈ t∗(Y ). For completeness, we explain the equivalence
between G1-actions and descent data in detail in Appendix A.

1.21. Homomorphisms of localic groupoids. As established in [21, §5.4], taking
sheaves on a localic groupoid is a functorial construction with respect to homomorphisms
of localic groupoids. Homomorphisms of localic groupoids are functors between internal
categories.

1.22. Definition. A homomorphism of localic groupoids φ : G → H is a pair of locale
morphisms φ0 : G0 → H0 and φ1 : G1 → H1, between the locales of objects and arrows
respectively, which commute with the respective structure morphisms of the groupoids.

G1 ×G0 G1 H1 ×H0 H1

G1 H1

G0 H0φ0

φ1

s t t′s′ e′e

m m′

(4)

Each homomorphism of localic groupoids φ : G → H induces a geometric morphism
Sh(φ) : Sh(G) → Sh(H) (see [21, §5]). The inverse image functor Sh(φ)∗ sends the descent
datum (Y, θ) to the pair consisting of φ∗

0(Y ) and the map

s∗φ∗
0(Y ) = φ∗

1s
′∗(Y ) φ∗

1(θ)−−−→ φ∗
1t

′∗(Y ) = t∗φ∗
0(Y ).

That φ∗
1(θ) satisfies the required equations follows from the commutativity of (4). Each

morphism f : (Y, θ) → (Y ′, θ′) of descent data is sent by Sh(φ)∗ to the map
φ∗

0(f) : (φ∗
0(Y ), φ∗

1(θ)) → (φ∗
0(Y ′), φ∗

1(θ′)).
The required commutativity condition φ∗

1(θ′) ◦ s∗φ∗
0(f) = t∗φ∗

0(f) ◦ φ∗
1(θ) follows, since

φ∗
1(θ′) ◦ s∗φ∗

0(f) = φ∗
1(θ′) ◦ φ∗

1s
′∗(f)

= φ∗
1(θ′ ◦ s′∗(f))

= φ∗
1(t′∗(f) ◦ θ)

= φ∗
1t

′∗(f) ◦ φ∗
1(θ)

= t∗φ∗
0(f) ◦ φ∗

1(θ).
Thus, we can define a functor Sh: LocGrpd → Topos from the category of localic

groupoids and their homomorphisms into the category of toposes and geometric morphisms.
The main result of Joyal and Tierney (see Theorem 3.10) is equivalent to the statement
that this functor is essentially surjective on objects.
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1.23. Reasoning using points. As explained in [21, §5.3], we can often express proofs
in locale theory in the more familiar notation of point-set topology, provided a ‘point’
y ∈ Y is taken to mean a ‘generalised point’ of Y , i.e. a map y : U → Y . In this case, we
will call y a U -point. To translate a ‘point-set’ argument back to a concrete one, each
instance of y ∈ Y should be replaced by a generic locale morphism y : U → Y , and the
notation f(y) for some map f : Y → X is translated as the composite f ◦ y : U → Y → X.

We can also use generalised points of toposes, i.e. arbitrary geometric morphisms
f : E ′ → E , in order to reason about them as though they were spaces (see [26]) — though
in this case we must also consider morphisms of points, since toposes exist at a higher
categorical level than locales. This is especially useful when combined with the theory
of classifying toposes, since we can define a geometric morphism g : Set[T] → Set[T′] by
describing how g acts on a (generalised) point F → Set[T] and morphisms of these points.
That is to say, we can define g by describing how it transforms a T-model (in F) into a
T′-model and a T-model homomorphism into a T′-model homomorphism. For example, the
localic geometric morphism L : Set[T] → Set[N · O] associated with an N -sorted theory
sends a T-model to the N objects of its underlying sorts and a T-model homomorphism
to the N underlying functions between these objects.

This perspective lends itself well to the problem of determining the geometric theory
classified by certain (bi)limits of other classifying toposes, using the method described in
[26, Proposition 8.43].

1.24. Example. Let us consider some examples of how to compute limits with this
approach.

1. Let T and T′ be geometric theories. The data of an F-point of the product topos
Set[T] × Set[T′] can be defined by a pair of geometric morphisms F → Set[T] and
F → Set[T′] — that is, a pair of a T-model and a T′-model in F . Thus, we conclude
that the topos Set[T] × Set[T′] classifies the theory given by a copy of T and a copy
of T′ (over separate sorts).

2. Let T1,T2 be localic expansions (see [3, Definition 7.1.1]) of a theory T3, i.e. all three
theories share the same sorts, but the theories T1 and T2 add new relation symbols
and new axioms to T3. Let R1 : Set[T1] → Set[T3] be the geometric morphism
that acts on (generalised) points by sending a T1-model to its T3-reduct, i.e. the
T3-model obtained when we forget the extra structure added by T1, and which
sends a T1-model homomorphism to its underlying homomorphism on the T3-reducts.
(This is precisely the localic geometric morphism posited by [3, Theorem 7.1.3].) We
define R2 : Set[T2] → Set[T3] in a similar fashion.
An F -point of the (bi)pullback

Set[T1] ×Set[T3] Set[T2] Set[T2]

Set[T1] Set[T3]

⌟
R2

R1
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consists of the data of a pair of F-points M : F → Set[T1] and N : F → Set[T2]
and an isomorphism R1 ◦M ∼= R2 ◦N . That is, the topos Set[T1] ×Set[T3] Set[T2]
classifies the theory whose models are a pair of a T1-model and a T2-model whose
T3-reducts are isomorphic.

1.25. Remark. Some readers may wonder how our theory is impacted when we vary the
specific notion of 2-limit we consider. Ultimately, as classifying toposes are only defined up
to equivalence, this won’t be of importance provided that the notion is sufficiently weak.
We will focus on comparing, for a geometric theory T, the various notions of ‘pullback’ for
the diagram

Set[T]

Set[T] Set[T].

idSet[T]

idSet[T]

When calculating the bipullback as in Example 1.24 above, we are implicitly taking the
iso-comma object of the cospan. This is the topos E that is universal with respect to the
data of projections r, u : E ⇒ Set[T] and an isomorphism

E Set[T]

Set[T] Set[T].

r

u

idSet[T]

idSet[T]∼=

As in Example 1.24, we recognise that E classifies the theory of T-model isomorphisms. We
denote this theory by T∼=. An explicit axiomatisation of this theory is given in Definition 2.6
below.

Subtle changes to the notion of 2-pullback we take can change the specific presentation
for the theory classified by the topos. For example, if we instead considered the pseudo-
pullback, i.e. the topos E ′ that is universal with respect to the data

E ′ Set[T]

Set[T] Set[T],idSet[T]

idSet[T]∼=
∼=

we see that E ′ classifies the theory T∼=,∼= whose models are triples of T-models and a pair
of isomorphisms between these.

However, such care will not be necessary. Recall from [16, Example 15] that although
the toposes Set[T∼=] and Set[T∼=,∼=] are not isomorphic as categories, they are equivalent
(i.e. T∼= and T∼=,∼= are Morita-equivalent). We sidestep these issues by only working up to
equivalence and referring to bipullbacks.

In fact, for this specific example the iso-comma object Set[T∼=], the pseudo-pullback
Set[T∼=,∼=] and the the (1-)pullback, which is evidently given by just Set[T], are all
equivalent (see [13]).
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2. Syntactic description of the representing localic groupoid
In this section we will state a presentation for a localic groupoid which represents (the
classifying topos of) a geometric theory and give some intuition for the motivating ideas
behind the Joyal–Tierney result.

Let T be a (first-order) geometric theory. We would like to re-express T in terms of
propositional geometric theories, so we can work within the simpler framework of locales
instead of with the classifying topos Set[T]. The points of this new propositional theory
should somehow represent the models of the original theory T, including the objects
being used to represent each sort. The question then is how to encode the sorts using a
propositional theory.

2.1. Sorts as partial equivalence relations. If we were to focus on a single set-
based model M , then we could include propositional variables in our language that express
that m⃗ ∈ RM for each relation R of the theory and each appropriate tuple m⃗ of elements
from M . More generally, we could imagine fixing some very large set S and cutting out
the carriers for each model as subsets of S. The issue is that there is generally no bound
on how large the models might be.

Recall from Example 1.4, however, that the locale of partial surjections from N to any
set X is nontrivial. So there is a sense in which ‘every set is a subquotient of N’. This
motivates replacing the sorts in the theory T by partial equivalence relations on N, which
describe these subquotients. Recall that a partial equivalence relation is a symmetric
transitive relation and can be thought of as describing an equivalence relation on the
subset of elements which are related to themselves. Partial equivalence relations can be
axiomatised by a propositional theory.

2.2. Definition. For a geometric theory T, we define GT
0 to be the classifying locale of a

propositional geometric theory P [T], defined as follows.

• For each sort X of T, we add a copy of the theory of partial equivalence relations
on N. Explicitly, add a basic proposition [n ∼X m] for each n,m ∈ N and, for each
n,m, ℓ ∈ N, and the axioms

[n ∼X m] ⊢ [m ∼X n], (symmetry)
[n ∼X m] ∧ [m ∼X ℓ] ⊢ [n ∼X ℓ]. (transitivity)

• For each relation symbol R ⊆ X1 ×· · ·×Xk of T (not including the equality relation),
and for each n1, . . . , nk ∈ N and m1, . . . ,mk ∈ N, we have a basic proposition
[(n1, . . . , nk) ∈ R] and axioms

[(n1, . . . , nk) ∈ R] ∧ [n1 ∼X1
m1] ∧ · · · ∧ [nk ∼Xk

mk] ⊢ [(m1, . . . ,mk) ∈ R],
[(n1, . . . , nk) ∈ R] ⊢ [n1 ∼X1

n1] ∧ · · · ∧ [nk ∼Xk

nk].
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• For each axiom φ ⊢x1 : X1,...,xk : Xk ψ of T, we add an axiom

k∧
i=1

[ni ∼Xi

ni] ∧ φn1,...,nk
⊢ ψn1,...,nk

for each n1, . . . , nk ∈ N, where φn1,...,nk
and ψn1,...,nk

are obtained from φ and ψ
by replacing each free variable xi by a (fixed) natural number ni, each quantifier
∃x : X. χ(x, . . . ) by a join ∨

nx∈N χ(nx, . . . ), each subformula of the form (y1, . . . , yℓ) ∈
R with [(y1, . . . , yℓ) ∈ R], and each subformula of the form x =X y with [x ∼X y].

Here we have simply translated the relations on the sorts to relations on N that respect
the partial equivalence relation. We have written the axioms in terms of these (with
existential quantification over sorts being expressed using joins over the natural numbers).
Evidently, if T is a propositional theory (i.e. there are no sorts), then T and P [T] are the
same theory.

2.3. Remark. The points of the locale GT
0 are the models of T where each sort is a

subquotient of N (represented by a partial equivalence relation). Given a point p : 1 → GT
0 ,

a pair of natural numbers n,m ∈ N are identified by the partial equivalence relation ∼X

on N, corresponding to a sort X of T, if and only if p∗([n ∼X m]) = 1, while a tuple of
equivalence classes of natural numbers ([n1], . . . , [nk]) ∈ N/∼X1 ×· · ·×N/∼Xk is contained
in the interpretation of the relation symbol R if and only if p∗([(n1, . . . , nk) ∈ R]) = 1.

2.4. Remark. Note that the generators [n ∼X m] can be thought of as replacing the
equality predicate =X on the sort X. For that reason, we will often treat [n ∼X m] as a
special case of [(n,m) ∈ R] where R is given by equality.

2.5. Encoding isomorphic copies. The points of the locale GT
0 are given by represent-

ations of models of T as subquotients of N. However, different subquotients of N might
correspond to isomorphic models. To deal with this we need to construct a locale of
isomorphisms.

We can write a geometric theory T∼= that describes isomorphisms between models of T
and then transform it into a propositional theory as we did for T above. This is precisely
the theory classified by the iso-comma object described in Remark 1.25.

2.6. Definition. We define the locale GT
1 to be the classifying locale of a propositional

geometric theory P [T∼=] (defined as above), where T∼= is a geometric theory with:

• for each sort X, relation symbol R or axiom φ ⊢x⃗ ψ of T, two sorts X1, X2, relation
symbols R1, R2 or axioms φ1,2 ⊢x⃗1,2 ψ1,2 (where Ri is defined on the i-subscripted
sorts and so on),

• for each sort X in T, a relation symbol αX ⊆ X1 ×X2 together with the axiom

(x, y) ∈ αX ∧ (x′, y′) ∈ αX ∧x =X1 x
′ ⊣⊢x,y : X1 (x, y) ∈ αX ∧ (x′, y′) ∈ αX ∧ y =X2 y

′
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(where ⊣⊢ denotes a bidirectional sequent) and the axioms

⊢y : X2 ∃x : X1. (x, y) ∈ αX ,
⊢x : X1 ∃y : X2. (x, y) ∈ αX ,

making α into the graph of a bijection3,

• for each relation symbol R in T, the axioms

k∧
i=1

(xi, yi) ∈ αXi ∧(x1, . . . , xk) ∈ R1 ⊣⊢x1,...,xk,y1,...,yk

k∧
i=1

(xi, yi) ∈ αXi ∧(y1, . . . , yk) ∈ R2.

We remark that the third bullet point entails that corresponding basic propositions
from each copy are equivalent, since they can be viewed as nullary relations. In particular,
if T is already a propositional geometric theory then T, P [T] and P [T∼=] are all equivalent.

2.7. Remark. Analogously to Remark 2.3, the points of GT
1 correspond to a pair of

models of T, where each sort is a subquotient of N, together with an isomorphism between
them.

We can now form a coequaliser diagram in Loc that identifies isomorphic models in
GT

0 . However, this loses information about the original theory T. (In fact, it recovers the
localic reflection of T. See Section 4.9 below.)

The problem is that by taking the quotient we have lost information about the
automorphisms of the models, and therefore about the individual (generalised) elements
of each model. Indeed, the first-order theory describes objects at a higher categorical
dimension than the propositional theory (propositions can only be related by implication,
but there are potentially multiple different morphisms between sorts). We can retain the
information by equipping GT

0 and GT
1 with the structure of a localic groupoid.

2.8. Remark. One might think that we would need a localic category recording all
morphisms instead of a localic groupoid recording only the isomorphisms, but restricting
to isomorphisms turns out to be sufficient. In a later paper we will discuss in detail how
to recover the non-invertible morphisms from the localic groupoid.

2.9. Definition. The localic groupoid GT has GT
0 as its locale of objects, GT

1 as is locale
of morphisms and the following structure maps.

• The source map s : GT
1 → GT

0 is specified by the obvious frame homomorphism defined
by

[(n1, . . . , nk) ∈ R] 7→ [(n1, . . . , nk) ∈ R1],

where we think of the action on [n ∼X m] as the case R = (=X) as in Remark 2.4.

3For clarity we will often write α suggestively as though it were a function.
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• Similarly, the target map t : GT
1 → GT

0 is specified by the frame map defined by

[(n1, . . . , nk) ∈ R] 7→ [(n1, . . . , nk) ∈ R2].

• The identity map e : GT
0 → GT

1 is given by frame homomorphism defined by

[(n1, . . . , nk) ∈ R1] 7→ [(n1, . . . , nk) ∈ R],
[(n1, . . . , nk) ∈ R2] 7→ [(n1, . . . , nk) ∈ R],

[αX(n) = m] 7→ [n ∼X m].

• The inversion map i : GT
1 → GT

1 swaps the two copies of the sorts in the sense that

[(n1, . . . , nk) ∈ R1] 7→ [(n1, . . . , nk) ∈ R2],
[(n1, . . . , nk) ∈ R2] 7→ [(n1, . . . , nk) ∈ R1],

[αX(n) = m] 7→ [αX(m) = n].

• The composition map m : GT
1 ×GT

0
GT

1 → GT
1 is given as follows.

– The domain of the composition map can be presented by P [T∼=,∼=] where T∼=,∼=
is like T∼= above, but there are three copies of the theory T instead of two and
there are two relation symbols βX ⊆ X1 ×X2 and γX ⊆ X2 ×X3 for each sort
X, encoding two T-model isomorphisms, instead of one relation symbol αX .

– The map m itself is given by the frame homomorphism for which

[(n1, . . . , nk) ∈ R1] 7→ [(n1, . . . , nk) ∈ R1],
[(n1, . . . , nk) ∈ R2] 7→ [(n1, . . . , nk) ∈ R3],

[αX(n) = p] 7→
∨

m∈N
[βX(n) = m] ∧ [γX(m) = p].

(Intuitively, the map m sends the pair of relations (βX , γX) to their relational
composite.)

We omit the routine proof that this is indeed a localic groupoid.

2.10. Remark. The set N is actually only the simplest possible choice of base set for the
above construction. All the properties we prove of the localic groupoid GT (other than
those discussed in Section 4.10) will still hold if N is replaced with a larger infinite set.
See [17] for more details.
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3. An overview of the Joyal–Tierney theorem
We now give an overview of the Joyal–Tierney result from [14]. In Section 4, we will show
that the representing localic groupoid of the classifying topos Set[T] constructed via the
Joyal–Tierney method is essentially the groupoid described above in Section 2.

This section can be summarised as follows.

• In Section 3.1, we recall the theory of descent exposited in [14]. Given a geometric
morphism f : F → E , this is a way to study objects of E by equipping objects of F
with additional data. This data forms a topos Descf (F•). If f : F ↠ E is an open
surjection, then there is an equivalence Descf (F•) ≃ E .

• In Section 3.4 we note that Descf (F•) is naturally represented by a localic groupoid
whenever F is a localic topos. Therefore, one can obtain a representation of E by a
localic groupoid from an open surjection F ↠ E whose domain is localic (called an
open cover).

• Finally, in Section 3.8 we construct an open cover of every topos E and hence conclude
the Joyal–Tierney theorem that every topos is the topos of sheaves on some localic
groupoid.

3.1. Descent theory. In order to prove their representation theorem, Joyal and Tierney
developed in [14] a descent theory for toposes. We will treat descent theory as a ‘black
box’, recalling below the necessary facts we will use in our exposition. For details, the
reader is directed to [14, §VIII] and [12, §B1.5 and §C5.1].

Recall that if f : X → Y is a morphism in a (finitely complete) 1-category C, then
the pullback of f along itself gives the kernel pair of f . This has the structure of an
internal equivalence relation in C. If f is a ‘good’ quotient map (in this case, a regular
epimorphism), then it can be recovered from this equivalence relation. The situation in
the 2-category of toposes is similar, but instead of an internal equivalence relation, we
obtain an internal groupoid.

A geometric morphism f : F → E between toposes induces an internal groupoid in
Topos as in the diagram

F ×E F ×E F F ×E F F E ,
π2,3

π1,3

π1,2

π2

π1

τ

∆ f

where τ : F ×E F → F ×E F is the twist map, ∆: F → F ×E F is the diagonal, and the
remaining maps are the appropriate projections.

3.2. Definition. The category Descf (F•) of descent data for f is defined as follows.



20 GRAHAM MANUELL AND JOSHUA L. WRIGLEY

1. The objects of Descf(F•) are pairs (X, θ) consisting of an object X ∈ F and an
isomorphism θ : π∗

1X
∼−→ π∗

2X of F ×E F such that

∆∗(θ) = idX and π∗
1,3(θ) = π∗

2,3(θ) ◦ π∗
1,2(θ).

This is known as a descent datum on X.

2. A morphism g : (X, θ) → (X ′, θ′) in Descf (F•) is a morphism g : X → X ′ of F such
that the square

π∗
1X π∗

2X

π∗
1X

′ π∗
2X

′

θ

π∗
1(g) π∗

2(g)

θ′

commutes.

The category Descf (F•) is a topos, and there is a canonical functor c∗ : E → Descf (F•)
that sends an object E ∈ E to the pair consisting of f ∗E and the canonical isomorphism
π∗

1f
∗E ∼= π∗

2f
∗E (arising from the 2-cell of the bipullback).

In fact, in [21, §3] Moerdijk shows that the topos Descf (F•) is obtained as the colimit
in the 2-category Topos of the diagram

F ×E F ×E F F ×E F F Descf (F•),
π2,3

π1,3

π1,2

π2

π1

τ

∆

and the canonical functor c∗ : E → Descf (F•) is the inverse image part of the universally
induced geometric morphism Descf (F•) → E . This is analogous to how a morphism in a
1-category factors through the coequaliser of its kernel pair.

The problem of descent involves discerning for which geometric morphisms f : F → E
the canonical functor c∗ : E → Descf(F•) is an equivalence. Such geometric morphisms
play the same role as regular epimorphisms did in our 1-categorical analogy.

3.3. Definition. A geometric morphism f : F → E is called an effective descent morph-
ism if the canonical functor c∗ : E → Descf (F•) is an equivalence.

The terminology ‘descent’ was used by Joyal and Tierney in analogy with descent
theory for modules (see [14, §II.5]). If f is an effective descent morphism, we say an object
(X, θ) ∈ Descf (F•) descends along f in the sense that there exists some E ∈ E such that
(X, θ) ∼= (f ∗E, π∗

1f
∗E ∼= π∗

2f
∗E).

Many examples of classes of effective descent morphisms are known, including proper
surjections (see [12, Definition C3.2.5 & Theorem C5.1.6]). We will focus solely on open
surjections, which are the class of effective descent morphisms needed for the Joyal–Tierney
result, and which were shown to be effective descent morphisms in [14, Theorem VIII.2.1].
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3.4. Descent data with a localic domain. When the domain topos of a geometric
morphism f : F → E is localic, say F ≃ Sh(G0), the category of descent data Descf (F•)
is equivalent to the topos of sheaves on some localic groupoid whose locale of objects is
G0. This is observed in [14, §VIII.3]. To see why this is the case, we first recall two facts
about localic geometric morphisms from Section 1.10.

1. Localic geometric morphisms are stable under pullback.

2. If f : H′ → H is a localic geometric morphism and H is a localic topos, then the
topos H′ is also localic.

Hence, if f : F → E is a geometric morphism whose domain F is a localic topos, then the
pullback

F ×E F F

F E

π1

π2
⌟

f

f

is also a localic topos, as is the wide pullback F ×E F ×E F . Therefore, as the fully faithful
functor Sh: Loc → Topos reflects limits, the descent diagram

F ×E F ×E F F ×E F F
π2,3

π1,3

π1,2

τ

π2

π1

∆

is the image under Sh of a localic groupoid G:

G1 ×G0 G1 G1 G0.

π2

m

π1

i

t

s

e (5)

As F ≃ Sh(G0), an object X ∈ F is a local homeomorphism q : Y → G0, and
descent datum θ : π∗

1(X) → π∗
2(X) on X is a morphism θ : s∗(Y ) → t∗(Y ) in Sh(G1) such

that idG0 = e∗(θ) and m∗(θ) = π∗
2(θ) ◦ π∗

1(θ), i.e. an object (Y, θ) ∈ Sh(G). Similarly,
arrows in Descf(F•) correspond to arrows in Sh(G). Thus, there is an equivalence
Sh(G) ≃ Descf (F•) from which we obtain Theorem VIII.3.2 of [14].

3.5. Theorem. Let f : Sh(G0) → E be an effective descent morphism. The topos E is
equivalent to the topos of equivariant sheaves on the localic groupoid G whose locale of
objects is G0, and whose source and target maps s, t : G1 ⇒ G0 make the square

Sh(G1) Sh(G0)

Sh(G0) E

Sh(s)

Sh(t) f

f
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a (bi)pullback of toposes.
Since open surjections are effective descent morphisms, this theorem applies in particular

to what we call open covers.

3.6. Definition. An open cover of the topos E is an open surjection F ↠ E whose
domain topos F is localic.

Recall that open geometric morphisms are stable under (bi)pullback. So if f : Sh(G0) →
E is an open cover, then projections π1 and π2 in the (bi)pullback below are open too.

Sh(G0) ×E Sh(G0) Sh(G0)

Sh(G0) E

π1

π2

⌟
f

f

This means that the source and target maps s, t : G1 ⇒ G0 of the induced localic groupoid
G displayed in (5) are open locale morphisms — that is, E has an open representing
groupoid.

3.7. Remark. The same analysis holds for any other property of geometric morphisms that
is stable under pullback. For example, if the effective descent morphism f : Sh(G0) → E
is proper or connected and locally connected, then the resulting representing groupoid
for E is also proper or connected and locally connected (in the sense that the source and
target maps have these properties).

3.8. Open covers via partial equivalence relations. We are halfway to showing
that every topos can be represented as the topos of sheaves on an open localic groupoid.
The remaining task is to prove that every topos has an open cover.

To find an open cover of a topos E , it suffices to find a localic geometric morphism
h : E → H and an open cover f : F ↠ H, since then in the (bi)pullback

F ×H E F

E H,

g

k
⌟

f

h

the map k : F ×H E ↠ E is an open surjective geometric morphism whose domain is
a localic topos, as the composite F ×H E g−→ F → Set is a localic morphism. Hence,
k : F ×H E ↠ E is an open cover.

Suppose the topos E classifies a theory T with N sorts. Recall from Sections 1.12
and 1.23 that there is a localic geometric morphism L : E → Set[N · O] which sends a
T-model to the N underlying objects interpreting the sorts. This will play the role of h in
the diagram above.
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3.9. Remark. In fact, we can always choose N to be 1, since every geometric theory T is
Morita-equivalent to a single-sorted theory. This appears in [14] as Proposition VII.3.1,
but an entirely syntactic proof is given in [12, Lemma D1.4.13]. In summary, the idea is
to combine all the sorts of the theory into one, and introduce new unary relation symbols,
RX for each sort X, such that x ∈ RX expresses the statement “x belongs to the sort X”.

We must now describe an open cover of Set[N ·O] to play the role of f . As anticipated
in Section 2, there is a sense in which ‘every set is a subquotient of N’ and so we are once
again motivated to consider partial equivalence relations on N. Denote the classifying
topos of partial equivalence relations on N copies of N by Set[N · PQN]. Explicitly, this
is the propositional theory whose basic propositions are [n ∼i m] for each n,m ∈ N, and
i ∈ N (meaning that n,m are identified in the ith partial equivalence relation on N), and
whose axioms are

[n ∼i m] ⊢ [m ∼i n] (symmetry)
[n ∼i ℓ] ∧ [ℓ ∼i m] ⊢ [n ∼i m] (transitivity)

for each n,m, ℓ ∈ N and i ∈ N .
There is a geometric morphism Q : Set[N · PQN] → Set[N · O] which can be defined

by its action on points as in Section 1.23. It sends the N partial equivalence relations on N
given by a point of Set[N ·PQN] to the N corresponding subquotient objects (hence giving
a point of Set[N ·O]). This geometric morphism possesses many desirable properties: it is
open and surjective, but also connected and locally connected (see [12, Theorem C5.2.7]).
Hence, we indeed have an open cover of Set[N · O].

Now we obtain an open cover PN [E ] ↠ E by taking the (bi)pullback

PN [E ] Set[N · PQN]

E Set[N · O].

⌟

Q∗(L)

L∗(Q) Q

L

Note that PN [E ] is not determined only by E , but by the map L : E → Set[N · O]. This
map is defined by a choice of geometric theory T classified by E . (Recall that every topos
classifies some geometric theory.) In Section 4 we will see that PN [E ] is classifying topos
for the theory P [T] defined in Definition 2.2 (see Lemma 4.3).

Finally, by applying Theorem 3.5 we arrive at the landmark result of Joyal and Tierney
[14, Theorem VIII.3.2].

3.10. Theorem. [Joyal–Tierney] Every Grothendieck topos can be represented as the
topos of equivariant sheaves for a localic groupoid.

In Section 4 we will see that the localic groupoid given by the above construction is
precisely the one described in Section 2. More abstractly, the theorem means that the
functor Sh: LocGrpd → Topos is essentially surjective.
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3.11. Remark. Since the geometric morphism Q above is open (and even connected and
locally connected), the representing localic groupoid is also open (indeed, connected and
locally connected — see Remark 3.7). We will give a more hands-on proof of openness in
Section 4.5.

3.12. Remark. A topos can have many non-equivalent open covers — and therefore
many non-isomorphic representing localic groupoids. Nonetheless, these are all equivalent
in a suitable sense. See [21, §7], though the notion of equivalence given there is weaker
than necessary. We will discuss this equivalence in more detail in a later paper.

The open cover PN [E ] ↠ E we consider is slightly different to the one built by Joyal and
Tierney in [14, Theorem VII.3.1]. They instead use the open cover Set[T QN] ↠ Set[O>0]
from classifying topos of total equivalence relations on N to the classifying topos of inhabited
objects. The reader is directed to [12, Remark C5.2.8(c)] for more details.

Other examples of open covers include the Diaconescu cover, constructed in [5] (see
also [12, Theorem C5.2.1] and [18, Theorem IX.9.1]).

4. Proof and applications of the syntactic description
In this section, we prove that the localic groupoid GT described in Section 2 is the
representing localic groupoid yielded by the Joyal–Tierney method exposited in Section 3.
We then explore some applications of this explicit description. In Sections 4.5 and 4.9
we will observe that using the explicit description of GT we can give concrete proofs of
the known facts that GT is an open localic groupoid and that its locale of isomorphism
classes is the frame of sentences of the theory. Finally, Section 4.10 we compare our localic
representing groupoid with topological representing groupoids.

4.1. Main proof. We can now deduce our main result. We repeat here, for the reader’s
convenience, the description of the localic groupoid GT described in Section 2.

4.2. Theorem. Suppose T is a geometric theory. Recall that the localic groupoid GT is
defined as follows.

• The locale of objects GT
0 is the classifying locale the propositional geometric theory

P [T], which is specified as follows.

– For each sort X of T, there is a basic proposition [n ∼X m] for each n,m ∈ N
together with the following axioms for each n,m, ℓ ∈ N:

[n ∼X m] ⊢ [m ∼X n],
[n ∼X m] ∧ [m ∼X ℓ] ⊢ [n ∼X ℓ].

– For each relation symbol R ⊆ X1 × · · · ×Xk of T, and for each n1, . . . , nk ∈ N
and m1, . . . ,mk ∈ N, we have a basic proposition [(n1, . . . , nk) ∈ R] and axioms

[(n1, . . . , nk) ∈ R] ∧ [n1 ∼X1
m1] ∧ · · · ∧ [nk ∼Xk

mk] ⊢ [(m1, . . . ,mk) ∈ R],
[(n1, . . . , nk) ∈ R] ⊢ [n1 ∼X1

n1] ∧ · · · ∧ [nk ∼Xk

nk].
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– For each axiom φ ⊢x1 : X1,...,xk : Xk ψ of T, we add an axiom

k∧
i=1

[ni ∼Xi

ni] ∧ φn1,...,nk
⊢ ψn1,...,nk

for each n1, . . . , nk ∈ N, where φn1,...,nk
and ψn1,...,nk

are obtained from φ and
ψ by replacing each free variable xi by a (fixed) natural number ni, each quan-
tifier ∃x : X. χ(x, . . . ) by a join ∨

nx∈N χ(nx, . . . ), each subformula of the form
(y1, . . . , yℓ) ∈ R with [(y1, . . . , yℓ) ∈ R], and each subformula of the form x =X y
with [x ∼X y].

• The locale of morphisms GT
1 is the classifying locale of a propositional geometric

theory P [T∼=], where T∼= is a geometric theory with:

– for each sort X, relation symbol R or axiom φ ⊢x⃗ ψ of T, two sorts X1, X2,
relation symbols R1, R2 or axioms φ1,2 ⊢x⃗1,2 ψ1,2,

– for each sort X in T, a relation symbol αX ⊆ X1 ×X2 together with axiom

(x, y) ∈ αX ∧(x′, y′) ∈ αX ∧x =X1 x
′ ⊣⊢x,y : X1 (x, y) ∈ αX ∧(x′, y′) ∈ αX ∧y =X2 y

′

and the axioms
⊢y : X2 ∃x : X1. (x, y) ∈ αX ,
⊢x : X1 ∃y : X2. (x, y) ∈ αX ,

– for each relation symbol R in T, the axioms

k∧
i=1

(xi, yi) ∈ αXi∧(x1, . . . , xk) ∈ R1 ⊣⊢x1,...,xk,y1,...,yk

k∧
i=1

(xi, yi) ∈ αXi∧(y1, . . . , yk) ∈ R2

• The source, target, identity and inversion maps as defined as follows:

s∗ : [(n1, . . . , nk) ∈ R] 7→ [(n1, . . . , nk) ∈ R1].

t∗ : [(n1, . . . , nk) ∈ R] 7→ [(n1, . . . , nk) ∈ R2].

e∗ : [(n1, . . . , nk) ∈ R1] 7→ [(n1, . . . , nk) ∈ R],
e∗ : [(n1, . . . , nk) ∈ R2] 7→ [(n1, . . . , nk) ∈ R],

e∗ : [αX(n) = m] 7→ [n ∼X m].

i∗ : [(n1, . . . , nk) ∈ R1] 7→ [(n1, . . . , nk) ∈ R2],
i∗ : [(n1, . . . , nk) ∈ R2] 7→ [(n1, . . . , nk) ∈ R1],

i∗ : [αX(n) = m] 7→ [αX(m) = n].
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• When GT
1 ×GT

0
GT

1 is presented by three copies of the propositions for GT
0 together with

propositions for the bijections βX ⊆ X1 ×X2 and γX ⊆ X2 ×X3 for each sort, then
the composition map is defined by

m∗ : [(n1, . . . , nk) ∈ R1] 7→ [(n1, . . . , nk) ∈ R1],
m∗ : [(n1, . . . , nk) ∈ R2] 7→ [(n1, . . . , nk) ∈ R3],

m∗ : [αX(n) = p] 7→
∨

m∈N
[βX(n) = m] ∧ [γX(m) = p].

Then the topos of equivariant sheaves on the GT classifies T.
We will prove this by showing that GT is the groupoid obtained from the Joyal–Tierney

construction we described in Section 3. We require one lemma before embarking on the
main proof.

4.3. Lemma. For each geometric theory T with N sorts, the commutative square

Set[P [T]] Set[N · PQN]

Set[T] Set[N · O]

Q′ Q

L

(where L and Q are defined as in Section 3.8) is a (bi)pullback.

Proof. For clarity we will assume the theory T has single sort, but this is easily generalised.
Recall that Q can be understood as sending the partial equivalence relation ∼ on N to the
corresponding subquotient N/∼. As described in Example 1.24, it is easy to compute a
theory T′ that the bipullback topos classifies using the methods of [26, §4.5]. We see that
T′ can be taken to be the theory of pairs of a model M of T, a model ∼ of PQN and an
isomorphism L(M) ∼= Q(∼). Explicitly, this means a model M of T, a partial equivalence
relation ∼ on N and a bijection φ : M [X] → N/∼.

It is now elementary to massage T′ into a more convenient, equivalent form by trans-
porting all relations and functions defined on terms of M [X] along the bijection φ to
give ones defined in N/∼. Then since the sort M [X] is completely specified by N/∼
and the bijection, it can be removed from the theory. The resulting theory is essentially
propositional. We can make it manifestly propositional by replacing relations on N/∼ with
their preimages under N ↠ N/∼ to give subsets UR of Nk, which then can described using
basic generators [(n1, . . . , nk) ∈ UR] for each (n1, . . . , nk) ∈ Nk. Thus, we have arrived
at the theory P [T] described in Theorem 4.2. This theory now has no sorts and so it is
manifestly propositional.

Note that the map Q′ simply undoes the above translations, obtaining a quotient of
N/∼ from the propositional theory and sending this to the single sort X of T. Relations
are treated in the obvious way.
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Proof of Theorem 4.2. Again we assume T has one sort for simplicity. Recall that the
geometric morphism L : Set[T] → Set[O], which a model of T to its underlying object,
is localic. By Lemma 4.3 the open cover PN [Set[T]] ↠ Set[T] used to construct the
representing groupoid in Section 3.8 may be taken to be Q′ : Set[P [T]] → Set[T].

Now by applying Theorem 3.5, we know Set[T] is represented by the localic groupoid
whose locale of objects is the classifying locale of P [T] and whose source and target maps
s, t : GT

1 ⇒ GT
0 are the locale morphisms for which the square

Sh(GT
1 ) Set[P [T]]

Set[P [T]] Set[T]

Sh(s)

Sh(t) Q′

Q′

is a bipullback of toposes. We must now show that Set[P [T∼=]] is this bipullback.
The theory 2·O classifies pairs of objects, and so we deduce from Example 1.24 that 2·O

is classified by the product Set[2 ·O] ∼= Set[O] ×Set[O]. Similarly, Set[PQN] ×Set[PQN]
classifies the theory 2 · PQN of pairs of partial equivalence relations on N. Recall also
from Example 1.24 and Remark 1.25 that the theory T∼= of isomorphisms of T-models is
classified by the bipullback

Set[T∼=] Set[T]

Set[T] Set[T].

r

u

idSet[T]

idSet[T]
⌟

Using the universal property of Set[P [T]], there are induced geometric morphisms
s, t : Set[P [T∼=]] ⇒ Set[P [T]] such that all the squares in the diagram

Set[P [T]] Set[PQN]

Set[P [T∼=]] Set[2 · PQN]

Set[T] Set[O]

Set[P [T]] Set[PQN]

Set[T∼=] Set[2 · O]

Set[T] Set[O]

L

QQ′

r

s

t

Q′

L

u

Q

⌟

⌟

⌟
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commute up to canonical isomorphisms. Being induced by the maps

r, u : Set[T∼=] ⇒ Set[T],

which send a model a T∼=-model M ∼= N to, respectively, M and N , we recognise
that the locale morphisms s, t : GT

1 ⇒ GT
0 corresponding to the geometric morphisms

s, t : Set[P [T∼=]] ⇒ Set[P [T]] are exactly the ones described in the hypotheses of the
theorem. (Note that we are abusing notation and not differentiating between a locale
morphism and its corresponding geometric morphism between localic toposes.)

Our description of the localic groupoid is therefore precisely the representing groupoid
found by the Joyal–Tierney method exposited in Section 3 provided that the square

Set[P [T∼=]] Set[P [T]]

Set[P [T]] Set[T]

s

t Q′

Q′

is a bipullback of toposes. Firstly, we note that the square commutes up to isomorphism
since it can be rewritten as

Set[P [T∼=]] Set[P [T]]

Set[T∼=] Set[T]

Set[P [T]] Set[T] Set[T].idSet[T]

idSet[T]

r

u ∼=
⌟

t

s

∼=

∼=

Now for any other (bi)cone

E Set[P [T]]

Set[P [T]] Set[T]

f

g ∼= Q′

Q′

of the cospan, we will demonstrate that there is a diagram of toposes and geometric morph-
isms as below, where every square and triangle commutes up to canonical isomorphism.
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Set[P [T]] Set[PQN]

E

Set[P [T∼=]] Set[2 · PQN]

Set[T] Set[O]

Set[P [T]] Set[PQN]

Set[T∼=] Set[2 · O]

Set[T] Set[O]

⌟

⌟

⌟

g

f

1. The geometric morphism E Set[T∼=] is induced by the universal property of
Set[T∼=] as in the diagram

E Set[P [T]]

Set[T∼=] Set[T]

Set[P [T]] Set[T] Set[T].idSet[T]

idSet[T]

r

u ∼=
⌟

g

f

∼=

∼=

2. The geometric morphism E Set[2 · PQN] is universally induced by the fact that
Set[2 · PQN] ∼= Set[PQN] × Set[PQN].

3. Finally, the geometric morphism E Set[P [T∼=]] is induced by the universal prop-
erty of Set[P [T∼=]] as in the diagram

E

Set[P [T∼=]] Set[2 · PQN]

Set[T∼=] Set[2 · O].

∼=
⌟

∼=

∼=
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Thus, the (bi)cone factorises canonically as

E

Set[P [T∼=]] Set[P [T]]

Set[P [T]] Set[T].

t

s

Q′

Q′

∼=

f

g

∼=

∼=

We have elided the details that Set[P [T∼=]] also satisfies the necessary universal property
on 2-cells to be the bipullback, but this can be demonstrated in a similar fashion since the
canonical morphism E Set[P [T∼=]] was universally induced by a series of bilimits.

Finally, by demonstrating in an analogous manner that Set[P [T∼=,∼=]] is equivalent to
the wide bipullback Set[P [T]] ×Set[T] Set[P [T]] ×Set[T] Set[P [T]], we recognise that the
composition map of our groupoid is described as in the hypotheses, thus completing the
proof that the localic groupoid GT represents Set[T].

4.4. Example. As remarked below Definition 2.2, when T is a propositional theory, the
theories T, P [T] and P [T∼=] are all equivalent, and therefore have isomorphic classifying
locales. Hence, the syntactic groupoid GT as described in Theorem 4.2 is an example
of a categorically discrete localic groupoid in the sense of Example 1.18(1) and so, as
in Example 1.20, the topos of equivariant sheaves Sh(GT) is equivalent to the topos of
sheaves on the classifying locale of T, as we would expect.

4.5. Explicit left adjoints. We noted in Section 3 that GT is an open localic groupoid
by general properties of the Joyal–Tierney construction. However, it is instructive to also
see this directly in terms of an explicit left adjoint map.

4.6. Lemma. The frame map s∗ corresponding to the source morphism s : GT
1 → GT

0 of
GT has a left adjoint s! : OGT

1 → OGT
0 defined by

s!

∧
i∈I

[⃗ai ∈ Ri
1] ∧

∧
j∈J

[⃗bj ∈ Rj
2] ∧

∧
k∈K

[αXk(ck) = dk]


=
∧
i∈I

[⃗ai ∈ Ri] ∧
∨

y⃗∈NV

∧
j∈J

[π⃗j(y⃗) ∈ Rj] ∧
∧

k∈K

[ck ∼Xk

πk(y⃗)].
(6)

Here V is the set of ‘distinct variables’ represented by the bj
ℓ or dk values. Explicitly,

elements of V are pairs (n,X) where n is natural number chosen from⋃
j∈J

{bj
1, . . . , b

j
ℓ} ∪ {dk | k ∈ K}

and X is the sort corresponding to the type of the variable in question. The maps π⃗j and
πk simply project out the values indexed by the appropriate variables.
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4.7. Remark. The left adjoint of an open frame homomorphism is a pointfree incarnation
of the direct image map of an open continuous function. It is then not too surprising that
s! is related to existential quantification, since an object should intuitively lie in the image
of u ∈ OGT

1 under the continuous map s if there exists a morphism in u which maps to it.
From a logical perspective, s! sends conjunctions of logical formulae involving variables
from both the domain and codomain sorts to formulae involving only variables from the
domain sorts by existentially quantifying over those variables in the codomain sorts (here
implemented as a join over N).

The bookkeeping necessary to define the left adjoint can obfuscate the core idea. To
make this clearer we give a number of examples using the theory of total inhabited orders
(see Example 1.14). Recall that natural numbers encode (arbitrary) values of variables
and do not represent their own values. Also note that in many-sorted theories the same
natural number may encode different variables as long as the sorts of the variables differ.
This is why the set V defined above involves both the value and the type of each index.

• Variables from domain sorts are left alone: [1 ≤1 2] 7→ [1 ≤ 2].

• Variables from codomain sorts are ‘projected out’: [1 ≤2 2] 7→ ∨
y1,y2∈N [y1 ≤ y2].

• This also happens for isomorphisms: [α(1) = 2] 7→ ∨
x′∈N [1 ∼ x′].

• Different variables are quantified over independently:

[1 ≤2 2] ∧ [α(1) = 4] 7→ (∨
y1,y2∈N[y1 ≤ y2]) ∧ (∨

y4∈N[1 ∼ y4])
= ∨

y1,y2,y4∈N[y1 ≤ y2] ∧ [1 ∼ y4].

• Different instances of the same variable vary in lockstep:

[1 ≤2 2] ∧ [α(1) = 1] 7→ ∨
y1,y2∈N [y1 ≤ y2] ∧ [1 ∼ y1].

Proof of Lemma 4.6. As a left adjoint, the map s! preserves arbitrary joins, so it is
completely determined by where it sends basic opens in OGT

1 . These basic opens are given
by finite meets of generators. To avoid confusion we temporarily refer the suplattice map
defined by (6) on basic opens as h : OGT

1 → OGT
0 .

Recall that suplattices are complete join-semilattices and their homomorphisms are
join-preserving maps. Evidently, every frame is an example of a suplattice.

To see that this definition of h indeed gives a suplattice homomorphism, we use
the coverage theorem (see [1, §5.2]), which asserts that, given a frame presentation
with relations ∨

α

∧
r S

r
α ≤ ∨

α

∧
r T

r
α, there is a suplattice presentation for the underlying

suplattice of the frame where the generators are formal finite meets of the frame generators
and the relations are given by ∨

α(g ∧ ∧
r S

r
α) ≤ ∨

α(g ∧ ∧
r T

r
α) for each suplattice generator

g.
So to prove h is well-defined we must show that, for every relation in the frame

representation of OGT
1 , the image of the corresponding relation obtained by taking a meet

with finite meets of generators becomes an inequality in OGT
0 .
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• For the relations involving only the basic relations Ri
1 from the domain copy this is

immediate.

• Now we consider the relations only involving the codomain relations Rj
2 (including

∼X2 relations).

– The symmetry axiom [n ∼X2 m] ≤ [m ∼X2 n] is easily seen to be preserved
since a similar symmetry axiom holds for ∼X in OGT

0 .
– The transitivity axiom for ∼X2 gives the relation

g ∧ [n ∼X2 m] ∧ [m ∼X2 ℓ] ≤ g ∧ [n ∼X2 ℓ].

Applying the putative h map to both sides we see that there is potentially an
extra variable m on the left-hand side. However, for every m the transitivity
axiom for ∼X in OGT

0 gives the desired inequality, and so by taking joins over
all m ∈ N we conclude that h preserves the symmetry axiom.

– We can then handle the other axioms involving Ri
2 relations in a very similar

way.

• Finally, we consider the axioms involving αXk . These are proved in a similar way to
above, but instead of using analogous axioms in OGT

0 to prove the inequalities, we
use properties of ∼Xk .

– Functionality and injectivity of αX (the first axiom of αX in Theorem 4.2) can
be reduced to transitivity (and symmetry) of ∼X in OGT

0 .
– The claim for the relation

g ∧ [αXk(c) = d] ≤ g ∧ [c ∼Xk

c] ∧ [d ∼Xk

d]

also follows from transitivity and symmetry, as these give

[c ∼Xk

y] ≤ [c ∼Xk

c] ∧ [y ∼Xk

y].

– Compatibility of α with other relations reduces to compatibility of these relations
with ∼.

– It only remains to consider the surjectivity and totality axioms, which state
g ∧ [y ∼X y] ≤ ∨

x∈N g ∧ [αX(x) = y] and g ∧ [x ∼X x] ≤ ∨
y∈N g ∧ [αX(x) = y],

respectively. After applying h we have valid inequalities since in the first case
we can take x = y in the join and in the second case we can take y = x in the
join.

Thus, h is a well-defined suplattice homomorphism. We now show that it really is
the left adjoint to s∗. It is clear that hs∗ = idOGT

0
. We must prove that s∗h ≥ idOGT

1
. It

suffices to show this on basic opens.
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Let g = ∧
i∈I [⃗ai ∈ Ri

1] ∧ ∧
j∈J [⃗bj ∈ Rj

2] ∧ ∧
k∈K [αXk(ck) = dk] be such a basic open. We

will employ the shorthand [⃗bj ∼ b⃗j] = [bj
1 ∼ bj

1] ∧ · · · ∧ [bj
ℓ ∼Xj

2 bj
ℓ]. Using the relations on

the generators of GT
1 , we can show ∧

j∈J [⃗bj ∈ Rj
2] ≤ [⃗bj ∼ b⃗j]. Similarly, we have that

[αXk(ck) = dk] ≤ [dk ∼Xk
2 dk].

Then [b ∼X2 b] = ∨
yb∈N[α(yb) = b] and so (by grouping the joins over yb for the b’s

corresponding to the same variables) we find that

g ≤
∧
i∈I

[⃗ai ∈ Ri
1] ∧

∨
y⃗∈NV

∧
j∈J

([⃗bj ∈ Rj
2] ∧ [α⃗(π⃗j(y⃗)) = b⃗j])

∧
∧

k∈K

([αXk(ck) ∼Xk
2 dk] ∧ [αXk(πk(y⃗)) = dk] ∧ [dk ∼Xk

2 dk]).

Now note that [⃗bj ∈ Rj
2] ∧ [α⃗(π⃗j(y⃗)) = b⃗j] ≤ [π⃗j(y⃗) ∈ Rj

1] by the compatibility of α and
Rj and that [αXk(ck) ∼Xk

2 dk] ∧ [αXk(πk(y⃗)) = dk] ∧ [dk ∼Xk
2 dk] ≤ [ck ∼Xk

1 πk(y⃗)] by
injectivity of α. So we obtain that

g ≤
∧
i∈I

[⃗ai ∈ Ri
1] ∧

∨
y⃗∈NV

∧
j∈J

[π⃗j(y⃗) ∈ Rj
1] ∧

∧
k∈K

[ck ∼Xk
1 πk(y⃗)].

But the right-hand side of this inequality is precisely s∗h(g) and hence we are done.
With the explicit description of the left adjoint in hand, showing that the Frobenius

reciprocity condition is satisfied is now trivial. Explicitly, we have the following equalities
for basic opens of OGT

0 and OGT
1 .

s!

s∗

 ∧
ℓ∈L

[e⃗ ℓ ∈ Rℓ]
 ∧

∧
i∈I

[⃗ai ∈ Ri
1] ∧

∧
j∈J

[⃗bj ∈ Rj
2] ∧

∧
k∈K

[αXk(ck) = dk]


= s!

 ∧
ℓ∈L

[e⃗ ℓ ∈ Rℓ
1] ∧

∧
i∈I

[⃗ai ∈ Ri
1] ∧

∧
j∈J

[⃗bj ∈ Rj
2] ∧

∧
k∈K

[αXk(ck) = dk]


=
∧
ℓ∈L

[e⃗ ℓ ∈ Rℓ] ∧
∧
i∈I

[⃗ai ∈ Ri] ∧
∨

y⃗∈NV

∧
j∈J

[π⃗j(y⃗) ∈ Rj] ∧
∧

k∈K

[ck ∼Xk

πk(y⃗)]

=
∧
ℓ∈L

[e⃗ ℓ ∈ Rl] ∧ s!

∧
i∈I

[⃗ai ∈ Ri
1] ∧

∧
j∈J

[⃗bj ∈ Rj
2] ∧

∧
k∈K

[αXk(ck) = dk]


Therefore, the source map is open. Hence, we have given another proof for the following
result.

4.8. Proposition. The representing localic groupoid GT is an open groupoid.

4.9. The isomorphism classes. Recall that descent theory for toposes expresses the
topos Set[T] as a colimit of groupoid diagram obtained by taking sheaves on the repres-
enting groupoid GT. Now, as a left adjoint, the localic reflection preserves colimits, and
so the colimit of the diagram for GT in Loc gives the localic reflection of Set[T]. Since
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parallel 2-cells in Loc are equal, this colimit can be replaced by the coequaliser of the
source and target maps.

Let π0(GT) be the coequaliser

GT
1 GT

0 π0(GT)
t

s

in Loc, which we call the locale of isomorphism classes of GT. Indeed, if GT is a spatial
groupoid (see Section 4.10 below) then π0(GT) is the locale associated to the space of
isomorphism classes of objects in GT

0 , endowed with the quotient topology.
We have shown that π0(GT) is the localic reflection of Set[T] (see [12, Lemma C5.3.7]).

So Oπ0(GT) is isomorphic to the frame of subterminals in Set[T]. The frame of subterminals
of the classifying topos Set[T] is known to be the frame of sentences of the theory, i.e. the
frame whose opens are T-provable equivalence classes of formulae without free variables
ordered by T-provability.

We can also obtain the localic reflection of Set[T] with our approach. By [15, Pro-
position 1.3] the opens of the locale of isomorphism classes of an open localic groupoid
are in bijection with the fixed points of the closure operator s!t

∗. Note that in our case
s!t

∗ sends ∧
j∈J [⃗bj ∈ Rj] to ∨

y⃗∈NV

∧
j∈J [π⃗j(y⃗) ∈ Rj]. A general element of OGT

0 is given
by joins of the generators, which correspond to quantifier-free formulae in T, but with
variables replaced by certain natural numbers. The order in the frame is given by provable
entailment. The closure operator s!t

∗ takes a join over all possible natural numbers, which
has the effect of existentially quantifying over the free variables. Thus, the fixed points
of s!t

∗ then correspond to equivalence classes of formulae of T with no free variables, as
required.

It is also possible to use the results of [20] to find an explicit presentation of the quotient
locale π0(GT) by generators and relations.

4.10. The case of countable theories and topological groupoids. Under
certain countability restrictions on the theory T, our construction can be understood to
give a topological groupoid. Some readers might find this preferable to working with locales.

4.11. Definition. We say a geometric theory is countable if it has a countable number
of sorts, relations and axioms.

4.12. Proposition. For a countable geometric theory T, the localic groupoid constructed
in Theorem 4.2 is spatial and thus arises from a topological groupoid.

Proof. Note that if a theory T is countable, then the locale of objects and the locale of
morphisms of the representing localic groupoid are countably presented.

Assuming excluded middle, a countably presented locale is spatial (see [8]). Moreover,
since countably presented locales are closed under finite limits, the domain of the composi-
tion map is also spatial, as required.
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4.13. Remark. Equivariant sheaves on a topological groupoid are defined analogously to
those on a localic groupoid. It is perhaps not obvious that the concepts coincide when they
both apply, since pullbacks of products of locales and spaces might differ. Nonetheless
they do agree, since if X → G0 is a local homeomorphism and G0 is spatial, then so is X
(see [12, Lemma C1.3.2]), and since local homeomorphisms are stable under pullback.

When T is a countable geometric theory, the topological groupoid obtained from
Theorem 4.2 is the same representing topological groupoid as constructed by Forssell in
[6], which we now recall.

Let T be a geometric theory with a conservative set of Set-based models, and let S be
an infinite ‘indexing’ set for these models. A model M of T is said to be S-indexed if the
underlying set of each sort is a subquotient of S. For a tuple a⃗ ∈ S, we will write [⃗a] for its
equivalence class in the subquotient. Forssell shows in [6, Theorem 5.1] that the classifying
topos Set[T] is equivalent to the topos of equivariant sheaves on the topological groupoid

IS
T ×MS

T
IS
T IS

T MS
T

m
t

s
e (7)

constructed as follows.
1. The space of S-indexed models MS

T is the set of all S-indexed models of T endowed
with the logical topology for objects — the topology generated by subsets of form

J⃗a ∈ RKMS
T

= {M ∈ MS
T | [⃗a] ∈ RM },

where R is a relation of T (including equality), RM is its interpretation in a model
M , and a⃗ is a tuple of elements of S.

2. The space of arrows IS
T is the set of all isomorphisms between models in MS

T endowed
with the logical topology for arrows — the topology generated by sets of the form

u

v
a⃗ ∈ R

b⃗ 7→ c⃗

d⃗ ∈ R′

}

~

IS
T

=


[⃗a] ∈ RM ,

M
α−→ M ′ ∈ IS

T [⃗b] ∈ M, [⃗c] ∈ M ′, α([⃗b]) = [⃗c],
[d⃗] ∈ R′M ′


3. The maps m, t, e, s and i are defined in the obvious way.
By [19, Theorem 6.2.4] a countable theory T has a conservative set of Set-based models,

and then by the downward Löwenheim-Skolem theorem these models can be taken to be
countable. Thus, T has enough N-indexed models. We immediately recognise the locales
GT

0 and GT
1 constructed in Definition 2.2 and Definition 2.6 as the locales of opens for,

respectively, the logical topology for objects and arrows on the sets MN
T and INT . Explicitly,

for each n⃗, n⃗′, m⃗, m⃗′ ∈ N, we identify the basic open Jn⃗ ∈ RKMN
T

⊆ MN
T with the generator

[n⃗ ∈ R] of GT
0 , and similarly the basic open

u

v
n⃗ ∈ R
m⃗ 7→ m⃗′

n⃗′ ∈ R′

}

~

IN
T

⊆ INT is identified with [n⃗ ∈ R1] ∧ [n⃗′ ∈ R′
2] ∧

∧
mi∈m⃗

[α(mi) = m′
i].



36 GRAHAM MANUELL AND JOSHUA L. WRIGLEY

Thus, when the theory T is countable, the localic groupoid constructed in Theorem 4.2
coincides with the topological groupoid of N-indexed models in (7).

4.14. Remark. For a countable theory T, the representing topological groupoid for Set[T]
constructed by Butz and Moerdijk in [2] is not directly comparable with the groupoid we
build in Theorem 4.2, instead deriving from one of the many other open covers of Set[T].
In summary, it is the groupoid obtained when, instead of considering the theory PQN of
partial equivalence relations on N as we did, one takes the theory of partial equivalence
relations on N where every equivalence class is infinite — that is, the theory obtained by
adding to PQN, for each n, ℓ ∈ N, the axiom

[n ∼ n] ⊢
∨

{[n ∼ m1] ∧ · · · ∧ [n ∼ mℓ] | mi ∈ N with m1 < m2 < · · · < mℓ}.

A. Descent data and equivariant sheaves
In this appendix we explicitly spell out the equivalence between the datum of a compatible
G1-action on a local homeomorphism q : Y → G0 and descent datum (Y, θ) for a localic
groupoid G. Thereby, we are free to using either definitions when discussing the topos of
sheaves Sh(G). The equivalence is merely a case of unravelling definitions, but since this
can at times be fiddly, we include an exposition here.

Given a local homeomorphism q : Y → G0 with a compatible G1-action β : Y ×G0 G1 →
Y , the corresponding descent datum is the pair (Y, θβ) where θβ is the induced map

s∗(Y )

t∗(Y ) Y

G1 G0,

β

θβ

⌟
q

t

where the outside square commutes by the axiom q(β(y, g)) = t(g) of β.
In ‘point-set’ notation, the locales s∗(Y ) and t∗(Y ) are the spaces

s∗(Y ) = {(y, f) ∈ Y ×G1 | s(f) = q(y)},
t∗(Y ) = {(y, f) ∈ Y ×G1 | t(f) = q(y)},

and θβ is the map which sends (y, f) ∈ s∗(Y ) to (β(y, f), f) ∈ t∗(Y ). We first show that
θβ does indeed define descent datum on Y .

The condition e∗(θβ) = idY asserts that the map e∗(θβ) in the composite pullback
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diagram below is canonically the identity on Y .

e∗s∗(Y ) s∗(Y )

e∗t∗(Y ) t∗(Y )

G0 G1

e∗(θβ)
⌟

θβ

⌟

e

The space e∗s∗(Y ) is given by

e∗s∗(Y ) = {(x, y, f) ∈ G0 × Y ×G1 | e(x) = f, s(f) = q(y)}

and similarly

e∗t∗(Y ) = {(x, y, f) ∈ G0 × Y ×G1 | e(x) = f, t(f) = q(y)}.

The map e∗(θβ) : e∗s∗(Y ) → e∗t∗(Y ) acts by

(x, y, f) 7→ (x, β(y, f), f).

But since x = s(e(x)) = s(f) = q(y), a triple (x, y, f) ∈ e∗s∗(Y ) is entirely determined by
y. Thus, there is a canonical isomorphism e∗s∗(Y ) ∼= Y given by projecting onto the second
component of the tuple. Similarly, the same projection yields an isomorphism e∗t∗(Y ) ∼= Y .
Since f = e(q(y)) for each (x, y, f) ∈ e∗s∗(Y ), we observe that β(y, f) = β(y, e(q(y))) = y.
Thus, we have a commuting triangle

e∗s∗(Y )

Y

e∗t∗(Y ),

e∗(θβ)

∼

∼

as required.
Now we turn to the condition that m∗(θβ) = π∗

2(θβ) ◦ π∗
1(θβ). The spaces involved can

be expressed as

π∗
1s

∗(Y ) = {(y, f, g) ∈ Y ×G1 ×G1 | s(π1(f, g)) = s(f) = q(y), t(f) = s(g)},
π∗

1t
∗(Y ) = {(y, f, g) ∈ Y ×G1 ×G1 | t(π1(f, g)) = t(f) = q(y), t(f) = s(g)},

π∗
2s

∗(Y ) = {(y, f, g) ∈ Y ×G1 ×G1 | s(π2(f, g)) = s(g) = q(y), t(f) = s(g)},
π∗

2t
∗(Y ) = {(y, f, g) ∈ Y ×G1 ×G1 | t(π1(f, g)) = t(g) = q(y), t(f) = s(g)}.
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Using the equations s ◦ m = s ◦ π1 and t ◦ m = t ◦ π2, and the commutativity of the
pullback square

G1 ×G0 G1 G1

G1 G0,

π2

π1
⌟

s

t

we conclude that m∗s∗(Y ) = π∗
1s

∗(Y ), m∗t∗(Y ) = π∗
2t

∗(Y ) and π∗
1t

∗(Y ) = π∗
2s

∗(Y ). Thus,
the equation m∗(θβ) = π∗

2(θβ) ◦ π∗
1(θβ) type-checks.

The map π∗
1(θβ) is the map in the double pullback

π∗
1s

∗(Y ) s∗(Y )

π∗
1t

∗(Y ) t∗(Y )

G1 ×G0 G1 G1,

π∗
1(θβ)

⌟
θβ

⌟

π1

and therefore acts by (y, f, g) 7→ (β(y, f), f, g). Similarly, π∗
2(θβ) : π∗

2s
∗(Y ) → π∗

2t
∗(Y )

acts by (y, f, g) 7→ (β(y, g), f, g) and m∗(θβ) : m∗s∗(Y ) → m∗t∗(Y ) acts by (y, f, g) 7→
(β(y,m(f, g)), f, g). Thus, we observe that

(π∗
2(θβ) ◦ π∗

1(θβ))(y, f, g) = π∗
2(θβ)(β(y, f), f, g)

= (β(β(y, f), g), f, g)
= (β(y,m(f, g)), f, g)
= m∗(θβ)(y, f, g).

Hence, the pair (Y, θβ) indeed constitutes descent datum.
An equivariant map f : Y → Y ′ between spaces with respective G1-actions β and β′ also

constitutes a morphism of descent data f : (Y, θβ) → (Y ′, θβ′). The required commutativity
condition, t∗(f) ◦ θβ = θβ′ ◦ s∗(f), is forced by universal property of t∗(Y ′) in the following
commutative diagram.

s∗(Y ) s∗(Y ′)

Y Y ′

t∗(Y ) t∗(Y ′)

G0 G0

G1 G1

s∗(f)

β β′

f

t t

t∗(f)

θβ θβ′
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For the other direction, suppose we are given a descent datum (Y, θ). We then obtain
a compatible G1-action βθ : s∗(Y ) → Y by taking βθ to be the composite

Y ×G0 G1 ∼= s∗(Y ) t∗(Y ) Y.θ

Checking that βθ is a legitimate G1-action or that a morphism of descent data f : (Y, θ) →
(Y ′, θ′) yields an equivariant map f : (Y, βθ) → (Y ′, βθ′) essentially amounts to the reverse
of what we have done above and so we omit the details. Finally, note that the two
correspondences are mutual inverses.
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