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Introduction

(i) Although numerous contributions from divers authors, over the past fifteen years or
so, have brought enriched category theory to a developed state, there is still no connected
account of the theory, or even of a substantial part of it. As the applications of the theory
continue to expand – some recent examples are given below – the lack of such an account
is the more acutely felt.

The present book is designed to supply the want in part, by giving a fairly complete
treatment of the limited area to which the title refers. The basic concepts of category
theory certainly include the notion of functor-category, of limit and colimit, of Kan ex-
tension, and of density; with their applications to completions, perhaps including those
relative completions given by categories of algebras for limit-defined theories. If we read
“V-category” for “category” here, this is essentially the list of our chapter-headings below,
after the first chapter introducing V-categories.

In fact our scope is wider than this might suggest; for what we give is also a self-
contained account of basic category theory as described above, assuming as prior knowl-
edge only the most elementary categorical concepts, and treating the ordinary and en-
riched cases together from Chapter 3 on.

(ii) In order to include the enriched case we begin in Chapter 1 by introducing symmet-
ric monoidal closed categories V , examining their elementary properties, and defining the
2-category V-CAT of V-categories, V-functors, and V-natural transformations, together
with the forgetful 2-functor (−)0 : V-CAT //CAT; this much is easy and brief. Next,
developing the basic structure of V-CAT – tensor products of V-categories, V-functors
of two variables, extraordinary V-natural transformations, V itself as a V-category, repre-
sentable V-functors, and the Yoneda lemma – requires verifications of diagram commuta-
tivity, whose analogues for V = Set reduce to fairly trivial equations between functions.
This seems to be an inevitable cost of the extra generality; but we have been at pains
so to arrange the account that the reader should find the burden a light one. With this
done, the discussion of representability, adjunction, and equivalences in V-CAT, which
closes Chapter 1, is simple and direct.

The short Chapter 2 takes up the closed structure of V-CAT, given by the V-functor-
category [B, C]. Since the hom [B, C](T, S) is to be an object of V and not merely a set,
more work is once again required than in the V = Set case. However this hom for small B
is quite a simple limit in V0 – now supposed complete – of the special kind called an end,
precisely adapted to the extraordinary V-natural transformations; and from this definition
flow easily the desired properties.

The indexed limits and colimits of Chapter 3, along with their various special cases,
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2 INTRODUCTION

are constructs of the greatest importance even when V = Set; and the relations between
double and iterated indexed limits express a rich content. This importance is scarcely
lessened by their reducibility when V = Set to classical limits – any more than the
importance of these classical ones is lessened by their reducibility in good cases to products
and equalizers. Even in the case V = Ab of additive categories, the indexed limits –
although here they exist when all the classical ones do – are no longer directly reducible
to the latter; while for a general V the indexed limits are essential, and the classical ones
no longer suffice. Chapter 3 ends by showing how to expand V into a bigger universe,
without disturbing limits and colimits, so as to allow the free use of functor-categories
[B, C] with large B.

The remaining chapters 4, 5, and 6, dealing respectively with Kan extensions, density,
and algebras defined by limits (or more generally by “topologies”), make use of these limit-
and colimit-notions to complete the development of our chosen area of basic category
theory. Most of the results apply equally to categories and to V-categories, without a
word’s being changed in the statement or the proof; so that scarcely a word would be
saved if we restricted ourselves to ordinary categories alone. Certainly this requires proofs
adapted to the case of a general V ; but these almost always turn out to be the best proofs
in the classical case V = Set as well. This reflects the hopes with which Eilenberg and
the author set out when writing [26], and Lawvere’s observation in [54] that the relevant
segment of classical logic “applies directly to structures valued in an arbitrary [symmetric
monoidal] closed category V”.

Because of the special properties of Set, there are of course certain results peculiar to
the case V = Set; and we accordingly devote an occasional section to this case alone. Some
examples are the commutativity in Set of filtered colimits with finite limits; the notions
of initial functor and of discrete op-fibration; and the classical adjoint-functor theorems.
We treat all of these for completeness – partly to keep the account self-contained, and
partly to compare them, where appropriate, with analogues for a general V .

The little prior knowledge that we do assume is easily available – for instance from
[60] – and to have included it here, with examples to enliven it, would have involved an
unjustifiable increase in the length. For Chapter 1, it consists of the basic notions of
category, functor and natural transformation, including functors of two or more variables
and contravariant functors; representable functors and the Yoneda lemma; adjunction and
equivalence; and what is meant by a faithful or a fully-faithful functor. From Chapter 2 on,
we also need the classical notions of limit and colimit; with the names of such special limits
as product, equalizer, pullback, and terminal object; and the meaning of monomorphism
and epimorphism. In the rare places where more is assumed but not expounded here,
references are given.

(iii) We now turn to what we have omitted from the present book; the list includes many
important notions, well meriting an extended treatment, whose inclusion would however
have disturbed the essential simplicity of an initial account such as this.

First (to return to the title), the basic concepts of category theory concern categories –
in our case, V-categories – as the objects of discussion. These form, or live in, a 2-category
V-CAT; but 2-categories are not yet the formal objects of discussion, any more than
categories are when we study group theory. Category theory casts light on group theory,
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as does 2-category theory on category theory. Hence the step to this next level, where
weaker notions of natural transformation naturally arise, is an important one; but it is
quite properly deferred pending experience of some particular 2-categories, and we do not
take it here. We make a start on some aspects of it in the forthcoming [46].

Closely connected to this is our decision not to discuss the “change of base-
category” given by a symmetric monoidal functor V // V ′, and the induced 2-
functor V-CAT // V ′-CAT. We do, as we said, consider the forgetful 2-functor
(−)0 : V-CAT //CAT induced by the canonical V // Set; but this is entirely elemen-
tary, not involving even the definition of a symmetric monoidal functor. The general
change of base, important though it is, is yet logically secondary to the basic V-category
theory it acts on. To treat it properly needs a careful analysis of the 2-category of
symmetric monoidal categories, symmetric monoidal functors, and symmetric monoidal
natural transformations – including adjunctions therein and the dual concept of op-
monoidal functor. There is evidence in [43] that this itself is best studied in the more
general context of categories with essentially-algebraic structure, which draws on the
matter of this book together with [45] and [46].

Since the natural setting for the important work of Day ([12], [14], [16]) on the con-
struction of symmetric monoidal closed categories as functor-categories, or as reflective
subcategories of these, involves the 2-category of symmetric monoidal categories, this too
has been omitted.

One thing we particularly regret omitting is the theory of monads; it could certainly
be seen as basic category theory, yet there was no convenient place to put it, and it would
have required an extra chapter to itself. Luckily, besides the account of Mac Lane [60] in
the classical case, we have the articles of Linton [57], Dubuc [22], and Kock [51], covering
various aspects of the enriched case. We also have the elegant 2-categorical treatment
by Street [70], which provides some argument for deferring the topic until 2-categories
have been more closely studied. A consequence is our failure to discuss the completeness
and cocompleteness of the 2-category V-Cat of small V-categories – which is most easily
referred back to the completeness and the cocompleteness of the algebras for a monad.

Finally, our account covers only what can be said for every well-behaved V (except
for those things special to V = Set). Results valid only for a special class of V are best
treated in separate articles, of which the author’s forthcoming [45] is one example.

(iv) Our concern being to provide a development of basic category theory that covers the
enriched case, we have given illustrations of many of the results in isolation, but have not
thought this the place to discuss detailed applications to particular areas of mathematics.
In fact, applications needing the enriched case are rapidly proliferating; the following is a
selection of recent ones that have come to the author’s notice.

The discussion of dualities in topological algebra, taking for V a suitable category
of topological or quasitopological spaces, and initiated by Dubuc and Porta [23], has
been continued in numerous articles by Dubuc, Day, and Nel. Pelletier [67] has made
use of Kan extensions where V is Banach spaces. Recent Soviet work in representation
theory (see the articles by Kleiner and Roiter, and by Golovaschuk, Ovsienko, and Roiter,
in [64]) has differential graded modules for V . The present author, as part of a study
of essentially-algebraic structures borne by categories, has extended in [45] the classical
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results on “cartesian theories” (finite-limit theories) from the case where V is sets to those
where it is groupoids or categories.

The study of homotopy limits by Gray [32] takes him into the area of change of base-
categories, involving the connexions between the closed categories of categories and of
simplicial sets. The work of May on infinite loop spaces, involving from the beginning [61]
the base category V of compactly-generated spaces, has of late led him [62] to very general
considerations on categories V with two symmetric monoidal structures and a distributive
law between them. Mitchell [63] has related monoidal structures on [G,V ] for suitable
V to low-dimensional cohomology groups of the group G. These latter applications go
beyond the basic theory presented here, but of course presuppose the relevant parts of it.

Recent work of Walters ([75], [76]) does concern the basic theory, but with V gener-
alized to a symmetric monoidal closed bicategory ; in this context he exhibits the sheaves
on a site as the symmetric Cauchy-complete V-categories. It is plain that continued
expansion of the applications is to be expected.

(v) Writing in text-book style, we have not interrupted the development to assign credit
for individual results. To do so with precision and justice would in any case be a daunting
task; much has been written, and many insights were arrived at independently by several
authors. Such references as do occur in the text are rather intended to show where more
detail may be found. What we can do, though, is to list here some of the works to which
we are particularly indebted.

Perhaps the first to advocate in print the study of enriched categories was Mac Lane
[59]; although published in 1965, this represents basically his Colloquium Lectures at
Boulder in 1963. There were some early attempts by Linton [56] and Kelly [40] to make
a start; Bénabou ([4], [5]) went further; while Eilenberg and Kelly wrote a voluminous
article [26] covering only the “elementary” notions, but including change of base-category.
Our present Chapter 1 draws mainly on [26] and on the author’s article [42].

The principal source for Chapter 2 is Day and Kelly [20]; but see also Bunge [10]. The
ideas in Chapter 3 of cotensor products, of ends, and of limits in a V-category, go back to
[42] and [20]; and the concept of their pointwise existence in a functor-category to Dubuc
[22]. However, the general notion of indexed limit, which makes Chapter 3 possible in its
present form, was discovered independently by Street [72], Auderset [1], and Borceux and
Kelly [9]. The last two sections of Chapter 3 call on Day’s articles [12] and [14].

Chapter 4, on Kan extensions, is certainly indebted to the three articles [20], [22], [9]
already mentioned; in particular it was Dubuc in [22] who pointed out the importance of
the “pointwise” existence of Kan extensions, which we make part of our definition. The
chapter also contains many more-or-less classical results for V = Set; all but the best
known are credited in the text to their authors.

It is especially in Chapter 5, on density, that we have been heavily influenced by writers
who themselves dealt only with V = Set; namely Gabriel and Ulmer [31] and Diers [21].
The term “density presentation” we have taken from Day [16], although modifying its
meaning somewhat. Again, writers on particular aspects are given credit in the text.

Chapter 6 shows its debt to Ehresmann [24], as well as to Gabriel and Ulmer. The
form of the transfinite construction used here to prove the reflectivity of the algebras,
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although it is taken from the author’s article [44], ultimately depends on an idea from
an unpublished manuscript of Barr (reference [3] of [44]), which makes cowellpowered-
ness an unnecessary hypothesis, and so enables us to include the important example of
quasitopological spaces.

The author’s original contributions to the book are perhaps most visible in the ar-
rangement of topics and in the construction of proofs that apply equally to the classical
and enriched cases. For instance, many readers will find the way of introducing Kan
extensions quite novel. Beyond this, the work in 5.11–5.13 on Kan extensions along a
non-fully-faithful dense functor seems to be quite new even when V = Set, as is its
application in 6.4; while the whole of Chapter 6 is new in the enriched setting.

(vi) In the early chapters the formal definition-theorem-proof style seemed out of place,
and apt to lengthen an essentially simple account. Deciding to avoid it, we have accord-
ingly made reference to a result either by quoting the section in which it occurs, or (more
commonly) by quoting the number of the displayed formula most closely associated with
it. In the later chapters, now more concerned with applying the logic than developing it,
it seemed best to return to formally-numbered propositions and theorems.

The end-result is as follows. A symbol 5.6 without parentheses refers to section 6 of
Chapter 5. All other references occur in a single series, consisting of displayed formulae
and proposition- or theorem-numbers, with the first digit denoting the chapter. Thus in
Chapter 5, formula (5.51) is followed by Theorem 5.52, itself followed by formula (5.53),
which in fact occurs in the statement of the theorem. To assist cross-referencing, each
left-hand page bears at its head the number of the last section to which that page belongs,
and each right-hand page bears the numbers of the formulae, propositions, and theorems
that occur on the two-page spread (in parentheses, even if they are theorem-numbers).1

(vii) It remains to thank those who have made the book possible. Over the last twelve
months I have had the opportunity to present early drafts of the material to acute and
stimulating audiences at the Universities of Sydney, Trieste, and Hagen; their encour-
agement has been of inestimable value. Equally important has been the support of my
colleagues in the Sydney Category Theory Seminar – including the visiting member André
Joyal, whose presence was made possible by the Australian Research Grants Committee.
I am indebted to Cambridge University Press, for suggesting this Lecture Notes Series as
suited to such a book, and for their careful help with the technical details of publication.
It was they who observed that the original typed manuscript was already suitable as
camera-ready copy; I regard this as a compliment to the intelligence and taste of my sec-
retary Helen Rubin, whose first mathematical job this was, and I thank her very sincerely.
Finally I thank my wife and children, who have borne months of shameful neglect.

Max Kelly,
Sydney,

January 1981.

1This has not been done in this electronic version. Instead, we use a running section title on recto
pages and a running chapter title on the verso.
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Chapter 1

The elementary notions

1.1 Monoidal categories

A monoidal category V = (V0,⊗, I, a, l, r) consists of a category V0, a functor ⊗ : V0 ×
V0

//V0, an object I of V0 and natural isomorphisms aXY Z : (X⊗Y )⊗Z //X⊗(Y ⊗Z),
lX : I ⊗ X // X, rX : X ⊗ I // X, subject to two coherence axioms expressing the
commutativity of the following diagrams:(

(W ⊗X)⊗ Y
)
⊗ Z a //

a⊗1
��

(W ⊗X)⊗ (Y ⊗ Z) a //W ⊗
(
X ⊗ (Y ⊗ Z)

)
(
W ⊗ (X ⊗ Y )

)
⊗ Z a

//W ⊗
(
(X ⊗ Y )⊗ Z

)
,

1⊗a

OO

(1.1)

(X ⊗ I)⊗ Y a //

r⊗1 ''

X ⊗ (I ⊗ Y )

1⊗lww
X ⊗ Y .

(1.2)

It then follows (see [58] and [39]) that every diagram of natural transformations commutes,
each arrow of which is obtained by repeatedly applying the functor ⊗ to instances of a,
l, r, their inverses, and 1; here an “instance” of a is a natural transformation, such as
aW⊗X,Y,Z or aX,I,Y in the diagrams above, formed from a by repeated application of the
functors ⊗ and I to its variables. For a precise formulation, see [58].

A special kind of example, called a cartesian monoidal category , is given by taking for
V0 any category with finite products, taking for ⊗ and I the product × and the terminal
object 1, and taking for a, l, r the canonical isomorphisms. Important particular cases of
this are the categories Set, Cat, Gpd, Ord, Top, CGTop, HCGTop, QTop, Shv S, of
(small) sets, categories, groupoids, ordered sets, topological spaces, compactly generated
topological spaces, Hausdorff such, quasitopological spaces [69], and sheaves for a site S;
here “small” is in reference to some chosen universe, which we suppose given once and
for all. Other cartesian examples are obtained by taking for V0 an ordered set with finite
intersections, such as the ordinal 2 = {0, 1}. All of these examples are symmetric in the
sense of 1.4 below, and all the named ones except Top are closed in the sense of 1.5 below.

7



8 1 The elementary notions

A collection of non-cartesian (symmetric, closed) examples is given by the categories
Ab, R-Mod, G-R-Mod, DG-R-Mod of (small) abelian groups, R-modules for a commu-
tative ring R, graded R-modules, and differential graded R-modules, each with its usual
tensor product as ⊗; the category Ban of Banach spaces and linear maps of norm 6 1,
with the projective tensor product; the category CGTop∗ of pointed compactly-generated
spaces with the smash product for ⊗; and the ordered set R+ of extended non-negative
reals, with the reverse of the usual order, and with + as ⊗.

A non-symmetric example is the category of bimodules over a non-commutative ring
R, with ⊗R as ⊗. Another is the category of endofunctors of a small category, with
composition as ⊗; here a, l, r are identities, so that the monoidal category is called strict .

In general we call ⊗ the tensor product , and I the unit object.
We suppose henceforth given a particular monoidal V such that V0 is locally small

(has small hom-sets). We then have the representable functor V0(I,−) : V0
//Set, which

we denote by V . In such cases as Set, Ord, Top, Ab, R-Mod, CGTop∗, it is (to within
isomorphism) the ordinary “underlying-set” functor; in the case of Ban, V X is the unit
ball of X; in these cases V is faithful, while in some of them (Set, Ab, R-Mod, Ban) it
is even conservative (= isomorphism-reflecting). Yet V is not faithful in general; in the
cases Cat and Gpd, V X is the set of objects of X, and in the case DG-R-Mod, V X is
the set of 0-cycles.

In spite of the failure of V to be faithful in general, it is convenient to call an element
f of V X (that is, a map f : I //X in V0) an element f of X.

1.2 The 2-category V-CAT for a monoidal V
A V-category A consists of a set obA of objects, a hom-object A(A,B) ∈ V0 for each pair
of objects of A, a composition law M = MABC : A(B,C)⊗A(A,B) //A(A,C) for each
triple of objects, and an identity element jA : I // A(A,A) for each object; subject to
the associativity and unit axioms expressed by the commutativity of(

A(C,D)⊗A(B,C)
)
⊗A(A,B) a //

M⊗1

��

A(C,D)⊗
(
A(B,C)⊗A(A,B)

)
1⊗M
��

A(B,D)⊗A(A,B)

M ))

A(C,D)⊗A(A,C)

Muu
A(A,D),

(1.3)

A(B,B)⊗A(A,B) M // A(A,B) A(A,B)⊗A(A,A)Moo

I ⊗A(A,B)

j⊗1

OO

l

55

A(A,B)⊗ I.

1⊗j

OO

r

ii

(1.4)

Taking V = Set, Cat, 2, Ab, DG-R-Mod, R+, we re-find the classical notions of
(locally small) ordinary category, 2-category, pre-ordered set, additive category (some
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call it “pre-additive”), differential graded category, and (rather generalized) metric space.
For a general reference on 2-categories, see [49]; and for the generalized metric spaces, see
[54]. We call the V-category A small if obA is small.

For V-categories A and B, a V-functor T : A // B consists of a function

T : obA // obB

together with, for each pair A, B ∈ obA, a map TAB : A(A,B) //B(TA, TB), subject to
the compatibility with composition and with the identities expressed by the commutativity
of

A(B,C)⊗A(A,B) M //

T⊗T
��

A(A,C)

T
��

B(TB, TC)⊗ B(TA, TB)
M

// B(TA, TC),

(1.5)

A(A,A)

T

��

I

j
99

j %%
B(TA, TA).

(1.6)

In the six examples above we re-find the classical notions of functor, 2-functor, increasing
function, additive functor, differential graded functor, and contracting map. The V-
functor T is fully faithful if each TAB is an isomorphism; an example is the inclusion
T : A //B of a full subcategory , determined by a subset obA of obB. Clearly V-functors
can be composed, to form a category.

For V-functors T, S : A // B, a V-natural transformation α : T // S : A // B is
an obA-indexed family of components αA : I // B(TA, SA) satisfying the V-naturality
condition expressed by the commutativity of

I ⊗A(A,B)
αB⊗T // B(TB, SB)⊗ B(TA, TB)

M

**
A(A,B)

l−1
77

r−1 ''

B(TA, SB).

A(A,B)⊗ I
S⊗αA

// B(SA, SB)⊗ B(TA, SA)

M

44
(1.7)

The “vertical composite” β · α of α : T // S : A // B and β : S // R : A // B has the
component (β · α)A given by

I ∼= I ⊗ I
βA⊗αA

//B(SA,RA)⊗ B(TA, SA)
M
//B(TA,RA). (1.8)

The composite of α above with Q : B // C has for its component (Qα)A the composite

I αA
//B(TA, SA)

Q
//C(QTA,QSA); (1.9)
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while the composite of α with P : D //A has for its component (αP )D simply αPD.
It is now easy to verify that V-categories, V-functors, and V-natural transformations

constitute a 2-category V-CAT; an “illegitimate” one, of course, unless some restriction
is placed on the size, as in the legitimate 2-category V-Cat, of small V-categories. Of
course V-CAT reduces, when V = Set, to the 2-category CAT of locally small ordinary
categories.

1.3 The 2-functor ( )0 : V-CAT −→ CAT

Denoting by I the unit V-category with one object 0 and with I(0, 0) = I, we write
(−)0 : V-CAT // CAT for the representable 2-functor V-CAT(I,−); which we now
proceed to describe in more elementary terms.

A V-functor A : I //A may be identified with an object A of the V-category A; and a
V-natural f : A //B : I //A consists of a single component f : I //A(A,B), the axiom
(1.7) being trivially satisfied. Thus the ordinary category A0 = V-CAT(I,A), which is
called the underlying category of A, has the same objects as A, while a map f : A // B
in A0 is just an element f : I //A(A,B) of A(A,B), in the sense of 1.1. Otherwise put,
A0(A,B) = VA(A,B). By (1.8), the composite gf in A0 is given by the composite

I ∼= I ⊗ I
g⊗f

//A(B,C)⊗A(A,B)
M
//A(A,C) (1.10)

in V0, while the identity in A0(A,A) is clearly jA.
How much information about A is retained by A0 depends upon how faithful V is.

When V = Cat, V is not faithful; A is a 2-category, and A0 is the category obtained
by discarding the 2-cells. When V = CGTop, V is faithful, and A0 has lost only the
topology on the hom-objects of A. When V = Ab or R-Mod, V is even conservative,
and A0 is still closer to A.

The ordinary functor T0 : A0
//B0 induced by (or underlying) the V-functor T : A //B

sends A : I // A to TA and sends f : A // B : I // A to Tf , which by (1.9) is the
composite

I
f
//A(A,B)

TAB
//B(TA, TB). (1.11)

Thus we have
T0A = TA, T0f = Tf ; (1.12)

the latter of which means that

T0AB : A0(A,B) // B0(TA, TB) is V TAB : VA(A,B) // V B(TA, TB). (1.13)

Clearly T0 is fully faithful if T is; T 7→ T0 is injective when V is faithful, but not in
general; and, when V is conservative, T is fully faithful if T0 is.

The ordinary natural transformation α0 : T0
//S0 : A0

//B0 induced by the V-natural
α : T //S : A //B has for its A-component α0A ∈ B0(TA, SA) precisely the A-component
αA : I // B(TA, SA) of α; so that it is not usually necessary to distinguish α from α0.
The V-naturality condition (1.7) for α : T //S becomes the usual naturality condition for
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α : T0
// S0 when V is applied to it. Hence the naturality of α : T0

// S0, while weaker
in general than the V-naturality of α : T // S, is equivalent to it when V is faithful.

In spite of such formulae as (1.12), both clarity and economy are served by carefully
distinguishing A from A0 and T from T0. For instance, completeness of A, to be defined
below, means something stronger than completeness of A0; and continuity of T means
something stronger than continuity of T0. Having a left adjoint for T is stronger than
having a left adjoint for T0; while the existence of a small dense subcategory of A neither
implies nor is implied by the existence of a small dense subcategory of A0. As for economy,
maintaining the distinction allows us, when A and B are V-categories, to abbreviate
“V-functor T : A // B” to “functor (or map) T : A // B”; if we had meant a functor
T : A0

//B0, we should have said so. Again, to speak of “a V-functor T : A //B” carries
the converse implication, that A and B are V-categories. Similarly, when T, S : A //B are
V-functors, by “map (or natural transformation) α : T // S” we must mean a V-natural
one; for we did not speak of a map α : T0

// S0. When only components are written,
however, it may be necessary to say “αA : TA //SA is V-natural in A”, since TA is also
T0A. Finally, since strictly speaking there are no “morphisms” in the V-category A, it is
harmless to call a map f : A //B in A0, which is an element f : I //A(A,B) of A(A,B),
“a map f : A //B in A”.

1.4 Symmetric monoidal categories: the tensor product and duality on
V-CAT for a symmetric monoidal V

A symmetry c for a monoidal category V is a natural isomorphism cXY : X⊗Y //Y ⊗X
satisfying the coherence axioms expressed by the commutativity of

X ⊗ Y c //

1 %%

Y ⊗X
c

��
X ⊗ Y ,

(1.14)

(X ⊗ Y )⊗ Z a //

c⊗1
��

X ⊗ (Y ⊗ Z) c // (Y ⊗ Z)⊗X
a

��
(Y ⊗X)⊗ Z a

// Y ⊗ (X ⊗ Z)
1⊗c
// Y ⊗ (Z ⊗X),

(1.15)

I ⊗X c //

l ##

X ⊗ I

r
{{

X.

(1.16)

Note that (1.16) defines l in terms of r, and then we need only the four coherence axioms
(1.1), (1.2), (1.14), (1.15). It follows from [58] and [39] that every diagram of natural
transformations commutes, each arrow of which is obtained by the repeated application
of ⊗ to instances of a, l, r, c, their inverses, and 1; cf. 1.1, and for a precise formulation,
see again [58].
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A monoidal category – even a closed one in the sense of 1.5 below – may admit
more than one symmetry. The classical example is V = G-R-Mod, with c(x ⊗ y), for
homogeneous elements x, y of degrees p, q, defined either as y ⊗ x or as (−1)pqy ⊗ x.
However, if V is faithful and V is closed, there is at most one symmetry ([26] Chapter III,
Proposition 6.1). For a cartesian V , there is an evident canonical c : X ⊗ Y // Y ⊗ X.
For the cases Ab, R-Mod, Ban, and CGTop∗, V is faithful and the unique symmetry is
well-known. For DG-R-Mod the classical symmetry is given by c(x⊗ y) = (−1)pqy ⊗ x;
and for R+ it is the equality x+ y = y + x.

A monoidal category V together with a symmetry is called a symmetric monoidal
category . We now suppose V to be such.

Then to each pair A, B of V-categories we can associate a tensor product A⊗B, with
object-set obA × obB, and with (A ⊗ B)

(
(A,B), (A′, B′)

)
= A(A,A′) ⊗ B(B,B′). The

composition-law is given by the top edge of(
A(A′, A′′)⊗ B(B′, B′′)

)
⊗
(
A(A,A′)⊗ B(B,B′)

) M //

m

��

A(A,A′′)⊗ B(B,B′′)

(
A(A′, A′′)⊗A(A,A′)

)
⊗
(
B(B′, B′′)⊗ B(B,B′)

)
,

M⊗M

22

(1.17)

where m : (W ⊗ X) ⊗ (Y ⊗ Z) ∼= (W ⊗ Y ) ⊗ (X ⊗ Z) is the middle-four interchange
defined by any suitable composite of instances of a and of c. The identity element is the
composite

I ∼= I ⊗ I
jA⊗jB

//A(A,A)⊗ B(B,B), (1.18)

and axioms (1.3) and (1.4) are easy to verify.
It is further easy to check that, with the obvious definitions of T ⊗S : A⊗B //A′⊗B′

and of α⊗ β : T ⊗ S // T ′ ⊗ S ′, we have a 2-functor ⊗ : V-CAT× V-CAT // V-CAT;
and that we have coherent 2-natural isomorphisms (A⊗B)⊗C ∼= A⊗ (B⊗C), I ⊗A ∼=
A⊗ I ∼= A, and A⊗ B ∼= B ⊗ A (where I is the unit V-category of 1.3). Thus V-CAT
is, in an evident sense, a symmetric monoidal 2-category.

Moreover, to each V-category A we can associate a dual , or opposite, V-category
Aop, with the same objects as A, but with Aop(A,B) = A(B,A). The composition-law
M : Aop(B,C)⊗Aop(A,B) //Aop(A,C) is just the composite

A(C,B)⊗A(B,A) c
//A(B,A)⊗A(C,B)

M
//A(C,A), (1.19)

while the unit element I // Aop(A,A) is that of A. From α : T // S : A // B we get,
with evident definitions, αop : Sop //T op : Aop //Bop; note that (−)op reverses 2-cells but
not 1-cells. Of course (−)op is involutary: (Aop)op = A; and it respects tensor products:
(A ⊗ B)op = Aop ⊗ Bop. Thus, in an evident sense, V-CAT is a symmetric monoidal
2-category with a duality involution.

A functor Aop //B may be called a contravariant functor from A to B; while a functor
T : A ⊗ B // C may be thought of as a functor of two variables . Such a T gives rise to
partial functors T (A,−) : B // C for each A ∈ A and T (−, B) : A // C for each B ∈ B.
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Here T (A,−) is the composite

B ∼= I ⊗ B
A⊗1

//A⊗ B
T
//C, (1.20)

from which can be read off the value of T (A,−)BB′ .
Suppose, conversely, that we are given a family of functors T (A,−) : B // C indexed

by obA and a family of functors T (−, B) : A // C indexed by obB, such that on objects
we have T (A,−)B = T (−, B)A, = T (A,B), say. Then there is a functor T : A⊗B // C
of which these are the partial functors if and only if we have commutativity in

A(A,A′)⊗ B(B,B′)

c

��

T (−,B′)⊗T (A,−) // C
(
T (A,B′), T (A′, B′)

)
⊗ C

(
T (A,B), T (A,B′)

)
M
��

C
(
T (A,B), T (A′, B′)

)

B(B,B′)⊗A(A,A′)
T (A′,−)⊗T (−,B)

// C
(
T (A′, B), T (A′, B′)

)
⊗ C

(
T (A,B), T (A′, B)

)
.

M

OO
(1.21)

Moreover T is then unique, and T(A,B),(A′,B′) is the diagonal of (1.21). The verification is
easy, and the details can be found in ([26] Chapter III, §4).

It is further easy (using (1.21), and (1.3) for C) to verify that, if T , S : A⊗B // C, a
family αAB : T (A,B) // S(A,B) in C0 constitutes a V-natural transformation T // S if
and only if it constitutes, for each fixed A, a V-natural T (A,−) //S(A,−), and, for each
fixed B, a V-natural T (−, B) // S(−, B). In other words, V-naturality may be verified
variable-by-variable.

In relation to the underlying ordinary categories, we have of course (Aop)0 = (A0)op

and (T op)0 = (T0)op. However, (A⊗B)0 is not A0×B0; rather there is an evident canonical
functor A0×B0

// (A⊗B)0, and a similar one 1 // I0. For T : A⊗B // C, the partial
functors of the composite ordinary functor

A0 × B0
//(A⊗ B)0 T0

//C0 (1.22)

are precisely T (A,−)0 and T (−, B)0.
We could discuss, in the present setting, the extraordinary V-natural families of 1.7

below. However, the techniques that make this simple arise more naturally, and at a
higher level, when V is closed; which is the case of real interest. Moreover it is shown
in [17] that any symmetric monoidal category can, by passing to a higher universe, be
embedded in a closed one; see also 2.6 and 3.11 below.

1.5 Closed and biclosed monoidal categories

The monoidal category V (symmetric or not) is said to be closed (cartesian closed , when
V is cartesian monoidal) if each functor − ⊗ Y : V0

// V0 has a right adjoint [Y,−]; so
that we have an adjunction

π : V0(X ⊗ Y, Z) ∼= V0(X, [Y, Z]) (1.23)
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with unit and counit (the latter called evaluation) say

d : X // [Y,X ⊗ Y ], e : [Y, Z]⊗ Y // Z. (1.24)

Putting X = I in (1.23), using the isomorphism l : I⊗Y ∼= Y , and recalling from 1.1 that
V = V0(I,−) : V0

// Set, we get a natural isomorphism

V0(Y, Z) ∼= V [Y, Z]; (1.25)

since [Y, Z] is thus exhibited as a lifting through V of the hom-set V0(Y, Z), it is called
the internal hom of Y and Z.

Putting Y = I in (1.23) and using the isomorphism r : X⊗I ∼= X, we deduce a natural
isomorphism

i : Z ∼= [I, Z]; (1.26)

it is easy to verify that V i : V Z ∼= V [I, Z] is just the case Y = I of (1.25). Replacing X
by W ⊗ X in (1.23), and using the isomorphism a : (W ⊗ X) ⊗ Y ∼= W ⊗ (X ⊗ Y ), we
deduce a natural isomorphism

p : [X ⊗ Y, Z] ∼= [X, [Y, Z]]; (1.27)

and it easy to verify that V p agrees with the π of (1.23) modulo the isomorphisms (1.25).
In many concrete cases it is possible and convenient to replace V with an isomorph in
such a way that (1.25) becomes an equality; this should be clear from the examples of
closed categories given in 1.1, and we do not labour the point.

The monoidal category V is said to be biclosed if, not only does every − ⊗ Y have
a right adjoint [Y,−], but also every X ⊗ − has a right adjoint JX,−K. When V is
symmetric, it is biclosed if closed, with JX,−K = [X,−]. The non-symmetric monoidal
category of R-bimodules, mentioned in 1.1, is biclosed. It is part of a larger structure, the
biclosed bicategory of left-R-, right-S-, bimodules, where R and S vary over all rings; and
it seems to be typical that non-symmetric biclosed monoidal categories occur in nature
as a small part of such a bicategory. (The notion of bicategory, for an exposition of which
see [6], generalises that of 2-category, the strict associativity of 1-cells being replaced
by associativity to within coherent isomorphisms ; a one-object bicategory is a monoidal
category, just as a one-object 2-category is a strict monoidal category.) Recent work of
R.F.C. Walters ([75], [76]) suggests the importance of studying “V-categories A” where
V is a biclosed bicategory with an appropriate kind of symmetry; but that goes beyond
the scope of the present account.

There also do occur in nature important closed monoidal categories that are not bi-
closed. A typical example is given by the strict monoidal category of small endofunctors
(in some suitable sense of “small”) of a well-behaved large category such as Set; see [45].
For such a monoidal closed V , we can develop part of the theory of V-categories; we have
the results of 1.2 and 1.3, but not those of 1.4; and we have the Yoneda Lemma of 1.9
below, but not its extra-variable form. However, we do not pursue this at all, for in
practice it seems that the interest in such a V lies in V itself, not in V-categories – which
become interesting chiefly when V is symmetric monoidal closed.
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We end this section with two further comments on examples. First, the symmetric
(cartesian) monoidal Top is not closed: −× Y cannot have a right adjoint since it does
not preserve regular epimorphisms; see [19]. Next, to the examples of symmetric monoidal
closed category in 1.1, we add one more class. An ordered set V with finite intersections
and finite unions is called a Heyting algebra if it is cartesian closed; a boolean algebra is a
special case.

1.6 V as a V-category for symmetric monoidal closed V ; representable
V-functors

From now on we suppose that our given V is symmetric monoidal closed, with V0 locally
small. The structure of V-CAT then becomes rich enough to permit of Yoneda-lemma
arguments formally identical with those in CAT. Before giving the Yoneda Lemma and its
extensions in 1.9, we collect in this section and the next two some necessary preliminaries:
results many of which are almost trivial in CAT, but less so here.

The proof of each assertion of these sections is the verification of the commutativity
of a more-or-less large diagram. This verification can be done wholesale, in that each
diagram involved is trivially checked to be of the type proved commutative in the coher-
ence theorems of [47] and [48]. Yet direct verifications, although somewhat tedious, are
nevertheless fairly straightforward if the order below is followed.

The first point is that the internal-hom of V “makes V itself into a V-category”. More
precisely, there is a V-category, which we call V , whose objects are those of V0, and
whose hom-object V(X, Y ) is [X, Y ]. Its composition-law M : [Y, Z] ⊗ [X, Y ] // [X,Z]
corresponds under the adjunction (1.23) to the composite

([Y, Z]⊗ [X, Y ])⊗X a
// [Y, Z]⊗ ([X, Y ]⊗X)

1⊗e
// [Y, Z]⊗ Y e

//Z, (1.28)

and its identity element jX : I // [X,X] corresponds under (1.23) to l : I ⊗ X // X.
Verification of the axioms (1.3) and (1.4) is easy when we recall that, because of the
relation of e to the π of (1.23), the definition (1.28) of M is equivalent to e(M ⊗ 1) =
e(1 ⊗ e)a. It is further easily verified that (1.25) gives an isomorphism between V0 and
the underlying ordinary category of the V-category V ; we henceforth identify these two
ordinary categories by this isomorphism, thus rendering the notation V0 consistent with
the notation A0 of 1.3.

Next we observe that, for each V-category A and each object A ∈ A, we have the
representable V-functor A(A,−) : A // V sending B ∈ A to A(A,B) ∈ V , and with

A(A,−)BC : A(B,C) // [A(A,B),A(A,C)] (1.29)

corresponding under the adjunction (1.23) to M : A(B,C)⊗A(A,B) //A(A,C). Axioms
(1.5) and (1.6) for a V-functor reduce easily to (1.3) and half of (1.4).

Replacing A by Aop gives the contravariant representable functor A(−, B) : Aop //V .
The families A(A,−) and A(−, B) are the partial functors of a functor HomA : Aop ⊗
A // V sending (A,B) to A(A,B); for the condition (1.21) again reduces easily to (1.3)
for A.
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We write homA : Aop
0 ×A0

// V0 for the ordinary functor

Aop
0 ×A0

//(Aop ⊗A)0
(HomA)0

//V0; (1.30)

it sends (A,B) to A(A,B), and for its value on maps we write

A(f, g) : A(A,B) //A(A′, B′),

where f : A′ //A and g : B //B′. By 1.4, the partial functors of homA are the functors
underlyingA(A,−) andA(−, B), so that our writing their values on morphisms asA(A, g)
and A(f,B) is consistent with (1.12). Combining (1.11) with the definition (1.29) of
A(A,−)BC , we see that A(A, g) : A(A,B) //A(A,C) is the composite

A(A,B)
l−1

//I ⊗A(A,B)
g⊗1

//A(B,C)⊗A(A,B)
M

//A(A,C), (1.31)

while A(f,B) : A(D,B) //A(A,B) is

A(D,B)
r−1

//A(D,B)⊗ I
1⊗f

//A(D,B)⊗A(A,D)
M

//A(A,B). (1.32)

From these it follows easily that we have commutativity in

Aop
0 ×A0

homA //

HomA0
$$

V0

V

��
Set.

(1.33)

When A = V , we see at once that homV is just the functor [−,−] : Vop
0 × V0

// V0.
Now we observe that there is also a V-functor Ten: V ⊗ V // V , sending

(X, Y ) // Ten(X, Y ) = X ⊗ Y,

and with Ten(X,Y ),(X′,Y ′) : [X,X ′] ⊗ [Y, Y ′] // [X ⊗ Y,X ′ ⊗ Y ′] corresponding under the
adjunction (1.23) to the composite

([X,X ′]⊗ [Y, Y ′])⊗ (X ⊗ Y ) m
//([X,X ′]⊗X)⊗ ([Y, Y ′]⊗ Y )

e⊗e
//X ′ ⊗ Y ′; (1.34)

when we observe that (1.34) is equivalent to e(Ten ⊗ 1) = (e ⊗ e)m, verification of the
V-functor axioms (1.5) and (1.6) is easy. The ordinary functor

V0 × V0
//(V ⊗ V)0 Ten0

//V0 (1.35)

is at once seen to be ⊗ : V0×V0
//V0; so that, by (1.4), the underlying ordinary functor

of Ten(X,−) is X ⊗−.



1.7 Extraordinary V-naturality 17

For any V-categories A and B we have a commutative diagram

(Aop ⊗ Bop)⊗ (A⊗ B)
HomA⊗B //

∼=

��

V

(Aop ⊗A)⊗ (Bop ⊗ B)
HomA⊗HomB

// V ⊗ V ;

Ten

OO

(1.36)

in terms of the partial functors, this asserts the commutativity of

A⊗ B (A⊗B)((A,B),−) //

A(A,−)⊗B(B,−)

##

V

V ⊗ V ,

Ten

OO

(1.37)

which is easily checked. At the level of the underlying functors hom, this gives

(A⊗B)
(
(f, g), (f ′, g′)

)
= A(f, f ′)⊗ B(g, g′). (1.38)

1.7 Extraordinary V-naturality

The point to be made in the next section is that all the families of maps canonically
associated to V , or to a V-category A, or to a V-functor T , or to a V-natural α, such as
a : (X⊗Y )⊗Z //X⊗(Y ⊗Z), or e : [Y, Z]⊗Y //Z, or M : A(B,C)⊗A(A,B) //A(A,C),
or T : A(A,B) //B(TA, TB), or α : I //B(TA, SA), are themselves V-natural in every
variable. To deal with a variable like B in the case of M , we must now introduce the
notion of extraordinary V-naturality ; which later plays an essential role in the definition
of V-functor-category.

First we observe that the formulae (1.31) and (1.32) allow us to write the “ordinary”
V-naturality condition (1.7) in the more compact form

A(A,B) T //

S

��

B(TA, TB)

B(1,αB)

��
B(SA, SB)

B(αA,1)
// B(TA, SB).

(1.39)

By (extraordinary) V-naturality for an obA-indexed family of maps βA : K // T (A,A)
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in B0, where K ∈ B and T : Aop ⊗A // B, we mean the commutativity of each diagram

A(A,B)
T (A,−) //

T (−,B)

��

B
(
T (A,A), T (A,B)

)
B(βA,1)

��
B
(
T (B,B), T (A,B)

)
B(βB ,1)

// B
(
K,T (A,B)

)
.

(1.40)

Duality gives the notion, for the same T and K, of a V-natural family γA : T (A,A) //K;
namely the commutativity of

A(A,B)
T (B,−) //

T (−,A)

��

B
(
T (B,A), T (B,B)

)
B(1,γB)

��
B
(
T (B,A), T (A,A)

)
B(1,γA)

// B
(
T (B,A), K

)
.

(1.41)

Such extraordinary V-naturality is of course fully alive in the case V = Set; it is exhibited
there, for instance, by the “naturality in Y ” of the d and the e of (1.24). In the case
V = Set, (1.40) and (1.41) have more elementary forms obtained by evaluating them
at an arbitrary f ∈ A(A,B). Clearly extraordinary V-naturality implies extraordinary
Set-naturality: we only have to apply V to (1.40) and (1.41).

Just as for ordinary V-naturality, it is clear that if βA : K // T (A,A) is V-
natural as above, and if P : D // A and Q : B // C, then the maps QβPD(=
Q0βPD) : QK //QT (PD,PD) constitute a V-natural family QβP .

If T : (A⊗D)op ⊗ (A⊗D) // B, a family βAD : K // T (A,D,A,D) is V-natural in
(A,D) if and only if it is V-natural in A for each fixed D and in D for each fixed A, with
respect to the partial functors T (−, D,−, D) and T (A,−, A,−) respectively. The most
direct proof involves translating (1.40) via (1.32) into a form analogous to (1.7); then, as
in the proof for ordinary V-natural transformations, it is a matter of combining (1.21)
with (1.3) for C. Thus here, too, V-naturality can be verified variable-by-variable.

That being so, we can combine ordinary and extraordinary V-naturality, and speak of
a V-natural family αABC : T (A,B,B) // S(A,C,C), where T : A ⊗ Bop ⊗ B // D and
S : A⊗ Cop ⊗ C //D. If each of A, B and C stands for a finite number of variables, this
is then the most general form.

The analogue of “vertical composition” for such families is the calculus of [25]. There
are three basic cases of composability, in addition to that for ordinary V-natural transfor-
mations; and two of these three are dual. Each of the three, however, is in fact a sequence
of sub-cases indexed by the natural numbers. The reader will see the pattern if we just
give the first two sub-cases of the only two essentially-different sequences; the proofs are
easy using (1.39)–(1.41).

For T , S : Aop ⊗A // B, if αA : K // T (A,A) is V-natural in A and if

βAB : T (A,B) // S(A,B)
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is V-natural in A and B, the composite

K αA
//T (A,A)

βAA
//S(A,A) (1.42)

is V-natural in A. For T : Aop ⊗ A ⊗ Aop ⊗ A // B and S : Aop ⊗ A // B, if
αAB : K // T (A,A,B,B) is V-natural in A and B and if

βABC : T (A,B,B,C) // S(A,C)

is V-natural in A, B and C, then the composite

K αAA
//T (A,A,A,A)

βAAA
//S(A,A) (1.43)

is V-natural in A. The next one in this series has αABC : K // T (A,A,B,B,C,C) and
βABCD : T (A,B,B,C,C,D) // S(A,D); and there is of course a dual series.

The self-dual series begins with T : A // B, S : A⊗Aop ⊗A // B, and R : A // B;
if αAB : TA // S(A,B,B) and βAB : S(A,A,B) // RB are V-natural in A and B, the
composite

TA αAA
//S(A,A,A)

βAA
//RA (1.44)

is V-natural in A. For the same T and R, but for S : A ⊗ Aop ⊗ A ⊗ Aop ⊗ A // B, if
αABC : TA //S(A,B,B,C,C) and βABC : S(A,A,B,B,C) //RC are V-natural in A, B
and C, then the composite

TA αAAA
//S(A,A,A,A,A)

βAAA
//RA (1.45)

is V-natural in A.
In each case a handsome geometrical picture is produced if, to the diagrams (1.42)–

(1.45), there are added curves above the diagram linking variables which must be set
equal in α, and curves below the diagram linking variables which must be set equal in β;
the geometrical union of these curves, thought of as meeting at the variables, then links
the variables which must be set equal in the composite. Of course the associativity of this
kind of composition, whenever it makes sense, is a triviality.

1.8 The V-naturality of the canonical maps

We turn now to the V-naturality of the canonical maps mentioned at the beginning of
1.7. Of course such an object as A(B,C) ⊗ A(A,B) is here thought of as the value
Ten(HomA(B,C),HomA(A,B)) of the appropriate V-functor.

(a) First, it follows at once from (1.29) that αA : I // B(TA, SA) is V-natural in the
sense of (1.40) precisely when α is a V-natural transformation α : T //S in the sense
of (1.7).

(b) Next, for a V-functor T : A //B, the map TAB : A(A,B) //B(TA, TB) is V-natural
in both variables A and B. It suffices to verify V-naturality in B; and here the
appropriate diagram of the form (1.39) reduces, in the light of (1.29), to (1.5) for T .
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(c) This last gives, for a V-functor T : A ⊗ B // C, the V-naturality in A and A′ of
T (−, B) : A(A,A′) // C(T (A,B), T (A′, B)). However, this is also V-natural in B;
the appropriate instance of (1.40) reduces via (1.29) to (1.21).

(d) In particular, for a V-category A, the A(A,−)BC : A(B,C) // [A(A,B),A(A,C)] of
(1.29) is V-natural in all variables.

(e) Composing the A(A,−)BC of (d) with g : I //A(B,C) gives, by (a), the V-naturality
in A of A(A, g) : A(A,B) //A(A,C).

(f) The V-naturality in both variables of e : [Y, Z] ⊗ Y // Z is an easy consequence of
(1.29) and (1.34).

(g) Since, by (1.29), M : A(B,C)⊗A(A,B) //A(A,C) for a V-category A is the com-
posite

A(B,C)⊗A(A,B)
A(A,−)⊗1

// [A(A,B),A(A,C)]⊗A(A,B) e
//A(A,C),

it is V-natural in all variables by (d), (e), (f), (1.42) and (1.44).

(h) The V-naturality of jA : I // A(A,A) for a V-category A follows from (a), since
1 : 1 // 1: A //A is V-natural.

(i) The V-naturality in every variable of a : (X⊗Y )⊗Z //X⊗ (Y ⊗Z), l : I⊗X //X,
r : X ⊗ I //X, c : X ⊗ Y // Y ⊗X, follows easily from (1.34).

(j) From the definition (1.27) of the isomorphism p and the definition (1.34) of Ten(−, Y ),
we easily see that p−1 : [X, [Y, Z]] // [X ⊗ Y, Z] is the composite

[X, [Y, Z]]
Ten(−,Y )

// [X ⊗ Y, [Y, Z]⊗ Y ]
[1,e]

// [X ⊗ Y, Z].

It follows from (c), (e), (f), and (1.44) that p−1 is V-natural in all variables; whence
the same is true of its inverse p.

(k) The composite

X
l−1

//I ⊗X
j⊗1

// [X ⊗ Y,X ⊗ Y ]⊗X
p⊗1

// [X, [Y,X ⊗ Y ]]⊗X e
// [Y,X ⊗ Y ]

is easily verified to be the d : X //[Y,X⊗Y ] of (1.24); the latter is therefore V-natural
in every variable by (i), (h), (j), (f), (e), (1.42), and (1.44).

(l) The composite

X
d
// [I,X ⊗ I]

[1,r]
// [I,X]

is the isomorphism i : X // [I,X], which is therefore V-natural.



1.9 The (weak) Yoneda lemma for V-CAT 21

This completes the list of canonical maps, and we end this section with a general
principle. Since a map f : X⊗Y //Z and its image f : X // [Y, Z] under the π of (1.23)
are related by f = [1, f ]d and f = e(f ⊗ 1), it follows from (f), (k), (e) and (1.42)–(1.44)
that, for V-functors T , S, R of suitable variances with codomain V , we have:

(m) A family f : T (D,D,A,B) ⊗ S(E,E,A,C) // R(F, F,B,C) is V-natural in any of
its variables if and only if the corresponding

f : T (D,D,A,B) // [S(E,E,A,C), R(F, F,B,C)]

is so.

1.9 The (weak) Yoneda lemma for V-CAT

The form of the Yoneda Lemma we give here is a weak one, in that it asserts a bijection
of sets rather than an isomorphism of objects of V ; a stronger form will be given in 2.4
below.

Consider a V-functor F : A // V and an object K of A. To each V-natural transfor-
mation α : A(K,−) // F we can assign the element η : I // FK of FK given by the
composite

I
jK

//A(K,K) αK
//FK. (1.46)

The Yoneda Lemma asserts that this gives a bijection between the set V-nat(A(K,−), F )
of V-natural transformations and the set V0(I, FK) (= V FK) of elements of FK; the
component αA being given in terms of η as the composite

A(K,A)
FKA

// [FK,FA]
[η,1]

// [I, FA]
i−1

//FA. (1.47)

For the proof, we first note that, for any η, (1.47) is indeed V-natural in A, by 1.8 (b),
(e), and (l). Next, if α is defined by (1.47), αKjK is in fact η; this follows easily from (1.6)
for F , the Set-naturality of j (a consequence, as we saw in (1.7), of its V-naturality), the
naturality of i, and the easy verification that jI = iI : I // [I, I]. It remains to show that
(1.47) is in fact αA, when η is given by (1.46). In the diagram

A(K,A)
A(K,−) //

F

��

[A(K,K),A(K,A)]
[j,1] //

[1,αA]

��

[I,A(K,A)] i−1
//

[1,αA]

��

A(K,A)

αA

��
[FK,FA]

[αK ,1]
// [A(K,K), FA]

[j,1]
// [I, FA]

i−1
// FA,

the left square commutes by the V-naturality of α in the form (1.39), the middle square
trivially, and the right square by the naturality of i. The proof is complete when we
observe that the top edge of the diagram is the identity; which follows from the definition
(1.29) of A(K,−), the axiom (1.4) for A, and the definition (1.26) of i in terms of r.
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There is an extra-variable form of the result, involving functors F : Bop⊗A //V and
K : B //A, and a family αBA : A(KB,A) // F (B,A) which is V-natural in A for each
fixed B, so that it corresponds as above to a family ηB : I // F (B,KB). It then follows
from (1.46) and (1.42) that η is V-natural in B if α is, and from (1.47) and (1.44) that
α is V-natural in B if η is.

It is worth noting an alternative way of writing (1.47) when F has the form B(B, T−)
for a V-functor T : A //B, so that η : I //B(B, TK) is then a map η : B //TK in B0 (in
fact, the image of 1K under V αK : A0(K,K) // B0(B, TK)). Then αA is the composite

A(K,A)
TKA

//B(TK, TA)
B(η,1)

//B(B, TA), (1.48)

which is easily seen by (1.32) to coincide with (1.47). In particular, every V-natural
α : A(K,−) //A(L,−) is A(k,−) for a unique k : L //K; and clearly k is an isomor-
phism if and only if α is.

1.10 Representability of V-functors; the representing object as a V-
functor of the passive variables

We have called the V-functors A(K,−) : A // V representable. More generally, however,
a V-functor F : A //V is called representable if there is some K ∈ A and an isomorphism
α : A(K,−) // F . Then the pair (K,α) is a representation of F ; it is essentially unique
if it exists, in the sense that any other representation α′ : A(K ′,−) // F has the form
α′ = α.A(k,−) for a unique isomorphism k : K //K ′. The corresponding η : I // FK
is called the unit of the representation. (We call η the counit when we are representing a
contravariant F : Aop // V in the form A(−, K).)

For a general V , there is no simple criterion in terms of an η : I // FK for the
corresponding α : A(K,−) // F to be an isomorphism. It is of course otherwise in the
classical case V = Set; there we have the comma-category 1/F = elF of “elements of F”,
whose objects are pairs (A, x) with A ∈ A and x ∈ FA; and α is invertible if and only if
(K, η) is initial in elF , so that F is representable if and only if elF has an initial object.
However, any such kind of “universal property” criterion ultimately expresses a bijection
of sets, and cannot suffice in general to characterize an isomorphism in V0.

Now let F : Bop ⊗ A // V be such that each F (B,−) : A // V admits a rep-
resentation αB : A(KB,−) // F (B,−). Then there is exactly one way of defining
KBC : B(B,C) //A(KB,KC) that makes K a V-functor for which

αBA : A(KB,A) // F (B,A)

is V-natural in B as well as A.

For by 1.9, the V-naturality in B of αBA is equivalent to that of ηB, which by (1.40)
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means the commutativity of

B(B,C)
KBC //

F (−,KC)

��

A(KB,KC)
F (B,−) // [F (B,KB), F (B,KC)]

[ηB ,1]

��
[F (C,KC), F (B,KC)]

[ηC ,1]
// [I, F (B,KC)].

(1.49)

Now the composite [ηB, 1]F (B,−) in this diagram is, by (1.47), the composite isomor-
phism

A(KB,KC) αB,KC
//F (B,KC)

i
// [I, F (B,KC)];

so that (1.49) forces us to define KBC as

KBC = α−1i−1[ηC , 1]F (−, KC). (1.50)

This composite (1.50) is V-natural in B, by 1.7 and 1.8; and from this the proof of 1.8(b),
read backwards, gives the V-functor axiom (1.5) for K; while the remaining V-functor
axiom (1.6) is a trivial consequence of (1.49).

1.11 Adjunctions and equivalences in V-CAT

As in any 2-category (see [49]) an adjunction η, ε : S a T : A // B in V-CAT between
T : A // B (the right adjoint) and S : B //A (the left adjoint) consists of η : 1 // TS
(the unit) and ε : ST // 1 (the counit) satisfying the triangular equations Tε.ηT = 1 and
εS.Sη = 1. By the Yoneda Lemma of 1.9, such adjunctions in V-CAT are in bijection
with V-natural isomorphisms

n : A(SB,A) ∼= B(B, TA); (1.51)

for by (1.48) a V-natural map n : A(SB,A) // B(B, TA) has the form n = B(η, 1)T for
a unique η, while a V-natural map n : B(B, TA) //A(SB,A) has the form n = A(1, ε)S
for a unique ε, and the equations nn = 1 and nn = 1 reduce by Yoneda precisely to the
triangular equations.

The 2-functor (−)0 : V-CAT // CAT carries such an adjunction into an ordinary
adjunction η, ε : S0 a T0 : A0

// B0 in CAT. It is immediate from (1.33) that the corre-
sponding isomorphism of hom-sets is

V n : A0(SB,A) ∼= B0(B, TA). (1.52)

Note that the unit and counit of this ordinary adjunction are the same η and ε, now seen
as natural rather than V-natural.

By 1.10, a V-functor T : A // B has a left adjoint (which is then unique to within
isomorphism, as in any 2-category) exactly when each B(B, T−) is representable. More
generally, if those B for which B(B, T−) is representable constitute the full subcategory
B′ of B, we get a V-functor S : B′ //A called a partial left adjoint to T .
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When V is conservative – faithfulness is not enough – the existence of a left adjoint
S0 for T0 implies that of a left adjoint S for T : we set SB = S0B, define a map n that
is V-natural in A by n = B(η, 1)T as above (using the unit η for S0 a T0), and deduce
that n is an isomorphism since the V n of (1.52) is. Thus, taking V = Ab for instance,
an additive functor has a left adjoint exactly when its underlying functor has one.

Again by 1.10, in the extra-variable case of a V-functor T : Cop⊗A //B, if each T (C,−)
has a left adjoint S(−, C), then S automatically becomes a V-functor B⊗C //A in such
a way that n : A(S(B,C), A) ∼= B(B, T (C,A)) is V-natural in all three variables. An
evident example, with A = B = C = V , is the adjunction p : [X ⊗ Y, Z] ∼= [X, [Y, Z]] of
(1.27).

For a typical adjunction (1.51) as above, we have a commutative diagram

A(A,A′)

A(ε,1) ''

TAA′ // B(TA, TA′)

A(STA,A′);

n

66
(1.53)

this follows from Yoneda on setting A′ = A and composing both legs with j, since
(V n)(εA) = 1. Because n is an isomorphism, we conclude that T is fully faithful if
and only if ε is an isomorphism. In consequence, a right adjoint T is fully faithful exactly
when T0 is so.

As in any 2-category, a V-functor T : A // B is called an equivalence, and we write
T : A ' B, if there is some S : B // A and isomorphisms η : 1 ∼= TS and ρ : ST ∼= 1.
Replacing ρ (still in any 2-category) by the isomorphism ε : ST ∼= 1 given by ε =
ρ.Sη−1T.ρ−1ST , we actually have an adjunction η, ε : S a T : A //B. The word “equiva-
lence” is sometimes used to mean an adjunction in which, as here η and ε are isomorphisms;
we write S a T : A ' B.

In the 2-category V-CAT, T : A //B is an equivalence if and only if T is fully faithful
and essentially surjective on objects ; the latter means that every B ∈ B is isomorphic (in
B0, of course) to TA for some A ∈ A; we often omit the words “on objects”.

For, if T is an equivalence, T is fully faithful since ε is an isomorphism, and is essen-
tially surjective on objects since ηB : B //TSB is an isomorphism. As for the converse, we
choose for each B ∈ B an SB ∈ A and an isomorphism ηB : B //TSB. The correspond-
ing V-natural-in-A transformation n = B(ηB, 1)T : A(SB,A) // B(B, TA) is then an
isomorphism because T is fully faithful, so that S becomes automatically a V-functor left
adjoint to T . Since η is an isomorphism, so is Tε, by the triangular equation Tε.ηT = 1;
whence ε is an isomorphism by (1.12), since a fully-faithful T0 is certainly conservative.

In any 2-category (see [49]) adjunctions can be composed, forming a category, of
which the equivalences are a subcategory. It follows from Yoneda that the composition of
adjunctions in V-CAT corresponds to the composition of the V-natural isomorphisms in

A(SS ′B,A) ∼= B(S ′B, TA) ∼= B(B, T ′TA). (1.54)

It is further true in any 2-category (see [49]) that, given adjunctions η, ε : S a
T : A // B and η′, ε′ : S ′ a T ′ : A′ // B′ and 1-cells P : A //A′ and Q : B // B′, there
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is a bijection (with appropriate naturality properties) between 2-cells λ : QT // T ′P and
2-cells µ : S ′Q // PS. In V-CAT it follows from Yoneda that λ and µ determine one
another through the commutativity of

A(SB,A)

P

��

n
∼=

// B(B, TA)

Q

��
A′(PSB,PA)

A′(µ,1)

��

B′(QB,QTA)

B′(1,λ)

��
A′(S ′QB,PA)

n′

∼= // B′(QB, T ′PA);

(1.55)

such a pair λ, µ may be called mates .
In particular, when A′ = A with P = 1 and B′ = B with Q = 1, so that S a T and

S ′ a T ′ are both adjunctions A // B, we have a bijection between the λ : T // T ′ and
the µ : S ′ //S. The adjunctions become a 2-category when we define a 2-cell from S a T
to S ′ a T ′ to be such a pair (λ, µ).

Any T : A //B determines two full subcategories of B; the full image A′ of T , deter-
mined by those B of the form TA, and the replete image A′′ of T , determined by those
B isomorphic to some TA. Clearly A′ and A′′ are equivalent; and each is equivalent to
A if T is fully faithful. A full subcategory which contains all the isomorphs of its objects
is said to be replete; any full subcategory has a repletion, namely the replete image of its
inclusion. Clearly a fully-faithful T : A //B has a left adjoint if and only if the inclusion
A′ // B has one, and if and only if the inclusion A′′ // B has one.

A full subcategory A of B is called reflective if the inclusion T : A // B has a left
adjoint. This implies, of course, that A0 is reflective in B0, but is in general strictly
stronger. It follows – since it is trivially true for ordinary categories – that every retract
(in B0) of an object of the reflective A lies in the repletion of A.

When A is reflective we may so choose the left adjoint S : B //A that ε : ST // 1 is
the identity. Then η : 1 // R = TS : B // B satisfies R2 = R, ηR = Rη = 1. Such an
(R, η) is called an idempotent monad on B. Conversely, for any idempotent monad (R, η),
both its full image and its replete image are reflective in B. If R is formed as above, the
full image is A again; but (R, η) is not uniquely determined by A. The replete image of
R is the repletion of A; and there is an evident bijection between full replete reflective
subcategories of B and isomorphism classes of idempotent monads on B.
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Chapter 2

Functor categories

2.1 Ends in V
So far we have supposed that V is symmetric monoidal closed, and that the underlying
ordinary category V0 is locally small. Henceforth we add the assumption that V0 is
complete, in the sense that it admits all small limits; and from 2.5 on, we shall suppose
as well that V0 is cocomplete.

Consider a V-functor T : Aop ⊗ A // V . If there exists a universal V-natural family
λA : K // T (A,A), in the sense that every V-natural αA : X // T (A,A) is given by
αA = λAf for a unique f : X // K, we call (K,λ) the end of T ; it is clearly unique to
within a unique isomorphism when it exists. We write

∫
A∈A T (A,A) for the object K,

and by the usual abuse of language also call this object the end of T : then the universal
V-natural λA :

∫
A
T (A,A) // T (A,A) may be called the counit of this end.

The V-naturality condition (1.40), in the case B = V , transforms under the adjunction
V0(X, [Y, Z]) ∼= V0(X ⊗ Y, Z) ∼= V0(Y, [X,Z]) into

K
λA //

λB

��

T (A,A)

ρAB

��
T (B,B) σAB

// [A(A,B), T (A,B)],

(2.1)

where ρAB and σAB are the transforms of T (A,−)AB and T (−, B)BA. It follows that,
when A is small, the end

∫
A∈A T (A,A) certainly exists, and is given as an equalizer

∫
A∈A T (A,A)

λ
//
∏

A∈A T (A,A)
ρ //
σ
//
∏

A,B∈A[A(A,B), T (A,B)]. (2.2)

If A, while not necessarily small, is equivalent to a small V-category, then the full
image in A of the latter is a small full subcategory A′ for which the inclusion A′ //A is
an equivalence. Since it clearly suffices to impose (2.1) only for A, B ∈ A′, it follows that∫
A∈A T (A,A) still exists, being

∫
A∈A′ T (A,A). In consequence, we henceforth change the

meaning of “small”, extending it to include those V-categories equivalent to small ones in
the sense of 1.2.

27



28 2 Functor categories

The universal property of the end – expressed, as it stands, by a bijection of sets – in
fact lifts to an isomorphism in V0; in the sense that

[X,λA] : [X,
∫
A
T (A,A)] // [X,T (A,A)]

expresses its domain as the end of its codomain:

[X,
∫
A
T (A,A)] ∼=

∫
A

[X,T (A,A)] (with counit [X,λA]). (2.3)

For Y // [X,T (A,A)] is V-natural if and only if Y ⊗X // T (A,A) is, by 1.8(m). Note
that the right side of (2.3) exists for all X if

∫
A
T (A,A) exists; the converse of this is also

true, as we see on taking X = I.
If α : T // T ′ : Aop ⊗ A // V , and if the ends of T and T ′ exist, the top leg of the

diagram ∫
A
T (A,A)

λA //

∫
A αAA

��

T (A,A)

αAA

��∫
A
T ′(A,A)

λ′A

// T ′(A,A)

(2.4)

is V-natural by (1.42); so that, by the universal property of λ′, there is a unique
∫
A
αAA

rendering the diagram commutative.
This “functoriality” of ends lifts, in the appropriate circumstances, to a V-functoriality.

Suppose namely that, for T : Aop ⊗A⊗ B // V , the end HB =
∫
A
T (A,A,B) exists for

each B. Then there is exactly one way of making H into a V-functor H : B // V that
renders λAB : HB // T (A,A,B) V-natural in B as well as in A.

For, by (1.39), the V-naturality in B is expressed by the commutativity of

B(B,C)
HBC //

T (A,A,−)

��

[HB,HC]

[1,λAC ]

��
[T (A,A,B), T (A,A,C)]

[λAB ,1]
// [HB, T (A,A,C)].

(2.5)

The bottom leg is V-natural in A by 1.8(c), 1.8(e), and (1.43). The right edge is itself
an end by (2.3). Hence a unique HBC renders the diagram commutative. The V-functor
axioms (1.5) and (1.6) for H then follow from the V-naturality of M and j (1.8(g) and
(h)), the composition-calculus of 1.7, and the universal property of the counit [1, λ].

In these circumstances, if R : B //V , a family βB : RB //
∫
A
T (A,A,B) is V-natural

in B if and only if the composite

RB
βB

//
∫
A
T (A,A,B)

λAB
//T (A,A,B) (2.6)

is so. One direction is trivial, while the other follows easily from (2.5) and the universal
property of the counit [1, λ]. In fact, this result can also be seen – using 1.8(m) to view
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(2.6) as a V-natural family I // [RB, T (A,A,B)] and using (2.3) – as a special case of
the following.

Let T : (A ⊗ B)op ⊗ (A ⊗ B) // V , recalling that (A ⊗ B)op = Aop ⊗ Bop. Suppose
that, for each B, C ∈ B, the end

∫
A∈A T (A,B,A,C) exists; then, as above, it is the value

of a V-functor Bop ⊗ B // V . Every family αAB : X // T (A,B,A,B) that is V-natural
in A factorizes uniquely as

X
βB

//
∫
A∈A T (A,B,A,B)

λABB
//T (A,B,A,B); (2.7)

and it follows again from (2.5) and the universal property of [1, λ] that the V-naturality
in B of αAB is equivalent to the V-naturality in B of βB.

Since, by 1.7, V-naturality of αAB in A and B separately coincides with its V-naturality
in (A,B) ∈ A⊗ B, we deduce the Fubini Theorem: if every

∫
A
T (A,B,A,C) exists, then∫

(A,B)∈A⊗B T (A,B,A,B) ∼=
∫
B∈B

∫
A∈A T (A,B,A,B), (2.8)

either side existing if the other does.
This in turn gives, since A⊗B ∼= B⊗A, the following interchange of ends theorem, of-

ten itself called the Fubini Theorem: if every
∫
A
T (A,B,A,C) and every

∫
B
T (A,B,D,B)

exists, then ∫
A∈A

∫
B∈B T (A,B,A,B) ∼=

∫
B∈B

∫
A∈A T (A,B,A,B), (2.9)

either side existing if the other does.

2.2 The functor-category [A,B] for small A
For V-functors T , S : A // B we introduce the notation

[A,B](T, S) =
∫
A∈A B(TA, SA) (2.10)

for the end on the right, whenever it exists; and we write the counit as

EA = EA,TS : [A,B](T, S) // B(TA, SA). (2.11)

We write [A,B]0(T, S) for the set V [A,B](T, S) of elements α : I // [A,B](T, S) of this
end. These of course correspond to V-natural families

αA = EAα : I // B(TA, SA), (2.12)

which by 1.8(a) are precisely the V-natural transformations α : T // S : A // B.
Note that, by (2.3) and the adjunction [X, [Y, Z]] ∼= [Y, [X,Z]], we have

[X, [A,V ](T, S)] ∼= [A,V ](T, [X,S−]), (2.13)

either side existing for all X ∈ V if the other does.
When [A,B](T, S) exists for all T , S : A //B, as it surely does by 2.1 if A is small, it is

the hom-object of a V-category [A,B] with all the T : A //B as objects. The composition
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law of [A,B] is, by 1.8(g), (1.43), and the universal property of EA,TR, uniquely determined
by the commutativity of

[A,B](S,R)⊗ [A,B](T, S) M //

EA⊗EA

��

[A,B](T,R)

EA

��
B(SA,RA)⊗ B(TA, SA)

M
// B(TA,RA),

(2.14)

and its identity elements are similarly determined by

EAjT = jTA; (2.15)

the axioms (1.3) and (1.4) follow at once from the corresponding axioms for B and the
universal property of EA.

We call [A,B] the functor category ; its underlying category [A,B]0 is by (2.12) the
ordinary category of all V-functors A // B and all V-natural transformations between
them – that is

[A,B]0 = V-CAT(A,B). (2.16)

Even when [A,B] does not exist, it may sometimes be convenient to use [A,B]0 as an
abbreviation for V-CAT(A,B).

When [A,B] exists, the function T 7→ TA and the maps EA,TS of (2.11) constitute,
by (2.14) and (2.15), a V-functor EA : [A,B] //B, called evaluation at A. By (2.12), the
ordinary functor underlying EA sends a map α ∈ [A,B]0(T, S) to its component αA.

There is a V-functor E : [A,B] ⊗ A // B, simply called evaluation, whose partial
functors are given by

E(−, A) = EA : [A,B] // B, E(T,−) = T : A // B. (2.17)

To show this we must verify the appropriate instance of (1.21); but, by the proof of 1.8(c)
read backwards, this instance reduces via (1.29) to the instance of (1.40) expressing the
V-naturality in A of EA,TS.

More generally, [A,B](T, S) may exist, not for all T , S, but for all those in some
subset of the set of V-functors A // B; a typical example would be the subset of those
A // B which are left Kan extensions, in the sense of 4.1 below, of their restrictions to
some fixed small full subcategory of A. Then we get as above a V-category [A,B]′ with
these functors as objects, whose underlying category [A,B]′0 is the corresponding full
subcategory of V-CAT(A,B); and we have the evaluation functor E : [A,B]′ ⊗A // B.

Still more generally, we may wish to consider [A,B](T, S) just for certain particular
pairs T , S for which it exists – as in the Yoneda isomorphism of 2.4 below. To discuss its
functoriality in this generality, suppose we have functors P : C⊗A //B and Q : D⊗A //B
such that [A,B]

(
P (C,−), Q(D,−)

)
exists for each C and D. Then there is, by 2.1, a

unique V-functor H : Cop ⊗D // V having

H(C,D) = [A,B]
(
P (C,−), Q(D,−)

)
, (2.18)
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with respect to which EA : [A,B]
(
P (C,−), Q(D,−)

)
//B
(
P (C,A), Q(D,A)

)
is V-natural

in C and D as well as A. Moreover by (2.6) and (2.7), in the situations (the second of
which has D = C)

R(C,D)
βCD //

αACD

((

[A,B]
(
P (C,−), Q(D,−)

)
EA

��
B
(
P (C,A), Q(D,A)

)
,

X
βC //

αAC

''

[A,B]
(
P (C,−), Q(C,−)

)
EA

��
B
(
P (C,A), Q(C,A)

)
,

(2.19)
α is V-natural in C or D if and only if β is.

When [A,B], or even some [A,B]′, exists, the H of (2.18) can be given more explicitly –
see 2.3 below.

2.3 The isomorphism [A⊗ B, C] ∼= [A, [B, C]]
We return to the case where [A,B] exists. The V-functor E : [A,B]⊗A //B induces, for
each V-category C, an ordinary functor

V-CAT(C, [A,B]) // V-CAT(C ⊗ A,B), (2.20)

sending G : C // [A,B] to the composite

C ⊗ A
G⊗1

// [A,B]⊗A
E
//B, (2.21)

and sending β : G //G′ : C // [A,B] to the composite E(β⊗1A). Clearly the map (2.20)
is 2-natural in C; and in fact it is an isomorphism of categories.

To prove this we must first show that every P : C ⊗A // B has the form (2.21) for a
unique G. Equating the partial functors of P and (2.21) gives

P (C,−) = GC, P (−, A) = EAG. (2.22)

The first of these determines G on objects, whereupon the second asserts the commuta-
tivity of

C(C,D)
GCD //

P (−,A)CD

((

[A,B]
(
P (C,−), P (D,−)

)
EA

��
B
(
P (C,A), P (D,A)

)
.

(2.23)

Since P (−, A)CD is V-natural in A by 1.8(c), this determines a unique GCD by the uni-
versal property of EA. By this same universal property together with the composition-
calculus of 1.7, the V-functor axioms (1.5) and (1.6) for G follow at once from those for
P (−, A).
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Before showing that (2.20) is bijective on maps as well as on objects, let us analyze the
V-functoriality (2.18) when [A,B] exists. If P : C⊗A //B and Q : D⊗A //B correspond
by (2.20) to G : C // [A,B] and F : D // [A,B], we have the composite V-functor

Cop ⊗D
Gop⊗F

// [A,B]op ⊗ [A,B]
Hom[A,B]

//V ; (2.24)

and with respect to this, EA : [A,B](GC,FD) //B(EAGC,EAFD) is V-natural in C and
D, by 1.7 and 1.8(b). By (2.22), this EA is

EA : [A,B]
(
P (C,−), Q(D,−)

)
// B
(
P (C,A), Q(D,A)

)
;

hence the H of (2.18), by its uniqueness, must be (2.24).
To complete the proof that (2.20) is an isomorphism of categories, it remains to verify

that, if P and P ′ are the images under (2.20) of G and G′, every α : P //P ′ is E(β⊗1A)
for a unique β : G //G′. By (2.22) the equation α = E(β⊗ 1A) has the component-form
αCA = EAβC , which by (2.12) is

αCA = EAβC = (βC)A. (2.25)

Thus βC : GC //G′C must be the V-natural transformation αC− : P (C,−) //P ′(C,−);
and the proof will be complete when we show that βC , so defined, is V-natural in C. If
we look on βC as a map I // [A,B](GC,G′C), this follows from 1.8(m) and (2.19), now
that H is identified as (2.24).

More generally, if [A,B] does not exist but some full subcategory [A,B]′ does, in
the sense of 2.2, we have by the same arguments an isomorphism between the category
V-CAT(C, [A,B]′) and the full subcategory of V-CAT(C ⊗ A,B) determined by those
P : C ⊗A // B for which each P (C,−) lies in [A,B]′; for we have the analogue of (2.24)
with [A,B]′ replacing [A,B].

The 2-natural isomorphism (2.20) exhibits [A,B], when it exists, as a representing
object for the 2-functor V-CAT(−⊗A,B). It is conversely true that, if this 2-functor is
representable by some D, then [A,B] exists and is isomorphic to D – at least if V0 has an
initial object 0. For taking C to be I in (2.20), with [A,B] replaced by D, we identify the
objects of D with the V-functors A // B; while taking C to be the V-category with two
objects 0 and 1, with C(0, 0) = C(1, 1) = I, with C(1, 0) = 0, and with C(0, 1) an arbitrary
object X of V , we easily see that D(T, S) =

∫
A
B(TA, SA).

It follows from 1.10 that, so far as it exists, [A,B] is uniquely 2-functorial in A and B
in such a way that (2.20) is 2-natural in every variable; which by 1.9 is equivalent to the
2-naturality in each variable of E : [A,B]⊗A // B. Using this latter criterion we easily
see that, for M : A′ //A and N : B //B′, the V-functor [M,N ] : [A,B] // [A′,B′] sends
T to NTM and is determined on hom-objects by

[A,B](T, S)
[M,N ]TS //

EMA

��

[A′,B′](NTM,NSM)

E′A

��
B(TMA, SMA)

NTMA,SMA

// B′(NTMA,NSMA);

(2.26)
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while the V-natural transformation [µ, ν] : [M,N ] // [M ′, N ′] is given by

[µ, ν]T = νTµ : NTM //N ′TM ′. (2.27)

As for the interplay of functor categories with duality, we clearly have a 2-natural isomor-
phism

[Aop,Bop] ∼= [A,B]op, (2.28)

either side existing if the other does.
The 2-functor −⊗A : V-CAT //V-CAT has a right adjoint [A,−] when [A,B] exists

for all B; and by the above, only then, if V0 has an initial object. This right adjoint surely
exists when A is small, in the extended sense of 2.1; and for many V it exists only then.
For instance, a result of Freyd (see [73])1 shows that, when V = Set, A is necessarily
small if [A,V ] exists. Yet when V0 is an ordered set, as in the cases V = 2 and V = R+,
[A,B] exists for every A and B.

In this sense the symmetric monoidal 2-category V-CAT is “partially closed”; while
the symmetric monoidal 2-category V-Cat of small V-categories is actually closed.

The partial closedness is sufficient to imply the isomorphisms (1.26) and (1.27) of 1.5,
which here read:

[I,B] ∼= B, [C ⊗ A,B] ∼= [C, [A,B]], (2.29)

the latter in the sense that either side exists if the other does, provided [A,B] exists –
which follows alternatively from the Fubini Theorem (2.8).

2.4 The (strong) Yoneda lemma for V-CAT; the Yoneda embedding
A // [Aop,V ]

We can now give a stronger version of the Yoneda Lemma of 1.9, no longer expressed by
a mere bijection of sets, but by a Yoneda isomorphism in V0.

Given a V-functor F : A // V and an object K of A as in 1.9, we have the map
FKA : A(K,A) // [FK,FA], which is V-natural in A by 1.8(b). The transform

φA : FK // [A(K,A), FA] (2.30)

of FKA under the adjunction V0(X, [Y, Z]) ∼= V0(Y, [X,Z]) is V-natural in A by 1.8(m).
The stronger Yoneda Lemma is the assertion that (2.30) expresses FK as the end∫
A

[A(K,A), FA], so that we have an isomorphism

φ : FK ∼= [A,V ](A(K,−), F ]. (2.31)

For the proof, consider any V-natural αA : X // [A(K,A), FA]; its transform
αA : A(K,A) // [X,FA] under the adjunction, being V-natural in A by 1.8(m), is the
composite

A(K,A)
FKA

// [FK,FA]
[η,1]

// [X,FA]

1For a more useful citation, see Peter Freyd and Ross Street, On the size of categories, Theory and
Applications of Categories 1 (1995) 174-178.
http://www.tac.mta.ca/tac/volumes/1995/n9/1-09abs.html
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for a unique η : X // FK, by the Yoneda Lemma of 1.9 in the form (1.48). This is
equivalent to the assertion that αA = φAη for a unique η; which completes the proof.

The image under V = V0(I,−) : V0
// Set of (2.31) is a bijection

V0(I, FK) // [A,V ]0(A(K,−), F ).

This sends η : I //FK to φη : A(K,−) //F , whose component A(K,A) //FA is EAφη
by (2.12), or φAη. By the definition (2.30) of φA, this is at once seen to be the composite
(1.47). Hence the weak Yoneda Lemma of 1.9, which we have used to prove the present
strong Yoneda Lemma, is subsumed under the latter as its underlying bijection.

The special case F = A(L,−) : A //V of the present Yoneda Lemma strengthens the
last assertion of 1.9 to

A(L,K) ∼= [A,V ]
(
A(K,−),A(L,−)

)
. (2.32)

Since (2.31) is true without any smallness restriction on A, its V-naturality must in
general be discussed (cf. 2.2) in terms of the V-functor HomA : Aop ⊗A // V and some
V-functor P : C ⊗ A // V . We assert that

φ = φCK : P (C,K) ∼= [A,V ]
(
A(K,−), P (C,−)

)
(2.33)

is V-natural in C and K, when the right side is made V-functorial as in (2.18). This
follows from (2.19); for EAφ = φA : P (C,K) // [A(K,A), P (C,A)] is V-natural in C and
K by 1.8(m), since A(K,A) // [P (C,K), P (C,A)] is so by 1.8(b) and 1.8(c).

When [A,V ] exists, HomA : Aop ⊗A // V corresponds under (2.20) to a V-functor

Y : Aop // [A,V ] (2.34)

sending K to
Y K = A(K,−); (2.35)

being fully faithful by (2.32), Y is called the Yoneda embedding . In these circumstances the
V-naturality (2.33) can be more globally expressed by taking [A,V ] for C and E : [A,V ]⊗
A // V for P ; the right side of (2.33) is then by (2.24) the value of the V-functor

A⊗ [A,V ]
Y op⊗1

// [A,V ]op ⊗ [A,V ]
Hom[A,V]

//V ; (2.36)

so that, with respect to this functoriality,

the Yoneda isomorphism (2.31) is V-natural in K and F . (2.37)

The extra-variable result of 1.9 also has a lifting to the present context. Let
F : Bop ⊗ A // V and K : B // A. By (2.33) we have an isomorphism F (C,KB) ∼=
[A,V ]

(
A(KB,−), F (C,−)

)
, V-natural in C and B. The Fubini Theorem (2.8) now gives∫

B
F (B,KB) ∼= [Bop ⊗A,V ]

(
A(K?,−), F (?,−)

)
, (2.38)

either side existing if the other does.
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2.5 The free V-category on a Set-category

We henceforth suppose, in addition to all our former assumptions on V , that the underlying
category V0 is cocomplete.

Then the ordinary functor V = V0(I,−) : V0
//Set has a left adjoint (−) · I, sending

the set E to the coproduct E · I of E copies of I in V0. This functor sends the cartesian
product in Set to the tensor product in V0, in that we clearly have

(E × F ) · I ∼= (E · I)⊗ (F · I), 1 · I ∼= I. (2.39)

The 2-functor (−)0 : V-CAT //CAT now has a left adjoint (−)V . The free V-category
LV on the ordinary locally-small category L has the same objects as L, and has hom-objects
LV(K,L) = L(K,L) · I; its composition law and its identities are induced from those of
L using the isomorphisms (2.39).

For the proof, we have first to verify that LV , as defined, satisfies the V-category
axioms (1.3) and (1.4); this is trivial from the corresponding axioms for L.

There is an evident functor ψ : L // (LV)0 which is the identity on objects, and which
is defined on morphisms by the obvious map L(K,L) //V0(I,L(K,L) · I). This ψ is the
unit of the 2-adjunction in question.

In fact it is easy to see that, for a V-category B and a functor T : L // B0, there is
exactly one V-functor T : LV // B with T 0ψ = T : on objects we have TK = TK, while
TKL : L(K,L) · I //B(TK, TL) is the transform of TKL : L(K,L) //B0(TK, TL) under
the adjunction (−) · I a V . Verification of (1.5) and (1.6) for T is easy.

Finally, if α : T //S : L //B0, there is a unique V-natural α : T //S : LV //B with
α0ψ = α; the component αK must be αK ∈ B0(TK, SK), and again verification of (1.7)
for α is easy. This completes the proof.

If L is a small category, LV is clearly a small V-category, and we can form the functor
category [LV ,B]. Since the underlying ordinary category [LV ,B]0 of this is V-CAT(LV ,B)
by (2.16), the 2-adjunction above gives

[LV ,B]0 ∼= [L,B0]. (2.40)

2.6 Universe-enlargement V ⊂ V ′ in concrete cases; [A,B] as a V ′-category
for large A

The possible non-existence of a V-functor category [A,B] when A is large (= non-small) is
somewhat tedious, forcing us into such circumlocutions as using (2.18) instead of (2.24),
or (2.33) instead of (2.37) – which then propagate themselves throughout the applications
below.

Yet when V = Set, we always do have [A,B] as a category; albeit not in general a
Set-category (= locally-small category) when A and B are Set-categories, unless A is
small. It can however be seen as a Set′-category, where Set′ is the category of sets in
some larger universe containing obA as an element – we are taking the view that obA is
always an honest set, and supposing that every set belongs to some universe.
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We may ask whether such a view can be imitated for a general V . Consider first the
various examples of a symmetric monoidal closed V given in 1.1. These are of two types:
either V0 is a particular ordered set, such as 2 or R+, in which case [A,B] exists for all
A; or V0 consists of the small models of some theory – small sets, small categories, small
abelian groups, small differential graded R-modules, and so on. In the latter case we
can clearly consider the category V ′0 of models in a larger Set′, which gives a symmetric
monoidal closed category V ′, in which V with its symmetric monoidal closed structure
is faithfully embedded. Moreover V ′0 admits all limits and colimits which are small by
reference to Set′; and the inclusion V0

// V ′0 preserves all limits and colimits that exist
in V0. (We are supposing that our original universe contains infinite sets; otherwise we
do not have the colimit-preservation above.)

Then, for V-categories A and B, we always have a V ′-category [A,B], where Set′

is taken large enough to include obA. Since V0
// V ′0 preserves limits, to say that

[A,B](T, S) exists in the sense of 2.2 is precisely to say that the object [A,B](T, S) of
V ′ actually lies in V ; and to say that [A,B] exists in the sense of 2.2 – that is, as a
V-category – is to say that [A,B](T, S) ∈ V for all T , S.

That a similar thing is possible for a perfectly general V follows from Day [17]. Using
his construction, one can show that there is always a suitable V ′ whose underlying ordinary
category V ′0 is a full reflective subcategory of [Vop

0 ,Set′], into which V0 is embedded by
Yoneda. Since the monoidal structure of V ′ is defined by coends (relative to Set′), we
defer a description of it until 3.11 and 3.12 below, after these have been introduced.



Chapter 3

Indexed limits and colimits

3.1 Indexing types; limits and colimits; Yoneda isomorphisms

For a discussion of completeness, or of Kan extensions, or of density, in the context of
V-categories, ordinary limits – defined in terms of the representability of cones – do not
suffice; we need the wider notion of indexed limit . These latter fully deserve the name of
“limit”, since they enjoy all the formal properties expected of a limit-notion, and include
the classical cone-type limits as a special case. When V = Set, in contrast to the situation
for a general V , an indexed limit may be expressed as an ordinary limit; yet even here, the
indexed limit is a valuable concept in its own right – its meaning is scarcely clarified by
its construction as an ordinary limit. Since the cone-type limits have no special position
of dominance in the general case, we go so far as to call indexed limits simply “limits”,
where confusion seems unlikely.

We may think of a V-functor F : K // V as an indexing type – a small one when
K is small, which will be the usual case, but not the only one. Then we may think of
a V-functor G : K // B as a diagram in B of type F . For each B ∈ B, we get from G
a V-functor B(B,G−) : K // V ; and we can consider the existence in V of the object
[K,V ]

(
F,B(B,G−)

)
. If this exists for all B – as it surely does when K is small – it is as

in (2.18) the value of a V-functor Bop // V . If this V-functor not only exists but admits
a representation

B(B, {F,G}) ∼= [K,V ]
(
F,B(B,G−)

)
, (3.1)

with counit say
µ : F // B({F,G}, G−), (3.2)

we call the representation ({F,G}, µ) the limit of G indexed by F . An evidently equivalent
formulation not mentioning [K,V ] explicitly is the following: each component µK of µ
induces by Yoneda a family

B(B, {F,G}) // [FK,B(B,GK)] (3.3)

V-natural in B and K; and ({F,G}, µ) is the limit precisely when (3.3) is an end over K
for each B. In practice, by the usual abuse of notation, we call the representing object
{F,G} the limit, consigning to the background the counit µ – or equivalently the choice
of the V-natural isomorphism (3.1).

37
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If we take the view of 2.6, that [K,V ] always exists, if not as a V-category, then
as a V ′-category for some larger V ′, we need not be concerned with the existence
of [K,V ]

(
F,B(B,G−)

)
, but only with its representability in the form (3.1) for some

{F,G} ∈ B. If it is so representable, the right side of (3.1) in fact lies in V , since the left
side does. We shall in future take this view whenever it is convenient – usually without
bothering to change “V-functor” to “V ′-functor”, and so on.

Applying V to the isomorphism (3.1) gives a bijection of sets

B0(B, {F,G}) ∼= [K,V0]
(
F,B(B,G−)

)
; (3.4)

but the requirement that ({F,G}, µ) induce a bijection (3.4) is, except in the special case
when V is conservative, strictly weaker than the requirement that it induce an isomor-
phism (3.1), and does not suffice to make ({F,G}, µ) the limit ; see 3.7 below. However
it does suffice to detect ({F,G}, µ) as the limit if the limit is known to exist ; for the
right side of (3.4) admits at most one representation to within isomorphism. An element
α : F // B(B,G−) of the right side of (3.4) may be called an (F,B)-cylinder over G;
then the bijection (3.4) is the assertion that every such cylinder factorizes through the
counit-cylinder µ as α = B(f, 1)µ for a unique f : B // {F,G}.

An indexed colimit in B is nothing but an indexed limit in Bop; but it is usual to replace
K by Kop in the definition, so that we still have G : K //B, but now have F : Kop // V .
Then the colimit of G indexed by F is the representing object F ? G in

B(F ? G,B) ∼= [Kop,V ]
(
F,B(G−, B)

)
, (3.5)

with unit
ν : F // B(G−, F ? G). (3.6)

When B = V , we have from (2.13) and (3.1)

{F,G} ∼= [K,V ](F,G) for F , G : K // V , (3.7)

either side existing if the other does. Hence (3.1) and (3.5) can be written

B(B, {F,G}) ∼= {F,B(B,G−)}, B(F ? G,B) ∼= {F,B(G−, B)}. (3.8)

Thus, just as classical limits and colimits in an ordinary category B are defined, via
representability, in terms of the primitive limits – sets of cones – in Set, so indexed limits
and colimits in a V-category B are defined, via representability, in terms of indexed limits
in V ; and thus ultimately, by 2.1 and 2.2, in terms of ordinary limits in V0.

Again, in the special case B = V , the V-natural isomorphism [FK, [GL,B]] ∼=
[GL, [FK,B]] gives by (3.5)

F ? G ∼= G ? F for F : Kop // V and G : K // V . (3.9)

The V-natural Yoneda isomorphism (2.33) immediately gives the values of {F,G} and
F ? G when F is representable, for any G : K // B; namely

{K(K,−), G} ∼= GK, K(−, K) ? G ∼= GK. (3.10)
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More precisely, the cylinder GK− : K(K,−) // B(GK,G−) as counit exhibits GK as
{K(K,−), G}. We refer to (3.10) as Yoneda isomorphisms ; by (3.7), the first of them
includes as a special case the original Yoneda isomorphism (2.31).

When K is small, the maps (F,G) 7→ {F,G} and (F,G) 7→ F ? G are by 1.10 the
object-functions of V-functors

{ , } : ([K,V ]op ⊗ [K,B])′ // B, ? : ([Kop,V ]⊗ [K,B])′ // B, (3.11)

where the domain consists of those pairs (F,G) for which {F,G} or F ? G exists; and in
such a way that (3.1) and (3.5) are V-natural in (F,G). Then (2.37) gives:

The Yoneda isomorphisms (3.10) are V-natural in K and G. (3.12)

3.2 Preservation of limits and colimits

We call the limit {F,G} a small limit if the indexing-type F : K // V is small; that is,
if K is small. We call the V-category B complete if it admits all small limits; and dually,
cocomplete if it admits all small colimits. By (3.7) and 2.2, V is complete; we shall see in
3.10 below that V is also cocomplete.

A V-functor T : B // C is said to preserve the limit {F,G} if the composite cylinder

F µ
//B({F,G}, G−)

T
//C(T{F,G}, TG−), (3.13)

where µ is the counit of {F,G}, exhibits T{F,G} as {F, TG}; in other words, if {F, TG}
exists and if the evident canonical map

T{F,G} // {F, TG} (3.14)

is an isomorphism.
We call T : B //C continuous (the dual is cocontinuous) if it preserves all small limits

that exist; of course this condition is of interest particularly when B is complete.
The representables B(B,−) : B //V are more than continuous: by (3.8) they preserve

every limit that exists; while in their totality, by definition, they “detect” the existence
of {F,G}.

For a very general result on the preservation of limits, consider a functor Q : Cop ⊗
B // V , and let B′ ⊂ B be the full subcategory of those B for which Q(−, B) is repre-
sentable, say as Q(C,B) ∼= C(C, TB); we shall refer to the objects of B′ as “those B for
which TB exists”. Let {F,G} be a limit in B which is preserved by Q(C,−) : B // V for
each C. Finally, let TG exist; that is, suppose that G takes its values in B′. Then we
clearly have

T{F,G} ∼= {F, TG}, (3.15)

either side existing if the other does; for, using (3.7), the two sides of (3.15) represent the
isomorphic V-functors Q(C, {F,G}) and [K,V ]

(
F, C(C, TG)

) ∼= [K,V ]
(
F,Q(C,G−)

) ∼=
{F,Q(C,G−)}.
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If Q here is defined by Q(C,B) = B(SC,B) where S : C //B, then T : B′ // C is the
partial right adjoint of S. Since B(SC,−) preserves all limits, we have (3.15) whenever
{F,G}, T{F,G}, and TG exist. This conclusion may be expressed as: partial right
adjoints in so far as they are defined, preserve limits.

In the special case where S in fact has a right adjoint T : B // C, the conclusion
becomes: right adjoints preserve all limits that exist.

3.3 Limits in functor categories; double limits and iterated limits

We now consider limits in a functor category [A,B]. Let G : K // [A,B] correspond under
the adjunction (2.20) to P : K ⊗ A // B. In order to avoid formulae containing various
letters whose inter-relation must be explained in a subordinate clause, let us write (2.22)
with cyphers for variables, in the form P (−, ?) = (G−)?; so that, in particular, (G−)A
denotes P (−, A) : K // B. Let F : K // V .

Then, if {F, (G−)A} exists for each A, the limit {F,G} in [A,B] exists, and we have

{F,G}A = {F, (G−)A}. (3.16)

For, if we define {F,G} to be the V-functor whose value at A is given by (3.16), we have

[A,B](H, {F,G}) =
∫
A
B(HA, {F, (G−)A}) by (3.16)

∼=
∫
A

[K,V ]
(
F,B(HA, (G−)A)

)
by (3.1)

∼= [K,V ]
(
F,
∫
A
B(HA, (G−)A)

)
by (2.3)

= [K,V ]
(
F, [A,B](H,G−)

)
by (2.10).

In these circumstances we say that the limit {F,G} in [A,B] exists pointwise; it comes
to the same thing to say that {F,G} exists and is preserved by each EA : [A,B] // B.
Clearly if B is complete [respectively cocomplete] so is [A,B], all small limits [respectively
colimits] existing pointwise in [A,B].

When B is not complete, fortuitous non-pointwise limits may exist in [A,B], even
when V = Set. Take A = 2 and let B be the category generated by the graph

f //
g
//

h //

with the relation hf = hg. Then the map (f, h) : g // h given by

f //

g

��
h
��

h
//

in [2,B] is monomorphic, although h is not monomorphic in B. Since x is monomorphic
in any category precisely when

1 //

1
��

x

��
x
//
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is a pullback, the pullback of (f, h) by itself in [2,B] is a non-pointwise limit. The existence
of a non-pointwise limit in [A,B] says something about [A,B] as a category, ignoring its
relation to A and B; while the existence of a pointwise limit says something about [A,B]
seen precisely as the functor category, and is really a completeness assertion about B.

Applying the above, in the colimit case, to [K,V ] where K is small, we get from (3.9)
and (3.10) a pointwise colimit

F ? Y ∼= F , (3.17)

for any F : K // V , Y being the Yoneda embedding Kop // [K,V ] of (2.34). This gives
a canonical representation of any F : K // V as an (indexed) colimit of representables.
In contrast, Y preserves whatever limits exist in Kop, sending them to pointwise limits in
[K,V ]; for EKY ∼= K(−, K) : Kop // V .

We can now give the general Fubini Theorem relating repeated limits to double limits.
Suppose that F : K //V and G : K //[A,B], the latter corresponding to P : K⊗A //B, are
such that the limit {F,G} exists pointwise; and let H : A //V. Writing H⊗F : K⊗A //V
for the functor sending (K,A) to HA⊗ FK, we have a canonical isomorphism

{H, {F,G}} ∼= {H ⊗ F, P}, (3.18)

either side existing if the other does.1

For by (3.1) the left side of (3.18) represents

[A,V ]
(
H?,B(B, {F,G}?)

)
= [A,V ]

(
H?,B(B, {F−, (G−)?})

)
by (3.16)

∼= [A,V ]
(
H?, [K,V ](F−,B(B, (G−)?))

)
by (3.1)

=
∫
A

[HA,
∫
K

[FK,B(B, (GK)A)]] by (2.10)
∼=
∫
A

∫
K

[HA, [FK,B(B, (GK)A)]] by (2.3)
∼=
∫
A

∫
K

[HA⊗ FK,B(B,P (K,A))] by (1.27);

and by the Fubini Theorem (2.8) we can replace
∫
A

∫
K

here by
∫

(A,K)
, giving by (2.10)

and (3.1) the object represented by the right side of (3.18).
The use of the cyphers “?” and “−” here to keep track of unexpressed variables is

presumably self-explanatory. If we extend it by allowing {F−, G−} as an alternative
notation for {F,G}, we can write (3.18), suppressing the letter G, as

{H?, {F−, P (−, ?)}} ∼= {H?⊗ F−, P (−, ?)}. (3.19)

Then there is no need for explicit mention of the functor category [A,B], which may exist
only as a V ′-category in the sense of 2.6; nor for explicit mention of the pointwise existence
of {F,G}, which is just the existence of {F−, P (−, A)} for each value of A.

In this notation the general Fubini Theorem gives at once the general interchange of
limits theorem: Let F : K // V, H : A // V, and P : K ⊗ A // B; and suppose that
{F−, P (−, A)} exists for each A and that {H?, P (K, ?)} exists for each K. Then

{F−, {H?, P (−, ?)}} ∼= {H?, {F−, P (−, ?)}}, (3.20)

1The statement of this theorem differs from the original text which has F ⊗ H instead of H ⊗ F .
However, the proof proves the statement in the form given here and the form given in the text would
appear to contradict, say, (1.27).
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either side existing if the other does.
For the colimit form of (3.19) and (3.20), let F : Kop //V , H : Aop //V , and P : K⊗

A // B; then, under similar hypotheses,

F− ? (H? ? P (−, ?)) ∼= (F ⊗H) ? P ∼= H? ? (F− ? P (−, ?)). (3.21)

In fact (3.20) also follows alternatively from the general principle of (3.15); for the
right side of (3.1) clearly preserves pointwise limits in the variable G ∈ [K,B].

In the variable F ∈ [K,V ], the right side of (3.1) sends arbitrary colimits, by (3.8), to
limits; of course all small colimits in [K,V ] are pointwise, since we have remarked that
V will be shown to be cocomplete. Hence we get from the principle (3.15) the general
theorem of the continuity of a limit in its index: Let F : Kop // V, G : K // [A,V ], and
T : A // B; and suppose that F ? G exists and that each {GK, T} exists. Then

{F ? G, T} ∼= {F, {G−, T}}, (3.22)

either side existing if the other does. The corresponding form for colimits, with F and T
as above but now with G : K // [Aop,V ], is

(F ? G) ? T ∼= F ? (G ? T ). (3.23)

In future, when we equate limits in a general theorem, the phrase “either side existing
if the other does” is to be understood.

3.4 The connexion with classical conical limits when V = Set

We now consider, in the special case V = Set, the relation of indexed limits to the ordinary
classical limits.

Writing ∆B : K // B for the constant functor at B ∈ B, we have a natural bijection

[K,B](∆B,G) ∼= [K,Set](∆1,B(B,G−)) (3.24)

between the set of (projective) cones over G with vertex B and the set of cones over
B(B,G−) with vertex the one-point set 1. The ordinary, or classical, or conical limit
[resp. colimit] of G : K // B is the representing object limG [resp. colimG] in

B(B, limG) ∼= [K,B](∆B,G), B(colimG,B) ∼= [K,B](G,∆B), (3.25)

existing when the right side here is representable. Using (3.24) we conclude from (3.1)
and (3.5) that

limG = {∆1, G}, colimG = ∆1 ? G. (3.26)

Thus the classical limit of G : K // B, often called a limit indexed by K, is in fact the
limit of G indexed by ∆1: K // Set. Of course, the counit (3.2) now corresponds to the
limit-cone

µK : limG //GK. (3.27)
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When B = Set, taking B = 1 in the first equation of (3.25) gives

limG ∼= [K,Set](∆1, G) for G : K // Set, (3.28)

so that here the limit is the set of cones with vertex 1. Then, as we said in 3.1, all conical
limits and colimits are defined representably in terms of these primitive ones in Set; for
(3.24) and (3.28) allow us to rewrite (3.25) in the form (analogous to (3.8))

B(B, limG) ∼= limB(B,G−), B(colimG,B) ∼= limB(G−, B). (3.29)

Now consider an arbitrary F : K // Set. We have as in 1.10 the category elF of
elements of F , whose objects are pairs (K, x) with K ∈ K and x ∈ FK, and whose maps
(K, x) // (K ′, x′) are the f : K //K ′ in K for which (Ff)x = x′. Write d : elF // K
for the functor sending (K, x) to K, and let G : K // Set be arbitrary. Then we have

lim(elF
d
//K

G
// Set) ∼= [K,Set](F,G). (3.30)

For an element of the left side is by (3.28) a cone α(K,x) : 1 // GK; to give such a cone
is to give for each x ∈ FK an element βKx = α(K,x) of GK; and the naturality of α as a
cone translates exactly into the naturality of βK : FK //GK.

Since a map of a representable K(K,−) into F corresponds by Yoneda to an element
x ∈ FK, we have a canonical inductive cone

µ(K,x) : K(K,−) // F (3.31)

in [K,Set] whose base is indexed by (elF )op. The classical result on the expressibility of
any F : K // Set as a canonical (conical) colimit of representables is the assertion that
this is a colimit-cone; more precisely,

F ∼= colim((elF )op

dop
//Kop

Y
// [K,Set]), (3.32)

with unit (3.31), where Y is the Yoneda embedding. This follows from (3.30) and the char-
acterization (3.29) of the colimit, since the left side of (3.30) is also lim [K,Set](Y dop−, G)
by Yoneda.

Because indexed limits are continuous in their index in the sense of (3.22), the colimit-
expression F ∼= colimK(K,−) of (3.32) gives, for any G : K // B, a limit-expression
{F,G} ∼= lim{K(K,−), G}; so by the Yoneda isomorphism (3.10) we have

{F,G} ∼= lim(elF
d
//K

G
// B), (3.33)

of which (3.30) is a special case by (3.7).
We conclude that, when V = Set, the classical conical limits are special cases of

indexed limits by (3.26), while the general indexed limit can be expressed as a conical
limit by (3.33). Since elF is small when K is small, a Set-category B is complete in our
sense of 3.2 above exactly when it admits all small conical limits – that is, when it is
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complete in the classical sense. It follows in the same way that the functor T : B // C is
continuous in our sense of 3.2 above exactly when it preserves all small conical limits.

For F : Kop // Set and G : K // B, the corresponding colimit-form of (3.33) is

F ? G ∼= colim((elF )op

dop
//K

G
// B). (3.34)

We had in (3.17), for any V , the general expression of any F : K //V as a colimit F ?Y of
representables; observe that when we use (3.34) to evaluate F ?Y in the case V = Set, we
re-find (3.32). Note too that, when B = Set, there is a second expression (3.34) for F ?G,
since this is then isomorphic to G?F by (3.9). Finally, since the colimit of ∆1: K //Set
is clearly the set π(K) of connected components of K, taking G = ∆1 in (3.34) and using
(3.26) and (3.9) gives

colimF = π(elF ) for F : K // Set. (3.35)

We conclude this section with some remarks about conservativeness and faithfulness
for ordinary functors T : A // B. First, if A has equalizers and T preserves equalizers,
T is faithful if it is conservative; for if Tf = Tg, the equalizer of f and g is sent by T to
an isomorphism. Next, if η, ε : S a T : A // B is an adjunction, T is faithful if and only
if each εA : STA // A is an epimorphism; this is immediate from (1.53), for TAA′ is a
monomorphism exactly when each A(εA, A

′) is. Finally, if T is a right adjoint as above,
and if A admits equalizers, then T is conservative if and only if each εA is an extremal
epimorphism (one that factorizes through no proper subobject of its codomain).

To prove this, first note that any f : A //B in A which factorizes through no proper
subobject of B is an epimorphism, because equalizers exist. Suppose then that T is
conservative. If εA : STA // A factorizes through a monomorphism i : B // A, then
(by the adjunction) 1 : TA // TA factorizes through the monomorphism Ti; hence Ti is
isomorphism, whence i is. Conversely, let each εA be an extremal epimorphism; then, by
the remark above, T is faithful, so that f : A // B is surely a monomorphism if Tf is
an isomorphism. But in this case, by the naturality of ε, we have εB = f.εA.(STf)−1; so
that f is an isomorphism.

3.5 Full subcategories and limits; the closure of a full subcategory under
a class of colimits

Returning to the case of a general V , we now consider some properties of (indexed) limits
in relation to fully faithful functors.

A fully faithful J : A // B reflects limits ; in the sense that, for F : K // V and
G : K //A, a cylinder F //A(A,G−) expresses A as the limit {F,G} in A whenever the
composite cylinder F // A(A,G−) // B(JA, JG−) expresses JA as the limit {F, JG}
in B. This is immediate; and in the case where A is a full subcategory of B, it is the
assertion that {F, JG}, if it lies in A, is also {F,G}.

If the full subcategory A here is reflective, and {F, JG} exists, then the latter is
isomorphic to an object of A, which is therefore {F,G}. To see this, let the adjunction
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be η, 1: S a J : A //B and let the counit of the limit be µ : F //B({F, JG}, JG−). By
(1.48) the isomorphism B(JS{F, JG}, JG−) ∼= A(S{F, JG}, G−) ∼= B({F, JG}, JG−)
is B(η, 1). By (3.4), the cylinder B(η, 1)−1µ factorizes as B(f, 1)µ for a unique
f : JS{F, JG} // {F, JG}; and by the uniqueness part of the same result, we have
fη = 1. Hence {F, JG} is a retract of the object JS{F, JG} of A, and so by 1.11 lies in
the repletion of A. Thus a reflective full subcategory A of B is closed under limits, and
in particular is complete if B is so.

As for colimits in this reflective situation, if the colimit F ? JG exists, S preserves it
by 3.2, giving S(F ?JG) ∼= F ?SJG = F ?G. In particular, the reflective full subcategory
A of B is cocomplete if B is.

Consider now a family Φ = (Fγ : Kop
γ

// V , Gγ : Kγ // B)γ∈Γ of diagrams in a V-
category B, such that each Fγ ? Gγ exists. If A is a full subcategory of B, consider the
replete full subcategories C containing A with the property that, if any Gγ takes its values
in C, then Fγ ? Gγ lies in C. The smallest such C is a replete full subcategory A called
the closure of A in B under the family Φ of colimits. For instance, we might have a set
F = {F : Kop // V} of indexing types, and take Φ to consist of all colimits that exist in
B with indexing-type in F ; then A is the closure of A in B under colimits of type F .

We can construct A by transfinite induction: let A0 be the repletion of A, let Aα+1

be Aα together with all the isomorphs of those Fγ ?Gγ for which Gγ lands in Aα, and let
Aα be

⋃
β<αAβ when α is a limit ordinal; then the sequence is certainly stationary when

the cardinal of α exceeds that of Γ, and gives A. In fact, if each obKγ has cardinal less
than the regular cardinal ρ, we have A = Aρ, since any Kγ //Aρ lands in some Aα for
α < ρ; in particular, if each Kγ is small we have A = A∞, where ∞ is the cardinal of the
chosen universe. It is an important observation that, when A is small, and each Kγ is
small, and the number of different indexing-types Fγ in Φ is small, then A is small. For
then the ρ above is small, and the Aα for α < ρ are small by induction: since there is but
a small set of functors Kγ //Aα.

If B itself is the Φ-closure A of A, it is immediate by induction that a functor A // C
has, to within isomorphism, at most one extension B // C that preserves the colimits in
Φ. However there may well be no such extension; as is clear when A is all of B and the
original A // C does not preserve the colimits in Φ.

Proposition 3.36 Let B be the Φ-closure of A, and let Q : Bop⊗C //V be such that each
Q(−, C) : Bop // V sends colimits belonging to Φ to limits in V. Suppose that C admits
all colimits indexed by the Fγ occurring in Φ. Then if Q(B,−) : C // V is representable
for all B ∈ A, it is representable for all B ∈ B.

Proof. LetD be the full subcategory of all those B for which a representationQ(B,C) ∼=
C(KB,C) exists. Then D contains A, and it remains to show that D contains Fγ ? Gγ

whenever Gγ lands in D. But then the hypothesis on Q(−, C) gives Q(Fγ ? Gγ, C) ∼=
{Fγ, Q(Gγ−, C)}, and this is {Fγ, C(KGγ−, C)} ∼= C(Fγ ? KGγ, C).

Since the hypothesis on Q(−, C) in the above proposition is automatically satisfied if
Q(B,C) = B(B, TC), we have:

Proposition 3.37 Let T : C // B where C is cocomplete and where B is the closure of
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a full subcategory A with respect to a family of small colimits. Then T has a left adjoint
if B(A, T−) is representable for each A ∈ A.

3.6 Strongly generating functors

In the next section we need, for ordinary categories, the notion of strong generator. Since
the notion is useful for V-categories too, we discuss it at the enriched level.

A V-functor T is said to be conservative if the underlying ordinary functor T0 is conser-
vative. Clearly ST is conservative if S and T are, while if ST is conservative so is T . Any
fully-faithful T is conservative, while by (2.27) a functor [M, 1] : [C,B] //[A,B] is conserva-
tive ifM : A //C is essentially surjective on objects. Clearly a conservative functor reflects
such limits as it preserves ; in the sense that if {F,G} exists and is preserved by T , a cylin-
der F //B(B,G−) is a limit-cylinder if the composite F //B(B,G−) // C(TB, TG−)
is.

If A is small and Z : A // B, we define functors

Ẑ : Bop // [A,V ], Z̃ : B // [Aop,V ] (3.38)

by
ẐB = B(B,Z−), Z̃B = B(Z−, B). (3.39)

We say that Z is strongly generating if Z̃ is conservative; and dually that Z is strongly
cogenerating if Ẑ is conservative. In other words, Z is strongly generating if a map
f : C //D in B0 is an isomorphism whenever B(ZA, f) is an isomorphism in V0 for each
A ∈ A. This clearly depends only on the full image of A in B; and is also expressed
by saying that the small set {ZA}A∈A of objects of B is a strong generator for B. Note
that the V-functor Z : A // B is certainly strongly generating when the ordinary func-
tor Z0 : A0

// B0 is so; for if B(ZA, f) is an isomorphism so is B0(ZA, f), this being
V B(ZA, f) by (1.33). However the converse is false; the single object {1} is a strong
generator in the Cat-category Cat but not in the Set-category Cat0

In the case that V = Set we further say that Z is generating, or that {ZA}A∈A is

a generator for B, if Z̃ is faithful; so that f = g whenever B(ZA, f) = B(ZA, g) for all
A ∈ A. By the remarks at the end of 3.4, a strong generator in the case V = Set is a
fortiori a generator, provided that B admits equalizers. In fact the above definition of
a strong generator is far from ideal unless B0 admits finite limits; but we have chosen it
for simplicity since this is usually the case in applications. For a general V it would take
us into side-issues to discuss the various kinds of monomorphisms and epimorphisms in
the context of V-categories; so we refrain from defining faithfulness for a V-functor, and
hence from defining a generator for a V-category.

We state the following proposition in the enriched case, although some remarks in 3.8
below are needed to justify its proof in that case; in the meantime we use it only for
V = Set.

Proposition 3.40 The inclusion Z : A // B of a small full subcategory is strongly
generating if B is the closure of A for some set Φ of colimits. Conversely, if Z is strongly
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generating, B is the closure of A for small colimits; provided that B is cocomplete, that B0

is finitely complete, and that each object of B0 has only a small set of extremal-epimorphic
quotients.

Proof. For the direct part, let f : C //D in B be such that B(A, f) is an isomorphism
for all A ∈ A. Then the full subcategory of B given by those B for which B(B, f) is an
isomorphism contains A, and it clearly contains Fγ ? Gγ whenever Gγ lands in it; so it is
all of B, and consequently f is an isomorphism.

For the converse, let C be the closure of A in B under small colimits. Since B is
cocomplete, F ? Z exists for all F : Aop // V ; hence Z̃ : B // [Aop,V ] has by (3.5) the

left adjoint − ? Z : [Aop,V ] // B. Write RB for Z̃B ? Z: clearly RB ∈ C. Since (Z̃)0 is
conservative, the counit εB : RB // B of the adjunction is an extremal epimorphism in
B0, by the remarks at the end of 3.4.

Given any f : C //D with C ∈ C, let u, v : E // C be its kernel-pair. By 3.8 below,
B0 is cocomplete since B is; hence u, v have a coequalizer p1 : C //C1 in B0, and f = f1p1

for some f1 : C1
//D. Since εE is epimorphic, p1 is also the coequalizer of the diagram

uεE, vεE : RE // C in B0; by 3.8 below again, a conical colimit in B0 is a colimit in B
when B is cocomplete; hence C1 ∈ C.

We now apply the same process to factorize f1 as C1
//C2

//D with C2 ∈ C, so that
f is C //C2

//D; and continue by transfinite induction, defining Cα at a limit-ordinal
α as the cointersection of the C // Cβ for β < α. At each stage Cα ∈ C, and f is
C //Cα //D. By the results of [41], each C //Cα is an extremal epimorphism in B0; so
the process terminates at a small α, since C has but a small set of extremal epimorphic
quotients. Yet the process can terminate only when Cα //D is a monomorphism; so that
if F : C //D is an extremal epimorphism, it terminates only with Cα = D. We conclude
that D ∈ C in this case.

Taking now for f the extremal epimorphism εB : RB //B for any B ∈ B, we conclude
that B ∈ C, as desired.

Let us now apply this, in the case of ordinary categories, to the functor V =
V0(I,−) : V0

// Set. This functor is just the Z̃ corresponding to the functor Z : 1 // V0

sending the unique object of 1 to I; so {I} is a generator of V0 when V is faithful, and a
strong generator when V is conservative. Hence:

Proposition 3.41 If V0 is the closure of {I} under small colimits, V : V0
// Set is

conservative; and the converse is true if each object of V0 has but a small set of extremal
epimorphic quotients.

This last weak cowellpoweredness condition on V0 is certainly satisfied in the examples
we have given with V conservative, namely Set, Ab, R-Mod, and Ban; in fact it seems
very hard to think of any complete and cocomplete locally-small category in nature that
is not weakly cowellpowered, although artificial examples exist: see Example 5.3 of [36].
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3.7 Tensor and cotensor products

In this section and the next three, we consider for a general V certain important special
cases of the indexed limit {F,G}, and the extent to which the general case may be reduced
to these.

The first special case is that where the domain-category K of F and G is the unit
V-category I, so that F : I //V is in effect an object X of V and G : I //B is an object
C of B. Then the object {F,G} of B is written X t C, or sometimes [X,C], and is called
the cotensor product in B of X and C. By (3.1), its defining equation is a V-natural
isomorphism

B(B,X t C) ∼= [X,B(B,C)] (3.42)

with counit
X // B(X t C,C). (3.43)

If X t C exists for all X ∈ V and all C ∈ B, the V-category B is said to admit cotensor
products, or to be cotensored . Because I is small, any complete B is cotensored. Since by
(1.27) we have the V-natural isomorphism [Y, [X,Z]] ∼= [X, [Y, Z]] in V , we conclude that
V is cotensored, the cotensor product X t Z being just the internal-hom [X,Z]. When
V = Set, the cotensor product X t C in B is clearly just the power CX – the product of
X copies of the object C of B.

The dual notion is the tensor product X ⊗ C ∈ B of X ∈ V and C ∈ B, defined by

B(X ⊗ C,B) ∼= [X,B(C,B)]. (3.44)

Using (1.27) again, we have that V is tensored, X ⊗ Y being the ordinary tensor product
in V. When V = Set, the tensor product X⊗C is just the copower X ·C – the coproduct
in B of X copies of the object C.

The natural bijection

B0(B,X t C) ∼= V0

(
X,B(B,C)

)
(3.45)

obtained by applying V to (3.42) corresponds to (3.4), and is in general insufficient to
ensure that X t C is the cotensor product of X and C, unless this latter is known to
exist. For instance, take V = Cat and X = 2, and let B be the 2-category generated by
the 2-graph

0

f
''

f

77α�� 1

g
''

gg
h

2

with the relations gα = 1 and gh = 1. If we were to define 2 t 2 to be 1, with as counit
(3.43) the functor from 2 corresponding to the map 1g : g // g, we should satisfy (3.45)
but not (3.42).

When V is conservative, however, a map (3.43) that induces a bijection (3.45) also
induces an isomorphism (3.42), as we saw in 1.11. In fact we have:

Proposition 3.46 Let V be conservative, and let each object of V0 have but a small set of
extremal-epimorphic quotients. Then a V-category B is cotensored if the ordinary category
B0 is complete.
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Proof. For a fixed C ∈ B we apply Proposition 3.37 to the ordinary functor
B(−, C)0 : Bop

0
// V0; observing that V0 is the closure of {I} under small colimits by

Proposition 3.41, while V0(I,B(−, C)) is representable as B0(−, C). This gives a natural
bijection (3.45), the counit (3.43) of which then induces as above a natural isomorphism
(3.42) because V is conservative.

When B is cotensored, a third term can be added to the equation (3.22) expressing
the continuity of a limit in its index; using a proof like that of (3.18), we easily get

{F ? G, T} ∼= {(G−)?, F− t T?} ∼= {F, {G−, T}}, (3.47)

where F− t T? is the functor sending (K,A) to FK t TA; here the first isomorphism in
(3.47) holds under the hypothesis that F ?G exists, and the second under the hypothesis
that each {GK, T} exists. The corresponding extension of (3.23), now supposing B to be
tensored, is

(F ? G) ? T ∼= (G−)? ? (F ⊗ T ) ∼= F ? (G− ? T ). (3.48)

3.8 Conical limits in a V-category

For the next special case of a limit {F,G}, we begin with a V-category B, a locally-small
ordinary category L, and a functor T : L // B0. We take for K the free V-category LV
on L as in 2.5, for G : K //B the V-functor corresponding in 2.5 to T : L //B0, and for
F : K //V the V-functor corresponding to the ordinary functor ∆I : L //V0 constant at
I ∈ V0. Observe that, since the adjunction of 2.5 is of course 2-natural, B(B,G−) : K //V
is the V-functor corresponding to the ordinary functor

L
T
// B0 B(B,−)0

// V0, (3.49)

which we may loosely call B(B, T−).
A family αK : X // [FK,B(B,GK)] is V-natural by 1.8(m) if and only if the

corresponding αK : FK // [X,B(B,GK)] is so; by 2.5 this is equivalent to the
mere naturality of αK : (∆I)K // [X,B(B, TK)], and hence to the requirement that
αK : X // [I,B(B, TK)] ∼= B(B, TK) be a cone over the ordinary functor B(B, T−) of
(3.49). It follows from (2.10) that

[K,V ](F,B(B,G−)) ∼= limB(B, T−), (3.50)

this being the ordinary conical limit in V0 of the ordinary functor (3.49) – the identification
of which with the left side of (3.50) exhibits it as being V-functorial in B.

In this situation we call {F,G}, if it exists, the (conical) limit in B of T : L // B0,
denoting it formally by limB T , but usually in practice simply by limT . By (3.1) and
(3.50), its defining equation is the V-natural isomorphism

B(B, limT ) ∼= limB(B, T−) (3.51)

in V0, the counit µ of (3.2) here reducing to the limit cone

µK : limT // TK. (3.52)
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Since the representable V = V0(I,−) : V0
//Set preserves limits, applying V to (3.51)

gives the natural bijection

B0(B, limT ) ∼= limB0(B, T−), (3.53)

showing by (3.29) that limB T , if it exists, with the cone (3.52), is also the ordinary
conical limit limB0 T of the ordinary functor T : L // B0. It is for this reason that we
write simply limT ; but we distinguish verbally the existence (3.51) of limT in B from
the (mere) existence (3.53) of limT in B0. The latter is in general strictly weaker, as we
remarked in (3.4); for instance, if V = Cat and B is the 2-category freely generated by
the 2-graph

0

f
''

f

77α�� 1, (3.54)

then the cone 1 oo 1 // 1 exhibits 1 as the product 1× 1 in B0, but not in B. Note that
an equivalent way of expressing the existence in B of limT is to say that limT exists in
B0 and is preserved by all the functors B(B,−)0 : B0

// V0.
The difference between the existence in B and that in B0 of such conical limits vanishes,

of course, if V is conservative. It also vanishes for any V if B is tensored. To see this we
have only to replace B in (3.53) by X ⊗ B for any X ∈ V , to apply the dual of (3.45),
and to recall that V0(X,−) preserves limits; we conclude that each V0(X,−) carries the
map B(B, limT ) // limB(B, T−) induced by µ into an isomorphism; whence this map
is itself an isomorphism.

In particular the difference vanishes if B = V , so that V admits all small conical limits.
Note that the right side of (3.51), which until now was the limit in V0, is in fact also the
limit in V . The difference also vanishes if B = Vop, since Vop is tensored because V is
cotensored; hence V admits all small conical colimits. Here the notion of conical colimit
is the evident dual to that of conical limit, defined for T : L // B0 by

B(colimT,B) ∼= limB(T−, B). (3.55)

Since LV is small when L is, any complete B admits all small conical limits. In
consequence, by 3.4, B0 is complete whenever B is. However the existence in B of all
small conical limits does not suffice, in general, for completeness of B. Take V = Cat,
and let B be the full sub-2-category of Cat determined by all categories with at most one
object. Since V admits all small conical limits so does B, for the conical limit in V of a
diagram in B clearly lies in B. Yet B is not complete, for 2 t B does not exist in B if B
has more than one map.

3.9 The inadequacy of conical limits

This inadequacy of conical limits deserves some further comment. It shows that, for a
general V , there can be no analogue of (3.32) allowing us to express, as in (3.33), a general
limit as a conical one. In fact, as in 3.4, any F : K //V is the vertex of a canonical induc-
tive cone in [K,V ]0, whose generators are all the maps K(K,−) //F from representables
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into F . Since such maps correspond by Yoneda to elements x ∈ V0(I, FK) = V FK, the
base of this cone is a functor with domain el(V F0)op, the dual of the category of elements
of the ordinary functor

K0 F0

//V0 V
//Set.

When K is small so is el(V F0), so that this functor el(V F0)op // [K,V ]0 has a conical
colimit in [K,V ]; for [K,V ] admits small conical colimits pointwise since V admits them.
We therefore have a comparison map

{colim(el(V F0)op

dop
//Kop

0 Y0
// [K,V ]0)} // F (3.56)

in [K,V ]0. However, in contrast to the case V = Set, the map (3.56) is not in general an
isomorphism – even when V is conservative.

To see this it suffices to take for K the unit V-category I, so that F is just an object
X of V . The canonical cone is now the cone in V0 given by all the maps I //X. To ask
that this be a colimit-cone for each X is to ask that {I} be dense in V0, in the sense of 5.1
below; this is stronger than asking V to be conservative, which by 3.6 is to ask that {I}
be a strong generator for V0; it is false even for V = Ab. It is of course true for V = Set,
and for certain other V : for instance, sets on which a commutative monoid acts, with a
tensor product analogous to that for modules over a commutative ring.

What is true when V is conservative, by Proposition 3.41, is that any X ∈ V0, although
not the canonical colimit of the maps from I, is in all reasonable cases in the closure of
{I} under small colimits; it is, so to speak, an iterated colimit of I. In this case an
arbitrary F : K // V is an iterated colimit of representables; and so the existence of all
small conical limits in B does imply the existence of all indexed limits {F,G}, as we shall
show formally in 3.10 below – even though {F,G} cannot be expressed as a single conical
limit.

In the study of enriched universal algebra, it is an important observation that, for
many V including Cat and Gpd, (3.56) is an isomorphism whenever F is left exact ;
see [45].

Before ending this section, we look at the possible existence in certain cases of more
general conical limits. The notion of a cone involves the notion of a constant functor; yet
in general there is no such thing as “the V-functor K // B constant at B ∈ B”. The
object B ∈ B may be seen as a V-functor I // B, but there is no canonical V-functor
K // I; in fact there may well be none at all. There is certainly a unique V -functor
K // 1, where 1 is the terminal V-category with one object 0 and with, for hom-object
1(0, 0), the terminal object 1 of V0; but there is no V-functor 1 // I unless I is a retract
of 1 in V0 – which is false for V = R-Mod, DG-R-Mod, CGTop∗, and so on. This is
why we have defined conical limits as above, taking for K a free V-category LV ; for there
are always constant ordinary functors L // B0.

Yet in the special case of cartesian closed V (and in some other cases as well), it
happens that I = 1 in V0, so that the V-categories I and 1 coincide; then there is for any
B ∈ B a “constant V-functor” ∆B : K // 1 // B with this value. In particular there is
a constant V-functor ∆1: K // V , and we can consider for any G : K // B the indexed
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limit {∆1, G}. If this exists it represents [K,V ](∆1,B(B,G−)); which is easily seen to
be [K,B](∆B,G), the isomorphism [(∆1)K,B(B,GK ′)] ∼= B((∆B)K,GK ′) being clearly
V-natural in all three variables. Thus we are led, when V is cartesian closed, to define the
conical limit limG by

limG = {∆1, G} (3.57)

for any V-functor G : K // B; so that limG is the representing object in

B(B, limG) ∼= [K,B](∆B,G). (3.58)

This reduces to limT when G : LV // B is the V-functor corresponding to the ordinary
functor T : L // B0; and thus it extends the notion of conical limit from functors to
V-functors, for cartesian closed V .

By (3.57), limG certainly exists for every V-functor G : K // B with K small, when
V is cartesian closed, if the V-category B is complete. Even the existence of these more
general conical limits, however, does not conversely imply completeness of B. The example
in 3.8 above of a non-complete B when V = Cat, given by the full subcategory of Cat
determined by the categories with at most one object, clearly admits all such conical
limits indexed by a 2-category.

3.10 Ends and coends in a general V-category; completeness

For the final special case of a limit {F,G} we take the indexing-type F : K // V to be
HomA : Aop⊗A //V for some V-category A. Then a diagram G in B of this type is just
a V-functor G : Aop ⊗A // B. If {HomA, G} exists we denote it by∫

A∈AG(A,A) = {HomA, G}, (3.59)

and call it the end of G. By the extra-variable Yoneda isomorphism (2.38), the right
side of (3.1) may here be written as

∫
A
B(B,G(A,A)), this being the end of a bifunctor

Aop ⊗A // V as defined in 2.1. Hence the defining equation of the end
∫
A
G(A,A) in B

is
B(B,

∫
A
G(A,A)) ∼=

∫
A
B(B,G(A,A)), (3.60)

while the counit µ of (3.2) corresponds to a V-natural family

λA :
∫
A
G(A,A) //G(A,A). (3.61)

It is immediate from (2.3) that, when B = V , the end
∫
A
G(A,A) in the sense of 2.1 is

also the end in the present sense, so that there is no ambiguity; indeed (3.60) is just one
more illustration of the fact that limits in B are defined representably in terms of limits
in V .

Applying V = V0(I,−) to (3.60), and observing that V0(I,
∫
A
B(B,G(A,A))) is

by 2.1 the set of V-natural families I // B(B,G(A,A)), which is in effect the set
V-nat(B,G(A,A)) of V-natural families B //G(A,A), we have a bijection of sets

B0(B,
∫
A
G(A,A)) ∼= V-nat(B,G(A,A)), (3.62)
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showing that the counit λ of (3.61) is the universal V-natural family with codomain
G(A,A). When B = V , this universal property sufficed in 2.1 to define

∫
A
G(A,A); but

in general it does not. For instance, if V = Cat and A is the discrete 2-category 2, then∫
A
G(A,A) is just the product G(0, 0)×G(1, 1), which for suitable G can be any product

in B; so that (3.54) again provides a counter-example. Of course this universal property
does suffice to detect

∫
A
G(A,A) if this is known to exist; and it does suffice to define it if

V is conservative, or if B is tensored – the argument for this last being like the argument
for the analogous fact in 3.8.

The general Fubini and interchange-of-limits theorems of 3.3 have as particular cases,
under the hypothesis that the inner limits exist, such results as∫

A

∫
B
G(A,A,B,B) ∼=

∫
(A,B)

G(A,A,B,B) ∼=
∫
B

∫
A
G(A,A,B,B), (3.63)∫

A
limαGα(A,A) ∼= limα

∫
A
Gα(A,A), (3.64)∫

A
X t G(A,A) ∼= X t

∫
A
G(A,A); (3.65)

there is no point in specifically remembering any but the general results of 3.3.
The dual notion is that of the coend

∫ A
G(A,A) of G : Aop ⊗A // B, defined by∫ A

G(A,A) = HomA ? G, (3.66)

and hence determined by

B(
∫ A

G(A,A), B) ∼=
∫
A
B(G(A,A), B). (3.67)

We now observe that any B which admits cotensor products and small conical limits
admits every end

∫
A∈AG(A,A) with small A. For let us temporarily define an object∫

A
G(A,A) as the equalizer of the evident pair ρ, σ of maps (cf. (2.2)) in

∫
A∈AG(A,A)

λ
//
∏

A∈AG(A,A)
ρ //
σ
//
∏

A,C∈AA(A,C) t G(A,C). (3.68)

Applying the limit-preserving B(B,−) to (3.68), using (3.42), and comparing the result
with (2.2), we get precisely the desired (3.60).

We next observe that, for any F : K // V and G : K // B, we have

{F,G} ∼=
∫
K
FK t GK if B is cotensored; (3.69)

or even if only these particular cotensor products FK t GK exist: either side of (3.69)
existing if the other does. For the right side of (3.1) is

∫
K

[FK,B(B,GK)] by (2.10),
which here is

∫
K
B(B,FK t GK) by (3.42). The dual of this is

F ? G ∼=
∫ K

FK ⊗GK if B is tensored. (3.70)

Note that the Yoneda isomorphisms (3.10) for cotensored [resp. tensored] B take the forms∫
L
K(K,L) t GL ∼= GK,

∫ LK(L,K)⊗GL ∼= GK; (3.71)
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while the expression (3.17) of an arbitrary F : K //V as a colimit of representables takes
the form ∫ LK(L,−)⊗ FL ∼= F . (3.72)

The two observations above give at once:

Theorem 3.73 The V-category B is complete if and only if it admits cotensor products
and all small conical limits. When this is so, the V-functor T : B // C is continuous if
and only if it preserves cotensor products and small conical limits.

We have already seen in 3.2 that V is complete. Since V admits tensor products by 3.7
and small conical colimits by 3.8, we conclude that

V is cocomplete. (3.74)

By 3.3 and 3.5, we have:

Proposition 3.75 If A is small, every reflective full subcategory of [A,V ] is complete
and cocomplete.

It is a matter of common experience that, in the case V = Ab of additive categories,
it has never proved necessary to distinguish the completeness of B from that of B0. In
fact Proposition 3.46, along with the observation in 3.8 that conical limits in B0 are also
limits in B when V is conservative, gives:

Proposition 3.76 Let V be conservative, and let each object of V0 have but a small set
of extremal-epimorphic quotients. Then a V-category B is complete whenever the ordinary
category B0 is so.

We finally observe that (3.68) and (3.69) do not “reduce all indexed limits to conical
limits and cotensor products”; the {F,G} in (3.69) may well exist although the FK t GK
do not, an example being provided by the Yoneda isomorphisms (3.10) for an arbitrary
B. It would be equally false for ordinary categories to say that “all conical limits reduce
to products and equalizers”; there all conical limits exist if all products and equalizers
do, but a particular pullback may well exist even though the product of which it would
be a subobject does not. The moral is that it is proper to recognize the most general
(indexed) limit concept, while seeing the results above as simple tests for completeness.

3.11 The existence of a limit-preserving universe-enlargement V ⊂ V ′

We now justify our assertion of 2.6, that every V has a well-behaved extension to a
higher-universe version V ′. The analysis below is a very special case of that in Day’s
consideration [12] of monoidal biclosed structures on enriched functor categories.

Given a set {A} of V-categories A that we should like to be small when seen as
V ′-categories, let Set′ be the category of sets in some universe containing as elements
ob(Set), obV , and obA for each A ∈ {A}.

Take V ′0 = [Vop
0 ,Set′], so that V ′0 is a Set′-category, complete and cocomplete in

the Set′-sense; and denote by y : V0
// V ′0 the Yoneda full embedding sending X to
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V0(−, X). Then there is an essentially unique symmetric monoidal closed structure V ′ =
(V ′0,⊗′, I ′, [ , ]′) on V ′0 extending that on V0.

First observe that, since the left adjoint functors F ⊗′− and −⊗′G must preserve all
colimits, and since F is by (3.17) the colimit F ? y of representables, and similarly for G,
we must have F ⊗′ G ∼= (F ? y)⊗′ G ∼= F ? (y ⊗′ G) ∼= F ? (G ? (y ⊗′ y)), which by (3.21)
is (F ×G) ? (y ⊗′ y). Since ⊗′ is to extend ⊗, we must have

yX ⊗′ yY = V0(−, X)⊗′ V0(−, Y ) ∼= V0(−, X ⊗ Y ) = y(X ⊗ Y ). (3.77)

Thus we are forced to define F ⊗′ G as (F−×G?) ? y(−⊗ ?), which written in the more
explicit coend form (3.70) is

F ⊗′ G =
∫ X,Y

FX ×GY × V0(−, X ⊗ Y ). (3.78)

With this definition, moreover, (3.77) is clearly satisfied, by Yoneda in the form (3.71).
The definition (3.5) of ? applied to F⊗′G = (F−×G?)?y(−⊗?) gives V ′0(F⊗′G,H) ∼=

[Vop
0 ×V

op
0 ,Set′](F−×G?,V ′0(y(−⊗?), H)). But V ′0(y(−⊗?), H) ∼= H(−⊗?) by Yoneda,

so that V ′0(F ⊗′ G,H) ∼= [Vop
0 × V

op
0 ,Set′](F− × G?, H(− ⊗ ?)), which by (2.29) is also

V ′0(F,V ′0(G?, H(−⊗ ?))). In other words −⊗′ G has as desired a right adjoint [G, ]′:

V ′0(F ⊗′ G,H) ∼= V ′0(F, [G,H]′), (3.79)

where
[G,H]′ = V ′0(G?, H(−⊗ ?)) =

∫
Y

[GY,H(−⊗ Y )], (3.80)

[ , ] here denoting the internal-hom in Set′. Note that [V0(−, X),V0(−, Z)]′ =∫
Y

[V0(Y,X),V0(−⊗Y, Z)] is, by the form (3.71) of Yoneda, V0(−⊗X,Z) ∼= V0(−, [X,Z]).
Thus

[yX, yZ]′ ∼= y[X,Z], (3.81)

so that [ , ]′ is an extension of the [ , ] of V .
From the existence of this right adjoint and the evident symmetry of ⊗′, it follows

that (F ⊗′G)⊗′H preserves colimits in each variable separately; so that from the colimit-
expressions of the form F ∼= F ? y and from (3.77), we get

(F ⊗′ G)⊗′ H ∼=
∫ X,Y,Z

FX ×GY ×HZ × V0(−, (X ⊗ Y )⊗ Z), (3.82)

with a similar expression for F ⊗′ (G ⊗′ H). Hence the associativity isomorphism for ⊗
induces one for ⊗′ as in (2.4); and similarly of course for the commutativity. Again, if we
set

I ′ = yI = V0(−, I), (3.83)

the cocontinuity in F of F ⊗′ I ′, along with (3.77), gives an evident isomorphism F ⊗′ I ′ ∼=
F .

Verification of the coherence conditions in V ′ from those in V is straightforward: the
essential logical point is the uniqueness of the induced map

∫
A
αAA in (2.4). A careful

discussion is given by Day in [12], and a more streamlined one in his thesis [13].
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Note that the derivation of (3.79) made no use of the closed structure of the symmetric
monoidal V . This proves our assertion at the end of 1.4 above, that any symmetric
monoidal category can be embedded in a closed one.

An essential property of the embedding y : V0
//V ′0 is that it preserves all limits that

exist in V0; in fact these become pointwise limits in V ′0, for the composite with y of the
evaluation EX : V ′0 //Set′ is V0(X,−) : V0

//Set //Set′, which preserves all limits. It
then follows from (2.1) that the end in V of T : Aop ⊗A // V , if it exists, coincides with
the end in V ′ of Aop⊗A //V //V ′; so that

∫
A
T (A,A) is unambiguous for such a functor.

In consequence, the definition (2.10) of [A,B](T, S) is also unambiguous: if it exists as an
object of V , it has this same value when A and B are thought of as V ′-categories.

This justifies the alternative view mentioned in 3.1 of the definition (3.1) of {F,G}
for F : K // V and G : K // B: namely that [K,V ] always exists, even if K is large,
as a V ′-category for a suitable V ′, and that the only question is the representability of
B 7→ [K,V ](F,B(B,G−)) : Bop // V ′ by an object {F,G} of B.

However even more is true: it does not matter in these circumstances whether we
perceive the base category as V or as V ′ – in the latter case seeing the indexing type as
yF : K // V // V ′; for if { , }′ denotes the indexed limit of a V ′-functor, we have

{yF,G}′ ∼= {F,G}, (3.84)

either existing if the other does. (For once we are using y loosely to denote both
the ordinary functor V0

// V ′0 and the V ′-functor V // V ′.) The point is that
[K,V ′](yF, yB(B,G−)), as the end in V ′ of [FK,B(B,GK)]′, is by (3.81) the end in
V ′ (and hence also in V if it exists there) of [FK,B(B,GK)]. Of course it is equally true
for colimits that (yF ) ?′ G ∼= F ? G, for these are just limits in Bop.

3.12 The existence of a limit- and colimit-preserving universe-enlargement
V ⊂ V ′

On the other hand, y : V0
//V ′0 does not preserve colimits; and we must ask how far this

renders our formulae ambiguous under such a change of universe.
The first place where we used colimits in V0 was in the construction in 2.5 of the free

V-category LV on the locally-small ordinary category L. This, seen as a V ′-category, is
not the same as the free V ′-category LV ′ on L. We applied this notion in 3.8 to exhibit a
conical limit limT , where T : L //B0, as an indexed limit {F,G}, with LV as the domain
of F and G. When L is not Set-locally-small, LV does not in general exist, but LV ′ does
so for a suitable V ′; and this enables us to define limT as the appropriate {F ′, G′}′, where
F ′ and G′ have domain LV ′ and F ′ has codomain V ′. The question arises whether the two
definitions of limT agree when L is locally small. The characterization (3.51) shows at
once that they do: for the right side of (3.51) is an ordinary limit in V0 and hence in V ′0.

The only other place where we have used colimits in V0 (except in the negative con-
siderations of 3.9) is in the formula (3.22) expressing the “continuity” of a limit in its
index – this meaning more precisely that colimits in [A,V ] are sent to limits in B. Note
that the V ′-functor y : V // V ′, although it preserves small tensor products by (3.77),
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fails to preserve small conical colimits (since by (3.53) these are the ordinary colimits in
V0 and V ′0), and hence fails to preserve small indexed colimits; whence the same is true of
[A,V ] // [A,V ′].

The argument given for (3.22) implicitly presupposes the existence of [A,V ] as a V-
category in which F ?G is to live. However the result remains literally true even if [Kop,V ]
and [A,V ] exist only as V ′-categories, provided that we interpret the existence of F ? G
as meaning that we have an isomorphism [A,V ](F ? G,H) ∼= [Kop,V ′](F, [A,V ](G−, H))
in V ′. For then we have

B(B, {F, {G−, T}}) ∼= [Kop,V ](F,B(B, {G−, T}))
∼= [Kop,V ](F, [A,V ]((G−)?,B(B, T?)))
∼= [A,V ]((F ? G)?,B(B, T?))
∼= B(B, {F ? G, T}).

We also have, however, the V ′-analogue of (3.22); this is a different true statement.
For now F is replaced by the composite F ′ = yF : Kop //V //V ′, and G by the composite
G′ : K // [A,V ] // [A,V ′]; so that G′K is y(GK). The right side of (3.22) in fact remains
unchanged, by (3.84); but its new left side is {F ′ ?′ G′, T}′, while its old left side, by two
applications of (3.84), is {F ?G, T} ∼= {y(F ?G), T}′ ∼= {yF ?′G, T}′; and yF ?′G = F ′?′G
differs from F ′ ?′ G′ because [A,V ] // [A,V ′] does not preserve colimits.

Thus, in a sense, the ambiguities that arise from the failure of y : V // V ′ to preserve
colimits are of but minor importance. Still, the notation would be that much more flexible
if by modifying V ′ we could remove them; and more adapted to universal algebra, where
colimits in V do play a central role. Indeed, in the concrete examples of 2.6, where V ′0 is
not [Vop

0 ,Set′], but consists – in the case V = Cat for example – of the category objects
in Set′, the inclusion V0

// V ′0 does preserve all limits and all colimits that exist in
V0. We now show that we can do nearly as well as this in the general case, replacing
V ′0 = [Vop

0 ,Set′] by a reflective full subcategory V ′′0 containing V0; it is then still the case,
by 3.5, that V0

// V ′′0 preserves all the limits that exist in V0; and we can arrange for it
to preserve, if not all colimits that exist in V0, at least those that are Set′-small – and so
a fortiori all small (= Set-small) ones.

We just take V ′′0 to be the full subcategory of V ′0 = [Vop
0 ,Set′] determined by those

F : Vop
0

//Set′ which send all the Set′-small colimits that exist in V0 – these being limits
in Vop

0 – to limits in Set′. By 3.2, the representables constituting V0 lie in V ′′0 . That
V0

// V ′′0 preserves the colimits in question is immediate; and that V ′′0 is reflective in V ′0
follows from Kennison [50] or from Freyd-Kelly [30]; see also 6.3 below. Let the reflexion
be R : V ′0 // V ′′0 .

The first thing to observe is that

[G,H]′ ∈ V ′′0 if G ∈ V ′0 and H ∈ V ′′0 . (3.85)

For [G,H]′ =
∫
Y

[GY,H(−⊗ Y )] by (3.80); but −⊗ Y preserves all colimits, and in par-
ticular those in question; H sends these by hypothesis to limits in Set′; the representable
[GY,−] preserves all limits; and so by (3.64) does

∫
Y

.
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By the results of Day [14], this is enough to ensure that V ′′0 has a symmetric monoidal
closed structure V ′′ = (V ′′0 ,⊗′′, I ′, [ , ]′), where

F ⊗′′ G = R(F ⊗′ G). (3.86)

This will give all that we want; the symmetric monoidal closed structure of V ′′ will extend
that of V by (3.81), (3.83), and (3.77) taken with the fact that V0 ⊂ V ′′0 .

An adaptation of Day’s argument to the present case is as follows; in fact we need (3.85)
only for G,H ∈ V ′′0 . Then for F,G,H ∈ V ′′0 we have from (3.86) that V ′′0 (F ⊗′′ G,H) ∼=
V ′0(F ⊗′ G,H) ∼= V ′0(F, [G,H]′), which by (3.85) is V ′′0 (F, [G,H]′). Thus − ⊗′′ G a
[G,−]′ : V ′′0 // V ′′0 .

There is an evident symmetry F ⊗′′ G ∼= G ⊗′′ F ; moreover I ′ ⊗′′ G = R(I ′ ⊗′ G) ∼=
RG = G for G ∈ V ′′0 . As for associativity, let F,G,H ∈ V ′′0 . Then for any K ∈ V ′′0 we have
[H,K]′ ∈ V ′′0 by (3.85). Thus any map F ⊗′G // [H,K]′ factorizes uniquely through the
reflexion F ⊗′ G //R(F ⊗′ G) = F ⊗′′ G. It follows that any map (F ⊗′ G)⊗′ H //K
factorizes uniquely through (F ⊗′ G) ⊗′ H // (F ⊗′′ G) ⊗′ H. Using (3.86) again, we
conclude that (F ⊗′′ G)⊗′′ H ∼= R((F ⊗′ G)⊗′ H). So the associativity isomorphism for
⊗′ reflects onto one for ⊗′′; and moreover all the coherence conditions reflect too.

Let us change notation now, and write V ′ for V ′′; so that henceforth V ′ denotes an
extension of V for which V // V ′ preserves all limits that exist in V and also all colimits
that exist and are Set′-small. In future all functor categories too big to exist as V-
categories are to be interpreted as V ′-categories for a suitable such V ′; and similarly for
limits and colimits in V or in some [A,V ].



Chapter 4

Kan extensions

4.1 The definition of Kan extensions; their expressibility by limits and
colimits

Recall from (3.38) and (3.39) that a V-functor K : A // C induces K̂ : Cop // [A,V ]

and K̃ : C // [Aop,V ], given by K̂C = C(C,K−) and K̃C = C(K−, C). Note that, for
F : C // V and H : Cop // V , we have

F ? K̂ ∼= FK, H ? K̃ ∼= HKop; (4.1)

since by (3.16) we have (F ? K̂)A = F? ? C(?, KA), which by the symmetry (3.9) and the
Yoneda isomorphism (3.10) is FKA.

Given V-functors and a V-natural transformation

C

T

��

ψ{�

A
G

//

K

??

B,

(4.2)

we get for each F : C // V a map

[C,V ]
(
F,B(B, T−)

)
// [A,V ]

(
FK,B(B, TK−)

)
// [A,V ]

(
FK,B(B,G−)

)
, (4.3)

where the first arrow is [K, 1] and the second is [A,V ]
(
1,B(1, ψ−)

)
. Hence by (3.1) we

get an induced map
(K,ψ)∗ : {F, T} // {FK,G} (4.4)

whenever these limits exist. When A = C and K = 1, this is just

{1, ψ} : {F, T} // {F,G};

we saw in (3.11) that { , } is a V-functor in so far as it exists. When G = TK and ψ = 1,
we may write (4.4) as K∗ : {F, T} // {FK, TK}. The general (4.4) is the composite

{F, T}
K∗

// {FK, TK}
{1,ψ}

// {FK,G} (4.5)

59
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if all these limits exist; but the outer ones may well exist when the central one does not.

Theorem 4.6 For a diagram (4.2), the following are equivalent:

(i) For each F : C // V, (K,ψ)∗ : {F, T} // {FK,G} is an isomorphism, either limit
existing if the other does.

(ii) For each C ∈ C, the limit {C(C,K−), G,} is given by TC, with as counit

C(C,K−)
T
// B(TC, TK−)

B(1,ψ−)
// B(TC,G−). (4.7)

(iii) For each B ∈ B and C ∈ C, the map

B(B, TC) // [A,V ]
(
C(C,K−),B(B,G−)

)
(4.8)

induced by (4.7) is an isomorphism.

Proof. (i) gives (ii) on taking F = C(C,−) and using the Yoneda isomorphism
(3.10); (ii) expresses (iii) by the definition (3.1); (iii) asserts by Yoneda that (4.3) is an
isomorphism in the case F = C(C,−), whence (4.3) is an isomorphism for all F by (3.17),
both sides of (4.3) sending pointwise colimits in the variable F to limits in V ; which then
gives (i) by definition.

When these conditions are satisfied, it follows from (ii) that T and ψ are uniquely
determined to within isomorphism by K and G; we say that the diagram (4.2) (or the map
ψ therein) exhibits T as the right Kan extension of G along K, and we write T = RanKG,
calling ψ the counit of this right Kan extension. Thus (ii) gives the formula

(RanKG)C = {C(C,K−), G} = {K̂C,G}, (4.9)

and RanKG exists, by definition, when the limit on the right exists for each C ∈ C: so
that we may also write

RanKG = {K̂−, G}. (4.10)

(We may sometimes loosely express the existence of {K̂C,G} for a particular C by saying
that (RanKG)C exists.) In terms of the counit µC : C(C,K−) // B

(
(RanKG)C,G−

)
of

the limit (4.9), the counit ψ of the right Kan extension is, by (4.7) and Yoneda in the
form (1.48),

ψA = µKA,A(1KA) : (RanKG)KA //GA. (4.11)

The equivalent defining property (i) of Theorem 4.6 may be recorded as

{F,RanKG} ∼= {FK,G} for all F : C // V; (4.12)

this may also be seen as coming directly from (4.10), (3.22), and (4.1) – which gives an
alternative proof that (iii) implies (i) above. Clearly

RanKG, where G : A // B, exists if A is small and B is complete. (4.13)

If (4.2) is a right Kan extension, a functor P : B // D is said to preserve this right
Kan extension if Pψ exhibits PT as RanKPG. Obviously:

Proposition 4.14 P preserves the right Kan extension RanKG if and only if P preserves
the limit {K̂C,G} for all C.
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In particular, therefore, a right adjoint preserves any right Kan extension that exists;
and the representables B(B,−) : B // V not only preserve RanKG but, in their totality,
detect it (which by (3.7) and (4.9) is a re-statement of Theorem 4.6(iii)).

For the dual notion we observe that a diagram

C

S

��

φ

;C

A
G

//

K

??

B

(4.15)

induces, for any H : Cop // V , a map

(K,φ)∗ : HKop ? G //H ? S; (4.16)

we say that φ exhibits S as the left Kan extension LanKG of G along K if (4.16) is
an isomorphism for each H whenever either side exists; equivalently, if φ induces an
isomorphism of S with the functor

LanKG = (K̃−) ? G, (4.17)

which exists when the colimit

(LanKG)C = K̃C ? G = C(K−, C) ? G (4.18)

does so for each C: as it surely does if A is small and B is cocomplete. Then (4.16)
becomes

H ? LanKG ∼= HKop ? G for all H : Cop // V. (4.19)

Any left adjoint Q : B //D preserves the left Kan extension LanKG; and a representable
B(−, B) : Bop // V turns it into a right Kan extension in V – giving

B
(
(LanKG)C,B

) ∼= [Aop,V ]
(
C(K−, C),B(G−, B)

)
(4.20)

as a further characterization of LanKG. Since left Kan extensions occur more than right
ones in our applications below, we shall give our further results in terms of these; of course
the two notions are precisely dual, ( )op turning a left Kan extension (4.15) into a right
one. For the genesis of these ideas, see Kan [38].

4.2 Elementary properties and examples

We continue with a collection of elementary results, formulae, and examples.
The accepted term “extension” is somewhat misleading here, for in the diagram

C

LanKG

��

φ

;C

A
G

//

K

??

B

(4.21)
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it is not in general the case that (LanKG)K ∼= G, as (4.34) below shows. The fact

is that K̃K : A // [Aop,V ] sends A to K̃KA = C(K−, KA), and we have a canoni-
cal map K−A : A(−, A) // C(K−, KA), which is the A-component of a canonical map

κ : Y // K̃K : A // [Aop,V ] where Y is the Yoneda embedding: and clearly

κ : Y // K̃K is an isomorphism if and only if K is fully faithful. (4.22)

We now have:

Proposition 4.23 φ : G // (LanKG)K is an isomorphism if K is fully faithful; while
conversely K is fully faithful if φ is an isomorphism for all B, G with LanKG existing.

Proof. (LanKG)K = (K̃K−) ? G by (4.17), while G ∼= (Y−) ? G by the Yoneda
isomorphism (3.10); clearly φ : G // (LanKG)K is (κ−) ? G; hence it is by (4.22) an
isomorphism if K is fully faithful. For the converse take B = V and G = A(A,−);
then by (3.9) and (3.10) the isomorphism φA = (κ−) ? A(A,−) is κA, so that κ is an
isomorphism and K is fully faithful.

When B has cotensor products [resp. tensor products] the formulae (4.10) and (4.17)
have by (3.69) and (3.70) the more explicit forms

RanKG ∼=
∫
A
C(−, KA) t GA, (4.24)

LanKG ∼=
∫ A C(KA,−)⊗GA; (4.25)

either side existing if the other does.
In the classical case V = Set we can use (3.33) and (3.34) to express the Kan extensions

by conical limits and colimits. Observe that el C(C,K−), where C(C,K−) : A // Set,
is the comma-category C/K; an object is (A ∈ A, f : C // KA), while a map
(A, f) // (A′, f ′) is some g : A // A′ with Kg.f = f ′. Similarly C(K−, C) : Aop // Set
has el C(K−, C) = (K/C)op. Hence (3.33) and (3.34) give

(RanKG)C ∼= lim(C/K
d
//A

G
// B) for V = Set, (4.26)

(LanKG)C ∼= colim(K/C
d
//A

G
// B) for V = Set; (4.27)

again either side existing if the other does.
Clearly (4.18) simplifies if K : A // C has a right adjoint L, for then (LanKG)C =

C(K−, C) ? G ∼= A(−, LC) ? G, which is GLC by the Yoneda isomorphism (3.10). Thus

LanKG ∼= GL if K a L. (4.28)

Note that obviously

Any functor Q : B //D preserves the LanKG of (4.28). (4.29)

We pass to some particular examples. Let G : A // B, and let Y : A // [Aop,V ] be

the Yoneda embedding. Since Ỹ F = [Aop,V ](Y−, F ) is isomorphic to F by the Yoneda
isomorphism (2.31), we have

Ỹ ∼= 1: [Aop,V ] // [Aop,V ]. (4.30)
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Hence (4.17) gives
LanYG ∼= − ? G : [Aop,V ] // B. (4.31)

On the other hand, (4.17) also gives LanGY = (G̃− ? Y ), so that by the Yoneda isomor-
phism (3.17), we have

LanGY ∼= G̃ : B // [Aop,V ]. (4.32)

We cannot quite say that (4.31) exhibits any colimit F ?G as the value (LanYG)F of
a left Kan extension; for the left Kan extension LanYG may not exist, even though F ?G
exists for a particular F . Yet we can always exhibit a colimit F ? G as the value of a
Kan extension. Identify A with its full image under Y : A // [Aop,V ], and take for C the
full subcategory of [Aop,V ] determined by all the A ∈ A and the given F : Aop // V ; let

K : A // C be the inclusion. Then K̃K ∼= Y by (4.22), while K̃F ∼= F by Yoneda. Thus
for any G : A // B we have (LanKG)A ∼= GA for A ∈ A (cf. Proposition 4.23), while
(LanKG)F ∼= F ? G. This gives in particular a converse to (4.13):

Proposition 4.33 B admits all left Kan extensions LanKG, where K : A //C, G : A //B,
and A is small, if and only if it is cocomplete.

In theory, therefore, Kan extensions could replace indexed limits as the basic “limit”
notion; we could use (4.8) to define Kan extensions without explicit mention of indexed
limits, merely using ordinary limits in V0 to define the functor categories as in 2.2. In fact,
as we see in 4.3 below, we can even define Kan extensions without first introducing functor
categories: we could then recover these by defining indexed limits, and in particular ends,
in terms of Kan extensions. However we find the order adopted in this account more
natural.

A conical limit has a particularly simple expression as a Kan extension. If V is cartesian
closed, for instance, colimG coincides with the left Kan extension

1

colimG

��

φ

;C

A
G

//

K

??

B;

(4.34)

for clearly K̃0 is here ∆1: A //V , so that (4.18) gives (LanKG)0 = ∆1?G,∼= colimG by
(3.57). This illustrates our assertion preceding Proposition 4.23, that φ is not in general
an isomorphism. (Note that (4.34) follows alternatively when V = Set from (4.27), d then
being an equivalence: but the argument we have used here generalizes to conical limits
for any V .)

For the purposes of a counter-example we shall use below, we look at a generalization
of (4.34). Consider, in the case V = Set, the left Kan extension

C

LanKG

��

φ

;C

L × C
G

//

K

??

B.

(4.35)
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where K is the projection. Here K̃C = C(K−, C) : Lop × Cop // Set is clearly ∆1 ×
C(−, C); so that (LanKG)C =

(
∆1×C(−, C)

)
? G. By the Fubini theorem (3.21), this is

(∆1)? ?
(
C(−, C) ? G(?,−)

)
, which is (∆1)? ? G(?, C) by the Yoneda (3.10); whence by

(3.26)

(LanKG)C ∼= colimG(−, C) (4.36)

either side existing if the other does. Thus if G corresponds to T : L //[C,B], we conclude
that LanKG exists in (4.35) exactly when colimT exists pointwise.

4.3 A universal property of LanKG; its inadequacy as a definition

The left Kan extension

C

LanKG

��

φ

;C

A
G

//

K

??

B

(4.37)

has an important universal property, different from the defining one in its three equivalent
forms (4.18), (4.19), (4.20); namely:

Theorem 4.38 For any S : C // B, we have a V-natural isomorphism

[C,B](LanKG,S) ∼= [A,B](G,SK); (4.39)

the unit of this representation being the unit φ of (4.37). The dual result is

[C,B](S,RanKG) ∼= [A,B](SK,G). (4.40)

Proof.

[C,B](LanKG,S) =
∫
C
B
(
(LanKG)C, SC

)
by (2.10)

∼=
∫
C

[Aop,V ]
(
C(K−, C),B(G−, SC)

)
by (4.20)

∼=
∫
C

∫
A

[C(KA,C),B(GA,SC)] by (2.10)
∼=
∫
A

∫
C

[C(KA,C),B(GA,SC)] by (2.9)
∼=
∫
A
B(GA,SKA) by (2.33)

∼= [A,B](G,SK) by (2.10).

Putting S = LanKG on the left side and evaluating at 1 to determine the unit, we find
this to be φ, using the duals of (4.7) and (4.8).
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Note that the left side of (4.39) exists in V (and not merely in some extension V ′) if
the right side does; in particular

[C,B](LanKG,S) ∈ V if the domain A of K is small. (4.41)

Applying V = V0(I,−) : V0
// Set to (4.39), we get a bijection of sets

[C,B]0(LanKG,S) ∼= [A,B]0(G,SK), (4.42)

which in view of (2.16) may be expressed as:

Theorem 4.43 If φ : G //LK exhibits L as LanKG, then every V-natural α : G //SK
factorizes as

C
S

��L
))

β ;C

A
G

//

K

??

φ ;C

B

(4.44)

for a unique β : L // S.

The universal property of Theorem 4.43 can be satisfied by at most one (L, φ) to within
isomorphism; for it is a question of a representation [C,B]0(L, S) ∼= [A,B]0(G,SK). It is
moreover a very simple universal property, that makes sense not only in V-CAT but in
any 2-category. This has led many authors to use it as the definition of left Kan extension.
Let us call an (L, φ) with this universal property a weak left Kan extension of G along K,
writing L = lanKG with a small “l” (and ranKG for the dual). We now compare this with
our definition. Theorem 4.43 asserts that LanKG = lanKG if the former exists. However
L = lanKG need not satisfy

[C,B](L, S) ∼= [A,B](G,SK), (4.45)

and hence by (4.39) need not be LanKG. Take V = Cat, with A a mere category and
C = 1. The universal property of L = lanKG clearly asserts that L is the colimit of G
in B0, while (4.45) asserts that L is the colimit of G in B; yet by (3.54) the first of these
does not imply the second. (In this particular case, by (4.34), an L satisfying (4.45) is
necessarily LanKG.) Of course L = lanKG does satisfy (4.45) if V is conservative; it also
does so if B is cotensored, by an argument like that used in 3.8 when comparing conical
limits in B0 with those in B. Yet even an (L, φ) satisfying (4.45) still need not be LanKG;
in other words, the isomorphism (4.39) is strictly weaker than our definition of LanKG.
This is so even in the classical case V = Set; a counter-example is provided by (4.35),
where LanKG exists by (4.36) precisely when T : L // [C,B] has a pointwise colimit, while
(4.45) merely asserts that L ∼= colimT , which by 3.3 does not imply pointwiseness.

For such reasons, various authors [22, 60, 9] who call lanKG a Kan extension use the
name pointwise Kan extension for LanKG. Our present choice of nomenclature is based on
our failure to find a single instance where a weak Kan extension plays any mathematical
role whatsoever. (Street in [71] has given a definition of “pointwise Kan extension” in
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any 2-category with finite limits; it agrees with our notion when V = Set, but is strictly
stronger for a general V , and is hence not suited to our context.)

When B is cotensored and L = lanKG exists, we have observed that L satisfies (4.45).
If in this we now take for S the functor C(−, C) t B for fixed C ∈ C and B ∈ B, we easily
get B(LC,B) ∼= [Aop,V ]

(
C(K−, C),B(G−, B)

)
, so that L = LanKG by (4.20). Thus for

cotensored B there is no distinction between lanKG and LanKG. This is so in particular
for B = V ; moreover, since V is also tensored, ranKG and RanKG too have the same
meaning for B = V . This gives a way of defining RanKG, for any B, in terms of weak
Kan extensions:

Proposition 4.46 The diagram

C

T

��

ψ{�

A
G

//

K

??

B,

exhibits T as RanKG if and only if, for each B ∈ B, the 2-cell B(B,ψ) exhibits B(B, T−)
as ranKB(B,G−).

Proof. “Only if” is clear since representables preserve RanKG. For the converse,
B(B, T−) is actually RanKB(B,G−) by the remark preceding the proposition; so that
(4.8) is an isomorphism by (4.9) and (3.7), giving T = RanKG.

It is this way of defining RanKG, in terms of the universal property of ran, that is
envisaged in our remarks following Proposition 4.33.

Before leaving this comparison of Lan with lan, we should perhaps emphasize that,
even when V is conservative, LanKG (or lanKG) has meaning heavily dependent on V .
Thus, when V = Ab, LanKG is quite different from LanK0G0. The former is an additive
functor, and satisfies the universal property of Theorem 4.43 among all additive functors;
the latter is in general not additive at all.

4.4 Iterated Kan extensions; Kan adjoints; [Aop,V ] as the free cocomple-
tion of a small A

We continue with further elementary properties of Kan extensions which, in one way or
another, make use of Theorem 4.38 or Theorem 4.43.

Theorem 4.47 If LanKG exists we have

LanZLanKG ∼= LanZKG, (4.48)

either side existing if the other does. Then if φ and θ are the units of LanKG and
LanZLanKG, the unit χ of LanZKG is the composite natural transformation in the di-
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agram
D

M

��

θ

;C

C
L

''

Z

??

φ

;C

A
G

//

K

??

B,

where L denotes LanKG and M the common value in (4.48). If Z is fully faithful, LanKG
exists whenever LanZKG exists, being (LanZKG)Z.

Proof. (4.19) gives Z̃D?LanKG ∼= (Z̃D.Kop)?G, either side existing if the other does.

Since Z̃D.Kop = D(ZK−, D), this is by (4.18) the desired isomorphism (4.48). That the
units compose as shown is immediate from Theorem 4.43. The last statement comes from
the easy observation that

Z̃KZ ∼= K̃ if Z is fully faithful. (4.49)

If A and C are small, both [A,B] and [C,B] exist as V-categories; and any K : A // C
induces a V-functor [K, 1] : [C,B] // [A,B] as in (2.26), sending S to SK. Then from
Theorem 4.38 we get the theorem of Kan adjoints:

Theorem 4.50 Let K : A // C be a V-functor with A and C small. Then the functor
[K, 1] : [C,B] // [A,B] has the left adjoint LanK if LanKG exists for all G : A //B, as it
surely does when B is cocomplete; and [K, 1] has the right adjoint RanK if RanKG exists
for each G, as it surely does when B is complete.

We now consider the sense in which [Aop,V ], for a small A, is the free cocompletion of
A (embedded in [Aop,V ] by Yoneda).

Theorem 4.51 Let Y : A // [Aop,V ] be the Yoneda embedding, where A is small, and
let B be arbitrary. Then for any cocontinuous S : [Aop,V ] // B we have

S ∼= LanYG ∼= − ? G : [Aop,V ] // B, (4.52)

where
G = SY : A // B. (4.53)

Such a cocontinuous S has a right adjoint T given by

T = G̃ : B // [Aop,V ]. (4.54)

The full subcategory Cocts
[
[Aop,V ],B

]
of
[
[Aop,V ],B

]
determined by the cocontinuous

functors exists as a V-category, and S 7→ SY is an equivalence of V-categories

[Y, 1] : Cocts
[
[Aop,V ],B

]
' [A,B]′, (4.55)
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where [A,B]′ is the full subcategory of [A,B] determined by those G : A // B for which
LanYG exists; the inverse to this equivalence sends G to LanYG. In particular, if B is
cocomplete, this is an equivalence

Cocts
[
[Aop,V ],B

]
' [A,B]. (4.56)

Proof. Expressing an arbitrary F : Aop // V as a small colimit F ∼= F ? Y of
representables by (3.17), we see that a cocontinuous S must have SF ∼= F ? SY , which
is F ? G by (4.53), or (LanYG)F by (4.31). We then have B(SF,B) ∼= B(F ? G,B) ∼=
[Aop,V ](F, G̃B) by (3.5), so that S a G̃.

Since the cocontinuous S is LanYG, it follows from (4.41) that Cocts
[
[Aop,V ],B

]
exists

as a V-category, and from (4.39) that

Cocts
[
[Aop,V ],B

]
(S, S ′) ∼=

[
[Aop,V ],B

]
(LanYG,S

′) ∼= [A,B](G,S ′Y ) = [A,B](SY, S ′Y ).

Thus [Y, 1] in (4.55) is fully faithful. It is moreover essentially surjective, since if LanYG =
− ? G exists, it is cocontinuous by (3.23), and (LanYG)Y ∼= G by Proposition 4.23 (or
equally by (3.10)).

4.5 Initial diagrams as the left Kan extensions into V ; initial and final
functors when V = Set

As the motivation for our definition of right Kan extension, we chose in 4.1 the property
(4.12) which allows us to write a limit {FK,G} as {F,RanK G}. We now examine the
corresponding problem of writing a limit {H,TK} in the form {F, T}.

First we need a result resembling (4.12) or (4.19), but where the Kan extension has
codomain V and the other functor need not:

Proposition 4.57 Let LanKH exist, where K : A // C and H : A // V; then for any
T : C // B we have

{LanKH,T} ∼= {H,TK} , (4.58)

either side existing if the other does.

Proof. The formula (3.22) expressing the “continuity of a limit in its index” here
gives {H? ? C(K?,−), T−} ∼= {H?, {C(K?,−), T−}}; but H? ? C(K−, ?) is LanKH by
(4.18) and the symmetry (3.9), while {C(K−, ?), T−} ∼= TK by the Yoneda isomorphism
(3.10).

Given now a diagram

C

F

��

φ

;C

A
H

//

K

??

V ,

(4.59)
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we get for each T : C // B a map

[C,V ](F,B(B, T−)) // [A,V ](FK,B(B, TK−)) // [A,V ](H,B(B, TK−)), (4.60)

where the first arrow is [K, 1] and the second is [A,V ](φ, 1). This induces by (3.1) a map

(K,φ)# : {F, T} // {H,TK} (4.61)

whenever these limits exist; it is the composite

{F, T}
K∗

// {FK, TK}
{φ,1}

// {H,TK} (4.62)

whenever the middle limit exists as well.

Theorem 4.63 For a diagram (4.59), the following are equivalent:

(i) For every B and every T : C // B, the (K,φ)# of (4.61) is an isomorphism, either
side existing if the other does.

(ii) For every B, every T : C //B, and every B ∈ B, the map (4.60) is an isomorphism.

(iii) φ exhibits F in (4.59) as LanKH.

Proof. Clearly (ii) implies (i) by the definition (3.1) of the limits, while (ii) itself is,
by (3.7), the special case of (i) obtained by replacing T in (4.61) by B(B, T−). Since (iii)
implies (i) by Proposition 4.57, it remains only to prove that (i) implies (iii).

Let C ∈ C and Z ∈ V . Then applying (i) with B = V and with T = [C(−, C), Z] gives
{F, [C(−, C), Z]} ∼= {H, [C(K−, C), Z]}. Since the internal-hom [X,Z] in V is the cotensor
product X t Z, the interchange-of-limits formula (3.20) lets us write the last isomorphism
as {C(−, C), [F−, Z]} ∼= {C(K−, C), [H−, Z]}. By the Yoneda isomorphism (3.10), the
left side here is [FC,Z]; while by (3.7) the right side is [Aop,V ](C(K−, C),V(H−, Z)). It
now follows from (4.20) that F , with unit φ, is LanKH.

When these equivalent conditions are satisfied, we say that the pair (K,φ) in (4.59)
is initial . The characterization (i) of Theorem 4.63 is the assertion that the F -indexed
limit of any T is the H-indexed limit of TK, when either exists. The characterization
(ii) is a V-enriched version of the assertion that, whether the limits exist or not, the
(F,B)-cylinders over T coincide with the (H,B)-cylinders over TK. From the proof, it is
immaterial whether we require this only when the domain and codomain of (4.60) exist
in V , or when they exist merely in an extension V ′ as in 3.12.

For the dual notion we keep the diagram (4.59) as it is, but consider in place of T a
functor S : Cop // B. Then (4.60) is replaced by a map

[C,V ](F,B(S−, B)) // [A,V ](H,B(SK−, B)), (4.64)

and (4.61) by a map
(K,φ)# : H ? SKop // F ? S. (4.65)
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We call (Kop, φop), in the diagram formed by applying ( )op to (4.59), final if (K,φ) is
initial; that is, if (4.64) is always an isomorphism, or if (4.65) is an isomorphism whenever
either side exists, or if F ∼= LanKH, or if F op ∼= RanKop Hop.

For a cartesian closed V , and in particular when V = Set, we can consider the special
case

C

∆1

��
A

∆1
//

K

??

V ,

(4.66)

of (4.59); here the unique 2-cell φ that can be inserted in the diagram is the identity id.
We call the functor K initial , and the functor Kop final , if the pair (K, id) in (4.66) is
initial.

Theorem 4.67 For a cartesian closed V and a V-functor K : A // C, the following are
each equivalent to the initialness of K:

(i) For any T : C // B we have limT ∼= limTK, either side existing if the other does.

(ii) For such a T and any B ∈ B we have [C,B](∆B, T ) ∼= [A,B](∆B, TK).

(iii) The diagram (4.66) exhibits ∆1 as LanK∆1.

(iv) For each C ∈ C we have colim C(K−, C) = 1.

When V = Set, (ii) here is just a bijection between the two sets of cones; and (iv) becomes

(v) For each C, the comma-category K/C is connected.

Proof. (i) here is by (3.57) the (i) of Theorem 4.63; (ii) is the (ii) of that theorem since,
for a cartesian closed V , we have as in 3.9 that [C,V ](∆1,B(B, T−)) ∼= [C,B](∆B, T );
and (iii) is the (iii) of that theorem. Calculating (LanK∆1)C by (4.18) and using the
dual of (3.57) gives (iv); which when V = Set becomes (v), since (3.35) then gives
colim C(K−, C) = π(el C(K−, C)) = π(K/C).

If A = 1 in the above theorem, in the case V = Set, K is just an object of C; and the
comma-category K/C is just the set C(K,C) regarded as a discrete category. Hence (v)
gives:

Proposition 4.68 When V = Set, the functor K : 1 // C is initial [resp. final] exactly
when K is an initial [resp. final] object of C.

By (4.28), if K : A // C has a right adjoint L, we have LanKH ∼= HL for any
H : A //V . If V is cartesian closed andH = ∆1, thenHL = ∆1; so that Theorem 4.67(iii)
gives

Proposition 4.69 For cartesian closed V, any left adjoint K : A // C is initial.
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4.6 Filtered categories when V = Set; the commutativity in Set of fil-
tered colimits with finite limits

Taking V = Set for this section, we recall for later use the notion of filtered category.
There is an interplay between filtered and finite: an ordinary category P is finite if its
set of morphisms (and hence its set of objects) is finite. A category is finitely complete
if it admits all (conical) limits indexed by finite categories; and a functor with a finitely-
complete domain is left exact if it preserves all such finite limits: the duals are finitely
cocomplete and right exact.

Theorem 4.70 For an ordinary category C, the following are equivalent:

(i) Every functor T : P // C with P finite is the base of some inductive cone.

(ii) C is not empty; for any A,B ∈ C there is some C ∈ C and maps A //C and B //C;
and for any maps f, g : A //B in C there is some map h : B //D with hf = hg.

(iii) For any finite category P the diagonal ∆: C // [P , C] has the property that T/∆ is
non-empty for each T : P // C.

(iv) For any finite category P the diagonal ∆: C // [P , C] is final.

Proof. The properties in (ii) are special cases of (i), and in turn imply (i) by a trivial
induction; while (iii) merely re-states (i). It remains to show that these imply (iv), which
by Theorem 4.67(v) is the requirement that the T/∆ in (iii) be not merely non-empty
but in fact connected. Given objects α and β of T/∆ – that is, cones (αP : TP // A)
and (βP : TP // B) – we can find by (ii) maps f : A // C and g : B // C such that
fαP = gβP for each P ∈ P . This common value is now a cone (γP : TP // C); and we
have maps f : α // γ and g : β // γ in T/∆.

A category C satisfying these equivalent conditions is said to be filtered . It is clear
that a filtered category is connected, and also that [Q, C] is filtered if Q is finite and C is
filtered. Observe that a finitely cocomplete category is filtered, since T : P //C is then the
base of its colimit-cone; in this case, of course, ∆: C // [P , C] has a left adjoint, which by
Proposition 4.69 is stronger than being final. The initialness condition of Theorem 4.67(v),
or rather its dual, simplifies when C is filtered and K is fully faithful:

Proposition 4.71 If C is filtered, the fully-faithful K : A // C is final if and only if each
C/K is non-empty.

Proof. Only the “if” clause needs proof. Consider objects f : C //KA and g : C //KB
of C/K. Because C is filtered, there are maps h : KA //D and k : KB //D with hf = kg;
because D/K is non-empty we may suppose D to be of the form KE; because K is fully
faithful, h and k have the form Ku and Kv. Thus f and g are connected in C/K by the
maps u : f // hf and v : g // kg = hf .
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The classical example of this is that where C is a filtered preordered set (in which case
directed is often used for filtered), and K is the inclusion of a subset A. To say that each
C/K is non-empty is then to say that each C ∈ C is less than or equal to some A ∈ A.
Such a subset A, which we call final, was classically called cofinal.

A filtered colimit is a conical one indexed by a small filtered category. For example,
suppose we have in any category a coproduct A =

∑
x∈X Ax. The finite subsets J of

X, ordered by inclusion, form a filtered ordered set C; and if the finite coproduct AJ =∑
x∈J Ax exists for each J ∈ C, it is clear that A is the filtered colimit of the AJ .
Recall from (3.35) that colimF for F : C // Set is π(elF ).

Theorem 4.72 For F : C // Set where C is small and filtered, two objects (A, x) and
(B, y) of elF have the same image in π(elF ) = colimF if and only if there are maps
f : A // C and g : B // C with (Ff)x = (Fg)y.

Proof. The relation between (A, x) and (B, y) expressed by the existence of such f
and g is reflexive and symmetric, and clearly generates the equivalence relation of being
connected. It therefore coincides with this latter if it is transitive; and that it is so follows
easily from the filteredness.

If B is an equational category of algebras whose operations all have finite arity, the
conservative forgetful functor U : B // Set preserves (and therefore reflects) filtered col-
imits. For if F : C // B with C small and filtered, any finite number of elements of
X = colimUF can by the filteredness be represented by elements (C, xi) ∈ el(UF ) with a
common C, so that we can apply an n-ary operation ω to get ω(x1, . . . , xn) ∈ UFC. By
Theorem 4.72, the image of this in X is independent of the choice of C; thus X becomes
UA for an algebra A, which is clearly the colimit of F .

Theorem 4.73 Filtered colimits commute with finite limits in Set. That is to say, if
F : P × C // Set with P finite and C small and filtered, the evident canonical map

ρ : colimC limP F (P,C) // limP colimC F (P,C)

is an isomorphism.

Proof. By (3.28) and (3.35), an element of limP colimC F (P,C) is a cone
(αP : 1 // π(elF (P,−))). By the filteredness of C we can find representatives
(C, xP ∈ F (P,C)) of the αP , with a common C. For f : P // Q in P , the objects
(C,F (f, C)xP ) and (C, xQ) represent the same element of π(elF (Q,−)), because α is
a cone. Since there are but a finite number of maps in P , we can by the filteredness
of C find a g : C // D in C such that (D,F (f, g)xP ) = (D,F (Q, g)xQ) for each map
f : P //Q in P . Now the yP = F (P, g)xP constitute a cone with vertex 1 over F (−, D),
or an element y of limP F (P,D). If z is the image of this in colimC limP F (P,C), we
clearly have ρ(z) = α; thus ρ is surjective.

To see that ρ is injective, suppose that y ∈ limP F (P,D) and y′ ∈ limP F (P,D′)
represent elements of colimC limP F (P,C) with the same image under ρ. Then yP ∈
F (P,D) and y′P ∈ F (P,D′) represent for each P the same element of colimC F (P,C). As
in Theorem 4.72, but using the filteredness to do it simultaneously for each P ∈ P , we
can find h : D //E and h′ : D′ //E such that F (P, h)yP = F (P, h′)y′P = wP say. Now w
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is a cone in limP F (P,E), representing the same object of colimC limP F (P,C) as y and
y′.

By the remark before the theorem, we have the same commutativity if Set is replaced
by an equational category of algebras. The theorem can also be stated as:

Proposition 4.74 For small C, the functor colim: [C,Set] // Set is left exact if C is
filtered.

In this form it has a converse, to be given in 5.10 below.
The ideas of this section have the following extension. For a regular cardinal α, a

category P is α-small if its set of morphisms has cardinal less than α; and C is α-filtered
if every T : P // C with α-small P is the base of some inductive cone. Then α-filtered
colimits commute with α-small limits in Set, by an argument like that for Theorem 4.73
– which is the special case α = ℵ0 of this.

4.7 The factorization of a functor, when V = Set, into an initial functor
and a discrete op-fibration

In this section, again taking V = Set, we describe the comprehensive factorization system
of Street and Walters [74] on the ordinary category Cat0 of small categories; for its logical
significance, see their article.

A functor J : C // B is called a discrete op-fibration (or dof for short) if there is a
functor F : B // Set such that J is the composite of an isomorphism C ∼= elF and the
canonical projection d : elF // B.

Proposition 4.75 J : C // B is a dof if and only if every map f : JC // B in B is of
the form f = Jg for a unique map g : C //D in C.

Proof. “Only if” is immediate; “if” is easy when we define F : B //Set on objects by
FB = {D ∈ C | JD = B} and on maps by the property in the proposition.

It is clear from this proposition that the composite of two dofs is a dof; and it is clear
from Theorem 4.67(i) that the composite of two initial functors is initial. Of course an
isomorphism in Cat0 is both initial and a dof. We shall show that every map in Cat0

factorizes, essentially uniquely and functorially, into an initial functor followed by a dof.
First observe that, if F : B //Set gives rise to the dof d : elF //B, to give a functor

T : A // elF is to give a functor S : A //B and a cone α : ∆1 //FS (or, by (3.28), an
element α ∈ limFS). Then TA = (SA, αA) ∈ elF .

Given now an arbitrary functor S : A //B in Cat0, let (F, φ) be the left Kan extension

B

F=LanS∆1

��

φ

;C

A
∆1

//

S

??

Set.

(4.76)
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By (4.18), (3.26), and (3.35) we have

FB = B(S−, B) ?∆1 ∼= colimB(S−, B) ∼= π(S/B). (4.77)

The functor S, together with the cone φ : ∆1 //FS, constitutes a functor T : A // elF
with dT = S. We shall have factorized S in the desired way if we show that T is initial.

This seems to be best done by a direct calculation using Theorem 4.67(v). (The
purported proof in [74] is erroneous; it supposes that, in the situation of our Theorem 4.47,
if X and θ are left Kan extensions, so is φ; that this is false is easily seen by taking D = 1
and using (4.34).)

A typical object of elF , by (4.77), is (B, [f ]) where [f ] is the connected component
of some f : SA // B. It is clear that T : A // elF sends A to (SA, [1SA]) and sends
h : A // A′ to Sh. An object of the comma-category T/(B, [f ]) is at once seen to be a
pair (A, g : SA //B) with [g] = [f ]. A morphism (A, g) // (A′, g′) is an h : A //A′ for
which g′Sh = g. It follows that T/(B, [f ]) is connected, being isomorphic to the connected
component [f ] of S/B.

To see that this factorization is essentially unique and functorial – that is, that we
have a factorization system in the sense of [30] – it remains to show the existence of a
unique “diagonal” R : D //A in any commutative diagram

C K //

P

��

D

Q

��
A

d
// B,

where K is initial and d is a dof. We may as well suppose at once that A = elF for some
F : B // Set. Then P corresponds as above to a functor S : C // B with dP = S, and a
cone α : ∆1 // FS = FdP = FQK. Since K is initial, this cone is by Theorem 4.67(ii)
of the form α = βK for a unique cone β : 1 // FQ. Now Q and β constitute a functor
R : D //A with dR = Q, and clearly with RK = P . It is evident that any R′ : D //A
with dR′ = Q and R′K = P must coincide with R. This completes the proof.

If we write dof/B for the full subcategory of Cat0/B determined by those J : A //B
that are dofs, it is clear that this factorization gives a reflexion Cat0/B // dof/B. On
the other hand dof/B is evidently equivalent to [B,Set]. Thus we get an adjunction

Ω a Θ: [B,Set] //Cat0/B , (4.78)

with Θ fully faithful. Here Θ sends F : B // Set to d : elF // B, and may be called the
discrete Grothendieck construction; its left adjoint Ω sends S to the F of (4.77).

While this is special to the case V = Set, it has generalizations to the important
cases V = Gpd and V = Cat, the latter being the setting for the original Grothendieck
construction [34]. We do not give these here, for they transcend the context of enriched
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category theory as developed in this account, and involve “transformations” more general
then the Gpd-natural or Cat-natural ones; we shall treat them in [46].

Note finally that ΩΘS ∼= S, since Θ is fully faithful. This means by (4.76) that, for
any F : B // Set, we have a left Kan extension

B

F

��

φ

;C

elF
∆1

//

d

??

Set;

(4.79)

since this asserts by (4.77) that FB ∼= colimB(d−, B), it is precisely a restatement of
(3.32).

4.8 The general representability and adjoint-functor theorems; the special
case of a complete domain-category

In this section and the next we look at conditions ensuring the representability of a V-
functor F : C // V , especially in the simplest case of a complete C. Since by 1.11 the
V-functor T : C // B has a left adjoint precisely when each B(B, T−) is representable,
the same considerations yield conditions for a left adjoint to exist.

Since a colimit in C is itself the representing object for a functor C // V , the rep-
resenting object for F : C // V , if it exists, is in some sense a “generalized colimit”.
Representing objects are, in fact, very commonly constructed as colimits: consider some
examples. First, in the case V = Set, a representation for F corresponds, as we observed
in 1.10, to an initial object in elF ; that is, to the colimit of the empty diagram in elF .
Next, in Proposition 3.36, a functor F : C // V was in effect given as an iterated limit of
representables; and we constructed its representing object as the corresponding iterated
colimit of the representing objects for these. Again, the left Kan adjoint LanK of Theo-
rem 4.50 was constructed via the colimits K̃C?G. A free abelian group is constructed as a
coproduct of infinite cyclic groups; the tensor product of two abelian groups is constructed
as a cokernel of a free abelian group; and the free monoid on a set X is the coproduct∑

n≥0X
n. More generally, numerous constructions of free algebras, free monoids, and free

monads, as iterated colimits, under cocompleteness but no completeness hypotheses, are
given in [44].

Yet the only general necessary condition that we so far have for the representability
of F is expressed in terms of limits: by 3.2, F must preserve whatever limits exist.
Hence if C is complete, F must be continuous (and similarly for a T : C // B that is
to have a left adjoint). We here consider what must be added to this continuity to
ensure representability (or existence of an adjoint). Since the desired representing object
is a generalized colimit, this is analogous to the question of what must be added to
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completeness to ensure cocompleteness – or rather, to ensure the existence of a particular
colimit.

A small complete Set-category C is of necessity a preordered set – for if C(A,B) had
at least two elements, C(A,Bn) would have at least 2n, making C large if Bn existed
for all small cardinals n. Hence, by the classical argument on complete lattices, a small
complete C is also cocomplete: the supremum of a subset is the infimum of its set of
upper bounds. Not so, if C is large – even if C is a preordered set: the ordered set of small
ordinals is cocomplete but not complete. What must be added is a condition ensuring
that the colimit we need can be manufactured from small limits. Similarly in the case of
representability of F : C // V : the extra condition needed is a “smallness” one on F .

We begin with a general result expressing a representing object as a limit: a large one,
unless C happens to be small.

Theorem 4.80 F : C // V is representable if and only if the limit {F, 1C} exists and is
preserved by F . Then the representing object is {F, 1}, and the counit µ : F //C({F, 1},−)
of this limit is an isomorphism giving the representation of F .

Proof. One direction is immediate: if F is the representable C(D,−), then by (3.10)
the limit {C(D,−), 1} is D, with counit µ = 1: C(D,−) // C(D,−); similarly, with
appropriate changes, when F is only isomorphic to C(D,−); and the representable F
preserves this limit.

For the other direction we have by hypothesis that

F µ
// C({F, 1},−)

F
// [F{F, 1}, F−]

is the counit of the limit {F, F}. Hence by (3.4) the (F, I)-cylinder over F given by the
isomorphism i : F // [I, F−] has the form i = [g, 1]Fµ for a unique g : I // F{F, 1}.
Writing λ : C({F, 1},−) //F for the composite i−1[g, 1]F , we therefore have λµ = 1; and
to prove µ an isomorphism it remains to show that µλ : C({F, 1},−) // C({F, 1},−) is 1.

But by Yoneda, this map µλ is C(f, 1) for a unique f : {F, 1} // {F, 1}. Since λµ = 1
we have µλµ = µ, or C(f, 1)µ = µ = C(1, 1)µ. However, as the counit of the limit {F, 1},
the cylinder µ factorizes through itself as C(f, 1)µ for a unique f ; whence f = 1 and
µλ = 1.

There is a corresponding adjunction theorem:

Theorem 4.81 T : C //B has a left adjoint if and only if RanT 1C exists and is preserved
by T . Then the left adjoint S is RanT 1, and the counit ST // 1 of the Kan extension is
the counit of the adjunction.

Proof. If S a T we have RanT 1 ∼= S by (the dual of) (4.28); that the counit is as
described is immediate; and the right adjoint T preserves the right Kan extension.

For the converse, observe that (RanT 1)B = {B(B, T−), 1} by (4.9). This limit is,
by hypothesis, preserved by T : hence it is also preserved by B(B, T−). Thus B(B, T−)
is representable by Theorem 4.80. This being for all B, we conclude that T has a left
adjoint.
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Combining Theorem 4.63 with Theorem 4.80 gives the following, which replaces the
large limit {F, 1} by one that may be smaller:

Proposition 4.82 Let F : C // V be LanKH, where K : A // C and H : A // V. Then
F is representable if and only if the limit {H,K} exists and is preserved by F ; and the
representing object is then {H,K}.

We consider the possibility of a small A here:

Proposition 4.83 The following properties of F : C // V are equivalent:

(i) F is a small (indexed) colimit of representables.

(ii) F has the form LanKH where the domain A of K is small.

(iii) F is the left Kan extension of its restriction to a small full subcategory of C.

Proof. To say that F is a small colimit of representables is to say that we have a
small indexing-type H : A // V and a functor K : A // C such that, if Y : Cop // [C,V ]
is the Yoneda embedding ([C,V ] being a V ′-category for some suitable extension V ′ of
V), we have H ? Y Kop ∼= F . Since small colimits in [C,V ] exist pointwise by 3.3, this is
to say that H ? C(K−, C) ∼= FC for each C; and hence by (4.18) and (3.9) to say that
F = LanKH. Thus (i) and (ii) are equivalent. It remains to show that, if we have (ii),
we also have its special case (iii).

For this, let A′ be the full image of K : A //C, so that K factorizes as say W : A //A′
followed by the inclusion Z : A′ //C. Then A′ is still small; and because Z is fully faithful,
we have F ∼= LanZFZ by Theorem 4.47.

We shall call a functor F : C // V satisfying the equivalent properties of Proposition
4.83 accessible. In particular every representable C(D,−) : C // V is accessible; it is in
fact LanDI where D : I // C and I : I // V . So Proposition 4.82 now gives our desired
representability theorem for complete C:
Theorem 4.84 If C is complete, F : C //V is representable if and only if it is continuous
and accessible.

For a general complete C, the representability of F is not implied by its continuity
alone, even in the case V = Set. The classical counter-example takes for C the category
of (small) groups, and for F : C // Set the functor given by FC =

∏
α C(Gα, C), where

{Gα} is the large set of all small simple groups.

4.9 Representability and adjoint-functor theorems when V = Set

Although Theorem 4.84 gives a simple general criterion that we shall use below in 5.6,
it is often advantageous, in considering the representability of a particular V-functor, to
reduce the problem to the more familiar case V = Set by using:
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Theorem 4.85 Let C admit cotensor products. Then the V-functor F : C // V is repre-
sentable if and only if the ordinary functor

C0 F0

// V0 V
// Set

is representable and F preserves cotensor products. Moreover a V-functor T : C //B has
a left adjoint if and only if the ordinary functor T0 : C0

// B0 does so and T preserves
cotensor products.

Proof. “Only if” is clear both in the representability case and in the adjunction case
– in the former, if F ∼= C(D,−), then V F0

∼= C0(D,−) by (1.33).
For the converse, let β : C0(D,−) ∼= V F0 be a representation with unit η ∈ V FD; then

η : I // FD corresponds by Yoneda to a map α : C(D,−) // F , which we show to be
an isomorphism. It suffices to verify that V0(X,αC) : V0(X, C(D,C)) // V0(X,FC) is an
isomorphism for each C ∈ C and each X ∈ V . The domain here is isomorphic by (3.45)
to C0(D,X t C), and the codomain by (1.25) to V [X,FC], which is then isomorphic to
V F (X t C) since F preserves cotensor products. It is easily verified that, modulo these
isomorphisms, V0(X,αC) is in fact the isomorphism βXtC .

The case of adjoints follows from this, since B0(B, T−) = V (B(B, T−))0 by (1.33) and
since, if T preserves cotensor products, so does B(B, T−).

We accordingly take V = Set for the rest of this section. Recall that, in taking C to
be a Set-category, we are automatically supposing it to be locally small. There are many
classical results on the representability of F : C // Set; and to reproduce them here in
detail, with examples of their use, would involve an unjustifiably long digression from our
main path of development. Some briefer comments may however be useful. First, whether
C is complete or not, applying Proposition 4.82 to the left Kan extension (4.79) gives:

Proposition 4.86 F : C // Set is representable if and only if d : elF // C has a limit
which is preserved by F ; the representing object is then lim d.

The following proposition is useful in various contexts; it follows at once from the
observation in 4.6 that a functor T : A // elF consists of a functor S = dT : A //C and
an α ∈ limFS:

Proposition 4.87 If C admits the conical limits of some class, and F : C //Set preserves
them, then elF also admits such limits, and d : elF // C preserves and reflects them. In
particular, elF is complete if C is complete and F is continuous.

By 3.4 and Proposition 4.83, F : C // Set is accessible precisely when it is a small
conical colimit of representables. There is a weaker condition – strictly weaker by [29] –
related to this as finite-generation of an algebra is related to finite-presentability: namely
that F be an epimorphic image of a small coproduct of representables; call this weak
accessibility. Consider what it means. A map C(Dα,−) // F corresponds by Yoneda
to an object (Dα, yα ∈ FD) of elF . Since epimorphisms in [C,Set] are pointwise, to say
that

∑
α C(Dα,−) // F is epimorphic is to say that every (C, x) ∈ elF admits a map

from some (Dα, yα). If S is the small full subcategory of elF determined by the objects
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(Dα, yα), and J : S // elF is the inclusion, this is to say that the comma-category J/(C, x)
is non-empty for each (C, x).

When elF is complete, however – or even finitely complete – so that (elF )op is fil-
tered, the non-emptiness of each J/(C, x) implies by Proposition 4.71 the initialness of
J : S // elF . Thus from Theorem 4.84, Proposition 4.86, Proposition 4.87, and Theorem
4.67, we get Freyd’s General adjoint functor theorem (cf. [28]):

Theorem 4.88 For F : C //Set where C is locally-small and complete, the following are
equivalent:

(i) F is representable.

(ii) F is continuous and accessible.

(iii) F is continuous and weakly accessible.

Then the representing object for F is lim dJ .

The weak accessibility of F is often called the solution-set condition. Since C is locally
small, it can be expressed as follows: there is a small set T of objects of C such that, for
any C ∈ C and any x ∈ FC, there is some E ∈ T , some y ∈ FE, and some f : E // C
with (Ff)y = x.

Recall that we also have the quite elementary observation from 1.10:

Proposition 4.89 For F : C // Set the following are equivalent:

(i) F admits a representation α : C(D,−) ∼= F with unit η ∈ FD.

(ii) elF has an initial object (D, η).

(iii) ∆1: elF // Set is representable by (D, η).

Applied to ∆1: E // Set for any Set-category E , Theorem 4.88 gives that E has
an initial object if it is complete and has a small full subcategory S (the “solution set”)
such that any E ∈ E admits a map from some S ∈ S. Conversely we could have proved
Theorem 4.88 alternatively by using Proposition 4.89 and Proposition 4.87 to reduce
it to this “initial-object theorem”, and by giving a simple direct proof of the latter.
In discussing variants of Theorem 4.88, we take this approach for brevity: we describe
the corresponding initial-functor theorem, and leave the reader to translate it back to a
representability theorem.

An unpublished result of Freyd, given in lectures in 1970, deals with a non-complete
E . It asserts that E has an initial object if and only if (i) E satisfies the solution-set
condition as above, (ii) every A ∈ E has a map from some B ∈ E all of whose idempotent
endomorphisms split, and (iii) every small diagram in E admits some projective cone
over it. The corresponding representability theorem, with C the (non-complete) stable
homotopy category of CW-complexes, gives Brown’s result [11] on the representability of
cohomology theories.
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Very commonly, E is not only complete but admits arbitrary (even large) intersections
of subobjects; by Proposition 4.87, elF is so if C is so and if F preserves, besides small
limits, all intersections of subobjects. For such an E , the intersection of all the subobjects
of E ∈ E is an atom – an object with no proper subobject. So the set S of isomorphism-
classes of atoms in E forms a solution-set if it is small. In many concrete cases, it is
easy to find a small cardinal exceeding cardS; this is probably the most common way of
applying Theorem 4.88.

The adjoint-functor theorem of Day [15], in its initial-object-theorem form, requires
only partial completeness of E : the existence of equalizers, of pullbacks of monomorphisms,
and of arbitrary intersections of subobjects; but it strengthens the solution-set condition
to the requirement that there is some S ∈ E such that, for each A ∈ E , there is a
monomorphism A // B and a map S // B. Then the atom in S is the initial object.
Since this refers to no infinite limits except intersections of monomorphisms, it has an
analogue [18] in an elementary topos, where such intersections exist in an internal sense.

Day’s result also yields a proof of Freyd’s Special Adjoint Functor Theorem (cf. [28]):

Theorem 4.90 If the locally-small C is complete, admits all intersections of subobjects,
and has a small cogenerating set, every continuous F : C // Set is representable.

Proof. It is clear that E = elF has a small cogenerating set {Gα} in these conditions.
The hypothesis of Day’s initial-object theorem are clearly satisfied with S =

∏
αGα and

with A //B the canonical monomorphism A //
∏

α(E(Gα, A) t Gα).

Applying this to the existence of a left adjoint to the diagonal ∆: C // [A, C], we see
that C is cocomplete if it is complete, admits intersections of subobjects, and has a small
cogenerating set.

4.10 Existence and characterization of the left Kan extension along a
fully-faithful K : A // C in terms of cylinders in C sent to colimits
by the C(KA,−)

For cocomplete B, the left Kan extension of G : A //B along K : A //C exists by (4.13)
if A is small. By Theorem 4.47, it still exists when A is not small, provided that K is
itself a left Kan extension along some A′ //A with A′ small. We now turn to existence
results when B is no longer cocomplete, but admits colimits only of some specified class.

Theorem 4.91 The left Kan extension of G : A //B along K : A //C exists if and only
if, for each C ∈ C, the functor K̃C : Aop //V can be so expressed as a colimit F ? Y Q of
representables that the colimit F ? GQ exists in B; then this latter colimit is (LanKG)C.

Proof. Let K̃C be so expressible, where F : Lop //V and Q : L //A. Since (Y Q−) ?

G ∼= GQ by (3.10), we have from (3.23) that K̃C ? G = (F ? Y Q) ? G exists, being
F ? ((Y Q−)?G) ∼= F ?GQ. For the converse, we just take the canonical expression (3.17)

of K̃C as a colimit of representables, corresponding to F = K̃C and Q = 1.
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As an example of this, take V = Set, let {Gx}x∈X be a small set of objects in the
cocomplete category C, and let A be the full subcategory of C determined by the small
coproducts of the Gx, with K : A // C the inclusion. For any C ∈ C, let ε : D =∑

x∈X C(Gx, C)·Gx
//C be the canonical map whose (x, f)-component, for f ∈ C(Gx, C),

is f . Write Mx for the set of pairs of maps g, h : Gx
// D such that εg = εh, and let

φ, ψ : E =
∑

xMx ·Gx
//D be the maps whose respective (x, g, h)-components are g and

h. The commutative diagram

E
φ //
ψ
//D ε

// C (4.92)

is not in general a coequalizer diagram; but for each x the diagram

C(Gx, E)
C(1,φ) //

C(1,ψ)
// C(Gx, D)

C(1,ε)
// C(Gx, C) (4.93)

is a split coequalizer diagram. That is to say, there are maps t : C(Gx, C) // C(Gx, D)
and s : C(Gx, D) //C(Gx, E) for which C(1, ε)t = 1, C(1, φ)s = 1, and C(1, ψ)s = tC(1, ε);
which easily implies that (4.93) is a coequalizer. To wit, t(f) : Gx

//D is the coprojection
ix,f of the coproduct, while s(u) : Gx

//E is the coprojection corresponding to the index
(x, u, ix,εu). Any product of the diagrams (4.93) over a family (xj) of the indices x is

clearly again a split coequalizer; whence it follows that K̃ sends (4.92) to a coequalizer
diagram

A(−, E) ////A(−, D) // K̃C

in [Aop,Set]. We conclude that the left Kan extension of G : A // B along K : A // C
exists whenever B admits coequalizers, and is given as the coequalizer of the two maps
Gφ,Gψ : GE // GD. (We remark that, when (4.92) is a coequalizer diagram for each
C, {Gx} is said to be a regular generator of C; it is easily verified to be a fortiori a
strong generator and a generator.) Clearly Theorem 4.91 could be so modified as to cover

the case where K̃C was expressed as an iterated colimit of representables. There is a
particularly neat and useful result of this kind when K is fully faithful; which we now
suppose.

Let F : Lop // V , let P : L // C be a diagram of type F , let C ∈ C, and let
α : F // C(P−, C) be an (F,C)-cylinder over P , in the language of 3.1. Let us say
that α is a K-cylinder if the composite cylinder

F α
// C(P−, C)

K̃

// [Aop,V ](K̃P−, K̃C)

is a colimit-cylinder, giving
K̃C ∼= F ? K̃P. (4.94)

For this it certainly suffices that, for each A ∈ A, the cylinder

F α
// C(P−, C)

C(KA,−)
// [C(KA,P−), C(KA,C)]

be a colimit-cylinder, so that

C(KA,C) ∼= F ? C(KA,P−); (4.95)
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this is just the pointwise existence of the colimit (4.94); and by 3.3 the pointwiseness is
automatic if L is small.

An expression of K̃C as a colimit F ? Y Q of representables, as in Theorem 4.91, has
as unit a cylinder β : F // [Aop,V ](Y Q−, K̃C). The codomain of β is isomorphic by

Yoneda to (K̃C)Qop = C(KQ−, C); moreover, since K is fully faithful, we have Y ∼= K̃K
by (4.22). It follows that β has the form

F α
// C(KQ−, C)

K̃

// [Aop,V ](K̃KQ−, K̃C), (4.96)

in which the second map is in fact an isomorphism. Thus such an expression of K̃C as a
colimit of representables is the same thing as a K-cylinder in which P factorizes through
A as KQ.

In this fully-faithful case we have a characterization of LanKG as follows:

Theorem 4.97 An extension S : C //B of G : A //B along the fully-faithful K : A //C
is LanKG (that is, S is canonically isomorphic to LanKSK) if and only if it sends each
K-cylinder to a colimit-cylinder. If A is small, it suffices to speak of small K-cylinders.

Proof. The canonical expression of K̃C as a colimit K̃C ? Y of representables corre-
sponds as in (4.96) to a K-cylinder 1 : K̃C // C(K−, C). If S sends this to a colimit-

cylinder we have SC ∼= K̃C ? SK, which is K̃C ? G since S is an extension of G; thus
S ∼= LanKG. Conversely, if LanKG exists, any K-cylinder α is, by definition, sent to a
colimit-cylinder by K̃; by (3.23) the functor − ?G preserves the colimit (4.94), since each

K̃PL ? G exists; hence LanKG = K̃− ? G sends α to a colimit-cylinder.

Still supposing K fully faithful, consider a family Φ = (αγ : Fγ // C(Pγ−, Cγ))γ∈Γ of
K-cylinders, where Fγ : Lop

γ
// V and Pγ : Lγ // C. Generalizing 3.5, where it was a

question of a family of colimits, we say that C is the closure of A under the family Φ if
there is no proper replete full subcategory D of C, containing A, and such that Cγ ∈ D
whenever Pγ takes its values in D.

Theorem 4.98 Let K : A //C be fully faithful, and let C be the closure of A for a family
Φ of K-cylinders as above. Then a functor S : C // B is exhibited by 1: SK // SK as
LanKSK if and only if S sends each cylinder of Φ to a colimit-cylinder. Moreover LanKG
exists for any G : A // B if B admits Fγ-indexed colimits for each γ ∈ Γ.

Proof. Theorem 4.97 gives the necessity in the first assertion. For the suffi-
ciency, let D be the replete full subcategory of C consisting of those C for which
S : C(K−, C) // B(SK−, SC) as unit exhibits SC as K̃C ? SK. Then A ⊂ D since we

have canonical isomorphisms SKA ∼= Y A ? SK ∼= K̃KA ? SK. If Pγ takes its values

in D, we have a canonical isomorphism K̃Pγ− ? SK ∼= SPγ by the definition of D;

and K̃Cγ ∼= Fγ ? K̃Pγ by (4.94). Hence (3.23) gives Fγ ? SPγ ∼= K̃Cγ ? SK. Since
Fγ ? SPγ ∼= SCγ by hypothesis, we have Cγ ∈ D; thus D is all of C, as desired. The
second assertion is proved by a similar argument, taking D to consist of those C for which
K̃C ? G exists.
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For an example of this, let us modify the example following Theorem 4.91. With
the notation as there, write A′ for the full subcategory of C determined by the finite
coproducts of the Gx. Since every coproduct is the filtered colimit of the finite coproducts
of its summands, every object of A is a filtered colimit of objects of A′. Suppose now that
each Gx is finitely presentable – meaning that each C(Gx,−) : C // Set preserves filtered
colimits. Then, since filtered colimits commute with finite limits in Set by Theorem 4.73,
each object of A′ is finitely presentable; and thus the filtered colimits in question are
preserved by Z̃ : C // [A′op,Set], where Z is the inclusion A′ // A // C; that is, they
correspond to Z-cylinders. It now follows from Theorem 4.98 that any G : A′ //B admits
a left Kan extension along Z : A′ // C if B admits coequalizers and filtered colimits.

We end with a result, a special case of which we have already used in Theorem 4.51:

Theorem 4.99 Let K : A //C be fully faithful, and denote by [A,B]′ the full subcategory
of [A,B] determined by those G for which LanKG exists. Then LanK : [A,B]′ // [C,B] is
fully faithful; so that we have an equivalence [A,B]′ ' [C,B]`, where the latter is the full
subcategory of [C,B] determined by the functors isomorphic to some LanKG; the inverse to
this equivalence is composition with K. If A is small, it follows that [C,B]` is a V-category.

Proof. We have by Theorem 4.38 that [C,B](LanKG,LanKG
′) ∼= [A,B](G, (LanKG

′)K),
which by Proposition 4.23 is isomorphic to [A,B](G,G′).

Of course this fully-faithfulness is just a special case of the observation in 1.11 following
(1.53), to which we could have appealed: for we are dealing with an adjunction LanK a
[K, 1] whose unit φ is an isomorphism. In practice we use the equivalence [A,B]′ ' [C,B]`

chiefly when [A,B]′ is all of [A,B], as for instance under the hypotheses of Theorem 4.98
or when A is small and B is cocomplete.
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Chapter 5

Density

5.1 Definition of density, and equivalent formulations

A function k : A // C, not necessarily continuous, between hausdorff spaces is dense (in
the sense that its image is a dense subset) precisely when any continuous map from C
into another hausdorff space B is uniquely determined by its composite with k; that is,
when Set(k, 1) : Haus(C,B) // Set(A,B) is injective. We give an analogous definition
of density for a V-functor K : A // C.

For a V-category C, the functor category [C,B] exists at least as a V ′-category for
some suitable extension V ′ of V as in 3.12. Consider those S : C // B which preserve
every colimit existing in C whose indexing-type F : Aop //V has domain Aop; these con-
stitute a full subcategory A-Cocts[C,B], which if A is small contains the full subcategory
Cocts[C,B] of those S preserving all small colimits that exist.

Theorem 5.1 For a V-functor K : A // C the following are equivalent:

(i) For any B, the restriction to A-Cocts[C,B] of the functor [K, 1] : [C,B] // [A,B] is
fully faithful.

(ii) The functor K̃ : C → [Aop,V ] is fully faithful.

(iii) For each C,D ∈ C the map K̃ : C(C,D) // [Aop,V ](C(K−, C), C(K−, D)) is an
isomorphism.

(iv) For each C ∈ C, the identity cylinder 1: C(K−, C) // C(K−, C) as unit exhibits C

as K̃C ? K.

(v) The identity 1: K // 1CK exhibits 1C as LanKK.

(vi) Some isomorphism φ : K // 1CK exhibits 1C as LanKK.

Proof. Because a representable Cop //V preserves all limits that exist, its dual C //Vop

preserves all colimits that exist in C. Since the Yoneda embedding is fully faithful, and
since K̃ is the composite

C
Y
// [Cop,V ]

[Kop,1]
// [Aop,V ],

85
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it follows that (i) implies (ii). The direct translation (iii) of (ii) is equivalent by (3.5)
to (iv), which is in turn equivalent by (4.18) to (v), itself a special case of (vi); so
that it remains only to show that (vi) implies (i). Suppose then that S : C // B is

A-cocontinuous; it thus preserves the colimit K̃C ? K, and hence the left Kan extension
in (vi), so that Sφ : SK // SK exhibits S as LanK(SK). By Theorem 4.38 we therefore
have for any S ′ : C //B a representation [C,B](S, S ′) ∼= [A,B](SK, S ′K), whose unit is Sφ.
By (1.48), this isomorphism is the composite of [K, 1] : [C,B](S, S ′) // [A,B](SK, S ′K)
and [A,B](Sφ, 1) : [A,B](SK, S ′K) // [A,B](SK, S ′K); the latter being an isomorphism
since φ is, so is the former – which proves (i).

A V-functor K : A // C satisfying these equivalent conditions is said to be dense.
(The original term used by Isbell, who introduced the concept for V = Set in [35], was
left adequate.) For the dual notion (Isbell’s right adequate) we use codense; K : A // C
is codense if Kop : Aop // Cop is dense. In the important special case where the dense
K : A // C is the inclusion of a full subcategory, we merely say that A is dense in C,
leaving K to be understood; and if A is the one-object full subcategory {A}, we say that
A is dense in C.

It is clear that the density of K depends only on “the equivalence class of K in the
2-category of V-functors”; that is, if K is dense, so is the composite

A ' A
K′
// C ' C (5.2)

where the outer functors are equivalences and where K ′ is isomorphic to K.
When C admits tensor products, the criterion (v) for the density of K : A //C becomes

by (4.25) the requirement that the canonical map C(KA,C)⊗KA //C express C as the
coend

C ∼=
∫ A

C(KA,C)⊗KA; (5.3)

while when V = Set it becomes by (4.27) the requirement that the canonical cone express
C as the colimit

C ∼= colim(K/C
d
//A

K
// C). (5.4)

If K : A //C is dense, applying V : V0
//Set to the isomorphism in Theorem 5.1(iii)

above gives a bijection of sets

C0(C,D) ∼= [Aop,V ]0(C(K−, C), C(K−, D)), (5.5)

whose meaning is that every V-natural transformation α : C(K−, C) // C(K−, D) is of
the form C(K−, f) for a unique f : C //D. It is clear that (5.5) is in turn equivalent to
the density of K if V is conservative, and in particular in the classical case V = Set. It is
also equivalent to density if C is cotensored; or even if C admits cotensor products Xβ t C
for some set {Xβ} constituting a strong generator of V0: for if we write (5.5) with X t D
in place of D, we easily get V0(X, C(C,D)) ∼= V0(X, [Aop,V ](C(K−, C), C(K−, D))). Yet
in general (5.5) is strictly weaker than density: take V = Cat, let C be the 2-category
(3.54), and let K be the inclusion of the full subcategory {1}; we have the bijection (5.5)
but not the isomorphism in V of Theorem 5.1(iii).
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After first surveying various examples and elementary properties of density, we shall
return in 5.11 below to the study of the important map [K, 1] : Cocts[C,B] // [A,B] of
Theorem 5.1(i).

5.2 Composability and cancellability properties of dense functors

We begin by considering the composability and cancellation properties of dense functors.
The positive results below are for any V , while the counter-examples are all for V = Set;
the assertions about the density or non-density of particular functors in the counter-
examples are easily verified using (5.5). We consider a diagram

D

J

��

α

;C

A
K

//

P

??

C

(5.6)

in which α is an isomorphism, so that K ∼= JP . First, the density of P and of J , even if
both are fully faithful, does not imply the density of JP . For an example, let A = 1, let D
be the category of finite sets, and let C be the functor category [Dop,Set]; let P : 1 //D
correspond to the object 1 ∈ D, and let J : D // [Dop,Set] be the Yoneda embedding.

Again, the density of P and of J does not imply the density of JP when P is essentially
surjective and J is fully faithful; that is, when (5.6) is the factorization of K through its
full image D in C. For an example, let A be the discrete category identified with the set 2,
let D be the unit category 1, let C = Set, and let J be the functor 1→ Set corresponding
to the object 1 ∈ Set.

The following observation leads to some positive results:

Proposition 5.7 If the isomorphism α in (5.6) exhibits J as LanPK, then J is dense if
and only if K is dense.

Proof. Applying Theorem 4.7 to the diagram

C

1C

��

1

;C

D
J

''

J

??

α

;C

A
K

//

P

??

C,

(5.8)

we conclude that 1 exhibits 1C as LanJJ if and only if α exhibits 1C as LanJPK. Pasting
to the top edge of (5.8) the isomorphism α−1 : JP // K, we see that α exhibits 1C as
LanJPK if and only if 1 exhibits 1C as LanKK. The conclusion now follows from Theorem
5.1(v).



88 5 Density

To say that α exhibits J as LanPK is clearly, since α is an isomorphism, to say that
1 exhibits J as LanPJP . Now if P is dense, so that 1 exhibits 1D as LanPP , this is by
4.1 to say that J preserves the Kan extension LanPP . Thus Proposition 5.7 gives:

Proposition 5.9 If P is dense and if J preserves LanPP , then J is dense if and only if
K ∼= JP is dense.

If P is fully faithful and if, for any K : A // C, we define J : D // C as LanPK,
supposing this to exist, the unit α of this Kan extension is necessarily an isomorphism by
Proposition 4.23. So Proposition 5.7 gives:

Proposition 5.10 If P : A // D is fully faithful and if J : D // C is LanPK for some
K : A // C, then J is dense if and only if K is dense.

A simple cancellability result is given by:

Proposition 5.11 If P is essentially surjective and K ∼= JP is dense, then J is dense.
In particular, if K : A // C is dense, the full image of K is a dense full subcategory of C.

Proof. K̃ being fully faithful, so is J̃P , which is clearly the composite

C
J̃

// [Dop,V ]
[P op,1]

// [Aop,V ].

Thus, for C,D ∈ C, the composite [P op, 1]J̃C,J̃D · J̃CD is an isomorphism. The desired

result that J̃CD is an isomorphism will follow if [P op, 1]TS is shown to be a monomorphism
in V0 (or in V ′0 if D is large) for all T, S : Dop // V .

We have by (2.26) the commutative diagram

[Dop,V ](T, S)
[P op,1]TS //

EPA

""

[Aop,V ](TP, SP )

E′A
||

[TPA, SPA],

(5.12)

where E and E ′ are the respective evaluations. By the definition in 2.1 of the end in V ,
the family of maps (ED : [Dop,V ](T, S) // [TD, SD])D∈D is jointly monomorphic. Since
P is essentially surjective, the same is true of the family (EPA)A∈A. It now follows from
(5.12) that [P op, 1]TS is monomorphic, as desired.

Note that, in contrast, the essential surjectivity of P , combined with the density of
K = JP , does not imply the density of P . For an example, let D be any category that
is not a preordered set, let A be the coproduct D +D, let P : A //D be the codiagonal
functor, and let C = 1. As for the second assertion of the proposition above, we have seen
in the example preceding Proposition 5.7 that the converse is false; K : A // C need not
be dense when its full image D is dense in C, even if P : A //D is also dense.

There is however a strong cancellability result when J is fully faithful:

Theorem 5.13 Let J be fully faithful and let K ∼= JP be dense. Then both P and J are
dense. Moreover the isomorphism K ∼= JP exhibits J as LanPK.
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Proof. Using (5.2), suppose for simplicity that K = JP . Because J is fully faithful,

we have P̃ ∼= K̃J by (4.49). Since K̃ and J are each fully faithful by hypothesis, so is P̃ ;
so that P is dense by Theorem 5.1(ii).

Again, because K̃ and J are both fully faithful, we have the composite V-natural
isomorphism

C(JD,C) K̃ // [Aop,V ](C(JP−, JD), C(JP−, C))

[Aop,V](JP−,D,1)

��
[Aop,V ](D(P−, D), C(JP−, C)).

By (3.5), this isomorphism exhibits JD as P̃D ? JP , with unit

J : D(P−, D) // C(JP−, JD).

By the dual of Theorem 4.6(ii), this is to say that 1 : K // JP exhibits J as LanPK.
That J is dense now follows from Proposition 5.7.

There are no similar cancellability results when K = JP is fully faithful and dense,
and P too is fully faithful. Here, even if P is dense, J need not be: for an example, let
A = 1, let D be the ordered set 2 = (0 // 1), let P : 1 // 2 have image 1, let C = Set,
and let J : 2 //Set send (0 // 1) to the unique map (2 // 1). Furthermore, even if J is
dense, P need not be. Let A = 1, let D be the category of the finite ordinals 0,1,2,3, . . .
and increasing functions, let P : 1 //D have image 1, let C = Set, and let J : D // Set
be the (non-full) inclusion.

5.3 Examples of density; comparison with strong generation

Since a fully-faithful V-functor is a fortiori conservative, comparison of Theorem 5.1 with
3.6 shows that a dense K : A // C is strongly generating; or rather, since we defined
“strongly generating” only when A was small, that this is the case for small A. While we
saw in 3.6, however, that K : A // C is strongly generating precisely when its full image
in C is so, we have seen in Proposition 5.11 and in the remark preceding Theorem 5.13
that the density of K is strictly stronger than the density of its full image. At any rate,
it is clear that C admits some dense K : A // C with A small if and only if it admits a
small dense full subcategory; which latter is then a fortiori a strong generator. (We shall
abbreviate “small dense full subcategory” to “small dense subcategory” in appropriate
contexts.)

When V = Set, if K : A // C is dense with C cocomplete and A small, (5.3) and
the dual of (3.68) show the canonical map

∑
A C(KA,C) ·KA //C to be a coequalizer;

whence it easily follows that the objects {KA}A∈A constitute a regular generator for C
in the sense of 4.10. However density is much stronger than being a strong generator, or
even a regular one; and this even for V = Set.

In the category Comp of compact hausdorff spaces, for instance, the single space 1
is a regular generator – for it is clearly a generator, and every epimorphism in Comp
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is a coequalizer. Yet no small subcategory A of Comp is dense. For let θ be a regular
cardinal exceeding cardA for each A ∈ A, and let Ω be the set of ordinals ≤ θ, made into
a compact hausdorff space by giving it the order topology. Let 2 = {0, 1} be the discrete
two-element space, and define f : Ω // 2 by f(θ) = 1, f(α) = 0 for α < θ. Although f is
not continuous, composition with f defines a map φA : Comp(A,Ω) //Comp(A, 2) for
each A ∈ A; because for any continuous h : A //Ω, the subset h−1(θ) is closed since {θ}
is closed, while h−1(Ω−{θ}) is closed by the choice of θ. Because φA is clearly natural in
A ∈ A, it would if A were dense be induced by some continuous g : Ω //2. Consideration
of constant maps A //Ω gives the contradiction g = f if some A is non-empty; while the
empty set 0 is clearly not dense.

By Theorem 5.1(ii), each dense K : A // C exhibits C, to within equivalence, as a full
subcategory of [Aop,V ]. We can characterize the subcategories C of [Aop,V ] that arise in
this way, and recapture K from C:
Proposition 5.14 The inclusion J : C // [Aop,V ] of a full subcategory is isomorphic to

K̃ for some (necessarily dense) K : A // C if and only if each representable A(−, A) ∈
[Aop,V ] admits a reflexion in C. Then KA is the reflexion of A(−, A), and K is unique
to within isomorphism.

Proof. We are asking for a V-natural isomorphism JC ∼= C(K−, C), or (JC)A ∼=
C(KA,C). Since (JC)A ∼= [Aop,V ](A(−, A), JC) by Yoneda, this is precisely to ask that
each A(−, A) admit a reflexion KA in C; whereupon K has by 1.10 a unique V-functor
structure.

This has a simple consequence for cocomplete C and small A:

Proposition 5.15 Let A be small. Then C is equivalent to a reflective full subcategory
of [Aop,V ] if and only if C is cocomplete and there is a dense functor K : A // C. To

within isomorphism, the “inclusion” J : C // [Aop,V ] is K̃, while K is the composite of
the Yoneda embedding Y : A // [Aop,V ] and the left adjoint S : [Aop,V ] // C of J . Such
a C is complete.

Proof. If C is reflective in [Aop,V ], with reflexion S a J , then certainly each A(−, A)

admits a reflexion KA = SY A in C; whence by Proposition 5.14 we have J ∼= K̃ for the
dense K = SY : A // C. Moreover C is cocomplete by 3.5, [Aop,V ] being cocomplete
by 3.3 and 3.74. Conversely, if C is cocomplete and K : A // C dense, the fully-faithful
K̃ : C // [Aop,V ] has by Theorem 4.51 the left adjoint − ?K; and C is complete by 3.5.

Another simple case is that of a fully-faithful K:

Proposition 5.16 C is equivalent to a full subcategory of [Aop,V ] containing the rep-
resentables if and only if there is a dense fully-faithful K : A // C. Then, to within
isomorphism, the “inclusion” J : C // [Aop,V ] is K̃, while the inclusion of A (identified
with the representables) into C is K.

Proof. If C contains the representables, each A(−, A) is its own reflexion in C; whence

by Proposition 5.14, the inclusion J : C // [Aop,V ] is isomorphic to K̃ where K : A // C
is the inclusion. Conversely, if K : A // C is fully faithful and dense, (4.22) gives K̃K ∼=
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Y : A // [Aop,V ], so that C is equivalent to a full subcategory of [Aop,V ] containing the
representables.

As extreme cases of Proposition 5.16, we have the density of 1 : A //A (1̃ here being

the fully-faithful Y : A // [Aop,V ]), and the density of Y : A // [Aop,V ] (Ỹ here by (4.30)
being 1: [Aop,V ] // [Aop,V ]). If in this latter we take A = I, which we may identify
with the full subcategory {I} of V , we observe that:

The single object I is always dense in V . (5.17)

For instance, 1 is dense in Set, the infinite cyclic group Z is dense in Ab, and 1 is
dense in Cat.

The assertion (5.17) and these examples of it must be interpreted strictly in accordance
with our conventions; there is no suggestion that the single object I is necessarily dense
in the ordinary category V0, when V 6= Set: cf. 3.9 above. For instance, although Z is
dense in the Ab-category Ab, it is not dense in the ordinary category Ab0, although it is
a regular generator there. In fact, the single object Z⊕Z is dense in Ab0; this is a special
case of the fact (cf. Isbell [35]) that, if C is an equational category of algebras whose basic
operations all have arity ≤ n, the free algebra Fn on n generators is dense in C. (Once
again, these assertions of density and of non-density for particular functors in the case
V = Set are easily verified using (5.5).)

Again, although 1 is dense in the Cat-category Cat, it is not even a generator in the
ordinary category Cat0. The ordered-set category 2 is clearly a strong generator in Cat0;
but it is not a regular generator, since Cat0(2, A) · 2 // A is not a coequalizer if A has
one object and has a single non-identity map e with e2 = e. Hence a fortiori 2 is not
dense in Cat0. It is easily verified, however, that the ordered set 3 = {0, 1, 2} is dense in
Cat0.

It is in fact possible, in contrast to (5.17), that V0 admit no small dense subcategory
A whatsoever. An example is the cartesian closed category V = CGTop of compactly-
generated topological spaces. If A is a small full subcategory (which we may assume
to contain some nonempty space), let θ be a regular cardinal exceeding cardA for each
A ∈ A, and form the compact hausdorff space Ω as in the example preceding Proposi-
tion 5.14. By the argument used there, the non-closed set Ω − {θ} has a closed inverse
image under each continuous h : A //Ω with A ∈ A; hence the canonical surjective map∑

A∈AA(A,Ω) · A // Ω is not a topological quotient map. It factorizes therefore through
the set Ω with the strictly-finer quotient topology (easily seen to be compactly generated),
and thus through a proper subobject of A. Hence A is not even a strong generator, much
less dense.

We observed in 3.6 that a V-functor K : A // C is certainly strongly generating if the
ordinary functor K0 : A0

// C0 is so. The analogue for density is false; if V is Cat and C
is the 2-category of (3.54), the object 1 is dense in C0 but not in C. Even more is true: a
V-category C may admit no small dense subcategory at all, although C0 admits one. For
an example of this, take V = Cat again, and let C0 = Set, which has the small dense
subcategory 1. Let the category C(X, Y ) be discrete unlessX is the empty set and Y is not.
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The category C(0, Y ) has only one object, tY say, and is therefore to be a monoid: let it be
the free monoid on the symbols αY , where α runs through all cardinals less than cardY .
It remains to define the composite of the 2-cell αY : tY // tY : 0 // Y with f : Y // Z;
we take it to be αZ : tZ // tZ : 0 // Z if α < cardZ, but to be 1: tZ // tZ : 0 // Z
otherwise. Clearly C is now a 2-category. Let A be a small subcategory of C that is a
candidate for density; by Theorem 5.13 we may suppose without loss of generality that
0 ∈ A. Let β = sup{cardA |A ∈ A}, and choose an X ∈ C with β < cardX. We exhibit
a 2-natural transformation φ = (φA : C(A,X) // C(A, 1))A∈A not induced by the unique
map X // 1, showing by (5.5) that A is not dense in C.

For A 6= 0, we are forced to take for φA the unique functor into C(A, 1) = 1; while
φ0 is to be some monoid-map ψ : C(0, X) // C(0, 1). For any choice of ψ, the naturality
of φ (as distinct from its 2-naturality) is automatic. The only non-trivial 2-naturality
conditions involve the 2-cells αA : tA // tA : 0 //A for A ∈ A; such a condition evaluated
at f ∈ C(A,X) gives ψ(αX) = 1 if α > 0 and ψ(0X) = 01; and hence φ is 2-natural if
ψ(αX) is so given for each α < β. We are at liberty to choose ψ arbitrarily on the other
generators of C(0, X), and in particular on βX . If we choose ψ(βX) to be not 1 but 01,
the 2-natural φ is not induced by X // 1.

5.4 Presentations of the density of a fully-faithful K in terms of K-
absolute colimits

In this section we use the results of 4.10 above to discuss, in terms of colimits in C, the
density of a fully faithful K : A // C.

Let F : Lop // V and P : L // C. If the colimit F ? P exists in C and is preserved
by K̃ : C // [Aop,V ], we shall call it a K-absolute colimit in C. If L is small, it follows
from 3.3 that K-absoluteness of the colimit F ? P is equivalent to its preservation by
C(KA,−) : C // V for each A ∈ A; and in any case preservation by these representables
implies K-absoluteness. It is immediate from the definition in 4.10 of K-cylinder that:

Lemma 5.18 The unit α : F // C(P−, F ? P ) of any K-absolute colimit in C is a K-
cylinder.

In proving Theorem 4.93 we observed that 1 : K̃C //C(K−, C) is always a K-cylinder.

Indeed, since the colimit K̃C ∼= K̃C ? Y is pointwise by (3.10), this cylinder is sent to a

colimit-cylinder not only by K̃ but by each C(KA,−): which for large A is in general a
stronger assertion.

Theorem 5.19 For a fully-faithful K : A // C the following are equivalent:

(i) K is dense.

(ii) Every K-cylinder α : F //C(P−, C) is the unit of a K-absolute colimit F ?P ∼= C.

(iii) For each C ∈ C, the identity 1: K̃C //C(K−, C) as unit exhibits C as K̃C?K, and
this colimit is K-absolute, preserved in fact by the representables C(KA,−) : C //V.
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(iv) Each C ∈ C is a K-absolute colimit of objects of A, in the sense that C is the value
of a K-absolute colimit of the form F ? KQ.

(v) There is a family Φ = (Fγ : Lop
γ

// V , Pγ : Lγ // C)γ∈Γ of diagrams in C such that
each colimit Fγ ? Pγ exists and is K-absolute, and such that C is the closure of A
under this family of colimits.

If A is small, the colimits in (iv) and (v) may be taken to be small.

Proof. (i) implies (ii) since, when K̃ is fully faithful, it reflects colimits by 3.5. By the
remark preceding the theorem, (ii) gives (iii) as a special case. Then (iii) gives (iv) by

taking F = K̃C and Q = 1; and the domain of F here is A, so that the colimit is small
if A is. From (iv) we get (v) by taking for Φ the one-object family (F,KQ). Finally, by
Theorem 4.98 and Lemma 5.4, it follows from (v) that 1 : K //K exhibits 1C as LanKK,
giving (i) by Theorem 5.1(v).

The chief purpose of this theorem is to exhibit (v) as a practical criterion for the
density of K. We shall say that the density of A in C is presented (or exhibited) by the
family Φ = (Fγ, Pγ)γ∈Γ; or, more loosely, by the family Fγ ? Pγ of K-absolute colimits.
We may call such a family a presentation of the density of A in C, or simple a density
presentation. We give a few examples of density exhibited by such a presentation.

Proposition 5.20 Given full subcategories A ⊂ D ⊂ C, if every D ∈ D is a retract in
D0 of some A ∈ A, and if D is dense in C, then A is dense in C.

Proof. Given D ∈ D there is an A ∈ A with i : D // A and r : A // D such that
ri = 1. In these circumstances

A
ir //
1
// A r

//D (5.21)

is a coequalizer in the ordinary category C0, and is moreover one preserved by any functor
whatsoever. Being in particular preserved by the representables C(C,−)0 : C0

// V0, it
is by 3.8 in fact a coequalizer in C; and then, being preserved by the representables
C(KA,−) : C //V , where K : A // C is the inclusion, it is a K-absolute colimit. On the

other hand, if J : D // C is the inclusion, every C ∈ C is the colimit J̃C ? J of objects
of D; and by Theorem 5.19(iii) this colimit is preserved by each representable C(JD,−),
and so a fortiori by each C(KA,−); whence it, too, is K-absolute. Since C is therefore

the closure of A under the K-absolute colimits of the two types (5.21) and J̃C ? J , these
constitute a presentation exhibiting A as dense in C.

A category with a small dense subcategory does not in general admit a one-object
full subcategory that is dense; for instance, in Set× Set, no single object can even be a
generator. However:

Proposition 5.22 Let C have the small dense subcategory G, and let H =
∑

G∈G G exist
in C. Then H is dense in C provided that no G0(G,G′) is empty.
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Proof. Because of the last proviso, every G ∈ G is a retract in C0 of H. Since G is dense
in C, so too by Theorem 5.13 is G ∪ {H}. The density of H now follows from Proposition
5.20.

Proposition 5.23 Let C have a full subcategory A, and an initial object 0 such that
C(A, 0) = 0 for each A ∈ A. Then if A ∪ {0} is dense in C, so is A.

Proof. 0 ∈ C is the colimit of the empty diagram, and by hypothesis it is K-absolute
where K : A // C is the inclusion. The proof concludes like that of Proposition 5.20.

Another example of a density presentation comes at once from the examples following
Theorem 4.91 and Theorem 4.98:

Proposition 5.24 In the case V = Set, let the small set {Gx}x∈X of objects constitute
a regular generator of the cocomplete category C. Then the full subcategory given by the
small coproducts of the Gx is dense in C; and if the Gx are all finitely presentable, we can
replace “small” here by “finite”.

For example, if C is an equational category of algebras (with finitary operations), the
free algebra F1 on one generator is easily seen to be a regular generator and to be finitely
presentable. We conclude by Proposition 5.24 that the free algebras Fm with m finite
constitute a small dense subcategory. Here, however, we have already noted in 5.3 Isbell’s
result that, if all the basic operations have arity ≤ n, then Fn alone is dense in C.

Further examples of density presentations will be given in 5.7–5.10 below.

5.5 The characterization of functor categories [Aop,V ]; small projectives
and Cauchy completion; Morita equivalence

We now apply some of the results above to the characterization of V-categories of the
form [Aop,V ] for some small A.

We shall say that an object A in a cocomplete V-category C is small-projective if the
representable C(A,−) : C // V preserves all small colimits. We record for future use:

Proposition 5.25 A retract D of a small-projective A in a cocomplete C is again small-
projective.

Proof. Let F ? G be a small colimit in C. We have the coequalizer (5.21) which is
preserved by any functor (and hence sent to an equalizer by a contravariant functor). So
we have a commutative diagram

C(D,F ? G) C(A,F ? G) C(A,F ? G)

F ? C(D,G) F ? C(A,G) F ? C(A,G)

//

��

//
//

∼=

��

∼=

��
// //

//

where the rows are equalizer diagrams and the marked comparison maps are isomorphisms;
whence the remaining comparison map is an isomorphism too.
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Theorem 5.26 In order that C be equivalent to [Aop,V ] for some small A, it is necessary
and sufficient that C be cocomplete and that there be a small set of small-projective objects
in C constituting a strong generator for C.

Proof. We have seen that [Aop,V ] is cocomplete, and that the small full subcategory A
of the representables is dense in [Aop,V ], and thus a fortiori strongly generating. Moreover
the representable A(−, A) is small-projective; for [Aop,V ](A(−, A), ?) is isomorphic by
Yoneda to the evaluation EA : [Aop,V ] // V , which preserves all small colimits by 3.3.
This proves the necessity.

For the sufficiency, let K : G // C be the inclusion of the full subcategory determined
by the small set of objects in question. Since K is strongly generating, K̃ : C // [Gop,V ]

is conservative. Moreover K̃ preserves all small colimits, since each C(KG,−) does so.

In particular it preserves for each C ∈ C the colimit K̃C ? K. Since, by the remarks
following Lemma 5.4, K̃ sends 1: K̃C //C(K−, C) to a colimit cylinder, we conclude by
the observations at the beginning of 3.6 that 1 is already a colimit cylinder, exhibiting C
as K̃C ? K. Thus K is dense by Theorem 5.1(iv); and consequently K̃ is fully faithful.

To prove K̃ an equivalence, it remains by 1.11 to prove it essentially surjective. Given
F ∈ [Aop,V ], the colimit F ? K exists because A is small and C is cocomplete; and since

K̃ preserves small colimits we have K̃(F ? K) ∼= F ? K̃K ∼= F ? Y ∼= F .

There may well be various inequivalent A for which C is equivalent to [Aop,V ]. If A
denotes the full subcategory of [Aop,V ] determined by the small-projectives, then A ⊂ A,
and the proof above gives [Aop,V ] ' [Aop

,V ] if A is small. In general A is strictly bigger
than A; and for many V it is small whenever A is. We shall show that in 5.8 that, for
V = Set, A consists of the retracts of the representables. The same is true for V = Cat or
CGTop; when V = Ab, A consists of the retracts of finite coproducts of representables;
when V = R+, Lawvere [54] has shown A to be the Cauchy completion of the (generalized)
metric space A. In all these cases A is small when A is.

If V is such that this last is so, we may call A the Cauchy completion of A. The passage

from A to A is a closure operation; for A, as the small-projectives in [Aop
,V ] ' [Aop,V ],

is equivalent to A. Then A is Cauchy complete if the inclusion A //A is an equivalence.
In these circumstances it follows at once from the facts above that, for small A and B, we
have [Aop,V ] ' [Bop,V ] if and only if A ' B. This relation is called Morita equivalence
between A and B; it was first studied by Morita [65] (see also [2]) in the case V = Ab
with A and B one-object Ab-categories – that is, rings R and S; in which case [Aop,V ]
and [Bop,V ] are the categories of right R-modules and right S-modules. The general
situation has been studied by various authors ([66], [68], [27], [33]), and may be expressed
in terms of the profunctors or distributors introduced independently by Lawvere [53] and
Bénabou [8]; a profunctor from A to B is a functor T : B⊗Aop //V , and these compose
by the operation S(C,−) ? T (−, A) to form a biclosed bicategory.

For some V , however, A may be large when A is small. An example is the category
V0 of complete lattices and sup-preserving maps, with the tensor product such that the
maps A⊗B //C are the functions A×B //C which are sup-preserving in each variable
separately. Here the Cauchy completion of the unit V-category I is not small, containing
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for each set X the lattice PX of subsets of X. For such V the relation between [Aop,V ]
and [Aop

,V ] is more complicated, and has been given by Lindner [55]:

Theorem 5.27 For any V and any small V-category A, let A consist of the small-
projectives in [Aop,V ]. Then if K : A // [Aop,V ] is the inclusion,

K̃ : [Aop,V ] // [Aop
,V ]

induces an equivalence of [Aop,V ] with the full subcategory Acc[Aop
,V ] determined by the

accessible functors; and the inverse to this equivalence is composition with the inclusion
Z : A //A.

Proof. Since KZ = Y : A // [Aop,V ] is dense, the fully-faithful K is dense by

Theorem 5.13. Hence K̃ : [Aop,V ] // [Aop
,V ] is fully faithful, and it remains to determine

its full image. For any F : Aop // V we have K̃F = [Aop,V ](K−, F ), which by the
Yoneda (3.17) is [Aop,V ](K−, F ?Y ). Since each KB is small-projective, this is isomorphic
to the colimit F? ? [Aop,V ](K−, Y ?) = F? ? [Aop,V ](K−, KZ?) ∼= F? ? A(−, Z?). The
last term here is a small colimit of representables Aop // V , and hence is accessible by
Proposition 4.83. Moreover composing it with Z gives F??A(Z−, Z?) ∼= F??A(−, ?) ∼= F ,
verifying that composition with Z is the inverse. To show finally that every accessible
is in the image of K̃, it suffices to show that every representable A(−, B) is in this

image, since K̃ preserves small colimits. Composing this representable with Z gives
A(Z−, B) : Aop //V ; but A(Z−, B) = [Aop,V ](Y−, KB) ∼= KB. Now we have K̃KB =
[Aop,V ](K−, KB) ∼= A(−, B), as desired.

This gives at once:

Proposition 5.28 For any V and any small A, B, we have an equivalence [Aop,V ] '
[Bop,V ] if and only if we have A ' B.

Of course, since Acc[Aop
,V ] = [Aop

,V ] when A is small, these results include those
derived more simply above for small A. (Another approach to Proposition 5.28 uses the

observation that, if B is cocomplete in Theorem 4.21, then G̃ is cocontinuous if and only
if each GA is small-projective; whereupon SF is small-projective for F ∈ A.)

5.6 Existence and characterization of the left Kan extension along a fully-
faithful dense functor in terms of a density presentation; adjoint-
functor theorems involving density

We return to the consideration of a fully-faithful K : A // C, now supposing it to be
dense; and we use the results of 4.10 again, this time to discuss left Kan extensions
along K. When we say of a functor G : C // B that it preserves K-absolute colimits in
C, we mean only that it sends them to colimits in B; the epithet “K-absolute” has in
general no meaning when applied to colimits in B. Since K is fully faithful, we have by
Proposition 4.23 that S : C // B is of the form LanKG for some G : A // B precisely
when S is canonically isomorphic to LanKSK.
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Theorem 5.29 If K : A // C is fully faithful and dense, the following properties of
S : C // B are equivalent:

(i) 1 : SK // SK exhibits S as LanKSK.

(ii) S preserves all K-absolute colimits.

(iii) For any density presentation Φ: (Fγ, Pγ)γ∈Γ of K : A // C, each of the colimits
Fγ ? Pγ is preserved by S.

(iv) S preserves the colimit K̃C ? K for each C ∈ C.

(v) There is some density presentation Φ = (Fγ, Pγ)γ∈Γ of K : A // C for which S
preserves each of the colimits Fγ ? Pγ.

If A is small, it suffices in (ii) that S preserve all small K-absolute colimits; and moreover
it may then be supposed that the colimits in (v) are small.

Proof. (i) implies (ii) (including the modification when A is small) by Theorem 4.97

and Theorem 5.19(ii). Trivially (ii) implies (iii); and since (K̃C,K) is, by Theorem 5.19,
itself a density presentation, (iii) implies (iv) and (iv) implies (v). Finally (v) implies (i)
by Theorem 4.98 and Lemma 5.4.

As for the existence of LanKG, a direct application of Theorem 4.98 gives:

Theorem 5.30 Let Φ = (Fγ, Pγ)γ∈Γ be a density presentation of the fully-faithful and
dense K : A // C, and let B admit all Fγ-indexed colimits for all γ ∈ Γ. Then every
G : A // B admits a left Kan extension LanKG : C // B.

Recall the equivalence [A,B]′ ' [C,B]l of Theorem 4.99, where [A,B]′ is the full sub-
category given by those G : A // B admitting left Kan extensions along K, and where
[C,B]l is the full subcategory given by those S : C // B of the form LanKG for some G
(necessarily isomorphic to SK). Where K is dense, Theorem 5.29 now identifies such S as
those preserving all K-absolute colimits. We extract from this the most important prac-
tical case, writing CoctsK [C,B] for the full subcategory of [C,B] given by those S : C //B
which preserve all small K-absolute colimits:

Theorem 5.31 Let Φ = (Fγ, Pγ)γ∈Γ be a density presentation of the fully-faithful and
dense K : A // C, for which the domain Lγ of each Fγ is small; and let B admit all
Fγ-indexed colimits for all γ ∈ Γ. Then we have an equivalence

LanK : [A,B] ' CoctsK [C,B]

whose inverse is the restriction of [K, 1] : [C,B] // [A,B].
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Note that, since the fully-faithful and dense Y : A // [Aop,V ] has Ỹ = 1, every
colimit in [Aop,V ] is Y -absolute. Thus Theorem 5.31 generalizes the assertion (4.56) of
Theorem 4.51.

We end this section with two adjoint-functor theorems involving small dense subcat-
egories.

Theorem 5.32 Let C be complete and cocomplete, and let A be a small dense full sub-
category whose inclusion K : A // C has a density presentation Φ = (Fγ, Pγ)γ∈Γ. Let B
be the closure under small colimits of a full subcategory D. Let T : C // B preserve the
colimits Fγ ? Pγ, and let each Fγ ? TPγ be further preserved by the representables B(D,−)
with D ∈ D. Then T has a left adjoint if it is continuous.

Proof. For each D ∈ D, the functor B(D,T−) : C // V preserves the colimits Fγ ?
Pγ, and hence by Theorem 5.29 is the left Kan extension of its restriction to A. It is
therefore accessible by Proposition 4.83; and since it is continuous, it is by Theorem 4.84
representable. That T has a left adjoint now follows from Proposition 3.37.

A well-known special case of this theorem (see Satz 14.6 of [31]) is that where V = Set,
where C and B are categories of finitary essentially-algebraic structures, and where A and
D are the finitely-presentable objects in C and B respectively; the conclusion is then that
a continuous T has a left adjoint if it preserves filtered colimits.

The next theorem, although we place it here for comparison, is quite different in
nature, and could have been proved immediately after Theorem 5.1. It is a variant of
Theorem 4.90 (the Special Adjoint Functor Theorem) – or rather, of its dual. A small
dense subcategory replaces the generator, and then the hypothesis on cointersections may
be dropped; moreover the present theorem is valid for any V .

Theorem 5.33 If the cocomplete C has a small dense subcategory A, every cocontinuous
S : C // B has a right adjoint.

Proof. If K : A // C is the inclusion, LanSKK exists because A is small and C is
cocomplete. Since LanKK ∼= 1C by Theorem 5.1, it follows from Theorem 4.47 that
LanS1C exists. Again, since A is small, the cocontinuous S preserves the Kan extensions
LanKK and LanSKK; whence, by Theorem 4.47 again, it preserves LanS1C. That S has
a right adjoint now follows from Theorem 4.81.

Note that a special case of this theorem appeared in Theorem 4.51.

5.7 The free completion of A with respect to all colimits with indexing-
type in F

We now describe the free cocompletion of a V-category with respect to colimits of some
given class.

First observe that:

Proposition 5.34 For any V-category A, the set of accessible functors Aop //V is closed
under small colimits.
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Proof. Let H : Lop // V and P : L // [Aop,V ], where L is small and each PL is
accessible. By Proposition 4.83, each PL is the left Kan extension of its restriction to
some small full subcategory CL of Aop. The union C of the CL for L ∈ L is still small,
because L is small; write K : C //Aop for the inclusion. Since K is fully faithful, it follows
from Theorem 4.47 that each PL is the left Kan extension of its restriction (PL)K to
C. Write Q : L // [C,V ] for the composite of P with [K, 1] : [Aop,V ] // [C,V ], so that
QL = (PL)K; then we have PL ∼= LanKQL. Now (3.21), expressing the cocontinuity of ?
in its second variable, along with (3.16), justifies the calculation (H?P )A = H??(P?)A ∼=
H??(K̃A?Q?) ∼= K̃A?(H?Q) = (LanK(H?Q))A. So H?P ∼= LanK(H?Q) is accessible
by Theorem 4.83.

In other words, the full subcategory Acc[Aop,V ] of [Aop,V ] is closed under small
colimits. Note from (4.41) that Acc[Aop,V ] is a V-category, even if A is large.

Now let F be any set of functors with codomain V , for each element F : L // V of
which the domain L is small ; that is, F is a set of small indexing types. We say that C is
F-cocomplete if it admits all colimits indexed by the elements of F , and that S : C //B
is F-cocontinuous if it preserves all such colimits – which we may call F-colimits . We
write F -Cocts[C,B] for the full subcategory of [C,B] determined by the F -cocontinuous
functors. In the following we regard A as embedded in [Aop,V ] by Yoneda.

Theorem 5.35 For any set F of small indexing types and any V-category A, let A be
the closure of A in [Aop,V ] under F-colimits, and let K : A //A be the inclusion. Then
A ⊂ Acc[Aop,V ], and is therefore a V-category. When A is small and the set F is small,
A is small. A is F-cocomplete, and every F-colimit in A is K-absolute; the totality of
these F-colimits constitutes a density presentation of K. A functor S : A // B is of the
form LanKSK precisely when it is F-cocontinuous; and we have an equivalence

LanK : [A,B]′ ' F -Cocts[A,B],

whose inverse is the restriction of [K, 1], where [A,B]′ is the full subcategory of [A,B]
consisting of those G for which LanKG exists. If B is F-cocomplete, this is all of [A,B],
and the equivalence becomes

LanK : [A,B] ' F -Cocts[A,B],

exhibiting A as “the free F-cocompletion of A”.

Proof. That A ⊂ Acc[Aop,V ] follows from the transfinite construction of A in 3.5,
along with Proposition 5.34. That A is small when A and F are small was observed in
3.5. A is F -cocomplete by its construction, since F -colimits certainly exist in [Aop,V ],
each element of F being small; and these F -colimits in A are K-absolute, being preserved
by construction under the inclusion A // [Aop,V ], which is K̃ by Proposition 5.16. The
F -colimits in A form a density presentation for K by the definition of this following
Theorem 5.19; and then the characterisation of the S of the form LanKSK follows from
Theorem 5.29. The first equivalence displayed comes from Theorem 4.99, and the identi-
fication of [A,B]′ with [A,B] when B is F -cocomplete comes from Theorem 5.30.
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Note that the second equivalence of Theorem 5.35 is a special case of that of The-
orem 5.31; what is new here is the freeness of the F -cocompletion, which allows us to
replace CoctsK [C,B] by F -Cocts[C,B]. (Often, using the word “completion” in a wider
sense, we may refer to the F -cocompletion of A as the completion of A under F-colimits.)

As the first example of such an F -cocompletion, take F to consist of all small indexing
types, so that A is simply the cocompletion of A. From Proposition 4.83 and Proposi-
tion 5.34, this cocompletion is precisely the V-category Acc[Aop,V ]. When A is small,
this reduces to [Aop,V ], and we re-find (part of) Theorem 4.51.

Other examples with V 6= Set will be found in the article [45] on enriched essentially-
algebraic structures. For the remaining examples discussed below we take V = Set. The
colimits we are interested in will then be conical ones, so that F is in effect a set of small
categories.

Before we proceed, however, we anticipate a possible misunderstanding that may arise
from the very special nature of our main examples. In the transfinite construction of 3.5
for the closure A of A under F -colimits in [Aop,V ], the first step consists in taking all the
F -colimits in [Aop,V ] of the objects of A. In some important cases the full subcategory
given by these F -colimits is itself closed under F -colimits and hence constitutes A; the
construction then terminates after one step. This was so in the example above, where
F consisted of all small indexing types; and it will also be so in the three important
examples of 5.8–5.10 below. However, it is far from true in general. For instance, taking
V = Set henceforth, if F consists of two discrete categories 0 and 2, so that A is the
closure of A under finite coproducts, we reach A only after ω steps of the iteration. Less
trivially, if F consists of the single category 0 //// 1 , so that A is the closure of A under
coequalizers, consider the case where A has two objects A,B and three non identity maps
f, g, h : A //B. In the first step we add in the coequalizers P,Q,R of the respective pairs
(f, g), (f, h), and (g, h); but now there are two maps A // P , and we must next add in
the coequalizer of these, and so on.

5.8 Cauchy completion as the idempotent-splitting completion when V =
Set

For our first main example with V = Set, let F consist of the single category with one
object and with one non-identity endomorphism e satisfying e2 = e. Then a diagram of
type F in A is an object A with an idempotent endomorphism e. This diagram has a
colimit r : A // B in A if and only if the idempotent e splits ; that is, e has the form
e = ir for maps r : A // B and i : B // A with ri = 1. Such a splitting is unique (to
within isomorphism) if it exists; so that the split idempotents correspond bijectively to the
retracts of A in A. In this case A, which we may call the idempotent-splitting completion
of A, clearly consists of all the retracts in [Aop,Set] of the representables A(−, A) ∈ A;
it is evidently small if A is. Moreover B is F -complete precisely when all idempotents
split in B. In fact we have the result promised in 5.5 above:

Theorem 5.36 For a small A, the small projectives in [Aop,Set] are precisely the re-



5.9 The finite-colimit completion when V = Set 101

tracts of the representables; so that the idempotent-splitting completion of A is its Cauchy
completion. Moreover A is Cauchy complete exactly when all the idempotents split in A.

Proof. We saw in the proof of Theorem 5.26 that the representables in [Aop,Set]
are small-projective, whence so too are their retracts by Proposition 5.25. Suppose
conversely that F : Aop // Set is small-projective. Then [Aop,Set](F,−) preserves all
small colimits, and in particular the canonical expression (3.32) of F as a colimit of
representables. Thus [Aop,Set](F, F ) is the canonical colimit, indexed by (elF )op, of
the sets [Aop,Set](F,A(−, A)). Since colimits in Set are calculated by (3.35), the ele-
ment 1F of [Aop,Set](F, F ) is the composite of some r : A(−, A) // F in elF with some
i : F //A(−, A); that is, F is a retract of some A(−, A).

To say that A is Cauchy complete is, by 5.5, to say that the inclusion A //A is an
equivalence, or that every object of A is isomorphic to one in A. Since idempotents split
uniquely if at all, this is exactly to say that all idempotents split in A.

Note that, in this example, the inclusion A //A preserves such F -colimits as exist in
A. In fact F -colimits for this F are absolute – they are preserved by any functor whatso-
ever. This example is quite atypical, however: for a general F the inclusion A //A by no
means preserves the F -colimits that exist in A. For instance, consider the completion of A
under finite coproducts: A(C,A+B) is in general quite different from A(C,A)+A(C,B).

5.9 The finite-colimit completion when V = Set

Our next example with V = Set is the completion of A under finite colimits; since the
number of finite categories is small, the finite completion of A is small if A is.

Theorem 5.37 The completion of A under finite colimits is the full subcategory of
[Aop,Set] determined by all finite colimits of the representables.

Proof. Let A ⊂ [Aop,Set] consist of all finite colimits of the representables; we are
to show that A is closed under finite colimits. Clearly A contains the initial object of
[Aop,Set]. Consider objects F = colimY T and G = colimY S of A, where T : P //A and
F : Q //A with P and Q finite. Let R : P +Q //A be the functor with components T
and S. Since an inductive cone over Y R with any vertex H clearly consists of independent
cones over Y T and Y S, it follows that colimY R = F +G. Hence A is closed under finite
coproducts, and it remains to prove it closed under finite coequalizers.

With F and G as above, let the colimit cones be (ρP : A(−, TP ) // F ) and
(σQ : A(−, SQ) //G), and consider α, β : F //G. Since the ρP are jointly epimorphic, a
map γ : G //H satisfies γα = γβ if and only if it satisfies γαρP = γβρP for each P ∈ P .
The map αρP : A(−, TP ) //G corresponds by Yoneda to an element of GTP . Since the
σQ,TP : A(TP, SQ) //GTP are jointly surjective in Set, this element is the image under
σP ′,TP of some uP ∈ A(TP, SP ′) for some P ′ ∈ Q. By the naturality of Yoneda we then
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have commutativity in the left diagram of

A(−, TP )
A(−,uP ) //

ρP

��

A(−, SP ′)

σP ′

��

A(−, TP )
A(−,vP ) //

ρP

��

A(−, SP ′′)

σP ′′

��
F α

// G, F
β

// G;

while the corresponding right diagram comes from a similar argument applied to β. The
condition γαρP = γβρP now becomes γσP ′A(−, uP ) = γσP ′′A(−, vP ).

Define a finite graph G whose object-set is (obP) + (obQ), and whose arrows are all
those of Q together with arrows xP : P // P ′ and yP : P // P ′′ for each P ∈ P . Let
S be the category generated by G subject to the composition and identity relations that
already obtain in Q; clearly S is finite. Define N : S //A to agree with S on Q, to send
P ∈ P to TP , and to send xP and yP to uP and vP respectively. Then clearly colimY N
is the coequalizer of α and β.

(It may not be inferred from the truth of Proposition 5.34 and Theorem 5.37 that,
for a general cocomplete C, the construction of the colimit-closure or of the finite-colimit-
closure of a full subcategory A terminates after one step. The ordinary category Cat0

is by Proposition 3.40 the colimit-closure of the full subcategory {2}, since 2 is a strong
generator, as we observed in 5.3. The category A with one object and one non-identity
idempotent map is in fact easily seen to lie in the finite-colimit-closure of {2}. Yet A is
not the colimit in Cat0 of any functor factorizing through {2}; for it is soon verified that
no map from a copower of 2 to A is a coequalizer.)

5.10 The filtered-colimit completion when V = Set; flat and left-exact
functors

For our final example with V = Set we consider the completion of a small A under small
filtered colimits. Let us write this as Â ⊂ [Aop,Set], and for the rest of this section keep
A for the completion of A under finite colimits.

A functor F : Aop //Set is called flat if the functor F?− : [A,Set] //Set is left exact –
that is, finite-limit-preserving. Every representable A(−, A) is flat, for A(−, A)?? = (?)A
by Yoneda, which is the evaluation EA : [A,Set] // Set, preserving all small limits.
Moreover, since ? is cocontinuous in both variables, it follows from Theorem 4.73 that a
small filtered colimit of flat functors is flat.

Theorem 5.38 For F : Aop // Set with A small, the following are equivalent:

(i) (elF )op is filtered.

(ii) The canonical expression (3.32) of F as a colimit of representables is a filtered col-
imit.

(iii) F is some small filtered colimit of representables.
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(iv) F lies in the completion Â of A under small filtered colimits.

(v) F is flat.

Proof. (i) implies (ii) since the colimit (3.32) is indexed by (elF )op; that (ii) implies

(iii) and (iii) implies (iv) are trivial. Since Â is by Theorem 5.35 the closure of A in
[Aop,Set] under filtered colimits, (iv) implies (v) by the remarks preceding the theorem.
Thus we have only to show that (v) implies (i).

Let T : P // elF where P is finite. As in 4.7, T corresponds to a functor S : P //Aop

and an element α ∈ limFS. By the flatness of F we have F ? limP A(SP,−) ∼= limP (F ?
A(SP,−)); and by Yoneda the latter is limP FSP = limFS. By the formula (3.70) and
the dual of (3.68), we have therefore a canonical surjection∑

A∈A

FA× limP A(SP,A) // limFS.

Let some inverse image of α under this surjection be given by (x ∈ FA, β ∈
limP A(SP,A)). By (3.28), we can regard β as an inductive cone in A over S with
vertex A. Since FβP : FA // FSP maps x to αP by construction, β is equally an
inductive cone in (elF )op over T with vertex (A, x). Thus (elF )op is filtered.

Proposition 5.39 A flat functor F : A // Set with A small preserves any finite limit
that exists in A. If A is finitely complete, the flat functors F : A //Set are precisely the
left-exact ones.

Proof. If S : P //A with P finite has a limit in A, the flatness of F gives, as in the
proof above, that F ? limP A(−, SP ) ∼= limFS. However the left side is now isomorphic
to F ? A(−, limS) ∼= F (limS). So a flat functor F is certainly left exact if A is finitely
complete. Conversely, if A is finitely complete and F is left exact, elF is finitely complete
by Proposition 4.87; hence (elF )op is finitely cocomplete and therefore filtered, so that F
is flat by Theorem 5.38.

Proposition 5.40 The finitely-presentable objects in the filtered-colimit-completion Â of
a small A are the retracts of the representables; so that they reduce to A if idempotents
split in A.

Proof. Since filtered colimits in Â are formed as in [Aop,Set], the proof of Theorem 5.36
applies here virtually unchanged. The new point is that, for a finitely presentable F , the
functor Â(F,−) is only known to preserve filtered colimits; but now the canonical colimit
of representables giving F is filtered.

Proposition 5.41 If A is the finite-colimit-completion of the small A, then the inclusion

A // [Aop,Set] is, to within equivalence, the filtered-colimit-completion Â of A. In con-
sequence, every F : Aop // Set is a filtered colimit of objects of A, and A consists of the
finitely-presentable objects of [Aop,Set].
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Proof. Let K : A // A be the inclusion, so that by Proposition 5.16 the inclusion
A // [Aop,Set] is K̃. Using Lex for “left exact”, we have by Theorem 5.38 and Propo-

sition 5.39 that Â is the full subcategory Lex[Aop
,Set] of [Aop

,Set]. By the dual of
Theorem 5.35 we have an equivalence RanKop : [Aop,Set] ' Lex[Aop

,Set], whose inverse
is the restriction of [Kop, 1]. Since the composite of [Kop, 1] with the Yoneda embedding

A // [A,Set] is K̃ : A // [Aop,Set], this gives the first assertion. The second one comes
from Theorem 5.38 and the third from Proposition 5.40.

Finally we give the converse to Proposition 4.74 as promised in 4.6:

Proposition 5.42 For a small A with finite-colimit-completion A, the following are
equivalent:

(i) A is filtered.

(ii) colim: [A,Set] // Set is left exact.

(iii) The inclusion K : A //A is final.

Proof. Since by (3.26) we have colimF ∼= ∆1 ? F , what (ii) asserts is the flatness
of ∆1: Aop // Set. By Theorem 5.38, this is equivalent to the filteredness of (el ∆1)op,
which is A; thus (ii) is equivalent to (i).

Since A is finitely complete and hence filtered, what (iii) asserts by Proposition 4.71
is the non-emptiness of each F/K for each F ∈ A. Any finite diagram in A has a colimit
F in A, and every F in A so arises. To say that the diagram admits an inductive cone
with vertex A ∈ A is exactly to say that there is a map F //KA for some A; thus (iii)
is equivalent to (i).

5.11 The image under [K, 1] : [C,B] −→ [A,B], for a general dense K, of
the left adjoint functors; examples and counter-examples

From the beginning of 5.4 until now we have dealt only with fully-faithful dense functors –
exploiting the notion of a density presentation, which does not seem to generalize usefully
to the non-fully-faithful case. Now we drop this restriction, and consider an arbitrary
dense K : A // C. For any B, write Ladj[C,B] for the full subcategory of [C,B] given
by those S : C // B which are left adjoints (or which have right adjoints); since left
adjoints are certainly A-cocontinuous, it follows from Theorem 5.1 that the restriction of
[K, 1] : [C,B] // [A,B] to Ladj[C,B] is fully-faithful, so that Ladj[C,B] is a V-category if
A is small, being equivalent to its replete image in [A,B] under [K, 1]; the main goal of
this section and the next is to determine this replete image.

In this section, devoted mostly to examples, we suppose for simplicity that A is small;
if it were not, the expressions Cocts[C,B] and CoctsK [C,B] would have to be modified.
Then Proposition 5.11 and Theorem 5.33 give

Ladj[C,B] = Cocts[C,B] if C is cocomplete. (5.43)
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We also abbreviate full subcategory to subcategory, since we consider no others. Finally,
we loosely write [K, 1] and LanK for various restrictions, specified by the context, of the
functors properly so named.

The following remarks, to the end of this paragraph, apply to any K : A // C, dense
or not, and do not need A to be small. In Theorem 4.51, and in its generalizations
Theorem 4.99 and Theorem 5.35, we have used the notation [A,B]′ for the subcategory
given by those G : A // B for which LanKG exists. Since we have soon to deal with
more than one functor K, we replace this notation by [A,B](K). Similarly we have used,
in Theorem 4.99 and elsewhere, [C,B]` for the subcategory given by those S : C // B
of the form LanKG for some G; we now change this to [C,B]`K . Write [A,B]

(K)
∗ for

the subcategory of [A,B](K) given by those G for which the unit G // (LanKG)K is an
isomorphism; and write [C,B]`K∗ for the subcategory of [C,B]`K given by those S for which
the identity 1 : SK // SK exhibits S as LanKSK. It is immediate from Theorem 4.38
that we have an equivalence (with the evident unit and counit)

LanK a [K, 1] : [C,B]`K∗ ' [A,B](K)
∗ , (5.44)

where (as we warned) we are using [K, 1] and LanK loosely for their restrictions. By
Proposition 4.23,

[A,B]
(K)
∗ = [A,B](K) and [C,B]`K∗ = [C,B]`K for fully-faithful K; (5.45)

and in this special case, (5.44) becomes the equivalence

LanK a [K, 1] : [C,B]`K ' [A,B](K) for fully-faithful K (5.46)

of Theorem 4.99: but by the same Proposition 4.23, the first equality in (5.45) fails for a
general B (and in particular for B = V) whenever K is not fully faithful, so that (5.46)
then fails too.

Henceforth we suppose once again that K is dense. As in the proof of Theorem 5.1,
a cocontinuous S : C // B preserves the colimit K̃C ∗K; so that by Theorem 5.1(iv) we
have S ∈ [C,B]`K∗ (from which, using (5.44), we re-find the conclusion of Theorem 5.1(i),
that the restriction of [K, 1] to Cocts[C,B] is fully faithful). We therefore have inclusions

Ladj[C,B] ⊂ Cocts[C,B] ⊂ [C,B]`K∗ ⊂ [C,B]`K ⊂ [C,B]. (5.47)

The first of these inclusions is by (5.43) an equality when C is cocomplete, but is proper
in general – the inclusion into Set of the small full subcategory of finite sets is continuous
but has no left adjoint. The third inclusion is by (5.45) an equality when K is fully
faithful, and in fact Theorem 5.29 then gives the common value explicitly as

[C,B]`K∗ = [C,B]`K = CoctsK [C,B] for fully-faithful K. (5.48)

However the second and fourth inclusions are in general proper even when V = Set, C
and B are complete and cocomplete, and K is fully faithful.
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For an example of this, let K : 1 // 2 correspond to 1 ∈ 2 = (0 // 1); it is clearly
dense. Then [2,B] consists of all maps A // B in B; while [2,B]`K = [2,B]`K∗ consists
of those with A = 0, the initial object of B; and Cocts[2,B] = Ladj[2,B] consists of
those 0 // B which are epimorphisms in B. Here of course LanK is fully faithful on
[A,B]

(K)
∗ = [A,B](K) = [A,B] = B; but [K, 1], although necessarily fully faithful on

[2,B]`K , is not so on [2,B]: it sends A //B to B ∈ B. The replete image under [K, 1] of
Ladj[2,B] is the proper subcategory of B given by those B for which 0 //B is epimorphic.

When K is not fully faithful, the second, third and fourth inclusions in (5.47) may all
be proper, even when V = Set, C and B are complete and cocomplete, and K is surjective
on objects. For an example, let K : 2 //2 be the inclusion, where 2 is the discrete category
{0, 1}, and let B = Setop; again K is clearly dense. An object of [2,B] may be identified
with a map B // A in Set; this is sent by [K, 1] to (B,A) ∈ [2,Set] = Set × Set; and
LanK sends (D,C) to the projection D×C //C. Clearly [2,B]`K consists of those B //A
isomorphic to such projections, while [2,B]`K∗ consists of such projections for which the
other projection D × C // D is an isomorphism – that is, the maps D // 1 and the
maps 0 //C. Finally (as in the last example) Ladj[2,B] consists of the maps 1 // 1 and
0 // 1. Observe how badly (5.46) fails: although [K, 1] is conservative on [2,B] (as it
must be for an essentially surjective K), it is not fully faithful on [2,B]`K ; and LanK is

not fully faithful on [2,B] = [2,B](K). Clearly [2,B]
(K)
∗ consists of the pairs of the forms

(D, 1) and (0, C), while the replete image under [K, 1] of Ladj[2,B] consists of the pairs
(1, 1) and (0, 1).

For a non-fully-faithful K, not only does Proposition 4.23 fail, but even a left adjoint
S : C //B may be LanKG for some G other than SK; in which case, by (5.44) and (5.47),

G must lie outside [A,B]
(K)
∗ . The example above does not illustrate this possibility, but

the following one does so. With V = Set again, let K = ∆1: 2 // 2. Since the unique
map 2 // 1 is obviously initial, the left Kan extension of K along 2 // 1 is ∆1: 1 // 2
by Theorem 4.67; since the latter functor is clearly dense, so is K by Proposition 5.7.
Taking B cocomplete, we see that LanK sends C // D to 0 // D, while [K, 1] sends
A // B to 1 : B // B. Here [C,B]`K∗ = [C,B]`K , even though K is not fully faithful –

each consisting of the maps 0 //B; while [A,B]
(K)
∗ consists of the maps 1: D //D. As

in the penultimate example, Ladj[C,B] consists of those 0 // B which are epimorphic;
and such an object is the image under LanK of any C // B, which need not in general –
for instance, if B = Setop – lie in [A,B]

(K)
∗ .

5.12 Description of the image above in terms of K-comodels; generaliza-
tion to an equivalence LanZ a [Z, 1] between categories of comodels

We now answer the question raised in 5.11 for a dense K : A // C by identifying the
replete image of [K, 1] : Ladj[C,B] // [A,B] as a certain subcategory K-Com[A,B](K) of

[A,B]
(K)
∗ ⊂ [A,B]; in this form, the result is independent of the smallness of A.

We call a functor G : A // B a K-comodel if G̃ : B // [Aop,V ] factorizes through

K̃ : C // [Aop,V ] as

G̃ ∼= K̃T (5.49)
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for some T : B //C. Since K̃ is fully faithful by Theorem 5.1, such a T is unique to within
isomorphism if it exists. We can write (5.49) more explicitly as a V-natural isomorphism

B(GA,B) ∼= C(KA, TB). (5.50)

Since K̃ trivially factorizes through itself, we have:

The dense K : A // C is always itself a K-comodel. (5.51)

We write K-Com[A,B] for the subcategory of [A,B] given by the K-comodels, and
K-Com[A,B](K) for the intersection of this with [A,B](K) – that is, the category of those
K-comodels G for which LanKG exists. More generally, for any Z : A // D, we write
K-Com[A,B](Z) for the intersection K-Com[A,B] ∩ [A,B](Z).

The name “K-comodel” for a G : A // B satisfying (5.49) is inspired by the fact
(see 5.13 below) that a dense K : A // C, at least for small A and cocomplete C, may
be thought of as a very general kind of essentially-algebraic theory , a model of which in
P is a functor H : Aop // P such that G = Hop : A // Pop is a comodel in the sense
above. These models constitute a full subcategory K-Mod[Aop,P ] of [Aop,P ], isomorphic
to (K-Com[A,Pop])op. If we talk here of comodels rather than models, it is because
we have elected to emphasize left Kan extensions and colimits, rather than their duals.
Particular examples of such theories are given in 6.2 and 6.3 below.

Rather than establish directly the promised equivalence Ladj[A,B] ' K-Com[A,B](K),
we first prove a more general result, itself of value in practice:

Theorem 5.52 Let the dense K : A //C be (isomorphic to) the composite of Z : A //D
and a fully-faithful J : D // C (so that, by Theorem 5.13, both Z and J are also dense).
Then we have an equivalence

LanZ a [Z, 1] : J-Com[D,B] ' K-Com[A,B](Z), (5.53)

whose unit and counit are the canonical maps.

Proof. Let H ∈ J-Com[D,B], so that, corresponding to (5.50), we have

B(HD,B) ∼= C(JD, TB) (5.54)

for some T : B // C. Putting D = ZA in this gives B(HZA,B) ∼= C(JZA, TB) ∼=
C(KA, TB); showing that HZ is a K-comodel, and giving (H̃Z) explicitly as K̃T . Since

(4.49) gives Z̃ ∼= K̃J , we have (K̃ being fully faithful)

[Aop,V ](Z̃D, (H̃Z)B) ∼= [Aop,V ](K̃JD, K̃TB) ∼= C(JD, TB) ∼= B(HD,B),

which by (4.20) shows that H ∼= LanZ(HZ); moreover the unit of this Kan extension is
easily calculated by Theorem 4.6 to be 1: HZ //HZ. Since we have seen that HZ is a
K-comodel, it does indeed lie in K-Com[A,B](Z).

Now let G ∈ K-Com[A,B](Z), so that G̃ ∼= K̃T for some T : B // C. Writing H for

LanZG, using (4.20) for the first step, and recalling that Z̃ ∼= K̃J , we have

B(HD,B) ∼= [Aop,V ](Z̃D, G̃B) ∼= [Aop,V ](K̃JD, K̃TB) ∼= C(JD, TB),
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which is (5.54), showing that H = LanZG belongs to J-Com[D,B]. Putting D = ZA
in (5.54) gives as before B(HZA,B) ∼= C(KA, TB); the latter now being B(GA,B) by
(5.50), Yoneda gives an isomorphism G ∼= HZ, which is easily verified to be the unit
G // (LanZG)Z of the Kan extension.

Since the unit and counit of the equivalence (5.53) are the canonical maps, it follows
that

J-Com[D,B] ⊂ [D,B]`Z∗ and K-Com[A,B](Z) ⊂ [A,B](Z)
∗ , (5.55)

and that the equivalence (5.53) is just the restriction of the equivalence [D,B]`Z∗
∼= [A,B]

(Z)
∗

of (5.44). Now consider the special case of Theorem 5.52 in which D = C, J = 1C, and
Z = K. A 1C-comodel is by (5.50) a functor S : C // B for which B(SC,B) ∼= C(C, TB)
for some T ; that is, it is a left-adjoint functor. Thus Theorem 5.52 (together with (5.43))
gives the following answer to the problem proposed at the beginning of 5.11:

Theorem 5.56 For a dense K : A // C and any B, the equivalence LanK a
[K, 1] : [C,B]`K∗ ' [A,B]

(K)
∗ restricts to an equivalence

LanK a [K, 1] : Ladj[C,B] ' K-Com[A,B](K). (5.57)

Here, if C is cocomplete and A is small, Ladj[C,B] may be replaced by Cocts[C,B]; and
if every G : A // B admits a left Kan extension along K, as when A is small and B is
cocomplete, K-Com[A,B](K) may be replaced by K-Com[A,B].

Note that, when A is small and K is the Yoneda embedding Y : A // [Aop,V ], a

Y -comodel is any functor A //B, since Ỹ = 1 by (4.30). Thus (5.57) is another general-
ization of the equivalence (4.55), different from the generalization given by Theorem 5.31.
In the situation of Theorem 5.52, combining that theorem with Theorem 5.56 gives a
diagram of multiple equivalences

Ladj[C,B] 'J-Com[D,B](J) '
∩

K-Com[A,D](K)

∩
J-Com[D,B] ' K-Com[A,D](Z)

(5.58)

in which the horizontal maps from left to right are restrictions, and those from right to
left are left Kan extensions. The vertical inclusions here, although equalities when A is
small and B is cocomplete, are in general proper, even if C is cocomplete and A and D
are small. For let J : D // C be fully faithful and dense, take A = D and Z = 1, and
take B = D; then 1: D //D is a J-comodel, since 1̃ = Y is isomorphic by (4.22) to J̃J ;
yet LanJ1D need not exist. To see this, let C = V = Set, and let J be the inclusion of
the full subcategory {2} determined by the single two-element set 2; since {1} is dense
in Set by (5.17), so is {1, 2} by Theorem 5.13, whence {2} is dense by Proposition 5.20,

as 1 is a retract of 2. Clearly J̃0 is ∆0, the initial object of [{2}op,Set]; so that J̃0 ? 1D
would, if it existed, be the initial object of {2}. Since {2} has no initial object, LanJ1D
fails to exist.



5.13 A dense K : A −→ C as an essentially-algebraic theory 109

5.13 A dense K : A −→ C, with A small and C cocomplete, as an
essentially-algebraic theory with C as the category of algebras

We now settle on the precise definition of an essentially-algebraic theory : namely, a dense
K : A // C with A small and C cocomplete. The models of the theory in V itself are
usually called its algebras. We have:

Theorem 5.59 For any dense K : A // C with A small, there is an equivalence
K-Mod[Aop,V ] ' C ′, where C ′ is the subcategory of C given by those C such that X t C
exists for all X ∈ V. Thus if C is cotensored, K-Mod[Aop,V ] ' C. This is so in particular
if C is cocomplete.

Proof. Since Vop is cocomplete, Theorem 5.56 gives K-Com[A,Vop] ' Ladj[C,Vop],
or equivalently K-Mod[Aop,V ] ' (Ladj[C,Vop])op; and this last category is equivalent to
Radj[Cop,V ]. But all right-adjoint functors Cop // V lie in the subcategory C ⊂ [Cop,V ]
given by the representables, and constitute in fact the category C ′ of the theorem. The
last assertion follows from Proposition 5.15.

This leads to the following point of view. If C is a cocomplete category admitting a
small dense subcategory, any choice of a denseK : A //C with smallA gives an essentially-
algebraic theory, for which C is the category of algebras. As long as we consider models
of the theory only in complete categories P , the concept of a model is independent of the
choice of K; a model of the theory in P , also called a C-object in P , is by Theorem 5.56
just a continuous (and hence right-adjoint) functor Cop //P . At this level, any continuous
P // P ′ carries models to models; and any model in P is so obtained by applying the
continuous functor Cop //P to the generic model in Cop given by 1: Cop //Cop. In terms
of K : A //C, this generic model in Cop corresponds to Kop : Aop //Cop, which is a model
by (5.51).

The choice of K : A // C affects to some extent the notion of a model in P when
P is not complete. If K ′ : A′ // C is another dense functor with A′ small, let D be the
union of the full images in C of K and of K ′; then the inclusion J : D // C is dense
by Theorem 5.13. Thus Theorem 5.52 gives, in an evident notation, K-Mod[Aop,P ](Z) '
K ′-Mod[A′op,P ](Z

′). It follows that K-Mod[Aop,P ] and K ′-Mod[A′op,P ] coincide when P
is “complete enough” to admit all right Kan extensions along Z : A //D and Z ′ : A′ //D.
A concrete example of such “sufficient completeness” will occur in 6.4 below.

We will end with three remarks. First, it is easily seen that, for any P and P ′, a right-
adjoint functor P // P ′ takes K-models to K-models. Secondly, the dense I : I // V
of (5.17) is “the theory of an object”; for, Ĩ being 1, we have I-Mod[Iop,P ] ∼= P for any
P . Thirdly, if P too is cocomplete with a small dense subcategory (and hence complete
by Proposition 5.15), the notion of a C-object in P coincides with that of a P-object in
C: for a right-adjoint Cop // P has as its left adjoint P // Cop what is in effect a right
adjoint Pop // C.
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5.14 The image under [K, 1] : [C,B] −→ [A,B], for a dense K, of the
equivalences; characterization theorems for C

We now determine the image, under the equivalence Ladj[C,B] ' K-Com[A,B](K) of
(5.57), of the subcategory of equivalences S : C ' B. We do not suppose A small nor
C cocomplete; but we do restrict ourselves to the simpler case of a fully-faithful dense
K : A // C.

We thus get a criterion for a given category B to be equivalent to C, in terms of there
being a K-comodel G : A // B satisfying our characterization of the image in question;
this contains as a special case the criterion of Theorem 5.26 above for B to be equivalent
to [Aop,V ]. We give only a few applications below; numerous others can be found in the
article [21] of Diers, to whom the results (in the case V = Set) are due.

If there is an equivalence S a T : B ' C, the image of S under (5.57) is the K-comodel
G = SK : A // B. Since we have B(GA,B) = B(SKA,B) ∼= C(KA, TB), the unique T
which, as in (5.49) or (5.50), exhibits G as being a K-comodel, is precisely the equivalence-
inverse of S. We therefore start with any K-comodel G : A // B, exhibited as such by
G̃ ∼= K̃T as in (5.49), and seek conditions for this T to be an equivalence.

This isomorphism σ : G̃ ∼= K̃T , written as a V-natural isomorphism B(GA,B) ∼=
C(KA, TB) as in (5.50), is (by Yoneda in the form (1.48)) of the form σ = C(ρ, 1)T for
some V-natural ρ : K // TG. The diagram (1.39) expressing the V-naturality of ρ may
be written as

Y
∼=
κK

//

κG

��

K̃K

K̃ρ

��

G̃G
∼=
σG

// K̃TG,

where κ is the map of (4.22), according to which κG is an isomorphism exactly when G is
fully faithful. Since K is fully faithful, both the horizontal maps here are isomorphisms;
whence, since K̃ is fully faithful, ρ is an isomorphism if and only if G is fully faithful. By
Theorem 5.56, T admits a left adjoint S precisely when G admits a left Kan extension S
along K. Suppose for the moment that this is so, and let η, ε : S a T be the adjunction.
Then T is an equivalence precisely when η and ε are isomorphisms. It is clear that the
isomorphism G ∼= SK identifies ρ : K //TG with ηK : K //TSK. Let Φ = (Fγ, Pγ)γ∈Γ

be a density presentation of K as in Theorem 5.19, so that C is the closure of A under the
K-absolute colimits Fγ ?Pγ of Φ. It now follows that η : 1 //TS is an isomorphism if and
only if ρ is an isomorphism and TS preserves the colimits of Φ. Because the fully-faithful
K both preserves and reflects these colimits, and because G̃ ∼= K̃T , we conclude that TS
preserves these colimits if and only if G̃S does so. Since the left-adjoint S preserves all
colimits, we have finally that η is an isomorphism if and only if G is fully faithful and the
colimits Fγ ? SPγ are G-absolute.

Once η is known to be an isomorphism, Tε is an isomorphism by the triangular equa-
tion Tε.ηT = 1 of the adjunction. So ε too is an isomorphism if T is conservative; which
of course T must be if it is an equivalence. Since G̃ ∼= K̃T where K̃ is fully faithful, T is
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conservative if and only if G̃ is conservative; that is, if and only if G : A //B is strongly
generating. (In contrast to 3.6, we are using “strongly generating” here without thereby
implying that A is small.)

It remains to ensure the existence of the left adjoint S. Propositions 3.36 and 3.37
give this if B admits all Fγ-indexed colimits for all γ ∈ Γ, but this is more than we need.
The proof of Proposition 3.36 shows that we only need the (inductive) existence of the
particular colimits Fγ ? SPγ in B. Since we can run simultaneously the inductive proof of
the existence of S and the inductive proof that η : 1 // TS is an isomorphism, we have
finally:

Theorem 5.60 Let K : A // C be fully faithful and dense, with density presentation
(Fγ, Pγ)γ∈Γ, and let G : A //B be a K-comodel with G̃ ∼= K̃T . Then T is an equivalence
if and only if the following conditions are satisfied (whereupon K ∼= TG):

(i) G is fully faithful.

(ii) G is strongly generating (or, equivalently, T is conservative).

(iii) Whenever Pγ ∼= TQγ for some Qγ, the colimit Fγ ? Qγ exists in B and is preserved
by T (or, equivalently, is G-absolute).

This form of the theorem can be used to derive Beck’s monadicity criterion; see ([21],
Corollaire 5.91). The theorem takes a simpler form, sufficient for many applications, when
the density presentation Φ of K consists of all colimits with indexing-types in some set
F ; as was the case, for instance, in Theorem 5.35 above. We then have:

Theorem 5.61 Let C admit all colimits with indexing types in F , and let these colimits
constitute a density presentation of the fully-faithful dense K : A // C. Let G : A // B
be a K-comodel with G̃ ∼= K̃T . Then T is an equivalence if and only if the following
conditions are satisfied (whereupon K ∼= TG):

(i) G is fully faithful and strongly generating.

(ii) B admits all F-colimits and they are G-absolute.

We can apply this to the K : A // A of Theorem 5.35, where A is the free F -
cocompletion of A for a set F of small indexing types. If B is to be equivalent to
A, certainly B must be the closure under F -colimits of A, embedded in B by G. By
Proposition 3.40, whose first assertion does not really need the smallness of A, it is then
automatic that G is strongly generating. If, moreover, F -colimits are G-absolute in B,
each G̃B in [Aop,V ] is an iterated F -colimit of objects of A, and hence lies in C; so that
G is automatically a K-comodel. This gives:

Proposition 5.62 In order that G : A //B be equivalent to the the free F-cocompletion
of A for a given set F of small indexing types, it is necessary and sufficient that G be
fully faithful, that B admit all F-colimits and be the closure of A under these, and that
all F-colimits in B be G-absolute.
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Taking F here to consist of all small indexing types, with A small, does not in fact
given Theorem 5.26 as stated, but a variant. Yet Theorem 5.26 does follow from Theo-
rem 5.61; for, since Ỹ ∼= 1, every G : A // B is automatically a Y -comodel.



Chapter 6

Essentially-algebraic theories defined
by reguli and by sketches

6.1 Locally-bounded categories; the local boundedness of V in all our
examples

All that we have so far required of the symmetric monoidal closed V is that V0 be locally
small, complete, and cocomplete. To ensure the reflectivity of certain naturally-occurring
subcategories of [Aop,V ], we now impose upon V extra conditions – which are however
satisfied by all the examples of symmetric monoidal closed categories given in 1.1 above.

We call upon some reflectivity results (for ordinary categories) of [44], which improve
those of [30]. The reader will rightly suspect, as we proceed, that similar results could be
formulated and proved directly in the context of enriched categories. The length of such an
undertaking, however, would not be justified by our limited applications; we accordingly
arrange, at the cost of some elegance, to use the results as they stand – appealing to
Theorem 4.85 to pass from an ordinary reflexion to a V-reflexion.

We refer to [30] for the notion of a proper factorization system (E ,M) on an ordinary
category K, which for simplicity we take to be locally small, complete, and cocomplete.
We recall that E here is a set of epimorphisms, and M a set of monomorphisms, each
containing the isomorphisms and closed under composition, such that every map factorizes
as ip with i ∈ M and p ∈ E , this factorization being essentially unique and functorial,
in virtue of a “diagonal fill-in” property. We further recall that the M-subobjects of an
object A ∈ K form a lattice admitting small intersections and unions: the intersection
∩Bi being the limit of the diagram Bi

//A, while the union ∪Bi is obtained by forming
the (E ,M)-factorization

∑
Bi

// ∪Bi
//A of the map

∑
Bi

//A; and that there is a
further factorization

∑
Bi

// colimBi
// ∪Bi, both factors here being in E . Similarly

we speak of the cointersection A // C of a set A // Ci of maps in E : it being the
colimit of the diagram, and itself in E . Finally we recall that a small set G of objects of
K is an (E,M)-generator if the canonical map

∑
G∈G K(G,A) · G // A is in E for each

A ∈ K; which is equally to say that, for every properM-subobject B of A, there is some
G ∈ G for which some g : G // A fails to factorize through B. The existence of such a
generator implies that the lattice of M-subobjects of each A ∈ K is small; that is, that

113
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K is M-wellpowered.
We shall call a locally small, complete, and cocomplete ordinary category K locally

bounded if there is a proper factorization system (E ,M) on K such that

(i) every family A // Ci of maps in E, however large, admits a cointersection;

(ii) K has an (E ,M)-generator G;

(iii) there is a small infinite regular cardinal α such that K(G,−) : K // Set preserves
α-filtered unions of M-subobjects for each G ∈ G.

Here an α-filtered union ∪Bi is one such that, for any subset J of the indices with
card J < α, there is an index i such that Bj ⊂ Bi for each j ∈ J . To say that K(G,−)
preserves the union is to say that K(G,∪Bi) is the set-theoretic union of the K(G,Bi);
and hence to say that any map G // ∪Bi factorizes through one of the Bi.

If A is any object in a locally bounded K, there is a regular cardinal β = β(A) such
that K(A,−) preserves β-filtered unions (ofM-subobjects). We have only to choose β at
least equal to α and greater than

∑
G∈G cardK(G,A). Then, if f : A //∪Bi is a map into

a β-filtered union, there is for each G ∈ G and each g : G //A some Bi through which fg
factorizes, and i can be chosen to be independent of G and g; so that f factorizes through
Bi by the diagonal fill-in property applied to the diagram∑

GK(G,A) ·G E //

��

A

f

��
Bi M

//
⋃
Bi.

We now say that the symmetric monoidal closed V is locally bounded if the ordinary
category V0 is locally bounded and if, moreover,

(Z ⊗ p) ∈ E whenever Z ∈ V and p ∈ E . (6.1)

This is clearly equivalent to

[Z, i] ∈M whenever Z ∈ V and i ∈M; (6.2)

and combined with the diagonal fill-in property for V0, it easily implies that the diagram

[N,X]
[p,1] //

[1,i]

��

[M,X]

[1,i]

��
[N, Y ]

[p,1]
// [M,Y ]

(6.3)
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is a pullback whenever p : M // N is in E and i : X // Y is in M. This “internal”
version of the diagonal fill-in property is stronger than the original one, which we regain
by applying the limit-preserving V : V0

// Set to the pullback (6.3).

We now verify that all the examples of symmetric monoidal closed categories in 1.1
are locally bounded. For the small preorders such as 2 and R+, all the conditions are
trivially satisfied with E = the epimorphisms, M = the extremal monomorphisms = the
isomorphisms.

In the examples Set, Cat, Gpd, Ord, Shv S, Ab, R-Mod, G-R-Mod and
DG-R-Mod, the category V0 is locally presentable in the sense of [31]; and any such
category K is locally bounded with E = the extremal epimorphisms,M = the monomor-
phisms. For it is certainly E-cowellpowered, by Satz 7.14 of [31]; it has by definition a
strong generator G, and this is an (E ,M)-generator by the remarks at the end of 3.4
above; and there is by definition a regular α such that each K(G,−) : K // Set for
G ∈ G preserves α-filtered colimits – that is, each G ∈ G is α-presentable. Now, in the
presence of such a generator G, when ∪Bi is an α-filtered union of subobjects, the map
colimBi

// ∪ Bi is a monomorphism, as pointed out in Lemma 3.2.1 of [30]; and hence
in the present case is an isomorphism, for (lying in E) it is an extremal epimorphism.
Thus in fact each K(G,−) preserves α-filtered unions. Finally, (6.2) is satisfied in each
of these examples, since the right-adjoint functor [Z,−] preserves monomorphisms. (In
all of these examples except Shv S, the category V0 is locally finitely presentable, in
the sense that, for a suitable choice of G, we may take α = ℵ0. Another account of
locally-presentable categories can be found in [45].)

In the topological examples CGTop, CGTop∗, HCGTop, and QTop, we take for
M the subspace-inclusions and for E the surjections. The first three of these are easily
seen to be E-cowellpowered. The fourth is not – the two-point set admits a large set of
quasitopologies – yet it does admit all cointersections of surjections; we merely form the
cointersection in Set and give it the appropriate quasitopology. The one-point space is in
each case an (E ,M)-generator, which satisfies (iii) with α = ℵ0. Moreover, (6.1) is clearly
satisfied, since the tensor product is the cartesian product – not only in V0, but also at
the level of the underlying sets.

For the final example Ban, we take E = the epimorphisms = the dense maps, M =
the extremal monomorphisms = the inclusions of closed subspaces with the induced norm.
Cowellpoweredness is easy: if X //Y is dense, Y can have no more points than there are
filters on the image of X. An (E ,M)-generator is {G}, where G is the base-field R or C. It
satisfies (iii) with α = ℵ1; for then an α-filtered union ∪Bi is the set-theoretical union. (In
general ∪Bi is the closure of the set-theoretical union, so that every point of it is the limit
of some sequence of the latter; when the union is ℵ1-filtered, the sequence lies entirely in
some Bi.) Finally (6.2) is clearly satisfied, [Z, Y ] being the usual function-space.

6.2 The reflectivity in [Aop,V ] of the category of algebras for a regulus

The first step in making available the results of [44] is the proof of:

Proposition 6.4 If V is locally bounded, so is the ordinary category [Aop,V ]0 for any
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small A.

Proof. Let (E ,M) be the proper factorization system on V0, and G the corresponding
(E ,M)-generator. We define sets of maps in [Aop,V ]0, again called E andM, by decreeing
that a V-natural ρ : T // S is to be in E or in M precisely when all of its components
ρA : TA // SA are in the E or the M of V0. Clearly the new E and M contain the
isomorphisms and are closed under composition. Since we test for a monomorphism as in
3.3 by pulling it back along itself, and since small limits in [Aop,V ] are formed pointwise,
theM of [Aop,V ]0 consists of monomorphisms; similarly the E consists of epimorphisms.

To see that every ρ : T //S factorizes into an E and anM, we factorize each component
ρA as

TA σA
//RA τA

// SA

with σA ∈ E and τA ∈M. To make R into a V-functor Aop // V , such that σ and τ are
V-natural, we must so define RAB as to render commutative the top and left regions of

A(B,A)
TAB //

RAB

&&
SAB

��

[TA, TB]

[1,σB ]

��
[RA,RB]

[σA,1]
//

[1,τB ]

��

[TA,RB]

[1,τB ]

��
[SA, SB]

[τA,1]
// [RA, SB]

[σA,1]
// [TA, SB];

since the bottom right region is a pullback by (6.3), there is exactly one such map RAB –
which is then easily seen to satisfy the axioms (1.5) and (1.6) for a V-functor.

To verify the diagonal fill-in property, let σ : T // S be in E and let τ : P //Q be in
M. By (6.3) we have for each A ∈ A a pullback

[SA, PA]
[σA,1] //

[1,τA]

��

[TA, PA]

[1,τA]

��
[SA,QA]

[σA,1]
// [TA,QA];

applying
∫
A

to this in accordance with (2.10), and recalling from (3.20) that limits com-
mute with limits, we get a corresponding pullback in which the top left corner is now
[Aop,V ](S, P ); applying V : V0

//Set to this, we get a pullback in Set expressing the de-
sired diagonal fill-in property. Hence (E ,M) is a proper factorization system on [Aop,V ]0.

Write H for the small set {G⊗A(−, A)}G∈G,A∈A of objects of [Aop,V ]0. If R is a
properM-subobject of S, there is some A for which RA is a properM-subobject of SA:
and then there is some G for which some g : G // SA factorizes through RA. This gives
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a map G ⊗ A(−, A) // S that factorizes through R; whence H is an (E ,M)-generator
for [Aop,V ]0.

Unions ofM-subobjects in [Aop,V ]0 are clearly formed pointwise. Since [Aop,V ]0(G⊗
A(−, A), S) ∼= V0(G,SA) by Yoneda, it follows that each [Aop,V ]0(G⊗A(−, A),−) pre-
serves α-filtered unions if each V0(G,−) does so.

An object B of a V-category B is said to be orthogonal in B to a map θ : M //N of
B0 if the map B(θ, 1) : B(N,B) // B(M,B) is an isomorphism in V0. When this is so,
applying V : V0

//Set to B(θ, 1) gives an isomorphism B0(θ, 1) : B0(N,B) //B0(M,B) in
Set, showing that B is a fortiori orthogonal to θ in the ordinary category B0. In general,
of course, the latter condition is strictly weaker. To ask that B(θ, 1) be an isomorphism
is to ask that V0(X,B(θ, 1)) be an isomorphism for each X ∈ V (or equivalently for each
X in a strong generator of V0, if it has one). If B is tensored, this is to ask that B be
orthogonal in B0 to X ⊗ θ : X ⊗M //X ⊗N for each X ∈ V .

Orthogonality sets up a Galois connexion between sets of maps and sets of objects; in
the case of ordinary categories, simple closure properties of the sets so arising are listed in
§2 of [30]; such of these properties as we use in the proof below are easy to verify directly.

The reflectivity result for ordinary categories that we call upon is the following case of
Theorem 10.2 of [44]: Let the locally-small, complete, and cocomplete K be locally bounded,
and let Θ be a (possibly large) set of maps θ : Mθ

//Nθ in K, such that those Nθ for which
θ is not in E form (to within isomorphism) only a small set. Then the objects orthogonal
in K to each θ ∈ Θ determine a reflective full subcategory of K. (In getting this precise
form from the theorem as stated, one must recall that K is M-wellpowered in virtue of
the existence of the (E ,M)-generator.)

Our goal is the following V-based version, in the special case where the ambient cate-
gory is [Aop,V ]; its statement makes no explicit reference to (E ,M):

Theorem 6.5 Let A be a small V-category, where V is locally bounded. Let Θ be a set
of maps θ : Mθ

//Nθ in [Aop,V ]0, such that the Nθ form (to within isomorphism) only a
small set. Let C be the full subcategory of [Aop,V ] determined by those objects orthogonal
in [Aop,V ] to each θ ∈ Θ. Then C is reflective in [Aop,V ].

Proof. It is immediate that C is closed under cotensor products in [Aop,V ]; hence it
suffices by Theorem 4.85 to prove the reflectivity of C0 in the ordinary category [Aop,V ]0,
which we now denote by K. The objects of C0 are those orthogonal in K to X ⊗ θ : X ⊗
Mθ

//X ⊗Nθ for each X ∈ V . If G is the (E ,M)-generator in V0, write εX : RX //X
for the canonical map

∑
G∈G V0(G,X) ·G //X, which is in E by hypothesis. For each θ
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and each X, form the commutative diagram

RX ⊗Mθ
RX⊗θ //

εX⊗Mθ

��

RX ⊗Nθ

σX,θ

��
εX⊗Nθ

��

X ⊗Mθ

ρX,θ //

X⊗θ
**

P (X, θ)

τX,θ

""
X ⊗Nθ,

(6.6)

in which the top left region is a pushout. Since tensor products in [Aop,V ] are formed
pointwise, it follows from (6.1) that εX ⊗ Nθ is in E , whence its factor τX,θ is in E .
Every object orthogonal in K to RX ⊗ θ is also orthogonal to its pushout ρX,θ; it is
then orthogonal to the composite X ⊗ θ = τX,θρX,θ if and only if it is orthogonal to τX,θ.
Thus C0 consists of the objects in K orthogonal to each RX ⊗ θ and to each τX,θ. Since
RX ⊗ θ = (

∑
G V0(G,X) ·G)⊗ θ ∼=

∑
G V0(G,X) · (G⊗ θ), any object orthogonal in K to

each G ⊗ θ is also orthogonal to the coproduct RX ⊗ θ of these; and thus C0 consists of
the objects in K orthogonal to each G⊗ θ for G ∈ G and to each τX,θ. Since the number
of different G⊗Nθ is small, and since each τX,θ is in E , the desired reflectivity of C0 in K
follows from Proposition 6.4 and the result quoted before the theorem.

By Proposition 5.15, the cocomplete V-category C of Theorem 6.5 is the category of
algebras for an essentially-algebraic theory K : A // C, where K is the composite of the
Yoneda embedding A // [Aop,V ] and the reflexion [Aop,V ] //C. Clearly G : A //B is a
comodel for the theory precisely when B(G−, B) : Aop //V is for each B ∈ B orthogonal
in [Aop,V ] to each θ ∈ Θ. By a very free adaptation of the terminology of Isbell [37],
we shall in future call such a set Θ as occurs in Theorem 6.5 a regulus . We shall use
such terms as Θ-comodel and K-comodel interchangeably, and shall write Θ-Alg for the
category C of K-algebras.

6.3 The category of algebras for a sketch, and in particular for an F -
theory; algebraic functors and their adjoints

We suppose henceforth that V is locally bounded. Let A be a small V-category, and
consider a set (not necessarily small)

Φ = {φγ : Fγ //A(Pγ−, Aγ)}γ∈Γ (6.7)

of cylinders in A, where Fγ : Lop
γ

// V and Pγ : Lγ // A, with each Lγ small. Call a
functor G : A // B a Φ-comodel if, for each γ, the cylinder

Fγ φγ
//A(Pγ−, Aγ) G

//B(GPγ−, GAγ) (6.8)
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is a colimit-cylinder; and write Φ-Com[A,B] for the full subcategory of [A,B] given by
these comodels. Similarly, write Φ-Mod[Aop,P ] for (Φ-Com[A,Pop])op, and write Φ-Alg
for Φ-Mod[Aop,V ]. Thus the Φ-algebras are those Aop //V that send each φγ to a limit-
cone. By very freely adapting the terminology of Ehresmann [24] (see also [3]), we may
call the pair (Aop,Φ), or just Φ for short, a sketch.

Given such a sketch, each composite

Fγ φγ
//A(Pγ−, Aγ) Y

// [Aop,V ](Y Pγ−, Y Aγ) (6.9)

corresponds by (3.5) to a map

θγ : Fγ ? Y Pγ // Y Aγ (6.10)

in the cocomplete [Aop,V ]. Write Θ = {θγ}γ∈Γ for the set of these maps; because A is
small, the set of codomains in (6.10) is small, so that Θ is indeed a regulus in the sense
of 6.2.

Theorem 6.11 If the regulus Θ corresponds as above to the sketch Φ, then

Φ-Com[A,B] = Θ-Com[A,B]

for any category B. In particular Φ-Alg is the reflective subcategory Θ-Alg of [Aop,V ]. The
corresponding dense functor K : A // Φ-Alg is fully faithful precisely when the cylinders
φγ are already colimit-cylinders in A.

Proof. By the remarks at the end of 6.2, G : A // B is a Θ-comodel precisely when
each B(G−, B) is orthogonal in [Aop,V ] to each θγ; that is, when each

[Aop,V ](θγ, 1) : [Aop,V ]
(
Y Aγ,B(G−, B)

)
// [Aop,V ]

(
Fγ ? Y Pγ,B(G−, B)

)
is an isomorphism. By (3.5) and Yoneda, this map is isomorphic to a map

B(GAγ, B) // [Lop
γ ,V ]

(
Fγ,B(GPγ−, B)

)
, (6.12)

whose unit is easily verified to be (6.8); to say that it is an isomorphism is therefore by
(3.5) to say that (6.8) is a colimit-cylinder, or that G is a Φ-comodel. Applying this to
the comodels in Vop gives by Theorem 5.59 the equality Φ-Alg = Θ-Alg.

By Proposition 5.16, K is fully faithful if and only if Φ-Alg contains the representables
A(−, A). To ask each A(−, A) to be an algebra is by (6.12) to ask that each

A(Aγ, A) // [Lop
γ ,V ]

(
Fγ,A(Pγ−, A)

)
be an isomorphism, and hence by (3.5) that each φγ be a colimit-cylinder.
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In particular, Φ-Alg is reflective in [Aop,V ] when Φ consists of all small colimit-
cylinders in A; the reflectivity of V ′′0 in V ′0 = [Vop

0 ,Set′] of 3.12 above is an example of
this.

A very important special case of Theorem 6.11 is that where A is F -cocomplete for
some set F of small indexing-types, and where Φ consists of (the units of) all the F -
colimits in A. In this case Φ-Com[A,B] = F -Cocts[A,B] and Φ-Alg = F -Cts[Aop,V ].
The full name (Aop,Φ) of the sketch Φ might here be replaced by (Aop,F). It is also
suggestive to refer to a small F -complete category Aop as an F -theory. For instance,
with V = Set, a Lawvere-Bénabou theory ([52], [7]) is a small category Aop with finite
products; while a small Aop with finite limits is sometimes called a finitary essentially-
algebraic theory. (Joyal suggests calling the latter a cartesian theory ; in that finite limits
may be said to go back to Descartes, who introduced both the product R × R and the
equalizer {(x, y) | f(x, y) = g(x, y)}.) This terminology moreover allowsAop-Alg (F being
understood) as a useful abbreviation for F -Cts[Aop,V ].

Consider now a sketch (Aop,Φ) where Φ is given by (6.7); let F be a set of small
indexing-types containing each Fγ occurring in Φ; and let B be a small F -cocomplete
category. Write K : A //Φ-Alg and L : B //Bop-Alg = F -Cts[Bop,V ] for the respective
dense functors, observing by Theorem 6.11 that L is fully faithful. Note that, since L is
also an L-comodel by (5.51), we have:

Proposition 6.13 For a small F-cocomplete B, the dense inclusion L : B // Bop-Alg =
F -Cts[Bop,V ] preserves and reflects F-colimits.

Consider a Φ-comodel G : A // B. If Q : B // D is any F -continuous functor,
the composite QG is clearly another Φ-comodel. Taking D = Vop here, we see that
[Gop, 1] : [Bop,V ] // [Aop,V ] restricts to a functor

G∗ : Bop-Alg // Φ-Alg. (6.14)

Such a functor between the categories of algebras, induced by a realization (that is, a
model) Gop of one theory in the other, is often said to be algebraic: especially in the case
where A too is F -cocomplete and Φ = (Aop,F).

Since L̃ : Bop-Alg // [Bop,V ] and K̃ : Φ-Alg // [Aop,V ] are fully faithful, since

[Gop, 1] : [Bop,V ] // [Aop,V ]

has by Theorem 4.50 the left adjoint LanGop , and since L̃ has by Theorem 4.51 the left
adjoint − ? L, it follows that the algebraic functor Ĝ∗ has the left adjoint

G∗ = (− ? L).LanGop .K̃ : Bop-Alg // Φ-Alg.

The value of this at P ∈ Bop-Alg is
(
LanGop(K̃P )

)
?L, which by (4.65) is also (K̃P )?(LG);

so that by (4.17) we have

G∗ ∼= LanK(LG). (6.15)

In fact G is recoverable from G∗. First observe that Proposition 6.13 gives:
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Proposition 6.16 In the circumstances above, G : A // B is a Φ-comodel if and only
if LG : A // Bop-Alg is a Φ-comodel. Thus Φ-Com[A,B] is the full subcategory of
Φ-Com[A,Bop-Alg] given by the functors factorizing through L.

Using this and (6.15), we have:

Theorem 6.17 Let the small B be F-cocomplete, where the set F of small indexing-
types contains all the Fγ occurring in the sketch (Aop,Φ); and let K : A // Φ-Alg and
L : B //Bop-Alg be the respective dense functors. Then the composite of the full inclusion
Φ-Com[A,B] // Φ-Com[A,Bop-Alg] sending G to LG, and the equivalence

[K, 1] a LanK : Φ-Com[A,Bop-Alg] ' Ladj[Φ-Alg,Bop-Alg]

of Theorem 5.56, is isomorphic to a functor

( )∗ : Φ-Com[A,B] // Ladj[Φ-Alg,Bop-Alg] (6.18)

sending G to the left adjoint G∗ of G∗. Accordingly we have

G∗K ∼= LG; (6.19)

and the functor ( )∗ of (6.18) is fully faithful, its image consisting of those left-adjoint
S : Φ-Alg // Bop-Alg for which SK factors through the fully-faithful L as SK ∼= LG for
some (essentially unique) G.

We may consider this theorem in the case where A too is F -cocomplete, and Φ =
(Aop,F). The F -theories Aop, the F -continuous functors between these, and the V-
natural transformations between the latter, form a 2-category – that is, a Cat-category. In
fact they form more; for F -Cocts[A,B] is not just a category but a V-category. We saw in
2.3 that V-Cat is symmetric monoidal closed; and what the F -theories actually constitute
is a (V-Cat)-category. There is a (V-Cat)-functor into V-CAT sending the F -theory Aop

to Aop-Alg and defined on hom-objects by (6.18). It is locally fully faithful, in the sense
that (6.18) is fully faithful. Theorem 6.17 above determines, in a certain sense, its local
image; not as absolutely as we should like, since the criterion for S : Aop-Alg // Bop-Alg
to be in this local image refers back to the inclusions of A and B. The remaining step
in determining globally the image of this (V-Cat)-functor is that of characterizing the
V-categories of the form Aop-Alg.

For this we can get something from Theorem 5.60; in the absence of any particularly
simple density presentation of K : A //Aop-Alg, we can just use the canonical one K̃C ?
K ∼= C from Theorem 5.19. We have:

Proposition 6.20 If the small A is F-cocomplete and K : A // Aop-Alg is the fully-
faithful dense functor as above, let G : A //D be an F-cocontinuous functor, and hence a
K-comodel; and define T : D //Aop-Alg by G̃ ∼= K̃T . In order that T be an equivalence,
the following conditions are necessary and sufficient:

(i) D is cocomplete.

(ii) G is fully faithful and strongly generating.
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(iii) The canonical map Aop-Alg(KA,C) //D
(
GA,Aop-Alg(K−, C) ?G

)
is an isomor-

phism.

Proof. The conditions are clearly necessary. For their sufficiency we refer not to
Theorem 5.60 but to its proof. Since D is cocomplete, G admits a left Kan extension S
along K, which by Theorem 5.56 is a left adjoint to T . For η and ε to be isomorphisms,
we need that G is fully faithful and strongly generating (which is (ii)) and that the colimit

K̃C ? SK is G-absolute. Since SK ∼= G, this last requirement is that D(GA, K̃C ?G) be

isomorphic to K̃C ?D(GA,G−); and as G is fully faithful the latter is K̃C ?A(A,−) or

(K̃C)A, giving (iii).

Again this recognition theorem is not as absolute as we should like, in that condition
(iii) refers in detail to Aop-Alg. A far better description of the image of Aop 7→ Aop-Alg is
often available when both V and F are suitably restricted – see for example [45]. The fact
is that we are coming to the end of what can usefully be said in the present generality.

6.4 The F -theory generated by a small sketch

One last series of important observations can however be made.
Call a sketch (Aop,Φ) small if the set Φ of cylinders is small. If all the Fγ occurring

in Φ lie in a small set F of indexing-types, the smallness of Φ is automatic; for the small
A admits but a small set of cylinders with any given indexing-type.

Proposition 6.21 Let (Aop,Φ) be a small sketch which involves indexing-types only from
the small set F ; and let K : A // C = Φ-Alg be the corresponding dense functor. Let D
be the closure under F-colimits in C of the full image of K; it is small by 3.5. Let the
factorization of K through D be Z : A // D followed by the full inclusion J : D // C;
by Theorem 5.13 both Z and J are dense, so that in particular J̃ : C // [Dop,V ] is fully

faithful. We assert that the replete image of J̃ is F -Cts[Dop,V ].

Proof. One direction is immediate. J preserves F -colimits by the construction of D,
so that C(J−, C) sends them to limits in V , and hence J̃C is F -continuous.

Suppose now that P op : Dop // V is F -continuous. Since K = JZ is a Φ-comodel
by (5.51), and since the fully-faithful J : D // C not only preserves but also reflects F -
colimits, Z : A // D is itself a Φ-comodel. Since P is F -cocontinuous, PZ : A // Vop

too is a Φ-comodel. By Theorem 5.56, we have PZ ∼= SK where S : C // Vop is a left-
adjoint functor given by S = LanKPZ, the unit PZ // SK of this left Kan extension
being an isomorphism. By Theorem 4.47, since K = JZ with J fully faithful, we have
LanZPZ ∼= SJ , with unit λ an isomorphism. Applying Theorem 4.43 to 1: PZ // PZ
as in

D
P

��
SJ

))

µ ;C

A
PZ

//

Z

??

λ ;C

Vop
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gives a map µ : SJ // P with µZ an isomorphism. Since both P and SJ preserve F -
colimits, and since D is the closure under F -colimits of the full image of Z (which is the
full image of K), we conclude that µ : SJ // P is an isomorphism.

The right-adjoint Sop : Cop // V being necessarily a representable C(−, C), we have

P op ∼= SopJop ∼= C(J−, C) = J̃C, as required.

Now Theorem 6.11 gives:

Corollary 6.22 In these circumstances the functor J is isomorphic to the inclusion
D // Dop-Alg of the F-cocomplete small D, so that for any B we have J-Com[D,B] =
F -Cocts[D,B].

Since the size of F here is bounded only below by the knowledge of the sketch Φ, we
cannot expect the comodels of the sketches (Aop,Φ) and (Dop,F) to “coincide” in every
B; that they do so when B is F -cocomplete is an example of the “sufficient completeness”
referred to in the penultimate paragraph of 5.13. The precise result is:

Theorem 6.23 In the circumstances of Proposition 6.21, every Φ-comodel G : A // B
admits a left Kan extension along Z : A //D whenever B is F-cocomplete; and we have
an equivalence

LanZ a [Z, 1] : F -Cocts[D,B] ' Φ-Com[A,B]

whose unit and counit are the canonical maps.

Proof. By Corollary 6.22 and Theorem 5.52, we have only to show that every Φ-comodel
G : A // B has the form HZ for some F -continuous H : D // B.

We suppose first that B is small, and consider the inclusion L : B //Bop-Alg of Propo-
sition 6.13. Then LG, being itself a Φ-comodel as in Proposition 6.16, is by Theorem 5.56
isomorphic to SK for some left-adjoint S : Φ-Alg //Bop-Alg; in fact S is the G∗ of (6.19).
The set H of those objects C ∈ C for which SC lies in B ⊂ Bop-Alg certainly contains all
the objects KA, since SK ∼= LG; and it is closed under F -colimits by Proposition 6.13,
since the left-adjoint S preserves colimits; hence H contains D by the definition of this
latter. Thus SJ ∼= LH for some H : D // B, which is clearly F -cocontinuous since SJ
is so. Now LG ∼= SK = SJZ ∼= LHZ; and (L being fully faithful) we have the desired
result G ∼= HZ.

Passing to the case where the F -cocomplete B need not be small, let B′ be the closure
under F -colimits in B of the full image of the Φ-comodel G : A //B; this latter factorizing
as G′ : A //B′ followed by the full inclusion N : B′ //B. Since N preserves and reflects
F -colimits, G′ is itself a Φ-comodel; and since B′ is small by 3.5, we have as above
G′ ∼= H ′Z for some F -cocontinuous H ′ : D // B′. Now G ∼= HZ, where H = NH ′ is
F -cocontinuous.

We may say that Dop is the F-theory generated by the sketch (Aop,Φ), or that (Aop,Φ)
is a sketch of the F-theory Dop. The latter form of words comes closer to explicating
Ehresmann’s choice of the word “sketch”. As he used the word (in the case V = Set),
the small category A was not in general explicitly given, but presented by generators and
relations; often this presentation was finite, and Φ was a finite set of finite cones (the
colimits involved in F classically being conical ones). In such cases, one can literally see
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(the presentation of) (Aop,Φ) as a finitary way of “sketching” the generally infinite and
complicated structure of Dop, or the still more complicated structure of Dop-Alg.

When V = Set and F consists of the functors ∆1: L // Set for finite L, the F -
theories are the cartesian theories of 6.3 above; the sketch (Aop,Φ) gives rise to such a
theory if Φ is a small set of finite cones. It is exactly the categories Φ-Alg for such a Φ
that are the locally finitely presentable categories; D ⊂ Φ-Alg is a small dense subcategory
composed of objects which (since finite limits commute with filtered colimits in Set) are
finitely presentable. In all the examples of categories V0 that we declared locally finitely
presentable in 6.1, it is easy to see that V0 = Φ-Alg for such a sketch Φ. For further
information on the relation of locally presentable categories to reguli and sketches, see
the classical [31], or the newer [45] which extends the ideas to certain important V other
than Set. These V include Cat and Gpd, which are the appropriate base categories
for the study of categories with essentially-algebraic structure. At this level, as is well
known, equivalence becomes more central than isomorphism, and the naturally-occurring
“functors” and “transformations” are more general than the V-functors and the V-natural
transformations; which leads to various problems of coherence. The study of essentially-
algebraic theories in this context must take account of these more general notions; this is
not touched on in [45], but a beginning is made in [46].

6.5 The symmetric monoidal closed structure on the category of F -
cocomplete categories and F -cocontinuous functors

Before ending, we give a final application of Theorem 6.23. We consider the (V-Cat)-
category of small F -cocomplete categories A, where F is a small set of indexing-types.
Since F -Cocts[A,B] denotes the (V-Cat)-valued hom here, an appropriate name for this
category is F -Cocts.

If B and C are F -cocomplete, so of course is [B, C], with F -colimits formed pointwise.
The full subcategory F -Cocts[B, C] of this is again F -cocomplete, since colimits commute
with colimits. The functors Q : A //F -Cocts[B, C] correspond to those functors P : A⊗
B // C for which each partial functor P (A,−) : B // C is F -cocontinuous. If A too is
F -cocomplete, the functor Q is itself F -cocontinuous precisely when the other partial
functors P (−, B) : A // C are also F -cocontinuous. We are thus led to the notion of a
P : A⊗ B // C which is F -cocontinuous in each variable separately.

Such a P is a comodel for a sketch
(
(A⊗B)op,Φ

)
. If λ : F //A(T−,M) is a cylinder

in A, where F : Lop // V and T : L //A, we can consider for B ∈ B the functor

L ∼= L ⊗ I
T⊗B

//A⊗ B

sending L to (TL,B), and called T ⊗B. Then we can consider the cylinder

F
λ
//A(T−,M) ∼= A(T−,M)⊗I

1⊗j
//A(T−,M)⊗B(B,B) = (A⊗B)

(
(T−, B), (M,B)

)
,

and call this λ⊗B. Note that this is a colimit-cylinder in A⊗B if λ is one in A; essentially
because −⊗ Y : V // V preserves colimits. If we take Φ to consist of all the λ⊗ B and
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all the A⊗ µ, where λ is an F -colimit-cylinder in A and µ is an F -colimit-cylinder in B,
the Φ-comodels P : A ⊗ B // C are precisely those P that are F -cocontinuous in each
variable. In fact more than this is true; it is easy to see that

Φ-Com[A⊗ B, C] ∼= F -Cocts
[
A,F -Cocts[B, C]

]
.

Write (A ⊗F B)op for the F -theory generated by the sketch
(
(A ⊗ B)op,Φ

)
. In view of

Theorem 6.23 we get

F -Cocts[A⊗F B, C] ' F -Cocts
[
A,F -Cocts[B, C]

]
. (6.24)

The symmetry in A, B, C of F -Cocts
[
A,F -Cocts[B,F -Cocts[C,D]]

]
now easily gives

(A⊗F B)⊗F C ' A⊗F (B ⊗F C) (6.25)

and
A⊗F B ' B ⊗F A. (6.26)

If A is the free F -cocompletion of A as in Theorem 5.35, it is clear that (for any small A
and B)

A⊗F B ' A⊗ B ; (6.27)

it is also clear that, for any small A and for F -cocomplete B, the F -cocontinuous func-
tors A ⊗F B // C correspond to the functors P : A ⊗ B // C for which P (A,−) is
F -cocontinuous. It follows that

I ⊗F B ' B , (6.28)

where I is the free F -cocompletion of I; which by Theorem 5.35 is the closure of I in V
under F -colimits.

The coherence, in the appropriate sense, of the maps (6.25), (6.26), and (6.28), follows
from the universal property (6.24). Thus the (V-Cat)-category F -Cocts is endowed with
something like a symmetric monoidal closed structure – the difference being that we have
equivalences in place of isomorphisms.
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et Géom. Diff. 13(1972), 103-214.

[4] J. Bénabou, Catégories avec multiplication, C.R. Acad. Sci. Paris 256(1963), 1887-
1890.

[5] J. Bénabou, Catégories relatives, C.R. Acad. Sci. Paris 260(1965), 3824-3827.

[6] J. Bénabou, Introduction to bicategories, Lecture Notes in Math. 47(1967), 1-77.

[7] J. Bénabou, Structures algébriques dans les catégories, Cahiers de Top. et Géom.
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finitely, 71
Completion

Cauchy, 95
idempotent-splitting, 100
under F -colimits, 100
under finite colimits, 101

Component
connected, 44

Components
of a V-natural transformation, 9

Composition law, 8
Comprehensive factorization system, 73
Cone, 42

canonical inductive, 43
projective, 42

Conical limit or colimit
classical, 42
in a V-category, 49, 50, 52

Connected component, 44
Conservative, 8, 46
Continuity of a limit in its index, 42
Continuous, 39
Contravariant functor, 12

representable, 15
Copower, 48
Cotensor product, 48
Cotensored, 48
Counit

of a general end, 52
of a limit, 37
of a representation, 22
of a right Kan extension, 60
of an adjunction, 23
of an end in V , 27

Cowellpoweredness, weak, 47
Cylinder, 38, 118–120, 122, 124

K-cylinder, 81

Dense, 86
Dense functors, 119–122

composition of, 87
Density presentation, 121

Density, formulations for, 85
Diagonal fill-in, 113
Diagram, 37
Directed, 72
Discrete Grothendieck construction, 74
Discrete op-fibration, 73
Distributor, 95
Dual V-category, 12

(E ,M)-generator, 113
Element

of X ∈ V , 8
of a set-valued functor, 29

End
in V , 27
in any V-category, 52

Epimorphism, extremal, 44
Equivalence, 24
Essentially surjective, 24
Essentially-algebraic

structure, 124
theory, 107, 109, 124

finitary, 120
Extraordinary V-naturality, 17
Extremal epimorphism, 44

F -cocomplete, 99
F -Cocontinuous, 99
F -colimits, 99
F -theory, 120

generated by a sketch, 123, 125
Factorization system, 74

comprehensive, 73
proper, 113

Filtered category, 71
α-filtered, 73

Filtered colimit, 72
Filtered-colimit completion, 102
Final diagram, 70
Final functor, 70
Finitary essentially-algebraic theory, 120
Finite-colimit completion, 101
Finitely cocomplete, 71
Finitely complete, 71
Finitely presentable, 83
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Flat, 102
Free cocompletion, 67
Free V-category, 35
Fubini theorem

for ends in V , 29
general, 41

Full image, 25
Full subcategory, 9
Fully faithful

locally, 121
Fully faithful functor, 9
Functor

2-functor, 10
algebraic, 120
conservative, 8
contravariant, 12
contravariant representable, 15
enriched over V , 9
flat, 102
fully faithful, 9
generating, 46
of two variables, 12
partial, 12
representable, 15, 22
underlying, 10

Functor category, 30

General adjoint functor theorem, 79
Generating functor, 46
Generator, 46

(E ,M)-generator, 113
regular, 81
strong, 46

Generic model, 109
Grothendieck construction

discrete, 74

Heyting algebra, 15
Hom, internal, 14

Idempotent monad, 25
Idempotent, split, 100
Idempotent-splitting completion, 100
Identity element, 8
Image

full, 25
replete, 25

Indexed colimit, 38
Indexed limit, 37
Indexing type, 37
Inductive cone, canonical, 43
Initial diagram, 69
Initial functor, 70
Interchange

of ends in V , 29
of limits in general, 41

Internal hom, 14
Intersection of subobjects, 80

of M-subobjects, 113
Iterated colimit, 51

K-absolute colimit, 92
K-comodel, 106
K-cylinder, 81
K-model, 107
Kan adjoint, 67
Kan extension, 60, 61

pointwise, 65
weak, 65

Left adequate, 86
Left adjoint, 23
Left exact, 71
Left Kan extension, 61

weak, 65
Limit

classical, 42
conical, 42, 49, 52
indexed, 37
pointwise, 40

Limit cone, 42, 49
Locally bounded, 114, 118
Locally finitely presentable, 115, 124
Locally fully faithful, 121
Locally presentable, 115
Locally small, 8, 10

M-subobject, 113
M-wellpowered, 114
Mates, 25
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Model, 107
for a regulus, 118
for a sketch, 119
generic, 109

Monad, idempotent, 25
Monoidal category, 7

biclosed, 14
cartesian, 7
closed, 13
strict, 8
symmetric, 12

Morita equivalence, 95

Opposite V-category, 12
Orthogonal, 117, 119

Partial adjoint, 23
Partial functor, 12
Pointwise Kan extension, 65
Pointwise limit or colimit, 40
Pointwise limits, preservation of, 42
Power, 48
Presentation of density, 93
Preservation

of a limit, 39
of a right Kan extension, 60

Profunctors, 95
Projective cone, 42
Proper factorization system, 113

Realization, 120
Reflect limits, 44
Reflective full subcategory, 25
Regular generator, 81
Regulus, 118, 119
Replete full subcategory, 25
Replete image, 25
Repletion, 25
Representable V-functor, 15, 22
Representation, 22
Right adequate, 86
Right adjoint, 23
Right exact, 71
Right Kan extension, 60

Sketch, 119, 123

of an F -theory, 123
small, 122

Small, 10, 33
Small limit

α-small, 73
Small-projective, 94
Small sketch, 122
Small V-category, 9, 27
Solution-set condition, 79
Special Adjoint Functor Theorem, 80
Split coequalizer diagram, 81
Split idempotent, 100
Strict monoidal category, 8
Strong cogenerator, strongly cogenerat-

ing, 46
Strong generator, strongly generating, 46,

121
Subobject, 80
M-subobject, 113

Surjective, essentially, (on objects), 24
Symmetric, 7
Symmetric monoidal category, 12
Symmetry, 11

Tensor product, 8, 48
of F -theories, 124
of V-theories, 12

Tensored, 48
Theory, cartesian, 120
Theory, essentially-algebraic, 107, 109
F -theory, 120
finitary, 120

Transformation, V-natural, 9
Triangular equations, 23

Underlying category, 10
Underlying functor, 10
Union, of M-subobjects, 113
Unit object, 8
Unit of a(n)

adjunction, 23
colimit, 38
left Kan extension, 61
representation, 22

Unit V-category, 10
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Universal V-natural family, 27

V-category, 8
cocomplete, 39
complete, 39
dual, 12
opposite, 12
small, 9, 27
unit, 10

V-category
free, 35

V-functor, 9
accessible, 77
cocontinuous, 39
conservative, 46
continuous, 39
dense, 86
representable, 15, 22
strongly cogenerating, 46
strongly generating, 46

V-natural family
extraordinary, 17
universal, 27

V-natural transformation, 9

Weak Kan extension, 65
Weakly accessible, 78
Weakly cowellpowered, 47
Wellpowered: M-wellpowered, 114

Yoneda embedding, 34
Yoneda isomorphism, 33, 39
Yoneda lemma

strong, 33
weak, 21
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