
Reprints in Theory and Applications of Categories, No. 10, 2005.

BASIC CONCEPTS OF

ENRICHED CATEGORY THEORY

G.M. KELLY, F.A.A.
PROFESSOR OF PURE MATHEMATICS, UNIVERSITY OF SYDNEY

Received by the editors 2004-10-30.

Transmitted by Steve Lack, Ross Street and RJ Wood. Reprint published on
2005-04-23. Several typographical errors corrected 2012-05-13 and 2023-12-13.

2000 Mathematics Subject Classification: 18-02, 18D10, 18D20.

Key words and phrases: enriched categories, monoidal categories.

Originally published by Cambridge University Press, London Mathematical So-
ciety Lecture Notes Series 64, 1982

© G.M. Kelly, 2005. Permission to copy for private use granted.



ii

Acknowledgements for the Reprint:

From the author:
I want first to express my very deep gratitude to the volunteer typists

whose efforts have allowed the production of this attractive reprint of ‘Ba-
sic Concepts of Enriched Category Theory’. They are: Richard Garner,
who had begun to re-type the book for his own use and offered sev-
eral chapters, along with Toby Bartels, William Boshuck, Maria Manuel
Clementino, Robert Dawson, Steve Lack, Tom Leinster, Francisco Mar-
molejo, Shane O’Conchuir, Craig Pastro, Mark Weber and Ralph Woj-
towicz – each of whom handled several sections. Thanks also to the many
other colleagues who offered to help with the typing.

I am in addition particularly indebted to Donovan Van Osdol for his
careful proof-reading of the text; to Michael Barr for his coordination of
the volunteer effort, for his elegant typesetting of the diagrams, and for
his fine work on the index; and to Bob Rosebrugh, the Managing Editor,
for his constant encouragement and for many kindnesses: to these, too, I
offer my very sincere thanks.

G. Max Kelly
Sydney, April 2005

From the Editors:
It is a pleasure to add this book to the Reprints in Theory and Ap-

plications of Categories. There have been requests for its inclusion since
we began the series.

As we did for Jon Beck’s thesis, we asked for volunteers to retype the
text and were again overwhelmed by the response – nearly 30 colleagues
volunteered within a day of sending the request. We warmly thank ev-
eryone who volunteered and especially those we asked to do the work.

Serendipitously, Richard Garner had begun to re-type the book for
his own use and kindly offered his excellent work – much of the first three
chapters. We then selected other volunteers to type several sections each.
The typists we thank, in addition to Richard Garner, are: Toby Bartels,
William Boshuck, Maria Manuel Clementino, Robert Dawson, Steve Lack,
Tom Leinster, Francisco Marmolejo, Shane O’Conchuir, Craig Pastro,
Mark Weber and Ralph Wojtowicz. Everyone did their part promptly
and followed instructions that simplified coordination.

We also thank Donovan Van Osdol for providing a superb proof-
reading job and Michael Barr for coordinating the many different files,



iii

for rendering the diagrams beautifully using his own diagxy front end for
xy-pic, and for the difficult task of creating the index.

The few typographical errors from the original of which the author
was aware, and a few noted by the typists, have been corrected without
comment.

The Editors of Theory and Applications of Categories



iv



v

To my wife and children



vi



Contents

Introduction 1

1 The elementary notions 9

1.1 Monoidal categories . . . . . . . . . . . . . . . . . . . . . 9

1.2 The 2-category V-CAT for a monoidal V . . . . . . . . . 11

1.3 The 2-functor ( )0 : V-CAT −→ CAT . . . . . . . . . . . 13

1.4 Symmetric monoidal categories: the tensor product and
duality on V-CAT for a symmetric monoidal V . . . . . . 15

1.5 Closed and biclosed monoidal categories . . . . . . . . . . 19

1.6 V as a V-category for symmetric monoidal closed V; rep-
resentable V-functors . . . . . . . . . . . . . . . . . . . . . 20

1.7 Extraordinary V-naturality . . . . . . . . . . . . . . . . . 24

1.8 The V-naturality of the canonical maps . . . . . . . . . . 27

1.9 The (weak) Yoneda lemma for V-CAT . . . . . . . . . . . 29

1.10 Representability of V-functors; the representing object as
a V-functor of the passive variables . . . . . . . . . . . . . 31

1.11 Adjunctions and equivalences in V-CAT . . . . . . . . . . 32

2 Functor categories 37

2.1 Ends in V . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 The functor-category [A,B] for small A . . . . . . . . . . 40

2.3 The isomorphism [A⊗ B, C] ∼= [A, [B, C]] . . . . . . . . . . 43

2.4 The (strong) Yoneda lemma for V-CAT; the Yoneda em-
bedding A −→ [Aop,V] . . . . . . . . . . . . . . . . . . . . 46

2.5 The free V-category on a Set-category . . . . . . . . . . . 48

2.6 Universe-enlargement V ⊂V ′ in concrete cases; [A,B] as a
V ′-category for large A . . . . . . . . . . . . . . . . . . . . 49



viii CONTENTS

3 Indexed limits and colimits 51

3.1 Indexing types; limits and colimits; Yoneda isomorphisms 51

3.2 Preservation of limits and colimits . . . . . . . . . . . . . 54

3.3 Limits in functor categories; double limits and iterated lim-
its . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 The connexion with classical conical limits when V = Set 58

3.5 Full subcategories and limits; the closure of a full subcat-
egory under a class of colimits . . . . . . . . . . . . . . . . 61

3.6 Strongly generating functors . . . . . . . . . . . . . . . . . 63

3.7 Tensor and cotensor products . . . . . . . . . . . . . . . . 65

3.8 Conical limits in a V-category . . . . . . . . . . . . . . . . 67

3.9 The inadequacy of conical limits . . . . . . . . . . . . . . 69

3.10 Ends and coends in a general V-category; completeness . 71

3.11 The existence of a limit-preserving universe-enlargement
V ⊂ V ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.12 The existence of a limit- and colimit-preserving universe-
enlargement V ⊂ V ′ . . . . . . . . . . . . . . . . . . . . . . 77

4 Kan extensions 81

4.1 The definition of Kan extensions; their expressibility by
limits and colimits . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Elementary properties and examples . . . . . . . . . . . . 85

4.3 A universal property of LanKG; its inadequacy as defini-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Iterated Kan extensions; Kan adjoints; [Aop,V] as the free
cocompletion of a small A . . . . . . . . . . . . . . . . . . 91

4.5 Initial diagrams as the left Kan extensions into V; initial
and final functors when V = Set . . . . . . . . . . . . . . 93

4.6 Filtered categories when V = Set; the commutativity in
Set of filtered colimits with finite limits . . . . . . . . . . 97

4.7 The factorization of a functor, when V = Set, into an
initial functor and a discrete op-fibration . . . . . . . . . . 100

4.8 The general representability and adjoint-functor theorems;
the special case of a complete domain-category . . . . . . 103

4.9 Representability and adjoint-functor theorems when V =
Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.10 Existence and characterization of the left Kan extension
along a fully-faithful K : A −→ C in terms of cylinders in
C sent to colimits by the C(KA,−) . . . . . . . . . . . . . 109



CONTENTS ix

5 Density 115

5.1 Definition of density, and equivalent formulations . . . . . 115

5.2 Composability and cancellability properties of dense func-
tors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Examples of density; comparison with strong generation . 121

5.4 Presentations of the density of a fully-faithful K in terms
of K-absolute colimits . . . . . . . . . . . . . . . . . . . . 124

5.5 The characterization of functor categories [Aop,V]; small
projectives and Cauchy completion; Morita equivalence . 127

5.6 Existence and characterization of the left Kan extension
along a fully-faithful dense functor in terms of a density
presentation; adjoint-functor theorems involving density . 130

5.7 The free completion of A with respect to all colimits with
indexing-type in F . . . . . . . . . . . . . . . . . . . . . . 133

5.8 Cauchy completion as the idempotent-splitting completion
when V = Set . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.9 The finite-colimit completion when V = Set . . . . . . . . 136

5.10 The filtered-colimit completion when V = Set; flat and
left-exact functors . . . . . . . . . . . . . . . . . . . . . . 138

5.11 The image under [K, 1] : [C,B] −→ [A,B], for a general
denseK, of the left adjoint functors; examples and counter-
examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.12 Description of the image above in terms of K-comodels;
generalization to an equivalence LanZ a [Z, 1] between cat-
egories of comodels . . . . . . . . . . . . . . . . . . . . . . 143

5.13 A dense K : A −→ C, with A small and C cocomplete, as
an essentially-algebraic theory with C as the category of
algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.14 The image under [K, 1] : [C,B] −→ [A,B], for a dense K,
of the equivalences; characterization theorems for C . . . . 148

6 Essentially-algebraic theories defined by reguli and
by sketches 151

6.1 Locally-bounded categories; the local boundedness of V in
all our examples . . . . . . . . . . . . . . . . . . . . . . . 151

6.2 The reflectivity in [Aop,V] of the category of algebras for
a regulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3 The category of algebras for a sketch, and in particular for
an F-theory; algebraic functors and their adjoints . . . . 158



x CONTENTS

6.4 The F-theory generated by a small sketch . . . . . . . . . 163
6.5 The symmetric monoidal closed structure on the category

of F-cocomplete categories and F-cocontinuous functors . 166

Bibliography 169

Index 175



Introduction

(i) Although numerous contributions from divers authors, over the past
fifteen years or so, have brought enriched category theory to a developed
state, there is still no connected account of the theory, or even of a sub-
stantial part of it. As the applications of the theory continue to expand
– some recent examples are given below – the lack of such an account is
the more acutely felt.

The present book is designed to supply the want in part, by giving
a fairly complete treatment of the limited area to which the title refers.
The basic concepts of category theory certainly include the notion of
functor-category, of limit and colimit, of Kan extension, and of density;
with their applications to completions, perhaps including those relative
completions given by categories of algebras for limit-defined theories. If
we read “V-category” for “category” here, this is essentially the list of our
chapter-headings below, after the first chapter introducing V-categories.

In fact our scope is wider than this might suggest; for what we give is
also a self-contained account of basic category theory as described above,
assuming as prior knowledge only the most elementary categorical con-
cepts, and treating the ordinary and enriched cases together from Chapter
3 on.

(ii) In order to include the enriched case we begin in Chapter 1 by
introducing symmetric monoidal closed categories V, examining their ele-
mentary properties, and defining the 2-category V-CAT of V-categories,
V-functors, and V-natural transformations, together with the forgetful
2-functor (−)0 : V-CAT //CAT; this much is easy and brief. Next, de-
veloping the basic structure of V-CAT – tensor products of V-categories,
V-functors of two variables, extraordinary V-natural transformations, V
itself as a V-category, representable V-functors, and the Yoneda lemma
– requires verifications of diagram commutativity, whose analogues for
V = Set reduce to fairly trivial equations between functions. This seems
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to be an inevitable cost of the extra generality; but we have been at pains
so to arrange the account that the reader should find the burden a light
one. With this done, the discussion of representability, adjunction, and
equivalences in V-CAT, which closes Chapter 1, is simple and direct.

The short Chapter 2 takes up the closed structure of V-CAT, given
by the V-functor-category [B, C]. Since the hom [B, C](T, S) is to be an
object of V and not merely a set, more work is once again required than in
the V = Set case. However this hom for small B is quite a simple limit in
V0 – now supposed complete – of the special kind called an end, precisely
adapted to the extraordinary V-natural transformations; and from this
definition flow easily the desired properties.

The indexed limits and colimits of Chapter 3, along with their various
special cases, are constructs of the greatest importance even when V =
Set; and the relations between double and iterated indexed limits express
a rich content. This importance is scarcely lessened by their reducibility
when V = Set to classical limits – any more than the importance of these
classical ones is lessened by their reducibility in good cases to products
and equalizers. Even in the case V = Ab of additive categories, the
indexed limits – although here they exist when all the classical ones do
– are no longer directly reducible to the latter; while for a general V
the indexed limits are essential, and the classical ones no longer suffice.
Chapter 3 ends by showing how to expand V into a bigger universe,
without disturbing limits and colimits, so as to allow the free use of
functor-categories [B, C] with large B.

The remaining chapters 4, 5, and 6, dealing respectively with Kan
extensions, density, and algebras defined by limits (or more generally by
“topologies”), make use of these limit- and colimit-notions to complete
the development of our chosen area of basic category theory. Most of the
results apply equally to categories and to V-categories, without a word’s
being changed in the statement or the proof; so that scarcely a word would
be saved if we restricted ourselves to ordinary categories alone. Certainly
this requires proofs adapted to the case of a general V; but these almost
always turn out to be the best proofs in the classical case V = Set as well.
This reflects the hopes with which Eilenberg and the author set out when
writing [26], and Lawvere’s observation in [54] that the relevant segment
of classical logic “applies directly to structures valued in an arbitrary
[symmetric monoidal] closed category V”.

Because of the special properties of Set, there are of course certain
results peculiar to the case V = Set; and we accordingly devote an occa-
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sional section to this case alone. Some examples are the commutativity
in Set of filtered colimits with finite limits; the notions of initial functor
and of discrete op-fibration; and the classical adjoint-functor theorems.
We treat all of these for completeness – partly to keep the account self-
contained, and partly to compare them, where appropriate, with ana-
logues for a general V.

The little prior knowledge that we do assume is easily available –
for instance from [60] – and to have included it here, with examples to
enliven it, would have involved an unjustifiable increase in the length.
For Chapter 1, it consists of the basic notions of category, functor and
natural transformation, including functors of two or more variables and
contravariant functors; representable functors and the Yoneda lemma;
adjunction and equivalence; and what is meant by a faithful or a fully-
faithful functor. From Chapter 2 on, we also need the classical notions
of limit and colimit; with the names of such special limits as product,
equalizer, pullback, and terminal object; and the meaning of monomor-
phism and epimorphism. In the rare places where more is assumed but
not expounded here, references are given.

(iii) We now turn to what we have omitted from the present book; the list
includes many important notions, well meriting an extended treatment,
whose inclusion would however have disturbed the essential simplicity of
an initial account such as this.

First (to return to the title), the basic concepts of category theory
concern categories – in our case, V-categories – as the objects of discus-
sion. These form, or live in, a 2-category V-CAT; but 2-categories are not
yet the formal objects of discussion, any more than categories are when
we study group theory. Category theory casts light on group theory, as
does 2-category theory on category theory. Hence the step to this next
level, where weaker notions of natural transformation naturally arise, is
an important one; but it is quite properly deferred pending experience
of some particular 2-categories, and we do not take it here. We make a
start on some aspects of it in the forthcoming [46].

Closely connected to this is our decision not to discuss the “change
of base-category” given by a symmetric monoidal functor V // V ′, and
the induced 2-functor V-CAT // V ′-CAT. We do, as we said, consider
the forgetful 2-functor (−)0 : V-CAT //CAT induced by the canonical
V //Set; but this is entirely elementary, not involving even the definition
of a symmetric monoidal functor. The general change of base, important
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though it is, is yet logically secondary to the basic V-category theory it
acts on. To treat it properly needs a careful analysis of the 2-category of
symmetric monoidal categories, symmetric monoidal functors, and sym-
metric monoidal natural transformations – including adjunctions therein
and the dual concept of op-monoidal functor. There is evidence in [43]
that this itself is best studied in the more general context of categories
with essentially-algebraic structure, which draws on the matter of this
book together with [45] and [46].

Since the natural setting for the important work of Day ([12], [14], [16])
on the construction of symmetric monoidal closed categories as functor-
categories, or as reflective subcategories of these, involves the 2-category
of symmetric monoidal categories, this too has been omitted.

One thing we particularly regret omitting is the theory of monads; it
could certainly be seen as basic category theory, yet there was no conve-
nient place to put it, and it would have required an extra chapter to itself.
Luckily, besides the account of Mac Lane [60] in the classical case, we have
the articles of Linton [57], Dubuc [22], and Kock [51], covering various
aspects of the enriched case. We also have the elegant 2-categorical treat-
ment by Street [70], which provides some argument for deferring the topic
until 2-categories have been more closely studied. A consequence is our
failure to discuss the completeness and cocompleteness of the 2-category
V-Cat of small V-categories – which is most easily referred back to the
completeness and the cocompleteness of the algebras for a monad.

Finally, our account covers only what can be said for every well-
behaved V (except for those things special to V = Set). Results valid
only for a special class of V are best treated in separate articles, of which
the author’s forthcoming [45] is one example.

(iv) Our concern being to provide a development of basic category theory
that covers the enriched case, we have given illustrations of many of the
results in isolation, but have not thought this the place to discuss detailed
applications to particular areas of mathematics. In fact, applications
needing the enriched case are rapidly proliferating; the following is a
selection of recent ones that have come to the author’s notice.

The discussion of dualities in topological algebra, taking for V a suit-
able category of topological or quasitopological spaces, and initiated by
Dubuc and Porta [23], has been continued in numerous articles by Dubuc,
Day, and Nel. Pelletier [67] has made use of Kan extensions where V is
Banach spaces. Recent Soviet work in representation theory (see the
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articles by Kleiner and Roiter, and by Golovaschuk, Ovsienko, and Roi-
ter, in [64]) has differential graded modules for V. The present author, as
part of a study of essentially-algebraic structures borne by categories, has
extended in [45] the classical results on “cartesian theories” (finite-limit
theories) from the case where V is sets to those where it is groupoids or
categories.

The study of homotopy limits by Gray [32] takes him into the area
of change of base-categories, involving the connexions between the closed
categories of categories and of simplicial sets. The work of May on infi-
nite loop spaces, involving from the beginning [61] the base category V
of compactly-generated spaces, has of late led him [62] to very general
considerations on categories V with two symmetric monoidal structures
and a distributive law between them. Mitchell [63] has related monoidal
structures on [G,V] for suitable V to low-dimensional cohomology groups
of the group G. These latter applications go beyond the basic theory
presented here, but of course presuppose the relevant parts of it.

Recent work of Walters ([75], [76]) does concern the basic theory, but
with V generalized to a symmetric monoidal closed bicategory ; in this con-
text he exhibits the sheaves on a site as the symmetric Cauchy-complete
V-categories. It is plain that continued expansion of the applications is
to be expected.

(v) Writing in text-book style, we have not interrupted the development
to assign credit for individual results. To do so with precision and justice
would in any case be a daunting task; much has been written, and many
insights were arrived at independently by several authors. Such references
as do occur in the text are rather intended to show where more detail may
be found. What we can do, though, is to list here some of the works to
which we are particularly indebted.

Perhaps the first to advocate in print the study of enriched categories
was Mac Lane [59]; although published in 1965, this represents basically
his Colloquium Lectures at Boulder in 1963. There were some early
attempts by Linton [56] and Kelly [40] to make a start; Bénabou ([4],
[5]) went further; while Eilenberg and Kelly wrote a voluminous article
[26] covering only the “elementary” notions, but including change of base-
category. Our present Chapter 1 draws mainly on [26] and on the author’s
article [42].

The principal source for Chapter 2 is Day and Kelly [20]; but see also
Bunge [10]. The ideas in Chapter 3 of cotensor products, of ends, and
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of limits in a V-category, go back to [42] and [20]; and the concept of
their pointwise existence in a functor-category to Dubuc [22]. However,
the general notion of indexed limit, which makes Chapter 3 possible in
its present form, was discovered independently by Street [72], Auderset
[1], and Borceux and Kelly [9]. The last two sections of Chapter 3 call on
Day’s articles [12] and [14].

Chapter 4, on Kan extensions, is certainly indebted to the three ar-
ticles [20], [22], [9] already mentioned; in particular it was Dubuc in [22]
who pointed out the importance of the “pointwise” existence of Kan ex-
tensions, which we make part of our definition. The chapter also contains
many more-or-less classical results for V = Set; all but the best known
are credited in the text to their authors.

It is especially in Chapter 5, on density, that we have been heavily
influenced by writers who themselves dealt only with V = Set; namely
Gabriel and Ulmer [31] and Diers [21]. The term “density presentation”
we have taken from Day [16], although modifying its meaning somewhat.
Again, writers on particular aspects are given credit in the text.

Chapter 6 shows its debt to Ehresmann [24], as well as to Gabriel and
Ulmer. The form of the transfinite construction used here to prove the
reflectivity of the algebras, although it is taken from the author’s article
[44], ultimately depends on an idea from an unpublished manuscript of
Barr (reference [3] of [44]), which makes cowellpoweredness an unneces-
sary hypothesis, and so enables us to include the important example of
quasitopological spaces.

The author’s original contributions to the book are perhaps most visi-
ble in the arrangement of topics and in the construction of proofs that ap-
ply equally to the classical and enriched cases. For instance, many readers
will find the way of introducing Kan extensions quite novel. Beyond this,
the work in 5.11–5.13 on Kan extensions along a non-fully-faithful dense
functor seems to be quite new even when V = Set, as is its application
in 6.4; while the whole of Chapter 6 is new in the enriched setting.

(vi) In the early chapters the formal definition-theorem-proof style
seemed out of place, and apt to lengthen an essentially simple account.
Deciding to avoid it, we have accordingly made reference to a result
either by quoting the section in which it occurs, or (more commonly)
by quoting the number of the displayed formula most closely associated
with it. In the later chapters, now more concerned with applying the
logic than developing it, it seemed best to return to formally-numbered
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propositions and theorems.
The end-result is as follows. A symbol 5.6 without parentheses refers

to section 6 of Chapter 5. All other references occur in a single series,
consisting of displayed formulae and proposition- or theorem-numbers,
with the first digit denoting the chapter. Thus in Chapter 5, formula
(5.51) is followed by Theorem 5.52, itself followed by formula (5.53), which
in fact occurs in the statement of the theorem. To assist cross-referencing,
each left-hand page bears at its head the number of the last section to
which that page belongs, and each right-hand page bears the numbers
of the formulae, propositions, and theorems that occur on the two-page
spread (in parentheses, even if they are theorem-numbers).1

(vii) It remains to thank those who have made the book possible. Over
the last twelve months I have had the opportunity to present early drafts
of the material to acute and stimulating audiences at the Universities
of Sydney, Trieste, and Hagen; their encouragement has been of ines-
timable value. Equally important has been the support of my colleagues
in the Sydney Category Theory Seminar – including the visiting member
André Joyal, whose presence was made possible by the Australian Re-
search Grants Committee. I am indebted to Cambridge University Press,
for suggesting this Lecture Notes Series as suited to such a book, and for
their careful help with the technical details of publication. It was they
who observed that the original typed manuscript was already suitable as
camera-ready copy; I regard this as a compliment to the intelligence and
taste of my secretary Helen Rubin, whose first mathematical job this was,
and I thank her very sincerely. Finally I thank my wife and children, who
have borne months of shameful neglect.

Max Kelly,
Sydney,

January 1981.

1This has not been done in this electronic version. Instead, we use a running section
title on recto pages and a running chapter title on the verso.
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Chapter 1

The elementary notions

1.1 Monoidal categories

A monoidal category V = (V0,⊗, I, a, l, r) consists of a category V0, a
functor ⊗ : V0 × V0

// V0, an object I of V0 and natural isomorphisms
aXY Z : (X ⊗Y )⊗Z //X ⊗ (Y ⊗Z), lX : I ⊗X //X, rX : X ⊗ I //X,
subject to two coherence axioms expressing the commutativity of the
following diagrams:

(W ⊗X)⊗ (Y ⊗ Z)

a

&&(
(W ⊗X)⊗ Y

)
⊗ Z

a
88

a⊗1
��

W ⊗
(
X ⊗ (Y ⊗ Z)

)
(
W ⊗ (X ⊗ Y )

)
⊗ Z a

//W ⊗
(
(X ⊗ Y )⊗ Z

)
,

1⊗a

OO
(1.1)

(X ⊗ I)⊗ Y a //

r⊗1 $$

X ⊗ (I ⊗ Y )

1⊗lxx
X ⊗ Y .

(1.2)

It then follows (see [58] and [39]) that every diagram of natural transfor-
mations commutes, each arrow of which is obtained by repeatedly apply-
ing the functor ⊗ to instances of a, l, r, their inverses, and 1; here an
“instance” of a is a natural transformation, such as aW⊗X,Y,Z or aX,I,Y in
the diagrams above, formed from a by repeated application of the functors
⊗ and I to its variables. For a precise formulation, see [58].



10 1 The elementary notions

A special kind of example, called a cartesian monoidal category , is
given by taking for V0 any category with finite products, taking for ⊗
and I the product × and the terminal object 1, and taking for a, l, r the
canonical isomorphisms. Important particular cases of this are the cate-
gories Set, Cat, Gpd, Ord, Top, CGTop, HCGTop, QTop, Shv S,
of (small) sets, categories, groupoids, ordered sets, topological spaces,
compactly generated topological spaces, Hausdorff such, quasitopological
spaces [69], and sheaves for a site S; here “small” is in reference to some
chosen universe, which we suppose given once and for all. Other carte-
sian examples are obtained by taking for V0 an ordered set with finite
intersections, such as the ordinal 2 = {0, 1}. All of these examples are
symmetric in the sense of 1.4 below, and all the named ones except Top
are closed in the sense of 1.5 below.

A collection of non-cartesian (symmetric, closed) examples is given by
the categories Ab, R-Mod, G-R-Mod, DG-R-Mod of (small) abelian
groups, R-modules for a commutative ring R, graded R-modules, and
differential graded R-modules, each with its usual tensor product as ⊗;
the category Ban of Banach spaces and linear maps of norm 6 1, with the
projective tensor product; the category CGTop∗ of pointed compactly-
generated spaces with the smash product for ⊗; and the ordered set R+

of extended non-negative reals, with the reverse of the usual order, and
with + as ⊗.

A non-symmetric example is the category of bimodules over a non-
commutative ring R, with ⊗R as ⊗. Another is the category of endofunc-
tors of a small category, with composition as ⊗; here a, l, r are identities,
so that the monoidal category is called strict .

In general we call ⊗ the tensor product , and I the unit object.

We suppose henceforth given a particular monoidal V such that V0

is locally small (has small hom-sets). We then have the representable
functor V0(I,−) : V0

// Set, which we denote by V . In such cases as
Set, Ord, Top, Ab, R-Mod, CGTop∗, it is (to within isomorphism)
the ordinary “underlying-set” functor; in the case of Ban, V X is the unit
ball of X; in these cases V is faithful, while in some of them (Set, Ab,
R-Mod, Ban) it is even conservative (= isomorphism-reflecting). Yet V
is not faithful in general; in the cases Cat and Gpd, V X is the set of
objects of X, and in the case DG-R-Mod, V X is the set of 0-cycles.

In spite of the failure of V to be faithful in general, it is convenient to
call an element f of V X (that is, a map f : I //X in V0) an element f
of X.
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1.2 The 2-category V-CAT for a monoidal V

A V-category A consists of a set obA of objects, a hom-object A(A,B) ∈
V0 for each pair of objects of A, a composition law

M = MABC : A(B,C)⊗A(A,B) //A(A,C)

for each triple of objects, and an identity element jA : I // A(A,A) for
each object; subject to the associativity and unit axioms expressed by the
commutativity of

(
A(C,D)⊗A(B,C)

)
⊗A(A,B)

a //

M⊗1
��

A(C,D)⊗
(
A(B,C)⊗A(A,B)

)
1⊗M
��

A(B,D)⊗A(A,B)

M ''

A(C,D)⊗A(A,C)

Mww
A(A,D),

(1.3)

A(B,B)⊗A(A,B)
M // A(A,B) A(A,B)⊗A(A,A)

Moo

I⊗A(A,B)

j⊗1

OO

l

66

A(A,B)⊗I.

1⊗j

OO

r

hh
(1.4)

Taking V = Set, Cat, 2, Ab, DG-R-Mod, R+, we re-find the classical
notions of (locally small) ordinary category, 2-category, pre-ordered set,
additive category (some call it “pre-additive”), differential graded cate-
gory, and (rather generalized) metric space. For a general reference on
2-categories, see [49]; and for the generalized metric spaces, see [54]. We
call the V-category A small if obA is small.

For V-categoriesA and B, a V-functor T : A //B consists of a function

T : obA // obB

together with, for each pair A, B ∈ obA, a map

TAB : A(A,B) // B(TA, TB),

subject to the compatibility with composition and with the identities
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expressed by the commutativity of

A(B,C)⊗A(A,B)
M //

T⊗T

��

A(A,C)

T

��
B(TB, TC)⊗ B(TA, TB)

M
// B(TA, TC),

(1.5)

A(A,A)

T

��

I

j
::

j $$
B(TA, TA).

(1.6)

In the six examples above we re-find the classical notions of functor, 2-
functor, increasing function, additive functor, differential graded functor,
and contracting map. The V-functor T is fully faithful if each TAB is an
isomorphism; an example is the inclusion T : A //B of a full subcategory ,
determined by a subset obA of obB. Clearly V-functors can be composed,
to form a category.

For V-functors T, S : A // B, a V-natural transformation

α : T // S : A // B

is an obA-indexed family of components αA : I // B(TA, SA) satisfying
the V-naturality condition expressed by the commutativity of

I⊗A(A,B)
αB⊗T // B(TB, SB)⊗B(TA, TB)

M

##
A(A,B)

l−1

AA

r−1

��

B(TA, SB).

A(A,B)⊗I
S⊗αA

// B(SA, SB)⊗B(TA, SA)

M

;;
(1.7)
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The “vertical composite” β · α of

α : T // S : A // B and β : S //R : A // B

has the component (β · α)A given by

I∼=I⊗I
βA⊗αA

//B(SA,RA)⊗B(TA, SA)
M
//B(TA,RA). (1.8)

The composite of α above with Q : B // C has for its component (Qα)A
the composite

I αA
//B(TA, SA)

Q
//C(QTA,QSA); (1.9)

while the composite of α with P : D //A has for its component (αP )D
simply αPD.

It is now easy to verify that V-categories, V-functors, and V-natural
transformations constitute a 2-category V-CAT; an “illegitimate” one, of
course, unless some restriction is placed on the size, as in the legitimate 2-
category V-Cat, of small V-categories. Of course V-CAT reduces, when
V = Set, to the 2-category CAT of locally small ordinary categories.

1.3 The 2-functor ( )0 : V-CAT −→ CAT

Denoting by I the unit V-category with one object 0 and with
I(0, 0) = I, we write (−)0 : V-CAT // CAT for the representable
2-functor V-CAT(I,−); which we now proceed to describe in more
elementary terms.

A V-functor A : I // A may be identified with an object A of the
V-category A; and a V-natural f : A // B : I // A consists of a sin-
gle component f : I //A(A,B), the axiom (1.7) being trivially satisfied.
Thus the ordinary category A0 = V-CAT(I,A), which is called the un-
derlying category of A, has the same objects as A, while a map f : A //B
in A0 is just an element f : I //A(A,B) of A(A,B), in the sense of 1.1.
Otherwise put, A0(A,B) = VA(A,B). By (1.8), the composite gf in A0

is given by the composite

I ∼= I ⊗ I
g⊗f

//A(B,C)⊗A(A,B)
M
//A(A,C) (1.10)

in V0, while the identity in A0(A,A) is clearly jA.
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How much information about A is retained by A0 depends upon how
faithful V is. When V = Cat, V is not faithful; A is a 2-category, and A0

is the category obtained by discarding the 2-cells. When V = CGTop,
V is faithful, and A0 has lost only the topology on the hom-objects of A.
When V = Ab or R-Mod, V is even conservative, and A0 is still closer
to A.

The ordinary functor T0 : A0
//B0 induced by (or underlying) the V-

functor T : A //B sends A : I //A to TA and sends f : A //B : I //A
to Tf , which by (1.9) is the composite

I
f
//A(A,B)

TAB
//B(TA, TB). (1.11)

Thus we have

T0A = TA, T0f = Tf ; (1.12)

the latter of which means that

T0AB : A0(A,B) // B0(TA, TB)

is

V TAB : VA(A,B) // V B(TA, TB).

(1.13)

Clearly T0 is fully faithful if T is; T 7→ T0 is injective when V is faithful,
but not in general; and, when V is conservative, T is fully faithful if T0

is.

The ordinary natural transformation α0 : T0
//S0 : A0

//B0 induced
by the V-natural α : T // S : A // B has for its A-component α0A ∈
B0(TA, SA) precisely the A-component

αA : I // B(TA, SA)

of α; so that it is not usually necessary to distinguish α from α0. The
V-naturality condition (1.7) for α : T // S becomes the usual naturality
condition for α : T0

//S0 when V is applied to it. Hence the naturality of
α : T0

//S0, while weaker in general than the V-naturality of α : T //S,
is equivalent to it when V is faithful.

In spite of such formulae as (1.12), both clarity and economy are
served by carefully distinguishing A from A0 and T from T0. For instance,
completeness of A, to be defined below, means something stronger than
completeness of A0; and continuity of T means something stronger than
continuity of T0. Having a left adjoint for T is stronger than having
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a left adjoint for T0; while the existence of a small dense subcategory
of A neither implies nor is implied by the existence of a small dense
subcategory of A0. As for economy, maintaining the distinction allows us,
when A and B are V-categories, to abbreviate “V-functor T : A //B” to
“functor (or map) T : A // B”; if we had meant a functor T : A0

// B0,
we should have said so. Again, to speak of “a V-functor T : A // B”
carries the converse implication, that A and B are V-categories. Similarly,
when T, S : A // B are V-functors, by “map (or natural transformation)
α : T // S” we must mean a V-natural one; for we did not speak of a
map α : T0

// S0. When only components are written, however, it may
be necessary to say “αA : TA // SA is V-natural in A”, since TA is also
T0A. Finally, since strictly speaking there are no “morphisms” in the
V-category A, it is harmless to call a map f : A //B in A0, which is an
element f : I //A(A,B) of A(A,B), “a map f : A //B in A”.

1.4 Symmetric monoidal categories: the tensor product and duality
on V-CAT for a symmetric monoidal V

A symmetry c for a monoidal category V is a natural isomorphism
cXY : X ⊗ Y // Y ⊗X satisfying the coherence axioms expressed by the
commutativity of

X ⊗ Y c //

1 %%

Y ⊗X
c

��
X ⊗ Y ,

(1.14)

(X ⊗ Y )⊗ Z a //

c⊗1
��

X ⊗ (Y ⊗ Z)
c // (Y ⊗ Z)⊗X

a

��
(Y ⊗X)⊗ Z a

// Y ⊗ (X ⊗ Z)
1⊗c
// Y ⊗ (Z ⊗X),

(1.15)

I ⊗X c //

l ##

X ⊗ I

r
{{

X.

(1.16)

Note that (1.16) defines l in terms of r, and then we need only the four
coherence axioms (1.1), (1.2), (1.14), (1.15). It follows from [58] and [39]
that every diagram of natural transformations commutes, each arrow of
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which is obtained by the repeated application of ⊗ to instances of a, l, r,
c, their inverses, and 1; cf. 1.1, and for a precise formulation, see again
[58].

A monoidal category – even a closed one in the sense of 1.5 below
– may admit more than one symmetry. The classical example is V =
G-R-Mod, with c(x⊗ y), for homogeneous elements x, y of degrees p, q,
defined either as y ⊗ x or as (−1)pqy ⊗ x. However, if V is faithful and
V is closed, there is at most one symmetry ([26] Chapter III, Proposition
6.1). For a cartesian V, there is an evident canonical c : X⊗Y //Y ⊗X.
For the cases Ab, R-Mod, Ban, and CGTop∗, V is faithful and the
unique symmetry is well-known. For DG-R-Mod the classical symmetry
is given by

c(x⊗ y) = (−1)pqy ⊗ x;

and for R+ it is the equality x+ y = y + x.
A monoidal category V together with a symmetry is called a symmetric

monoidal category . We now suppose V to be such.
Then to each pair A, B of V-categories we can associate a tensor

product A⊗ B, with object-set obA× obB, and with

(A⊗B)
(
(A,B), (A′, B′)

)
= A(A,A′)⊗ B(B,B′).

The composition-law is given by the top edge of(
A(A′, A′′)⊗B(B′, B′′)

)
⊗
(
A(A,A′)⊗B(B,B′)

)
M

**
m

��

A(A,A′′)⊗B(B,B′′)

(
A(A′, A′′)⊗A(A,A′)

)
⊗
(
B(B′, B′′)⊗B(B,B′)

)
,

M⊗M

55 (1.17)

where m : (W ⊗X)⊗ (Y ⊗ Z) ∼= (W ⊗ Y )⊗ (X ⊗ Z) is the middle-four
interchange defined by any suitable composite of instances of a and of c.
The identity element is the composite

I ∼= I ⊗ I
jA⊗jB

//A(A,A)⊗ B(B,B), (1.18)

and axioms (1.3) and (1.4) are easy to verify.
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It is further easy to check that, with the obvious definitions of T ⊗
S : A⊗B //A′⊗B′ and of α⊗β : T ⊗S //T ′⊗S′, we have a 2-functor

⊗ : V-CAT× V-CAT // V-CAT;

and that we have coherent 2-natural isomorphisms (A ⊗ B) ⊗ C ∼= A ⊗
(B ⊗ C), I ⊗ A ∼= A ⊗ I ∼= A, and A ⊗ B ∼= B ⊗ A (where I is the unit
V-category of 1.3). Thus V-CAT is, in an evident sense, a symmetric
monoidal 2-category.

Moreover, to each V-category A we can associate a dual , or opposite,
V-category Aop, with the same objects as A, but with

Aop(A,B) = A(B,A).

The composition-law M : Aop(B,C)⊗Aop(A,B) //Aop(A,C) is just the
composite

A(C,B)⊗A(B,A) c
// A(B,A)⊗A(C,B)

M
// A(C,A), (1.19)

while the unit element I //Aop(A,A) is that ofA. From α :T //S :A //B
we get, with evident definitions, αop : Sop // T op : Aop // Bop; note
that (−)op reverses 2-cells but not 1-cells. Of course (−)op is involutary:
(Aop)op = A; and it respects tensor products: (A ⊗ B)op = Aop ⊗ Bop.
Thus, in an evident sense, V-CAT is a symmetric monoidal 2-category
with a duality involution.

A functor Aop //B may be called a contravariant functor from A to
B; while a functor T : A⊗B // C may be thought of as a functor of two
variables. Such a T gives rise to partial functors T (A,−) : B // C for
each A ∈ A and T (−, B) : A // C for each B ∈ B. Here T (A,−) is the
composite

B ∼= I ⊗ B
A⊗1

//A⊗ B
T
//C, (1.20)

from which can be read off the value of T (A,−)BB′ .

Suppose, conversely, that we are given a family of functors

T (A,−) : B // C

indexed by obA and a family of functors T (−, B) : A // C indexed by
obB, such that on objects we have T (A,−)B = T (−, B)A, = T (A,B),
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say. Then there is a functor T : A⊗B //C of which these are the partial
functors if and only if we have commutativity in

C
(
T (A,B′), T (A′, B′)

)
⊗ C

(
T (A,B), T (A,B′)

)

M

��

A(A,A′)⊗ B(B,B′)

c

��

T (−,B′)⊗T (A,−)

77

C
(
T (A,B), T (A′, B′)

)
B(B,B′)⊗A(A,A′)

T (A′,−)⊗T (−,B)

''
C
(
T (A′, B), T (A′, B′)

)
⊗ C

(
T (A,B), T (A′, B)

)
.

M

OO
(1.21)

Moreover T is then unique, and T(A,B),(A′,B′) is the diagonal of (1.21).
The verification is easy, and the details can be found in ([26] Chapter III,
§4).

It is further easy (using (1.21), and (1.3) for C) to verify that, if
T , S : A⊗ B // C, a family αAB : T (A,B) // S(A,B) in C0 constitutes
a V-natural transformation T // S if and only if it constitutes, for each
fixed A, a V-natural T (A,−) // S(A,−), and, for each fixed B, a V-
natural T (−, B) //S(−, B). In other words, V-naturality may be verified
variable-by-variable.

In relation to the underlying ordinary categories, we have of course
(Aop)0 = (A0)op and (T op)0 = (T0)op. However, (A⊗B)0 is not A0×B0;
rather there is an evident canonical functor A0 × B0

// (A⊗ B)0, and
a similar one 1 // I0. For T : A ⊗ B // C, the partial functors of the
composite ordinary functor

A0 × B0
//(A⊗ B)0

T0
//C0 (1.22)

are precisely T (A,−)0 and T (−, B)0.
We could discuss, in the present setting, the extraordinary V-natural

families of 1.7 below. However, the techniques that make this simple
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arise more naturally, and at a higher level, when V is closed; which is
the case of real interest. Moreover it is shown in [17] that any symmetric
monoidal category can, by passing to a higher universe, be embedded in
a closed one; see also 2.6 and 3.11 below.

1.5 Closed and biclosed monoidal categories

The monoidal category V (symmetric or not) is said to be closed (carte-
sian closed , when V is cartesian monoidal) if each functor−⊗ Y : V0

//V0

has a right adjoint [Y,−]; so that we have an adjunction

π : V0(X ⊗ Y,Z) ∼= V0(X, [Y, Z]) (1.23)

with unit and counit (the latter called evaluation) say

d : X // [Y,X ⊗ Y ], e : [Y,Z]⊗ Y // Z. (1.24)

Putting X = I in (1.23), using the isomorphism l : I⊗Y ∼= Y , and recall-
ing from 1.1 that V = V0(I,−) : V0

//Set, we get a natural isomorphism

V0(Y, Z) ∼= V [Y, Z]; (1.25)

since [Y,Z] is thus exhibited as a lifting through V of the hom-set
V0(Y, Z), it is called the internal hom of Y and Z.

Putting Y = I in (1.23) and using the isomorphism r : X⊗ I ∼= X, we
deduce a natural isomorphism

i : Z ∼= [I, Z]; (1.26)

it is easy to verify that V i : V Z ∼= V [I, Z] is just the case Y = I of
(1.25). Replacing X by W ⊗ X in (1.23), and using the isomorphism
a : (W ⊗X)⊗ Y ∼= W ⊗ (X ⊗ Y ), we deduce a natural isomorphism

p : [X ⊗ Y,Z] ∼= [X, [Y, Z]]; (1.27)

and it easy to verify that V p agrees with the π of (1.23) modulo the
isomorphisms (1.25). In many concrete cases it is possible and convenient
to replace V with an isomorph in such a way that (1.25) becomes an
equality; this should be clear from the examples of closed categories given
in 1.1, and we do not labour the point.

The monoidal category V is said to be biclosed if, not only does
every − ⊗ Y have a right adjoint [Y,−], but also every X ⊗ − has a
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right adjoint JX,−K. When V is symmetric, it is biclosed if closed, with
JX,−K = [X,−]. The non-symmetric monoidal category of R-bimodules,
mentioned in 1.1, is biclosed. It is part of a larger structure, the biclosed
bicategory of left-R-, right-S-, bimodules, where R and S vary over all
rings; and it seems to be typical that non-symmetric biclosed monoidal
categories occur in nature as a small part of such a bicategory. (The
notion of bicategory, for an exposition of which see [6], generalises that
of 2-category, the strict associativity of 1-cells being replaced by asso-
ciativity to within coherent isomorphisms; a one-object bicategory is a
monoidal category, just as a one-object 2-category is a strict monoidal
category.) Recent work of R.F.C. Walters ([75], [76]) suggests the impor-
tance of studying “V-categories A” where V is a biclosed bicategory with
an appropriate kind of symmetry; but that goes beyond the scope of the
present account.

There also do occur in nature important closed monoidal categories
that are not biclosed. A typical example is given by the strict monoidal
category of small endofunctors (in some suitable sense of “small”) of a
well-behaved large category such as Set; see [45]. For such a monoidal
closed V, we can develop part of the theory of V-categories; we have the
results of 1.2 and 1.3, but not those of 1.4; and we have the Yoneda
Lemma of 1.9 below, but not its extra-variable form. However, we do not
pursue this at all, for in practice it seems that the interest in such a V lies
in V itself, not in V-categories – which become interesting chiefly when V
is symmetric monoidal closed.

We end this section with two further comments on examples. First,
the symmetric (cartesian) monoidal Top is not closed: − × Y cannot
have a right adjoint since it does not preserve regular epimorphisms; see
[19]. Next, to the examples of symmetric monoidal closed category in 1.1,
we add one more class. An ordered set V with finite intersections and
finite unions is called a Heyting algebra if it is cartesian closed; a boolean
algebra is a special case.

1.6 V as a V-category for symmetric monoidal closed V ; repre-
sentable V-functors

From now on we suppose that our given V is symmetric monoidal closed,
with V0 locally small. The structure of V-CAT then becomes rich enough
to permit of Yoneda-lemma arguments formally identical with those in
CAT. Before giving the Yoneda Lemma and its extensions in 1.9, we
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collect in this section and the next two some necessary preliminaries:
results many of which are almost trivial in CAT, but less so here.

The proof of each assertion of these sections is the verification of the
commutativity of a more-or-less large diagram. This verification can be
done wholesale, in that each diagram involved is trivially checked to be
of the type proved commutative in the coherence theorems of [47] and
[48]. Yet direct verifications, although somewhat tedious, are nevertheless
fairly straightforward if the order below is followed.

The first point is that the internal-hom of V “makes V itself into
a V-category”. More precisely, there is a V-category, which we call V,
whose objects are those of V0, and whose hom-object V(X,Y ) is [X,Y ].
Its composition-law M : [Y,Z] ⊗ [X,Y ] // [X,Z] corresponds under the
adjunction (1.23) to the composite

([Y,Z]⊗ [X,Y ])⊗X

a

��
[Y, Z]⊗ ([X,Y ]⊗X)

1⊗e
��

[Y,Z]⊗ Y

e

��
Z,

(1.28)

and its identity element jX : I // [X,X] corresponds under (1.23) to
l : I⊗X //X. Verification of the axioms (1.3) and (1.4) is easy when we
recall that, because of the relation of e to the π of (1.23), the definition
(1.28) of M is equivalent to e(M ⊗ 1) = e(1 ⊗ e)a. It is further easily
verified that (1.25) gives an isomorphism between V0 and the underlying
ordinary category of the V-category V; we henceforth identify these two
ordinary categories by this isomorphism, thus rendering the notation V0

consistent with the notation A0 of 1.3.
Next we observe that, for each V-category A and each object A ∈ A,

we have the representable V-functor A(A,−) : A // V sending B ∈ A to
A(A,B) ∈ V, and with

A(A,−)BC : A(B,C) // [A(A,B),A(A,C)] (1.29)

corresponding under the adjunction (1.23) to

M : A(B,C)⊗A(A,B) //A(A,C).
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Axioms (1.5) and (1.6) for a V-functor reduce easily to (1.3) and half of
(1.4).

Replacing A by Aop gives the contravariant representable functor
A(−, B) : Aop // V. The families A(A,−) and A(−, B) are the partial
functors of a functor HomA : Aop ⊗ A // V sending (A,B) to A(A,B);
for the condition (1.21) again reduces easily to (1.3) for A.

We write homA : Aop
0 ×A0

// V0 for the ordinary functor

Aop
0 ×A0

//(Aop ⊗A)0
(HomA)0

//V0; (1.30)

it sends (A,B) to A(A,B), and for its value on maps we write

A(f, g) : A(A,B) //A(A′, B′),

where f : A′ //A and g : B //B′. By 1.4, the partial functors of homA are
the functors underlying A(A,−) and A(−, B), so that our writing their
values on morphisms as A(A, g) and A(f,B) is consistent with (1.12).
Combining (1.11) with the definition (1.29) of A(A,−)BC , we see that
A(A, g) : A(A,B) //A(A,C) is the composite

A(A,B)
l−1

// I⊗A(A,B)
g⊗1
// A(B,C)⊗A(A,B)

M
// A(A,C), (1.31)

while A(f,B) : A(D,B) //A(A,B) is

A(D,B)
r−1

// A(D,B)⊗I
1⊗f
// A(D,B)⊗A(A,D)

M
// A(A,B). (1.32)

From these it follows easily that we have commutativity in

Aop
0 ×A0

homA //

HomA0 $$

V0

V

��
Set.

(1.33)

When A = V, we see at once that homV is just the functor [−,−] : Vop
0 ×

V0
// V0.

Now we observe that there is also a V-functor Ten: V⊗V //V, sending

(X,Y ) // Ten(X,Y ) = X ⊗ Y,



1.6 V as a V-category; representable V-functors 23

and with Ten(X,Y ),(X′,Y ′) : [X,X ′]⊗[Y, Y ′] //[X⊗Y,X ′⊗Y ′] correspond-
ing under the adjunction (1.23) to the composite

([X,X ′]⊗ [Y, Y ′])⊗ (X ⊗ Y )

m

��
([X,X ′]⊗X)⊗ ([Y, Y ′]⊗ Y )

e⊗e
��

X ′ ⊗ Y ′;

(1.34)

when we observe that (1.34) is equivalent to e(Ten ⊗ 1) = (e ⊗ e)m,
verification of the V-functor axioms (1.5) and (1.6) is easy. The ordinary
functor

V0 × V0
//(V ⊗ V)0

Ten0

//V0 (1.35)

is at once seen to be ⊗ : V0 × V0
// V0; so that, by (1.4), the underlying

ordinary functor of Ten(X,−) is X ⊗−.
For any V-categories A and B we have a commutative diagram

(Aop ⊗ Bop)⊗ (A⊗ B)
HomA⊗B //

∼=

��

V

(Aop ⊗A)⊗ (Bop ⊗ B)
HomA⊗HomB

// V ⊗ V;

Ten

OO

(1.36)

in terms of the partial functors, this asserts the commutativity of

A⊗ B
(A⊗B)((A,B),−) //

A(A,−)⊗B(B,−)

##

V

V ⊗ V,

Ten

OO

(1.37)

which is easily checked. At the level of the underlying functors hom, this
gives

(A⊗B)
(
(f, g), (f ′, g′)

)
= A(f, f ′)⊗ B(g, g′). (1.38)
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1.7 Extraordinary V-naturality

The point to be made in the next section is that all the families of
maps canonically associated to V, or to a V-category A, or to a V-
functor T , or to a V-natural α, such as a : (X ⊗ Y ) ⊗ Z // X ⊗ (Y ⊗
Z), or e : [Y,Z] ⊗ Y // Z, or M : A(B,C) ⊗ A(A,B) // A(A,C), or
T : A(A,B) // B(TA, TB), or α : I // B(TA, SA), are themselves V-
natural in every variable. To deal with a variable like B in the case of M ,
we must now introduce the notion of extraordinary V-naturality ; which
later plays an essential role in the definition of V-functor-category.

First we observe that the formulae (1.31) and (1.32) allow us to write
the “ordinary” V-naturality condition (1.7) in the more compact form

A(A,B)
T //

S

��

B(TA, TB)

B(1,αB)

��
B(SA, SB)

B(αA,1)
// B(TA, SB).

(1.39)

By (extraordinary) V-naturality for an obA-indexed family of maps
βA : K // T (A,A) in B0, where K ∈ B and T : Aop ⊗A // B, we mean
the commutativity of each diagram

A(A,B)
T (A,−) //

T (−,B)

��

B
(
T (A,A), T (A,B)

)
B(βA,1)

��
B
(
T (B,B), T (A,B)

)
B(βB ,1)

// B
(
K,T (A,B)

)
.

(1.40)

Duality gives the notion, for the same T and K, of a V-natural family
γA : T (A,A) //K; namely the commutativity of

A(A,B)
T (B,−) //

T (−,A)

��

B
(
T (B,A), T (B,B)

)
B(1,γB)

��
B
(
T (B,A), T (A,A)

)
B(1,γA)

// B
(
T (B,A),K

)
.

(1.41)
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Such extraordinary V-naturality is of course fully alive in the case V =
Set; it is exhibited there, for instance, by the “naturality in Y ” of the
d and the e of (1.24). In the case V = Set, (1.40) and (1.41) have
more elementary forms obtained by evaluating them at an arbitrary f ∈
A(A,B). Clearly extraordinary V-naturality implies extraordinary Set-
naturality: we only have to apply V to (1.40) and (1.41).

Just as for ordinary V-naturality, it is clear that if βA :K // T (A,A)
is V-natural as above, and if P : D //A and Q : B // C, then the maps
QβPD(= Q0βPD) : QK // QT (PD,PD) constitute a V-natural family
QβP .

If T : (A⊗D)op⊗ (A⊗D) //B, a family βAD : K //T (A,D,A,D) is
V-natural in (A,D) if and only if it is V-natural in A for each fixed D and
in D for each fixed A, with respect to the partial functors T (−, D,−, D)
and T (A,−, A,−) respectively. The most direct proof involves translating
(1.40) via (1.32) into a form analogous to (1.7); then, as in the proof for
ordinary V-natural transformations, it is a matter of combining (1.21)
with (1.3) for C. Thus here, too, V-naturality can be verified variable-by-
variable.

That being so, we can combine ordinary and extraordinary V-
naturality, and speak of a V-natural family

αABC : T (A,B,B) // S(A,C,C),

where T : A⊗Bop⊗B //D and S : A⊗Cop⊗C //D. If each of A, B and
C stands for a finite number of variables, this is then the most general
form.

The analogue of “vertical composition” for such families is the calculus
of [25]. There are three basic cases of composability, in addition to that
for ordinary V-natural transformations; and two of these three are dual.
Each of the three, however, is in fact a sequence of sub-cases indexed
by the natural numbers. The reader will see the pattern if we just give
the first two sub-cases of the only two essentially-different sequences; the
proofs are easy using (1.39)–(1.41).

For T , S : Aop ⊗A // B, if αA : K // T (A,A) is V-natural in A and
if

βAB : T (A,B) // S(A,B)

is V-natural in A and B, the composite

K αA
//T (A,A)

βAA
//S(A,A) (1.42)
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is V-natural in A. For T : Aop⊗A⊗Aop⊗A //B and S : Aop⊗A //B,
if αAB : K // T (A,A,B,B) is V-natural in A and B and if

βABC : T (A,B,B,C) // S(A,C)

is V-natural in A, B and C, then the composite

K αAA
//T (A,A,A,A)

βAAA
//S(A,A) (1.43)

is V-natural in A. The next one in this series has

αABC : K // T (A,A,B,B,C,C)

and

βABCD : T (A,B,B,C,C,D) // S(A,D);

and there is of course a dual series.

The self-dual series begins with T : A // B, S : A ⊗ Aop ⊗ A // B,
and R : A // B; if αAB : TA // S(A,B,B) and βAB : S(A,A,B) // RB
are V-natural in A and B, the composite

TA αAA
//S(A,A,A)

βAA
//RA (1.44)

is V-natural in A. For the same T and R, but for

S : A⊗Aop ⊗A⊗Aop ⊗A // B,

if αABC : TA //S(A,B,B,C,C) and βABC : S(A,A,B,B,C) //RC are
V-natural in A, B and C, then the composite

TA αAAA
//S(A,A,A,A,A)

βAAA
//RA (1.45)

is V-natural in A.

In each case a handsome geometrical picture is produced if, to the
diagrams (1.42)–(1.45), there are added curves above the diagram linking
variables which must be set equal in α, and curves below the diagram link-
ing variables which must be set equal in β; the geometrical union of these
curves, thought of as meeting at the variables, then links the variables
which must be set equal in the composite. Of course the associativity of
this kind of composition, whenever it makes sense, is a triviality.
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1.8 The V-naturality of the canonical maps

We turn now to the V-naturality of the canonical maps mentioned at
the beginning of 1.7. Of course such an object as A(B,C) ⊗ A(A,B)
is here thought of as the value Ten(HomA(B,C),HomA(A,B)) of the
appropriate V-functor.

(a) First, it follows at once from (1.29) that αA : I // B(TA, SA) is V-
natural in the sense of (1.40) precisely when α is a V-natural trans-
formation α : T // S in the sense of (1.7).

(b) Next, for a V-functor T : A // B, the map

TAB : A(A,B) // B(TA, TB)

is V-natural in both variables A and B. It suffices to verify V-
naturality in B; and here the appropriate diagram of the form (1.39)
reduces, in the light of (1.29), to (1.5) for T .

(c) This last gives, for a V-functor T : A⊗B // C, the V-naturality in A
and A′ of T (−, B) : A(A,A′) // C(T (A,B), T (A′, B)). However, this
is also V-natural in B; the appropriate instance of (1.40) reduces via
(1.29) to (1.21).

(d) In particular, for a V-category A, the

A(A,−)BC : A(B,C) // [A(A,B),A(A,C)]

of (1.29) is V-natural in all variables.

(e) Composing the A(A,−)BC of (d) with g : I //A(B,C) gives, by (a),
the V-naturality in A of A(A, g) : A(A,B) //A(A,C).

(f) The V-naturality in both variables of e : [Y,Z] ⊗ Y // Z is an easy
consequence of (1.29) and (1.34).

(g) Since, by (1.29), M : A(B,C)⊗A(A,B) //A(A,C) for a V-category
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A is the composite

A(B,C)⊗A(A,B)

A(A,−)⊗1

��
[A(A,B),A(A,C)]⊗A(A,B)

e

��
A(A,C),

it is V-natural in all variables by (d), (e), (f), (1.42) and (1.44).

(h) The V-naturality of jA : I //A(A,A) for a V-category A follows from
(a), since 1: 1 // 1: A //A is V-natural.

(i) The V-naturality in every variable of a :(X⊗Y )⊗ Z //X⊗(Y ⊗Z),
l : I⊗X //X, r : X⊗I //X, c : X⊗Y //Y⊗X, follows easily from
(1.34).

(j) From the definition (1.27) of the isomorphism p and the definition
(1.34) of Ten(−, Y ), we easily see that p−1 : [X, [Y,Z]] // [X ⊗ Y, Z]
is the composite

[X, [Y, Z]]
Ten(−,Y )

// [X ⊗ Y, [Y, Z]⊗ Y ]
[1,e]

// [X ⊗ Y,Z].

It follows from (c), (e), (f), and (1.44) that p−1 is V-natural in all
variables; whence the same is true of its inverse p.

(k) The composite

X

l−1

��
I ⊗X
j⊗1

��
[X ⊗ Y,X ⊗ Y ]⊗X

p⊗1

��
[X, [Y,X ⊗ Y ]]⊗X

e

��
[Y,X ⊗ Y ]
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is easily verified to be the d : X // [Y,X ⊗ Y ] of (1.24); the latter is
therefore V-natural in every variable by (i), (h), (j), (f), (e), (1.42),
and (1.44).

(l) The composite

X
d
// [I,X ⊗ I]

[1,r]
// [I,X]

is the isomorphism i : X // [I,X], which is therefore V-natural.

This completes the list of canonical maps, and we end this section
with a general principle. Since a map f : X ⊗ Y // Z and its image
f : X // [Y,Z] under the π of (1.23) are related by f = [1, f ]d and
f = e(f ⊗ 1), it follows from (f), (k), (e) and (1.42)–(1.44) that, for
V-functors T , S, R of suitable variances with codomain V, we have:

(m) A family f : T (D,D,A,B) ⊗ S(E,E,A,C) // R(F, F,B,C) is V-
natural in any of its variables if and only if the corresponding

f : T (D,D,A,B) // [S(E,E,A,C), R(F, F,B,C)]

is so.

1.9 The (weak) Yoneda lemma for V-CAT

The form of the Yoneda Lemma we give here is a weak one, in that it
asserts a bijection of sets rather than an isomorphism of objects of V; a
stronger form will be given in 2.4 below.

Consider a V-functor F : A // V and an object K of A. To each
V-natural transformation α : A(K,−) // F we can assign the element
η : I // FK of FK given by the composite

I
jK
//A(K,K) αK

//FK. (1.46)

The Yoneda Lemma asserts that this gives a bijection between the set
V-nat(A(K,−), F ) of V-natural transformations and the set V0(I, FK)
(= V FK) of elements of FK; the component αA being given in terms of
η as the composite

A(K,A)
FKA

// [FK,FA]
[η,1]

// [I, FA]
i−1

//FA. (1.47)
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For the proof, we first note that, for any η, (1.47) is indeed V-natural
in A, by 1.8 (b), (e), and (l). Next, if α is defined by (1.47), αKjK is
in fact η; this follows easily from (1.6) for F , the Set-naturality of j (a
consequence, as we saw in (1.7), of its V-naturality), the naturality of i,
and the easy verification that jI = iI : I // [I, I]. It remains to show that
(1.47) is in fact αA, when η is given by (1.46). In the diagram

A(K,A)
A(K,−) //

F

��

[A(K,K),A(K,A)]
[j,1] //

[1,αA]

��

[I,A(K,A)]
i−1

//

[1,αA]

��

A(K,A)

αA

��
[FK,FA]

[αK ,1]
// [A(K,K), FA]

[j,1]
// [I, FA]

i−1

// FA,

the left square commutes by the V-naturality of α in the form (1.39), the
middle square trivially, and the right square by the naturality of i. The
proof is complete when we observe that the top edge of the diagram is the
identity; which follows from the definition (1.29) of A(K,−), the axiom
(1.4) for A, and the definition (1.26) of i in terms of r.

There is an extra-variable form of the result, involving functors
F : Bop ⊗A // V and K : B //A, and a family

αBA : A(KB,A) // F (B,A)

which is V-natural in A for each fixed B, so that it corresponds as above
to a family ηB : I // F (B,KB). It then follows from (1.46) and (1.42)
that η is V-natural in B if α is, and from (1.47) and (1.44) that α is
V-natural in B if η is.

It is worth noting an alternative way of writing (1.47) when F has
the form B(B, T−) for a V-functor T : A //B, so that η : I //B(B, TK)
is then a map η : B // TK in B0 (in fact, the image of 1K under
V αK : A0(K,K) // B0(B, TK)). Then αA is the composite

A(K,A)
TKA

//B(TK, TA)
B(η,1)

//B(B, TA), (1.48)

which is easily seen by (1.32) to coincide with (1.47). In particular, every
V-natural α : A(K,−) // A(L,−) is A(k,−) for a unique k : L // K;
and clearly k is an isomorphism if and only if α is.
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1.10 Representability of V-functors; the representing object as a
V-functor of the passive variables

We have called the V-functors A(K,−) : A // V representable. More
generally, however, a V-functor F : A //V is called representable if there
is some K ∈ A and an isomorphism α : A(K,−) // F . Then the pair
(K,α) is a representation of F ; it is essentially unique if it exists, in
the sense that any other representation α′ : A(K ′,−) // F has the form
α′ = α.A(k,−) for a unique isomorphism k : K //K ′. The corresponding
η : I // FK is called the unit of the representation. (We call η the
counit when we are representing a contravariant F : Aop // V in the
form A(−,K).)

For a general V, there is no simple criterion in terms of an η : I //FK
for the corresponding α : A(K,−) // F to be an isomorphism. It is
of course otherwise in the classical case V = Set; there we have the
comma-category 1/F = elF of “elements of F”, whose objects are pairs
(A, x) with A ∈ A and x ∈ FA; and α is invertible if and only if (K, η)
is initial in elF , so that F is representable if and only if elF has an
initial object. However, any such kind of “universal property” criterion
ultimately expresses a bijection of sets, and cannot suffice in general to
characterize an isomorphism in V0.

Now let F : Bop⊗A //V be such that each F (B,−) : A //V admits
a representation αB : A(KB,−) // F (B,−). Then there is exactly one
way of defining KBC : B(B,C) //A(KB,KC) that makes K a V-functor
for which

αBA : A(KB,A) // F (B,A)

is V-natural in B as well as A.
For by 1.9, the V-naturality in B of αBA is equivalent to that of ηB,

which by (1.40) means the commutativity of

B(B,C)

KBC

��

F (−,KC) // [F (C,KC), F (B,KC)]

[ηC ,1]

��

A(KB,KC)

F (B,−)

��
[F (B,KB), F (B,KC)]

[ηB ,1]
// [I, F (B,KC)].

(1.49)
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Now the composite [ηB, 1]F (B,−) in this diagram is, by (1.47), the com-
posite isomorphism

A(KB,KC) αB,KC
//F (B,KC)

i
// [I, F (B,KC)];

so that (1.49) forces us to define KBC as

KBC = α−1i−1[ηC , 1]F (−,KC). (1.50)

This composite (1.50) is V-natural in B, by 1.7 and 1.8; and from this
the proof of 1.8(b), read backwards, gives the V-functor axiom (1.5) for
K; while the remaining V-functor axiom (1.6) is a trivial consequence of
(1.49).

1.11 Adjunctions and equivalences in V-CAT

As in any 2-category (see [49]) an adjunction η, ε : S a T : A // B in
V-CAT between T : A // B (the right adjoint) and S : B //A (the left
adjoint) consists of η : 1 // TS (the unit) and ε : ST // 1 (the counit)
satisfying the triangular equations Tε.ηT = 1 and εS.Sη = 1. By the
Yoneda Lemma of 1.9, such adjunctions in V-CAT are in bijection with
V-natural isomorphisms

n : A(SB,A) ∼= B(B, TA); (1.51)

for by (1.48) a V-natural map n : A(SB,A) //B(B, TA) has the form n =
B(η, 1)T for a unique η, while a V-natural map n : B(B, TA) //A(SB,A)
has the form n = A(1, ε)S for a unique ε, and the equations nn = 1 and
nn = 1 reduce by Yoneda precisely to the triangular equations.

The 2-functor (−)0 : V-CAT //CAT carries such an adjunction into
an ordinary adjunction η, ε : S0 a T0 : A0

//B0 in CAT. It is immediate
from (1.33) that the corresponding isomorphism of hom-sets is

V n : A0(SB,A) ∼= B0(B, TA). (1.52)

Note that the unit and counit of this ordinary adjunction are the same η
and ε, now seen as natural rather than V-natural.

By 1.10, a V-functor T : A // B has a left adjoint (which is then
unique to within isomorphism, as in any 2-category) exactly when each
B(B, T−) is representable. More generally, if those B for which B(B, T−)
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is representable constitute the full subcategory B′ of B, we get a V-functor
S : B′ //A called a partial left adjoint to T .

When V is conservative – faithfulness is not enough – the existence
of a left adjoint S0 for T0 implies that of a left adjoint S for T : we set
SB = S0B, define a map n that is V-natural in A by n = B(η, 1)T as
above (using the unit η for S0 a T0), and deduce that n is an isomorphism
since the V n of (1.52) is. Thus, taking V = Ab for instance, an additive
functor has a left adjoint exactly when its underlying functor has one.

Again by 1.10, in the extra-variable case of a V-functor T : Cop ⊗
A //B, if each T (C,−) has a left adjoint S(−, C), then S automatically
becomes a V-functor B ⊗ C //A in such a way that n : A(S(B,C), A) ∼=
B(B, T (C,A)) is V-natural in all three variables. An evident example,
with A = B = C = V, is the adjunction p : [X ⊗ Y, Z] ∼= [X, [Y, Z]] of
(1.27).

For a typical adjunction (1.51) as above, we have a commutative dia-
gram

A(A,A′)

A(ε,1) ''

TAA′ // B(TA, TA′)

A(STA,A′);

n

77
(1.53)

this follows from Yoneda on setting A′ = A and composing both legs with
j, since (V n)(εA) = 1. Because n is an isomorphism, we conclude that
T is fully faithful if and only if ε is an isomorphism. In consequence, a
right adjoint T is fully faithful exactly when T0 is so.

As in any 2-category, a V-functor T : A //B is called an equivalence,
and we write T : A ' B, if there is some S : B // A and isomorphisms
η : 1 ∼= TS and ρ : ST ∼= 1. Replacing ρ (still in any 2-category) by the
isomorphism ε : ST ∼= 1 given by ε = ρ.Sη−1T.ρ−1ST , we actually have
an adjunction η, ε : S a T : A //B. The word “equivalence” is sometimes
used to mean an adjunction in which, as here η and ε are isomorphisms;
we write S a T : A ' B.

In the 2-category V-CAT, T : A //B is an equivalence if and only if
T is fully faithful and essentially surjective on objects; the latter means
that every B ∈ B is isomorphic (in B0, of course) to TA for some A ∈ A;
we often omit the words “on objects”.

For, if T is an equivalence, T is fully faithful since ε is an isomor-
phism, and is essentially surjective on objects since ηB : B // TSB is an
isomorphism. As for the converse, we choose for each B ∈ B an SB ∈ A
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and an isomorphism ηB : B // TSB. The corresponding V-natural-in-A
transformation n = B(ηB, 1)T : A(SB,A) // B(B, TA) is then an iso-
morphism because T is fully faithful, so that S becomes automatically a
V-functor left adjoint to T . Since η is an isomorphism, so is Tε, by the
triangular equation Tε.ηT = 1; whence ε is an isomorphism by (1.12),
since a fully-faithful T0 is certainly conservative.

In any 2-category (see [49]) adjunctions can be composed, forming a
category, of which the equivalences are a subcategory. It follows from
Yoneda that the composition of adjunctions in V-CAT corresponds to
the composition of the V-natural isomorphisms in

A(SS′B,A) ∼= B(S′B, TA) ∼= B(B, T ′TA). (1.54)

It is further true in any 2-category (see [49]) that, given adjunctions
η, ε : S a T : A //B and η′, ε′ : S′ a T ′ : A′ //B′ and 1-cells P : A //A′
and Q : B //B′, there is a bijection (with appropriate naturality proper-
ties) between 2-cells λ : QT //T ′P and 2-cells µ : S′Q //PS. In V-CAT
it follows from Yoneda that λ and µ determine one another through the
commutativity of

A(SB,A)

P

��

n
∼=

// B(B, TA)

Q

��
A′(PSB,PA)

A′(µ,1)

��

B′(QB,QTA)

B′(1,λ)

��
A′(S′QB,PA)

n′

∼= // B′(QB, T ′PA);

(1.55)

such a pair λ, µ may be called mates.
In particular, when A′ = A with P = 1 and B′ = B with Q = 1, so

that S a T and S′ a T ′ are both adjunctions A //B, we have a bijection
between the λ : T // T ′ and the µ : S′ // S. The adjunctions become a
2-category when we define a 2-cell from S a T to S′ a T ′ to be such a
pair (λ, µ).

Any T : A //B determines two full subcategories of B; the full image
A′ of T , determined by those B of the form TA, and the replete image
A′′ of T , determined by those B isomorphic to some TA. Clearly A′ and
A′′ are equivalent; and each is equivalent to A if T is fully faithful. A full
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subcategory which contains all the isomorphs of its objects is said to be
replete; any full subcategory has a repletion, namely the replete image of
its inclusion. Clearly a fully-faithful T : A // B has a left adjoint if and
only if the inclusion A′ // B has one, and if and only if the inclusion
A′′ // B has one.

A full subcategory A of B is called reflective if the inclusion T : A //B
has a left adjoint. This implies, of course, that A0 is reflective in B0,
but is in general strictly stronger. It follows – since it is trivially true
for ordinary categories – that every retract (in B0) of an object of the
reflective A lies in the repletion of A.

When A is reflective we may so choose the left adjoint S : B // A
that ε : ST // 1 is the identity. Then η : 1 //R = TS : B // B satisfies
R2 = R, ηR = Rη = 1. Such an (R, η) is called an idempotent monad
on B. Conversely, for any idempotent monad (R, η), both its full image
and its replete image are reflective in B. If R is formed as above, the
full image is A again; but (R, η) is not uniquely determined by A. The
replete image of R is the repletion of A; and there is an evident bijection
between full replete reflective subcategories of B and isomorphism classes
of idempotent monads on B.
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Chapter 2

Functor categories

2.1 Ends in V

So far we have supposed that V is symmetric monoidal closed, and that
the underlying ordinary category V0 is locally small. Henceforth we add
the assumption that V0 is complete, in the sense that it admits all small
limits; and from 2.5 on, we shall suppose as well that V0 is cocomplete.

Consider a V-functor T : Aop ⊗ A // V. If there exists a universal
V-natural family λA : K // T (A,A), in the sense that every V-natural
αA : X //T (A,A) is given by αA = λAf for a unique f : X //K, we call
(K,λ) the end of T ; it is clearly unique to within a unique isomorphism
when it exists. We write

∫
A∈A T (A,A) for the object K, and by the usual

abuse of language also call this object the end of T : then the universal
V-natural λA :

∫
A T (A,A) // T (A,A) may be called the counit of this

end.

The V-naturality condition (1.40), in the case B = V, transforms
under the adjunction V0(X, [Y,Z]) ∼= V0(X ⊗ Y,Z) ∼= V0(Y, [X,Z]) into

K
λA //

λB

��

T (A,A)

ρAB

��
T (B,B) σAB

// [A(A,B), T (A,B)],

(2.1)

where ρAB and σAB are the transforms of T (A,−)AB and T (−, B)BA. It
follows that, when A is small, the end

∫
A∈A T (A,A) certainly exists, and
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is given as an equalizer ∫
A∈A T (A,A)

λ

��∏
A∈A T (A,A)

ρ

��

σ

��∏
A,B∈A[A(A,B), T (A,B)].

(2.2)

If A, while not necessarily small, is equivalent to a small V-category,
then the full image in A of the latter is a small full subcategory A′ for
which the inclusion A′ //A is an equivalence. Since it clearly suffices to
impose (2.1) only for A, B ∈ A′, it follows that

∫
A∈A T (A,A) still exists,

being
∫
A∈A′ T (A,A). In consequence, we henceforth change the meaning

of “small”, extending it to include those V-categories equivalent to small
ones in the sense of 1.2.

The universal property of the end – expressed, as it stands, by a
bijection of sets – in fact lifts to an isomorphism in V0; in the sense that

[X,λA] : [X,
∫
A T (A,A)] // [X,T (A,A)]

expresses its domain as the end of its codomain:

[X,
∫
A T (A,A)] ∼=

∫
A[X,T (A,A)] (with counit [X,λA]). (2.3)

For Y // [X,T (A,A)] is V-natural if and only if Y ⊗X // T (A,A) is,
by 1.8(m). Note that the right side of (2.3) exists for all X if

∫
A T (A,A)

exists; the converse of this is also true, as we see on taking X = I.

If α : T // T ′ : Aop ⊗A // V, and if the ends of T and T ′ exist, the
top leg of the diagram

∫
A T (A,A)

λA //

∫
A αAA

��

T (A,A)

αAA

��∫
A T
′(A,A)

λ′A

// T ′(A,A)

(2.4)
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is V-natural by (1.42); so that, by the universal property of λ′, there is a
unique

∫
A αAA rendering the diagram commutative.

This “functoriality” of ends lifts, in the appropriate circumstances,
to a V-functoriality. Suppose namely that, for T : Aop ⊗ A ⊗ B // V,
the end HB =

∫
A T (A,A,B) exists for each B. Then there is ex-

actly one way of making H into a V-functor H : B // V that renders
λAB : HB // T (A,A,B) V-natural in B as well as in A.

For, by (1.39), the V-naturality inB is expressed by the commutativity
of

B(B,C)
HBC //

T (A,A,−)

��

[HB,HC]

[1,λAC ]

��
[T (A,A,B), T (A,A,C)]

[λAB ,1]
// [HB,T (A,A,C)].

(2.5)

The bottom leg is V-natural in A by 1.8(c), 1.8(e), and (1.43). The right
edge is itself an end by (2.3). Hence a unique HBC renders the diagram
commutative. The V-functor axioms (1.5) and (1.6) for H then follow
from the V-naturality of M and j (1.8(g) and (h)), the composition-
calculus of 1.7, and the universal property of the counit [1, λ].

In these circumstances, if R : B // V, a family

βB : RB //
∫
A T (A,A,B)

is V-natural in B if and only if the composite

RB
βB

//
∫
A T (A,A,B)

λAB
//T (A,A,B) (2.6)

is so. One direction is trivial, while the other follows easily from (2.5)
and the universal property of the counit [1, λ]. In fact, this result
can also be seen – using 1.8(m) to view (2.6) as a V-natural family
I // [RB, T (A,A,B)] and using (2.3) – as a special case of the following.

Let T : (A⊗B)op⊗(A⊗B) //V, recalling that (A⊗B)op = Aop⊗Bop.
Suppose that, for each B, C ∈ B, the end

∫
A∈A T (A,B,A,C) exists;

then, as above, it is the value of a V-functor Bop⊗B //V. Every family
αAB : X // T (A,B,A,B) that is V-natural in A factorizes uniquely as

X
βB

//
∫
A∈A T (A,B,A,B)

λABB
//T (A,B,A,B); (2.7)
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and it follows again from (2.5) and the universal property of [1, λ] that
the V-naturality in B of αAB is equivalent to the V-naturality in B of βB.

Since, by 1.7, V-naturality of αAB in A and B separately coincides
with its V-naturality in (A,B) ∈ A ⊗ B, we deduce the Fubini Theorem:
if every

∫
A T (A,B,A,C) exists, then∫

(A,B)∈A⊗B T (A,B,A,B) ∼=
∫
B∈B

∫
A∈A T (A,B,A,B), (2.8)

either side existing if the other does.
This in turn gives, since A ⊗ B ∼= B ⊗ A, the following inter-

change of ends theorem, often itself called the Fubini Theorem: if every∫
A T (A,B,A,C) and every

∫
B T (A,B,D,B) exists, then∫

A∈A
∫
B∈B T (A,B,A,B) ∼=

∫
B∈B

∫
A∈A T (A,B,A,B), (2.9)

either side existing if the other does.

2.2 The functor-category [A,B] for small A

For V-functors T , S : A // B we introduce the notation

[A,B](T, S) =
∫
A∈A B(TA, SA) (2.10)

for the end on the right, whenever it exists; and we write the counit as

EA = EA,TS : [A,B](T, S) // B(TA, SA). (2.11)

We write [A,B]0(T, S) for the set V [A,B](T, S) of elements

α : I // [A,B](T, S)

of this end. These of course correspond to V-natural families

αA = EAα : I // B(TA, SA), (2.12)

which by 1.8(a) are precisely the V-natural transformations

α : T // S : A // B.

Note that, by (2.3) and the adjunction [X, [Y, Z]] ∼= [Y, [X,Z]], we
have

[X, [A,V](T, S)] ∼= [A,V](T, [X,S−]), (2.13)
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either side existing for all X ∈ V if the other does.

When [A,B](T, S) exists for all T , S : A // B, as it surely does by
2.1 if A is small, it is the hom-object of a V-category [A,B] with all
the T : A // B as objects. The composition law of [A,B] is, by 1.8(g),
(1.43), and the universal property of EA,TR, uniquely determined by the
commutativity of

[A,B](S,R)⊗ [A,B](T, S)
M //

EA⊗EA

��

[A,B](T,R)

EA

��
B(SA,RA)⊗ B(TA, SA)

M
// B(TA,RA),

(2.14)

and its identity elements are similarly determined by

EAjT = jTA; (2.15)

the axioms (1.3) and (1.4) follow at once from the corresponding axioms
for B and the universal property of EA.

We call [A,B] the functor category ; its underlying category [A,B]0 is
by (2.12) the ordinary category of all V-functors A //B and all V-natural
transformations between them – that is

[A,B]0 = V-CAT(A,B). (2.16)

Even when [A,B] does not exist, it may sometimes be convenient to use
[A,B]0 as an abbreviation for V-CAT(A,B).

When [A,B] exists, the function T 7→ TA and the maps EA,TS of
(2.11) constitute, by (2.14) and (2.15), a V-functor EA : [A,B] // B,
called evaluation at A. By (2.12), the ordinary functor underlying EA
sends a map α ∈ [A,B]0(T, S) to its component αA.

There is a V-functor E : [A,B] ⊗ A // B, simply called evaluation,
whose partial functors are given by

E(−, A) = EA : [A,B] // B, E(T,−) = T : A // B. (2.17)

To show this we must verify the appropriate instance of (1.21); but, by
the proof of 1.8(c) read backwards, this instance reduces via (1.29) to the
instance of (1.40) expressing the V-naturality in A of EA,TS .
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More generally, [A,B](T, S) may exist, not for all T , S, but for all
those in some subset of the set of V-functors A // B; a typical exam-
ple would be the subset of those A // B which are left Kan extensions,
in the sense of 4.1 below, of their restrictions to some fixed small full
subcategory of A. Then we get as above a V-category [A,B]′ with these
functors as objects, whose underlying category [A,B]′0 is the correspond-
ing full subcategory of V-CAT(A,B); and we have the evaluation functor
E : [A,B]′ ⊗A // B.

Still more generally, we may wish to consider [A,B](T, S) just for
certain particular pairs T , S for which it exists – as in the Yoneda iso-
morphism of 2.4 below. To discuss its functoriality in this generality,
suppose we have functors P : C ⊗A // B and Q : D ⊗A // B such that
[A,B]

(
P (C,−), Q(D,−)

)
exists for each C and D. Then there is, by 2.1,

a unique V-functor H : Cop ⊗D // V having

H(C,D) = [A,B]
(
P (C,−), Q(D,−)

)
, (2.18)

with respect to which

EA : [A,B]
(
P (C,−), Q(D,−)

)
// B
(
P (C,A), Q(D,A)

)
is V-natural in C and D as well as A. Moreover by (2.6) and (2.7), in the
situations (the second of which has D = C)

[A,B]
(
P (C,−), Q(D,−)

)

EA

��

R(C,D)

βCD

66

αACD ((
B
(
P (C,A), Q(D,A)

)
,

[A,B]
(
P (C,−), Q(C,−)

)

EA

��

X

βC

66

αAC ((
B
(
P (C,A), Q(C,A)

)
,

(2.19)
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α is V-natural in C or D if and only if β is.

When [A,B], or even some [A,B]′, exists, the H of (2.18) can be given
more explicitly – see 2.3 below.

2.3 The isomorphism [A⊗ B, C] ∼= [A, [B, C]]

We return to the case where [A,B] exists. The V-functor E : [A,B] ⊗
A // B induces, for each V-category C, an ordinary functor

V-CAT(C, [A,B]) // V-CAT(C ⊗ A,B), (2.20)

sending G : C // [A,B] to the composite

C ⊗ A
G⊗1

// [A,B]⊗A
E
//B, (2.21)

and sending β : G //G′ : C // [A,B] to the composite E(β⊗1A). Clearly
the map (2.20) is 2-natural in C; and in fact it is an isomorphism of
categories.

To prove this we must first show that every P : C ⊗ A // B has the
form (2.21) for a unique G. Equating the partial functors of P and (2.21)
gives

P (C,−) = GC, P (−, A) = EAG. (2.22)

The first of these determines G on objects, whereupon the second asserts
the commutativity of

C(C,D)
GCD //

P (−,A)CD

''

[A,B]
(
P (C,−), P (D,−)

)
EA

��
B
(
P (C,A), P (D,A)

)
.

(2.23)

Since P (−, A)CD is V-natural in A by 1.8(c), this determines a unique

GCD by the universal property of EA. By this same universal property
together with the composition-calculus of 1.7, the V-functor axioms (1.5)
and (1.6) for G follow at once from those for P (−, A).

Before showing that (2.20) is bijective on maps as well as on objects,
let us analyze the V-functoriality (2.18) when [A,B] exists. If P : C ⊗
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A //B and Q : D⊗A //B correspond by (2.20) to G : C // [A,B] and
F : D // [A,B], we have the composite V-functor

Cop ⊗D
Gop⊗F

// [A,B]op ⊗ [A,B]
Hom[A,B]

//V; (2.24)

and with respect to this, EA : [A,B](GC,FD) // B(EAGC,EAFD) is
V-natural in C and D, by 1.7 and 1.8(b). By (2.22), this EA is

EA : [A,B]
(
P (C,−), Q(D,−)

)
// B
(
P (C,A), Q(D,A)

)
;

hence the H of (2.18), by its uniqueness, must be (2.24).

To complete the proof that (2.20) is an isomorphism of categories, it
remains to verify that, if P and P ′ are the images under (2.20) of G and
G′, every α : P //P ′ is E(β⊗1A) for a unique β : G //G′. By (2.22) the
equation α = E(β ⊗ 1A) has the component-form αCA = EAβC , which
by (2.12) is

αCA = EAβC = (βC)A. (2.25)

Thus βC : GC //G′C must be the V-natural transformation

αC− : P (C,−) // P ′(C,−);

and the proof will be complete when we show that βC , so defined, is
V-natural in C. If we look on βC as a map I // [A,B](GC,G′C), this
follows from 1.8(m) and (2.19), now that H is identified as (2.24).

More generally, if [A,B] does not exist but some full subcategory
[A,B]′ does, in the sense of 2.2, we have by the same arguments an
isomorphism between the category V-CAT(C, [A,B]′) and the full sub-
category of V-CAT(C ⊗ A,B) determined by those P : C ⊗ A // B for
which each P (C,−) lies in [A,B]′; for we have the analogue of (2.24) with
[A,B]′ replacing [A,B].

The 2-natural isomorphism (2.20) exhibits [A,B], when it exists, as a
representing object for the 2-functor V-CAT(−⊗A,B). It is conversely
true that, if this 2-functor is representable by some D, then [A,B] exists
and is isomorphic to D – at least if V0 has an initial object 0. For taking
C to be I in (2.20), with [A,B] replaced by D, we identify the objects
of D with the V-functors A // B; while taking C to be the V-category
with two objects 0 and 1, with C(0, 0) = C(1, 1) = I, with C(1, 0) = 0,
and with C(0, 1) an arbitrary object X of V, we easily see that D(T, S) =∫
A B(TA, SA).
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It follows from 1.10 that, so far as it exists, [A,B] is uniquely 2-
functorial in A and B in such a way that (2.20) is 2-natural in every
variable; which by 1.9 is equivalent to the 2-naturality in each variable
of E : [A,B]⊗A // B. Using this latter criterion we easily see that, for
M : A′ // A and N : B // B′, the V-functor [M,N ] : [A,B] // [A′,B′]
sends T to NTM and is determined on hom-objects by

[A,B](T, S)
[M,N ]TS //

EMA

��

[A′,B′](NTM,NSM)

E′A

��
B(TMA,SMA)

NTMA,SMA

// B′(NTMA,NSMA);

(2.26)

while the V-natural transformation [µ, ν] : [M,N ] // [M ′, N ′] is given by

[µ, ν]T = νTµ : NTM //N ′TM ′. (2.27)

As for the interplay of functor categories with duality, we clearly have a
2-natural isomorphism

[Aop,Bop] ∼= [A,B]op, (2.28)

either side existing if the other does.
The 2-functor − ⊗A : V-CAT // V-CAT has a right adjoint [A,−]

when [A,B] exists for all B; and by the above, only then, if V0 has an
initial object. This right adjoint surely exists when A is small, in the
extended sense of 2.1; and for many V it exists only then. For instance,
a result of Freyd (see [73])1 shows that, when V = Set, A is necessarily
small if [A,V] exists. Yet when V0 is an ordered set, as in the cases V = 2
and V = R+, [A,B] exists for every A and B.

In this sense the symmetric monoidal 2-category V-CAT is “partially
closed”; while the symmetric monoidal 2-category V-Cat of small V-
categories is actually closed.

The partial closedness is sufficient to imply the isomorphisms (1.26)
and (1.27) of 1.5, which here read:

[I,B] ∼= B, [C ⊗ A,B] ∼= [C, [A,B]], (2.29)

1For a more useful citation, see Peter Freyd and Ross Street, On the size of cate-
gories, Theory and Applications of Categories 1 (1995) 174-178.
http://www.tac.mta.ca/tac/volumes/1995/n9/1-09abs.html
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the latter in the sense that either side exists if the other does, provided
[A,B] exists – which follows alternatively from the Fubini Theorem (2.8).

2.4 The (strong) Yoneda lemma for V-CAT; the Yoneda embed-
ding A −→ [Aop,V ]

We can now give a stronger version of the Yoneda Lemma of 1.9, no longer
expressed by a mere bijection of sets, but by a Yoneda isomorphism in
V0.

Given a V-functor F : A //V and an object K of A as in 1.9, we have
the map FKA : A(K,A) // [FK,FA], which is V-natural in A by 1.8(b).
The transform

φA : FK // [A(K,A), FA] (2.30)

of FKA under the adjunction V0(X, [Y,Z]) ∼= V0(Y, [X,Z]) is V-natural in
A by 1.8(m). The stronger Yoneda Lemma is the assertion that (2.30)
expresses FK as the end

∫
A[A(K,A), FA], so that we have an isomor-

phism
φ : FK ∼= [A,V](A(K,−), F ]. (2.31)

For the proof, consider any V-natural αA : X // [A(K,A), FA]; its
transform αA : A(K,A) //[X,FA] under the adjunction, being V-natural
in A by 1.8(m), is the composite

A(K,A)
FKA

// [FK,FA]
[η,1]

// [X,FA]

for a unique η : X //FK, by the Yoneda Lemma of 1.9 in the form (1.48).
This is equivalent to the assertion that αA = φAη for a unique η; which
completes the proof.

The image under V = V0(I,−) : V0
// Set of (2.31) is a bijection

V0(I, FK) // [A,V]0(A(K,−), F ).

This sends η : I // FK to φη : A(K,−) // F , whose component
A(K,A) // FA is EAφη by (2.12), or φAη. By the definition (2.30)
of φA, this is at once seen to be the composite (1.47). Hence the weak
Yoneda Lemma of 1.9, which we have used to prove the present strong
Yoneda Lemma, is subsumed under the latter as its underlying bijection.

The special case F = A(L,−) : A //V of the present Yoneda Lemma
strengthens the last assertion of 1.9 to

A(L,K) ∼= [A,V]
(
A(K,−),A(L,−)

)
. (2.32)
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Since (2.31) is true without any smallness restriction on A, its V-
naturality must in general be discussed (cf. 2.2) in terms of the V-functor
HomA : Aop ⊗ A // V and some V-functor P : C ⊗ A // V. We assert
that

φ = φCK : P (C,K) ∼= [A,V]
(
A(K,−), P (C,−)

)
(2.33)

is V-natural in C and K, when the right side is made V-functorial as in
(2.18). This follows from (2.19); for

EAφ = φA : P (C,K) // [A(K,A), P (C,A)]

is V-natural in C and K by 1.8(m), since A(K,A) // [P (C,K), P (C,A)]
is so by 1.8(b) and 1.8(c).

When [A,V] exists, HomA : Aop ⊗ A // V corresponds under (2.20)
to a V-functor

Y : Aop // [A,V] (2.34)

sending K to

Y K = A(K,−); (2.35)

being fully faithful by (2.32), Y is called the Yoneda embedding . In these
circumstances the V-naturality (2.33) can be more globally expressed by
taking [A,V] for C and E : [A,V]⊗A //V for P ; the right side of (2.33)
is then by (2.24) the value of the V-functor

A⊗ [A,V]
Y op⊗1

// [A,V]op ⊗ [A,V]
Hom[A,V]

//V; (2.36)

so that, with respect to this functoriality,

the Yoneda isomorphism (2.31) is V-natural in
K and F .

(2.37)

The extra-variable result of 1.9 also has a lifting to the present context.
Let F : Bop⊗A //V and K : B //A. By (2.33) we have an isomorphism
F (C,KB) ∼= [A,V]

(
A(KB,−), F (C,−)

)
, V-natural in C and B. The

Fubini Theorem (2.8) now gives∫
B F (B,KB) ∼= [Bop ⊗A,V]

(
A(K?,−), F (?,−)

)
, (2.38)

either side existing if the other does.
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2.5 The free V-category on a Set-category

We henceforth suppose, in addition to all our former assumptions on V,
that the underlying category V0 is cocomplete.

Then the ordinary functor V = V0(I,−) : V0
//Set has a left adjoint

(−) · I, sending the set E to the coproduct E · I of E copies of I in V0.
This functor sends the cartesian product in Set to the tensor product in
V0, in that we clearly have

(E × F ) · I ∼= (E · I)⊗ (F · I), 1 · I ∼= I. (2.39)

The 2-functor (−)0 : V-CAT // CAT now has a left adjoint (−)V .
The free V-category LV on the ordinary locally-small category L has the
same objects as L, and has hom-objects LV(K,L) = L(K,L) · I; its com-
position law and its identities are induced from those of L using the iso-
morphisms (2.39).

For the proof, we have first to verify that LV , as defined, satisfies the
V-category axioms (1.3) and (1.4); this is trivial from the corresponding
axioms for L.

There is an evident functor ψ : L // (LV)0 which is the identity
on objects, and which is defined on morphisms by the obvious map
L(K,L) // V0(I,L(K,L) · I). This ψ is the unit of the 2-adjunction
in question.

In fact it is easy to see that, for a V-category B and a functor
T : L // B0, there is exactly one V-functor T : LV // B with T 0ψ = T :
on objects we have TK = TK, while TKL : L(K,L) · I // B(TK, TL)
is the transform of TKL : L(K,L) // B0(TK, TL) under the adjunction
(−) · I a V . Verification of (1.5) and (1.6) for T is easy.

Finally, if α : T // S : L // B0, there is a unique V-natural
α : T // S : LV // B with α0ψ = α; the component αK must be
αK ∈ B0(TK, SK), and again verification of (1.7) for α is easy. This
completes the proof.

If L is a small category, LV is clearly a small V-category, and we can
form the functor category [LV ,B]. Since the underlying ordinary category
[LV ,B]0 of this is V-CAT(LV ,B) by (2.16), the 2-adjunction above gives

[LV ,B]0 ∼= [L,B0]. (2.40)
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2.6 Universe-enlargement V ⊂V ′ in concrete cases; [A,B] as a V ′-
category for large A

The possible non-existence of a V-functor category [A,B] when A is large
(= non-small) is somewhat tedious, forcing us into such circumlocutions
as using (2.18) instead of (2.24), or (2.33) instead of (2.37) – which then
propagate themselves throughout the applications below.

Yet when V = Set, we always do have [A,B] as a category; albeit
not in general a Set-category (= locally-small category) when A and
B are Set-categories, unless A is small. It can however be seen as a
Set′-category, where Set′ is the category of sets in some larger universe
containing obA as an element – we are taking the view that obA is always
an honest set, and supposing that every set belongs to some universe.

We may ask whether such a view can be imitated for a general V.
Consider first the various examples of a symmetric monoidal closed V
given in 1.1. These are of two types: either V0 is a particular ordered set,
such as 2 or R+, in which case [A,B] exists for all A; or V0 consists of the
small models of some theory – small sets, small categories, small abelian
groups, small differential graded R-modules, and so on. In the latter
case we can clearly consider the category V ′0 of models in a larger Set′,
which gives a symmetric monoidal closed category V ′, in which V with its
symmetric monoidal closed structure is faithfully embedded. Moreover
V ′0 admits all limits and colimits which are small by reference to Set′;
and the inclusion V0

// V ′0 preserves all limits and colimits that exist in
V0. (We are supposing that our original universe contains infinite sets;
otherwise we do not have the colimit-preservation above.)

Then, for V-categories A and B, we always have a V ′-category [A,B],
where Set′ is taken large enough to include obA. Since V0

//V ′0 preserves
limits, to say that [A,B](T, S) exists in the sense of 2.2 is precisely to
say that the object [A,B](T, S) of V ′ actually lies in V; and to say that
[A,B] exists in the sense of 2.2 – that is, as a V-category – is to say that
[A,B](T, S) ∈ V for all T , S.

That a similar thing is possible for a perfectly general V follows from
Day [17]. Using his construction, one can show that there is always
a suitable V ′ whose underlying ordinary category V ′0 is a full reflective
subcategory of [Vop

0 ,Set′], into which V0 is embedded by Yoneda. Since
the monoidal structure of V ′ is defined by coends (relative to Set′), we
defer a description of it until 3.11 and 3.12 below, after these have been
introduced.
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Chapter 3

Indexed limits and colimits

3.1 Indexing types; limits and colimits; Yoneda isomorphisms

For a discussion of completeness, or of Kan extensions, or of density,
in the context of V-categories, ordinary limits – defined in terms of the
representability of cones – do not suffice; we need the wider notion of
indexed limit . These latter fully deserve the name of “limit”, since they
enjoy all the formal properties expected of a limit-notion, and include the
classical cone-type limits as a special case. When V = Set, in contrast
to the situation for a general V, an indexed limit may be expressed as
an ordinary limit; yet even here, the indexed limit is a valuable concept
in its own right – its meaning is scarcely clarified by its construction as
an ordinary limit. Since the cone-type limits have no special position
of dominance in the general case, we go so far as to call indexed limits
simply “limits”, where confusion seems unlikely.

We may think of a V-functor F : K //V as an indexing type – a small
one when K is small, which will be the usual case, but not the only one.
Then we may think of a V-functor G : K // B as a diagram in B of type
F . For each B ∈ B, we get from G a V-functor B(B,G−) : K // V; and
we can consider the existence in V of the object [K,V]

(
F,B(B,G−)

)
. If

this exists for all B – as it surely does when K is small – it is as in (2.18)
the value of a V-functor Bop // V. If this V-functor not only exists but
admits a representation

B(B, {F,G}) ∼= [K,V]
(
F,B(B,G−)

)
, (3.1)

with counit say

µ : F // B({F,G}, G−), (3.2)
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we call the representation ({F,G}, µ) the limit of G indexed by F . An
evidently equivalent formulation not mentioning [K,V] explicitly is the
following: each component µK of µ induces by Yoneda a family

B(B, {F,G}) // [FK,B(B,GK)] (3.3)

V-natural in B and K; and ({F,G}, µ) is the limit precisely when (3.3) is
an end over K for each B. In practice, by the usual abuse of notation, we
call the representing object {F,G} the limit, consigning to the background
the counit µ – or equivalently the choice of the V-natural isomorphism
(3.1).

If we take the view of 2.6, that [K,V] always exists, if not as a V-
category, then as a V ′-category for some larger V ′, we need not be con-
cerned with the existence of [K,V]

(
F,B(B,G−)

)
, but only with its repre-

sentability in the form (3.1) for some {F,G} ∈ B. If it is so representable,
the right side of (3.1) in fact lies in V, since the left side does. We shall
in future take this view whenever it is convenient – usually without both-
ering to change “V-functor” to “V ′-functor”, and so on.

Applying V to the isomorphism (3.1) gives a bijection of sets

B0(B, {F,G}) ∼= [K,V0]
(
F,B(B,G−)

)
; (3.4)

but the requirement that ({F,G}, µ) induce a bijection (3.4) is, except in
the special case when V is conservative, strictly weaker than the require-
ment that it induce an isomorphism (3.1), and does not suffice to make
({F,G}, µ) the limit ; see 3.7 below. However it does suffice to detect
({F,G}, µ) as the limit if the limit is known to exist ; for the right side
of (3.4) admits at most one representation to within isomorphism. An
element α : F // B(B,G−) of the right side of (3.4) may be called an
(F,B)-cylinder over G; then the bijection (3.4) is the assertion that every
such cylinder factorizes through the counit-cylinder µ as α = B(f, 1)µ for
a unique f : B // {F,G}.

An indexed colimit in B is nothing but an indexed limit in Bop; but
it is usual to replace K by Kop in the definition, so that we still have
G : K // B, but now have F : Kop // V. Then the colimit of G indexed
by F is the representing object F ? G in

B(F ? G,B) ∼= [Kop,V]
(
F,B(G−, B)

)
, (3.5)

with unit
ν : F // B(G−, F ? G). (3.6)
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When B = V, we have from (2.13) and (3.1)

{F,G} ∼= [K,V](F,G) for F,G : K // V, (3.7)

either side existing if the other does. Hence (3.1) and (3.5) can be written

B(B, {F,G}) ∼= {F,B(B,G−)},

B(F ? G,B) ∼= {F,B(G−, B)}.
(3.8)

Thus, just as classical limits and colimits in an ordinary category B are
defined, via representability, in terms of the primitive limits – sets of cones
– in Set, so indexed limits and colimits in a V-category B are defined,
via representability, in terms of indexed limits in V; and thus ultimately,
by 2.1 and 2.2, in terms of ordinary limits in V0.

Again, in the special case B = V, the V-natural isomorphism
[FK, [GL,B]] ∼= [GL, [FK,B]] gives by (3.5)

F ? G ∼= G ? F
for F : Kop // V
and G : K // V.

(3.9)

The V-natural Yoneda isomorphism (2.33) immediately gives the val-
ues of {F,G} and F ? G when F is representable, for any G : K // B;
namely

{K(K,−), G} ∼= GK, K(−,K) ? G ∼= GK. (3.10)

More precisely, the cylinder GK− : K(K,−) //B(GK,G−) as counit ex-
hibits GK as {K(K,−), G}. We refer to (3.10) as Yoneda isomorphisms;
by (3.7), the first of them includes as a special case the original Yoneda
isomorphism (2.31).

When K is small, the maps (F,G) 7→ {F,G} and (F,G) 7→ F ? G are
by 1.10 the object-functions of V-functors

{ , } : ([K,V]op ⊗ [K,B])′ // B,

? : ([Kop,V]⊗ [K,B])′ // B,

(3.11)

where the domain consists of those pairs (F,G) for which {F,G} or F ?G
exists; and in such a way that (3.1) and (3.5) are V-natural in (F,G).
Then (2.37) gives:

The Yoneda isomorphisms (3.10) are
V-natural in K and G.

(3.12)
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3.2 Preservation of limits and colimits

We call the limit {F,G} a small limit if the indexing-type F : K // V is
small; that is, if K is small. We call the V-category B complete if it admits
all small limits; and dually, cocomplete if it admits all small colimits. By
(3.7) and 2.2, V is complete; we shall see in 3.10 below that V is also
cocomplete.

A V-functor T : B // C is said to preserve the limit {F,G} if the
composite cylinder

F µ
//B({F,G}, G−)

T
//C(T{F,G}, TG−), (3.13)

where µ is the counit of {F,G}, exhibits T{F,G} as {F, TG}; in other
words, if {F, TG} exists and if the evident canonical map

T{F,G} // {F, TG} (3.14)

is an isomorphism.
We call T : B // C continuous (the dual is cocontinuous) if it pre-

serves all small limits that exist; of course this condition is of interest
particularly when B is complete.

The representables B(B,−) : B // V are more than continuous: by
(3.8) they preserve every limit that exists; while in their totality, by
definition, they “detect” the existence of {F,G}.

For a very general result on the preservation of limits, consider a
functor Q : Cop⊗B //V, and let B′ ⊂ B be the full subcategory of those
B for which Q(−, B) is representable, say as Q(C,B) ∼= C(C, TB); we
shall refer to the objects of B′ as “those B for which TB exists”. Let
{F,G} be a limit in B which is preserved by Q(C,−) : B // V for each
C. Finally, let TG exist; that is, suppose that G takes its values in B′.
Then we clearly have

T{F,G} ∼= {F, TG}, (3.15)

either side existing if the other does; for, using (3.7), the two sides of
(3.15) represent the isomorphic V-functors Q(C, {F,G}) and

[K,V]
(
F, C(C, TG)

) ∼= [K,V]
(
F,Q(C,G−)

) ∼= {F,Q(C,G−)}.

If Q here is defined by Q(C,B) = B(SC,B) where S : C // B, then
T : B′ // C is the partial right adjoint of S. Since B(SC,−) preserves
all limits, we have (3.15) whenever {F,G}, T{F,G}, and TG exist. This
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conclusion may be expressed as: partial right adjoints in so far as they
are defined, preserve limits.

In the special case where S in fact has a right adjoint T : B // C, the
conclusion becomes: right adjoints preserve all limits that exist.

3.3 Limits in functor categories; double limits and iterated limits

We now consider limits in a functor category [A,B]. Let

G : K // [A,B]

correspond under the adjunction (2.20) to P : K ⊗ A // B. In order
to avoid formulae containing various letters whose inter-relation must be
explained in a subordinate clause, let us write (2.22) with cyphers for
variables, in the form P (−, ?) = (G−)?; so that, in particular, (G−)A
denotes P (−, A) : K // B. Let F : K // V.

Then, if {F, (G−)A} exists for each A, the limit {F,G} in [A,B]
exists, and we have

{F,G}A = {F, (G−)A}. (3.16)

For, if we define {F,G} to be the V-functor whose value at A is given
by (3.16), we have

[A,B](H, {F,G}) =
∫
A B(HA, {F, (G−)A}) by (3.16)

∼=
∫
A[K,V]

(
F,B(HA, (G−)A)

)
by (3.1)

∼= [K,V]
(
F,
∫
A B(HA, (G−)A)

)
by (2.3)

= [K,V]
(
F, [A,B](H,G−)

)
by (2.10).

In these circumstances we say that the limit {F,G} in [A,B] exists
pointwise; it comes to the same thing to say that {F,G} exists and is
preserved by each EA : [A,B] // B. Clearly if B is complete [respectively
cocomplete] so is [A,B], all small limits [respectively colimits] existing
pointwise in [A,B].

When B is not complete, fortuitous non-pointwise limits may exist
in [A,B], even when V = Set. Take A = 2 and let B be the category
generated by the graph

f //
g
//

h //
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with the relation hf = hg. Then the map (f, h) : g // h given by

f //

g

��
h
��

h
//

in [2,B] is monomorphic, although h is not monomorphic in B. Since x
is monomorphic in any category precisely when

1 //

1
��

x

��
x
//

is a pullback, the pullback of (f, h) by itself in [2,B] is a non-pointwise
limit. The existence of a non-pointwise limit in [A,B] says something
about [A,B] as a category, ignoring its relation to A and B; while the
existence of a pointwise limit says something about [A,B] seen precisely
as the functor category, and is really a completeness assertion about B.

Applying the above, in the colimit case, to [K,V] where K is small,
we get from (3.9) and (3.10) a pointwise colimit

F ? Y ∼= F , (3.17)

for any F : K // V, Y being the Yoneda embedding Kop // [K,V] of
(2.34). This gives a canonical representation of any F : K // V as an
(indexed) colimit of representables. In contrast, Y preserves whatever
limits exist in Kop, sending them to pointwise limits in [K,V]; for EKY ∼=
K(−,K) : Kop // V.

We can now give the general Fubini Theorem relating repeated limits
to double limits. Suppose that F : K //V and G : K // [A,B], the latter
corresponding to P : K ⊗ A // B, are such that the limit {F,G} exists
pointwise; and let H : A //V. Writing H⊗F : K⊗A //V for the functor
sending (K,A) to HA⊗ FK, we have a canonical isomorphism

{H, {F,G}} ∼= {H ⊗ F, P}, (3.18)

either side existing if the other does.1

1The statement of this theorem differs from the original text which has F ⊗ H
instead of H ⊗F . However, the proof proves the statement in the form given here and
the form given in the text would appear to contradict, say, (1.27).
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For by (3.1) the left side of (3.18) represents

[A,V]
(
H?,B(B, {F,G}?)

)
=

= [A,V]
(
H?,B(B, {F−, (G−)?})

)
by (3.16)

∼= [A,V]
(
H?, [K,V](F−,B(B, (G−)?))

)
by (3.1)

=
∫
A[HA,

∫
K [FK,B(B, (GK)A)]] by (2.10)

∼=
∫
A

∫
K [HA, [FK,B(B, (GK)A)]] by (2.3)

∼=
∫
A

∫
K [HA⊗ FK,B(B,P (K,A))] by (1.27);

and by the Fubini Theorem (2.8) we can replace
∫
A

∫
K here by

∫
(A,K),

giving by (2.10) and (3.1) the object represented by the right side of
(3.18).

The use of the cyphers “?” and “−” here to keep track of unexpressed
variables is presumably self-explanatory. If we extend it by allowing
{F−, G−} as an alternative notation for {F,G}, we can write (3.18),
suppressing the letter G, as

{H?, {F−, P (−, ?)}} ∼= {H?⊗ F−, P (−, ?)}. (3.19)

Then there is no need for explicit mention of the functor category [A,B],
which may exist only as a V ′-category in the sense of 2.6; nor for explicit
mention of the pointwise existence of {F,G}, which is just the existence
of {F−, P (−, A)} for each value of A.

In this notation the general Fubini Theorem gives at once the general
interchange of limits theorem: Let F : K // V, H : A // V, and P : K⊗
A // B; and suppose that {F−, P (−, A)} exists for each A and that
{H?, P (K, ?)} exists for each K. Then

{F−, {H?, P (−, ?)}} ∼= {H?, {F−, P (−, ?)}}, (3.20)

either side existing if the other does.

For the colimit form of (3.19) and (3.20), let F : Kop // V,
H : Aop // V, and P : K ⊗A // B; then, under similar hypotheses,

F− ? (H? ? P (−, ?)) ∼= (F ⊗H) ? P ∼= H? ? (F− ? P (−, ?)). (3.21)

In fact (3.20) also follows alternatively from the general principle of
(3.15); for the right side of (3.1) clearly preserves pointwise limits in the
variable G ∈ [K,B].
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In the variable F ∈ [K,V], the right side of (3.1) sends arbitrary colim-
its, by (3.8), to limits; of course all small colimits in [K,V] are pointwise,
since we have remarked that V will be shown to be cocomplete. Hence
we get from the principle (3.15) the general theorem of the continuity of
a limit in its index: Let F : Kop // V, G : K // [A,V], and T : A // B;
and suppose that F ? G exists and that each {GK,T} exists. Then

{F ? G, T} ∼= {F, {G−, T}}, (3.22)

either side existing if the other does. The corresponding form for colimits,
with F and T as above but now with G : K // [Aop,V], is

(F ? G) ? T ∼= F ? (G ? T ). (3.23)

In future, when we equate limits in a general theorem, the phrase
“either side existing if the other does” is to be understood.

3.4 The connexion with classical conical limits when V = Set

We now consider, in the special case V = Set, the relation of indexed
limits to the ordinary classical limits.

Writing ∆B : K // B for the constant functor at B ∈ B, we have a
natural bijection

[K,B](∆B,G) ∼= [K,Set](∆1,B(B,G−)) (3.24)

between the set of (projective) cones over G with vertex B and the set of
cones over B(B,G−) with vertex the one-point set 1. The ordinary, or
classical, or conical limit [resp. colimit] of G : K // B is the representing
object limG [resp. colimG] in

B(B, limG) ∼= [K,B](∆B,G),

B(colimG,B) ∼= [K,B](G,∆B),

(3.25)

existing when the right side here is representable. Using (3.24) we con-
clude from (3.1) and (3.5) that

limG = {∆1, G}, colimG = ∆1 ? G. (3.26)
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Thus the classical limit of G : K // B, often called a limit indexed by K,
is in fact the limit of G indexed by ∆1: K // Set. Of course, the counit
(3.2) now corresponds to the limit-cone

µK : limG //GK. (3.27)

When B = Set, taking B = 1 in the first equation of (3.25) gives

limG ∼= [K,Set](∆1, G) for G : K // Set, (3.28)

so that here the limit is the set of cones with vertex 1. Then, as we said
in 3.1, all conical limits and colimits are defined representably in terms
of these primitive ones in Set; for (3.24) and (3.28) allow us to rewrite
(3.25) in the form (analogous to (3.8))

B(B, limG) ∼= limB(B,G−),

B(colimG,B) ∼= limB(G−, B).

(3.29)

Now consider an arbitrary F : K // Set. We have as in 1.10 the
category elF of elements of F , whose objects are pairs (K,x) with K ∈ K
and x ∈ FK, and whose maps (K,x) //(K ′, x′) are the f : K //K ′ in K
for which (Ff)x = x′. Write d : elF //K for the functor sending (K,x)
to K, and let G : K // Set be arbitrary. Then we have

lim(elF
d
//K

G
// Set) ∼= [K,Set](F,G). (3.30)

For an element of the left side is by (3.28) a cone α(K,x) : 1 //GK; to give
such a cone is to give for each x ∈ FK an element βKx = α(K,x) of GK;
and the naturality of α as a cone translates exactly into the naturality of
βK : FK //GK.

Since a map of a representable K(K,−) into F corresponds by Yoneda
to an element x ∈ FK, we have a canonical inductive cone

µ(K,x) : K(K,−) // F (3.31)

in [K,Set] whose base is indexed by (elF )op. The classical result on
the expressibility of any F : K // Set as a canonical (conical) colimit of
representables is the assertion that this is a colimit-cone; more precisely,

F ∼= colim((elF )op

dop
//Kop

Y
// [K,Set]), (3.32)
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with unit (3.31), where Y is the Yoneda embedding. This follows from
(3.30) and the characterization (3.29) of the colimit, since the left side of
(3.30) is also lim [K,Set](Y dop−, G) by Yoneda.

Because indexed limits are continuous in their index in the sense of
(3.22), the colimit-expression F ∼= colimK(K,−) of (3.32) gives, for any
G : K // B, a limit-expression {F,G} ∼= lim{K(K,−), G}; so by the
Yoneda isomorphism (3.10) we have

{F,G} ∼= lim(elF
d
//K

G
// B), (3.33)

of which (3.30) is a special case by (3.7).
We conclude that, when V = Set, the classical conical limits are

special cases of indexed limits by (3.26), while the general indexed limit
can be expressed as a conical limit by (3.33). Since elF is small when K
is small, a Set-category B is complete in our sense of 3.2 above exactly
when it admits all small conical limits – that is, when it is complete in
the classical sense. It follows in the same way that the functor T : B //C
is continuous in our sense of 3.2 above exactly when it preserves all small
conical limits.

For F : Kop // Set and G : K // B, the corresponding colimit-form
of (3.33) is

F ? G ∼= colim((elF )op

dop
//K

G
// B). (3.34)

We had in (3.17), for any V, the general expression of any F : K // V
as a colimit F ? Y of representables; observe that when we use (3.34) to
evaluate F ?Y in the case V = Set, we re-find (3.32). Note too that, when
B = Set, there is a second expression (3.34) for F ? G, since this is then
isomorphic to G ? F by (3.9). Finally, since the colimit of ∆1: K // Set
is clearly the set π(K) of connected components of K, taking G = ∆1 in
(3.34) and using (3.26) and (3.9) gives

colimF = π(elF ) for F : K // Set. (3.35)

We conclude this section with some remarks about conservativeness
and faithfulness for ordinary functors T : A //B. First, if A has equalizers
and T preserves equalizers, T is faithful if it is conservative; for if Tf =
Tg, the equalizer of f and g is sent by T to an isomorphism. Next, if
η, ε : S a T : A // B is an adjunction, T is faithful if and only if each
εA : STA //A is an epimorphism; this is immediate from (1.53), for TAA′

is a monomorphism exactly when each A(εA, A
′) is. Finally, if T is a right
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adjoint as above, and if A admits equalizers, then T is conservative if and
only if each εA is an extremal epimorphism (one that factorizes through
no proper subobject of its codomain).

To prove this, first note that any f : A // B in A which factorizes
through no proper subobject of B is an epimorphism, because equaliz-
ers exist. Suppose then that T is conservative. If εA : STA // A fac-
torizes through a monomorphism i : B // A, then (by the adjunction)
1: TA // TA factorizes through the monomorphism Ti; hence Ti is iso-
morphism, whence i is. Conversely, let each εA be an extremal epimor-
phism; then, by the remark above, T is faithful, so that f : A // B is
surely a monomorphism if Tf is an isomorphism. But in this case, by the
naturality of ε, we have εB = f.εA.(STf)−1; so that f is an isomorphism.

3.5 Full subcategories and limits; the closure of a full subcategory
under a class of colimits

Returning to the case of a general V, we now consider some properties of
(indexed) limits in relation to fully faithful functors.

A fully faithful J : A // B reflects limits; in the sense that,
for F : K // V and G : K // A, a cylinder F // A(A,G−) ex-
presses A as the limit {F,G} in A whenever the composite cylinder
F // A(A,G−) // B(JA, JG−) expresses JA as the limit {F, JG} in
B. This is immediate; and in the case where A is a full subcategory of
B, it is the assertion that {F, JG}, if it lies in A, is also {F,G}.

If the full subcategory A here is reflective, and {F, JG} exists, then
the latter is isomorphic to an object of A, which is therefore {F,G}. To
see this, let the adjunction be η, 1: S a J : A // B and let the counit of
the limit be µ : F // B({F, JG}, JG−). By (1.48) the isomorphism

B(JS{F, JG}, JG−) ∼= A(S{F, JG}, G−) ∼= B({F, JG}, JG−)

is B(η, 1). By (3.4), the cylinder B(η, 1)−1µ factorizes as B(f, 1)µ for
a unique f : JS{F, JG} // {F, JG}; and by the uniqueness part of the
same result, we have fη = 1. Hence {F, JG} is a retract of the object
JS{F, JG} ofA, and so by 1.11 lies in the repletion ofA. Thus a reflective
full subcategory A of B is closed under limits, and in particular is complete
if B is so.

As for colimits in this reflective situation, if the colimit F ?JG exists,
S preserves it by 3.2, giving S(F ?JG) ∼= F ?SJG = F ?G. In particular,
the reflective full subcategory A of B is cocomplete if B is.
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Consider now a family Φ = (Fγ : Kop
γ

// V, Gγ : Kγ // B)γ∈Γ of di-
agrams in a V-category B, such that each Fγ ? Gγ exists. If A is a full
subcategory of B, consider the replete full subcategories C containing A
with the property that, if any Gγ takes its values in C, then Fγ ?Gγ lies in
C. The smallest such C is a replete full subcategory A called the closure
of A in B under the family Φ of colimits. For instance, we might have a
set F = {F : Kop // V} of indexing types, and take Φ to consist of all
colimits that exist in B with indexing-type in F ; then A is the closure of
A in B under colimits of type F .

We can construct A by transfinite induction: let A0 be the repletion
of A, let Aα+1 be Aα together with all the isomorphs of those Fγ ?Gγ for
which Gγ lands in Aα, and let Aα be

⋃
β<αAβ when α is a limit ordinal;

then the sequence is certainly stationary when the cardinal of α exceeds
that of Γ, and gives A. In fact, if each obKγ has cardinal less than the
regular cardinal ρ, we have A = Aρ, since any Kγ // Aρ lands in some
Aα for α < ρ; in particular, if each Kγ is small we have A = A∞, where
∞ is the cardinal of the chosen universe. It is an important observation
that, when A is small, and each Kγ is small, and the number of different
indexing-types Fγ in Φ is small, then A is small. For then the ρ above is
small, and the Aα for α < ρ are small by induction: since there is but a
small set of functors Kγ //Aα.

If B itself is the Φ-closure A of A, it is immediate by induction that
a functor A // C has, to within isomorphism, at most one extension
B // C that preserves the colimits in Φ. However there may well be no
such extension; as is clear when A is all of B and the original A // C
does not preserve the colimits in Φ.

Proposition 3.36 Let B be the Φ-closure of A, and let Q : Bop⊗C //V be
such that each Q(−, C) : Bop //V sends colimits belonging to Φ to limits
in V. Suppose that C admits all colimits indexed by the Fγ occurring in Φ.
Then if Q(B,−) : C //V is representable for all B ∈ A, it is representable
for all B ∈ B.

Proof. Let D be the full subcategory of all those B for which a
representation Q(B,C) ∼= C(KB,C) exists. Then D contains A, and it
remains to show that D contains Fγ ? Gγ whenever Gγ lands in D. But
then the hypothesis on Q(−, C) gives Q(Fγ ?Gγ , C) ∼= {Fγ , Q(Gγ−, C)},
and this is {Fγ , C(KGγ−, C)} ∼= C(Fγ ? KGγ , C).

Since the hypothesis on Q(−, C) in the above proposition is automat-
ically satisfied if Q(B,C) = B(B, TC), we have:
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Proposition 3.37 Let T : C // B where C is cocomplete and where B
is the closure of a full subcategory A with respect to a family of small
colimits. Then T has a left adjoint if B(A, T−) is representable for each
A ∈ A.

3.6 Strongly generating functors

In the next section we need, for ordinary categories, the notion of strong
generator. Since the notion is useful for V-categories too, we discuss it at
the enriched level.

A V-functor T is said to be conservative if the underlying ordinary
functor T0 is conservative. Clearly ST is conservative if S and T are, while
if ST is conservative so is T . Any fully-faithful T is conservative, while
by (2.27) a functor [M, 1] : [C,B] // [A,B] is conservative if M : A // C
is essentially surjective on objects. Clearly a conservative functor reflects
such limits as it preserves; in the sense that if {F,G} exists and is pre-
served by T , a cylinder F //B(B,G−) is a limit-cylinder if the composite
F // B(B,G−) // C(TB, TG−) is.

If A is small and Z : A // B, we define functors

Ẑ : Bop // [A,V], Z̃ : B // [Aop,V] (3.38)

by
ẐB = B(B,Z−), Z̃B = B(Z−, B). (3.39)

We say that Z is strongly generating if Z̃ is conservative; and dually
that Z is strongly cogenerating if Ẑ is conservative. In other words, Z is
strongly generating if a map f : C //D in B0 is an isomorphism whenever
B(ZA, f) is an isomorphism in V0 for each A ∈ A. This clearly depends
only on the full image of A in B; and is also expressed by saying that
the small set {ZA}A∈A of objects of B is a strong generator for B. Note
that the V-functor Z : A // B is certainly strongly generating when the
ordinary functor Z0 : A0

// B0 is so; for if B(ZA, f) is an isomorphism
so is B0(ZA, f), this being V B(ZA, f) by (1.33). However the converse
is false; the single object {1} is a strong generator in the Cat-category
Cat but not in the Set-category Cat0

In the case that V = Set we further say that Z is generating, or that
{ZA}A∈A is a generator for B, if Z̃ is faithful; so that f = g whenever
B(ZA, f) = B(ZA, g) for all A ∈ A. By the remarks at the end of
3.4, a strong generator in the case V = Set is a fortiori a generator,
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provided that B admits equalizers. In fact the above definition of a strong
generator is far from ideal unless B0 admits finite limits; but we have
chosen it for simplicity since this is usually the case in applications. For a
general V it would take us into side-issues to discuss the various kinds of
monomorphisms and epimorphisms in the context of V-categories; so we
refrain from defining faithfulness for a V-functor, and hence from defining
a generator for a V-category.

We state the following proposition in the enriched case, although some
remarks in 3.8 below are needed to justify its proof in that case; in the
meantime we use it only for V = Set.

Proposition 3.40 The inclusion Z : A //B of a small full subcategory
is strongly generating if B is the closure of A for some set Φ of colimits.
Conversely, if Z is strongly generating, B is the closure of A for small col-
imits; provided that B is cocomplete, that B0 is finitely complete, and that
each object of B0 has only a small set of extremal-epimorphic quotients.

Proof. For the direct part, let f : C //D in B be such that B(A, f) is
an isomorphism for all A ∈ A. Then the full subcategory of B given by
those B for which B(B, f) is an isomorphism contains A, and it clearly
contains Fγ?Gγ whenever Gγ lands in it; so it is all of B, and consequently
f is an isomorphism.

For the converse, let C be the closure of A in B under small col-
imits. Since B is cocomplete, F ? Z exists for all F : Aop // V; hence
Z̃ : B // [Aop,V] has by (3.5) the left adjoint −?Z : [Aop,V] //B. Write
RB for Z̃B ? Z: clearly RB ∈ C. Since (Z̃)0 is conservative, the counit
εB : RB //B of the adjunction is an extremal epimorphism in B0, by the
remarks at the end of 3.4.

Given any f : C //D with C ∈ C, let u, v : E //C be its kernel-pair.
By 3.8 below, B0 is cocomplete since B is; hence u, v have a coequalizer
p1 : C // C1 in B0, and f = f1p1 for some f1 : C1

// D. Since εE is
epimorphic, p1 is also the coequalizer of the diagram uεE , vεE : RE //C
in B0; by 3.8 below again, a conical colimit in B0 is a colimit in B when
B is cocomplete; hence C1 ∈ C.

We now apply the same process to factorize f1 as C1
// C2

// D
with C2 ∈ C, so that f is C // C2

// D; and continue by transfinite
induction, defining Cα at a limit-ordinal α as the cointersection of the
C // Cβ for β < α. At each stage Cα ∈ C, and f is C // Cα //D. By
the results of [41], each C //Cα is an extremal epimorphism in B0; so the
process terminates at a small α, since C has but a small set of extremal



3.7 Tensor and cotensor products 65

epimorphic quotients. Yet the process can terminate only when Cα //D
is a monomorphism; so that if F : C //D is an extremal epimorphism,
it terminates only with Cα = D. We conclude that D ∈ C in this case.

Taking now for f the extremal epimorphism εB : RB // B for any
B ∈ B, we conclude that B ∈ C, as desired.

Let us now apply this, in the case of ordinary categories, to the functor
V = V0(I,−) : V0

// Set. This functor is just the Z̃ corresponding to
the functor Z : 1 // V0 sending the unique object of 1 to I; so {I} is
a generator of V0 when V is faithful, and a strong generator when V is
conservative. Hence:

Proposition 3.41 If V0 is the closure of {I} under small colimits,
V : V0

// Set is conservative; and the converse is true if each object
of V0 has but a small set of extremal epimorphic quotients.

This last weak cowellpoweredness condition on V0 is certainly satisfied
in the examples we have given with V conservative, namely Set, Ab,
R-Mod, and Ban; in fact it seems very hard to think of any complete
and cocomplete locally-small category in nature that is not weakly cow-
ellpowered, although artificial examples exist: see Example 5.3 of [36].

3.7 Tensor and cotensor products

In this section and the next three, we consider for a general V certain
important special cases of the indexed limit {F,G}, and the extent to
which the general case may be reduced to these.

The first special case is that where the domain-category K of F and
G is the unit V-category I, so that F : I // V is in effect an object X
of V and G : I // B is an object C of B. Then the object {F,G} of B is
written X t C, or sometimes [X,C], and is called the cotensor product in
B of X and C. By (3.1), its defining equation is a V-natural isomorphism

B(B,X t C) ∼= [X,B(B,C)] (3.42)

with counit
X // B(X t C,C). (3.43)

If X t C exists for all X ∈ V and all C ∈ B, the V-category B is said
to admit cotensor products, or to be cotensored . Because I is small, any
complete B is cotensored. Since by (1.27) we have the V-natural isomor-
phism [Y, [X,Z]] ∼= [X, [Y,Z]] in V, we conclude that V is cotensored,
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the cotensor product X t Z being just the internal-hom [X,Z]. When
V = Set, the cotensor product X t C in B is clearly just the power CX

– the product of X copies of the object C of B.

The dual notion is the tensor product X⊗C ∈ B of X ∈ V and C ∈ B,
defined by

B(X ⊗ C,B) ∼= [X,B(C,B)]. (3.44)

Using (1.27) again, we have that V is tensored, X ⊗Y being the ordinary
tensor product in V. When V = Set, the tensor product X ⊗ C is just
the copower X · C – the coproduct in B of X copies of the object C.

The natural bijection

B0(B,X t C) ∼= V0

(
X,B(B,C)

)
(3.45)

obtained by applying V to (3.42) corresponds to (3.4), and is in general
insufficient to ensure that X t C is the cotensor product of X and C,
unless this latter is known to exist. For instance, take V = Cat and
X = 2, and let B be the 2-category generated by the 2-graph

0

f
''

f

77α�� 1

g
''

gg
h

2

with the relations gα = 1 and gh = 1. If we were to define 2 t 2 to
be 1, with as counit (3.43) the functor from 2 corresponding to the map
1g : g // g, we should satisfy (3.45) but not (3.42).

When V is conservative, however, a map (3.43) that induces a bijection
(3.45) also induces an isomorphism (3.42), as we saw in 1.11. In fact we
have:

Proposition 3.46 Let V be conservative, and let each object of V0 have
but a small set of extremal-epimorphic quotients. Then a V-category B is
cotensored if the ordinary category B0 is complete.

Proof. For a fixed C ∈ B we apply Proposition 3.37 to the ordinary
functor B(−, C)0 : Bop

0
//V0; observing that V0 is the closure of {I} under

small colimits by Proposition 3.41, while V0(I,B(−, C)) is representable
as B0(−, C). This gives a natural bijection (3.45), the counit (3.43) of
which then induces as above a natural isomorphism (3.42) because V is
conservative.
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When B is cotensored, a third term can be added to the equation
(3.22) expressing the continuity of a limit in its index; using a proof like
that of (3.18), we easily get

{F ? G, T} ∼= {(G−)?, F− t T?} ∼= {F, {G−, T}}, (3.47)

where F− t T? is the functor sending (K,A) to FK t TA; here the
first isomorphism in (3.47) holds under the hypothesis that F ? G exists,
and the second under the hypothesis that each {GK,T} exists. The
corresponding extension of (3.23), now supposing B to be tensored, is

(F ? G) ? T ∼= (G−)? ? (F ⊗ T ) ∼= F ? (G− ? T ). (3.48)

3.8 Conical limits in a V-category

For the next special case of a limit {F,G}, we begin with a V-category
B, a locally-small ordinary category L, and a functor T : L // B0. We
take for K the free V-category LV on L as in 2.5, for G : K // B the
V-functor corresponding in 2.5 to T : L // B0, and for F : K // V the
V-functor corresponding to the ordinary functor ∆I : L //V0 constant at
I ∈ V0. Observe that, since the adjunction of 2.5 is of course 2-natural,
B(B,G−) : K //V is the V-functor corresponding to the ordinary functor

L
T
// B0 B(B,−)0

// V0, (3.49)

which we may loosely call B(B, T−).

A family αK : X // [FK,B(B,GK)] is V-natural by 1.8(m) if and
only if the corresponding αK : FK // [X,B(B,GK)] is so; by 2.5 this is
equivalent to the mere naturality of αK : (∆I)K // [X,B(B, TK)], and
hence to the requirement that αK : X // [I,B(B, TK)] ∼= B(B, TK) be a
cone over the ordinary functor B(B, T−) of (3.49). It follows from (2.10)
that

[K,V](F,B(B,G−)) ∼= limB(B, T−), (3.50)

this being the ordinary conical limit in V0 of the ordinary functor (3.49) –
the identification of which with the left side of (3.50) exhibits it as being
V-functorial in B.

In this situation we call {F,G}, if it exists, the (conical) limit in B
of T : L // B0, denoting it formally by limB T , but usually in practice
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simply by limT . By (3.1) and (3.50), its defining equation is the V-natural
isomorphism

B(B, limT ) ∼= limB(B, T−) (3.51)

in V0, the counit µ of (3.2) here reducing to the limit cone

µK : limT // TK. (3.52)

Since the representable V = V0(I,−) : V0
// Set preserves limits,

applying V to (3.51) gives the natural bijection

B0(B, limT ) ∼= limB0(B, T−), (3.53)

showing by (3.29) that limB T , if it exists, with the cone (3.52), is also the
ordinary conical limit limB0 T of the ordinary functor T : L // B0. It is
for this reason that we write simply limT ; but we distinguish verbally the
existence (3.51) of limT in B from the (mere) existence (3.53) of limT
in B0. The latter is in general strictly weaker, as we remarked in (3.4);
for instance, if V = Cat and B is the 2-category freely generated by the
2-graph

0

f
''

f

77α�� 1, (3.54)

then the cone 1 oo 1 // 1 exhibits 1 as the product 1 × 1 in B0, but
not in B. Note that an equivalent way of expressing the existence in B of
limT is to say that limT exists in B0 and is preserved by all the functors
B(B,−)0 : B0

// V0.
The difference between the existence in B and that in B0 of such conical

limits vanishes, of course, if V is conservative. It also vanishes for any
V if B is tensored. To see this we have only to replace B in (3.53) by
X ⊗ B for any X ∈ V, to apply the dual of (3.45), and to recall that
V0(X,−) preserves limits; we conclude that each V0(X,−) carries the
map B(B, limT ) // limB(B, T−) induced by µ into an isomorphism;
whence this map is itself an isomorphism.

In particular the difference vanishes if B = V, so that V admits all
small conical limits. Note that the right side of (3.51), which until now
was the limit in V0, is in fact also the limit in V. The difference also
vanishes if B = Vop, since Vop is tensored because V is cotensored; hence
V admits all small conical colimits. Here the notion of conical colimit is
the evident dual to that of conical limit, defined for T : L // B0 by

B(colimT,B) ∼= limB(T−, B). (3.55)
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Since LV is small when L is, any complete B admits all small conical
limits. In consequence, by 3.4, B0 is complete whenever B is. However the
existence in B of all small conical limits does not suffice, in general, for
completeness of B. Take V = Cat, and let B be the full sub-2-category
of Cat determined by all categories with at most one object. Since V
admits all small conical limits so does B, for the conical limit in V of a
diagram in B clearly lies in B. Yet B is not complete, for 2 t B does not
exist in B if B has more than one map.

3.9 The inadequacy of conical limits

This inadequacy of conical limits deserves some further comment. It
shows that, for a general V, there can be no analogue of (3.32) allow-
ing us to express, as in (3.33), a general limit as a conical one. In fact,
as in 3.4, any F : K // V is the vertex of a canonical inductive cone
in [K,V]0, whose generators are all the maps K(K,−) // F from rep-
resentables into F . Since such maps correspond by Yoneda to elements
x ∈ V0(I, FK) = V FK, the base of this cone is a functor with domain
el(V F0)op, the dual of the category of elements of the ordinary functor

K0
F0

//V0
V
//Set.

When K is small so is el(V F0), so that this functor

el(V F0)op // [K,V]0

has a conical colimit in [K,V]; for [K,V] admits small conical colimits
pointwise since V admits them. We therefore have a comparison map

{colim(el(V F0)op

dop
//Kop

0 Y0
// [K,V]0)} // F (3.56)

in [K,V]0. However, in contrast to the case V = Set, the map (3.56) is
not in general an isomorphism – even when V is conservative.

To see this it suffices to take for K the unit V-category I, so that
F is just an object X of V. The canonical cone is now the cone in V0

given by all the maps I // X. To ask that this be a colimit-cone for
each X is to ask that {I} be dense in V0, in the sense of 5.1 below; this
is stronger than asking V to be conservative, which by 3.6 is to ask that
{I} be a strong generator for V0; it is false even for V = Ab. It is of
course true for V = Set, and for certain other V: for instance, sets on
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which a commutative monoid acts, with a tensor product analogous to
that for modules over a commutative ring.

What is true when V is conservative, by Proposition 3.41, is that any
X ∈ V0, although not the canonical colimit of the maps from I, is in
all reasonable cases in the closure of {I} under small colimits; it is, so
to speak, an iterated colimit of I. In this case an arbitrary F : K // V
is an iterated colimit of representables; and so the existence of all small
conical limits in B does imply the existence of all indexed limits {F,G},
as we shall show formally in 3.10 below – even though {F,G} cannot be
expressed as a single conical limit.

In the study of enriched universal algebra, it is an important observa-
tion that, for many V including Cat and Gpd, (3.56) is an isomorphism
whenever F is left exact ; see [45].

Before ending this section, we look at the possible existence in certain
cases of more general conical limits. The notion of a cone involves the
notion of a constant functor; yet in general there is no such thing as “the
V-functor K // B constant at B ∈ B”. The object B ∈ B may be seen
as a V-functor I // B, but there is no canonical V-functor K // I; in
fact there may well be none at all. There is certainly a unique V -functor
K //1, where 1 is the terminal V-category with one object 0 and with, for
hom-object 1(0, 0), the terminal object 1 of V0; but there is no V-functor
1 // I unless I is a retract of 1 in V0 – which is false for V = R-Mod,
DG-R-Mod, CGTop∗, and so on. This is why we have defined conical
limits as above, taking for K a free V-category LV ; for there are always
constant ordinary functors L // B0.

Yet in the special case of cartesian closed V (and in some other cases
as well), it happens that I = 1 in V0, so that the V-categories I and 1 coin-
cide; then there is for any B ∈ B a “constant V-functor” ∆B : K //1 //B
with this value. In particular there is a constant V-functor ∆1: K // V,
and we can consider for any G : K // B the indexed limit {∆1, G}. If
this exists it represents [K,V](∆1,B(B,G−)); which is easily seen to be
[K,B](∆B,G), the isomorphism [(∆1)K,B(B,GK ′)] ∼= B((∆B)K,GK ′)
being clearly V-natural in all three variables. Thus we are led, when V is
cartesian closed, to define the conical limit limG by

limG = {∆1, G} (3.57)

for any V-functor G : K // B; so that limG is the representing object in

B(B, limG) ∼= [K,B](∆B,G). (3.58)



3.10 Ends and coends in a V-category; completeness 71

This reduces to limT when G : LV // B is the V-functor corresponding
to the ordinary functor T : L // B0; and thus it extends the notion of
conical limit from functors to V-functors, for cartesian closed V.

By (3.57), limG certainly exists for every V-functor G : K // B with
K small, when V is cartesian closed, if the V-category B is complete.
Even the existence of these more general conical limits, however, does
not conversely imply completeness of B. The example in 3.8 above of a
non-complete B when V = Cat, given by the full subcategory of Cat
determined by the categories with at most one object, clearly admits all
such conical limits indexed by a 2-category.

3.10 Ends and coends in a general V-category; completeness

For the final special case of a limit {F,G} we take the indexing-type
F : K // V to be HomA : Aop ⊗ A // V for some V-category A. Then
a diagram G in B of this type is just a V-functor G : Aop ⊗ A // B. If
{HomA, G} exists we denote it by∫

A∈AG(A,A) = {HomA, G}, (3.59)

and call it the end of G. By the extra-variable Yoneda isomor-
phism (2.38), the right side of (3.1) may here be written as∫

A B(B,G(A,A)),

this being the end of a bifunctor Aop ⊗A // V as defined in 2.1. Hence
the defining equation of the end

∫
AG(A,A) in B is

B(B,
∫
AG(A,A)) ∼=

∫
A B(B,G(A,A)), (3.60)

while the counit µ of (3.2) corresponds to a V-natural family

λA :
∫
AG(A,A) //G(A,A). (3.61)

It is immediate from (2.3) that, when B = V, the end
∫
AG(A,A) in

the sense of 2.1 is also the end in the present sense, so that there is no
ambiguity; indeed (3.60) is just one more illustration of the fact that
limits in B are defined representably in terms of limits in V.

Applying V = V0(I,−) to (3.60), and observing that

V0(I,
∫
A B(B,G(A,A)))
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is by 2.1 the set of V-natural families I // B(B,G(A,A)), which is in
effect the set V-nat(B,G(A,A)) of V-natural families B //G(A,A), we
have a bijection of sets

B0(B,
∫
AG(A,A)) ∼= V-nat(B,G(A,A)), (3.62)

showing that the counit λ of (3.61) is the universal V-natural family
with codomain G(A,A). When B = V, this universal property sufficed
in 2.1 to define

∫
AG(A,A); but in general it does not. For instance, if

V = Cat and A is the discrete 2-category 2, then
∫
AG(A,A) is just the

product G(0, 0)×G(1, 1), which for suitable G can be any product in B;
so that (3.54) again provides a counter-example. Of course this universal
property does suffice to detect

∫
AG(A,A) if this is known to exist; and

it does suffice to define it if V is conservative, or if B is tensored – the
argument for this last being like the argument for the analogous fact
in 3.8.

The general Fubini and interchange-of-limits theorems of 3.3 have as
particular cases, under the hypothesis that the inner limits exist, such
results as ∫

A

∫
B G(A,A,B,B) ∼=

∫
(A,B)G(A,A,B,B)

∼=
∫
B

∫
AG(A,A,B,B), (3.63)

∫
A limαGα(A,A) ∼= limα

∫
AGα(A,A), (3.64)

∫
AX t G(A,A) ∼= X t

∫
AG(A,A); (3.65)

there is no point in specifically remembering any but the general results
of 3.3.

The dual notion is that of the coend
∫ A

G(A,A) of G : Aop⊗A //B,
defined by ∫ A

G(A,A) = HomA ? G, (3.66)

and hence determined by

B(
∫ A

G(A,A), B) ∼=
∫
A B(G(A,A), B). (3.67)

We now observe that any B which admits cotensor products and small
conical limits admits every end

∫
A∈AG(A,A) with small A. For let us
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temporarily define an object
∫
AG(A,A) as the equalizer of the evident

pair ρ, σ of maps (cf. (2.2)) in∫
A∈AG(A,A)

λ

��∏
A∈AG(A,A)

ρ

��

σ

��∏
A,C∈AA(A,C) t G(A,C).

(3.68)

Applying the limit-preserving B(B,−) to (3.68), using (3.42), and com-
paring the result with (2.2), we get precisely the desired (3.60).

We next observe that, for any F : K // V and G : K // B, we have

{F,G} ∼=
∫
K FK t GK if B is cotensored; (3.69)

or even if only these particular cotensor products FK t GK exist: either
side of (3.69) existing if the other does. For the right side of (3.1) is∫
K [FK,B(B,GK)] by (2.10), which here is

∫
K B(B,FK t GK) by (3.42).

The dual of this is

F ? G ∼=
∫K

FK ⊗GK if B is tensored. (3.70)

Note that the Yoneda isomorphisms (3.10) for cotensored [resp. tensored]
B take the forms∫

LK(K,L) t GL ∼= GK,
∫ LK(L,K)⊗GL ∼= GK; (3.71)

while the expression (3.17) of an arbitrary F : K // V as a colimit of
representables takes the form∫ LK(L,−)⊗ FL ∼= F . (3.72)

The two observations above give at once:

Theorem 3.73 The V-category B is complete if and only if it admits
cotensor products and all small conical limits. When this is so, the V-
functor T : B //C is continuous if and only if it preserves cotensor prod-
ucts and small conical limits.
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We have already seen in 3.2 that V is complete. Since V admits tensor
products by 3.7 and small conical colimits by 3.8, we conclude that

V is cocomplete. (3.74)

By 3.3 and 3.5, we have:

Proposition 3.75 If A is small, every reflective full subcategory of [A,V]
is complete and cocomplete.

It is a matter of common experience that, in the case V = Ab of
additive categories, it has never proved necessary to distinguish the com-
pleteness of B from that of B0. In fact Proposition 3.46, along with the
observation in 3.8 that conical limits in B0 are also limits in B when V is
conservative, gives:

Proposition 3.76 Let V be conservative, and let each object of V0 have
but a small set of extremal-epimorphic quotients. Then a V-category B is
complete whenever the ordinary category B0 is so.

We finally observe that (3.68) and (3.69) do not “reduce all indexed
limits to conical limits and cotensor products”; the {F,G} in (3.69) may
well exist although the FK t GK do not, an example being provided by
the Yoneda isomorphisms (3.10) for an arbitrary B. It would be equally
false for ordinary categories to say that “all conical limits reduce to prod-
ucts and equalizers”; there all conical limits exist if all products and
equalizers do, but a particular pullback may well exist even though the
product of which it would be a subobject does not. The moral is that
it is proper to recognize the most general (indexed) limit concept, while
seeing the results above as simple tests for completeness.

3.11 The existence of a limit-preserving universe-enlargement V ⊂
V ′

We now justify our assertion of 2.6, that every V has a well-behaved exten-
sion to a higher-universe version V ′. The analysis below is a very special
case of that in Day’s consideration [12] of monoidal biclosed structures
on enriched functor categories.

Given a set {A} of V-categories A that we should like to be small when
seen as V ′-categories, let Set′ be the category of sets in some universe
containing as elements ob(Set), obV, and obA for each A ∈ {A}.
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Take V ′0 = [Vop
0 ,Set′], so that V ′0 is a Set′-category, complete and

cocomplete in the Set′-sense; and denote by y : V0
//V ′0 the Yoneda full

embedding sending X to V0(−, X). Then there is an essentially unique
symmetric monoidal closed structure V ′ = (V ′0,⊗′, I ′, [ , ]′) on V ′0 extend-
ing that on V0.

First observe that, since the left adjoint functors F ⊗′ − and −⊗′ G
must preserve all colimits, and since F is by (3.17) the colimit F ? y of
representables, and similarly for G, we must have

F ⊗′ G ∼= (F ? y)⊗′ G ∼= F ? (y ⊗′ G) ∼= F ? (G ? (y ⊗′ y)),

which by (3.21) is (F × G) ? (y ⊗′ y). Since ⊗′ is to extend ⊗, we must
have

yX ⊗′ yY = V0(−, X)⊗′ V0(−, Y )
∼= V0(−, X ⊗ Y )

= y(X ⊗ Y ).

(3.77)

Thus we are forced to define F⊗′G as (F−×G?)?y(−⊗?), which written
in the more explicit coend form (3.70) is

F ⊗′ G =
∫ X,Y

FX ×GY × V0(−, X ⊗ Y ). (3.78)

With this definition, moreover, (3.77) is clearly satisfied, by Yoneda in
the form (3.71).

The definition (3.5) of ? applied to F ⊗′ G = (F− × G?) ? y(− ⊗ ?)
gives V ′0(F ⊗′ G,H) ∼= [Vop

0 × V
op
0 ,Set′](F−×G?,V ′0(y(−⊗ ?), H)). But

V ′0(y(−⊗ ?), H) ∼= H(−⊗ ?) by Yoneda, so that

V ′0(F ⊗′ G,H) ∼= [Vop
0 × V

op
0 ,Set′](F−×G?, H(−⊗ ?)),

which by (2.29) is also V ′0(F,V ′0(G?, H(− ⊗ ?))). In other words − ⊗′ G
has as desired a right adjoint [G, ]′:

V ′0(F ⊗′ G,H) ∼= V ′0(F, [G,H]′), (3.79)

where

[G,H]′ = V ′0(G?, H(−⊗ ?)) =
∫
Y [GY,H(−⊗ Y )], (3.80)

[ , ] here denoting the internal-hom in Set′. Note that

[V0(−, X),V0(−, Z)]′ =
∫
Y [V0(Y,X),V0(−⊗ Y,Z)]



76 3 Indexed limits and colimits

is, by the form (3.71) of Yoneda, V0(−⊗X,Z) ∼= V0(−, [X,Z]). Thus

[yX, yZ]′ ∼= y[X,Z], (3.81)

so that [ , ]′ is an extension of the [ , ] of V.
From the existence of this right adjoint and the evident symmetry

of ⊗′, it follows that (F ⊗′ G) ⊗′ H preserves colimits in each variable
separately; so that from the colimit-expressions of the form F ∼= F ? y
and from (3.77), we get

(F⊗′G)⊗′H ∼=
∫X,Y,Z

FX×GY ×HZ×V0(−,(X⊗Y )⊗Z), (3.82)

with a similar expression for F ⊗′ (G ⊗′ H). Hence the associativity
isomorphism for ⊗ induces one for ⊗′ as in (2.4); and similarly of course
for the commutativity. Again, if we set

I ′ = yI = V0(−, I), (3.83)

the cocontinuity in F of F ⊗′ I ′, along with (3.77), gives an evident
isomorphism F ⊗′ I ′ ∼= F .

Verification of the coherence conditions in V ′ from those in V is
straightforward: the essential logical point is the uniqueness of the in-
duced map

∫
A αAA in (2.4). A careful discussion is given by Day in [12],

and a more streamlined one in his thesis [13].
Note that the derivation of (3.79) made no use of the closed structure

of the symmetric monoidal V. This proves our assertion at the end of 1.4
above, that any symmetric monoidal category can be embedded in a closed
one.

An essential property of the embedding y : V0
// V ′0 is that it pre-

serves all limits that exist in V0; in fact these become pointwise limits
in V ′0, for the composite with y of the evaluation EX : V ′0 // Set′ is
V0(X,−) : V0

// Set // Set′, which preserves all limits. It then follows
from (2.1) that the end in V of T : Aop⊗A //V, if it exists, coincides with
the end in V ′ of Aop⊗A //V //V ′; so that

∫
A T (A,A) is unambiguous

for such a functor. In consequence, the definition (2.10) of [A,B](T, S) is
also unambiguous: if it exists as an object of V, it has this same value
when A and B are thought of as V ′-categories.

This justifies the alternative view mentioned in 3.1 of the def-
inition (3.1) of {F,G} for F : K // V and G : K // B: namely
that [K,V] always exists, even if K is large, as a V ′-category for
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a suitable V ′, and that the only question is the representability of
B 7→ [K,V](F,B(B,G−)) : Bop // V ′ by an object {F,G} of B.

However even more is true: it does not matter in these circumstances
whether we perceive the base category as V or as V ′ – in the latter case
seeing the indexing type as yF : K // V // V ′; for if { , }′ denotes the
indexed limit of a V ′-functor, we have

{yF,G}′ ∼= {F,G}, (3.84)

either existing if the other does. (For once we are using y loosely to denote
both the ordinary functor V0

// V ′0 and the V ′-functor V // V ′.) The
point is that [K,V ′](yF, yB(B,G−)), as the end in V ′ of [FK,B(B,GK)]′,
is by (3.81) the end in V ′ (and hence also in V if it exists there) of
[FK,B(B,GK)]. Of course it is equally true for colimits that (yF )?′G ∼=
F ? G, for these are just limits in Bop.

3.12 The existence of a limit- and colimit-preserving universe-
enlargement V ⊂ V ′

On the other hand, y : V0
// V ′0 does not preserve colimits; and we must

ask how far this renders our formulae ambiguous under such a change of
universe.

The first place where we used colimits in V0 was in the construction
in 2.5 of the free V-category LV on the locally-small ordinary category
L. This, seen as a V ′-category, is not the same as the free V ′-category
LV ′ on L. We applied this notion in 3.8 to exhibit a conical limit limT ,
where T : L //B0, as an indexed limit {F,G}, with LV as the domain of
F and G. When L is not Set-locally-small, LV does not in general exist,
but LV ′ does so for a suitable V ′; and this enables us to define limT as
the appropriate {F ′, G′}′, where F ′ and G′ have domain LV ′ and F ′ has
codomain V ′. The question arises whether the two definitions of limT
agree when L is locally small. The characterization (3.51) shows at once
that they do: for the right side of (3.51) is an ordinary limit in V0 and
hence in V ′0.

The only other place where we have used colimits in V0 (except in
the negative considerations of 3.9) is in the formula (3.22) expressing
the “continuity” of a limit in its index – this meaning more precisely
that colimits in [A,V] are sent to limits in B. Note that the V ′-functor
y : V // V ′, although it preserves small tensor products by (3.77), fails
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to preserve small conical colimits (since by (3.53) these are the ordinary
colimits in V0 and V ′0), and hence fails to preserve small indexed colimits;
whence the same is true of [A,V] // [A,V ′].

The argument given for (3.22) implicitly presupposes the existence
of [A,V] as a V-category in which F ? G is to live. However the result
remains literally true even if [Kop,V] and [A,V] exist only as V ′-categories,
provided that we interpret the existence of F ?G as meaning that we have
an isomorphism [A,V](F ?G,H) ∼= [Kop,V ′](F, [A,V](G−, H)) in V ′. For
then we have

B(B, {F, {G−, T}}) ∼= [Kop,V](F,B(B, {G−, T}))
∼= [Kop,V](F, [A,V]((G−)?,B(B, T?)))
∼= [A,V]((F ? G)?,B(B, T?))
∼= B(B, {F ? G, T}).

We also have, however, the V ′-analogue of (3.22); this is a differ-
ent true statement. For now F is replaced by the composite F ′ =
yF : Kop //V //V ′, and G by the composite G′ : K // [A,V] // [A,V ′];
so that G′K is y(GK). The right side of (3.22) in fact remains unchanged,
by (3.84); but its new left side is {F ′ ?′ G′, T}′, while its old left side, by
two applications of (3.84), is {F ?G, T} ∼= {y(F ?G), T}′ ∼= {yF ?′G,T}′;
and yF ?′ G = F ′ ?′ G differs from F ′ ?′ G′ because [A,V] // [A,V ′] does
not preserve colimits.

Thus, in a sense, the ambiguities that arise from the failure of
y : V // V ′ to preserve colimits are of but minor importance. Still, the
notation would be that much more flexible if by modifying V ′ we could
remove them; and more adapted to universal algebra, where colimits in V
do play a central role. Indeed, in the concrete examples of 2.6, where V ′0
is not [Vop

0 ,Set′], but consists – in the case V = Cat for example – of the
category objects in Set′, the inclusion V0

// V ′0 does preserve all limits
and all colimits that exist in V0. We now show that we can do nearly as
well as this in the general case, replacing V ′0 = [Vop

0 ,Set′] by a reflective
full subcategory V ′′0 containing V0; it is then still the case, by 3.5, that
V0

//V ′′0 preserves all the limits that exist in V0; and we can arrange for
it to preserve, if not all colimits that exist in V0, at least those that are
Set′-small – and so a fortiori all small (= Set-small) ones.

We just take V ′′0 to be the full subcategory of V ′0 = [Vop
0 ,Set′] deter-

mined by those F : Vop
0

// Set′ which send all the Set′-small colimits
that exist in V0 – these being limits in Vop

0 – to limits in Set′. By 3.2,
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the representables constituting V0 lie in V ′′0 . That V0
//V ′′0 preserves the

colimits in question is immediate; and that V ′′0 is reflective in V ′0 follows
from Kennison [50] or from Freyd-Kelly [30]; see also 6.3 below. Let the
reflexion be R : V ′0 // V ′′0 .

The first thing to observe is that

[G,H]′ ∈ V ′′0 if G ∈ V ′0 and H ∈ V ′′0 . (3.85)

For [G,H]′ =
∫
Y [GY,H(−⊗Y )] by (3.80); but−⊗Y preserves all colimits,

and in particular those in question; H sends these by hypothesis to limits
in Set′; the representable [GY,−] preserves all limits; and so by (3.64)
does

∫
Y .

By the results of Day [14], this is enough to ensure that V ′′0 has a
symmetric monoidal closed structure V ′′ = (V ′′0 ,⊗′′, I ′, [ , ]′), where

F ⊗′′ G = R(F ⊗′ G). (3.86)

This will give all that we want; the symmetric monoidal closed structure
of V ′′ will extend that of V by (3.81), (3.83), and (3.77) taken with the
fact that V0 ⊂ V ′′0 .

An adaptation of Day’s argument to the present case is as follows; in
fact we need (3.85) only for G,H ∈ V ′′0 . Then for F,G,H ∈ V ′′0 we have
from (3.86) that V ′′0 (F ⊗′′G,H) ∼= V ′0(F ⊗′G,H) ∼= V ′0(F, [G,H]′), which
by (3.85) is V ′′0 (F, [G,H]′). Thus −⊗′′ G a [G,−]′ : V ′′0 // V ′′0 .

There is an evident symmetry F ⊗′′G ∼= G⊗′′ F ; moreover I ′⊗′′G =
R(I ′ ⊗′ G) ∼= RG = G for G ∈ V ′′0 . As for associativity, let F,G,H ∈
V ′′0 . Then for any K ∈ V ′′0 we have [H,K]′ ∈ V ′′0 by (3.85). Thus any
map F ⊗′ G // [H,K]′ factorizes uniquely through the reflexion F ⊗′
G //R(F ⊗′G) = F ⊗′′G. It follows that any map (F ⊗′G)⊗′H //K
factorizes uniquely through (F ⊗′G)⊗′H // (F ⊗′′G)⊗′H. Using (3.86)
again, we conclude that (F ⊗′′ G) ⊗′′ H ∼= R((F ⊗′ G) ⊗′ H). So the
associativity isomorphism for ⊗′ reflects onto one for ⊗′′; and moreover
all the coherence conditions reflect too.

Let us change notation now, and write V ′ for V ′′; so that henceforth
V ′ denotes an extension of V for which V // V ′ preserves all limits that
exist in V and also all colimits that exist and are Set′-small. In future all
functor categories too big to exist as V-categories are to be interpreted as
V ′-categories for a suitable such V ′; and similarly for limits and colimits
in V or in some [A,V].
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Chapter 4

Kan extensions

4.1 The definition of Kan extensions; their expressibility by limits
and colimits

Recall from (3.38) and (3.39) that a V-functor K : A // C induces
K̂ : Cop // [A,V] and K̃ : C // [Aop,V], given by K̂C = C(C,K−) and
K̃C = C(K−, C). Note that, for F : C // V and H : Cop // V, we have

F ? K̂ ∼= FK, H ? K̃ ∼= HKop; (4.1)

since by (3.16) we have (F ?K̂)A = F??C(?,KA), which by the symmetry
(3.9) and the Yoneda isomorphism (3.10) is FKA.

Given V-functors and a V-natural transformation

C

T

��
ψ{�

A
G

//

K

??

B,

(4.2)

we get for each F : C // V a map

[C,V]
(
F,B(B, T−)

)
��

[A,V]
(
FK,B(B, TK−)

)
��

[A,V]
(
FK,B(B,G−)

)
,

(4.3)
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where the first arrow is [K, 1] and the second is [A,V]
(
1,B(1, ψ−)

)
. Hence

by (3.1) we get an induced map

(K,ψ)∗ : {F, T} // {FK,G} (4.4)

whenever these limits exist. When A = C and K = 1, this is just

{1, ψ} : {F, T} // {F,G};

we saw in (3.11) that { , } is a V-functor in so far as it exists. When
G = TK and ψ = 1, we may write (4.4) as K∗ : {F, T} // {FK, TK}.
The general (4.4) is the composite

{F, T}
K∗
// {FK, TK}

{1,ψ}
// {FK,G} (4.5)

if all these limits exist; but the outer ones may well exist when the central
one does not.

Theorem 4.6 For a diagram (4.2), the following are equivalent:

(i) For each F : C //V, (K,ψ)∗ : {F, T} //{FK,G} is an isomorphism,
either limit existing if the other does.

(ii) For each C ∈ C, the limit {C(C,K−), G,} is given by TC, with as
counit

C(C,K−)
T
// B(TC, TK−)

B(1,ψ−)
// B(TC,G−). (4.7)

(iii) For each B ∈ B and C ∈ C, the map

B(B, TC) // [A,V]
(
C(C,K−),B(B,G−)

)
(4.8)

induced by (4.7) is an isomorphism.

Proof. (i) gives (ii) on taking F = C(C,−) and using the Yoneda
isomorphism (3.10); (ii) expresses (iii) by the definition (3.1); (iii) asserts
by Yoneda that (4.3) is an isomorphism in the case F = C(C,−), whence
(4.3) is an isomorphism for all F by (3.17), both sides of (4.3) sending
pointwise colimits in the variable F to limits in V; which then gives (i)
by definition.
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When these conditions are satisfied, it follows from (ii) that T and
ψ are uniquely determined to within isomorphism by K and G; we say
that the diagram (4.2) (or the map ψ therein) exhibits T as the right Kan
extension of G along K, and we write T = RanKG, calling ψ the counit
of this right Kan extension. Thus (ii) gives the formula

(RanKG)C = {C(C,K−), G} = {K̂C,G}, (4.9)

and RanKG exists, by definition, when the limit on the right exists for
each C ∈ C: so that we may also write

RanKG = {K̂−, G}. (4.10)

(We may sometimes loosely express the existence of {K̂C,G} for a par-
ticular C by saying that (RanKG)C exists.) In terms of the counit
µC : C(C,K−) // B

(
(RanKG)C,G−

)
of the limit (4.9), the counit ψ

of the right Kan extension is, by (4.7) and Yoneda in the form (1.48),

ψA = µKA,A(1KA) : (RanKG)KA //GA. (4.11)

The equivalent defining property (i) of Theorem 4.6 may be recorded as

{F,RanKG} ∼= {FK,G} for all F : C // V; (4.12)

this may also be seen as coming directly from (4.10), (3.22), and (4.1) –
which gives an alternative proof that (iii) implies (i) above. Clearly

RanKG, where G : A // B, exists if A is
small and B is complete.

(4.13)

If (4.2) is a right Kan extension, a functor P : B //D is said to preserve
this right Kan extension if Pψ exhibits PT as RanKPG. Obviously:

Proposition 4.14 P preserves the right Kan extension RanKG if and
only if P preserves the limit {K̂C,G} for all C.

In particular, therefore, a right adjoint preserves any right Kan exten-
sion that exists; and the representables B(B,−) : B //V not only preserve
RanKG but, in their totality, detect it (which by (3.7) and (4.9) is a re-
statement of Theorem 4.6(iii)).
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For the dual notion we observe that a diagram

C

S

��
φ

;C

A
G

//

K

??

B

(4.15)

induces, for any H : Cop // V, a map

(K,φ)∗ : HKop ? G //H ? S; (4.16)

we say that φ exhibits S as the left Kan extension LanKG of G along
K if (4.16) is an isomorphism for each H whenever either side exists;
equivalently, if φ induces an isomorphism of S with the functor

LanKG = (K̃−) ? G, (4.17)

which exists when the colimit

(LanKG)C = K̃C ? G = C(K−, C) ? G (4.18)

does so for each C: as it surely does if A is small and B is cocomplete.
Then (4.16) becomes

H ? LanKG ∼= HKop ? G for all H : Cop // V. (4.19)

Any left adjoint Q : B //D preserves the left Kan extension LanKG; and
a representable B(−, B) : Bop //V turns it into a right Kan extension in
V – giving

B
(
(LanKG)C,B

) ∼= [Aop,V]
(
C(K−, C),B(G−, B)

)
(4.20)

as a further characterization of LanKG. Since left Kan extensions occur
more than right ones in our applications below, we shall give our further
results in terms of these; of course the two notions are precisely dual,
( )op turning a left Kan extension (4.15) into a right one. For the genesis
of these ideas, see Kan [38].



4.2 Elementary properties and examples 85

4.2 Elementary properties and examples

We continue with a collection of elementary results, formulae, and exam-
ples.

The accepted term “extension” is somewhat misleading here, for in
the diagram

C

LanKG

��
φ

;C

A
G

//

K

??

B

(4.21)

it is not in general the case that (LanKG)K ∼= G, as (4.34) below shows.
The fact is that K̃K : A // [Aop,V] sends A to K̃KA = C(K−,KA),
and we have a canonical map K−A : A(−, A) // C(K−,KA), which is
the A-component of a canonical map κ : Y // K̃K : A // [Aop,V] where
Y is the Yoneda embedding: and clearly

κ : Y // K̃K is an isomorphism if and only
if K is fully faithful.

(4.22)

We now have:

Proposition 4.23 φ : G // (LanKG)K is an isomorphism if K is fully
faithful; while conversely K is fully faithful if φ is an isomorphism for all
B, G with LanKG existing.

Proof. (LanKG)K = (K̃K−) ? G by (4.17), while G ∼= (Y−) ? G by
the Yoneda isomorphism (3.10); clearly φ : G // (LanKG)K is (κ−) ?G;
hence it is by (4.22) an isomorphism if K is fully faithful. For the converse
take B = V and G = A(A,−); then by (3.9) and (3.10) the isomorphism
φA = (κ−) ? A(A,−) is κA, so that κ is an isomorphism and K is fully
faithful.

When B has cotensor products [resp. tensor products] the formulae
(4.10) and (4.17) have by (3.69) and (3.70) the more explicit forms

RanKG ∼=
∫
A C(−,KA) t GA, (4.24)

LanKG ∼=
∫ A C(KA,−)⊗GA; (4.25)

either side existing if the other does.
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In the classical case V = Set we can use (3.33) and (3.34) to ex-
press the Kan extensions by conical limits and colimits. Observe that
el C(C,K−), where C(C,K−) : A // Set, is the comma-category C/K;
an object is (A ∈ A, f : C // KA), while a map (A, f) // (A′, f ′) is
some g : A // A′ with Kg.f = f ′. Similarly C(K−, C) : Aop // Set has
el C(K−, C) = (K/C)op. Hence (3.33) and (3.34) give

(RanKG)C ∼= lim(C/K
d
//A

G
// B) for V = Set, (4.26)

(LanKG)C ∼= colim(K/C
d
//A

G
// B) for V = Set; (4.27)

again either side existing if the other does.
Clearly (4.18) simplifies if K : A // C has a right adjoint L, for then

(LanKG)C = C(K−, C)?G ∼= A(−, LC)?G, which is GLC by the Yoneda
isomorphism (3.10). Thus

LanKG ∼= GL if K a L. (4.28)

Note that obviously

Any functor Q : B //D preserves the
LanKG of (4.28).

(4.29)

We pass to some particular examples. Let G : A // B, and let
Y : A //[Aop,V] be the Yoneda embedding. Since Ỹ F = [Aop,V](Y−, F )
is isomorphic to F by the Yoneda isomorphism (2.31), we have

Ỹ ∼= 1: [Aop,V] // [Aop,V]. (4.30)

Hence (4.17) gives

LanYG ∼= − ? G : [Aop,V] // B. (4.31)

On the other hand, (4.17) also gives LanGY = (G̃− ? Y ), so that by the
Yoneda isomorphism (3.17), we have

LanGY ∼= G̃ : B // [Aop,V]. (4.32)

We cannot quite say that (4.31) exhibits any colimit F ?G as the value
(LanYG)F of a left Kan extension; for the left Kan extension LanYG may
not exist, even though F ?G exists for a particular F . Yet we can always
exhibit a colimit F ? G as the value of a Kan extension. Identify A with
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its full image under Y : A // [Aop,V], and take for C the full subcategory
of [Aop,V] determined by all the A ∈ A and the given F : Aop // V; let
K : A //C be the inclusion. Then K̃K ∼= Y by (4.22), while K̃F ∼= F by
Yoneda. Thus for any G : A // B we have (LanKG)A ∼= GA for A ∈ A
(cf. Proposition 4.23), while (LanKG)F ∼= F ?G. This gives in particular
a converse to (4.13):

Proposition 4.33 B admits all left Kan extensions LanKG, where
K : A // C, G : A // B, and A is small, if and only if it is cocomplete.

In theory, therefore, Kan extensions could replace indexed limits as
the basic “limit” notion; we could use (4.8) to define Kan extensions
without explicit mention of indexed limits, merely using ordinary limits
in V0 to define the functor categories as in 2.2. In fact, as we see in
4.3 below, we can even define Kan extensions without first introducing
functor categories: we could then recover these by defining indexed limits,
and in particular ends, in terms of Kan extensions. However we find the
order adopted in this account more natural.

A conical limit has a particularly simple expression as a Kan extension.
If V is cartesian closed, for instance, colimG coincides with the left Kan
extension

1

colimG

��
φ

;C

A
G

//

K

??

B;

(4.34)

for clearly K̃0 is here ∆1: A // V, so that (4.18) gives

(LanKG)0 = ∆1 ? G,∼= colimG

by (3.57). This illustrates our assertion preceding Proposition 4.23, that
φ is not in general an isomorphism. (Note that (4.34) follows alternatively
when V = Set from (4.27), d then being an equivalence: but the argument
we have used here generalizes to conical limits for any V.)

For the purposes of a counter-example we shall use below, we look at
a generalization of (4.34). Consider, in the case V = Set, the left Kan
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extension

C

LanKG

��

φ

;C

L × C
G

//

K

??

B.

(4.35)

where K is the projection. Here K̃C = C(K−, C) : Lop × Cop // Set
is clearly ∆1 × C(−, C); so that (LanKG)C =

(
∆1 × C(−, C)

)
? G. By

the Fubini theorem (3.21), this is (∆1)? ?
(
C(−, C) ? G(?,−)

)
, which is

(∆1)? ? G(?, C) by the Yoneda (3.10); whence by (3.26)

(LanKG)C ∼= colimG(−, C) (4.36)

either side existing if the other does. Thus if G corresponds to
T : L // [C,B], we conclude that LanKG exists in (4.35) exactly when
colimT exists pointwise.

4.3 A universal property of LanKG; its inadequacy as definition

The left Kan extension

C

LanKG

��
φ

;C

A
G

//

K

??

B

(4.37)

has an important universal property, different from the defining one in its
three equivalent forms (4.18), (4.19), (4.20); namely:

Theorem 4.38 For any S : C // B, we have a V-natural isomorphism

[C,B](LanKG,S) ∼= [A,B](G,SK); (4.39)

the unit of this representation being the unit φ of (4.37). The dual result
is

[C,B](S,RanKG) ∼= [A,B](SK,G). (4.40)
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Proof.

[C,B](LanKG,S) =
∫
C B
(
(LanKG)C, SC

)
by (2.10)

∼=
∫
C [Aop,V]

(
C(K−, C),B(G−, SC)

)
by (4.20)

∼=
∫
C

∫
A[C(KA,C),B(GA,SC)] by (2.10)

∼=
∫
A

∫
C [C(KA,C),B(GA,SC)] by (2.9)

∼=
∫
A B(GA,SKA) by (2.33)

∼= [A,B](G,SK) by (2.10).

Putting S = LanKG on the left side and evaluating at 1 to determine the
unit, we find this to be φ, using the duals of (4.7) and (4.8).

Note that the left side of (4.39) exists in V (and not merely in some
extension V ′) if the right side does; in particular

[C,B](LanKG,S) ∈ V if the domain A of K is small. (4.41)

Applying V = V0(I,−) : V0
//Set to (4.39), we get a bijection of sets

[C,B]0(LanKG,S) ∼= [A,B]0(G,SK), (4.42)

which in view of (2.16) may be expressed as:

Theorem 4.43 If φ : G //LK exhibits L as LanKG, then every V-natural
α : G // SK factorizes as

C
S

��L
))

β ;C

A
G

//

K

??

φ ;C

B

(4.44)

for a unique β : L // S.

The universal property of Theorem 4.43 can be satisfied by at most
one (L, φ) to within isomorphism; for it is a question of a representation
[C,B]0(L, S) ∼= [A,B]0(G,SK). It is moreover a very simple universal
property, that makes sense not only in V-CAT but in any 2-category.
This has led many authors to use it as the definition of left Kan extension.
Let us call an (L, φ) with this universal property a weak left Kan extension
of G along K, writing L = lanKG with a small “l” (and ranKG for the
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dual). We now compare this with our definition. Theorem 4.43 asserts
that LanKG = lanKG if the former exists. However L = lanKG need not
satisfy

[C,B](L, S) ∼= [A,B](G,SK), (4.45)

and hence by (4.39) need not be LanKG. Take V = Cat, with A a
mere category and C = 1. The universal property of L = lanKG clearly
asserts that L is the colimit of G in B0, while (4.45) asserts that L is
the colimit of G in B; yet by (3.54) the first of these does not imply
the second. (In this particular case, by (4.34), an L satisfying (4.45) is
necessarily LanKG.) Of course L = lanKG does satisfy (4.45) if V is
conservative; it also does so if B is cotensored, by an argument like that
used in 3.8 when comparing conical limits in B0 with those in B. Yet even
an (L, φ) satisfying (4.45) still need not be LanKG; in other words, the
isomorphism (4.39) is strictly weaker than our definition of LanKG. This
is so even in the classical case V = Set; a counter-example is provided by
(4.35), where LanKG exists by (4.36) precisely when T : L // [C,B] has
a pointwise colimit, while (4.45) merely asserts that L ∼= colimT , which
by 3.3 does not imply pointwiseness.

For such reasons, various authors [22, 60, 9] who call lanKG a Kan
extension use the name pointwise Kan extension for LanKG. Our present
choice of nomenclature is based on our failure to find a single instance
where a weak Kan extension plays any mathematical role whatsoever.
(Street in [71] has given a definition of “pointwise Kan extension” in any
2-category with finite limits; it agrees with our notion when V = Set,
but is strictly stronger for a general V, and is hence not suited to our
context.)

When B is cotensored and L = lanKG exists, we have ob-
served that L satisfies (4.45). If in this we now take for S the
functor C(−, C) t B for fixed C ∈ C and B ∈ B, we easily get
B(LC,B) ∼= [Aop,V]

(
C(K−, C),B(G−, B)

)
, so that L = LanKG by

(4.20). Thus for cotensored B there is no distinction between lanKG and
LanKG. This is so in particular for B = V; moreover, since V is also
tensored, ranKG and RanKG too have the same meaning for B = V.
This gives a way of defining RanKG, for any B, in terms of weak Kan
extensions:
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Proposition 4.46 The diagram

C

T

��
ψ{�

A
G

//

K

??

B,

exhibits T as RanKG if and only if, for each B ∈ B, the 2-cell B(B,ψ)
exhibits B(B, T−) as ranKB(B,G−).

Proof. “Only if” is clear since representables preserve RanKG. For the
converse, B(B, T−) is actually RanKB(B,G−) by the remark preceding
the proposition; so that (4.8) is an isomorphism by (4.9) and (3.7), giving
T = RanKG.

It is this way of defining RanKG, in terms of the universal property
of ran, that is envisaged in our remarks following Proposition 4.33.

Before leaving this comparison of Lan with lan, we should perhaps
emphasize that, even when V is conservative, LanKG (or lanKG) has
meaning heavily dependent on V. Thus, when V = Ab, LanKG is quite
different from LanK0G0. The former is an additive functor, and satisfies
the universal property of Theorem 4.43 among all additive functors; the
latter is in general not additive at all.

4.4 Iterated Kan extensions; Kan adjoints; [Aop,V ] as the free co-
completion of a small A

We continue with further elementary properties of Kan extensions which,
in one way or another, make use of Theorem 4.38 or Theorem 4.43.

Theorem 4.47 If LanKG exists we have

LanZLanKG ∼= LanZKG, (4.48)

either side existing if the other does. Then if φ and θ are the units of
LanKG and LanZLanKG, the unit χ of LanZKG is the composite natural
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transformation in the diagram

D

M

��

θ

;C

C
L

''

Z

??

φ

;C

A
G

//

K

??

B,

where L denotes LanKG and M the common value in (4.48). If Z is fully
faithful, LanKG exists whenever LanZKG exists, being (LanZKG)Z.

Proof. (4.19) gives Z̃D?LanKG ∼= (Z̃D.Kop)?G, either side existing if
the other does. Since Z̃D.Kop = D(ZK−, D), this is by (4.18) the desired
isomorphism (4.48). That the units compose as shown is immediate from
Theorem 4.43. The last statement comes from the easy observation that

Z̃KZ ∼= K̃ if Z is fully faithful. (4.49)

If A and C are small, both [A,B] and [C,B] exist as V-categories; and
any K : A // C induces a V-functor [K, 1] : [C,B] // [A,B] as in (2.26),
sending S to SK. Then from Theorem 4.38 we get the theorem of Kan
adjoints:

Theorem 4.50 Let K : A //C be a V-functor with A and C small. Then
the functor [K, 1] : [C,B] // [A,B] has the left adjoint LanK if LanKG
exists for all G : A // B, as it surely does when B is cocomplete; and
[K, 1] has the right adjoint RanK if RanKG exists for each G, as it surely
does when B is complete.

We now consider the sense in which [Aop,V], for a small A, is the free
cocompletion of A (embedded in [Aop,V] by Yoneda).

Theorem 4.51 Let Y : A // [Aop,V] be the Yoneda embedding,
where A is small, and let B be arbitrary. Then for any cocontinu-
ous S : [Aop,V] // B we have

S ∼= LanYG ∼= − ? G : [Aop,V] // B, (4.52)
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where
G = SY : A // B. (4.53)

Such a cocontinuous S has a right adjoint T given by

T = G̃ : B // [Aop,V]. (4.54)

The full subcategory Cocts
[
[Aop,V],B

]
of
[
[Aop,V],B

]
determined by the

cocontinuous functors exists as a V-category, and S 7→ SY is an equiva-
lence of V-categories

[Y, 1] : Cocts
[
[Aop,V],B

]
' [A,B]′, (4.55)

where [A,B]′ is the full subcategory of [A,B] determined by those
G : A //B for which LanYG exists; the inverse to this equivalence sends
G to LanYG. In particular, if B is cocomplete, this is an equivalence

Cocts
[
[Aop,V],B

]
' [A,B]. (4.56)

Proof. Expressing an arbitrary F : Aop // V as a small colimit F ∼=
F ?Y of representables by (3.17), we see that a cocontinuous S must have
SF ∼= F ?SY , which is F ?G by (4.53), or (LanYG)F by (4.31). We then
have B(SF,B) ∼= B(F ?G,B) ∼= [Aop,V](F, G̃B) by (3.5), so that S a G̃.

Since the cocontinuous S is LanYG, it follows from (4.41) that
Cocts

[
[Aop,V],B

]
exists as a V-category, and from (4.39) that

Cocts
[
[Aop,V],B

]
(S, S′) ∼=

[
[Aop,V],B

]
(LanYG,S

′)
∼= [A,B](G,S′Y )

= [A,B](SY, S′Y ).

Thus [Y, 1] in (4.55) is fully faithful. It is moreover essentially surjec-
tive, since if LanYG = − ? G exists, it is cocontinuous by (3.23), and
(LanYG)Y ∼= G by Proposition 4.23 (or equally by (3.10)).

4.5 Initial diagrams as the left Kan extensions into V ; initial and
final functors when V = Set

As the motivation for our definition of right Kan extension, we chose
in 4.1 the property (4.12) which allows us to write a limit {FK,G} as
{F,RanK G}. We now examine the corresponding problem of writing a
limit {H,TK} in the form {F, T}.
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First we need a result resembling (4.12) or (4.19), but where the Kan
extension has codomain V and the other functor need not:

Proposition 4.57 Let LanKH exist, where K : A // C and H : A //V;
then for any T : C // B we have

{LanKH,T} ∼= {H,TK} , (4.58)

either side existing if the other does.

Proof. The formula (3.22) expressing the “continuity of a limit
in its index” here gives {H? ? C(K?,−), T−} ∼= {H?, {C(K?,−), T−}};
but H? ? C(K−, ?) is LanKH by (4.18) and the symmetry (3.9), while
{C(K−, ?), T−} ∼= TK by the Yoneda isomorphism (3.10).

Given now a diagram

C

F

��
φ

;C

A
H

//

K

??

V,

(4.59)

we get for each T : C // B a map

[C,V](F,B(B, T−))

��
[A,V](FK,B(B, TK−))

��
[A,V](H,B(B, TK−)),

(4.60)

where the first arrow is [K, 1] and the second is [A,V](φ, 1). This induces
by (3.1) a map

(K,φ)# : {F, T} // {H,TK} (4.61)

whenever these limits exist; it is the composite

{F, T}
K∗
// {FK, TK}

{φ,1}
// {H,TK} (4.62)

whenever the middle limit exists as well.

Theorem 4.63 For a diagram (4.59), the following are equivalent:
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(i) For every B and every T : C // B, the (K,φ)# of (4.61) is an iso-
morphism, either side existing if the other does.

(ii) For every B, every T : C // B, and every B ∈ B, the map (4.60) is
an isomorphism.

(iii) φ exhibits F in (4.59) as LanKH.

Proof. Clearly (ii) implies (i) by the definition (3.1) of the limits, while
(ii) itself is, by (3.7), the special case of (i) obtained by replacing T in
(4.61) by B(B, T−). Since (iii) implies (i) by Proposition 4.57, it remains
only to prove that (i) implies (iii).

Let C ∈ C and Z ∈ V. Then applying (i) with B = V and with
T = [C(−, C), Z] gives {F, [C(−, C), Z]} ∼= {H, [C(K−, C), Z]}. Since
the internal-hom [X,Z] in V is the cotensor product X t Z, the
interchange-of-limits formula (3.20) lets us write the last isomorphism as
{C(−, C), [F−, Z]} ∼= {C(K−, C), [H−, Z]}. By the Yoneda isomorphism
(3.10), the left side here is [FC,Z]; while by (3.7) the right side is
[Aop,V](C(K−, C),V(H−, Z)). It now follows from (4.20) that F , with
unit φ, is LanKH.

When these equivalent conditions are satisfied, we say that the pair
(K,φ) in (4.59) is initial . The characterization (i) of Theorem 4.63 is
the assertion that the F -indexed limit of any T is the H-indexed limit of
TK, when either exists. The characterization (ii) is a V-enriched version
of the assertion that, whether the limits exist or not, the (F,B)-cylinders
over T coincide with the (H,B)-cylinders over TK. From the proof, it is
immaterial whether we require this only when the domain and codomain
of (4.60) exist in V, or when they exist merely in an extension V ′ as in
3.12.

For the dual notion we keep the diagram (4.59) as it is, but consider
in place of T a functor S : Cop // B. Then (4.60) is replaced by a map

[C,V](F,B(S−, B)) // [A,V](H,B(SK−, B)), (4.64)

and (4.61) by a map

(K,φ)# : H ? SKop // F ? S. (4.65)

We call (Kop, φop), in the diagram formed by applying ( )op to (4.59),
final if (K,φ) is initial; that is, if (4.64) is always an isomorphism, or if
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(4.65) is an isomorphism whenever either side exists, or if F ∼= LanKH,
or if F op ∼= RanKop Hop.

For a cartesian closed V, and in particular when V = Set, we can
consider the special case

C

∆1

��
A

∆1
//

K

??

V,

(4.66)

of (4.59); here the unique 2-cell φ that can be inserted in the diagram is
the identity id. We call the functor K initial , and the functor Kop final ,
if the pair (K, id) in (4.66) is initial.

Theorem 4.67 For a cartesian closed V and a V-functor K : A // C,
the following are each equivalent to the initialness of K:

(i) For any T : C // B we have limT ∼= limTK, either side existing if
the other does.

(ii) For such a T and any B ∈ B we have

[C,B](∆B, T ) ∼= [A,B](∆B, TK).

(iii) The diagram (4.66) exhibits ∆1 as LanK∆1.

(iv) For each C ∈ C we have colim C(K−, C) = 1.

When V = Set, (ii) here is just a bijection between the two sets of cones;
and (iv) becomes

(v) For each C, the comma-category K/C is connected.

Proof. (i) here is by (3.57) the (i) of Theorem 4.63; (ii) is the (ii)
of that theorem since, for a cartesian closed V, we have as in 3.9 that
[C,V](∆1,B(B, T−)) ∼= [C,B](∆B, T ); and (iii) is the (iii) of that the-
orem. Calculating (LanK∆1)C by (4.18) and using the dual of (3.57)
gives (iv); which when V = Set becomes (v), since (3.35) then gives
colim C(K−, C) = π(el C(K−, C)) = π(K/C).
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If A = 1 in the above theorem, in the case V = Set, K is just an object
of C; and the comma-category K/C is just the set C(K,C) regarded as a
discrete category. Hence (v) gives:

Proposition 4.68 When V = Set, the functor K : 1 //C is initial [resp.
final] exactly when K is an initial [resp. final] object of C.

By (4.28), if K : A //C has a right adjoint L, we have LanKH ∼= HL
for any H : A //V. If V is cartesian closed and H = ∆1, then HL = ∆1;
so that Theorem 4.67(iii) gives

Proposition 4.69 For cartesian closed V, any left adjoint K : A //C is
initial.

4.6 Filtered categories when V = Set; the commutativity in Set of
filtered colimits with finite limits

Taking V = Set for this section, we recall for later use the notion of
filtered category. There is an interplay between filtered and finite: an
ordinary category P is finite if its set of morphisms (and hence its set of
objects) is finite. A category is finitely complete if it admits all (conical)
limits indexed by finite categories; and a functor with a finitely-complete
domain is left exact if it preserves all such finite limits: the duals are
finitely cocomplete and right exact.

Theorem 4.70 For an ordinary category C, the following are equivalent:

(i) Every functor T : P //C with P finite is the base of some inductive
cone.

(ii) C is not empty; for any A,B ∈ C there is some C ∈ C and maps
A //C and B //C; and for any maps f, g : A //B in C there is
some map h : B //D with hf = hg.

(iii) For any finite category P the diagonal ∆: C // [P, C] has the prop-
erty that T/∆ is non-empty for each T : P // C.

(iv) For any finite category P the diagonal ∆: C // [P, C] is final.

Proof. The properties in (ii) are special cases of (i), and in turn imply
(i) by a trivial induction; while (iii) merely re-states (i). It remains to
show that these imply (iv), which by Theorem 4.67(v) is the requirement
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that the T/∆ in (iii) be not merely non-empty but in fact connected.
Given objects α and β of T/∆ – that is, cones (αP : TP // A) and
(βP : TP // B) – we can find by (ii) maps f : A // C and g : B // C
such that fαP = gβP for each P ∈ P. This common value is now a cone
(γP : TP // C); and we have maps f : α // γ and g : β // γ in T/∆.

A category C satisfying these equivalent conditions is said to be fil-
tered . It is clear that a filtered category is connected, and also that [Q, C]
is filtered if Q is finite and C is filtered. Observe that a finitely cocom-
plete category is filtered, since T : P // C is then the base of its colimit-
cone; in this case, of course, ∆: C // [P, C] has a left adjoint, which by
Proposition 4.69 is stronger than being final. The initialness condition of
Theorem 4.67(v), or rather its dual, simplifies when C is filtered and K
is fully faithful:

Proposition 4.71 If C is filtered, the fully-faithful K : A // C is final if
and only if each C/K is non-empty.

Proof. Only the “if” clause needs proof. Consider objects f : C //KA
and g : C // KB of C/K. Because C is filtered, there are maps
h : KA // D and k : KB // D with hf = kg; because D/K is non-
empty we may suppose D to be of the form KE; because K is fully
faithful, h and k have the form Ku and Kv. Thus f and g are connected
in C/K by the maps u : f // hf and v : g // kg = hf .

The classical example of this is that where C is a filtered preordered set
(in which case directed is often used for filtered), and K is the inclusion
of a subset A. To say that each C/K is non-empty is then to say that
each C ∈ C is less than or equal to some A ∈ A. Such a subset A, which
we call final, was classically called cofinal.

A filtered colimit is a conical one indexed by a small filtered category.
For example, suppose we have in any category a coproduct A =

∑
x∈X Ax.

The finite subsets J of X, ordered by inclusion, form a filtered ordered
set C; and if the finite coproduct AJ =

∑
x∈J Ax exists for each J ∈ C, it

is clear that A is the filtered colimit of the AJ .
Recall from (3.35) that colimF for F : C // Set is π(elF ).

Theorem 4.72 For F : C //Set where C is small and filtered, two objects
(A, x) and (B, y) of elF have the same image in π(elF ) = colimF if and
only if there are maps f : A // C and g : B // C with (Ff)x = (Fg)y.

Proof. The relation between (A, x) and (B, y) expressed by the exis-
tence of such f and g is reflexive and symmetric, and clearly generates
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the equivalence relation of being connected. It therefore coincides with
this latter if it is transitive; and that it is so follows easily from the fil-
teredness.

If B is an equational category of algebras whose operations all have
finite arity, the conservative forgetful functor U : B //Set preserves (and
therefore reflects) filtered colimits. For if F : C // B with C small and
filtered, any finite number of elements of X = colimUF can by the fil-
teredness be represented by elements (C, xi) ∈ el(UF ) with a common C,
so that we can apply an n-ary operation ω to get ω(x1, . . . , xn) ∈ UFC.
By Theorem 4.72, the image of this in X is independent of the choice of
C; thus X becomes UA for an algebra A, which is clearly the colimit of
F .

Theorem 4.73 Filtered colimits commute with finite limits in Set. That
is to say, if F : P × C // Set with P finite and C small and filtered, the
evident canonical map

ρ : colimC limP F (P,C) // limP colimC F (P,C)

is an isomorphism.

Proof. By (3.28) and (3.35), an element of limP colimC F (P,C) is
a cone (αP : 1 // π(elF (P,−))). By the filteredness of C we can find
representatives (C, xP ∈ F (P,C)) of the αP , with a common C. For
f : P // Q in P, the objects (C,F (f, C)xP ) and (C, xQ) represent the
same element of π(elF (Q,−)), because α is a cone. Since there are but
a finite number of maps in P, we can by the filteredness of C find a
g : C //D in C such that (D,F (f, g)xP ) = (D,F (Q, g)xQ) for each map
f : P //Q in P. Now the yP = F (P, g)xP constitute a cone with vertex
1 over F (−, D), or an element y of limP F (P,D). If z is the image of this
in colimC limP F (P,C), we clearly have ρ(z) = α; thus ρ is surjective.

To see that ρ is injective, suppose that y ∈ limP F (P,D) and y′ ∈
limP F (P,D′) represent elements of colimC limP F (P,C) with the same
image under ρ. Then yP ∈ F (P,D) and y′P ∈ F (P,D′) represent for
each P the same element of colimC F (P,C). As in Theorem 4.72, but
using the filteredness to do it simultaneously for each P ∈ P, we can find
h : D // E and h′ : D′ // E such that F (P, h)yP = F (P, h′)y′P = wP
say. Now w is a cone in limP F (P,E), representing the same object of
colimC limP F (P,C) as y and y′.
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By the remark before the theorem, we have the same commutativity
if Set is replaced by an equational category of algebras. The theorem can
also be stated as:

Proposition 4.74 For small C, the functor colim: [C,Set] //Set is left
exact if C is filtered.

In this form it has a converse, to be given in 5.10 below.

The ideas of this section have the following extension. For a regular
cardinal α, a category P is α-small if its set of morphisms has cardinal
less than α; and C is α-filtered if every T : P // C with α-small P is
the base of some inductive cone. Then α-filtered colimits commute with
α-small limits in Set, by an argument like that for Theorem 4.73 – which
is the special case α = ℵ0 of this.

4.7 The factorization of a functor, when V = Set, into an initial
functor and a discrete op-fibration

In this section, again taking V = Set, we describe the comprehensive
factorization system of Street and Walters [74] on the ordinary category
Cat0 of small categories; for its logical significance, see their article.

A functor J : C //B is called a discrete op-fibration (or dof for short)
if there is a functor F : B // Set such that J is the composite of an
isomorphism C ∼= elF and the canonical projection d : elF // B.

Proposition 4.75 J : C //B is a dof if and only if every map f : JC //B
in B is of the form f = Jg for a unique map g : C //D in C.

Proof. “Only if” is immediate; “if” is easy when we define F : B //Set
on objects by FB = {D ∈ C | JD = B} and on maps by the property in
the proposition.

It is clear from this proposition that the composite of two dofs is a
dof; and it is clear from Theorem 4.67(i) that the composite of two initial
functors is initial. Of course an isomorphism in Cat0 is both initial and a
dof. We shall show that every map in Cat0 factorizes, essentially uniquely
and functorially, into an initial functor followed by a dof.

First observe that, if F : B // Set gives rise to the dof d : elF // B,
to give a functor T : A // elF is to give a functor S : A // B and a
cone α : ∆1 // FS (or, by (3.28), an element α ∈ limFS). Then TA =
(SA,αA) ∈ elF .
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Given now an arbitrary functor S : A // B in Cat0, let (F, φ) be the
left Kan extension

B

F=LanS∆1

��

φ

;C

A
∆1

//

S

??

Set.

(4.76)

By (4.18), (3.26), and (3.35) we have

FB = B(S−, B) ?∆1 ∼= colimB(S−, B) ∼= π(S/B). (4.77)

The functor S, together with the cone φ : ∆1 //FS, constitutes a functor
T : A // elF with dT = S. We shall have factorized S in the desired
way if we show that T is initial.

This seems to be best done by a direct calculation using Theo-
rem 4.67(v). (The purported proof in [74] is erroneous; it supposes that,
in the situation of our Theorem 4.47, if X and θ are left Kan extensions,
so is φ; that this is false is easily seen by taking D = 1 and using (4.34).)

A typical object of elF , by (4.77), is (B, [f ]) where [f ] is the connected
component of some f : SA //B. It is clear that T : A // elF sends A to
(SA, [1SA]) and sends h : A //A′ to Sh. An object of the comma-category
T/(B, [f ]) is at once seen to be a pair (A, g : SA // B) with [g] = [f ].
A morphism (A, g) // (A′, g′) is an h : A // A′ for which g′Sh = g. It
follows that T/(B, [f ]) is connected, being isomorphic to the connected
component [f ] of S/B.

To see that this factorization is essentially unique and functorial – that
is, that we have a factorization system in the sense of [30] – it remains to
show the existence of a unique “diagonal” R : D //A in any commutative
diagram

C K //

P

��

D

Q

��
A

d
// B,
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where K is initial and d is a dof. We may as well suppose at once that
A = elF for some F : B //Set. Then P corresponds as above to a functor
S : C //B with dP = S, and a cone α : ∆1 //FS = FdP = FQK. Since
K is initial, this cone is by Theorem 4.67(ii) of the form α = βK for a
unique cone β : 1 // FQ. Now Q and β constitute a functor R : D //A
with dR = Q, and clearly with RK = P . It is evident that any R′ : D //A
with dR′ = Q and R′K = P must coincide with R. This completes the
proof.

If we write dof/B for the full subcategory of Cat0/B determined by
those J : A // B that are dofs, it is clear that this factorization gives
a reflexion Cat0/B // dof/B. On the other hand dof/B is evidently
equivalent to [B,Set]. Thus we get an adjunction

Ω a Θ: [B,Set] //Cat0/B , (4.78)

with Θ fully faithful. Here Θ sends F : B // Set to d : elF // B, and
may be called the discrete Grothendieck construction; its left adjoint Ω
sends S to the F of (4.77).

While this is special to the case V = Set, it has generalizations to the
important cases V = Gpd and V = Cat, the latter being the setting for
the original Grothendieck construction [34]. We do not give these here,
for they transcend the context of enriched category theory as developed
in this account, and involve “transformations” more general then the
Gpd-natural or Cat-natural ones; we shall treat them in [46].

Note finally that ΩΘS ∼= S, since Θ is fully faithful. This means by
(4.76) that, for any F : B // Set, we have a left Kan extension

B

F

��

φ

;C

elF
∆1

//

d

??

Set;

(4.79)

since this asserts by (4.77) that FB ∼= colimB(d−, B), it is precisely a
restatement of (3.32).
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4.8 The general representability and adjoint-functor theorems; the
special case of a complete domain-category

In this section and the next we look at conditions ensuring the repre-
sentability of a V-functor F : C // V, especially in the simplest case of
a complete C. Since by 1.11 the V-functor T : C // B has a left adjoint
precisely when each B(B, T−) is representable, the same considerations
yield conditions for a left adjoint to exist.

Since a colimit in C is itself the representing object for a functor C //V,
the representing object for F : C //V, if it exists, is in some sense a “gen-
eralized colimit”. Representing objects are, in fact, very commonly con-
structed as colimits: consider some examples. First, in the case V = Set,
a representation for F corresponds, as we observed in 1.10, to an initial
object in elF ; that is, to the colimit of the empty diagram in elF . Next,
in Proposition 3.36, a functor F : C // V was in effect given as an iter-
ated limit of representables; and we constructed its representing object as
the corresponding iterated colimit of the representing objects for these.
Again, the left Kan adjoint LanK of Theorem 4.50 was constructed via
the colimits K̃C ? G. A free abelian group is constructed as a coproduct
of infinite cyclic groups; the tensor product of two abelian groups is con-
structed as a cokernel of a free abelian group; and the free monoid on a set
X is the coproduct

∑
n≥0X

n. More generally, numerous constructions of
free algebras, free monoids, and free monads, as iterated colimits, under
cocompleteness but no completeness hypotheses, are given in [44].

Yet the only general necessary condition that we so far have for the
representability of F is expressed in terms of limits: by 3.2, F must pre-
serve whatever limits exist. Hence if C is complete, F must be continuous
(and similarly for a T : C // B that is to have a left adjoint). We here
consider what must be added to this continuity to ensure representability
(or existence of an adjoint). Since the desired representing object is a
generalized colimit, this is analogous to the question of what must be
added to completeness to ensure cocompleteness – or rather, to ensure
the existence of a particular colimit.

A small complete Set-category C is of necessity a preordered set –
for if C(A,B) had at least two elements, C(A,Bn) would have at least
2n, making C large if Bn existed for all small cardinals n. Hence, by
the classical argument on complete lattices, a small complete C is also
cocomplete: the supremum of a subset is the infimum of its set of upper
bounds. Not so, if C is large – even if C is a preordered set: the ordered set
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of small ordinals is cocomplete but not complete. What must be added is
a condition ensuring that the colimit we need can be manufactured from
small limits. Similarly in the case of representability of F : C // V: the
extra condition needed is a “smallness” one on F .

We begin with a general result expressing a representing object as a
limit: a large one, unless C happens to be small.

Theorem 4.80 F : C //V is representable if and only if the limit {F, 1C}
exists and is preserved by F . Then the representing object is {F, 1}, and
the counit µ : F //C({F, 1},−) of this limit is an isomorphism giving the
representation of F .

Proof. One direction is immediate: if F is the representable
C(D,−), then by (3.10) the limit {C(D,−), 1} is D, with counit
µ = 1: C(D,−) // C(D,−); similarly, with appropriate changes, when
F is only isomorphic to C(D,−); and the representable F preserves this
limit.

For the other direction we have by hypothesis that

F µ
// C({F, 1},−)

F
// [F{F, 1}, F−]

is the counit of the limit {F, F}. Hence by (3.4) the (F, I)-cylinder over F
given by the isomorphism i : F // [I, F−] has the form i = [g, 1]Fµ for a
unique g : I //F{F, 1}. Writing λ : C({F, 1},−) //F for the composite
i−1[g, 1]F , we therefore have λµ = 1; and to prove µ an isomorphism it
remains to show that µλ : C({F, 1},−) // C({F, 1},−) is 1.

But by Yoneda, this map µλ is C(f, 1) for a unique f : {F, 1} //{F, 1}.
Since λµ = 1 we have µλµ = µ, or C(f, 1)µ = µ = C(1, 1)µ. However, as
the counit of the limit {F, 1}, the cylinder µ factorizes through itself as
C(f, 1)µ for a unique f ; whence f = 1 and µλ = 1.

There is a corresponding adjunction theorem:

Theorem 4.81 T : C //B has a left adjoint if and only if RanT 1C exists
and is preserved by T . Then the left adjoint S is RanT 1, and the counit
ST // 1 of the Kan extension is the counit of the adjunction.

Proof. If S a T we have RanT 1 ∼= S by (the dual of) (4.28); that the
counit is as described is immediate; and the right adjoint T preserves the
right Kan extension.

For the converse, observe that (RanT 1)B = {B(B, T−), 1} by (4.9).
This limit is, by hypothesis, preserved by T : hence it is also preserved by
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B(B, T−). Thus B(B, T−) is representable by Theorem 4.80. This being
for all B, we conclude that T has a left adjoint.

Combining Theorem 4.63 with Theorem 4.80 gives the following,
which replaces the large limit {F, 1} by one that may be smaller:

Proposition 4.82 Let F : C // V be LanKH, where K : A // C and
H : A // V. Then F is representable if and only if the limit {H,K}
exists and is preserved by F ; and the representing object is then {H,K}.

We consider the possibility of a small A here:

Proposition 4.83 The following properties of F : C //V are equivalent:

(i) F is a small (indexed) colimit of representables.

(ii) F has the form LanKH where the domain A of K is small.

(iii) F is the left Kan extension of its restriction to a small full subcat-
egory of C.

Proof. To say that F is a small colimit of representables is to say
that we have a small indexing-type H : A //V and a functor K : A //C
such that, if Y : Cop // [C,V] is the Yoneda embedding ([C,V] being a
V ′-category for some suitable extension V ′ of V), we have H ?Y Kop ∼= F .
Since small colimits in [C,V] exist pointwise by 3.3, this is to say that
H ? C(K−, C) ∼= FC for each C; and hence by (4.18) and (3.9) to say
that F = LanKH. Thus (i) and (ii) are equivalent. It remains to show
that, if we have (ii), we also have its special case (iii).

For this, let A′ be the full image of K : A // C, so that K factorizes
as say W : A //A′ followed by the inclusion Z : A′ //C. Then A′ is still
small; and because Z is fully faithful, we have F ∼= LanZFZ by Theorem
4.47.

We shall call a functor F : C // V satisfying the equivalent prop-
erties of Proposition 4.83 accessible. In particular every representable
C(D,−) : C // V is accessible; it is in fact LanDI where D : I // C and
I : I // V. So Proposition 4.82 now gives our desired representability
theorem for complete C:
Theorem 4.84 If C is complete, F : C // V is representable if and only
if it is continuous and accessible.
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For a general complete C, the representability of F is not implied by
its continuity alone, even in the case V = Set. The classical counter-
example takes for C the category of (small) groups, and for F : C // Set
the functor given by FC =

∏
α C(Gα, C), where {Gα} is the large set of

all small simple groups.

4.9 Representability and adjoint-functor theorems when V = Set

Although Theorem 4.84 gives a simple general criterion that we shall use
below in 5.6, it is often advantageous, in considering the representability
of a particular V-functor, to reduce the problem to the more familiar case
V = Set by using:

Theorem 4.85 Let C admit cotensor products. Then the V-functor
F : C // V is representable if and only if the ordinary functor

C0
F0

// V0
V
// Set

is representable and F preserves cotensor products. Moreover a V-functor
T : C //B has a left adjoint if and only if the ordinary functor T0 : C0

//B0

does so and T preserves cotensor products.

Proof. “Only if” is clear both in the representability case and in the
adjunction case – in the former, if F ∼= C(D,−), then V F0

∼= C0(D,−) by
(1.33).

For the converse, let β : C0(D,−) ∼= V F0 be a representation with
unit η ∈ V FD; then η : I // FD corresponds by Yoneda to a map
α : C(D,−) // F , which we show to be an isomorphism. It suffices to
verify that V0(X,αC) : V0(X, C(D,C)) // V0(X,FC) is an isomorphism
for each C ∈ C and each X ∈ V. The domain here is isomorphic by
(3.45) to C0(D,X t C), and the codomain by (1.25) to V [X,FC], which
is then isomorphic to V F (X t C) since F preserves cotensor products.
It is easily verified that, modulo these isomorphisms, V0(X,αC) is in fact
the isomorphism βXtC .

The case of adjoints follows from this, since B0(B, T−)=V (B(B, T−))0

by (1.33) and since, if T preserves cotensor products, so does B(B, T−).

We accordingly take V = Set for the rest of this section. Recall that,
in taking C to be a Set-category, we are automatically supposing it to be
locally small. There are many classical results on the representability of
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F : C //Set; and to reproduce them here in detail, with examples of their
use, would involve an unjustifiably long digression from our main path
of development. Some briefer comments may however be useful. First,
whether C is complete or not, applying Proposition 4.82 to the left Kan
extension (4.79) gives:

Proposition 4.86 F : C //Set is representable if and only if d : elF //C
has a limit which is preserved by F ; the representing object is then lim d.

The following proposition is useful in various contexts; it follows at
once from the observation in 4.6 that a functor T : A // elF consists of
a functor S = dT : A // C and an α ∈ limFS:

Proposition 4.87 If C admits the conical limits of some class, and
F : C // Set preserves them, then elF also admits such limits, and
d : elF // C preserves and reflects them. In particular, elF is com-
plete if C is complete and F is continuous.

By 3.4 and Proposition 4.83, F : C //Set is accessible precisely when
it is a small conical colimit of representables. There is a weaker condition –
strictly weaker by [29] – related to this as finite-generation of an algebra is
related to finite-presentability: namely that F be an epimorphic image of
a small coproduct of representables; call this weak accessibility. Consider
what it means. A map C(Dα,−) //F corresponds by Yoneda to an object
(Dα, yα ∈ FD) of elF . Since epimorphisms in [C,Set] are pointwise, to
say that

∑
α C(Dα,−) //F is epimorphic is to say that every (C, x) ∈ elF

admits a map from some (Dα, yα). If S is the small full subcategory of elF
determined by the objects (Dα, yα), and J : S // elF is the inclusion,
this is to say that the comma-category J/(C, x) is non-empty for each
(C, x).

When elF is complete, however – or even finitely complete – so that
(elF )op is filtered, the non-emptiness of each J/(C, x) implies by Propo-
sition 4.71 the initialness of J : S // elF . Thus from Theorem 4.84,
Proposition 4.86, Proposition 4.87, and Theorem 4.67, we get Freyd’s
General adjoint functor theorem (cf. [28]):

Theorem 4.88 For F : C // Set where C is locally-small and complete,
the following are equivalent:

(i) F is representable.

(ii) F is continuous and accessible.
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(iii) F is continuous and weakly accessible.

Then the representing object for F is lim dJ .

The weak accessibility of F is often called the solution-set condition.
Since C is locally small, it can be expressed as follows: there is a small
set T of objects of C such that, for any C ∈ C and any x ∈ FC, there is
some E ∈ T , some y ∈ FE, and some f : E // C with (Ff)y = x.

Recall that we also have the quite elementary observation from 1.10:

Proposition 4.89 For F : C // Set the following are equivalent:

(i) F admits a representation α : C(D,−) ∼= F with unit η ∈ FD.

(ii) elF has an initial object (D, η).

(iii) ∆1: elF // Set is representable by (D, η).

Applied to ∆1: E //Set for any Set-category E , Theorem 4.88 gives
that E has an initial object if it is complete and has a small full subcategory
S (the “solution set”) such that any E ∈ E admits a map from some
S ∈ S. Conversely we could have proved Theorem 4.88 alternatively by
using Proposition 4.89 and Proposition 4.87 to reduce it to this “initial-
object theorem”, and by giving a simple direct proof of the latter. In
discussing variants of Theorem 4.88, we take this approach for brevity: we
describe the corresponding initial-functor theorem, and leave the reader
to translate it back to a representability theorem.

An unpublished result of Freyd, given in lectures in 1970, deals with
a non-complete E . It asserts that E has an initial object if and only if
(i) E satisfies the solution-set condition as above, (ii) every A ∈ E has
a map from some B ∈ E all of whose idempotent endomorphisms split,
and (iii) every small diagram in E admits some projective cone over it.
The corresponding representability theorem, with C the (non-complete)
stable homotopy category of CW-complexes, gives Brown’s result [11] on
the representability of cohomology theories.

Very commonly, E is not only complete but admits arbitrary (even
large) intersections of subobjects; by Proposition 4.87, elF is so if C is
so and if F preserves, besides small limits, all intersections of subobjects.
For such an E , the intersection of all the subobjects of E ∈ E is an atom –
an object with no proper subobject. So the set S of isomorphism-classes
of atoms in E forms a solution-set if it is small. In many concrete cases,
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it is easy to find a small cardinal exceeding cardS; this is probably the
most common way of applying Theorem 4.88.

The adjoint-functor theorem of Day [15], in its initial-object-theorem
form, requires only partial completeness of E : the existence of equalizers,
of pullbacks of monomorphisms, and of arbitrary intersections of subob-
jects; but it strengthens the solution-set condition to the requirement that
there is some S ∈ E such that, for each A ∈ E , there is a monomorphism
A //B and a map S //B. Then the atom in S is the initial object. Since
this refers to no infinite limits except intersections of monomorphisms, it
has an analogue [18] in an elementary topos, where such intersections
exist in an internal sense.

Day’s result also yields a proof of Freyd’s Special Adjoint Functor
Theorem (cf. [28]):

Theorem 4.90 If the locally-small C is complete, admits all intersec-
tions of subobjects, and has a small cogenerating set, every continuous
F : C // Set is representable.

Proof. It is clear that E = elF has a small cogenerating set {Gα}
in these conditions. The hypothesis of Day’s initial-object theorem
are clearly satisfied with S =

∏
αGα and with A // B the canonical

monomorphism A //
∏
α(E(Gα, A) t Gα).

Applying this to the existence of a left adjoint to the diagonal
∆: C // [A, C], we see that C is cocomplete if it is complete, admits
intersections of subobjects, and has a small cogenerating set.

4.10 Existence and characterization of the left Kan extension along
a fully-faithful K : A −→ C in terms of cylinders in C sent to
colimits by the C(KA,−)

For cocomplete B, the left Kan extension of G : A //B along K : A //C
exists by (4.13) if A is small. By Theorem 4.47, it still exists when A
is not small, provided that K is itself a left Kan extension along some
A′ // A with A′ small. We now turn to existence results when B is no
longer cocomplete, but admits colimits only of some specified class.

Theorem 4.91 The left Kan extension of G : A // B along K : A // C
exists if and only if, for each C ∈ C, the functor K̃C : Aop //V can be so
expressed as a colimit F ? Y Q of representables that the colimit F ? GQ
exists in B; then this latter colimit is (LanKG)C.
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Proof. Let K̃C be so expressible, where F : Lop //V and Q : L //A.
Since (Y Q−) ? G ∼= GQ by (3.10), we have from (3.23) that

K̃C ? G = (F ? Y Q) ? G

exists, being F ? ((Y Q−) ? G) ∼= F ? GQ. For the converse, we just
take the canonical expression (3.17) of K̃C as a colimit of representables,
corresponding to F = K̃C and Q = 1.

As an example of this, take V = Set, let {Gx}x∈X be a small set of
objects in the cocomplete category C, and let A be the full subcategory
of C determined by the small coproducts of the Gx, with K : A // C the
inclusion. For any C ∈ C, let ε : D =

∑
x∈X C(Gx, C) · Gx // C be the

canonical map whose (x, f)-component, for f ∈ C(Gx, C), is f . Write
Mx for the set of pairs of maps g, h : Gx // D such that εg = εh, and
let φ, ψ : E =

∑
xMx · Gx //D be the maps whose respective (x, g, h)-

components are g and h. The commutative diagram

E
φ //
ψ
//D ε

// C (4.92)

is not in general a coequalizer diagram; but for each x the diagram

C(Gx, E)
C(1,φ) //

C(1,ψ)
// C(Gx, D)

C(1,ε)
// C(Gx, C) (4.93)

is a split coequalizer diagram. That is to say, there are maps

t : C(Gx, C) // C(Gx, D) and s : C(Gx, D) // C(Gx, E)

for which C(1, ε)t = 1, C(1, φ)s = 1, and C(1, ψ)s = tC(1, ε); which eas-
ily implies that (4.93) is a coequalizer. To wit, t(f) : Gx // D is the
coprojection ix,f of the coproduct, while s(u) : Gx // E is the coprojec-
tion corresponding to the index (x, u, ix,εu). Any product of the diagrams
(4.93) over a family (xj) of the indices x is clearly again a split coequalizer;

whence it follows that K̃ sends (4.92) to a coequalizer diagram

A(−, E) ////A(−, D) // K̃C

in [Aop,Set]. We conclude that the left Kan extension of G : A // B
along K : A // C exists whenever B admits coequalizers, and is given
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as the coequalizer of the two maps Gφ,Gψ : GE // GD. (We remark
that, when (4.92) is a coequalizer diagram for each C, {Gx} is said to
be a regular generator of C; it is easily verified to be a fortiori a strong
generator and a generator.) Clearly Theorem 4.91 could be so modified
as to cover the case where K̃C was expressed as an iterated colimit of
representables. There is a particularly neat and useful result of this kind
when K is fully faithful; which we now suppose.

Let F : Lop // V, let P : L // C be a diagram of type F , let C ∈ C,
and let α : F // C(P−, C) be an (F,C)-cylinder over P , in the language
of 3.1. Let us say that α is a K-cylinder if the composite cylinder

F α
// C(P−, C)

K̃

// [Aop,V](K̃P−, K̃C)

is a colimit-cylinder, giving

K̃C ∼= F ? K̃P. (4.94)

For this it certainly suffices that, for each A ∈ A, the cylinder

F α
// C(P−, C)

C(KA,−)
// [C(KA,P−), C(KA,C)]

be a colimit-cylinder, so that

C(KA,C) ∼= F ? C(KA,P−); (4.95)

this is just the pointwise existence of the colimit (4.94); and by 3.3 the
pointwiseness is automatic if L is small.

An expression of K̃C as a colimit F ? Y Q of representables, as in
Theorem 4.91, has as unit a cylinder β : F // [Aop,V](Y Q−, K̃C). The
codomain of β is isomorphic by Yoneda to (K̃C)Qop = C(KQ−, C); more-
over, since K is fully faithful, we have Y ∼= K̃K by (4.22). It follows that
β has the form

F α
// C(KQ−, C)

K̃

// [Aop,V](K̃KQ−, K̃C), (4.96)

in which the second map is in fact an isomorphism. Thus such an expres-
sion of K̃C as a colimit of representables is the same thing as a K-cylinder
in which P factorizes through A as KQ.

In this fully-faithful case we have a characterization of LanKG as
follows:
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Theorem 4.97 An extension S : C // B of G : A // B along the fully-
faithful K : A // C is LanKG (that is, S is canonically isomorphic to
LanKSK) if and only if it sends each K-cylinder to a colimit-cylinder.
If A is small, it suffices to speak of small K-cylinders.

Proof. The canonical expression of K̃C as a colimit K̃C ? Y of repre-
sentables corresponds as in (4.96) to a K-cylinder 1: K̃C // C(K−, C).
If S sends this to a colimit-cylinder we have SC ∼= K̃C ? SK, which is
K̃C ? G since S is an extension of G; thus S ∼= LanKG. Conversely,
if LanKG exists, any K-cylinder α is, by definition, sent to a colimit-
cylinder by K̃; by (3.23) the functor − ? G preserves the colimit (4.94),
since each K̃PL?G exists; hence LanKG = K̃− ?G sends α to a colimit-
cylinder.

Still supposing K fully faithful, consider a family

Φ = (αγ : Fγ // C(Pγ−, Cγ))γ∈Γ

of K-cylinders, where Fγ : Lop
γ

// V and Pγ : Lγ // C. Generalizing 3.5,
where it was a question of a family of colimits, we say that C is the closure
of A under the family Φ if there is no proper replete full subcategory D
of C, containing A, and such that Cγ ∈ D whenever Pγ takes its values
in D.

Theorem 4.98 Let K : A // C be fully faithful, and let C be the closure
of A for a family Φ of K-cylinders as above. Then a functor S : C //B is
exhibited by 1: SK //SK as LanKSK if and only if S sends each cylinder
of Φ to a colimit-cylinder. Moreover LanKG exists for any G : A //B if
B admits Fγ-indexed colimits for each γ ∈ Γ.

Proof. Theorem 4.97 gives the necessity in the first assertion. For the
sufficiency, let D be the replete full subcategory of C consisting of those C
for which S : C(K−, C) //B(SK−, SC) as unit exhibits SC as K̃C ?SK.
Then A ⊂ D since we have canonical isomorphisms SKA ∼= Y A ? SK ∼=
K̃KA?SK. If Pγ takes its values in D, we have a canonical isomorphism

K̃Pγ− ? SK ∼= SPγ by the definition of D; and K̃Cγ ∼= Fγ ? K̃Pγ by

(4.94). Hence (3.23) gives Fγ ? SPγ ∼= K̃Cγ ? SK. Since Fγ ? SPγ ∼= SCγ
by hypothesis, we have Cγ ∈ D; thus D is all of C, as desired. The second
assertion is proved by a similar argument, taking D to consist of those C
for which K̃C ? G exists.
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For an example of this, let us modify the example following Theorem
4.91. With the notation as there, write A′ for the full subcategory of C
determined by the finite coproducts of the Gx. Since every coproduct is
the filtered colimit of the finite coproducts of its summands, every object
of A is a filtered colimit of objects of A′. Suppose now that each Gx
is finitely presentable – meaning that each C(Gx,−) : C // Set preserves
filtered colimits. Then, since filtered colimits commute with finite limits
in Set by Theorem 4.73, each object of A′ is finitely presentable; and
thus the filtered colimits in question are preserved by Z̃ : C // [A′op,Set],
where Z is the inclusion A′ // A // C; that is, they correspond to Z-
cylinders. It now follows from Theorem 4.98 that any G : A′ //B admits
a left Kan extension along Z : A′ //C if B admits coequalizers and filtered
colimits.

We end with a result, a special case of which we have already used in
Theorem 4.51:

Theorem 4.99 Let K : A // C be fully faithful, and denote by [A,B]′

the full subcategory of [A,B] determined by those G for which LanKG
exists. Then LanK : [A,B]′ // [C,B] is fully faithful; so that we have an
equivalence [A,B]′ ' [C,B]`, where the latter is the full subcategory of
[C,B] determined by the functors isomorphic to some LanKG; the inverse
to this equivalence is composition with K. If A is small, it follows that
[C,B]` is a V-category.

Proof. We have by Theorem 4.38 that [C,B](LanKG,LanKG
′) ∼=

[A,B](G, (LanKG
′)K), which by Proposition 4.23 is isomorphic to

[A,B](G,G′).

Of course this fully-faithfulness is just a special case of the observation
in 1.11 following (1.53), to which we could have appealed: for we are
dealing with an adjunction LanK a [K, 1] whose unit φ is an isomorphism.
In practice we use the equivalence [A,B]′ ' [C,B]` chiefly when [A,B]′

is all of [A,B], as for instance under the hypotheses of Theorem 4.98 or
when A is small and B is cocomplete.
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Chapter 5

Density

5.1 Definition of density, and equivalent formulations

A function k : A // C, not necessarily continuous, between hausdorff
spaces is dense (in the sense that its image is a dense subset) pre-
cisely when any continuous map from C into another hausdorff space
B is uniquely determined by its composite with k; that is, when
Set(k, 1) : Haus(C,B) // Set(A,B) is injective. We give an analogous
definition of density for a V-functor K : A // C.

For a V-category C, the functor category [C,B] exists at least as a V ′-
category for some suitable extension V ′ of V as in 3.12. Consider those
S : C // B which preserve every colimit existing in C whose indexing-
type F : Aop // V has domain Aop; these constitute a full subcategory
A-Cocts[C,B], which ifA is small contains the full subcategory Cocts[C,B]
of those S preserving all small colimits that exist.

Theorem 5.1 For a V-functor K : A // C the following are equivalent:

(i) For any B, the restriction to A-Cocts[C,B] of the functor

[K, 1] : [C,B] // [A,B]

is fully faithful.

(ii) The functor K̃ : C // [Aop,V] is fully faithful.

(iii) For each C,D ∈ C the map

K̃ : C(C,D) // [Aop,V](C(K−, C), C(K−, D))

is an isomorphism.
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(iv) For each C ∈ C, the identity cylinder 1: C(K−, C) // C(K−, C) as
unit exhibits C as K̃C ? K.

(v) The identity 1: K // 1CK exhibits 1C as LanKK.

(vi) Some isomorphism φ : K // 1CK exhibits 1C as LanKK.

Proof. Because a representable Cop //V preserves all limits that exist,
its dual C //Vop preserves all colimits that exist in C. Since the Yoneda
embedding is fully faithful, and since K̃ is the composite

C
Y
// [Cop,V]

[Kop,1]
// [Aop,V],

it follows that (i) implies (ii). The direct translation (iii) of (ii) is
equivalent by (3.5) to (iv), which is in turn equivalent by (4.18) to
(v), itself a special case of (vi); so that it remains only to show that
(vi) implies (i). Suppose then that S : C // B is A-cocontinuous; it
thus preserves the colimit K̃C ? K, and hence the left Kan exten-
sion in (vi), so that Sφ : SK // SK exhibits S as LanK(SK). By
Theorem 4.38 we therefore have for any S′ : C // B a representation
[C,B](S, S′) ∼= [A,B](SK,S′K), whose unit is Sφ. By (1.48), this iso-
morphism is the composite of [K, 1] : [C,B](S, S′) // [A,B](SK,S′K)
and [A,B](Sφ, 1) : [A,B](SK,S′K) // [A,B](SK,S′K); the latter being
an isomorphism since φ is, so is the former – which proves (i).

A V-functor K : A //C satisfying these equivalent conditions is said to
be dense. (The original term used by Isbell, who introduced the concept
for V = Set in [35], was left adequate.) For the dual notion (Isbell’s right
adequate) we use codense; K : A // C is codense if Kop : Aop // Cop is
dense. In the important special case where the dense K : A // C is the
inclusion of a full subcategory, we merely say that A is dense in C, leaving
K to be understood; and if A is the one-object full subcategory {A}, we
say that A is dense in C.

It is clear that the density of K depends only on “the equivalence
class of K in the 2-category of V-functors”; that is, if K is dense, so is
the composite

A ' A
K′
// C ' C (5.2)

where the outer functors are equivalences and where K ′ is isomorphic to
K.
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When C admits tensor products, the criterion (v) for the density of
K : A // C becomes by (4.25) the requirement that the canonical map
C(KA,C)⊗KA // C express C as the coend

C ∼=
∫ A

C(KA,C)⊗KA; (5.3)

while when V = Set it becomes by (4.27) the requirement that the canon-
ical cone express C as the colimit

C ∼= colim(K/C
d
//A

K
// C). (5.4)

If K : A // C is dense, applying V : V0
//Set to the isomorphism in

Theorem 5.1(iii) above gives a bijection of sets

C0(C,D) ∼= [Aop,V]0(C(K−, C), C(K−, D)), (5.5)

whose meaning is that every V-natural transformation

α : C(K−, C) // C(K−, D)

is of the form C(K−, f) for a unique f : C // D. It is clear that
(5.5) is in turn equivalent to the density of K if V is conservative,
and in particular in the classical case V = Set. It is also equiva-
lent to density if C is cotensored; or even if C admits cotensor prod-
ucts Xβ t C for some set {Xβ} constituting a strong generator of
V0: for if we write (5.5) with X t D in place of D, we easily get
V0(X, C(C,D)) ∼= V0(X, [Aop,V](C(K−, C), C(K−, D))). Yet in general
(5.5) is strictly weaker than density: take V = Cat, let C be the 2-
category (3.54), and let K be the inclusion of the full subcategory {1};
we have the bijection (5.5) but not the isomorphism in V of Theorem
5.1(iii).

After first surveying various examples and elementary properties of
density, we shall return in 5.11 below to the study of the important map
[K, 1] : Cocts[C,B] // [A,B] of Theorem 5.1(i).

5.2 Composability and cancellability properties of dense functors

We begin by considering the composability and cancellation properties
of dense functors. The positive results below are for any V, while the
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counter-examples are all for V = Set; the assertions about the density
or non-density of particular functors in the counter-examples are easily
verified using (5.5). We consider a diagram

D

J

��

α

;C

A
K

//

P

??

C

(5.6)

in which α is an isomorphism, so that K ∼= JP . First, the density of P
and of J , even if both are fully faithful, does not imply the density of
JP . For an example, let A = 1, let D be the category of finite sets, and
let C be the functor category [Dop,Set]; let P : 1 //D correspond to the
object 1 ∈ D, and let J : D // [Dop,Set] be the Yoneda embedding.

Again, the density of P and of J does not imply the density of JP
when P is essentially surjective and J is fully faithful; that is, when (5.6)
is the factorization of K through its full image D in C. For an example,
let A be the discrete category identified with the set 2, let D be the unit
category 1, let C = Set, and let J be the functor 1 //Set corresponding
to the object 1 ∈ Set.

The following observation leads to some positive results:

Proposition 5.7 If the isomorphism α in (5.6) exhibits J as LanPK,
then J is dense if and only if K is dense.

Proof. Applying Theorem 4.7 to the diagram

C

1C

��

1

;C

D
J

''

J

??

α

;C

A
K

//

P

??

C,

(5.8)

we conclude that 1 exhibits 1C as LanJJ if and only if α exhibits
1C as LanJPK. Pasting to the top edge of (5.8) the isomorphism
α−1 : JP // K, we see that α exhibits 1C as LanJPK if and only if
1 exhibits 1C as LanKK. The conclusion now follows from Theorem
5.1(v).
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To say that α exhibits J as LanPK is clearly, since α is an isomor-
phism, to say that 1 exhibits J as LanPJP . Now if P is dense, so that
1 exhibits 1D as LanPP , this is by 4.1 to say that J preserves the Kan
extension LanPP . Thus Proposition 5.7 gives:

Proposition 5.9 If P is dense and if J preserves LanPP , then J is dense
if and only if K ∼= JP is dense.

If P is fully faithful and if, for any K : A // C, we define J : D // C
as LanPK, supposing this to exist, the unit α of this Kan extension is
necessarily an isomorphism by Proposition 4.23. So Proposition 5.7 gives:

Proposition 5.10 If P : A // D is fully faithful and if J : D // C is
LanPK for some K : A // C, then J is dense if and only if K is dense.

A simple cancellability result is given by:

Proposition 5.11 If P is essentially surjective and K ∼= JP is dense,
then J is dense. In particular, if K : A // C is dense, the full image of
K is a dense full subcategory of C.

Proof. K̃ being fully faithful, so is J̃P , which is clearly the composite

C
J̃

// [Dop,V]
[P op,1]

// [Aop,V].

Thus, for C,D ∈ C, the composite [P op, 1]
J̃C,J̃D

· J̃CD is an isomor-

phism. The desired result that J̃CD is an isomorphism will follow if
[P op, 1]TS is shown to be a monomorphism in V0 (or in V ′0 if D is large)
for all T, S : Dop // V.

We have by (2.26) the commutative diagram

[Dop,V](T, S)
[P op,1]TS //

EPA
""

[Aop,V](TP, SP )

E′A
||

[TPA, SPA],

(5.12)

where E and E′ are the respective evaluations. By the definition in 2.1 of
the end in V, the family of maps (ED : [Dop,V](T, S) // [TD, SD])D∈D
is jointly monomorphic. Since P is essentially surjective, the same is true
of the family (EPA)A∈A. It now follows from (5.12) that [P op, 1]TS is
monomorphic, as desired.
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Note that, in contrast, the essential surjectivity of P , combined with
the density of K = JP , does not imply the density of P . For an example,
let D be any category that is not a preordered set, let A be the coproduct
D+D, let P : A //D be the codiagonal functor, and let C = 1. As for the
second assertion of the proposition above, we have seen in the example
preceding Proposition 5.7 that the converse is false; K : A // C need not
be dense when its full image D is dense in C, even if P : A //D is also
dense.

There is however a strong cancellability result when J is fully faithful:

Theorem 5.13 Let J be fully faithful and let K ∼= JP be dense. Then
both P and J are dense. Moreover the isomorphism K ∼= JP exhibits J
as LanPK.

Proof. Using (5.2), suppose for simplicity that K = JP . Because J is
fully faithful, we have P̃ ∼= K̃J by (4.49). Since K̃ and J are each fully
faithful by hypothesis, so is P̃ ; so that P is dense by Theorem 5.1(ii).

Again, because K̃ and J are both fully faithful, we have the composite
V-natural isomorphism

C(JD,C)
K̃ // [Aop,V](C(JP−, JD), C(JP−, C))

[Aop,V](JP−,D,1)

��
[Aop,V](D(P−, D), C(JP−, C)).

By (3.5), this isomorphism exhibits JD as P̃D ? JP , with unit

J : D(P−, D) // C(JP−, JD).

By the dual of Theorem 4.6(ii), this is to say that 1: K // JP exhibits
J as LanPK. That J is dense now follows from Proposition 5.7.

There are no similar cancellability results when K = JP is fully faith-
ful and dense, and P too is fully faithful. Here, even if P is dense, J need
not be: for an example, let A = 1, let D be the ordered set 2 = (0 // 1),
let P : 1 //2 have image 1, let C = Set, and let J : 2 //Set send (0 //1)
to the unique map (2 // 1). Furthermore, even if J is dense, P need not
be. Let A = 1, let D be the category of the finite ordinals 0,1,2,3, . . .
and increasing functions, let P : 1 // D have image 1, let C = Set, and
let J : D // Set be the (non-full) inclusion.
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5.3 Examples of density; comparison with strong generation

Since a fully-faithful V-functor is a fortiori conservative, comparison of
Theorem 5.1 with 3.6 shows that a denseK : A //C is strongly generating;
or rather, since we defined “strongly generating” only when A was small,
that this is the case for small A. While we saw in 3.6, however, that
K : A // C is strongly generating precisely when its full image in C is so,
we have seen in Proposition 5.11 and in the remark preceding Theorem
5.13 that the density of K is strictly stronger than the density of its full
image. At any rate, it is clear that C admits some dense K : A // C with
A small if and only if it admits a small dense full subcategory; which latter
is then a fortiori a strong generator. (We shall abbreviate “small dense
full subcategory” to “small dense subcategory” in appropriate contexts.)

When V = Set, if K : A // C is dense with C cocomplete and A
small, (5.3) and the dual of (3.68) show the canonical map

∑
A C(KA,C)·

KA // C to be a coequalizer; whence it easily follows that the objects
{KA}A∈A constitute a regular generator for C in the sense of 4.10. How-
ever density is much stronger than being a strong generator, or even a
regular one; and this even for V = Set.

In the category Comp of compact hausdorff spaces, for instance, the
single space 1 is a regular generator – for it is clearly a generator, and
every epimorphism in Comp is a coequalizer. Yet no small subcategory
A of Comp is dense. For let θ be a regular cardinal exceeding cardA for
each A ∈ A, and let Ω be the set of ordinals ≤ θ, made into a compact
hausdorff space by giving it the order topology. Let 2 = {0, 1} be the
discrete two-element space, and define f : Ω // 2 by f(θ) = 1, f(α) = 0
for α < θ. Although f is not continuous, composition with f defines a
map φA : Comp(A,Ω) //Comp(A, 2) for each A ∈ A; because for any
continuous h : A // Ω, the subset h−1(θ) is closed since {θ} is closed,
while h−1(Ω − {θ}) is closed by the choice of θ. Because φA is clearly
natural in A ∈ A, it would if A were dense be induced by some continuous
g : Ω //2. Consideration of constant maps A //Ω gives the contradiction
g = f if some A is non-empty; while the empty set 0 is clearly not dense.

By Theorem 5.1(ii), each dense K : A //C exhibits C, to within equiv-
alence, as a full subcategory of [Aop,V]. We can characterize the subcat-
egories C of [Aop,V] that arise in this way, and recapture K from C:
Proposition 5.14 The inclusion J : C // [Aop,V] of a full subcategory
is isomorphic to K̃ for some (necessarily dense) K : A //C if and only if
each representable A(−, A) ∈ [Aop,V] admits a reflexion in C. Then KA
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is the reflexion of A(−, A), and K is unique to within isomorphism.

Proof. We are asking for a V-natural isomorphism JC ∼= C(K−, C), or
(JC)A ∼= C(KA,C). Since (JC)A ∼= [Aop,V](A(−, A), JC) by Yoneda,
this is precisely to ask that each A(−, A) admit a reflexion KA in C;
whereupon K has by 1.10 a unique V-functor structure.

This has a simple consequence for cocomplete C and small A:

Proposition 5.15 Let A be small. Then C is equivalent to a reflective
full subcategory of [Aop,V] if and only if C is cocomplete and there is
a dense functor K : A // C. To within isomorphism, the “inclusion”
J : C // [Aop,V] is K̃, while K is the composite of the Yoneda embedding
Y : A // [Aop,V] and the left adjoint S : [Aop,V] // C of J . Such a C is
complete.

Proof. If C is reflective in [Aop,V], with reflexion S a J , then certainly
each A(−, A) admits a reflexion KA = SY A in C; whence by Proposition
5.14 we have J ∼= K̃ for the dense K = SY : A // C. Moreover C is
cocomplete by 3.5, [Aop,V] being cocomplete by 3.3 and 3.74. Conversely,
if C is cocomplete and K : A //C dense, the fully-faithful K̃ : C //[Aop,V]
has by Theorem 4.51 the left adjoint − ? K; and C is complete by 3.5.

Another simple case is that of a fully-faithful K:

Proposition 5.16 C is equivalent to a full subcategory of [Aop,V]
containing the representables if and only if there is a dense fully-
faithful K : A // C. Then, to within isomorphism, the “inclusion”
J : C // [Aop,V] is K̃, while the inclusion of A (identified with the
representables) into C is K.

Proof. If C contains the representables, eachA(−, A) is its own reflexion
in C; whence by Proposition 5.14, the inclusion J : C //[Aop,V] is isomor-
phic to K̃ where K : A // C is the inclusion. Conversely, if K : A // C is
fully faithful and dense, (4.22) gives K̃K ∼= Y : A // [Aop,V], so that C
is equivalent to a full subcategory of [Aop,V] containing the representa-
bles.

As extreme cases of Proposition 5.16, we have the density of 1 : A //A
(1̃ here being the fully-faithful Y : A // [Aop,V]), and the density of
Y : A // [Aop,V] (Ỹ here by (4.30) being 1: [Aop,V] // [Aop,V]). If in
this latter we take A = I, which we may identify with the full subcategory
{I} of V, we observe that:
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The single object I is always dense in V. (5.17)

For instance, 1 is dense in Set, the infinite cyclic group Z is dense in
Ab, and 1 is dense in Cat.

The assertion (5.17) and these examples of it must be interpreted
strictly in accordance with our conventions; there is no suggestion that
the single object I is necessarily dense in the ordinary category V0, when
V 6= Set: cf. 3.9 above. For instance, although Z is dense in the Ab-
category Ab, it is not dense in the ordinary category Ab0, although it is
a regular generator there. In fact, the single object Z⊕Z is dense in Ab0;
this is a special case of the fact (cf. Isbell [35]) that, if C is an equational
category of algebras whose basic operations all have arity ≤ n, the free
algebra Fn on n generators is dense in C. (Once again, these assertions
of density and of non-density for particular functors in the case V = Set
are easily verified using (5.5).)

Again, although 1 is dense in the Cat-category Cat, it is not even a
generator in the ordinary category Cat0. The ordered-set category 2 is
clearly a strong generator in Cat0; but it is not a regular generator, since
Cat0(2, A) · 2 // A is not a coequalizer if A has one object and has a
single non-identity map e with e2 = e. Hence a fortiori 2 is not dense in
Cat0. It is easily verified, however, that the ordered set 3 = {0, 1, 2} is
dense in Cat0.

It is in fact possible, in contrast to (5.17), that V0 admit no small dense
subcategory A whatsoever. An example is the cartesian closed category
V = CGTop of compactly-generated topological spaces. If A is a small
full subcategory (which we may assume to contain some nonempty space),
let θ be a regular cardinal exceeding cardA for each A ∈ A, and form
the compact hausdorff space Ω as in the example preceding Proposition
5.14. By the argument used there, the non-closed set Ω − {θ} has a
closed inverse image under each continuous h : A //Ω with A ∈ A; hence
the canonical surjective map

∑
A∈AA(A,Ω) ·A // Ω is not a topological

quotient map. It factorizes therefore through the set Ω with the strictly-
finer quotient topology (easily seen to be compactly generated), and thus
through a proper subobject of A. Hence A is not even a strong generator,
much less dense.

We observed in 3.6 that a V-functor K : A // C is certainly strongly
generating if the ordinary functor K0 : A0

// C0 is so. The analogue for
density is false; if V is Cat and C is the 2-category of (3.54), the object
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1 is dense in C0 but not in C. Even more is true: a V-category C may
admit no small dense subcategory at all, although C0 admits one. For an
example of this, take V = Cat again, and let C0 = Set, which has the
small dense subcategory 1. Let the category C(X,Y ) be discrete unless
X is the empty set and Y is not. The category C(0, Y ) has only one
object, tY say, and is therefore to be a monoid: let it be the free monoid
on the symbols αY , where α runs through all cardinals less than cardY .
It remains to define the composite of the 2-cell αY : tY // tY : 0 // Y
with f : Y // Z; we take it to be αZ : tZ // tZ : 0 // Z if α < cardZ,
but to be 1: tZ // tZ : 0 // Z otherwise. Clearly C is now a 2-category.
Let A be a small subcategory of C that is a candidate for density; by
Theorem 5.13 we may suppose without loss of generality that 0 ∈ A. Let
β = sup{cardA |A ∈ A}, and choose an X ∈ C with β < cardX. We
exhibit a 2-natural transformation φ = (φA : C(A,X) //C(A, 1))A∈A not
induced by the unique map X //1, showing by (5.5) that A is not dense
in C.

For A 6= 0, we are forced to take for φA the unique functor into
C(A, 1) = 1; while φ0 is to be some monoid-map ψ : C(0, X) // C(0, 1).
For any choice of ψ, the naturality of φ (as distinct from its 2-naturality)
is automatic. The only non-trivial 2-naturality conditions involve the 2-
cells αA : tA // tA : 0 // A for A ∈ A; such a condition evaluated at
f ∈ C(A,X) gives ψ(αX) = 1 if α > 0 and ψ(0X) = 01; and hence φ is
2-natural if ψ(αX) is so given for each α < β. We are at liberty to choose
ψ arbitrarily on the other generators of C(0, X), and in particular on βX .
If we choose ψ(βX) to be not 1 but 01, the 2-natural φ is not induced by
X // 1.

5.4 Presentations of the density of a fully-faithful K in terms of
K-absolute colimits

In this section we use the results of 4.10 above to discuss, in terms of
colimits in C, the density of a fully faithful K : A // C.

Let F : Lop //V and P : L //C. If the colimit F ?P exists in C and is
preserved by K̃ : C // [Aop,V], we shall call it a K-absolute colimit in C.
If L is small, it follows from 3.3 that K-absoluteness of the colimit F ?P
is equivalent to its preservation by C(KA,−) : C //V for each A ∈ A; and
in any case preservation by these representables implies K-absoluteness.
It is immediate from the definition in 4.10 of K-cylinder that:
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Lemma 5.18 The unit α : F // C(P−, F ? P ) of any K-absolute colimit
in C is a K-cylinder.

In proving Theorem 4.93 we observed that 1: K̃C // C(K−, C) is
always a K-cylinder. Indeed, since the colimit K̃C ∼= K̃C ?Y is pointwise
by (3.10), this cylinder is sent to a colimit-cylinder not only by K̃ but by
each C(KA,−): which for large A is in general a stronger assertion.

Theorem 5.19 For a fully-faithful K : A // C the following are equiva-
lent:

(i) K is dense.

(ii) Every K-cylinder α : F // C(P−, C) is the unit of a K-absolute
colimit F ? P ∼= C.

(iii) For each C ∈ C, the identity 1: K̃C // C(K−, C) as unit exhibits
C as K̃C ? K, and this colimit is K-absolute, preserved in fact by
the representables C(KA,−) : C // V.

(iv) Each C ∈ C is a K-absolute colimit of objects of A, in the sense
that C is the value of a K-absolute colimit of the form F ? KQ.

(v) There is a family Φ = (Fγ : Lop
γ

//V, Pγ : Lγ //C)γ∈Γ of diagrams
in C such that each colimit Fγ ? Pγ exists and is K-absolute, and
such that C is the closure of A under this family of colimits.

If A is small, the colimits in (iv) and (v) may be taken to be small.

Proof. (i) implies (ii) since, when K̃ is fully faithful, it reflects colimits
by 3.5. By the remark preceding the theorem, (ii) gives (iii) as a special
case. Then (iii) gives (iv) by taking F = K̃C and Q = 1; and the domain
of F here is A, so that the colimit is small if A is. From (iv) we get
(v) by taking for Φ the one-object family (F,KQ). Finally, by Theorem
4.98 and Lemma 5.4, it follows from (v) that 1: K //K exhibits 1C as
LanKK, giving (i) by Theorem 5.1(v).

The chief purpose of this theorem is to exhibit (v) as a practical
criterion for the density of K. We shall say that the density of A in C is
presented (or exhibited) by the family Φ = (Fγ , Pγ)γ∈Γ; or, more loosely,
by the family Fγ ? Pγ of K-absolute colimits. We may call such a family
a presentation of the density of A in C, or simple a density presentation.
We give a few examples of density exhibited by such a presentation.
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Proposition 5.20 Given full subcategories A ⊂ D ⊂ C, if every D ∈ D
is a retract in D0 of some A ∈ A, and if D is dense in C, then A is dense
in C.

Proof. Given D ∈ D there is an A ∈ A with i : D //A and r : A //D
such that ri = 1. In these circumstances

A
ir //
1
//A r

//D (5.21)

is a coequalizer in the ordinary category C0, and is moreover one pre-
served by any functor whatsoever. Being in particular preserved by the
representables C(C,−)0 : C0

// V0, it is by 3.8 in fact a coequalizer in
C; and then, being preserved by the representables C(KA,−) : C // V,
where K : A //C is the inclusion, it is a K-absolute colimit. On the other
hand, if J : D // C is the inclusion, every C ∈ C is the colimit J̃C ? J of
objects of D; and by Theorem 5.19(iii) this colimit is preserved by each
representable C(JD,−), and so a fortiori by each C(KA,−); whence it,
too, is K-absolute. Since C is therefore the closure of A under the K-
absolute colimits of the two types (5.21) and J̃C ? J , these constitute a
presentation exhibiting A as dense in C.

A category with a small dense subcategory does not in general admit
a one-object full subcategory that is dense; for instance, in Set×Set, no
single object can even be a generator. However:

Proposition 5.22 Let C have the small dense subcategory G, and let
H =

∑
G∈G G exist in C. Then H is dense in C provided that no G0(G,G′)

is empty.

Proof. Because of the last proviso, every G ∈ G is a retract in C0 of H.
Since G is dense in C, so too by Theorem 5.13 is G ∪ {H}. The density
of H now follows from Proposition 5.20.

Proposition 5.23 Let C have a full subcategory A, and an initial object
0 such that C(A, 0) = 0 for each A ∈ A. Then if A ∪ {0} is dense in C,
so is A.

Proof. 0 ∈ C is the colimit of the empty diagram, and by hypothesis
it is K-absolute where K : A // C is the inclusion. The proof concludes
like that of Proposition 5.20.
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Another example of a density presentation comes at once from the
examples following Theorem 4.91 and Theorem 4.98:

Proposition 5.24 In the case V = Set, let the small set {Gx}x∈X of
objects constitute a regular generator of the cocomplete category C. Then
the full subcategory given by the small coproducts of the Gx is dense in C;
and if the Gx are all finitely presentable, we can replace “small” here by
“finite”.

For example, if C is an equational category of algebras (with finitary
operations), the free algebra F1 on one generator is easily seen to be a
regular generator and to be finitely presentable. We conclude by Proposi-
tion 5.24 that the free algebras Fm with m finite constitute a small dense
subcategory. Here, however, we have already noted in 5.3 Isbell’s result
that, if all the basic operations have arity ≤ n, then Fn alone is dense in
C.

Further examples of density presentations will be given in 5.7–5.10
below.

5.5 The characterization of functor categories [Aop,V ]; small pro-
jectives and Cauchy completion; Morita equivalence

We now apply some of the results above to the characterization of V-
categories of the form [Aop,V] for some small A.

We shall say that an object A in a cocomplete V-category C is small-
projective if the representable C(A,−) : C //V preserves all small colimits.
We record for future use:

Proposition 5.25 A retract D of a small-projective A in a cocomplete C
is again small-projective.

Proof. Let F ? G be a small colimit in C. We have the coequalizer
(5.21) which is preserved by any functor (and hence sent to an equalizer
by a contravariant functor). So we have a commutative diagram

C(D,F ? G) C(A,F ? G) C(A,F ? G)

F ? C(D,G) F ? C(A,G) F ? C(A,G)

//

��

//
//

∼=

��

∼=

��
// //

//
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where the rows are equalizer diagrams and the marked comparison maps
are isomorphisms; whence the remaining comparison map is an isomor-
phism too.

Theorem 5.26 In order that C be equivalent to [Aop,V] for some small
A, it is necessary and sufficient that C be cocomplete and that there be a
small set of small-projective objects in C constituting a strong generator
for C.

Proof. We have seen that [Aop,V] is cocomplete, and that the small
full subcategory A of the representables is dense in [Aop,V], and thus
a fortiori strongly generating. Moreover the representable A(−, A) is
small-projective; for [Aop,V](A(−, A), ?) is isomorphic by Yoneda to the
evaluation EA : [Aop,V] // V, which preserves all small colimits by 3.3.
This proves the necessity.

For the sufficiency, let K : G // C be the inclusion of the full sub-
category determined by the small set of objects in question. Since K is
strongly generating, K̃ : C // [Gop,V] is conservative. Moreover K̃ pre-
serves all small colimits, since each C(KG,−) does so. In particular it
preserves for each C ∈ C the colimit K̃C ? K. Since, by the remarks
following Lemma 5.4, K̃ sends 1: K̃C //C(K−, C) to a colimit cylinder,
we conclude by the observations at the beginning of 3.6 that 1 is already
a colimit cylinder, exhibiting C as K̃C ?K. Thus K is dense by Theorem
5.1(iv); and consequently K̃ is fully faithful.

To prove K̃ an equivalence, it remains by 1.11 to prove it essentially
surjective. Given F ∈ [Aop,V], the colimit F ? K exists because A is
small and C is cocomplete; and since K̃ preserves small colimits we have
K̃(F ? K) ∼= F ? K̃K ∼= F ? Y ∼= F .

There may well be various inequivalent A for which C is equivalent
to [Aop,V]. If A denotes the full subcategory of [Aop,V] determined by
the small-projectives, then A ⊂ A, and the proof above gives [Aop,V] '
[Aop

,V] if A is small. In general A is strictly bigger than A; and for
many V it is small whenever A is. We shall show that in 5.8 that, for
V = Set, A consists of the retracts of the representables. The same is
true for V = Cat or CGTop; when V = Ab, A consists of the retracts
of finite coproducts of representables; when V = R+, Lawvere [54] has
shown A to be the Cauchy completion of the (generalized) metric space
A. In all these cases A is small when A is.

If V is such that this last is so, we may call A the Cauchy completion
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of A. The passage from A to A is a closure operation; for A, as the small-
projectives in [Aop

,V] ' [Aop,V], is equivalent to A. Then A is Cauchy
complete if the inclusion A //A is an equivalence. In these circumstances
it follows at once from the facts above that, for small A and B, we have
[Aop,V] ' [Bop,V] if and only if A ' B. This relation is called Morita
equivalence between A and B; it was first studied by Morita [65] (see also
[2]) in the case V = Ab with A and B one-object Ab-categories – that
is, rings R and S; in which case [Aop,V] and [Bop,V] are the categories
of right R-modules and right S-modules. The general situation has been
studied by various authors ([66], [68], [27], [33]), and may be expressed
in terms of the profunctors or distributors introduced independently by
Lawvere [53] and Bénabou [8]; a profunctor from A to B is a functor
T : B⊗Aop //V, and these compose by the operation S(C,−) ? T (−, A)
to form a biclosed bicategory.

For some V, however, A may be large when A is small. An example
is the category V0 of complete lattices and sup-preserving maps, with
the tensor product such that the maps A ⊗ B // C are the functions
A × B // C which are sup-preserving in each variable separately. Here
the Cauchy completion of the unit V-category I is not small, containing
for each set X the lattice PX of subsets of X. For such V the relation
between [Aop,V] and [Aop

,V] is more complicated, and has been given
by Lindner [55]:

Theorem 5.27 For any V and any small V-category A, let A consist
of the small-projectives in [Aop,V]. Then if K : A // [Aop,V] is the
inclusion,

K̃ : [Aop,V] // [Aop
,V]

induces an equivalence of [Aop,V] with the full subcategory Acc[Aop
,V]

determined by the accessible functors; and the inverse to this equivalence
is composition with the inclusion Z : A //A.

Proof. Since KZ = Y : A // [Aop,V] is dense, the fully-faithful K is
dense by Theorem 5.13. Hence K̃ : [Aop,V] // [Aop

,V] is fully faithful,
and it remains to determine its full image. For any F : Aop //V we have
K̃F = [Aop,V](K−, F ), which by the Yoneda (3.17) is [Aop,V](K−, F ?
Y ). Since each KB is small-projective, this is isomorphic to the colimit

F? ? [Aop,V](K−, Y ?) = F? ? [Aop,V](K−,KZ?)

∼= F? ?A(−, Z?).
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The last term here is a small colimit of representables Aop // V, and
hence is accessible by Proposition 4.83. Moreover composing it with Z
gives F??A(Z−, Z?) ∼= F??A(−, ?) ∼= F , verifying that composition with
Z is the inverse. To show finally that every accessible is in the image of
K̃, it suffices to show that every representable A(−, B) is in this image,
since K̃ preserves small colimits. Composing this representable with Z
gives A(Z−, B) : Aop // V; but A(Z−, B) = [Aop,V](Y−,KB) ∼= KB.
Now we have K̃KB = [Aop,V](K−,KB) ∼= A(−, B), as desired.

This gives at once:

Proposition 5.28 For any V and any small A, B, we have an equivalence
[Aop,V] ' [Bop,V] if and only if we have A ' B.

Of course, since Acc[Aop
,V] = [Aop

,V] when A is small, these re-
sults include those derived more simply above for small A. (Another
approach to Proposition 5.28 uses the observation that, if B is cocom-
plete in Theorem 4.21, then G̃ is cocontinuous if and only if each GA is
small-projective; whereupon SF is small-projective for F ∈ A.)

5.6 Existence and characterization of the left Kan extension along
a fully-faithful dense functor in terms of a density presentation;
adjoint-functor theorems involving density

We return to the consideration of a fully-faithful K : A //C, now suppos-
ing it to be dense; and we use the results of 4.10 again, this time to discuss
left Kan extensions along K. When we say of a functor G : C // B that
it preserves K-absolute colimits in C, we mean only that it sends them to
colimits in B; the epithet “K-absolute” has in general no meaning when
applied to colimits in B. Since K is fully faithful, we have by Propo-
sition 4.23 that S : C // B is of the form LanKG for some G : A // B
precisely when S is canonically isomorphic to LanKSK.

Theorem 5.29 If K : A // C is fully faithful and dense, the following
properties of S : C // B are equivalent:

(i) 1 : SK // SK exhibits S as LanKSK.

(ii) S preserves all K-absolute colimits.

(iii) For any density presentation Φ: (Fγ , Pγ)γ∈Γ of K : A // C, each of
the colimits Fγ ? Pγ is preserved by S.
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(iv) S preserves the colimit K̃C ? K for each C ∈ C.

(v) There is some density presentation Φ = (Fγ , Pγ)γ∈Γ of K : A // C
for which S preserves each of the colimits Fγ ? Pγ.

If A is small, it suffices in (ii) that S preserve all small K-absolute col-
imits; and moreover it may then be supposed that the colimits in (v) are
small.

Proof. (i) implies (ii) (including the modification when A is small) by
Theorem 4.97 and Theorem 5.19(ii). Trivially (ii) implies (iii); and since
(K̃C,K) is, by Theorem 5.19, itself a density presentation, (iii) implies
(iv) and (iv) implies (v). Finally (v) implies (i) by Theorem 4.98 and
Lemma 5.4.

As for the existence of LanKG, a direct application of Theorem 4.98
gives:

Theorem 5.30 Let Φ = (Fγ , Pγ)γ∈Γ be a density presentation of the
fully-faithful and dense K : A // C, and let B admit all Fγ-indexed col-
imits for all γ ∈ Γ. Then every G : A // B admits a left Kan extension
LanKG : C // B.

Recall the equivalence [A,B]′ ' [C,B]l of Theorem 4.99, where [A,B]′

is the full subcategory given by those G : A // B admitting left Kan
extensions along K, and where [C,B]l is the full subcategory given by
those S : C // B of the form LanKG for some G (necessarily isomorphic
to SK). Where K is dense, Theorem 5.29 now identifies such S as those
preserving all K-absolute colimits. We extract from this the most impor-
tant practical case, writing CoctsK [C,B] for the full subcategory of [C,B]
given by those S : C // B which preserve all small K-absolute colimits:

Theorem 5.31 Let Φ = (Fγ , Pγ)γ∈Γ be a density presentation of the
fully-faithful and dense K : A // C, for which the domain Lγ of each Fγ
is small; and let B admit all Fγ-indexed colimits for all γ ∈ Γ. Then we
have an equivalence

LanK : [A,B] ' CoctsK [C,B]

whose inverse is the restriction of [K, 1] : [C,B] // [A,B].
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Note that, since the fully-faithful and dense Y : A // [Aop,V] has Ỹ =
1, every colimit in [Aop,V] is Y -absolute. Thus Theorem 5.31 generalizes
the assertion (4.56) of Theorem 4.51.

We end this section with two adjoint-functor theorems involving small
dense subcategories.

Theorem 5.32 Let C be complete and cocomplete, and let A be a small
dense full subcategory whose inclusion K : A //C has a density presenta-
tion Φ = (Fγ , Pγ)γ∈Γ. Let B be the closure under small colimits of a full
subcategory D. Let T : C //B preserve the colimits Fγ ? Pγ, and let each
Fγ ? TPγ be further preserved by the representables B(D,−) with D ∈ D.
Then T has a left adjoint if it is continuous.

Proof. For each D ∈ D, the functor B(D,T−) : C // V preserves the
colimits Fγ ? Pγ , and hence by Theorem 5.29 is the left Kan extension
of its restriction to A. It is therefore accessible by Proposition 4.83; and
since it is continuous, it is by Theorem 4.84 representable. That T has a
left adjoint now follows from Proposition 3.37.

A well-known special case of this theorem (see Satz 14.6 of [31]) is
that where V = Set, where C and B are categories of finitary essentially-
algebraic structures, and where A and D are the finitely-presentable ob-
jects in C and B respectively; the conclusion is then that a continuous T
has a left adjoint if it preserves filtered colimits.

The next theorem, although we place it here for comparison, is quite
different in nature, and could have been proved immediately after The-
orem 5.1. It is a variant of Theorem 4.90 (the Special Adjoint Functor
Theorem) – or rather, of its dual. A small dense subcategory replaces the
generator, and then the hypothesis on cointersections may be dropped;
moreover the present theorem is valid for any V.

Theorem 5.33 If the cocomplete C has a small dense subcategory A,
every cocontinuous S : C // B has a right adjoint.

Proof. If K : A // C is the inclusion, LanSKK exists because A
is small and C is cocomplete. Since LanKK ∼= 1C by Theorem 5.1, it
follows from Theorem 4.47 that LanS1C exists. Again, since A is small,
the cocontinuous S preserves the Kan extensions LanKK and LanSKK;
whence, by Theorem 4.47 again, it preserves LanS1C . That S has a right
adjoint now follows from Theorem 4.81.
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Note that a special case of this theorem appeared in Theorem 4.51.

5.7 The free completion of A with respect to all colimits with
indexing-type in F

We now describe the free cocompletion of a V-category with respect to
colimits of some given class.

First observe that:

Proposition 5.34 For any V-category A, the set of accessible functors
Aop // V is closed under small colimits.

Proof. LetH : Lop //V and P : L //[Aop,V], where L is small and each
PL is accessible. By Proposition 4.83, each PL is the left Kan extension
of its restriction to some small full subcategory CL of Aop. The union C of
the CL for L ∈ L is still small, because L is small; write K : C //Aop for
the inclusion. Since K is fully faithful, it follows from Theorem 4.47 that
each PL is the left Kan extension of its restriction (PL)K to C. Write
Q : L // [C,V] for the composite of P with [K, 1] : [Aop,V] // [C,V], so
that QL = (PL)K; then we have PL ∼= LanKQL. Now (3.21), expressing
the cocontinuity of ? in its second variable, along with (3.16), justifies the
calculation (H ?P )A = H? ? (P?)A ∼= H? ? (K̃A ?Q?) ∼= K̃A ? (H ?Q) =
(LanK(H?Q))A. So H?P ∼= LanK(H?Q) is accessible by Theorem 4.83.

In other words, the full subcategory Acc[Aop,V] of [Aop,V] is closed
under small colimits. Note from (4.41) that Acc[Aop,V] is a V-category,
even if A is large.

Now let F be any set of functors with codomain V, for each element
F : L // V of which the domain L is small ; that is, F is a set of small
indexing types. We say that C is F-cocomplete if it admits all colimits
indexed by the elements of F , and that S : C // B is F-cocontinuous
if it preserves all such colimits – which we may call F-colimits. We

write F-Cocts[C,B] for the full subcategory of [C,B] determined by the
F-cocontinuous functors. In the following we regard A as embedded in
[Aop,V] by Yoneda.

Theorem 5.35 For any set F of small indexing types and any V-
category A, let A be the closure of A in [Aop,V] under F-colimits, and
let K : A //A be the inclusion. Then A ⊂ Acc[Aop,V], and is therefore
a V-category. When A is small and the set F is small, A is small. A
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is F-cocomplete, and every F-colimit in A is K-absolute; the totality
of these F-colimits constitutes a density presentation of K. A functor
S : A // B is of the form LanKSK precisely when it is F-cocontinuous;
and we have an equivalence

LanK : [A,B]′ ' F-Cocts[A,B],

whose inverse is the restriction of [K, 1], where [A,B]′ is the full subcat-
egory of [A,B] consisting of those G for which LanKG exists. If B is
F-cocomplete, this is all of [A,B], and the equivalence becomes

LanK : [A,B] ' F-Cocts[A,B],

exhibiting A as “the free F-cocompletion of A”.

Proof. That A ⊂ Acc[Aop,V] follows from the transfinite construction
of A in 3.5, along with Proposition 5.34. That A is small when A and F
are small was observed in 3.5. A is F-cocomplete by its construction, since
F-colimits certainly exist in [Aop,V], each element of F being small; and
these F-colimits in A are K-absolute, being preserved by construction
under the inclusion A // [Aop,V], which is K̃ by Proposition 5.16. The
F-colimits in A form a density presentation for K by the definition of
this following Theorem 5.19; and then the characterisation of the S of
the form LanKSK follows from Theorem 5.29. The first equivalence
displayed comes from Theorem 4.99, and the identification of [A,B]′ with
[A,B] when B is F-cocomplete comes from Theorem 5.30.

Note that the second equivalence of Theorem 5.35 is a special case
of that of Theorem 5.31; what is new here is the freeness of the F-
cocompletion, which allows us to replace CoctsK [C,B] by F-Cocts[C,B].
(Often, using the word “completion” in a wider sense, we may refer to
the F-cocompletion of A as the completion of A under F-colimits.)

As the first example of such an F-cocompletion, take F to consist of
all small indexing types, so that A is simply the cocompletion of A. From
Proposition 4.83 and Proposition 5.34, this cocompletion is precisely the
V-category Acc[Aop,V]. When A is small, this reduces to [Aop,V], and
we re-find (part of) Theorem 4.51.

Other examples with V 6= Set will be found in the article [45] on en-
riched essentially-algebraic structures. For the remaining examples dis-
cussed below we take V = Set. The colimits we are interested in will
then be conical ones, so that F is in effect a set of small categories.
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Before we proceed, however, we anticipate a possible misunderstand-
ing that may arise from the very special nature of our main examples. In
the transfinite construction of 3.5 for the closure A of A under F-colimits
in [Aop,V], the first step consists in taking all the F-colimits in [Aop,V]
of the objects of A. In some important cases the full subcategory given
by these F-colimits is itself closed under F-colimits and hence constitutes
A; the construction then terminates after one step. This was so in the
example above, where F consisted of all small indexing types; and it will
also be so in the three important examples of 5.8–5.10 below. However,
it is far from true in general. For instance, taking V = Set henceforth, if
F consists of two discrete categories 0 and 2, so that A is the closure of
A under finite coproducts, we reach A only after ω steps of the iteration.
Less trivially, if F consists of the single category 0 //// 1 , so that A is
the closure of A under coequalizers, consider the case where A has two
objects A,B and three non identity maps f, g, h : A //B. In the first step
we add in the coequalizers P,Q,R of the respective pairs (f, g), (f, h),
and (g, h); but now there are two maps A // P , and we must next add
in the coequalizer of these, and so on.

5.8 Cauchy completion as the idempotent-splitting completion
when V = Set

For our first main example with V = Set, let F consist of the single
category with one object and with one non-identity endomorphism e sat-
isfying e2 = e. Then a diagram of type F in A is an object A with an
idempotent endomorphism e. This diagram has a colimit r : A // B in
A if and only if the idempotent e splits; that is, e has the form e = ir for
maps r : A //B and i : B //A with ri = 1. Such a splitting is unique (to
within isomorphism) if it exists; so that the split idempotents correspond
bijectively to the retracts of A in A. In this case A, which we may call the
idempotent-splitting completion of A, clearly consists of all the retracts
in [Aop,Set] of the representables A(−, A) ∈ A; it is evidently small if A
is. Moreover B is F-complete precisely when all idempotents split in B.
In fact we have the result promised in 5.5 above:

Theorem 5.36 For a small A, the small projectives in [Aop,Set] are pre-
cisely the retracts of the representables; so that the idempotent-splitting
completion of A is its Cauchy completion. Moreover A is Cauchy com-
plete exactly when all the idempotents split in A.
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Proof. We saw in the proof of Theorem 5.26 that the representables in
[Aop,Set] are small-projective, whence so too are their retracts by Propo-
sition 5.25. Suppose conversely that F : Aop // Set is small-projective.
Then [Aop,Set](F,−) preserves all small colimits, and in particular the
canonical expression (3.32) of F as a colimit of representables. Thus
[Aop,Set](F, F ) is the canonical colimit, indexed by (elF )op, of the sets
[Aop,Set](F,A(−, A)). Since colimits in Set are calculated by (3.35), the
element 1F of [Aop,Set](F, F ) is the composite of some r : A(−, A) //F
in elF with some i : F //A(−, A); that is, F is a retract of some A(−, A).

To say that A is Cauchy complete is, by 5.5, to say that the inclusion
A //A is an equivalence, or that every object of A is isomorphic to one
in A. Since idempotents split uniquely if at all, this is exactly to say that
all idempotents split in A.

Note that, in this example, the inclusion A // A preserves such F-
colimits as exist in A. In fact F-colimits for this F are absolute – they
are preserved by any functor whatsoever. This example is quite atypical,
however: for a general F the inclusion A // A by no means preserves
the F-colimits that exist in A. For instance, consider the completion of
A under finite coproducts: A(C,A+B) is in general quite different from
A(C,A) +A(C,B).

5.9 The finite-colimit completion when V = Set

Our next example with V = Set is the completion of A under finite col-
imits; since the number of finite categories is small, the finite completion
of A is small if A is.

Theorem 5.37 The completion of A under finite colimits is the full
subcategory of [Aop,Set] determined by all finite colimits of the repre-
sentables.

Proof. Let A ⊂ [Aop,Set] consist of all finite colimits of the repre-
sentables; we are to show that A is closed under finite colimits. Clearly A
contains the initial object of [Aop,Set]. Consider objects F = colimY T
and G = colimY S of A, where T : P //A and F : Q //A with P and
Q finite. Let R : P +Q //A be the functor with components T and S.
Since an inductive cone over Y R with any vertex H clearly consists of
independent cones over Y T and Y S, it follows that colimY R = F + G.
Hence A is closed under finite coproducts, and it remains to prove it
closed under finite coequalizers.
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With F and G as above, let the colimit cones be

(ρP : A(−, TP ) // F ) and (σQ : A(−, SQ) //G),

and consider α, β : F // G. Since the ρP are jointly epimorphic, a map
γ : G //H satisfies γα = γβ if and only if it satisfies γαρP = γβρP for
each P ∈ P. The map αρP : A(−, TP ) // G corresponds by Yoneda to
an element of GTP . Since the σQ,TP : A(TP, SQ) // GTP are jointly
surjective in Set, this element is the image under σP ′,TP of some uP ∈
A(TP, SP ′) for some P ′ ∈ Q. By the naturality of Yoneda we then have
commutativity in the left diagram of

A(−, TP )
A(−,uP ) //

ρP

��

A(−, SP ′)

σP ′

��

A(−, TP )
A(−,vP ) //

ρP

��

A(−, SP ′′)

σP ′′

��
F α

// G, F
β

// G;

while the corresponding right diagram comes from a similar argument
applied to β. The condition γαρP = γβρP now becomes γσP ′A(−, uP ) =
γσP ′′A(−, vP ).

Define a finite graph G whose object-set is (obP) + (obQ), and
whose arrows are all those of Q together with arrows xP : P // P ′ and
yP : P // P ′′ for each P ∈ P. Let S be the category generated by G
subject to the composition and identity relations that already obtain in
Q; clearly S is finite. Define N : S // A to agree with S on Q, to send
P ∈ P to TP , and to send xP and yP to uP and vP respectively. Then
clearly colimY N is the coequalizer of α and β.

(It may not be inferred from the truth of Proposition 5.34 and Theo-
rem 5.37 that, for a general cocomplete C, the construction of the colimit-
closure or of the finite-colimit-closure of a full subcategory A terminates
after one step. The ordinary category Cat0 is by Proposition 3.40 the
colimit-closure of the full subcategory {2}, since 2 is a strong generator, as
we observed in 5.3. The category A with one object and one non-identity
idempotent map is in fact easily seen to lie in the finite-colimit-closure of
{2}. Yet A is not the colimit in Cat0 of any functor factorizing through
{2}; for it is soon verified that no map from a copower of 2 to A is a
coequalizer.)
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5.10 The filtered-colimit completion when V = Set; flat and left-
exact functors

For our final example with V = Set we consider the completion of a small
A under small filtered colimits. Let us write this as Â ⊂ [Aop,Set], and
for the rest of this section keep A for the completion of A under finite
colimits.

A functor F : Aop // Set is called flat if the functor

F ?− : [A,Set] // Set

is left exact – that is, finite-limit-preserving. Every representable
A(−, A) is flat, for A(−, A)?? = (?)A by Yoneda, which is the evaluation
EA : [A,Set] // Set, preserving all small limits. Moreover, since ? is
cocontinuous in both variables, it follows from Theorem 4.73 that a small
filtered colimit of flat functors is flat.

Theorem 5.38 For F : Aop //Set with A small, the following are equiv-
alent:

(i) (elF )op is filtered.

(ii) The canonical expression (3.32) of F as a colimit of representables
is a filtered colimit.

(iii) F is some small filtered colimit of representables.

(iv) F lies in the completion Â of A under small filtered colimits.

(v) F is flat.

Proof. (i) implies (ii) since the colimit (3.32) is indexed by (elF )op;
that (ii) implies (iii) and (iii) implies (iv) are trivial. Since Â is by
Theorem 5.35 the closure of A in [Aop,Set] under filtered colimits, (iv)
implies (v) by the remarks preceding the theorem. Thus we have only to
show that (v) implies (i).

Let T : P // elF where P is finite. As in 4.7, T corresponds to a
functor S : P //Aop and an element α ∈ limFS. By the flatness of F we
have F ? limP A(SP,−) ∼= limP (F ?A(SP,−)); and by Yoneda the latter
is limP FSP = limFS. By the formula (3.70) and the dual of (3.68), we
have therefore a canonical surjection∑

A∈A
FA× limP A(SP,A) // limFS.
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Let some inverse image of α under this surjection be given by (x ∈
FA, β ∈ limP A(SP,A)). By (3.28), we can regard β as an inductive
cone in A over S with vertex A. Since FβP : FA // FSP maps x to αP
by construction, β is equally an inductive cone in (elF )op over T with
vertex (A, x). Thus (elF )op is filtered.

Proposition 5.39 A flat functor F : A // Set with A small preserves
any finite limit that exists in A. If A is finitely complete, the flat functors
F : A // Set are precisely the left-exact ones.

Proof. If S : P //A with P finite has a limit in A, the flatness of F
gives, as in the proof above, that F ? limP A(−, SP ) ∼= limFS. However
the left side is now isomorphic to F ? A(−, limS) ∼= F (limS). So a flat
functor F is certainly left exact if A is finitely complete. Conversely,
if A is finitely complete and F is left exact, elF is finitely complete
by Proposition 4.87; hence (elF )op is finitely cocomplete and therefore
filtered, so that F is flat by Theorem 5.38.

Proposition 5.40 The finitely-presentable objects in the filtered-colimit-
completion Â of a small A are the retracts of the representables; so that
they reduce to A if idempotents split in A.

Proof. Since filtered colimits in Â are formed as in [Aop,Set], the
proof of Theorem 5.36 applies here virtually unchanged. The new point
is that, for a finitely presentable F , the functor Â(F,−) is only known to
preserve filtered colimits; but now the canonical colimit of representables
giving F is filtered.

Proposition 5.41 If A is the finite-colimit-completion of the small A,
then the inclusion A // [Aop,Set] is, to within equivalence, the filtered-

colimit-completion Â of A. In consequence, every F : Aop // Set is a
filtered colimit of objects of A, and A consists of the finitely-presentable
objects of [Aop,Set].

Proof. Let K : A // A be the inclusion, so that by Proposition 5.16
the inclusion A // [Aop,Set] is K̃. Using Lex for “left exact”, we have

by Theorem 5.38 and Proposition 5.39 that Â is the full subcategory
Lex[Aop

,Set] of [Aop
,Set]. By the dual of Theorem 5.35 we have an

equivalence RanKop : [Aop,Set] ' Lex[Aop
,Set], whose inverse is the re-

striction of [Kop, 1]. Since the composite of [Kop, 1] with the Yoneda
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embedding A // [A,Set] is K̃ : A // [Aop,Set], this gives the first as-
sertion. The second one comes from Theorem 5.38 and the third from
Proposition 5.40.

Finally we give the converse to Proposition 4.74 as promised in 4.6:

Proposition 5.42 For a small A with finite-colimit-completion A, the
following are equivalent:

(i) A is filtered.

(ii) colim: [A,Set] // Set is left exact.

(iii) The inclusion K : A //A is final.

Proof. Since by (3.26) we have colimF ∼= ∆1 ? F , what (ii) asserts is
the flatness of ∆1: Aop // Set. By Theorem 5.38, this is equivalent to
the filteredness of (el ∆1)op, which is A; thus (ii) is equivalent to (i).

Since A is finitely complete and hence filtered, what (iii) asserts by
Proposition 4.71 is the non-emptiness of each F/K for each F ∈ A. Any
finite diagram in A has a colimit F in A, and every F in A so arises.
To say that the diagram admits an inductive cone with vertex A ∈ A
is exactly to say that there is a map F //KA for some A; thus (iii) is
equivalent to (i).

5.11 The image under [K, 1] : [C,B] −→ [A,B], for a general dense
K, of the left adjoint functors; examples and counter-examples

From the beginning of 5.4 until now we have dealt only with fully-faithful
dense functors – exploiting the notion of a density presentation, which
does not seem to generalize usefully to the non-fully-faithful case. Now
we drop this restriction, and consider an arbitrary dense K : A //C. For
any B, write Ladj[C,B] for the full subcategory of [C,B] given by those
S : C //B which are left adjoints (or which have right adjoints); since left
adjoints are certainly A-cocontinuous, it follows from Theorem 5.1 that
the restriction of [K, 1] : [C,B] // [A,B] to Ladj[C,B] is fully-faithful, so
that Ladj[C,B] is a V-category if A is small, being equivalent to its replete
image in [A,B] under [K, 1]; the main goal of this section and the next is
to determine this replete image.

In this section, devoted mostly to examples, we suppose for simplicity
thatA is small; if it were not, the expressions Cocts[C,B] and CoctsK [C,B]
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would have to be modified. Then Proposition 5.11 and Theorem 5.33 give

Ladj[C,B] = Cocts[C,B] if C is cocomplete. (5.43)

We also abbreviate full subcategory to subcategory, since we consider no
others. Finally, we loosely write [K, 1] and LanK for various restrictions,
specified by the context, of the functors properly so named.

The following remarks, to the end of this paragraph, apply to any
K : A //C, dense or not, and do not needA to be small. In Theorem 4.51,
and in its generalizations Theorem 4.99 and Theorem 5.35, we have used
the notation [A,B]′ for the subcategory given by those G : A // B for
which LanKG exists. Since we have soon to deal with more than one
functor K, we replace this notation by [A,B](K). Similarly we have used,
in Theorem 4.99 and elsewhere, [C,B]` for the subcategory given by those
S : C //B of the form LanKG for some G; we now change this to [C,B]`K .

Write [A,B]
(K)
∗ for the subcategory of [A,B](K) given by those G for

which the unit G // (LanKG)K is an isomorphism; and write [C,B]`K∗
for the subcategory of [C,B]`K given by those S for which the identity
1: SK //SK exhibits S as LanKSK. It is immediate from Theorem 4.38
that we have an equivalence (with the evident unit and counit)

LanK a [K, 1] : [C,B]`K∗ ' [A,B]
(K)
∗ , (5.44)

where (as we warned) we are using [K, 1] and LanK loosely for their
restrictions. By Proposition 4.23,

[A,B]
(K)
∗ = [A,B](K) and [C,B]`K∗ = [C,B]`K

for fully-faithful K;

(5.45)

and in this special case, (5.44) becomes the equivalence

LanK a [K, 1] : [C,B]`K ' [A,B](K) for fully-faithful K (5.46)

of Theorem 4.99: but by the same Proposition 4.23, the first equality in
(5.45) fails for a general B (and in particular for B = V) whenever K is
not fully faithful, so that (5.46) then fails too.

Henceforth we suppose once again that K is dense. As in the proof of
Theorem 5.1, a cocontinuous S : C //B preserves the colimit K̃C ∗K; so
that by Theorem 5.1(iv) we have S ∈ [C,B]`K∗ (from which, using (5.44),
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we re-find the conclusion of Theorem 5.1(i), that the restriction of [K, 1]
to Cocts[C,B] is fully faithful). We therefore have inclusions

Ladj[C,B] ⊂ Cocts[C,B] ⊂ [C,B]`K∗ ⊂ [C,B]`K ⊂ [C,B]. (5.47)

The first of these inclusions is by (5.43) an equality when C is cocom-
plete, but is proper in general – the inclusion into Set of the small full
subcategory of finite sets is continuous but has no left adjoint. The third
inclusion is by (5.45) an equality when K is fully faithful, and in fact
Theorem 5.29 then gives the common value explicitly as

[C,B]`K∗ = [C,B]`K = CoctsK [C,B] for fully-faithful K. (5.48)

However the second and fourth inclusions are in general proper even when
V = Set, C and B are complete and cocomplete, and K is fully faithful.

For an example of this, let K : 1 //2 correspond to 1 ∈ 2 = (0 //1);
it is clearly dense. Then [2,B] consists of all maps A // B in B; while
[2,B]`K = [2,B]`K∗ consists of those with A = 0, the initial object of
B; and Cocts[2,B] = Ladj[2,B] consists of those 0 // B which are epi-

morphisms in B. Here of course LanK is fully faithful on [A,B]
(K)
∗ =

[A,B](K) = [A,B] = B; but [K, 1], although necessarily fully faithful on
[2,B]`K , is not so on [2,B]: it sends A //B to B ∈ B. The replete image
under [K, 1] of Ladj[2,B] is the proper subcategory of B given by those
B for which 0 //B is epimorphic.

When K is not fully faithful, the second, third and fourth inclusions in
(5.47) may all be proper, even when V = Set, C and B are complete and
cocomplete, and K is surjective on objects. For an example, let K : 2 //2
be the inclusion, where 2 is the discrete category {0, 1}, and let B = Setop;
again K is clearly dense. An object of [2,B] may be identified with a map
B // A in Set; this is sent by [K, 1] to (B,A) ∈ [2,Set] = Set × Set;
and LanK sends (D,C) to the projection D × C // C. Clearly [2,B]`K

consists of those B // A isomorphic to such projections, while [2,B]`K∗
consists of such projections for which the other projection D×C //D is
an isomorphism – that is, the maps D //1 and the maps 0 //C. Finally
(as in the last example) Ladj[2,B] consists of the maps 1 //1 and 0 //1.
Observe how badly (5.46) fails: although [K, 1] is conservative on [2,B]
(as it must be for an essentially surjective K), it is not fully faithful
on [2,B]`K ; and LanK is not fully faithful on [2,B] = [2,B](K). Clearly

[2,B]
(K)
∗ consists of the pairs of the forms (D, 1) and (0, C), while the
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replete image under [K, 1] of Ladj[2,B] consists of the pairs (1, 1) and
(0, 1).

For a non-fully-faithful K, not only does Proposition 4.23 fail, but
even a left adjoint S : C //B may be LanKG for some G other than SK;

in which case, by (5.44) and (5.47), G must lie outside [A,B]
(K)
∗ . The

example above does not illustrate this possibility, but the following one
does so. With V = Set again, let K = ∆1: 2 //2. Since the unique map
2 // 1 is obviously initial, the left Kan extension of K along 2 // 1 is
∆1: 1 // 2 by Theorem 4.67; since the latter functor is clearly dense, so
is K by Proposition 5.7. Taking B cocomplete, we see that LanK sends
C // D to 0 // D, while [K, 1] sends A // B to 1: B // B. Here
[C,B]`K∗ = [C,B]`K , even though K is not fully faithful – each consisting

of the maps 0 //B; while [A,B]
(K)
∗ consists of the maps 1: D //D. As

in the penultimate example, Ladj[C,B] consists of those 0 //B which are
epimorphic; and such an object is the image under LanK of any C // B,

which need not in general – for instance, if B = Setop – lie in [A,B]
(K)
∗ .

5.12 Description of the image above in terms of K-comodels; gen-
eralization to an equivalence LanZ a [Z, 1] between categories
of comodels

We now answer the question raised in 5.11 for a dense K : A // C by
identifying the replete image of [K, 1] : Ladj[C,B] // [A,B] as a certain

subcategory K-Com[A,B](K) of [A,B]
(K)
∗ ⊂ [A,B]; in this form, the result

is independent of the smallness of A.

We call a functorG : A //B aK-comodel if G̃ : B //[Aop,V] factorizes
through K̃ : C // [Aop,V] as

G̃ ∼= K̃T (5.49)

for some T : B // C. Since K̃ is fully faithful by Theorem 5.1, such a T
is unique to within isomorphism if it exists. We can write (5.49) more
explicitly as a V-natural isomorphism

B(GA,B) ∼= C(KA,TB). (5.50)

Since K̃ trivially factorizes through itself, we have:

The dense K : A // C is always itself a K-comodel. (5.51)
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We write K-Com[A,B] for the subcategory of [A,B] given by the K-
comodels, and K-Com[A,B](K) for the intersection of this with [A,B](K)

– that is, the category of those K-comodels G for which LanKG exists.
More generally, for any Z : A // D, we write K-Com[A,B](Z) for the
intersection K-Com[A,B] ∩ [A,B](Z).

The name “K-comodel” for a G : A // B satisfying (5.49) is inspired
by the fact (see 5.13 below) that a dense K : A // C, at least for small A
and cocomplete C, may be thought of as a very general kind of essentially-
algebraic theory , a model of which in P is a functor H : Aop // P such
that G = Hop : A //Pop is a comodel in the sense above. These models
constitute a full subcategory K-Mod[Aop,P] of [Aop,P], isomorphic to
(K-Com[A,Pop])op. If we talk here of comodels rather than models, it is
because we have elected to emphasize left Kan extensions and colimits,
rather than their duals. Particular examples of such theories are given in
6.2 and 6.3 below.

Rather than establish directly the promised equivalence

Ladj[A,B] ' K-Com[A,B](K),

we first prove a more general result, itself of value in practice:

Theorem 5.52 Let the dense K : A //C be (isomorphic to) the compos-
ite of Z : A //D and a fully-faithful J : D //C (so that, by Theorem 5.13,
both Z and J are also dense). Then we have an equivalence

LanZ a [Z, 1] : J-Com[D,B] ' K-Com[A,B](Z), (5.53)

whose unit and counit are the canonical maps.

Proof. Let H ∈ J-Com[D,B], so that, corresponding to (5.50), we
have

B(HD,B) ∼= C(JD, TB) (5.54)

for some T : B // C. Putting D = ZA in this gives

B(HZA,B) ∼= C(JZA, TB) ∼= C(KA,TB);

showing that HZ is a K-comodel, and giving (H̃Z) explicitly as K̃T .
Since (4.49) gives Z̃ ∼= K̃J , we have (K̃ being fully faithful)

[Aop,V](Z̃D, (H̃Z)B) ∼= [Aop,V](K̃JD, K̃TB)
∼= C(JD, TB)
∼= B(HD,B),
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which by (4.20) shows that H ∼= LanZ(HZ); moreover the unit of this
Kan extension is easily calculated by Theorem 4.6 to be 1: HZ //HZ.
Since we have seen that HZ is a K-comodel, it does indeed lie in
K-Com[A,B](Z).

Now let G ∈ K-Com[A,B](Z), so that G̃ ∼= K̃T for some T : B // C.
Writing H for LanZG, using (4.20) for the first step, and recalling that
Z̃ ∼= K̃J , we have

B(HD,B) ∼= [Aop,V](Z̃D, G̃B)

∼= [Aop,V](K̃JD, K̃TB)
∼= C(JD, TB),

which is (5.54), showing that H = LanZG belongs to J-Com[D,B].
Putting D = ZA in (5.54) gives as before B(HZA,B) ∼= C(KA,TB);
the latter now being B(GA,B) by (5.50), Yoneda gives an isomorphism
G ∼= HZ, which is easily verified to be the unit G // (LanZG)Z of the
Kan extension.

Since the unit and counit of the equivalence (5.53) are the canonical
maps, it follows that

J-Com[D,B] ⊂ [D,B]`Z∗

and

K-Com[A,B](Z) ⊂ [A,B]
(Z)
∗ ,

(5.55)

and that the equivalence (5.53) is just the restriction of the equivalence

[D,B]`Z∗
∼= [A,B]

(Z)
∗ of (5.44). Now consider the special case of Theo-

rem 5.52 in which D = C, J = 1C , and Z = K. A 1C-comodel is by (5.50)
a functor S : C // B for which B(SC,B) ∼= C(C, TB) for some T ; that
is, it is a left-adjoint functor. Thus Theorem 5.52 (together with (5.43))
gives the following answer to the problem proposed at the beginning of
5.11:

Theorem 5.56 For a dense K : A // C and any B, the equivalence

LanK a [K, 1] : [C,B]`K∗ ' [A,B]
(K)
∗ restricts to an equivalence

LanK a [K, 1] : Ladj[C,B] ' K-Com[A,B](K). (5.57)

Here, if C is cocomplete and A is small, Ladj[C,B] may be replaced by
Cocts[C,B]; and if every G : A // B admits a left Kan extension along
K, as when A is small and B is cocomplete, K-Com[A,B](K) may be
replaced by K-Com[A,B].
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Note that, when A is small and K is the Yoneda embedding
Y : A // [Aop,V], a Y -comodel is any functor A // B, since Ỹ = 1 by
(4.30). Thus (5.57) is another generalization of the equivalence (4.55),
different from the generalization given by Theorem 5.31. In the situation
of Theorem 5.52, combining that theorem with Theorem 5.56 gives a
diagram of multiple equivalences

Ladj[C,B] 'J-Com[D,B](J) '
∩

K-Com[A,D](K)

∩
J-Com[D,B] ' K-Com[A,D](Z)

(5.58)

in which the horizontal maps from left to right are restrictions, and those
from right to left are left Kan extensions. The vertical inclusions here,
although equalities when A is small and B is cocomplete, are in general
proper, even if C is cocomplete and A and D are small. For let J : D //C
be fully faithful and dense, take A = D and Z = 1, and take B = D;
then 1: D // D is a J-comodel, since 1̃ = Y is isomorphic by (4.22) to
J̃J ; yet LanJ1D need not exist. To see this, let C = V = Set, and let
J be the inclusion of the full subcategory {2} determined by the single
two-element set 2; since {1} is dense in Set by (5.17), so is {1, 2} by
Theorem 5.13, whence {2} is dense by Proposition 5.20, as 1 is a retract
of 2. Clearly J̃0 is ∆0, the initial object of [{2}op,Set]; so that J̃0 ? 1D
would, if it existed, be the initial object of {2}. Since {2} has no initial
object, LanJ1D fails to exist.

5.13 A dense K : A −→ C, with A small and C cocomplete, as an
essentially-algebraic theory with C as the category of algebras

We now settle on the precise definition of an essentially-algebraic theory :
namely, a dense K : A // C with A small and C cocomplete. The models
of the theory in V itself are usually called its algebras. We have:

Theorem 5.59 For any dense K : A // C with A small, there is an
equivalence K-Mod[Aop,V] ' C′, where C′ is the subcategory of C given
by those C such that X t C exists for all X ∈ V. Thus if C is cotensored,
K-Mod[Aop,V] ' C. This is so in particular if C is cocomplete.

Proof. Since Vop is cocomplete, Theorem 5.56 gives

K-Com[A,Vop] ' Ladj[C,Vop],
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or equivalently K-Mod[Aop,V] ' (Ladj[C,Vop])op; and this last category
is equivalent to Radj[Cop,V]. But all right-adjoint functors Cop //V lie in
the subcategory C ⊂ [Cop,V] given by the representables, and constitute
in fact the category C′ of the theorem. The last assertion follows from
Proposition 5.15.

This leads to the following point of view. If C is a cocomplete category
admitting a small dense subcategory, any choice of a dense K : A // C
with small A gives an essentially-algebraic theory, for which C is the
category of algebras. As long as we consider models of the theory only
in complete categories P, the concept of a model is independent of the
choice of K; a model of the theory in P, also called a C-object in P,
is by Theorem 5.56 just a continuous (and hence right-adjoint) functor
Cop //P. At this level, any continuous P //P ′ carries models to models;
and any model in P is so obtained by applying the continuous functor
Cop //P to the generic model in Cop given by 1: Cop //Cop. In terms of
K : A // C, this generic model in Cop corresponds to Kop : Aop // Cop,
which is a model by (5.51).

The choice of K : A //C affects to some extent the notion of a model
in P when P is not complete. If K ′ : A′ //C is another dense functor with
A′ small, let D be the union of the full images in C of K and of K ′; then
the inclusion J : D // C is dense by Theorem 5.13. Thus Theorem 5.52
gives, in an evident notation, K-Mod[Aop,P](Z) ' K ′-Mod[A′op,P](Z

′).
It follows that K-Mod[Aop,P] and K ′-Mod[A′op,P] coincide when P is
“complete enough” to admit all right Kan extensions along Z : A // D
and Z ′ : A′ // D. A concrete example of such “sufficient completeness”
will occur in 6.4 below.

We will end with three remarks. First, it is easily seen that, for any
P and P ′, a right-adjoint functor P //P ′ takes K-models to K-models.
Secondly, the dense I : I // V of (5.17) is “the theory of an object”;
for, Ĩ being 1, we have I-Mod[Iop,P] ∼= P for any P. Thirdly, if P too
is cocomplete with a small dense subcategory (and hence complete by
Proposition 5.15), the notion of a C-object in P coincides with that of a
P-object in C: for a right-adjoint Cop //P has as its left adjoint P //Cop

what is in effect a right adjoint Pop // C.
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5.14 The image under [K, 1] : [C,B] −→ [A,B], for a dense K, of
the equivalences; characterization theorems for C

We now determine the image, under the equivalence Ladj[C,B] '
K-Com[A,B](K) of (5.57), of the subcategory of equivalences S : C ' B.
We do not suppose A small nor C cocomplete; but we do restrict ourselves
to the simpler case of a fully-faithful dense K : A // C.

We thus get a criterion for a given category B to be equivalent to C, in
terms of there being a K-comodel G : A //B satisfying our characteriza-
tion of the image in question; this contains as a special case the criterion
of Theorem 5.26 above for B to be equivalent to [Aop,V]. We give only a
few applications below; numerous others can be found in the article [21]
of Diers, to whom the results (in the case V = Set) are due.

If there is an equivalence S a T : B ' C, the image of S under
(5.57) is the K-comodel G = SK : A // B. Since we have B(GA,B) =
B(SKA,B) ∼= C(KA,TB), the unique T which, as in (5.49) or (5.50), ex-
hibits G as being a K-comodel, is precisely the equivalence-inverse of S.
We therefore start with any K-comodel G : A //B, exhibited as such by
G̃ ∼= K̃T as in (5.49), and seek conditions for this T to be an equivalence.

This isomorphism σ : G̃ ∼= K̃T , written as a V-natural isomorphism
B(GA,B) ∼= C(KA,TB) as in (5.50), is (by Yoneda in the form (1.48))
of the form σ = C(ρ, 1)T for some V-natural ρ : K // TG. The diagram
(1.39) expressing the V-naturality of ρ may be written as

Y
∼=
κK

//

κG

��

K̃K

K̃ρ

��

G̃G
∼=
σG

// K̃TG,

where κ is the map of (4.22), according to which κG is an isomorphism
exactly when G is fully faithful. Since K is fully faithful, both the hori-
zontal maps here are isomorphisms; whence, since K̃ is fully faithful, ρ is
an isomorphism if and only if G is fully faithful. By Theorem 5.56, T ad-
mits a left adjoint S precisely when G admits a left Kan extension S along
K. Suppose for the moment that this is so, and let η, ε : S a T be the
adjunction. Then T is an equivalence precisely when η and ε are isomor-
phisms. It is clear that the isomorphism G ∼= SK identifies ρ : K // TG
with ηK : K // TSK. Let Φ = (Fγ , Pγ)γ∈Γ be a density presentation of
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K as in Theorem 5.19, so that C is the closure of A under the K-absolute
colimits Fγ ? Pγ of Φ. It now follows that η : 1 // TS is an isomorphism
if and only if ρ is an isomorphism and TS preserves the colimits of Φ.
Because the fully-faithful K both preserves and reflects these colimits,
and because G̃ ∼= K̃T , we conclude that TS preserves these colimits if
and only if G̃S does so. Since the left-adjoint S preserves all colimits, we
have finally that η is an isomorphism if and only if G is fully faithful and
the colimits Fγ ? SPγ are G-absolute.

Once η is known to be an isomorphism, Tε is an isomorphism by
the triangular equation Tε.ηT = 1 of the adjunction. So ε too is an
isomorphism if T is conservative; which of course T must be if it is an
equivalence. Since G̃ ∼= K̃T where K̃ is fully faithful, T is conservative if
and only if G̃ is conservative; that is, if and only if G : A //B is strongly
generating. (In contrast to 3.6, we are using “strongly generating” here
without thereby implying that A is small.)

It remains to ensure the existence of the left adjoint S. Proposi-
tions 3.36 and 3.37 give this if B admits all Fγ-indexed colimits for all
γ ∈ Γ, but this is more than we need. The proof of Proposition 3.36
shows that we only need the (inductive) existence of the particular col-
imits Fγ ?SPγ in B. Since we can run simultaneously the inductive proof
of the existence of S and the inductive proof that η : 1 // TS is an iso-
morphism, we have finally:

Theorem 5.60 Let K : A // C be fully faithful and dense, with density
presentation (Fγ , Pγ)γ∈Γ, and let G : A // B be a K-comodel with G̃ ∼=
K̃T . Then T is an equivalence if and only if the following conditions are
satisfied (whereupon K ∼= TG):

(i) G is fully faithful.

(ii) G is strongly generating (or, equivalently, T is conservative).

(iii) Whenever Pγ ∼= TQγ for some Qγ, the colimit Fγ ? Qγ exists in B
and is preserved by T (or, equivalently, is G-absolute).

This form of the theorem can be used to derive Beck’s monadicity
criterion; see ([21], Corollaire 5.91). The theorem takes a simpler form,
sufficient for many applications, when the density presentation Φ of K
consists of all colimits with indexing-types in some set F ; as was the case,
for instance, in Theorem 5.35 above. We then have:
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Theorem 5.61 Let C admit all colimits with indexing types in F , and let
these colimits constitute a density presentation of the fully-faithful dense
K : A //C. Let G : A //B be a K-comodel with G̃ ∼= K̃T . Then T is an
equivalence if and only if the following conditions are satisfied (whereupon
K ∼= TG):

(i) G is fully faithful and strongly generating.

(ii) B admits all F-colimits and they are G-absolute.

We can apply this to the K : A // A of Theorem 5.35, where A is
the free F-cocompletion of A for a set F of small indexing types. If B is
to be equivalent to A, certainly B must be the closure under F-colimits
of A, embedded in B by G. By Proposition 3.40, whose first assertion
does not really need the smallness of A, it is then automatic that G is
strongly generating. If, moreover, F-colimits are G-absolute in B, each
G̃B in [Aop,V] is an iterated F-colimit of objects of A, and hence lies in
C; so that G is automatically a K-comodel. This gives:

Proposition 5.62 In order that G : A // B be equivalent to the the
free F-cocompletion of A for a given set F of small indexing types, it
is necessary and sufficient that G be fully faithful, that B admit all F-
colimits and be the closure of A under these, and that all F-colimits in B
be G-absolute.

Taking F here to consist of all small indexing types, with A small,
does not in fact given Theorem 5.26 as stated, but a variant. Yet
Theorem 5.26 does follow from Theorem 5.61; for, since Ỹ ∼= 1, every
G : A // B is automatically a Y -comodel.



Chapter 6

Essentially-algebraic
theories defined by reguli
and by sketches

6.1 Locally-bounded categories; the local boundedness of V in all
our examples

All that we have so far required of the symmetric monoidal closed V is that
V0 be locally small, complete, and cocomplete. To ensure the reflectivity
of certain naturally-occurring subcategories of [Aop,V], we now impose
upon V extra conditions – which are however satisfied by all the examples
of symmetric monoidal closed categories given in 1.1 above.

We call upon some reflectivity results (for ordinary categories) of [44],
which improve those of [30]. The reader will rightly suspect, as we pro-
ceed, that similar results could be formulated and proved directly in the
context of enriched categories. The length of such an undertaking, how-
ever, would not be justified by our limited applications; we accordingly
arrange, at the cost of some elegance, to use the results as they stand
– appealing to Theorem 4.85 to pass from an ordinary reflexion to a V-
reflexion.

We refer to [30] for the notion of a proper factorization system (E ,M)
on an ordinary category K, which for simplicity we take to be locally
small, complete, and cocomplete. We recall that E here is a set of epi-
morphisms, and M a set of monomorphisms, each containing the iso-
morphisms and closed under composition, such that every map factorizes
as ip with i ∈ M and p ∈ E , this factorization being essentially unique
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and functorial, in virtue of a “diagonal fill-in” property. We further re-
call that the M-subobjects of an object A ∈ K form a lattice admitting
small intersections and unions: the intersection ∩Bi being the limit of
the diagram Bi // A, while the union ∪Bi is obtained by forming the
(E ,M)-factorization

∑
Bi // ∪Bi //A of the map

∑
Bi //A; and that

there is a further factorization
∑
Bi // colimBi // ∪ Bi, both factors

here being in E . Similarly we speak of the cointersection A //C of a set
A //Ci of maps in E : it being the colimit of the diagram, and itself in E .
Finally we recall that a small set G of objects of K is an (E,M)-generator
if the canonical map

∑
G∈G K(G,A) · G // A is in E for each A ∈ K;

which is equally to say that, for every properM-subobject B of A, there
is some G ∈ G for which some g : G //A fails to factorize through B. The
existence of such a generator implies that the lattice of M-subobjects of
each A ∈ K is small; that is, that K is M-wellpowered.

We shall call a locally small, complete, and cocomplete ordinary cat-
egory K locally bounded if there is a proper factorization system (E ,M)
on K such that

(i) every family A // Ci of maps in E, however large, admits a coint-
ersection;

(ii) K has an (E ,M)-generator G;

(iii) there is a small infinite regular cardinal α such that

K(G,−) : K // Set

preserves α-filtered unions of M-subobjects for each G ∈ G.

Here an α-filtered union ∪Bi is one such that, for any subset J of the
indices with card J < α, there is an index i such that Bj ⊂ Bi for each
j ∈ J . To say that K(G,−) preserves the union is to say that K(G,∪Bi)
is the set-theoretic union of the K(G,Bi); and hence to say that any map
G // ∪Bi factorizes through one of the Bi.

If A is any object in a locally bounded K, there is a regular car-
dinal β = β(A) such that K(A,−) preserves β-filtered unions (of M-
subobjects). We have only to choose β at least equal to α and greater
than

∑
G∈G cardK(G,A). Then, if f : A //∪Bi is a map into a β-filtered

union, there is for each G ∈ G and each g : G //A some Bi through which
fg factorizes, and i can be chosen to be independent of G and g; so that
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f factorizes through Bi by the diagonal fill-in property applied to the
diagram ∑

GK(G,A) ·G E //

��

A

f

��
Bi M

//
⋃
Bi.

We now say that the symmetric monoidal closed V is locally bounded if
the ordinary category V0 is locally bounded and if, moreover,

(Z ⊗ p) ∈ E whenever Z ∈ V and p ∈ E . (6.1)

This is clearly equivalent to

[Z, i] ∈M whenever Z ∈ V and i ∈M; (6.2)

and combined with the diagonal fill-in property for V0, it easily implies
that the diagram

[N,X]
[p,1] //

[1,i]

��

[M,X]

[1,i]

��
[N,Y ]

[p,1]
// [M,Y ]

(6.3)

is a pullback whenever p : M //N is in E and i : X // Y is in M. This
“internal” version of the diagonal fill-in property is stronger than the orig-
inal one, which we regain by applying the limit-preserving V : V0

//Set
to the pullback (6.3).

We now verify that all the examples of symmetric monoidal closed cat-
egories in 1.1 are locally bounded. For the small preorders such as 2 and
R+, all the conditions are trivially satisfied with E = the epimorphisms,
M = the extremal monomorphisms = the isomorphisms.

In the examples Set, Cat, Gpd, Ord, Shv S, Ab, R-Mod,
G-R-Mod and DG-R-Mod, the category V0 is locally presentable in
the sense of [31]; and any such category K is locally bounded with E
= the extremal epimorphisms, M = the monomorphisms. For it is
certainly E-cowellpowered, by Satz 7.14 of [31]; it has by definition a
strong generator G, and this is an (E ,M)-generator by the remarks at
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the end of 3.4 above; and there is by definition a regular α such that
each K(G,−) : K //Set for G ∈ G preserves α-filtered colimits – that is,
each G ∈ G is α-presentable. Now, in the presence of such a generator G,
when ∪Bi is an α-filtered union of subobjects, the map colimBi // ∪Bi
is a monomorphism, as pointed out in Lemma 3.2.1 of [30]; and hence
in the present case is an isomorphism, for (lying in E) it is an extremal
epimorphism. Thus in fact each K(G,−) preserves α-filtered unions.
Finally, (6.2) is satisfied in each of these examples, since the right-adjoint
functor [Z,−] preserves monomorphisms. (In all of these examples except
Shv S, the category V0 is locally finitely presentable, in the sense that,
for a suitable choice of G, we may take α = ℵ0. Another account of
locally-presentable categories can be found in [45].)

In the topological examples CGTop, CGTop∗, HCGTop, and
QTop, we take for M the subspace-inclusions and for E the surjections.
The first three of these are easily seen to be E-cowellpowered. The
fourth is not – the two-point set admits a large set of quasitopologies –
yet it does admit all cointersections of surjections; we merely form the
cointersection in Set and give it the appropriate quasitopology. The
one-point space is in each case an (E ,M)-generator, which satisfies (iii)
with α = ℵ0. Moreover, (6.1) is clearly satisfied, since the tensor product
is the cartesian product – not only in V0, but also at the level of the
underlying sets.

For the final example Ban, we take E = the epimorphisms = the
dense maps,M = the extremal monomorphisms = the inclusions of closed
subspaces with the induced norm. Cowellpoweredness is easy: ifX //Y is
dense, Y can have no more points than there are filters on the image of X.
An (E ,M)-generator is {G}, where G is the base-field R or C. It satisfies
(iii) with α = ℵ1; for then an α-filtered union ∪Bi is the set-theoretical
union. (In general ∪Bi is the closure of the set-theoretical union, so that
every point of it is the limit of some sequence of the latter; when the
union is ℵ1-filtered, the sequence lies entirely in some Bi.) Finally (6.2)
is clearly satisfied, [Z, Y ] being the usual function-space.

6.2 The reflectivity in [Aop,V ] of the category of algebras for a
regulus

The first step in making available the results of [44] is the proof of:

Proposition 6.4 If V is locally bounded, so is the ordinary category
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[Aop,V]0 for any small A.

Proof. Let (E ,M) be the proper factorization system on V0, and G
the corresponding (E ,M)-generator. We define sets of maps in [Aop,V]0,
again called E andM, by decreeing that a V-natural ρ : T //S is to be in
E or inM precisely when all of its components ρA : TA //SA are in the
E or the M of V0. Clearly the new E and M contain the isomorphisms
and are closed under composition. Since we test for a monomorphism as
in 3.3 by pulling it back along itself, and since small limits in [Aop,V]
are formed pointwise, the M of [Aop,V]0 consists of monomorphisms;
similarly the E consists of epimorphisms.

To see that every ρ : T //S factorizes into an E and anM, we factorize
each component ρA as

TA σA
//RA τA

// SA

with σA ∈ E and τA ∈ M. To make R into a V-functor Aop // V,
such that σ and τ are V-natural, we must so define RAB as to render
commutative the top and left regions of

A(B,A)
TAB //

RAB

&&
SAB

��

[TA, TB]

[1,σB ]

��
[RA,RB]

[σA,1]
//

[1,τB ]

��

[TA,RB]

[1,τB ]

��
[SA, SB]

[τA,1]
// [RA,SB]

[σA,1]
// [TA, SB];

since the bottom right region is a pullback by (6.3), there is exactly one
such map RAB – which is then easily seen to satisfy the axioms (1.5) and
(1.6) for a V-functor.

To verify the diagonal fill-in property, let σ : T // S be in E and let
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τ : P //Q be in M. By (6.3) we have for each A ∈ A a pullback

[SA,PA]
[σA,1] //

[1,τA]

��

[TA,PA]

[1,τA]

��
[SA,QA]

[σA,1]
// [TA,QA];

applying
∫
A to this in accordance with (2.10), and recalling from (3.20)

that limits commute with limits, we get a corresponding pullback in which
the top left corner is now [Aop,V](S, P ); applying V : V0

// Set to this,
we get a pullback in Set expressing the desired diagonal fill-in property.
Hence (E ,M) is a proper factorization system on [Aop,V]0.

Write H for the small set {G⊗A(−, A)}G∈G,A∈A of objects of
[Aop,V]0. If R is a proper M-subobject of S, there is some A for
which RA is a proper M-subobject of SA: and then there is some
G for which some g : G // SA factorizes through RA. This gives a
map G ⊗ A(−, A) // S that factorizes through R; whence H is an
(E ,M)-generator for [Aop,V]0.

Unions of M-subobjects in [Aop,V]0 are clearly formed pointwise.
Since [Aop,V]0(G ⊗ A(−, A), S) ∼= V0(G,SA) by Yoneda, it follows that
each [Aop,V]0(G⊗A(−, A),−) preserves α-filtered unions if each V0(G,−)
does so.

An object B of a V-category B is said to be orthogonal in B to a
map θ : M // N of B0 if the map B(θ, 1) : B(N,B) // B(M,B) is an
isomorphism in V0. When this is so, applying V : V0

// Set to B(θ, 1)
gives an isomorphism B0(θ, 1) : B0(N,B) // B0(M,B) in Set, showing
that B is a fortiori orthogonal to θ in the ordinary category B0. In
general, of course, the latter condition is strictly weaker. To ask that
B(θ, 1) be an isomorphism is to ask that V0(X,B(θ, 1)) be an isomorphism
for each X ∈ V (or equivalently for each X in a strong generator of V0, if
it has one). If B is tensored, this is to ask that B be orthogonal in B0 to
X ⊗ θ : X ⊗M //X ⊗N for each X ∈ V.

Orthogonality sets up a Galois connexion between sets of maps and
sets of objects; in the case of ordinary categories, simple closure properties
of the sets so arising are listed in §2 of [30]; such of these properties as
we use in the proof below are easy to verify directly.
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The reflectivity result for ordinary categories that we call upon is the
following case of Theorem 10.2 of [44]: Let the locally-small, complete,
and cocomplete K be locally bounded, and let Θ be a (possibly large) set of
maps θ : Mθ

//Nθ in K, such that those Nθ for which θ is not in E form
(to within isomorphism) only a small set. Then the objects orthogonal in
K to each θ ∈ Θ determine a reflective full subcategory of K. (In getting
this precise form from the theorem as stated, one must recall that K is
M-wellpowered in virtue of the existence of the (E ,M)-generator.)

Our goal is the following V-based version, in the special case where
the ambient category is [Aop,V]; its statement makes no explicit reference
to (E ,M):

Theorem 6.5 Let A be a small V-category, where V is locally bounded.
Let Θ be a set of maps θ : Mθ

//Nθ in [Aop,V]0, such that the Nθ form
(to within isomorphism) only a small set. Let C be the full subcategory of
[Aop,V] determined by those objects orthogonal in [Aop,V] to each θ ∈ Θ.
Then C is reflective in [Aop,V].

Proof. It is immediate that C is closed under cotensor products in
[Aop,V]; hence it suffices by Theorem 4.85 to prove the reflectivity of
C0 in the ordinary category [Aop,V]0, which we now denote by K. The
objects of C0 are those orthogonal in K to X ⊗ θ : X ⊗Mθ

//X ⊗Nθ for
each X ∈ V. If G is the (E ,M)-generator in V0, write εX : RX //X for
the canonical map

∑
G∈G V0(G,X) ·G //X, which is in E by hypothesis.

For each θ and each X, form the commutative diagram

RX ⊗Mθ
RX⊗θ //

εX⊗Mθ

��

RX ⊗Nθ

σX,θ

��
εX⊗Nθ

��

X ⊗Mθ

ρX,θ //

X⊗θ
**

P (X, θ)

τX,θ

""
X ⊗Nθ,

(6.6)

in which the top left region is a pushout. Since tensor products in [Aop,V]
are formed pointwise, it follows from (6.1) that εX ⊗Nθ is in E , whence
its factor τX,θ is in E . Every object orthogonal in K to RX ⊗ θ is also
orthogonal to its pushout ρX,θ; it is then orthogonal to the composite
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X ⊗ θ = τX,θρX,θ if and only if it is orthogonal to τX,θ. Thus C0 consists
of the objects in K orthogonal to each RX ⊗ θ and to each τX,θ. Since

RX ⊗ θ = (
∑

G
V0(G,X) ·G)⊗ θ ∼=

∑
G
V0(G,X) · (G⊗ θ),

any object orthogonal in K to each G⊗θ is also orthogonal to the coprod-
uct RX ⊗ θ of these; and thus C0 consists of the objects in K orthogonal
to each G⊗ θ for G ∈ G and to each τX,θ. Since the number of different
G ⊗ Nθ is small, and since each τX,θ is in E , the desired reflectivity of
C0 in K follows from Proposition 6.4 and the result quoted before the
theorem.

By Proposition 5.15, the cocomplete V-category C of Theorem 6.5 is
the category of algebras for an essentially-algebraic theory K : A // C,
where K is the composite of the Yoneda embedding A // [Aop,V] and
the reflexion [Aop,V] // C. Clearly G : A // B is a comodel for the
theory precisely when B(G−, B) : Aop //V is for each B ∈ B orthogonal
in [Aop,V] to each θ ∈ Θ. By a very free adaptation of the terminology
of Isbell [37], we shall in future call such a set Θ as occurs in Theorem
6.5 a regulus. We shall use such terms as Θ-comodel and K-comodel
interchangeably, and shall write Θ-Alg for the category C of K-algebras.

6.3 The category of algebras for a sketch, and in particular for an
F -theory; algebraic functors and their adjoints

We suppose henceforth that V is locally bounded. Let A be a small V-
category, and consider a set (not necessarily small)

Φ = {φγ : Fγ //A(Pγ−, Aγ)}γ∈Γ (6.7)

of cylinders in A, where Fγ : Lop
γ

// V and Pγ : Lγ // A, with each Lγ
small. Call a functor G : A //B a Φ-comodel if, for each γ, the cylinder

Fγ
φγ
//A(Pγ−, Aγ)

G
//B(GPγ−, GAγ) (6.8)

is a colimit-cylinder; and write Φ-Com[A,B] for the full subcategory
of [A,B] given by these comodels. Similarly, write Φ-Mod[Aop,P] for
(Φ-Com[A,Pop])op, and write Φ-Alg for Φ-Mod[Aop,V]. Thus the Φ-
algebras are those Aop // V that send each φγ to a limit-cone. By very
freely adapting the terminology of Ehresmann [24] (see also [3]), we may
call the pair (Aop,Φ), or just Φ for short, a sketch.



6.3 The category of algebras for a sketch 159

Given such a sketch, each composite

Fγ
φγ
//A(Pγ−, Aγ)

Y
// [Aop,V](Y Pγ−, Y Aγ) (6.9)

corresponds by (3.5) to a map

θγ : Fγ ? Y Pγ // Y Aγ (6.10)

in the cocomplete [Aop,V]. Write Θ = {θγ}γ∈Γ for the set of these maps;
because A is small, the set of codomains in (6.10) is small, so that Θ is
indeed a regulus in the sense of 6.2.

Theorem 6.11 If the regulus Θ corresponds as above to the sketch Φ,
then

Φ-Com[A,B] = Θ-Com[A,B]

for any category B. In particular Φ-Alg is the reflective subcategory Θ-Alg
of [Aop,V]. The corresponding dense functor K : A // Φ-Alg is fully
faithful precisely when the cylinders φγ are already colimit-cylinders in
A.

Proof. By the remarks at the end of 6.2, G : A // B is a Θ-comodel
precisely when each B(G−, B) is orthogonal in [Aop,V] to each θγ ; that
is, when each

[Aop,V]
(
Y Aγ ,B(G−, B)

)
[Aop,V](θγ ,1)

��
[Aop,V]

(
Fγ ? Y Pγ ,B(G−, B)

)
is an isomorphism. By (3.5) and Yoneda, this map is isomorphic to a
map

B(GAγ , B) // [Lop
γ ,V]

(
Fγ ,B(GPγ−, B)

)
, (6.12)

whose unit is easily verified to be (6.8); to say that it is an isomorphism
is therefore by (3.5) to say that (6.8) is a colimit-cylinder, or that G is a
Φ-comodel. Applying this to the comodels in Vop gives by Theorem 5.59
the equality Φ-Alg = Θ-Alg.

By Proposition 5.16, K is fully faithful if and only if Φ-Alg contains
the representables A(−, A). To ask each A(−, A) to be an algebra is by
(6.12) to ask that each

A(Aγ , A) // [Lop
γ ,V]

(
Fγ ,A(Pγ−, A)

)
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be an isomorphism, and hence by (3.5) that each φγ be a colimit-cylinder.

In particular, Φ-Alg is reflective in [Aop,V] when Φ consists of all
small colimit-cylinders in A; the reflectivity of V ′′0 in V ′0 = [Vop

0 ,Set′] of
3.12 above is an example of this.

A very important special case of Theorem 6.11 is that where A is F-
cocomplete for some set F of small indexing-types, and where Φ consists
of (the units of) all the F-colimits in A. In this case Φ-Com[A,B] =
F-Cocts[A,B] and Φ-Alg = F-Cts[Aop,V]. The full name (Aop,Φ) of the
sketch Φ might here be replaced by (Aop,F). It is also suggestive to refer
to a small F-complete category Aop as an F-theory. For instance, with
V = Set, a Lawvere-Bénabou theory ([52], [7]) is a small category Aop

with finite products; while a small Aop with finite limits is sometimes
called a finitary essentially-algebraic theory. (Joyal suggests calling the
latter a cartesian theory ; in that finite limits may be said to go back
to Descartes, who introduced both the product R × R and the equalizer
{(x, y) | f(x, y) = g(x, y)}.) This terminology moreover allows Aop-Alg
(F being understood) as a useful abbreviation for F-Cts[Aop,V].

Consider now a sketch (Aop,Φ) where Φ is given by (6.7); let F be
a set of small indexing-types containing each Fγ occurring in Φ; and
let B be a small F-cocomplete category. Write K : A // Φ-Alg and
L : B // Bop-Alg = F-Cts[Bop,V] for the respective dense functors, ob-
serving by Theorem 6.11 that L is fully faithful. Note that, since L is
also an L-comodel by (5.51), we have:

Proposition 6.13 For a small F-cocomplete B, the dense inclusion
L : B // Bop-Alg = F-Cts[Bop,V] preserves and reflects F-colimits.

Consider a Φ-comodel G : A //B. If Q : B //D is any F-continuous
functor, the composite QG is clearly another Φ-comodel. Taking D = Vop

here, we see that [Gop, 1] : [Bop,V] // [Aop,V] restricts to a functor

G∗ : Bop-Alg // Φ-Alg. (6.14)

Such a functor between the categories of algebras, induced by a realization
(that is, a model) Gop of one theory in the other, is often said to be
algebraic: especially in the case where A too is F-cocomplete and Φ =
(Aop,F).

Since L̃ : Bop-Alg // [Bop,V] and K̃ : Φ-Alg // [Aop,V] are fully faith-
ful, since

[Gop, 1] : [Bop,V] // [Aop,V]
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has by Theorem 4.50 the left adjoint LanGop , and since L̃ has by Theorem
4.51 the left adjoint − ? L, it follows that the algebraic functor Ĝ∗ has
the left adjoint

G∗ = (− ? L).LanGop .K̃ : Bop-Alg // Φ-Alg.

The value of this at P ∈ Bop-Alg is
(
LanGop(K̃P )

)
? L, which by (4.65)

is also (K̃P ) ? (LG); so that by (4.17) we have

G∗ ∼= LanK(LG). (6.15)

In fact G is recoverable from G∗. First observe that Proposition 6.13
gives:

Proposition 6.16 In the circumstances above, G : A //B is a Φ-comodel
if and only if LG : A // Bop-Alg is a Φ-comodel. Thus Φ-Com[A,B] is
the full subcategory of Φ-Com[A,Bop-Alg] given by the functors factorizing
through L.

Using this and (6.15), we have:

Theorem 6.17 Let the small B be F-cocomplete, where the set F
of small indexing-types contains all the Fγ occurring in the sketch
(Aop,Φ); and let K : A // Φ-Alg and L : B // Bop-Alg be the re-
spective dense functors. Then the composite of the full inclusion
Φ-Com[A,B] // Φ-Com[A,Bop-Alg] sending G to LG, and the equiva-
lence

[K, 1] a LanK : Φ-Com[A,Bop-Alg] ' Ladj[Φ-Alg,Bop-Alg]

of Theorem 5.56, is isomorphic to a functor

( )∗ : Φ-Com[A,B] // Ladj[Φ-Alg,Bop-Alg] (6.18)

sending G to the left adjoint G∗ of G∗. Accordingly we have

G∗K ∼= LG; (6.19)

and the functor ( )∗ of (6.18) is fully faithful, its image consisting of
those left-adjoint S : Φ-Alg //Bop-Alg for which SK factors through the
fully-faithful L as SK ∼= LG for some (essentially unique) G.
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We may consider this theorem in the case where A too is F-
cocomplete, and Φ = (Aop,F). The F-theories Aop, the F-continuous
functors between these, and the V-natural transformations between the
latter, form a 2-category – that is, a Cat-category. In fact they form
more; for F-Cocts[A,B] is not just a category but a V-category. We saw
in 2.3 that V-Cat is symmetric monoidal closed; and what the F-theories
actually constitute is a (V-Cat)-category. There is a (V-Cat)-functor
into V-CAT sending the F-theory Aop to Aop-Alg and defined on hom-
objects by (6.18). It is locally fully faithful, in the sense that (6.18)
is fully faithful. Theorem 6.17 above determines, in a certain sense,
its local image; not as absolutely as we should like, since the criterion
for S : Aop-Alg // Bop-Alg to be in this local image refers back to the
inclusions of A and B. The remaining step in determining globally the
image of this (V-Cat)-functor is that of characterizing the V-categories
of the form Aop-Alg.

For this we can get something from Theorem 5.60; in the absence of
any particularly simple density presentation of K : A //Aop-Alg, we can
just use the canonical one K̃C ? K ∼= C from Theorem 5.19. We have:

Proposition 6.20 If the small A is F-cocomplete and K : A //Aop-Alg
is the fully-faithful dense functor as above, let G : A // D be an F-
cocontinuous functor, and hence a K-comodel; and define T : D //Aop-Alg
by G̃ ∼= K̃T . In order that T be an equivalence, the following conditions
are necessary and sufficient:

(i) D is cocomplete.

(ii) G is fully faithful and strongly generating.

(iii) The canonical map

Aop-Alg(KA,C) //D
(
GA,Aop-Alg(K−, C) ? G

)
is an isomorphism.

Proof. The conditions are clearly necessary. For their sufficiency
we refer not to Theorem 5.60 but to its proof. Since D is cocomplete,
G admits a left Kan extension S along K, which by Theorem 5.56 is a
left adjoint to T . For η and ε to be isomorphisms, we need that G is
fully faithful and strongly generating (which is (ii)) and that the colimit
K̃C ? SK is G-absolute. Since SK ∼= G, this last requirement is that
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D(GA, K̃C ? G) be isomorphic to K̃C ? D(GA,G−); and as G is fully
faithful the latter is K̃C ?A(A,−) or (K̃C)A, giving (iii).

Again this recognition theorem is not as absolute as we should like, in
that condition (iii) refers in detail to Aop-Alg. A far better description
of the image of Aop 7→ Aop-Alg is often available when both V and F are
suitably restricted – see for example [45]. The fact is that we are coming
to the end of what can usefully be said in the present generality.

6.4 The F -theory generated by a small sketch

One last series of important observations can however be made.

Call a sketch (Aop,Φ) small if the set Φ of cylinders is small. If all the
Fγ occurring in Φ lie in a small set F of indexing-types, the smallness of
Φ is automatic; for the small A admits but a small set of cylinders with
any given indexing-type.

Proposition 6.21 Let (Aop,Φ) be a small sketch which involves indexing-
types only from the small set F ; and let K : A // C = Φ-Alg be the
corresponding dense functor. Let D be the closure under F-colimits in C of
the full image of K; it is small by 3.5. Let the factorization of K through
D be Z : A // D followed by the full inclusion J : D // C; by Theorem
5.13 both Z and J are dense, so that in particular J̃ : C // [Dop,V] is fully
faithful. We assert that the replete image of J̃ is F-Cts[Dop,V].

Proof. One direction is immediate. J preserves F-colimits by the
construction of D, so that C(J−, C) sends them to limits in V, and hence
J̃C is F-continuous.

Suppose now that P op : Dop // V is F-continuous. Since K = JZ is
a Φ-comodel by (5.51), and since the fully-faithful J : D // C not only
preserves but also reflects F-colimits, Z : A // D is itself a Φ-comodel.
Since P is F-cocontinuous, PZ : A //Vop too is a Φ-comodel. By Theo-
rem 5.56, we have PZ ∼= SK where S : C // Vop is a left-adjoint functor
given by S = LanKPZ, the unit PZ // SK of this left Kan extension
being an isomorphism. By Theorem 4.47, since K = JZ with J fully
faithful, we have LanZPZ ∼= SJ , with unit λ an isomorphism. Applying
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Theorem 4.43 to 1: PZ // PZ as in

D
P

��
SJ

))

µ ;C

A
PZ

//

Z

??

λ ;C

Vop

gives a map µ : SJ //P with µZ an isomorphism. Since both P and SJ
preserve F-colimits, and since D is the closure under F-colimits of the full
image of Z (which is the full image of K), we conclude that µ : SJ // P
is an isomorphism.

The right-adjoint Sop : Cop // V being necessarily a representable
C(−, C), we have P op ∼= SopJop ∼= C(J−, C) = J̃C, as required.

Now Theorem 6.11 gives:

Corollary 6.22 In these circumstances the functor J is isomorphic to
the inclusion D //Dop-Alg of the F-cocomplete small D, so that for any
B we have J-Com[D,B] = F-Cocts[D,B].

Since the size of F here is bounded only below by the knowledge of
the sketch Φ, we cannot expect the comodels of the sketches (Aop,Φ)
and (Dop,F) to “coincide” in every B; that they do so when B is F-
cocomplete is an example of the “sufficient completeness” referred to in
the penultimate paragraph of 5.13. The precise result is:

Theorem 6.23 In the circumstances of Proposition 6.21, every Φ-
comodel G : A // B admits a left Kan extension along Z : A // D
whenever B is F-cocomplete; and we have an equivalence

LanZ a [Z, 1] : F-Cocts[D,B] ' Φ-Com[A,B]

whose unit and counit are the canonical maps.

Proof. By Corollary 6.22 and Theorem 5.52, we have only to show
that every Φ-comodel G : A //B has the form HZ for some F-continuous
H : D // B.

We suppose first that B is small, and consider the inclusion
L : B // Bop-Alg of Proposition 6.13. Then LG, being itself a Φ-
comodel as in Proposition 6.16, is by Theorem 5.56 isomorphic to SK
for some left-adjoint S : Φ-Alg // Bop-Alg; in fact S is the G∗ of (6.19).
The set H of those objects C ∈ C for which SC lies in B ⊂ Bop-Alg
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certainly contains all the objects KA, since SK ∼= LG; and it is closed
under F-colimits by Proposition 6.13, since the left-adjoint S preserves
colimits; hence H contains D by the definition of this latter. Thus
SJ ∼= LH for some H : D // B, which is clearly F-cocontinuous since
SJ is so. Now LG ∼= SK = SJZ ∼= LHZ; and (L being fully faithful)
we have the desired result G ∼= HZ.

Passing to the case where the F-cocomplete B need not be small,
let B′ be the closure under F-colimits in B of the full image of the Φ-
comodel G : A // B; this latter factorizing as G′ : A // B′ followed by
the full inclusion N : B′ //B. Since N preserves and reflects F-colimits,
G′ is itself a Φ-comodel; and since B′ is small by 3.5, we have as above
G′ ∼= H ′Z for some F-cocontinuous H ′ : D // B′. Now G ∼= HZ, where
H = NH ′ is F-cocontinuous.

We may say that Dop is the F-theory generated by the sketch (Aop,Φ),
or that (Aop,Φ) is a sketch of the F-theory Dop. The latter form of words
comes closer to explicating Ehresmann’s choice of the word “sketch”. As
he used the word (in the case V = Set), the small category A was not
in general explicitly given, but presented by generators and relations;
often this presentation was finite, and Φ was a finite set of finite cones
(the colimits involved in F classically being conical ones). In such cases,
one can literally see (the presentation of) (Aop,Φ) as a finitary way of
“sketching” the generally infinite and complicated structure of Dop, or
the still more complicated structure of Dop-Alg.

When V = Set and F consists of the functors ∆1: L // Set for fi-
nite L, the F-theories are the cartesian theories of 6.3 above; the sketch
(Aop,Φ) gives rise to such a theory if Φ is a small set of finite cones. It
is exactly the categories Φ-Alg for such a Φ that are the locally finitely
presentable categories; D ⊂ Φ-Alg is a small dense subcategory composed
of objects which (since finite limits commute with filtered colimits in Set)
are finitely presentable. In all the examples of categories V0 that we de-
clared locally finitely presentable in 6.1, it is easy to see that V0 = Φ-Alg
for such a sketch Φ. For further information on the relation of locally
presentable categories to reguli and sketches, see the classical [31], or the
newer [45] which extends the ideas to certain important V other than
Set. These V include Cat and Gpd, which are the appropriate base cat-
egories for the study of categories with essentially-algebraic structure. At
this level, as is well known, equivalence becomes more central than iso-
morphism, and the naturally-occurring “functors” and “transformations”
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are more general than the V-functors and the V-natural transformations;
which leads to various problems of coherence. The study of essentially-
algebraic theories in this context must take account of these more general
notions; this is not touched on in [45], but a beginning is made in [46].

6.5 The symmetric monoidal closed structure on the category of
F -cocomplete categories and F -cocontinuous functors

Before ending, we give a final application of Theorem 6.23. We consider
the (V-Cat)-category of small F-cocomplete categories A, where F is a
small set of indexing-types. Since F-Cocts[A,B] denotes the (V-Cat)-
valued hom here, an appropriate name for this category is F-Cocts.

If B and C are F-cocomplete, so of course is [B, C], with F-colimits
formed pointwise. The full subcategory F-Cocts[B, C] of this is again
F-cocomplete, since colimits commute with colimits. The functors
Q : A // F-Cocts[B, C] correspond to those functors P : A⊗ B // C for
which each partial functor P (A,−) : B // C is F-cocontinuous. If A too
is F-cocomplete, the functor Q is itself F-cocontinuous precisely when
the other partial functors P (−, B) : A // C are also F-cocontinuous. We
are thus led to the notion of a P : A ⊗ B // C which is F-cocontinuous
in each variable separately.

Such a P is a comodel for a sketch
(
(A⊗B)op,Φ

)
. If λ : F //A(T−,M)

is a cylinder in A, where F : Lop // V and T : L //A, we can consider
for B ∈ B the functor

L ∼= L ⊗ I
T⊗B

//A⊗ B

sending L to (TL,B), and called T⊗B. Then we can consider the cylinder

F
λ
//A(T−,M) ∼= A(T−,M)⊗ I

1⊗j
//A(T−,M)⊗ B(B,B) =

= (A⊗ B)
(
(T−, B), (M,B)

)
,

and call this λ ⊗ B. Note that this is a colimit-cylinder in A ⊗ B if λ is
one in A; essentially because − ⊗ Y : V // V preserves colimits. If we
take Φ to consist of all the λ ⊗ B and all the A ⊗ µ, where λ is an F-
colimit-cylinder in A and µ is an F-colimit-cylinder in B, the Φ-comodels
P : A ⊗ B // C are precisely those P that are F-cocontinuous in each
variable. In fact more than this is true; it is easy to see that

Φ-Com[A⊗ B, C] ∼= F-Cocts
[
A,F-Cocts[B, C]

]
.
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Write (A⊗FB)op for the F-theory generated by the sketch
(
(A⊗B)op,Φ

)
.

In view of Theorem 6.23 we get

F-Cocts[A⊗F B, C] ' F-Cocts
[
A,F-Cocts[B, C]

]
. (6.24)

The symmetry in A, B, C of F-Cocts
[
A,F-Cocts[B,F-Cocts[C,D]]

]
now

easily gives
(A⊗F B)⊗F C ' A⊗F (B ⊗F C) (6.25)

and
A⊗F B ' B ⊗F A. (6.26)

If A is the free F-cocompletion of A as in Theorem 5.35, it is clear that
(for any small A and B)

A⊗F B ' A⊗ B ; (6.27)

it is also clear that, for any small A and for F-cocomplete B, the F-
cocontinuous functors A ⊗F B // C correspond to the functors P : A ⊗
B // C for which P (A,−) is F-cocontinuous. It follows that

I ⊗F B ' B , (6.28)

where I is the free F-cocompletion of I; which by Theorem 5.35 is the
closure of I in V under F-colimits.

The coherence, in the appropriate sense, of the maps (6.25), (6.26),
and (6.28), follows from the universal property (6.24). Thus the (V-Cat)-
category F-Cocts is endowed with something like a symmetric monoidal
closed structure – the difference being that we have equivalences in place
of isomorphisms.
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Cahiers de Top. et Géom. Diff. 15(1974), 3-20.

[2] H. Bass, Algebraic K-theory, W.A. Benjamin Inc., New York and
Amsterdam, 1968.

[3] A. Bastiani and C. Ehresmann, Categories of sketched structures,
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Adjunction, 33
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Algebraic functor, 160
Atom, 108
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functor category, 41

monoidal, 9

monoidal biclosed, 19
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Cauchy complete, 129
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Closed monoidal category, 19
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F-cocomplete, 133

finitely, 97
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iterated, 70
K-absolute, 124
pointwise, 55
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for a regulus, 158
for a sketch, 158
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Cauchy, 128
idempotent-splitting, 135
under F-colimits, 134
under finite colimits, 136
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of a V-natural transforma-
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Comprehensive factorization sys-
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Conical limit or colimit
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Contravariant functor, 17

representable, 22

Copower, 66

Cotensor product, 65

Cotensored, 65
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of a general end, 71
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of a representation, 31

of a right Kan extension, 83
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Cowellpoweredness, weak, 65

Cylinder, 52, 158–160, 163, 166

K-cylinder, 111

Dense, 116

Dense functors, 159–163

composition of, 117

Density presentation, 162

Density, formulations for, 115

Diagonal fill-in, 152

Diagram, 51
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Discrete Grothendieck construc-
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Epimorphism, extremal, 61



INDEX 177

Equivalence, 33

Essentially surjective, 33

Essentially-algebraic

structure, 165

theory, 144, 146, 166

finitary, 160

Extraordinary V-naturality, 24
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F-cocomplete, 133
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Finitely presentable, 113

Flat, 138
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Fubini theorem

for ends in V, 40

general, 56

Full image, 34
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Fully faithful

locally, 162
Fully faithful functor, 12
Functor

2-functor, 13
algebraic, 160
conservative, 10
contravariant, 17
contravariant representable,
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enriched over V, 11
flat, 138
fully faithful, 12
generating, 63
of two variables, 17
partial, 17
representable, 21, 31
underlying, 14

Functor category, 41

General adjoint functor theorem,
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Generating functor, 63
Generator, 63

(E ,M)-generator, 152
regular, 111
strong, 63

Generic model, 147
Grothendieck construction

discrete, 102

Heyting algebra, 20
Hom, internal, 19

Idempotent monad, 35
Idempotent, split, 135
Idempotent-splitting comple-

tion, 135
Identity element, 11
Image

full, 34
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Indexing type, 51
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Initial functor, 96

Interchange

of ends in V, 40

of limits in general, 57

Internal hom, 19

Intersection of subobjects, 108

of M-subobjects, 152

Iterated colimit, 70

K-absolute colimit, 124

K-comodel, 143

K-cylinder, 111

K-model, 144

Kan adjoint, 92

Kan extension, 83, 84

pointwise, 90

weak, 89

Left adequate, 116

Left adjoint, 32

Left exact, 97

Left Kan extension, 84

weak, 89

Limit

classical, 58

conical, 58, 67, 70

indexed, 51

pointwise, 55

Limit cone, 59, 68

Locally bounded, 152, 153, 158

Locally finitely presentable, 154,
165

Locally fully faithful, 162

Locally presentable, 153
Locally small, 11, 13

M-subobject, 152
M-wellpowered, 152
Mates, 34
Model, 144

for a regulus, 158
for a sketch, 158
generic, 147

Monad, idempotent, 35
Monoidal category, 9

biclosed, 19
cartesian, 10
closed, 19
strict, 10
symmetric, 16

Morita equivalence, 129

Opposite V-category, 17
Orthogonal, 156, 159

Partial adjoint, 33
Partial functor, 17
Pointwise Kan extension, 90
Pointwise limit or colimit, 55
Pointwise limits, preservation of,

57
Power, 66
Presentation of density, 125
Preservation

of a limit, 54
of a right Kan extension, 83

Profunctors, 129
Projective cone, 58
Proper factorization system, 151

Realization, 160
Reflect limits, 61
Reflective full subcategory, 35
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Regulus, 158, 159

Replete full subcategory, 34

Replete image, 34

Repletion, 35

Representable V-functor, 21, 31

Representation, 31

Right adequate, 116

Right adjoint, 32

Right exact, 97

Right Kan extension, 83

Sketch, 158, 165

of an F-theory, 165

small, 163

Small, 13, 45

Small limit

α-small, 100

Small-projective, 127

Small sketch, 163

Small V-category, 11, 38

Solution-set condition, 108

Special Adjoint Functor Theo-
rem, 109

Split coequalizer diagram, 110

Split idempotent, 135

Strict monoidal category, 10

Strong cogenerator, strongly co-
generating, 63

Strong generator, strongly gener-
ating, 63, 162

Subobject, 108

M-subobject, 152

Surjective, essentially, (on ob-
jects), 33

Symmetric, 10

Symmetric monoidal category,
16

Symmetry, 15

Tensor product, 10, 66

of F-theories, 166

of V-theories, 16

Tensored, 66

Theory, cartesian, 160

Theory, essentially-algebraic,
144, 146

F-theory, 160

finitary, 160

Transformation, V-natural, 12

Triangular equations, 32

Underlying category, 13

Underlying functor, 14

Union, of M-subobjects, 152

Unit object, 10

Unit of a(n)

adjunction, 32

colimit, 52

left Kan extension, 84

representation, 31

Unit V-category, 13

Universal V-natural family, 37

V-category, 11

cocomplete, 54

complete, 54

dual, 17

opposite, 17

small, 11, 38

unit, 13

V-category

free, 48

V-functor, 11

accessible, 105

cocontinuous, 54

conservative, 63

continuous, 54

dense, 116
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representable, 21, 31
strongly cogenerating, 63
strongly generating, 63

V-natural family
extraordinary, 24
universal, 37

V-natural transformation, 12

Weak Kan extension, 89
Weakly accessible, 107
Weakly cowellpowered, 65
Wellpowered: M-wellpowered,

152

Yoneda embedding, 47
Yoneda isomorphism, 46, 53
Yoneda lemma

strong, 46
weak, 29
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