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PREFACE to the ONLINE EDITION

Abstract and Concrete Categories was published by John Wiley and Sons, Inc, in 1990,
and after several reprints, the book has been sold out and unavailable for several years.
We now present an improved and corrected version as an open access file. This was made
possible due to the return of copyright to the authors, and due to many hours of hard
work and the exceptional skill of Christoph Schubert, to whom we wish to express our
profound gratitude. The illustrations of Edward Gorey are unfortunately missing in the
current version (for copyright reasons), but fortunately additional original illustrations
by Marcel Erné, to whom additional special thanks of the authors belong, counterbalance
the loss.

Open access includes the right of any reader to copy, store or distribute the book or
parts of it freely. (See the GNU Free Documentation License at the end of the text.)

Besides the acknowledgements appearing at the end of the original preface (below),
we wish to thank all those who have helped to eliminate mistakes that survived the
first printing of the text, particularly H. Bargenda, J. Jürjens W. Meyer, L. Schröder,
A. M. Torkabud, and O. Wyler.

January 12, 2004
J. A., H. H., and G. E. S.
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PREFACE

Sciences have a natural tendency toward diversification and specialization. In particular,
contemporary mathematics consists of many different branches and is intimately related
to various other fields. Each of these branches and fields is growing rapidly and is itself
diversifying. Fortunately, however, there is a considerable amount of common ground
— similar ideas, concepts, and constructions. These provide a basis for a general theory
of structures.

The purpose of this book is to present the fundamental concepts and results of such a
theory, expressed in the language of category theory — hence, as a particular branch of
mathematics itself. It is designed to be used both as a textbook for beginners and as a
reference source. Furthermore, it is aimed toward those interested in a general theory of
structures, whether they be students or researchers, and also toward those interested in
using such a general theory to help with organization and clarification within a special
field. The only formal prerequisite for the reader is an elementary knowledge of set
theory. However, an additional acquaintance with some algebra, topology, or computer
science will be helpful, since concepts and results in the text are illustrated by various
examples from these fields.

One of the primary distinguishing features of the book is its emphasis on concrete cat-
egories. Recent developments in category theory have shown this approach to be par-
ticularly useful. Whereas most terminology relating to abstract categories has been
standardized for some time, a large number of concepts concerning concrete categories
has been developed more recently. One of the purposes of the book is to provide a refer-
ence that may help to achieve standardized terminology in this realm. Another feature
that distinguishes the text is the systematic treatment of factorization structures, which
gives a new unifying perspective to many earlier concepts and results and summarizes
recent developments not yet published in other books.

The text is organized and written in a “pedagogical style”, rather than in a highly
economical one. Thus, in order to make the flow of topics self-motivating, new concepts
are introduced gradually, by moving from special cases to the more general ones, rather
than in the opposite direction. For example,

• equalizers (§7) and products (§10) precede limits (§11),

• factorizations are introduced first for single morphisms (§14), then for sources
(§15), and finally for functor-structured sources (§17),

• the important concept of adjoints (§18) comes as a common culmination of three
separate paths: 1. via the notions of reflections (§4 and §16) and of free objects
(§8), 2. via limits (§11), and 3. via factorization structures for functors (§17).

Each categorical notion is accompanied by many examples — for motivation as well as
clarification. Detailed verifications for examples are usually left to the reader as implied
exercises. It is not expected that every example will be familiar to or have relevance

4



Sec. 0]

for each reader. Thus, it is recommended that examples that are unfamiliar should
be skipped, especially on the first reading. Furthermore, we encourage those who are
working through the text to carry along their favorite category and to keep in mind
a “global exercise” of determining how each new concept specializes in that particular
setting. The exercises that appear at the end of each section have been designed both as
an aid in understanding the material, e.g., by demonstrating that certain hypotheses are
needed in various results, and as a vehicle to extend the theory in different directions.
They vary widely in their difficulty. Those of greater difficulty are typically embellished
with an asterisk (∗).

The book is organized into seven chapters that represent natural “clusters” of topics,
and it is intended that these be covered sequentially. The first five chapters contain
the basic theory, and the last two contain more recent research results in the realm of
concrete categories, cartesian closed categories, and quasitopoi. To facilitate references,
each chapter is divided into sections that are numbered sequentially throughout the
book, and all items within a given section are numbered sequentially throughout it. We
use the symbol to indicate either the end of a proof or that there is a proof that is
sufficiently straightforward that it is left as an exercise for the reader. The symbol D
means that a proof of the dual result has already been given. Symbols such as A 4.19
are used to indicate that no proof is given, since a proof can be obtained by analogy
to the one referenced (i.e., to item 19 in Section 4). Two tables of symbols appear
at the end of the text. One contains a list (in alphabetical order) of the abbreviated
names for special categories that are dealt with in the text. The other contains a list
(in order of appearance in the text) of special mathematical symbols that are used. The
bibliography contains only books and monographs. However, each section of the text
ends with a (chronologically ordered) list of suggestions for further reading. These lists
are designed to aid those readers with a particular interest in a given section to “strike
out on their own” and they often contain material that can be used to solve the more
difficult exercises. They are intended as merely a sampling, and (in view of the vast
literature) there has been no attempt to make them complete1 or to provide detailed
historical notes.
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Chapter 0

INTRODUCTION

There’s a tiresome young man in Bay Shore.
When his fiancée cried, ‘I adore
The beautiful sea’,
He replied, ‘I agree,
It’s pretty, but what is it for?’

Morris Bishop
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1 Motivation

Why study categories? Some reasons are these:

1.1 ABUNDANCE

Categories abound in mathematics and in related fields such as computer science. Such
entities as sets, vector spaces, groups, topological spaces, Banach spaces, manifolds,
ordered sets, automata, languages, etc., all naturally give rise to categories.

1.2 INSIGHT INTO SIMILAR CONSTRUCTIONS

Constructions with similar properties occur in completely different mathematical fields.
For example,

(1) “products” for vector spaces, groups, topological spaces, Banach spaces, automata,
etc.,

(2) “free objects” for vector spaces, groups, rings, topological spaces, Banach spaces,
etc.,

(3) “reflective improvements” of certain objects, e.g., completions of partially ordered
sets and of metric spaces, Čech-Stone compactifications of topological spaces, sym-
metrizations of relations, abelianizations of groups, Bohr compactifications of topo-
logical groups, minimalizations of reachable acceptors, etc.

Category theory provides the means to investigate such constructions simultaneously.

1.3 USE AS A LANGUAGE

Category theory provides a language to describe precisely many similar phenomena that
occur in different mathematical fields. For example,

(1) Each finite dimensional vector space is isomorphic to its dual and hence also to its
second dual. The second correspondence is considered “natural”, but the first is
not. Category theory allows one to precisely make the distinction via the notion
of natural isomorphism.

(2) Topological spaces can be defined in many different ways, e.g., via open sets, via
closed sets, via neighborhoods, via convergent filters, and via closure operations.
Why do these definitions describe “essentially the same” objects? Category theory
provides an answer via the notion of concrete isomorphism.

(3) Initial structures, final structures, and factorization structures occur in many dif-
ferent situations. Category theory allows one to formulate and investigate such
concepts with an appropriate degree of generality.
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Sec. 1] Motivation 11

1.4 CONVENIENT SYMBOLISM

Categorists have developed a symbolism that allows one quickly to visualize quite com-
plicated facts by means of diagrams.

1.5 TRANSPORTATION OF PROBLEMS

Category theory provides a vehicle that allows one to transport problems from one area
of mathematics (via suitable functors) to another area, where solutions are sometimes
easier. For example, algebraic topology can be described as an investigation of topolog-
ical problems (via suitable functors) by algebraic methods.

1.6 DUALITY

The concept of category is well balanced, which allows an economical and useful duality.
Thus in category theory the “two for the price of one” principle holds: every concept is
two concepts, and every result is two results.

The reasons given above show that familiarity with category theory will help those who
are confronted with a new field to detect analogies and connections to familiar fields, to
organize the new field appropriately, and to separate the general concepts, problems and
results from the special ones, which deserve special investigations. Categorical knowledge
thus helps to direct and to organize one’s thoughts.
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2 Foundations

Before delving into categories per se, we need to briefly discuss some foundational as-
pects. In §1 we have seen that in category theory we are confronted with extremely
large collections such as “all sets”, “all vector spaces”, “all topological spaces”, or “all
automata”. The reader with some set-theoretical background knows that these entities
cannot be regarded as sets. For instance, if U were the set of all sets, then the subset
A = {x |x ∈ U and x /∈ x} of U would have the property that A ∈ A if and only if A /∈ A
(Russell’s paradox). Someone working, for example, in algebra, topology, or computer
science usually isn’t (and needn’t be) bothered with such set-theoretical difficulties. But
it is essential that those who work in category theory be able to deal with “collections”
like those mentioned above. To do so requires some foundational restrictions. Neverthe-
less, certain naturally arising categorical constructions should not be outlawed simply
because of the foundational safeguards. Hence, what is needed is a foundation that, on
the one hand, is sufficiently flexible so as not to unduly inhibit categorical inquiry and, on
the other hand, is sufficiently rigid to give reasonable assurance that the resulting theory
is consistent, i.e., does not lead to contradictions. We also require that the foundation be
sufficiently close to those foundational systems that are used by most mathematicians.
Below we provide a brief outline of the features such a foundation should have.

The basic concepts that we need are those of “sets” and “classes”. On a few occasions
we will need to go beyond these and also use “conglomerates”.

2.1 SETS

Sets can be thought of as the usual sets of intuitive set theory (or of some axiomatic
set theory). In particular, we require that the following constructions can be performed
with sets.

(1) For each set X and each “property” P , we can form the set {x ∈ X |P (x)} of all
members of X that have the property P .

(2) For each set X, we can form the set P(X) of all subsets of X (called the power
set of X).

(3) For any sets X and Y , we can form the following sets:

(a) the set {X, Y } whose members are exactly X and Y ,

(b) the (ordered) pair (X, Y ) with first coordinate X and second coordinate Y ,
[likewise for n-tuples of sets, for any natural number n > 2],

(c) the union X ∪ Y = {x |x ∈ X or x ∈ Y },

(d) the intersection X ∩ Y = {x |x ∈ X and x ∈ Y },

(e) the cartesian product X × Y = {(x, y) |x ∈ X and y ∈ Y },

(f) the relative complement X \ Y = {x |x ∈ X and x 6∈ Y },

12



Sec. 2] Foundations 13

(g) the set Y X of all functions2 f : X → Y from X to Y .

(4) For any set I and any family3 (Xi)i∈I of sets, we can form the following sets:

(a) the image {Xi | i ∈ I} of the indexing function,

(b) the union
⋃

i∈I Xi = {x |x ∈ Xi for some i ∈ I},
(c) the intersection

⋂
i∈I Xi = {x |x ∈ Xi for all i ∈ I}, provided that I 6= ∅,

(d) the cartesian product
∏

i∈I Xi = {f : I →
⋃

i∈I Xi | f(i) ∈ Xi for each
i ∈ I},

(e) the disjoint union
⊎

i∈I Xi =
⋃

i∈I(Xi × {i}).
(5) We can form the following sets:

N of all natural numbers,

Z of all integers,

Q of all rational numbers,

R of all real numbers, and

C of all complex numbers.

The above requirements imply that each topological space is a set. [It is a pair (X, τ),
where X is its (underlying) set and τ is a topology (that is the set of all open subsets
of X); i.e., τ ∈ P(P(X)).] Analogously, each vector space and each automaton is a set.
However, by means of the above constructions, we cannot form “the set of all sets”, or
“the set of all vector spaces”, etc.

2.2 CLASSES

The concept of “class” has been created to deal with “large collections of sets”. In
particular, we require that:

(1) the members of each class are sets,

(2) for every “property” P one can form the class of all sets with property P .

Hence there is the largest class: the class of all sets, called the universe and denoted
by U . Classes are precisely the subcollections of U . Thus, given classes A and B, one
may form such classes as A∪B, A∩B, and A×B. Because of this, there is no problem
in defining functions between classes, equivalence relations on classes, etc. A family4

(Ai)i∈I of sets is a function A : I → U (sending i ∈ I to A(i) = Ai). In particular, if I
is a set, then (Ai)i∈I is said to be set-indexed [cf. 2.1(4)].

For convenience we require further
2A function with domain X and codomain Y is a triple (X, f, Y ), where f ⊆ X × Y is a relation such

that for each x ∈ X there exists a unique y ∈ Y with (x, y) ∈ f [notation: y = f(x) or x 7→ f(x)].

Functions are denoted by f : X → Y or X
f−−→ Y . Given functions X

f−−→ Y and Y
g−→ Z, the

composite function X
g◦f−−−→ Z is defined by x 7→ g(f(x)).

3For a formal definition of families of sets see 2.2(2).
4One should be aware that a family and its image are different entities and that, moreover, a family

is not determined by its image for essentially the same reason that a sequence (i.e., an N-indexed
family) is not determined by its set of values. A family (Ai)i∈I is sometimes denoted by (Ai)I .
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14 Introduction [Chap. 0

(3) if X1, X2, . . . , Xn are classes, then so is the n-tuple (X1, X2, . . . , Xn), and

(4) every set is a class (equivalently: every member of a set is a set).

Hence sets are special classes. Classes that are not sets are called proper classes. They
cannot be members of any class. Because of this, Russell’s paradox now translates into
the harmless statement that the class of all sets that are not members of themselves
is a proper class. Also the universe U , the class of all vector spaces, the class of all
topological spaces, and the class of all automata are proper classes.

Notice that in this setting condition 2.1(4)(a) above gives us the Axiom of Replacement :

(5) there is no surjection from a set to a proper class.

This means that each set must have “fewer” elements than any proper class.

Therefore sets are also called small classes, and proper classes are called large classes.
This distinction between “large” and “small” turns out to be crucial for many categorical
considerations.5

The framework of sets and classes described so far suffices for defining and investigating
such entities as the category of sets, the category of vector spaces, the category of
topological spaces, the category of automata, functors between these categories, and
natural transformations between such functors. Thus for most of this book we need not
go beyond this stage. Therefore we advise the beginner to skip from here, go directly to
§3, and return to this section only when the need arises.

The limitations of the framework described above become apparent when we try to per-
form certain constructions with categories; e.g., when forming “extensions” of categories
or when forming categories that have categories or functors as objects. Since members
of classes must be sets and U is not a set, we can’t even form a class {U} whose only
member is U , much less a class whose members are all the subclasses of U or all functions
from U to U . In order to deal effectively with such “collections” we need a further level
of generality:

2.3 CONGLOMERATES

The concept of “conglomerate” has been created to deal with “collections of classes”. In
particular, we require that:

(1) every class is a conglomerate,

(2) for every “property” P , one can form the conglomerate of all classes with property
P ,

(3) conglomerates are closed under analogues of the usual set-theoretic constructions
outlined above (2.1); i.e., they are closed under the formation of pairs, unions,
products (of conglomerate-indexed families), etc.

5See, for example, Remark 10.33.
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Sec. 2] Foundations 15

Thus we can form the conglomerate of all classes as well as such entities as functions
between conglomerates and families of conglomerates.

Furthermore, we require

(4) the Axiom of Choice for Conglomerates ; namely for each surjection between con-
glomerates f : X → Y , there is an injection g : Y → X with f ◦ g = idY .

In other words, every equivalence relation on a conglomerate has a system of represen-
tatives. Notice that this Axiom of Choice implies an Axiom of Choice for Classes and
also the familiar Axiom of Choice for Sets.

Conglomerates

Classes =
subcollections of
the universe U

Sets =
small classes =
elements of U

The hierarchy of “collections”

A conglomerate X is said to be codable by a conglomerate Y provided that there exists
a surjection Y → X (equivalently: provided that there exists an injection X → Y ).
Conglomerates that are codable by a class (resp. by a set) are called legitimate (resp.
small) and will sometimes be treated like classes (resp. sets). For example, {U} is a small
conglomerate, and U ∪ {U} is a legitimate one. Conglomerates that are not legitimate
are called illegitimate. For example, P(U) is an illegitimate conglomerate.

Since our main interest lies with such categories as the category of all sets, the category
of all vector spaces, the category of all topological spaces, the category of all automata,
and possible “extensions” of these, no need arises to consider any “collections” beyond
the level of conglomerates, such as the entity of “all conglomerates”.

For a set-theoretic model of the above foundation, see e.g., the Appendix of the mono-
graph of Herrlich and Strecker (see Bibliography), where, in view of the requirement
2.2(3), the familiar Kuratowski definition of an ordered pair (A,B) = {{A}, {A,B}}
needs to be replaced by a more suitable one; e.g., by (A,B) = {{{a}, {a, 0}} | a ∈
A} ∪ {{{b}, {b, 1}} | b ∈ B}.

9th July 2006



16 Introduction [Chap. 0
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Chapter I

CATEGORIES, FUNCTORS, AND

NATURAL TRANSFORMATIONS

In this chapter we introduce the most fundamental concepts of category theory, as well
as some examples that we will find to be useful in the remainder of the text.
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3 Categories and functors

CATEGORIES

Before stating the formal definition of category, we recall some of the motivating exam-
ples from §1. The notion of category should be sufficiently broad that it encompasses

(1) the class of all sets and functions between them,

(2) the class of all vector spaces and linear transformations between them,

(3) the class of all groups and homomorphisms between them,

(4) the class of all topological spaces and continuous functions between them, and

(5) the class of all automata and simulations between them.

3.1 DEFINITION
A category is a quadruple A = (O,hom, id, ◦) consisting of

(1) a class O, whose members are called A-objects,

(2) for each pair (A,B) of A-objects, a set hom(A,B), whose members are called
A-morphisms from A to B — [the statement “f ∈ hom(A,B)” is expressed
more graphically6 by using arrows; e.g., by statements such as “f : A → B is a
morphism” or “A

f−→ B is a morphism”],

(3) for each A-object A, a morphism A
idA−−−→ A, called the A-identity on A,

(4) a composition law associating with each A-morphism A
f−→ B and each A-mor-

phism B
g−→ C an A-morphism A

g◦f−−−→ C, called the composite of f and g,

subject to the following conditions:

(a) composition is associative; i.e., for morphisms A
f−→ B, B

g−→ C, and C
h−→ D, the

equation h ◦ (g ◦ f) = (h ◦ g) ◦ f holds,

(b) A-identities act as identities with respect to composition; i.e., for A-morphisms

A
f−→ B, we have idB ◦ f = f and f ◦ idA = f ,

(c) the sets hom(A,B) are pairwise disjoint.

3.2 REMARKS
If A = (O,hom, id, ◦) is a category, then

(1) The class O of A-objects is usually denoted by Ob(A).
6Notice that although we use the same notation f : A → B for a function from A to B (2.1) and for a

morphism from A to B, morphisms are not necessarily functions (see Examples 3.3(4) below).
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Sec. 3] Categories and functors 19

(2) The class of all A-morphisms (denoted by Mor(A)) is defined to be the union of all
the sets hom(A,B) in A.

(3) If A
f−→ B is an A-morphism, we call A the domain of f [and denote it by dom(f)]

and call B the codomain of f [and denote it by cod(f)]. Observe that condition
(c) guarantees that each A-morphism has a unique domain and a unique codomain.
However, this condition is given for technical convenience only, because whenever all
other conditions are satisfied, it is easy to “force” condition (c) by simply replacing
each morphism f in hom(A,B) by a triple (A, f, B) (as we did when defining func-
tions in 2.1). For this reason, when verifying that an entity is a category, we will
disregard condition (c).

(4) The composition, ◦, is a partial binary operation on the class Mor(A). For a pair
(f, g) of morphisms, f ◦ g is defined if and only if the domain of f and the codomain
of g coincide.

(5) If more than one category is involved, subscripts may be used (as in homA(A,B))
for clarification.

3.3 EXAMPLES
(1) The category Set whose object class is the class of all sets; hom(A,B) is the set

of all functions from A to B, idA is the identity function on A, and ◦ is the usual
composition of functions.

(2) The following constructs; i.e., categories of structured sets and structure-preserving
functions between them (◦ will always be the composition of functions and idA will
always be the identity function on A):

(a) Vec with objects all real vector spaces and morphisms all linear transformations
between them.

(b) Grp with objects all groups and morphisms all homomorphisms between them.

(c) Top with objects all topological spaces and morphisms all continuous functions
between them.

(d) Rel with objects all pairs (X, ρ), where X is a set and ρ is a (binary) relation
on X. Morphisms f : (X, ρ) → (Y, σ) are relation-preserving maps; i.e., maps
f : X → Y such that xρ x′ implies f(x) σf(x′).

(e) Alg(Ω) with objects all Ω-algebras and morphisms all Ω-homomorphisms
between them. Here Ω = (ni)i∈I is a family of natural numbers ni, indexed by
a set I. An Ω-algebra is a pair (X, (ωi)i∈I) consisting of a set X and a family of
functions ωi : Xni → X, called ni-ary operations on X. An Ω-homomorphism
f : (X, (ωi)i∈I)→ (X̂, (ω̂i)i∈I) is a function f : X → X̂ for which the diagram

Xni
fni
//

ωi

��

X̂ni

ω̂i

��

X
f
// X̂
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commutes (i.e., f ◦ ωi = ω̂i ◦ fni) for each i ∈ I. In case ni = 1 for each i ∈ I,
the symbol Σ = (ni)i∈I is usually used instead of Ω.

(f) Σ-Seq with objects all (deterministic, sequential) Σ-acceptors, where Σ is a
finite set of input symbols. Objects are quadruples (Q, δ, q0, F ), where Q is a
finite set of states, δ : Σ×Q→ Q is a transition map, q0 ∈ Q is the initial state,
and F ⊆ Q is the set of final states.
A morphism f : (Q, δ, q0, F )→ (Q′, δ′, q′0, F

′) (called a simulation) is a function
f : Q→ Q′ that preserves

(i) transitions, i.e., δ′(σ, f(q)) = f(δ(σ, q)),

(ii) the initial state, i.e., f(q0) = q′0, and

(iii) the final states, i.e., f [F ] ⊆ F ′.

(3) For constructs, it is often clear what the morphisms should be once the objects are
defined. However, this is not always the case. For instance:

(a) there are at least three natural constructs each having as objects all metric
spaces; namely,

Met with morphisms all non-expansive maps (= contractions),7

Metu with morphisms all uniformly continuous maps,

Metc with morphisms all continuous maps.

(b) there are at least two natural constructs each having as objects all Banach
spaces; namely,

Ban with morphisms all linear contractions,8

Banb with morphisms all bounded linear maps (= continuous linear maps =
uniformly continuous linear maps).

(4) The following categories where the objects and morphisms are not structured sets
and structure-preserving functions:

(a) Mat with objects all natural numbers, and for which hom(m,n) is the set of
all real m × n matrices, idn : n → n is the unit diagonal n × n matrix, and
composition of matrices is defined by A ◦B = BA, where BA denotes the usual
multiplication of matrices.

(b) Aut with objects all (deterministic, sequential, Moore) automata. Objects are
sextuples (Q,Σ, Y, δ, q0, y), where Q is the set of states, Σ and Y are the sets of
input symbols and output symbols, respectively, δ : Σ×Q→ Q is the transition
map, q0 ∈ Q is the initial state, and y : Q→ Y is the output map. Morphisms
from an automaton (Q,Σ, Y, δ, q0, y) to an automaton (Q′,Σ′, Y ′, δ′, q′0, y

′) are
triples (fQ, fΣ, fY ) of functions fQ : Q → Q′, fΣ : Σ → Σ′, and fY : Y → Y ′

satisfying the following conditions:
7A function f : (X, d) → (Y, d̂) is called non-expansive (or a contraction) provided that

d̂(f(a), f(b)) ≤ d(a, b), for all a, b ∈ X.
8For Banach spaces the distance between a and b is given by ‖ a− b ‖.
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(i) preservation of transition: δ′(fΣ(σ), fQ(q)) = fQ(δ(σ, q)),

(ii) preservation of outputs: fY (y(q)) = y′(fQ(q)),

(iii) preservation of initial state: fQ(q0) = q′0.

(c) Classes as categories:

Every class X gives rise to a category C(X) = (O,hom, id, ◦) — the objects of
which are the members of X, and whose only morphisms are identities — as
follows:

O = X, hom(x, y) =

{
∅ if x 6= y,

{x} if x = y,
idx = x, and x ◦ x = x.

C(∅) is called the empty category. C({0}) is called the terminal category
and is denoted by 1.

(d) Preordered classes as categories:

Every preordered class, i.e., every pair (X,≤) with X a class and ≤ a reflexive
and transitive relation on X, gives rise to a category C(X,≤) = (O,hom, id, ◦)
— the objects of which are the members of X — as follows:

O = X, hom(x, y) =

{
{(x, y)} if x ≤ y,

∅ otherwise,
idx = (x, x),

and (y, z) ◦ (x, y) = (x, z).

(e) Monoids as categories:

Every monoid (M, •, e), i.e., every semigroup (M, •) with unit, e, gives rise to a
category C(M, •, e) = (O,hom, id, o) — with only one object — as follows:

O = {M}, hom(M,M) = M, idM = e, and y ◦ x = y • x.

(f) Set×Set is the category that has as objects all pairs of sets (A,B), as morphisms

from (A,B) to (A′, B′) all pairs of functions (f, g) with A
f−→ A′ and B

g−→ B′,
identities given by id(A,B) = (idA, idB), and composition defined by

(f2, g2) ◦ (f1, g1) = (f2 ◦ f1, g2 ◦ g1).

Similarly, for any categories A and B one can form A×B, or, more generally, for
finitely many categories C1,C2, . . . ,Cn, one can form the product category
C1 ×C2 × · · · ×Cn.

3.4 REMARKS
(1) In the cases of classes, preordered classes, and monoids, for notational convenience

we will sometimes not distinguish between them and the categories they determine
in the sense of Examples 3.3(4)(c), (d), and (e) above. Thus, we might speak of a
preordered class (X,≤) or of a monoid (M, •, e) as a category.
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(2) Morphisms in a category will usually be denoted by lowercase letters, with uppercase
letters reserved for objects. The morphism h = g ◦ f will sometimes be denoted by
A

f−→ B
g−→ C or by saying that the triangle

A
f
//

h
��

@@
@@

@@
@ B

g

��

C

commutes. Similarly, the statement that the square

A
f
//

h
��

B

g

��

C
k
// D

commutes means that g ◦ f = k ◦ h.

(3) The order of writing the compositions may seem backwards. However, it comes
from the fact that in many of the familiar examples (e.g., in all constructs) the
composition law is the composition of functions.

(4) Notice that because of the associativity of composition, the notation

A
f−→ B

g−→ C
h−→ D is unambiguous.

THE DUALITY PRINCIPLE

3.5 DEFINITION
For any category A = (O,homA, id, ◦) the dual (or opposite) category of A is the
category Aop = (O,homAop , id, ◦op), where homAop(A,B) = homA(B,A) and f ◦op g =
g ◦ f . (Thus A and Aop have the same objects and, except for their direction, the same
morphisms.)

3.6 EXAMPLES
(1) If A = (X,≤) is a preordered class, considered as a category [3.3(4)(d)], then

Aop = (X,≥).

(2) If A = (M, •, e) is a monoid, considered as a category [3.3(4)(e)], then
Aop = (M, •̂, e), where a •̂ b = b • a.

3.7 REMARK
Because of the way dual categories are defined, every statement SAop(X) concerning an
object X in the category Aop can be translated into a logically equivalent statement
Sop

A (X) concerning the object X in the category A. This observation allows one to
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associate (in two steps) with every property P concerning objects in categories, a dual
property concerning objects in categories, as demonstrated by the following example:

Consider the property of objects X in A:

PA(X) ≡ For any A-object A there exists exactly one A-morphism f : A→ X.

Step 1: In PA(X) replace all occurrences of A by Aop, thus obtaining the property

PAop(X) ≡ For any Aop-object A there exists exactly one Aop-morphism f : A→ X.

Step 2: Translate PAop(X) into the logically equivalent statement

P op
A (X) ≡ For any A-object A there exists exactly one A-morphism f : X → A.

Observe that, roughly speaking, Pop
A (X) is obtained from PA(X) by reversing the di-

rection of each arrow and the order in which morphisms are composed. Naturally, in
general, Pop

A (X) is not equivalent to PA(X). For example, the above property PSet(X)
holds if and only if X is a singleton set, whereas the dual property Pop

Set(X) holds if and
only if X is the empty set.

In a similar manner any property about morphisms9 in categories gives rise to a dual
property concerning morphisms in categories, as demonstrated by the following example:

Consider the property of morphisms A
f−→ B in A:

QA(f) ≡ There exists an A-morphism B
g−→ A with A

f−→ B
g−→ A = A

idA−−−→ A (i.e.,
g ◦ f = idA) in A.

Step 1: Replace in QA(f) all occurrences of A by Aop, thus obtaining the property

QAop(f) ≡There exists an Aop-morphism B
g−→ A with A

f−→ B
g−→ A = A

idA−−−→ A
(i.e., g ◦ f = idA) in Aop.

Step 2: Translate QAop(f) into the logically equivalent statement

Qop
A (f) ≡ There exists an A-morphism A

g−→ B with A
g−→ B

f−→ A = A
idA−−−→ A (i.e.,

f ◦ g = idA) in A.

For example, the above property QSet(f) holds if and only if f is an injective function
with nonempty domain or is the identity on the empty set, whereas the dual property
Qop

Set(f) holds if and only if f is a surjective function.

More complex properties PA(A,B, . . . , f, g, . . .) that involve objects A,B, . . . and mor-
phisms f, g, . . . in a category A can be dualized in a similar way.

If P = PA(A,B, . . . , f, g, . . .) holds for all A-objects A,B, . . . and all A-morphisms
f, g, . . ., then we say that A has the property P or that P(A) holds.

9Observe that if a property concerns morphisms A
f−−→ B, then its dual concerns morphisms B

f−−→ A.
In particular if a property concerns dom(f), then its dual concerns cod(f).
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The Duality Principle for Categories states

Whenever a property P holds for all categories,
then the property Pop holds for all categories.

The proof of this (extremely useful) principle follows immediately from the facts that
for all categories A and properties P

(1) (Aop)op = A, and

(2) Pop(A) holds if and only if P(Aop) holds.

For example, consider the property R = RA(f) ≡ if PA(dom(f)), then QA(f), where
P and Q are the properties defined above. One can easily show that R(A) holds for
all categories A, so that by the Duality Principle Rop(A) holds for all categories A,
where10 Rop

A (f) ≡ if Pop
A (cod(f)) then Qop

A (f).

The duality principle

Because of this principle, each result in category theory has two equivalent formulations
(which at first glance might seem to be quite different). However, only one of them needs
to be proved, since the other one follows by virtue of the Duality Principle.

Often the dual concept Pop of a concept P is denoted by “co-P” (cf. equalizers and
coequalizers (7.51 and 7.68), wellpowered and co-wellpowered (7.82 and 7.87), products
and coproducts (10.19 and 10.63), etc.). A concept P is called self-dual if P = Pop.
An example11 of a self-dual concept is that of “identity morphism”.
10See footnote 4.
11“Live dual, laud evil” — E.H.
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Formulation of the duals of definitions and results will be an implied exercise throughout
the remainder of the book. However, we find that it is sometimes instructive to provide
such formulations. When we do so for results, we usually will conclude with the symbol
D to indicate that the dual result has been stated and proved at an earlier point, so
that (by the Duality Principle) no proof is needed.

ISOMORPHISMS

3.8 DEFINITION
A morphism f : A→ B in a category12 is called an isomorphism provided that there
exists a morphism g : B → A with g ◦ f = idA and f ◦ g = idB. Such a morphism g is
called an inverse of f .

3.9 REMARK
It is clear from the above definition that the statement “f is an isomorphism” is self-dual;
i.e., f is an isomorphism in A if and only if f is an isomorphism in Aop.

3.10 PROPOSITION
If f : A → B, g : B → A and h : B → A are morphisms such that g ◦ f = idA and
f ◦ h = idB, then g = h.

Proof: h = idA ◦ h = (g ◦ f) ◦ h = g ◦ (f ◦ h) = g ◦ idB = g. �

3.11 COROLLARY
If g1 and g2 are inverses of a morphism f , then g1 = g2. �

3.12 REMARK
Due to the above corollary we may speak of the inverse of an isomorphism f . It will be
denoted by f−1.

3.13 EXAMPLES
(1) Every identity idA is an isomorphism and id−1

A = idA.

(2) In Set the isomorphisms are precisely the bijective maps, in Vec they are precisely
the linear isomorphisms, in Grp they are precisely the group-theoretic isomorphisms,
in Top they are precisely the homeomorphisms, and in Rel they are precisely the
relational isomorphisms. Observe that in all of these cases every isomorphism is a
bijective morphism, but that the converse to this statement, namely, “every bijective
morphism is an isomorphism”, is true for Set, Vec, and Grp, but not for Rel or
Top.

12From now on, when making a definition or stating a result that is valid for any category, we will
not name the category. Also whenever we speak about morphisms or objects without specifying a
category, we usually mean that they belong to the same category. When more than one category
is involved and confusion may occur, we will use a hyphenated notation, such as A-identity or A-
isomorphism.
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(3) In Banb[3.3(3)] the isomorphisms are precisely the linear homeomorphisms, whereas
in Ban isomorphisms are precisely the norm-preserving linear bijections.

(4) In Mat the isomorphisms are precisely the regular matrices; i.e., the square matrices
with nonzero determinant.

(5) A morphism (fQ, fΣ, fY ) in Aut is an isomorphism if and only if each of the maps
fQ, fΣ, and fY is bijective.

(6) In a monoid, considered as a category, every morphism is an isomorphism if and
only if the monoid is a group.

3.14 PROPOSITION
(1) If A

f−→ B is an isomorphism, then so is B
f−1

−−−→ A and (f−1)−1 = f .

(2) If A
f−→ B and B

g−→ C are isomorphisms, then so is A
g◦f−−−→ C, and

(g ◦ f)−1 = f−1 ◦ g−1.

Proof:
(1). Immediate from the definitions of inverse and isomorphism (3.8).

(2). By associativity and the definition of inverse, we have: (g ◦ f) ◦ (f−1 ◦ g−1) =
g◦(f ◦f−1)◦g−1 = g◦idB◦g−1 = g◦g−1 = idC . Similarly, (f−1◦g−1)◦(g◦f) = idA.�

3.15 DEFINITION
Objects A and B in a category are said to be isomorphic provided that there is an
isomorphism f : A→ B.

3.16 REMARK
For any category, A, “is isomorphic to” clearly yields an equivalence relation on Ob(A).
[Reflexivity follows from the fact that identities are isomorphisms, and symmetry and
transitivity are immediate from the proposition above.] Isomorphic objects are fre-
quently regarded as being “essentially” the same.

FUNCTORS

In category theory it is the morphisms, rather than the objects, that have the primary
role. Indeed, we will see that it is even possible to define “category” without using the
notion of objects at all (3.53). Now, we take a more global viewpoint and consider cate-
gories themselves as structured objects. The “morphisms” between them that preserve
their structure are called functors.

3.17 DEFINITION
If A and B are categories, then a functor F from A to B is a function that assigns

to each A-object A a B-object F (A), and to each A-morphism A
f−→ A′ a B-morphism

F (A)
F (f)−−−−→ F (A′), in such a way that
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(1) F preserves composition; i.e., F (f ◦ g) = F (f) ◦F (g) whenever f ◦ g is defined, and

(2) F preserves identity morphisms; i.e., F (idA) = idF (A) for each A-object A.

3.18 NOTATION
Functors F from A to B will be denoted by F : A→ B or A F−−→ B. We frequently use
the simplified notations FA and Ff rather than F (A) and F (f). Indeed, we sometimes
denote the action on both objects and morphisms by

F (A
f−→ B) = FA

Ff−−→ FB.

3.19 REMARK
Notice that a functor F : A→ B is technically a family of functions; one from Ob(A) to
Ob(B), and for each pair (A,A′) of A-objects, one from hom(A,A′) to hom(FA,FA′).
Since functors preserve identity morphisms and since there is a bijective correspondence
between the class of objects and the class of identity morphisms in any category, the
object-part of a functor actually is determined by the morphism-parts. Indeed, we will
see later that if we choose the “object-free” definition of category (3.53), then a functor
between categories can be defined simply as a function between their morphism classes
that preserves identities and composition (3.55).

3.20 EXAMPLES
(1) For any category A, there is the identity functor idA : A→ A defined by

idA(A
f−→ B) = A

f−→ B.

(2) For any categories A and B and any B-object B, there is the constant functor
CB : A→ B with value B, defined by

CB(A
f−→ A′) = B

idB−−−→ B.

(3) For any of the constructs A mentioned above [3.3(2)(3)] there is the forgetful
functor (or underlying functor) U : A → Set, where in each case U(A) is the
underlying set of A, and U(f) = f is the underlying function of the morphism f .

(4) For any category A and any A-object A, there is the covariant hom-functor
hom(A,−) : A→ Set, defined by

hom(A,−)(B
f−→ C) = hom(A,B)

hom(A,f)−−−−−−−→ hom(A,C)

where hom(A, f)(g) = f ◦ g.
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(5) For any category A and any A-object A, there is the contravariant13 hom-functor

hom(−, A) : Aop → Set defined on any Aop-morphism14 B
f−→ C by

hom(−, A)(B
f−→ C) = homA(B,A)

hom(f,A)−−−−−−→ homA(C,A)

with hom(f,A)(g) = g ◦ f , where the composition is the one in A.

A forgetful functor

(6) If A and B are monoids considered as categories [3.3(4)(e)], then functors from A
to B are essentially just monoid homomorphisms from A to B.

(7) If A and B are preordered sets considered as categories [3.3(4)(d)], then functors
from A and B are essentially just order-preserving maps from A to B.

(8) The covariant power-set functor P : Set→ Set is defined by

P(A
f−→ B) = PA

Pf−−→ PB

where PA is the power-set of A; i.e., the set of all subsets of A; and for each X ⊆ A,
Pf(X) is the image f [X] of X under f .

13Functors are sometimes called covariant functors. A contravariant functor from A to B means a
functor from Aop to B.

14Recall that Aop-objects are precisely the same as A-objects, and B
f−−→ C is an Aop-morphism means

that C
f−−→ B is an A-morphism.
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(9) The contravariant8 power-set functor Q : Setop → Set is defined by

Q(A
f−→ B) = QA

Qf−−−→ QB

where QA is the power-set of A, and for each X ⊆ A, Qf(X) is the preimage f−1[X]
of X under the function f : B → A.

(10) For any positive integer n the nth power functor Sn : Set→ Set is given by

Sn(X
f−→ Y ) = Xn fn

−−→ Y n,

where fn(x1, . . . , xn) = (f(x1), . . . , f(xn)).

(11) The Stone-functor S : Topop → Boo (where Boo is the construct of boolean
algebras and boolean homomorphisms) assigns to each topological space the boolean

algebra of its clopen subsets, and for any continuous map X
f−→ Y ; i.e., for any

morphism Y
f−→ X in Topop, Sf : S(Y )→ S(X) is given by Sf(Z) = f−1[Z].

(12) The duality functor for vector spaces (ˆ) : Vecop → Vec associates with any
vector space V its dual V̂ (i.e., the vector space hom(V,R) with operations defined

pointwise) and with any Vecop-morphism V
f−→ W , i.e., any linear map W

f−→ V ,
the morphism f̂ : V̂ → Ŵ , defined by f̂(g) = g ◦ f .

(13) If M = (M, •, e) is a monoid, then functors from M (regarded as a one-object
category) into Set are essentially just M -actions; i.e., pairs (X, ∗), where X is a set
and ∗ is a map from M ×X to X such that e ∗x = x and (m • m̂) ∗x = m ∗ (m̂ ∗x).
[Associate with any such M -action (X, ∗) the functor F : M → Set, defined by

F (M m−−→M) = X
F (m)−−−−→ X, where F (m)(x) = m ∗ x.]

PROPERTIES OF FUNCTORS

3.21 PROPOSITION
All functors F : A → B preserve isomorphisms; i.e., whenever A

k−→ A′ is an A-
isomorphism, then F (k) is a B-isomorphism.

Proof: F (k)◦F (k−1) = F (k◦k−1) = F (idA′) = idFA′ . Similarly, F (k−1)◦F (k) = idFA.�

3.22 REMARKS
(1) Although the above proposition has a trivial proof, it has interesting consequences.

In particular, it can be used to show that certain objects in a category are not
isomorphic. For example, the fundamental group functor can be used to prove that
certain topological spaces are not homeomorphic by showing that their fundamental
groups are not isomorphic.
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(2) Even though all functors preserve isomorphisms, they need not reflect isomor-
phisms (in the sense that if F (k) is an isomorphism, then k must be an isomor-
phism). For example, consider the forgetful functor U : Top → Set. The identity
function from the set of real numbers, with the discrete topology, to R, with its
usual topology, is not a homeomorphism (i.e., isomorphism in Top), although its
underlying function is an identity, and thus is an isomorphism in Set.

3.23 PROPOSITION
If F : A → B and G : B → C are functors, then the composite G ◦ F : A → C
defined by

(G ◦ F )(A
f−→ A′) = G(FA)

G(Ff)−−−−−→ G(FA′)

is a functor.15 �

3.24 DEFINITION
(1) A functor F : A → B is called an isomorphism provided that there is a functor

G : B→ A such that G ◦ F = idA and F ◦G = idB.

(2) The categories A and B are said to be isomorphic provided that there is an iso-
morphism F : A→ B.

3.25 REMARKS
(1) Obviously the functor G in the above definition is uniquely determined by F . It will

be denoted by F−1.

(2) Clearly, “is isomorphic to” is an equivalence relation on the conglomerate of all
categories. Isomorphic categories are considered to be essentially the same.

3.26 EXAMPLES
(1) For any pair of classes (X, Y ), the categories C(X) and C(Y ) [3.3(4)(c)] are isomor-

phic if and only if there exists a bijection from X to Y . A category is isomorphic
to a category of the form C(X) if and only if each of its morphisms is an identity.
Such categories are called discrete.

(2) For any pair ((X,≤), (Y,≤)) of preordered classes, the categories C(X,≤) and
C(Y,≤) [3.3(4)(d)] are isomorphic if and only if (X,≤) and (Y,≤) are order-isomor-
phic. A category is isomorphic to a category of the form C(X,≤) if and only if for
each pair of objects (A,B), hom(A,B) has at most one member. Such categories
are called thin.

(3) For any pair (M,N) of monoids, the categories C(M) and C(N) [3.3(4)(e)] are
isomorphic if and only if M and N are isomorphic monoids. A category is isomorphic
to a category of the form C(M) if and only if it has precisely one object.

15Occasionally, for typographical efficiency, we will use juxtaposition to denote composition of functors,
i.e., GF rather than G ◦F . When F is an endofunctor, i.e., when its domain and codomain are the
same, we may even use F 2 or F 3 to denote F ◦ F or F ◦ F ◦ F , respectively.
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(4) The construct Boo of boolean algebras [3.20(11)] is isomorphic to the construct
BooRng of boolean rings16 and ring homomorphisms.

(5) For any commutative ring R let R-Mod (resp. Mod-R) denote the construct of left
(resp. right) R-modules, and module homomorphisms.17 Then:

(a) R-Mod is isomorphic to Mod-R, for any ring R.

(b) If Z denotes the ring of integers, then Z-Mod is isomorphic to the construct
Ab of abelian groups and group homomorphisms.

(6) For any monoid, M , let M -Act be the category of all M -actions [3.20(13)] and
action homomorphisms [f(m ∗ x) = m ∗ f(x)]. If Σ∗ is the free monoid of all words
over Σ, then Σ∗-Act is isomorphic to Alg(Σ) [3.3(2)(e)].

3.27 DEFINITION
Let F : A→ B be a functor.

(1) F is called an embedding provided that F is injective on morphisms.

(2) F is called faithful provided that all the hom-set restrictions

F : homA(A,A′)→ homB(FA,FA′)

are injective.

(3) F is called full provided that all hom-set restrictions are surjective.

(4) F is called amnestic provided that an A-isomorphism f is an identity whenever
Ff is an identity.

3.28 REMARK
Notice that a functor is:

(1) an embedding if and only if it is faithful and injective on objects, and

(2) an isomorphism if and only if it is full, faithful, and bijective on objects.

3.29 EXAMPLES
(1) The forgetful functor U : Vec→ Set is faithful and amnestic, but is neither full nor

an embedding. This is the case for all of the constructs mentioned above (except, of
course, for Set itself).

(2) The covariant power-set functor P : Set → Set and the contravariant power-set
functor Q : Setop → Set [3.20(8)(9)] are both embeddings that are not full.

16A boolean ring is a ring, with unit, in which each element is idempotent with respect to multiplica-
tion.

17Notice that for the ring R of real numbers, R-Mod = Vec.
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(3) The functor U : Metc → Top defined by

U((X, d)
f−→ (X ′, d′)) = (X, τd)

f−→ (X ′, τd′)

(where τd denotes the topology induced on X by the metric d) is full and faithful,
but not an embedding.

(4) For any category A, the unique functor from A to 1[3.3(4)(c)] is faithful if and only
if A is thin.

(5) The discrete space functor D : Set→ Top defined by

D(X
f−→ Y ) = (X, δX)

f−→ (Y, δY )

(where δZ denotes the discrete topology on the set Z) is a full embedding.

(6) The indiscrete space functor N : Set→ Top defined by

N(X
f−→ Y ) = (X, ιX)

f−→ (Y, ιY )

(where ιZ denotes the indiscrete topology on the set Z) is a full embedding.

3.30 PROPOSITION
Let F : A→ B and G : B→ C be functors.

(1) If F and G are both isomorphisms (resp. embeddings, faithful, or full), then so is
G ◦ F .

(2) If G ◦ F is an embedding (resp. faithful), then so is F .

(3) If F is surjective on objects and G ◦ F is full, then G is full.

3.31 PROPOSITION
If F : A → B is a full, faithful functor, then for every B-morphism f : FA → FA′,
there exists a unique A-morphism g : A→ A′ with Fg = f .

Furthermore, g is an A-isomorphism if and only if f is a B-isomorphism.

Proof: The morphism exists by fullness, and it is unique by faithfulness. Since by
Proposition 3.21 functors preserve isomorphisms, f is an isomorphism if g is. If
f : FA → FA′ is a B-isomorphism, let g′ : A′ → A be the unique A-morphism with
F (g′) = f−1. Then F (g′ ◦ g) = Fg′ ◦ Fg = f−1 ◦ f = idFA = F (idA), so that by
faithfulness g′ ◦ g = idA. Likewise g ◦ g′ = idA′ . Hence g is an isomorphism. �

3.32 COROLLARY
Functors F : A→ B that are full and faithful reflect isomorphisms; i.e., whenever g is
an A-morphism such that F (g) is a B-isomorphism, then g is an A-isomorphism. �
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Recall that isomorphic categories are considered as being essentially the same. This
concept of “sameness” is very restrictive. The following slightly weaker and more flexible
notion of “essential sameness” called equivalence of categories is much more frequently
satisfied. It will turn out that equivalent categories have the same behavior with respect
to all interesting categorical properties.

3.33 DEFINITION
(1) A functor F : A → B is called an equivalence provided that it is full, faithful,

and isomorphism-dense in the sense that for any B-object B there exists some
A-object A such that F (A) is isomorphic to B.

(2) Categories A and B are called equivalent provided that there is an equivalence
from A to B.

3.34 REMARK
It is shown in Proposition 3.36 that “is equivalent to” is an equivalence relation on the
conglomerate of all categories.

3.35 EXAMPLES
(1) Each isomorphism between categories is an equivalence. Hence isomorphic categories

are equivalent.

(2) The category Mat [3.3(4)(a)] is equivalent to the construct of finite-dimensional
vector spaces (and linear transformations), but is not isomorphic to it. The fact
that there is no isomorphism can be deduced from the observation that in Mat
different objects cannot be isomorphic. An equivalence is given by the functor that
assigns to each natural number n ∈ Ob(Mat) the vector space Rn and to each
n ×m matrix A ∈ Mor(Mat) the linear map from Rn to Rm that assigns to each
(x1, x2, . . . , xn) ∈ Rn the 1×m matrix [x1x2 . . . xn]A (given by matrix multiplication)
considered as an m-tuple in Rm.

(3) The constructs Metc of metric spaces and continuous maps and Topm of metrizable
topological spaces and continuous maps are equivalent. The functor that associates
with each metric space its induced topological space is an equivalence that is not an
isomorphism.

(4) Posets,18 considered as categories, are equivalent if and only if they are isomorphic.
However, preordered sets, considered as categories, can be equivalent without being
isomorphic (cf. Exercise 3H).

(5) The category of all minimal acceptors (i.e., those with a minimum number of states
for accepting the given language), as a full subcategory of Σ-Seq, is equivalent to
the poset of all recognizable languages (ordered by inclusion and considered as a
thin category). In fact, for two minimal acceptors A and A′, there exists at most
one simulation A → A′, and such a simulation exists if and only if A′ accepts each
word accepted by A.

18A poset (or partially ordered set) is a pair (X,≤) that consists of a set X and a transitive, reflexive,
and antisymmetric relation ≤ on X.
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3.36 PROPOSITION
(1) If A F−−→ B is an equivalence, then there exists an equivalence B G−−→ A.

(2) If A F−−→ B and B H−−→ C are equivalences, then so is A H◦F−−−−→ C.

Proof:
(1) For each object B of B, choose an object G(B) of A and a B-isomorphism

εB : F (G(B)) → B. Since F is full and faithful, for each B-morphism g : B → B′

there is a unique A-morphism G(g) : G(B)→ G(B′) with

F (G(g)) = ε−1
B′ ◦ g ◦ εB : F (G(B))→ F (G(B′)).

Hence G(g) is the unique A-morphism for which the diagram

F (G(B))
F (G(g))

//

εB

��

F (G(B′))

εB′

��

B g
// B′

(∗)

commutes. That G preserves identities follows immediately from the uniqueness
requirement in the above diagram. That G preserves composition follows from the
uniqueness, the commutativity of the diagram

F (G(B))
F (G(g))

//

εB

��

F (G(B′))
F (G(h))

//

εB′

��

F (G(B′′))

εB′′

��

B g
// B′

h
// B′′

and the fact that F preserves composition. Thus G is a functor. G is full because
for each A-morphism f : G(B)→ G(B′), the morphism εB′ ◦ F (f) ◦ ε−1

B : B → B′

(which we denote by g) has the property that g ◦ εB = εB′ ◦ F (f), and this implies

[by uniqueness for (∗)] that f = G(g). G is faithful since given B
g1
//

g2

// B′ with

G(g1) = G(g2) = f , an application of (∗) yields

g1 = εB′ ◦ F (G(g1)) ◦ ε−1
B = εB′ ◦ F (f) ◦ ε−1

B = εB′ ◦ F (G(g2)) ◦ ε−1
B = g2.

Finally, G is isomorphism-dense because in view of Proposition 3.31 for each A-
object A, the B-isomorphism εFA : F (G(FA)) → FA is the image of some A-iso-
morphism GFA→ A.

(2) By Proposition 3.30 it suffices to show that H ◦ F is isomorphism-dense. Given a
C-object C, the fact that both F and H are isomorphism-dense gives a B-object
B, an isomorphism h : H(B) → C, and an A-object A, with an isomorphism
k : F (A)→ B. Thus h ◦H(k) : (H ◦ F )(A)→ C is an isomorphism. �
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3.37 REMARK
The concept of equivalence is especially useful when duality is involved. There are
numerous examples of pairs of familiar categories where each category is equivalent to
the dual of the other.

3.38 DEFINITION
Categories A and B are called dually equivalent provided that Aop and B are equiv-
alent.

3.39 EXAMPLES
(1) The construct Boo of boolean algebras is dually equivalent to the construct BooSpa

of boolean spaces (i.e., to the construct of zero-dimensional compact Hausdorff spaces
and continuous maps). An equivalence can be obtained by associating with each
boolean space its boolean algebra of clopen subsets (Stone Duality).

(2) The category of finite-dimensional real vector spaces is dually equivalent to itself.
An equivalence can be obtained by associating with each finite-dimensional vector
space its dual space [cf. 3.20(12)].

(3) Set is dually equivalent to the category of complete atomic boolean algebras and
complete boolean homomorphisms. An equivalence can be obtained by associating
with each set its power-set, considered as a complete atomic boolean algebra.

(4) The category of compact Hausdorff abelian groups is dually equivalent to Ab. An
equivalence can be obtained by associating with each compact Hausdorff abelian
group G its group of characters hom(G,R/Z) (Pontrjagin Duality).

(5) The category of locally compact abelian groups is dually equivalent to itself. An
equivalence can be obtained as in (4) above.

(6) The category HComp of compact Hausdorff spaces (and continuous functions) is
dually equivalent to the category of C∗-algebras and algebra homomorphisms. An
equivalence can be obtained by associating with each compact Hausdorff space X
the C∗-algebra C(X,C) of complex-valued continuous functions (Gelfand-Naimark
Duality).

3.40 REMARK
Recall that we have formulated a duality principle related to objects, morphisms, and
categories (3.7). We now extend this to functors; i.e., we introduce for any functor
F : A → B, the concept of its dual functor that can be used to formulate the duals of
categorical statements involving functors. The reader may guess as to what the dual
of a categorical statement involving a functor might be. Two common mistakes are to
either do too little (by dualizing just one of the categories A or B) or to do too much
(by even reversing the arrow representing the functor F ). In either of these cases, one
generally does not obtain a new functor. The proper dual concept is the following:
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3.41 DEFINITION
Given a functor F : A → B, the dual (or opposite) functor F op : Aop → Bop is the
functor defined by

F op(A
f−→ A′) = FA

Ff−−→ FA′.

3.42 REMARK
Obviously (F op)op = F . To form the dual of a categorical statement that involves
functors, make the same statement, but with each category and each functor replaced
by its dual. Then translate this back into a statement about the original categories and
functors.

3.43 PROPOSITION
Each of the following properties of functors is self-dual: “isomorphism”, “embedding”,
“faithful”, “full”, “isomorphism-dense”, and “equivalence”. �

CATEGORIES OF CATEGORIES

We have seen above that functors act as morphisms between categories; they are closed
under composition, which is associative (since it is just the composition of functions be-
tween classes) and the identity functors act as identities with respect to the composition.
Because of this, one is tempted to consider the “category of all categories”. However,
there are two difficulties that arise when we try to form this entity. First, the “category
of all categories” would have objects such as Vec and Top, which are proper classes,
so that since proper classes cannot be elements of classes, the conglomerate of all ob-
jects would not be a class (thus violating condition 3.1(1) in the definition of category).
Second, given any categories A and B, it is not generally true that the conglomerate
of all functors from A to B forms a set. This violates condition 3.1(2) in the definition
of category. However, if we restrict our attention to categories that are sets, then both
problems are eliminated.

3.44 DEFINITION
A category A is said to be small provided that its class of objects, Ob(A), is a set.
Otherwise it is called large.

3.45 REMARK
Notice that when Ob(A) is a set, then Mor(A) must be a set, so that the category
A = (Ob(A),hom, id, ◦) must also be a set (cf. Exercise 3M).

3.46 EXAMPLES
Mat is small; so are all preordered sets considered as categories, and all monoids con-
sidered as categories. However, Mon, the category of all monoids and monoid homo-
morphisms between them, is not small.
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3.47 DEFINITION
The category Cat of small categories has as objects all small categories, as morphisms
from A to B all functors from A to B, as identities the identity functors, and as com-
position the usual composition of functors.

3.48 REMARKS
(1) That Cat is indeed a category follows immediately from the facts that

(a) since each small category is a set, the conglomerate of all small categories is a
class, and

(b) for each pair (A,B) of small categories, the conglomerate of all functors from
A to B is a set.

(2) Cat itself is not small. In fact, there are full embeddings from each of the constructs
Set and Mon into Cat (3.3(4)(c) and 3I).

Since (because of size restrictions) we can’t form the category of all categories, and
other naturally occurring entities that we will want to investigate later, we introduce
the concept of “quasicategories”. This is done by freeing the concept of category from
its set-theoretical restrictions:

3.49 DEFINITION
A quasicategory is a quadruple A = (O,hom, id, ◦) defined in the same way as a
category except that the restrictions that O be a class and that each conglomerate
hom(A,B) be a set are removed. Namely,

(1) O is a conglomerate, the members of which are called objects,

(2) for each pair (A,B) of objects, hom(A,B) is a conglomerate called the conglomerate
of all morphisms from A to B (with f ∈ hom(A,B) denoted by f : A→ B),

(3) for each object A, idA : A→ A is called the identity morphism on A,

(4) for each pair of morphisms (f : A→ B , g : B → C) there is a composite morphism
g ◦ f : A→ C,

subject to the following conditions:

(a) composition is associative,

(b) identity morphisms act as identities with respect to composition,

(c) the conglomerates hom(A,B) are pairwise disjoint.

3.50 DEFINITION
The quasicategory19 CAT of all categories has as objects all categories, as morphisms
from A to B all functors from A to B, as identities the identity functors, and as com-
position the usual composition of functors.
19Frequently proper quasicategories (see 3.51(2)) will be denoted by all capital letters to distinguish

them from categories.
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3.51 REMARK
(1) Clearly each category is a quasicategory.

(2) CAT is a proper quasicategory in the sense that it is not a category. [Notice that
hom(Set,Set) is not a set.]

(3) Virtually every categorical concept has a natural analogue or interpretation for qua-
sicategories. The names for such quasicategorical concepts will be the same as those
of their categorical analogues. Thus we have, for example, the notions of functor
between quasicategories, equivalence of quasicategories, discrete and thin quasicat-
egories, etc. Because the main object of our study is categories, most notions will
only be specifically formulated for categories. However, we will freely make use of
implied quasicategorical analogues, especially when it allows clearer or more conve-
nient expression. For example, at this point it is clear that an isomorphism between
categories (3.24) is precisely the same as an isomorphism in CAT (3.8). Not every
categorical concept has a reasonable quasicategorical interpretation. An outstand-
ing example of this is the fact that quasicategories in general lack hom-functors into
Set.

(4) Dealing with quasicategories and forming CAT gives us the possibility of applying
category theory to itself. There are advantages to doing this (some of which are
indicated above) as well as certain dangers. One danger is the tendency to want
to form something like the “quasicategory of all quasicategories”. However, to do
so causes a Russell-like paradox that cannot be salvaged within our foundational
system, as outlined in §2. Because our main interest is in categories, as opposed to
quasicategories, we will never need to consider such an entity as the “quasicategory
of all quasicategories”.

OBJECT-FREE DEFINITION OF CATEGORIES

Because of the bijection between the class of objects and the class of identity morphisms
in any category (given by A 7→ idA) and the fact that identities in a category can be
characterized by their behavior with respect to composition, it is possible to obtain an
“object-free” definition of category. This definition, given below, is formally simpler
than the original one and is “essentially” equivalent to it (3.55). The reason for choosing
the definition given in 3.1 is that it is more closely associated with standard examples
of categories.

3.52 DEFINITION
(1) A partial binary algebra is a pair (X, ∗) consisting of a class X and a partial

binary operation ∗ on X; i.e., a binary operation defined on a subclass of X × X.
[The value of ∗(x, y) is denoted by x ∗ y.]

(2) If (X, ∗) is a partial binary algebra, then an element u of X is called a unit of (X, ∗)
provided that x ∗ u = x whenever x ∗ u is defined, and u ∗ y = y whenever u ∗ y is
defined.
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3.53 DEFINITION
An object-free category is a partial binary algebra C = (M, ◦), where the members
of M are called morphisms, that satisfies the following conditions:

(1) Matching Condition: For morphisms f , g, and h, the following conditions are equiv-
alent:

(a) g ◦ f and h ◦ g are defined,

(b) h ◦ (g ◦ f) is defined, and

(c) (h ◦ g) ◦ f is defined.

(2) Associativity Condition: If morphisms f , g, and h satisfy the matching conditions,
then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

(3) Unit Existence Condition: For every morphism f there exist units uC and uD of
(M, ◦) such that uC ◦ f and f ◦ uD are defined.

(4) Smallness Condition: For any pair of units (u1, u2) of (M, ◦) the class hom(u1, u2) =
{f ∈M | f ◦ u1 and u2 ◦ f are defined} is a set.

3.54 PROPOSITION
If A is a category, then

(1) (Mor(A), ◦) is an object-free category, and

(2) an A-morphism is an A-identity if and only if it is a unit of (Mor(A), ◦).

Proof: (Mor(A), ◦) is clearly a partial binary algebra, where f ◦g is defined if and only
if the domain of f is the codomain of g. Thus each A-identity is a unit. If A

u−→ B is a
unit in (Mor(A), ◦), then u = u ◦ idA = idA, where the first equality holds since idA is
a A-identity and the second one holds since u is a unit. Thus (2) is established. From
this, (1) is immediate. �

3.55 REMARK
We now have two versions of the concept of category, the “standard” one (3.1), which
is more intuitive and is more easily associated with familiar examples, and the “object-
free” one (3.53), which is more succinctly stated and so, in many cases, more convenient
to use. Next we will see that these two concepts are equivalent. Proposition 3.54 shows
that with every category we can associate an object-free category. Even though this
correspondence is neither injective nor surjective, it provides an equivalence between
the “standard” and the “object-free” definitions of category. This claim can be made
precise as follows:

(1) One can define functors between object-free categories to be functions between their
classes of morphisms that preserve both units (= identities) and composition.

(2) Parallel to the definition of the quasicategory CAT of all categories one can define
the quasicategory CATof of all object-free categories and functors between them.
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(3) The correspondence from Proposition 3.54 is the object part of a functor between
the quasicategories CAT and CATof that can be shown to be an equivalence in the
sense of Definition 3.33.

In this sense the two concepts of category are essentially the same; i.e., essentially the
same “category theory” will result if one proceeds from either of the two formulations.

EXERCISES

3A. Graphs of Categories

A graph is a quadruple (V,E, d, c) consisting of a set V (of vertices), a set E (of
(directed) edges), and functions d, c : E → V (giving the domain and codomain of an
edge). A large graph is the same concept except that V and E are allowed to be
classes. The graph G(A) of a category A is the obvious large graph with V = Ob(A)
and E = Mor(A).

(a) Verify that a thin category is determined up to isomorphism by its graph.

(b) Find two non-isomorphic categories with the same graph.

(c) Determine which of the following graphs are of the form G(A) for some category A
(where vertices and identity edges are indicated by dots, and non-identity edges are
indicated by arrows).

• • •-�
-(1) • • •-�

�(2)

• •

•

�
-

@
@R

�
�	

(3) • •
�
�

-(4)

(d) Show that for each of the following graphs G there exists up to isomorphism precisely
one category A with G(A) = G.

• •�
-

� �
��(1) • •

�
�

-

�����6

(2)

(e) The free category generated by a graph (V,E, d, c) is the category A with Ob(A) =
V , Mor(A) = all paths (= all finite sequences in E in which the domain of each
edge is the codomain of the preceding one), composition is the obvious composition
of paths, and identity morphisms are the empty paths. Verify that A is indeed a
category.
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3B. Pointed Categories

(a) Show that there is a category whose objects are all pairs of the form (A, a), where
A is a set and a ∈ A and

hom((A, a), (B, b)) = { f | f : A→ B and f(a) = b }.

This is called the category of pointed sets (and base-point-preserving functions).
It is denoted by pSet.

(b) Show that there is a faithful functor U : pSet→ Set with the property that U(f) =
f for each base-point-preserving function, f . Does U reflect isomorphisms?

(c) Prove that Set and pSet are not equivalent.

(d) Mimic the above construction of the category of pointed sets to obtain the categories
pTop of pointed topological spaces and pGrp of pointed groups. Determine
whether or not Top and pTop (resp. Grp and pGrp) are equivalent or isomorphic.

3C. Alternative Definition of Category

Define a category of type 2 to be a quintuple A = (O,M, dom, cod, ◦) consisting of

(1) a class O, of A-objects,

(2) a class M, of A-morphisms,

(3) functions dom :M→O and cod :M→O, assigning to each morphism its domain
and codomain, and

(4) a function ◦ from D = {(f, g) | f, g ∈M and dom(f) = cod(g)} toM [with ◦(f, g)
written f ◦ g],

subject to the following conditions:

(a) If (f, g) ∈ D, then dom(f ◦ g) = dom(g) and cod(f ◦ g) = cod(f).

(b) If (f, g) and (h, f) belong to D, then h ◦ (f ◦ g) = (h ◦ f) ◦ g.

(c) For each A ∈ O there exists a morphism e such that dom(e) = A = cod(e) and

(1) f ◦ e = f whenever (f, e) ∈ D, and

(2) e ◦ g = g whenever (e, g) ∈ D.

(d) For any (A,B) ∈ O ×O, the class

{f | f ∈M, dom(f) = A, and cod(f) = B}

is a set.

Compare the definition of category of type 2 with that of category (3.1) and object-
free category (3.53) and determine in which sense these definitions can be considered
“equivalent”.

If functors between categories of type 2 are defined to be functions between their mor-
phism classes that preserve identities and composition, show that the quasicategory
CAT2 of categories of type 2 and functors between them is equivalent to CAT and to
CATof .
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3D. Identities
(a) Show that whenever A = (O,hom, id, ◦) and A∗ = (O,hom, id∗, ◦) are categories,

then A = A∗.

(b) A functor F is said to reflect identities provided that if F (k) is an identity then
k must be an identity. Show that every isomorphism between categories reflects
identities, but that not every equivalence does.

3E. Duality

(a) Show that none of the following categories is dually equivalent to itself: Set, Vec
(but compare 3.39(2)), Grp, Top, Rel, Pos.

(b) Determine whether or not the category of finite sets is dually equivalent to itself.

(c) Establish the following consequence of the duality principle:

If S is a categorical statement, then S holds for all categories satisfying
property P if and only if Sop holds for all categories satisfying Pop.

3F. Isomorphisms

(a) Describe the isomorphisms in each of the categories Met, Metu, and Metc.

(b) Show that a monoid is a group if and only if, considered as a category, each of its
morphisms is an isomorphism.

3G. Functors
(a) Consider the category A with exactly one object A, with hom(A,A) = {a, b}, and

with composition defined by a ◦ a = a and a ◦ b = b ◦ a = b ◦ b = b. Consider further
the category B with exactly one object B, with hom(B,B) = {b}, and with b◦b = b.
Let F be defined by F (B) = A, F (b) = b. Is F : B→ A a functor?

(b) Show that a category A is thin (resp. empty) if and only if every functor with domain
A is faithful (resp. full).

3H. Equivalences

(a) Show that none of the following categories is equivalent to any of the others: Set,
Vec, Grp, Top, Rel, Pos.

(b) Show that two posets (resp. monoids), considered as categories, are equivalent if and
only if they are isomorphic.

(c) Show that, considered as categories, every preordered set is equivalent to a poset,
and that a preordered set is isomorphic to a poset if and only if it is a poset itself.

(d) Show that an equivalence is an embedding if and only if it reflects identities.

(e) Prove that categories A and B are isomorphic if and only if there exists an equiva-
lence E : A→ B such that for each A-object A the number of isomorphic copies of
A in A coincides with the number of isomorphic copies of E(A) in B.
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3I.
Show that there is a full embedding from the category Mon of monoids into Cat.

3J.
Show that there is a covariant power-set functor R : Set → Set that is different from
the one given in Example 3.20(8): such that on objects A, RA is the power set of A,

and on functions A
f−→ B, (Rf)(X) = { b ∈ B | f−1(b) ⊆ X }.

3K. Comma Categories

If A F−−→ C and B G−−→ C are functors, then the comma category (F ↓ G) is the
category whose objects are triples (A, f, B) with A ∈ Ob(A), B ∈ Ob(B), and

FA
f−→ GB ∈ Mor(C); whose morphisms from (A, f, B) to (A′, f ′, B′) are pairs (a, b)

with A
a−→ A′ ∈ Mor(A), and B

b−→ B′ ∈ Mor(B) such that the square

FA
Fa //

f

��

FA′

f ′

��

GB
Gb
// GB′

commutes; whose identities are id(A,f,B) = (idA, idB); and whose composition is defined
componentwise, i.e., by (a, b) ◦ (a, b) = (a ◦ a, b ◦ b).

(a) Verify that (F ↓ G) is indeed a category.

(b) For any category A and any A-object K, denote by CK : 1 → A the constant
functor with value K. Give explicit descriptions of

• the comma category (idA ↓ CK), also denoted by (A ↓ K) and called the
category of objects over K,

• the comma category (CK ↓ idA), also denoted by (K ↓ A) and called the
category of objects under K,

• the comma category (idA ↓ idA), also denoted by A2 and called the arrow
category of A.

(c) Show that (A ↓ K)op = (K ↓ Aop).

(d) Show that if P is a singleton set, then (P ↓ Set) is isomorphic with pSet (cf.
Exercise 3B).

3L. Quasicategories as Objects

Show that one may not form the “quasicategory of all quasicategories”. [Hint: Russell’s
paradox].

3M. Small Categories

Let A be a category whose object-class is a set. Show that (a) – (d) below are true.
[Hint: see 2.1.]
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(a) Mor(A) =
⋃
{hom(A,B) | (A,B) ∈ Ob(A)×Ob(A)} is a set.

(b) hom : Ob(A)×Ob(A)→ P(Mor(A)) is a set.

(c) ◦ ⊆Mor(A)×Mor(A)×Mor(A) is a set.

(d) A is a set.

3N. Decompositions of Functors

Let A F−−→ B be a functor. Show that

(a) There exist functors A G−−→ C and C H−−→ B with the following properties:

(1) F = H ◦G,

(2) G is full and bijective on objects,

(3) H is faithful,

(4) whenever A F−−→ B = A G−−→ C H−−→ B and H is faithful, then there exists a
unique functor C K−−→ C, such that the diagram

A
G //

G
��

C
K

��~~
~~

~~
~

H
��

C
H

// B

(∗)

commutes, i.e., G = K ◦G and H = H ◦K.

(b) There exist functors A G−−→ C and C H−−→ B with the following properties:

(1) F = H ◦G,

(2) G is bijective on objects,

(3) H is full and faithful,

(4) whenever A F−−→ B = A G−−→ C H−−→ B and H is full and faithful, then there
exists a unique functor C K−−→ C such that the diagram (∗) above commutes.
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4 Subcategories

In §3 we have seen several instances where one category is included in another (Ab
in Grp, HComp in Top, etc.). In this section we investigate this phenomenon more
thoroughly.

4.1 DEFINITION
(1) A category A is said to be a subcategory of a category B provided that the

following conditions are satisfied:

(a) Ob(A) ⊆ Ob(B),

(b) for each A, A′ ∈ Ob(A), homA(A,A′) ⊆ homB(A,A′),

(c) for each A-object A, the B-identity on A is the A-identity on A,

(d) the composition law in A is the restriction of the composition law in B to the
morphisms of A.

(2) A is called a full subcategory of B if, in addition to the above, for each
A,A′ ∈ Ob(A), homA(A,A′) = homB(A,A′).

4.2 REMARKS
(1) Because of the nature of full subcategories, a full subcategory of a category B can

be specified by merely specifying its object class within B.

(2) Notice that conditions (a), (b), and (d) of part (1) of the definition do not imply
(c). (See Exercise 4A.)

(3) If F : A→ B is a full functor or is injective on objects, then the image of A under
F is a subcategory of B. However, for arbitrary functors F : A→ B, the image of

A under F need not be a subcategory of B. Consider, e.g., a functor from
• // •
• // •

to
• //

  
@@@
•
��
•

.

4.3 EXAMPLES
(1) For any category A, the empty category and A itself are full subcategories of A.

(2) The class of all Hausdorff spaces specifies the full subcategory Haus of Top; likewise,
all Tychonoff spaces (i.e., completely regular T1 spaces) yields a full subcategory
Tych of Haus; and HComp is a full subcategory of Tych.

(3) The class of all preordered sets (i.e., all sets supplied with a reflexive and transitive
relation) determines a full subcategory Prost of Rel. The class of all partially
ordered sets (i.e., all sets supplied with a reflexive, transitive and antisymmetric
relation) determines a full subcategory Pos of Prost. The category Lat that consists
of all lattices (i.e., all partially ordered sets for which each pair of elements has a
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meet and a join) together with all lattice homomorphisms (i.e., all maps preserving
meets and joins of pairs) is a nonfull subcategory of Pos. The category JCPos of
complete lattices and join-preserving maps is a nonfull subcategory of Pos. The
category CLat of complete lattices and meet- and join-preserving maps is a nonfull
subcategory of JCPos that has the same objects as JCPos.

(4) The category Grp of groups is a full subcategory of the construct Mon that con-
sists of all monoids (i.e., semigroups with unit) and monoid homomorphisms (i.e.,
unit-preserving semigroup homomorphisms). Mon is a nonfull subcategory of the
construct Sgr of all semigroups and semigroup homomorphisms.

(5) Ban is a nonfull subcategory of Banb that has the same class of objects.

(6) The subcategories of a monoid M , considered as a category, are precisely the empty
category and the submonoids of M .

4.4 REMARK
For every subcategory A of a category B there is a naturally associated inclusion
functor E : A ↪→ B. Moreover, each such inclusion is

(1) an embedding;

(2) a full functor if and only if A is a full subcategory of B.

As the next proposition shows, inclusions of subcategories are (up to isomorphism)
precisely the embedding functors and (up to equivalence) precisely the faithful functors.

A full embedding

4.5 PROPOSITION
(1) A functor F : A → B is a (full) embedding if and only if there exists a (full)

subcategory C of B with inclusion functor E : C → B and an isomorphism
G : A→ C with F = E ◦G.

(2) A functor F : A → B is faithful if and only if there exist embeddings E1 : D → B
and E2 : A→ C and an equivalence G : C→ D such that the diagram

A
F //

E2

��

B

C
G
// D

E1

OO
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commutes.

Proof:
(1). One direction is immediate and the other is a consequence of the fact that (full)

embeddings are closed under composition.

(2). One direction follows from the compositive nature of faithful functors. To show,
conversely, that every faithful functor can be decomposed as stated, let E1 : D→ B
be the inclusion of the full subcategory D of B that has as objects all images (under
F ) of A-objects. Let C be the category with Ob(C) = Ob(A), with

homC(A,A′) = homB(FA,FA′),

and with identities and composition defined as in B. C is easily seen to be a
category. Now define functors E2 : A→ C and G : C→ D by

E2(A
f−→ A′) = A

Ff−−→ A′ and G(C
g−→ C ′) = FC

g−→ FC ′.

Then E2 is an embedding, G is an equivalence, and F = E1 ◦G ◦ E2. �

4.6 DEFINITION
A category A is said to be fully embeddable into B provided that there exists a full
embedding A→ B, or, equivalently, provided that A is isomorphic to a full subcategory
of B.

4.7 EXAMPLES
Although it is far from easy to prove (see the monograph Pultr-Trnková in the Refer-
ences), each category of the form Alg(Ω) is fully embeddable into each of the following
constructs:

(a) Sgr,

(b) Rel,

(c) Alg(1, 1), i.e., the construct of unary algebras on two operations.

Under an additional set-theoretical hypothesis (the non-existence of measurable cardi-
nals), every construct is fully embeddable into Sgr (or Rel or Alg(1, 1)).

4.8 REMARK
Because full subcategories are determined by their object classes, they are often regarded
as “properties of objects”. Since most of the interesting properties P satisfy the condition
that whenever an object A has property P then every object isomorphic to A also has
P , we often require that full subcategories have the property (defined below) of being
isomorphism-closed.

4.9 DEFINITION
A full subcategory A of a category B is called
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(1) isomorphism-closed provided that every B-object that is isomorphic to some
A-object is itself an A-object,

(2) isomorphism-dense provided that every B-object is isomorphic to some A-object.

4.10 REMARK
If A is a full subcategory of B, then the following conditions are equivalent:

(1) A is an isomorphism-dense subcategory of B,

(2) the inclusion functor A ↪→ B is isomorphism-dense,

(3) the inclusion functor A ↪→ B is an equivalence.

4.11 EXAMPLE
The full subcategory of Set with the single object N (of natural numbers) is neither
isomorphism-closed nor isomorphism-dense in Set. It is equivalent to the isomorphism-
closed full subcategory of Set consisting of all countable infinite sets.

There are instances when one wishes to consider full subcategories in which different
objects cannot be isomorphic:

4.12 DEFINITION
A skeleton of a category is a full, isomorphism-dense subcategory in which no two
distinct objects are isomorphic.

4.13 EXAMPLES
(1) The full subcategory of all cardinal numbers is a skeleton for Set.

(2) The full subcategory determined by the powers Rm, where m runs through all
cardinal numbers, is a skeleton for Vec.

4.14 PROPOSITION
(1) Every category has a skeleton.

(2) Any two skeletons of a category are isomorphic.

(3) Any skeleton of a category C is equivalent to C.

Proof:
(1). This follows from the Axiom of Choice [2.3(4)] applied to the equivalence relation

“is isomorphic to” on the class of objects of the category.

(2). Let A and B be skeletons of C. Then each A-object A is isomorphic in C to a
unique B-object. Denote the latter by F (A) and choose for each A-object A a
C-isomorphism fA : A→ F (A). Then the functor F : A→ B defined by:

F (A h−→ A′) = FA
f−1

A−−−→ A
h−→ A′ fA′−−−→ FA′

is an isomorphism.
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(3). The inclusion of a skeleton of C into C is an equivalence. (See 4.10(2).) �

4.15 COROLLARY
Two categories are equivalent if and only if they have isomorphic skeletons. �

REFLECTIVE AND COREFLECTIVE SUBCATEGORIES

4.16 DEFINITION
Let A be a subcategory of B, and let B be a B-object.

(1) An A-reflection (or A-reflection arrow) for B is a B-morphism B
r−→ A from B

to an A-object A with the following universal property:

for any B-morphism B
f−→ A′ from B into some A-object A′, there exists a unique

A-morphism f ′ : A→ A′ such that the triangle

B
r //

f   
AA

AA
AA

A A

f ′

��

A′

commutes.

By an “abuse of language” an object A is called an A-reflection for B provided that
there exists an A-reflection B

r−→ A for B with codomain A.

(2) A is called a reflective subcategory of B provided that each B-object has an
A-reflection.

4.17 EXAMPLES
Several familiar constructions in mathematics such as certain “completions”, certain
formations of “quotients”, and certain “modifications” of structures can be regarded in
a natural way as reflections. Here we list a few such examples of reflective subcategories
A of categories B. In every example except the last two, A is a full subcategory of B.

A. Modifications of the Structure

(1) Making a relation symmetric: B = Rel, A = Sym, the full subcategory of sym-

metric relations. (X, ρ) idX−−−→ (X, ρ ∪ ρ−1) is an A-reflection20 for (X, ρ).

(2) Making a topological space completely regular: B = Top, A = the full subcategory
of completely regular (not necessarily T1) spaces. If (X, τ) is a topological space,
then the collection of all cozero sets21 in (X, τ) is a base for a topology τc on X.

(X, τ) idX−−−→ (X, τc) is an A-reflection for (X, τ).
20ρ−1 = {(y, x) | (x, y) ∈ ρ}.
21A is called a cozero set in (X, τ) provided that there is a continuous map f : (X, τ) → R with

A = X − f−1[{0}].
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B. Improving Objects by Forming Quotients

(3) Making a preordered set partially ordered: B = Prost (preordered sets and order-
preserving maps), A = Pos. If (X,≤) is a preordered set, define an equivalence
relation ≈ on X by: x ≈ y ⇔ (x ≤ y and y ≤ x). Let p : X → X/ ≈ be the
canonical map. Then (X,≤)

p−→ (X/ ≈ , (p× p)[≤]) is an A-reflection for (X,≤).

(4) Making a group abelian: B = Grp, A = Ab. Let G be a group and let G′ be the
commutator subgroup of G. Then the canonical map G→ G/G′ is an A-reflection
for G.

(5) Making a topological space T0: B = Top, A = Top0, the full subcategory con-
sisting of all T0 spaces. Let X be a topological space, and let ≈ be the equivalence
relation on X, given by: x ≈ y ⇔ the closure of {x} = the closure of {y}. Then
the canonical map X → X/ ≈ is an A-reflection for X.

(6) Making an abelian group torsion-free: B = Ab, A = TfAb, the full subcategory
of torsion-free abelian groups. Let G be an abelian group and let TG be the torsion
subgroup of G. Then the canonical map G→ G/TG is an A-reflection for G.

(7) Making a reachable acceptor minimal: B = the full subcategory of Σ-Seq consist-
ing of all reachable acceptors (i.e., those for which each state can be reached
from the initial one by an input word), A = the full subcategory of B consisting of
all minimal acceptors (i.e., those reachable acceptors with the property that no
two different states are observably equivalent. The observability equivalence ≈
on a reachable acceptor B is given by: q ≈ q′ provided that whenever the initial
state of B is changed to q, the resulting acceptor recognizes the same language as it
does when the initial state is changed to q′). Then the canonical map B → B/ ≈,
where B/ ≈ is the induced acceptor on the set of all ≈-equivalence classes of states
of B, is an A-reflection for B.

C. Completions

(8) B = Metu(metric spaces and uniformly continuous maps) or Met(metric spaces
and non-expansive maps), A = the full subcategory of complete metric spaces. In
either case the metric completion (X, d) ↪→ (X∗, d∗) is an A-reflection for (X, d).

(9) B = Tych, A = HComp. If X is a Tychonoff space, then the Čech-Stone com-
pactification X ↪→ βX is an A-reflection for X.

(10) B = JPos (posets and join-preserving maps), A = JCPos. Let (B,≤) be a poset,
and let B∗ be the collection of all subsets S of B that satisfy

(a) S is an lower-set, i.e., b ∈ S and b′ ≤ b⇒ b′ ∈ S,

(b) S is closed under the formation of all existing joins, i.e., if A ⊆ S and b is the
join of A in (B,≤), then b ∈ S.

Then (B∗,⊆) is a complete lattice, and the function

(B,≤)→ (B∗,⊆), defined by b 7→ {x ∈ B |x ≤ b}
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is an A-reflection for (B,≤). Note that these A-reflections differ, in general, from
the Mac Neille completions. For example, an A-reflection for a 3-element discrete
poset is an 8-element complete lattice, whereas the Mac Neille completion is a
5-element one.

(11) B = Pos, A = the nonfull (!) subcategory JCPos. Let (B,≤) be a poset and let
B̃ be the collection of all lower-sets S of B [cf. (10)(a)]. Then (B̃,⊆) is a complete
lattice and the function (B,≤)→ (B̃,⊆) defined as in (10) is an A-reflection.

(12) B = Sgr, A = the nonfull (!) subcategory Mon. If (X, •) is a semigroup, then
the extension (X, •) ↪→ (X ∪ {e}, •̂, e), obtained by adding a unit element e 6∈ X
of the operation •̂, is an A-reflection for (X, •).

4.18 REMARK
Observe that in the last two examples given above, the reflection arrows are never
surjective. This fact may seem surprising since in each of the other examples each
A-reflection arrow for an A-object is an isomorphism. It is not surprising, however, in
view of Proposition 4.20.

4.19 PROPOSITION
Reflections are essentially unique, i.e.,

(1) if B
r−→ A and B

r̂−→ Â are A-reflections for B, then there exists an A-isomorphism
k : A→ Â such that the triangle

B
r //

r̂
��

??
??

??
??

A

k
��

Â

commutes,

(2) if B
r−→ A is an A-reflection for B and A

k−→ Â is an A-isomorphism, then
B

k◦r−−−→ Â is an A-reflection for B.

Proof:
(1). The existence of a morphism k with r̂ = k◦r follows from the definition of reflection

and the fact that Â is an A-object. Similarly there is a morphism k̂ with r = k̂ ◦ r̂.
Now (k̂ ◦k)◦r = r = idA ◦r, so that by the uniqueness requirement in the definition
of reflection, k̂ ◦ k = idA. Analogously, one can see that k ◦ k̂ = idÂ, so that k is an
isomorphism.

(2). Obvious. �

4.20 PROPOSITION
If A is a reflective subcategory of B, then the following conditions are equivalent:

(1) A is a full subcategory of B,
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(2) for each A-object A, A
idA−−−→ A is an A-reflection,

(3) for each A-object A, A-reflection arrows A
rA−−→ A∗ are A-isomorphisms,

(4) for each A-object A, A-reflection arrows A
rA−−→ A∗ are A-morphisms.

Proof: That (1) ⇒ (2) ⇒ (3) ⇒ (4) is clear. To see that (4) ⇒ (1), let A
f−→ A′ be a

B-morphism between A-objects. By the definition of reflection there is an A-morphism

A∗ f−→ A′ with f = f ◦ rA. Thus f is the composite of A-morphisms, and so must be
an A-morphism. �

4.21 REMARK
There exist nonfull reflective subcategories A of B such that every A-reflection arrow is
a B-isomorphism; e.g., let A = • → • and B = •� •.

4.22 PROPOSITION
Let A be a reflective subcategory of B, and for each B-object B let rB : B → AB be
an A-reflection arrow. Then there exists a unique functor R : B → A such that the
following conditions are satisfied:

(1) R(B) = AB for each B-object B,

(2) for each B-morphism f : B → B′, the diagram

B
rB //

f

��

R(B)

R(f)
��

B′
rB′
// R(B′)

commutes.

Proof: There exists a unique function R on objects satisfying (1) and (by the definition
of A-reflection arrows) a unique function R on morphisms satisfying (2). It remains to
be shown that R is a functor, i.e., that R preserves identities and composition. The first
fact follows from the commutativity of the diagram

B
rB //

idB

��

RB

idRB

��

B rB

// RB

and the second one from the commutativity of the diagram

B
rB //

g ◦f
��

RB

Rg ◦Rf
��

B′′
rB′′
// RB′′

obtained by pasting together the corresponding diagrams for B
f−→ B′ and B′ g−→ B′′.�
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4.23 DEFINITION
A functor R : B→ A constructed according to the above proposition is called a reflec-
tor for A.

4.24 REMARK
If A is a reflective subcategory of B, then a reflector for A depends upon the choice
of the reflection arrows. Hence, there are usually many different reflectors for A. In
Proposition 6.7 we will see that any two such reflectors are essentially the same; i.e.,
they will turn out to be “naturally isomorphic”.

The dual of the concept reflective subcategory is coreflective subcategory. That is, A
is a coreflective subcategory of B if and only if Aop is a reflective subcategory of Bop.
Although each of the above statements is an adequate definition, to aid the reader
we provide a detailed dual formulation that doesn’t involve the dual categories. We
occasionally provide such explicit dual formulations although, strictly speaking, to do so
is redundant.

4.25 DEFINITION
Let A be a subcategory of B and let B be a B-object.

(1) An A-coreflection (or A-coreflection arrow) for B is a B-morphism A
c−→ B

from an A-object A to B with the following universal property:

for any B-morphism A′ f−→ B from some A-object A′ to B there exists a unique
A-morphism f ′ : A′ → A such that the triangle

A′

f ′

��

f

  
AA

AA
AA

A

A c
// B

commutes.

By an “abuse of language” an object A is called an A-coreflection for B provided
that there exists an A-coreflection A

c−→ B for B with domain A.

(2) A is called a coreflective subcategory of B provided that each B-object has an
A-coreflection.

4.26 EXAMPLES
Several mathematical constructions such as certain “modifications” of structures and
certain “selections” of convenient subobjects can be regarded in a natural way as core-
flections. Here we list a few examples of full coreflective subcategories A of categories
B.

A. Modifications of the Structure
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(1) Making a relation symmetric: B = Rel, A = Sym. (X, ρ ∩ ρ−1) idX−−−→ (X, ρ) is
an A-coreflection for (X, ρ).
This example shows one of the rare instances where a subcategory is simultaneously
reflective and coreflective [cf. 4.17(1)].

(2) Making a topological space sequential: B=Top, A= the full subcategory of sequen-
tial spaces (i.e., spaces in which every sequentially closed set is closed). If (X, τ)
is a topological space, then τ ′ = {A ⊆ X |X \A is sequentially closed in (X, τ)}
is a topology on X and (X, τ ′) idX−−−→ (X, τ) is an A-coreflection for (X, τ).

B. Sorting Out Convenient Subobjects

(3) Making an abelian group a torsion group: B = Ab, A = the full subcategory of
abelian torsion groups. For any abelian group G the canonical embedding TG ↪→ G
of the torsion-subgroup TG of G into G is an A-coreflection for G.

(4) Making a sequential acceptor reachable: B = Σ-Seq, A = the full subcategory of
reachable acceptors. For any acceptor A the canonical embedding RA ↪→ A of the
acceptor RA, formed by removing from the state set of A all states that cannot be
reached from the initial state, is an A-coreflection for A. Thus a minimalization
of sequential acceptors is obtained in two steps: first the coreflection, which yields
a reachable acceptor, and then the reflection, which gives the minimal quotient of
the reachable part [cf. 4.17(7)].

4.27 PROPOSITION
If A is a coreflective subcategory of B and for each B-object B, AB

cB−−→ B is an A-
coreflection arrow, then there exists a unique functor C : B→ A (called a coreflector
for A) such that the following conditions are satisfied:

(1) C(B) = AB for each B-object B,

(2) for each B-morphism f : B → B′ the diagram

C(B)
cB //

C(f)
��

B

f

��

C(B′) cB′
// B′

commutes. D 22
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EXERCISES

4A. Subcategories and Identities

Consider the categories A and B described in Exercise 3G(a). If A = B, then is B a
subcategory of A?

4B. Isomorphism-Closed Subcategories

A (not necessarily full) subcategory A of a category B is called isomorphism-closed
provided that every B-isomorphism with domain in A belongs23 to A. Show that every
subcategory A of B can be embedded into a smallest isomorphism-closed subcategory
A′ of B that contains A. The inclusion functor A ↪→ A′ is an equivalence iff all B-
isomorphisms between A-objects belong to A.

4C. Full Subcategories

(a) Show that a category is discrete if and only if each of its subcategories is full.

(b) Show that in a poset, considered as a category,

• every subcategory is isomorphism-closed,

• every (co)reflective subcategory is full.

4D. Reflective Subcategories of Special Categories

* (a) Show that Set has

• precisely three full, isomorphism-closed, reflective subcategories,

• precisely two full, isomorphism-closed, coreflective subcategories,

• infinitely many reflective subcategories,

• infinitely many coreflective subcategories.

* (b) Show that HComp has precisely two full, isomorphism-closed, coreflective subcat-
egories.

(c) Show that a full subcategory A of a poset B, considered as category, is reflective
in B if and only if for each element b of B the set {a ∈ A | b ≤ a} has a smallest
element.

23Observe that if a morphism belongs to A, so does its domain and its codomain.
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(d) Consider the poset of natural numbers as a category, B. Verify that a subset A of
B, considered as full subcategory of B, is

• reflective in B if and only if A is infinite,

• coreflective in B if and only if 0 ∈ A.

(e) Show that no finite monoid, considered as a category, has a proper reflective sub-
category. However, if A is the monoid of all maps from N into N, considered as
a category, then the subcategory of A, consisting of all maps f : N → N with
f(0) = 0, is reflective in A.

(f) Show that the (nonfull) subcategory A of Pos, consisting of those posets for which
every nonempty subset has a meet, and those morphisms that preserve meets of
nonempty subsets, is reflective in Pos. For a poset A, A

id−−→ A is an A-reflection if
and only if A is well-ordered.

(g) Verify that the category • //
// • has no proper reflective subcategory.

4E. Subcategories That Are Simultaneously Reflective and Coreflective

(a) Show that in Rel the full subcategory of symmetric relations is both reflective and
coreflective. What about the full subcategory of reflexive relations, . . ., or of transi-
tive relations?

(b) Verify that in Alg(1), the category of unary algebras on one operation, all idempo-
tent algebras form a full subcategory that is both reflective and coreflective.

(c) Show that the poset of natural numbers, considered as a category, has infinitely many
isomorphism-closed subcategories that are simultaneously reflective and coreflective.
[Cf. 4D(c).]

*(d) Show that neither Set nor Top has a proper isomorphism-closed full subcategory
that is both reflective and coreflective. What about nonfull isomorphism-closed
subcategories of Set?

4F. Intersections of Reflective Subcategories

(a) Show that in the poset of natural numbers, considered as a category B, the fol-
lowing hold:

• the intersection of any nonempty family of coreflective subcategories of B is
coreflective in B,

• every full subcategory of B is an intersection of two reflective full subcate-
gories of B.

* (b) Let BiTop be the construct of bitopological spaces (i.e., triples (X, τ1, τ2), where τ1

and τ2 are topologies on X) and bicontinuous maps (i.e., maps that are separately
continuous with respect to the first topologies and with respect to the second
topologies). Verify that the full subcategory B1 that consists of all bitopological
spaces with τ1 compact Hausdorff is reflective in BiTop. By symmetry the full
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subcategory B2 that consists of all bitopological spaces with τ2 compact Hausdorff
is also reflective in BiTop. Show, however, that BiComp = B1 ∩ B2 is not
reflective in BiTop. [Hint: A space (X, τ1, τ2), where X is infinite and τ1 and τ2

are discrete, has no reflection arrow.]

* (c) Let PsTop be the construct of pseudotopological spaces (i.e., pairs (X, α), where
X is a set and α is a function that assigns to each ultrafilter on X a subset of
X, in such a way that for each point x ∈ X, x ∈ α(

·
x) [where

·
x is the ultrafilter

of all supersets of {x}]) and continuous maps (i.e., functions (X, α)
f−→ (Y, β)

having the property that for each x ∈ α(F) it follows that f(x) ∈ β(f(F)), where
f(F) = {M ⊆ Y | f−1[M ] ∈ F}). Verify that the full subcategory of PsTop
consisting of all compact Hausdorff spaces, i.e., all spaces (X, α) with the property
that each α(F) is a singleton set, is not reflective even though it is an intersection
of a class of full reflective subcategories. [Hint: Let Bk be the subcategory that
consists of all (X, α) such that α(F) is a singleton whenever some member of F is
a set of cardinality less than k.]

4G. Subcategories of Subcategories

Let A be a subcategory of B and B be a subcategory of C. Prove that

(a) A is a subcategory of C,

(b) if A is reflective in B and B is reflective in C, then A is reflective in C,

(c) if A is reflective in C and B is a full subcategory of C, then A is reflective in B,

(d) if A is reflective in C, then A need not be reflective in B. [Construct an example.]

4H. Reflectors
(a) Let A be a reflective subcategory of B. Show that if A is full in B, then there exists

a reflector R : B→ A with R ◦ E ◦R = R. Does the converse hold?

(b) Let A be the full subcategory of Vec consisting of all one-element vector spaces.
Verify that A is simultaneously reflective and coreflective in Vec, and every functor
from Vec to A is simultaneously a reflector and a coreflector.

4I. Skeletons
Given two skeletons of a category A, show that there is an isomorphism A → A that
restricts to an isomorphism between the skeletons.

* 4J. Universal Categories

Does there exist a category A such that every category can be fully embedded into A?

4K. Full Embeddability

Show that

(a) Prost is fully embeddable into Top as a coreflective subcategory,

(b) Alg(1) is fully embeddable into Rel as a reflective subcategory,

(c) Σ-Seq is fully embeddable into Aut.
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5 Concrete categories and concrete func-
tors

As we have seen, many familiar categories such as Vec and Top are constructs (i.e.,
categories of structured sets and structure-preserving functions between them). If we
regard such constructs as purely abstract categories (as we have done so far), some
valuable information (concerning underlying sets of objects and underlying functions of
morphisms) is lost. Fortunately, category theory enables us to retain this information by
providing a means for a formal definition of construct — a construct being a pair (A, U)
consisting of a category A and a faithful functor U : A→ Set. A careful analysis reveals
that, for instance, many of the interesting properties of the constructs of vector spaces
and topological spaces are not properties of the corresponding abstract categories Vec
and Top but rather of the corresponding constructs (Vec, U) and (Top, V ), where U
and V denote the obvious underlying functors. In fact, they are often properties of just
the underlying functors U and V . For example, the facts that the construct of vector
spaces is “algebraic” and the construct of topological spaces is “topological” are very
conveniently expressed by specific properties of the underlying functors, rather than by
properties of the abstract categories Vec and Top (see Chapter VI).

If, instead of vector spaces or topological spaces, we want to investigate objects with more
complex structures, e.g., topological vector spaces, we may supply the corresponding
abstract category TopVec with forgetful functors not only into Set (forgetting both
the topology and the linear structure), but also into Top (just forgetting the linear
structure) or into Vec (just forgetting the topology). Hence we can consider TopVec
as a concrete category over Set or over Top or over Vec. This leads to the concept of
concrete categories over a category X as pairs (A, U) consisting of a category A and a
faithful functor U : A → X. In this way we may decompose complex structures into
simpler ones, or, conversely, construct more complex structures out of simpler ones by
composing forgetful functors. The concept of concrete categories over arbitrary base
categories provides a suitable language to carry out such investigations.

5.1 DEFINITION
(1) Let X be a category. A concrete category over X is a pair (A, U), where A

is a category and U : A → X is a faithful functor. Sometimes U is called the
forgetful (or underlying) functor of the concrete category and X is called the
base category for (A, U).

(2) A concrete category over Set is called a construct.

5.2 EXAMPLES
(1) Every category A can be regarded via the identity functor as a concrete category

(A, idA) over itself.
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(2) If A is a construct in the sense of Example 3.3(2) and U is its naturally associated
underlying functor [3.20(3)], then the pair (A, U) is a construct in the sense of
Definition 5.1. Frequently we will denote the construct (A, U) (by an “abuse of
notation”) by A alone. For example, the abstract category of vector spaces and the
construct of vector spaces will both be denoted by Vec. It will always be clear from
the context which of these entities is being considered.

(3) Ban [3.3(3)(b)] can be considered as a construct in two natural ways:

(a) via the obvious forgetful functor U : Ban→ Set,

(b) via the less obvious but useful “unit ball” functor O : Ban → Set, where
O(X) = {x ∈ X | ‖ x ‖≤ 1 } and O(f) is the corresponding restriction of
U(f).

[It will turn out that, as constructs, (Ban, O) has more pleasant properties than
(Ban, U).]

(4) Whenever (A, U) is a construct, then (Aop,Q ◦ Uop) is also a construct (where
Q : Setop → Set is the contravariant power-set functor [cf. 3.20(9)]). In particular,
(Setop,Q) is a construct.

(5) The category TopVec of topological vector spaces and continuous linear transfor-
mations can be regarded naturally via the obvious forgetful functors as

(a) an abstract category,

(b) a construct,

(c) a concrete category over Top,

(d) a concrete category over Vec.

A similar situation occurs for TopGrp, the category of topological groups (and
continuous homomorphisms).

(6) The category Aut of deterministic sequential Moore automata [3.3(4)(b)] can natu-
rally be considered as a concrete category over Set× Set× Set [cf. 3.3(4)(f)]. This
is the case since for any object (Q,Σ, Y, δ, q0, y) of Aut, each of Q, Σ, and Y is a set
and Aut-morphisms (i.e., simulations) are triples of functions that carry Q,Σ, and
Y into the corresponding sets of the codomain.

(7) Since for any category A the unique functor A → 1 is faithful if and only if A is
thin, the concrete categories over 1 are essentially just the thin categories; i.e., the
preordered classes [3.26(2)].

5.3 REMARK
We adopt the following conventions:

(1) Since faithful functors are injective on hom-sets, we usually assume [in view of 3.2(3)]
that homA(A,B) is a subset of homX(UA,UB) for each pair (A,B) of A-objects.
This familiar convention allows one to express the property that “for A-objects A and
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B and an X-morphism UA
f−→ UB there exists a (necessarily unique) A-morphism

A→ B with U(A→ B) = UA
f−→ UB” much more succinctly, by stating

“UA
f−→ UB is an A-morphism (from A to B)”.24

Observe, however, that since U doesn’t need to be injective on objects, the expression

“UA
idX−−−→ UB is an A-morphism (from A to B)”

does not imply that A = B or that idX = idA, although it does imply that UA =
UB = X. (This is the case, for example, for the morphism in Pos from ({0, 1},=)
to ({0, 1},≤) that is the identity function on {0, 1}.) To avoid possible confusion in

such a circumstance, we call an A-morphism A
f−→ B identity-carried if Uf = idX .

(2) Sometimes we will write simply A for the concrete category (A, U) over X, when U
is clear from the context; e.g., in the example above. In these cases the underlying
object of an A-object A will sometimes be denoted by |A|; i.e., “| |” will serve as a
standard notation for underlying functors.

(3) If P is a property of categories (or of functors), then we will say that a concrete
category (A, U) has property P provided that A (or U) has property P .

FIBRES IN CONCRETE CATEGORIES

5.4 DEFINITION
Let (A, U) be a concrete category over X.

(1) The fibre of an X-object X is the preordered class consisting of all A-objects A
with U(A) = X ordered by:

(2) A ≤ B if and only if idX : UA→ UB is an A-morphism.

(3) A-objects A and B are said to be equivalent provided that A ≤ B and B ≤ A.

(4) (A, U) is said to be amnestic provided that its fibres are partially ordered classes;
i.e., no two different A-objects are equivalent.

(5) (A, U) is said to be fibre-small provided that each of its fibres is small, i.e., a
preordered set.

5.5 EXAMPLES
If A is a construct in the sense of 3.3(2)(3) and X is a set, then the A-fibre of X is (up
to order-isomorphism) the class of all A-structures on X, ordered appropriately, e.g.,

24Observe that analogues of this expression are frequently used in “concrete situations”, e.g., in saying
that a certain function between vector spaces “is linear” or that a certain function between topological
spaces “is continuous”, etc.
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(1) if A = Rel, then for relations ρ1 and ρ2 on X

ρ1 ≤ ρ2 ⇔ ρ1 ⊆ ρ2,

(2) if A = Met, then for metrics d1 and d2 on X

d1 ≤ d2 ⇔ ∀(x, y) ∈ X ×X, d2(x, y) ≤ d1(x, y),

(3) if A = Σ-Seq, then for acceptors (Q, δ, q0, F ) and (Q, δ′, q′0, F
′) on a set Q

(δ, q0, F ) ≤ (δ′, q′0, F
′) ⇔ δ = δ′, q0 = q′0, and F ⊆ F ′,

(4) if A = Top, then for topologies τ1 and τ2 on X

τ1 ≤ τ2 ⇔ τ2 ⊆ τ1,

(5) if A = Vec, then for vector space structures ν1 and ν2 on X

ν1 ≤ ν2 ⇔ ν1 = ν2.

Observe that for Top the fibres are complete lattices (with smallest element the discrete
topology and largest element the indiscrete topology), whereas for Vec the fibres are
ordered by the equality relation, i.e., no two different vector space structures on the
same set are related to each other. These properties of the fibres of Top (resp. Vec) are
typical for “topological” (resp. “algebraic”) constructs. See Chapter VI.

5.6 REMARKS
A concrete category (A, U) is anmestic if and only if the functor U is amnestic
(cf. 3.27(4)). Most of the familiar concrete categories are both amnestic and fibre-small.
However:

(1) No proper class, considered as a concrete category over 1, is fibre-small. Fibres
of the quasiconstruct25 of quasitopological spaces26 are not even preordered classes,
but rather are proper conglomerates. The latter statement follows from the fact that
for each set X with at least two points, the fibre of X cannot be put in bijective
correspondence with any subclass of the universe U .

(2) The constructs Banb and Metc are not amnestic. In Proposition 5.33 we will see
that each concrete category (A, U) over X has an associated “amnestic modification”
that in most respects behaves like (A, U).

25A quasiconstruct is a pair (A, U), where A is a quasicategory and U is a faithful functor from U to
Set.

26See, e.g., E. Spanier, Quasi-topologies, Duke Math. J. 30 (1963): 1–14.
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5.7 DEFINITION
A concrete category is called

(1) fibre-complete provided that its fibres are (possibly large) complete lattices,27

(2) fibre-discrete provided that its fibres are ordered by equality.

5.8 PROPOSITION
A concrete category (A, U) over X is fibre-discrete if and only if U reflects identities
(i.e., if U(k) is an X-identity, then k must be an A-identity). �

CONCRETE FUNCTORS

Just as functors can be considered as the natural “morphisms” between abstract cat-
egories, and are a useful tool for investigating them, concrete functors are the natural
“morphisms” between concrete categories.

5.9 DEFINITION
If (A, U) and (B, V ) are concrete categories over X , then a concrete functor from
(A, U) to (B, V ) is a functor F : A → B with U = V ◦ F . We denote such a functor
by F : (A, U)→ (B, V ).

5.10 PROPOSITION
(1) Every concrete functor is faithful.

(2) Every concrete functor is completely determined by its values on objects.

(3) Objects that are identified by a full concrete functor are equivalent.

(4) Every full concrete functor with amnestic domain is an embedding.

Proof: Let F : (A, U)→ (B, V ) be a concrete functor.

(1). This follows from Proposition 3.30(2).

(2). Suppose that G : (A, U) → (B, V ) is a concrete functor with G(A) = F (A) for

each A-object A. Then for any A-morphism A
f−→ A′ we have the B-morphisms

GA = FA
Ff
//

Gf
// FA′ = GA′

with V (Ff) = U(f) = V (Gf). Since V is faithful, Ff = Gf . Hence F = G.

(3). Let A and A′ be A-objects with FA = FA′ (= B). Then, by using Proposition
3.31, idB : FA → FA′ can be lifted to an A-isomorphism g : A → A′. Hence A
and A′ are equivalent.

27A partially ordered class (X,≤) is called a large complete lattice provided that every subclass of
X has a join and a meet.
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(4). F is full, faithful, and injective on objects; hence it is an embedding. �

5.11 EXAMPLES
Because of part (2) of the above proposition, when specifying concrete functors, we need
only describe how they map objects.

(1) The forgetful functor Rng→ Ab that “forgets” multiplication is a concrete functor
from the category of rings (and ring homomorphisms) to the category of abelian
groups, where both categories are considered as constructs. In a similar way, the
forgetful functors Met→ Top (that assigns to each metric space (X, d) the topolog-
ical space determined by the distance function d ) and TopVec→ Vec (that assigns
to each topological vector space its underlying vector space) are concrete functors.

(2) There are many functors from Set to itself, but there is only one concrete functor
between the construct (Set, idSet) and itself — namely, the identity functor.

(3) The “discrete-space functor” and the “indiscrete-space functor” [3.29(5),(6)] are ex-
amples of concrete functors from Set to Top.

(4) Any functor between concrete categories over 1 is already concrete.

5.12 REMARK
A concrete isomorphism F : (A, U)→ (B, V ) between concrete categories over X is
a concrete functor that is an isomorphism of categories. All of the isomorphisms given
in Examples 3.26(2), (4), (5), and (6) are concrete. That such a concrete isomorphism
exists means, informally, that each structure in A, i.e., each object A of A, can be
completely substituted by a structure in B, namely F (A) (keeping, of course, the same
morphisms). For example, the standard descriptions of topological spaces by means of

• neighborhoods,

• open sets,

• closure operators, or

• convergent filters,

give technically different constructs, all of which are concretely isomorphic. This is why
the differences between the various descriptions are regarded as inessential and we can
in good conscience call each of them “Top”. The concept of concretely isomorphic
concrete categories gives rise to an equivalence relation that is stronger than the relation
of isomorphism of categories. For example, assuming that no measurable cardinals
exist, Top (and, indeed, any construct) can be thought of as being isomorphic to a
full subcategory of Rel (cf. 4.7). However, Top is not concretely isomorphic to such
a subcategory, because there are more topologies on N (namely, 22ℵ0 ) than there are
binary relations on N (namely, 2ℵ0).
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5.13 REMARK
If F : (A, U) → (B, V ) is a concrete isomorphism, then its inverse F−1 : B → A
is concrete from (B, V ) to (A, U). Unfortunately, the corresponding result does not
hold for concrete equivalences (i.e., concrete functors that are equivalences) since if
F : (A, U) → (B, V ) is a concrete equivalence, then it may happen that there is no
concrete equivalence from (B, V ) to (A, U) even though there are equivalences from
B to A; cf. Proposition 3.36. For example, the embedding of the skeleton of cardinal
numbers into Set is such a concrete equivalence of constructs that is not invertible. Thus,
even though it makes sense to say that two concrete categories over X are concretely
isomorphic, it makes little sense to say that they are concretely equivalent since the
relation between concrete categories of being concretely equivalent is not symmetric.

The following proposition provides the basis for forming the quasicategory of all concrete
categories over a given base category.

5.14 PROPOSITION
(1) The identity functor on a concrete category is a concrete isomorphism.

(2) Any composite of concrete functors over X is a concrete functor over X. �

5.15 DEFINITION
The quasicategory that has as objects all concrete categories over X and as mor-
phisms all concrete functors between them is denoted by CAT(X). In particular,
CONST = CAT(Set) is the quasicategory of all constructs.

5.16 REMARK
Notice that even when X is small, CAT(X) is never an actual category (unless X is the
empty category). CAT(1) is essentially the quasicategory of all preordered classes and
order-preserving functions.

5.17 EXAMPLE
There is a natural embedding F : Monop → CONST that assigns to any monoid M
the category M -Act. If f : M → N is a monoid homomorphism, then
F (f) : N -Act → M -Act is the concrete functor that assigns to any N -action (X, ∗N )
the M -action (X, ∗M ), where m ∗M x is defined to be f(m) ∗N x.

5.18 DEFINITION
If F and G are both concrete functors from (A, U) to (B, V ), then F is finer than G
(or G is coarser than F ), denoted by: F ≤ G, provided that F (A) ≤ G(A) for each
A-object A [5.4(1)].

5.19 EXAMPLES
(1) For order-preserving functions considered as concrete functors over 1, f ≤ g if and

only if this relation holds pointwise.
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(2) Among the concrete functors from Set to Top there is a finest one (the discrete-space
functor), and a coarsest one (the indiscrete-space functor).

DUALITY FOR CONCRETE CATEGORIES

5.20 REMARK
For every concrete category (A, U) over X, its dual (Aop, Uop) is a concrete category
over Xop. Moreover, for every concrete functor F : (A, U) → (B, V ) over X its dual
functor F op : (Aop, Uop)→ (Bop, V op) is a concrete functor over Xop. Thus, there is a
duality principle for concrete categories and concrete functors. Observe, however, that
unless X = Xop there is no duality for concrete categories over a fixed base category X.
In particular, we don’t have a duality principle for constructs. However, since 1 = 1op,
there is a duality principle for concrete categories over 1 (i.e., for preordered classes).
This is indeed a familiar duality.

CONCRETE SUBCATEGORIES

5.21 CONVENTION
If (B, U) is a concrete category over X and A is a subcategory of B with inclusion
E : A ↪→ B, then A will often be regarded (via the functor U ◦E) as a concrete category
(A, U ◦E) over X. In such cases we will call (A, U ◦E) a concrete subcategory of
(B, U). In the case that the base category is Set, we will call (A, U◦E) a subconstruct
of (B, U).

5.22 DEFINITION
(1) A concrete subcategory (A, U) of (B, V ) is called concretely reflective in (B, V )

(or a reflective modification of (B, V )) provided that for each B-object there
exists an identity-carried A-reflection arrow.

(2) Reflectors induced by identity-carried reflection arrows are called concrete reflec-
tors.28

Dual Notions: Concretely coreflective subcategory (or coreflective modifica-
tion); concrete coreflectors.

5.23 EXAMPLES
(1) The construct of symmetric relations is simultaneously a concretely reflective and

a concretely coreflective subconstruct of the construct Rel of (binary) relations
[cf. 4.17(1) and 4.26(1)].

(2) The construct of completely regular spaces is a concretely reflective subconstruct of
Top [cf. 4.17(2)].

28Caution: Concrete functors that are reflectors need not be concrete reflectors. See 5.23(6).
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(3) The construct of sequential topological spaces is a concretely coreflective subcon-
struct of Top [cf. 4.26(2)].

(4) None of the reflective subconstructs described in Examples 4.17(3)–(12) is concretely
reflective.

(5) None of the coreflective subconstructs described in Examples 4.26(3) and (4) is
concretely coreflective.

(6) Let X be a category consisting of a single object X and two morphisms idX and s
with s ◦ s = idX . Let A be the concrete category over X, consisting of two objects
A0 and A1 and the morphism sets

homA(Ai, Aj) =

{
{idX} if i = j

{s} if i 6= j.

Consider A as a concretely reflective subcategory of itself. Then idA : A → A is a
concrete reflector, and the concrete functor R : A→ A, defined by R(Ai) = A1−i, is
a reflector that is not a concrete reflector.

5.24 PROPOSITION
Every concretely reflective subcategory of an amnestic concrete category is a full subcat-
egory.

Proof: Let (A, U) be a concretely reflective subcategory of an amnestic (B, V ), let A
be an A-object, and let r : A→ A∗ be an identity-carried A-reflection arrow for A. We
wish to show that r = idA so that Proposition 4.20 can be applied. By reflectivity there
exists a unique A-morphism s : A∗ → A such that the diagram

A
r //

idA   A
AA

AA
AA

A A∗

s

��

A

commutes.

Since r is identity-carried, V (r) = idVA. Since also V (idA) = idVA, we conclude that
V (s) = idVA as well. Faithfulness of V gives us r ◦ s = idA∗ . Hence r is a B-isomorphism
with V (r) = idVA. Amnesticity of (B, V ) yields r = idA. Therefore, by Proposition 4.20,
A is full in B. �

5.25 REMARK
A concretely reflective subcategory of a nonamnestic concrete category need not be full,
as Example 4.21 shows. (The categories given there should be considered as concrete
categories over 1).

5.26 PROPOSITION
For a concrete full subcategory (A, U) of a concrete category (B, V ) over X, with inclu-
sion functor E : (A, U) ↪→ (B, V ), the following are equivalent:
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(1) (A, U) is concretely reflective in (B, V ),

(2) there exists a concrete functor R : (B, V )→ (A, U) that is a reflector with
R ◦ E = idA and idB ≤ E ◦R,29

(3) there exists a concrete functor R : (B, V )→ (A, U) with R ◦ E ≤ idA and
idB ≤ E ◦R.

Proof: (1) ⇒ (2). For each B-object B choose a reflection arrow B
rB−−→ AB such that

rB is identity-carried, and in case that B is an A-object B
rB−−→ AB = B

idB−−−→ B (4.20).
The associated reflector (4.23) has the properties required in (2).

(2) ⇒ (3). Immediate.

(3) ⇒ (1). If R is a concrete functor that satisfies the requirements of (3), then for each
B-object B, we have B ≤ RB; i.e., there is an identity-carried B-morphism B

rB−−→ RB.
To show that rB is an A-reflection arrow for B, let A be an A-object and B

f−→ A be
a B-morphism. Since R is a concrete functor, RB

f−→ RA is an A-morphism. In view
of the fact that RA ≤ A, this implies that RB

f−→ A is an A-morphism. Hence it is the
unique A-morphism that makes the triangle

B
rB //

f
!!C

CC
CC

CC
C RB

f
��

A

commute. �

5.27 REMARK
By the above proposition every full concretely reflective subcategory has a reflector that
is a concrete functor. The converse holds (Proposition 5.31) for isomorphism-closed full
concrete subcategories of transportable concrete categories, defined below. However, for
nonfull subcategories [cf. Exercise 5E(d)] or non-transportable categories [cf. Exercise
5E(c)] the converse need not hold.

TRANSPORTABILITY

We have seen that many of the familiar constructs have the extra property of being
amnestic. Another frequently encountered convenient property is that of transportabil-
ity.

5.28 DEFINITION
A concrete category (A, U) over X is said to be (uniquely) transportable provided

that for every A-object A and every X-isomorphism UA
k−→ X there exists a (unique)

A-object B with UB = X such that A
k−→ B is an A-isomorphism.

29Observe that R ◦ E = idA just means that RA = A for each A-object A and that idB ≤ E ◦ R just
means that B ≤ RB for each B-object B [5.4(1)].
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Transportability

5.29 PROPOSITION
A concrete category is uniquely transportable if and only if it is transportable and amnes-
tic.

Proof: Let (A, U) be uniquely transportable and let f : A→ A′ be an A-isomorphism
such that Uf = idX . Since idA is also an A-isomorphism with domain A and U(idA) =
idX , by uniqueness it follows that f = idA.

Conversely, if (A, U) is transportable and amnestic, A is an A-object, and A
k1−−→ A1

and A
k2−−→ A2 are A-isomorphisms with Uk1 = Uk2, then A1

k2◦k−1
1−−−−−→ A2 is an identity-

carried A-isomorphism. Hence, by amnesticity k2 ◦ k−1
1 = idA1 , so that k1 = k2. �

5.30 EXAMPLES
(1) For a preordered class (A,≤) considered as a concrete category over 1 [cf. 5.2(7)],

the following conditions are equivalent:

(a) (A,≤) is uniquely transportable,

(b) (A,≤) is amnestic,

(c) ≤ is antisymmetric, i.e., ≤ is a partial-order on A.

(2) Familiar constructs such as Vec, Rel, Grp, and Top are uniquely transportable.

(3) The skeleton of Vec formed by all spaces Rm [see 4.13(2)] is amnestic, but not
transportable.

5.31 PROPOSITION
If (A, U) is an isomorphism-closed full concrete subcategory of a transportable concrete
category (B, V ) over X , then the following are equivalent:

1. (A, U) is concretely reflective in (B, V ),
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2. there exists a reflector R : B→ A that is concrete from (B, V ) to (A, U).

Proof: (1) ⇒ (2). Immediate (cf. 5.26).

(2)⇒ (1). Let R be as in (2) and for each B-object B, let B
rB−−→ RB be an A-reflection

arrow. Then the diagram

B
rB //

rB

��

RB

RrB

��

RB rRB

// R(RB)

commutes (cf. 4.22). This implies (by uniqueness in the definition of reflection arrows)
that RrB = rRB. Since RB is an A-object and A is full in B, rRB is an A-iso-
morphism (4.20). Hence U(RB

rRB=RrB−−−−−−−→ R(RB)) is an X-isomorphism. By the

concreteness of R, V (B rB−−→ RB) = U(RB
RrB−−−→ R(RB)). Hence V RB

r−1
B−−−→ V B

is an X-isomorphism. By the transportability of (B, V ) there exists an isomorphism

RB
r−1
B−−−→ B̂ in B, so that since A is isomorphism-closed in B, B̂ is an A-object. Con-

sequently, the composite B
rB−−→ RB

r−1
B−−−→ B̂ is an identity-carried A-reflection arrow

for B. �

5.32 REMARK
For concretely reflective subcategories there usually exist (even in the uniquely trans-
portable cases) several reflectors that are concrete functors [see Example 5.23(6)]. How-
ever, in the amnestic case there exists only one concrete reflector.

Although transportability and amnesticity are quite useful and convenient properties for
concrete categories, they are not especially strong ones. The next propositions show that
if a concrete category fails to have one of them, it can be replaced via slight modifications
by concrete categories that do have them.

5.33 PROPOSITION
For every concrete category (A, U) over X , there exists an amnestic concrete category
(B, V ) over X that has the following properties:

(1) there exists an (injective) concrete equivalence E : (B, V )→ (A, U),

(2) there exists a surjective concrete equivalence P : (A, U)→ (B, V ).

Moreover, if (A, U) is transportable, then so is (B, V ).

Proof: The relation for A-objects, given by “A is equivalent to Â if and only if
A ≤ Â and Â ≤ A”, is an equivalence relation on the class of A-objects. If B is a full
subcategory of A that contains, as objects, precisely one member from each equivalence
class, E : B ↪→ A is the inclusion, and V = U ◦ E, then (B, V ) is an amnestic concrete
category and E : (B, V )→ (A, U) satisfies condition (1).
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If (B, V ) is constructed as above, then the unique concrete functor (A, U) P−−→ (B, V )
that sends each A-object A to its unique equivalent B-object satisfies condition (2).

That transportability is not destroyed is obvious from the construction. �

5.34 REMARK
The construction of (A, U) P−−→ (B, V ), given above, is unique in the sense that for every

surjective concrete equivalence (A, U) P̂−−→ (B̂, V̂ ) with (B̂, V̂ ) amnestic, there exists a
concrete isomorphism K : (B, V ) → (B̂, V̂ ) such that P̂ = K ◦ P . In view of this the
above (B, V ) can be called “the” amnestic modification of (A, U). With respect to
almost every interesting categorical property30 a concrete category is indistinguishable
from its amnestic modification. If one takes the view that in non-amnestic categories
there are “too many objects floating around in the fibres”, then the amnestic modifica-
tions can be considered to be more natural than the concrete categories that give rise
to them. For an example of this phenomenon, notice that the amnestic modification of
the construct Metc of metric spaces and continuous maps is31 the construct Topm of
metrizable topological spaces and continuous maps.

5.35 LEMMA
For every concrete category (A, U) over X, there exists a transportable concrete category
(B, V ) over X and a concrete equivalence E : (A, U)→ (B, V ).

Proof: Define B as follows: Each B-object is a triple (A, a,X), with A ∈ Ob(A),
X ∈ Ob(X), and a : UA→ X an X-isomorphism.

homB((A, a, X), (Â, â, X̂)) = homA(A, Â).

Identities and composition are as in A. Define V : B→ X by

V ((A, a, X)
f−→ (Â, â, X̂)) = X

â◦Uf ◦a−1

−−−−−−−→ X̂;

i.e., such that the square
UA

a //

Uf
��

X

Vf
��

UÂ â
// X̂

commutes.

Clearly, V is a faithful functor, and if V (A, a, X)
f−→ Y is an X-isomorphism, then

idA : (A, a, X) → (A, f ◦ a, Y ) is a B-isomorphism with V (idA) = f . Hence (B, V ) is
transportable. E : (A, U) → (B, V ), defined by: E(A) = (A, idUA, UA), is a concrete
equivalence. �

30Amnesticity obviously is not one of them.
31with respect to the canonical forgetful functor Metc→ Topm
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5.36 PROPOSITION
For every concrete category (A, U) over X there exists a uniquely transportable concrete
category (B, V ) over X and a concrete equivalence E : (A, U)→ (B, V ) that is uniquely
determined32 up to concrete isomorphism.

Proof: According to Lemma 5.35 there is a transportable concrete category (C,W )
over X and a concrete equivalence F : (A, U) → (C,W ). By Proposition 5.33 there
is an amnestic concrete category (B, V ) over X and a surjective concrete equivalence
P : (C,W ) → (B, V ). Consequently, E = P ◦ F : (A, U) → (B, V ) is a concrete
equivalence, and by Proposition 5.33 (B, V ) is uniquely transportable.

To show the essential uniqueness, let (A, U) E−−→ (B, V ) be a concrete equivalence,
with (B, V ) uniquely transportable. For each B-object B choose an A-object AB

and a B-isomorphism EAB
hB−−→ B such that whenever B ∈ E[Ob(A)] then hB is a

B-identity, EAB
hB−−→ B = B

idB−−−→ B. Then V (EAB
hB−−→ B) = UAB

hB−−→ V B =

V (EAB) hB−−→ V B is an X-isomorphism. Since (B, V ) is uniquely transportable, there

is a unique B-isomorphism EAB → CB with V (EAB → CB) = V (EAB) hB−−→ V B.
A simple computation establishes that there exists a unique full concrete functor
H : (B, V )→ (B, V ) with HB = CB for each B-object B. By Proposition 5.10, H is a
concrete embedding. To show that E = H ◦E, let A be an A-object and let B = EA. By
our construction EAB

hB−−→ B is a B-identity, which implies that EAB = EA. Hence,
by Proposition 5.10, AB and A are equivalent A-objects. Consequently, EAB and EA
are equivalent B-objects. Since (B, V ) is amnestic, this implies that EAB = EA. Hence
EAB

id−−→ EA is a B-isomorphism with

V (EAB
id−−→ EA) = V (EAB) hB−−→ V B,

so that by the definition of CB we have CB = EA; i.e., (H ◦ E)A = HB = CB = EA.

It remains to be shown that H is surjective. Let C be a B-object. Since E is
isomorphism-dense, there exists some A-object A and some B-isomorphism EA

h−→ C.
Then V (EA

h−→ C) = UA
h−→ V C = V (EA) h−→ V C is an X-isomorphism, so

that by the unique transportability of (B, V ), there exists a unique B-isomorphism
EA → B, with V (EA → B) = V (EA) h−→ V C. We claim that HB = C. To see this,

consider the chosen B-isomorphism EAB
hB−−→ B. Since EA

h−→ B is a B-isomorphism,

EAB
h−1◦hB−−−−−−→ EA is a B-isomorphism. By the fullness and faithfulness of E, this

implies that AB
h−1◦hB−−−−−−→ A is an A-isomorphism (3.31), and hence EAB

h−1◦hB−−−−−−→ EA
is a B-isomorphism. Consequently,

EAB
hB−−→ C = EAB

h−1◦hB−−−−−−→ EA
h−→ C

32That is, whenever (A, U)
E−−→ (B, V ) is a concrete equivalence to a uniquely transportable concrete

category over X, then there exists a concrete isomorphism H : (B, V ) → (B, V ) such that E = H ◦E.

9th July 2006



72 Categories, Functors, and Natural Transformations [Chap. I

is a B-isomorphism with

V (EAB
hB−−→ C) = V (EAB) hB−−→ V C = V B,

which, by the definition of HB, implies that HB = C. Thus H : (B, V ) → (B, V ) is a
concrete isomorphism with E = H ◦ E. �

FUNCTORS “INDUCING” CONCRETE CATEGORIES

Many familiar constructs of an “algebraic” or “topological” nature have natural descrip-
tions that can be accomplished in two steps. The first step, which will be formalized
below (separately for algebraic and topological cases), consists of defining algebraic (resp.
topological) categories by means of certain functors. The second step consists of singling
out full, concrete subcategories by imposing certain axioms on the objects (cf. 16.11 and
22.1).

5.37 DEFINITION
Let T : X → X be a functor. Alg(T ) is the concrete category over X, the objects of
which (called T -algebras) are pairs (X, h) with X an X-object and h : T (X) → X
an X-morphism. Morphisms f : (X, h) → (X ′, h′) (called T -homomorphisms) are
X-morphisms f : X → X ′ such that the diagram

T (X) h //

T (f)
��

X

f

��

T (X ′)
h′
// X ′

commutes. The underlying functor to X is given by:
∣∣(X, h)

f−→ (X ′, h′)
∣∣ = X

f−→ X ′.

5.38 EXAMPLES
(1) Consider the squaring functor [3.20(10)] S2 : Set → Set. The construct Alg(S2)

is obviously the construct of binary algebras Alg(Ω0), where Ω0 consists of the
singleton natural number 2 [3.3(2)(e)]. Observe that such familiar constructs as Sgr,
Mon, Grp, and Ab can be considered as subcategories of Alg(S2). [Later we shall
see that each Alg(Ω) is isomorphic to Alg(T ) for some T (10U).]

(2) A unary Σ-algebra [3.3(2)(e)] (X, σ(−))σ∈Σ gives rise to a function X × Σ h−→ X
that maps (x, σ) to σ(x). Define a functor (− × Σ) : Set → Set as follows. On
objects: (−×Σ)(X) = X ×Σ, and on morphisms: (−×Σ)(f) = f × idΣ. Then the
passage from (X, σ(−))σ∈Σ to (X, h) defines a concrete isomorphism

F : Alg(Σ)→ Alg(−× Σ)

that is the identity function on morphisms.
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(3) Let Ŝ2 : Pos→ Pos be the squaring functor for Pos; i.e., Ŝ2(X,≤) = (X ×X,≤),
where the order relation on X × X is defined coordinatewise, and Ŝ2(f) = f × f ,
for any order-preserving map f . Then the concrete category Alg(Ŝ2) over Pos is
concretely isomorphic to the category of ordered binary algebras, considered as a
concrete category over Pos.

(4) For any category X and X-object, X, the constant functor CX : X → X [3.20(2)]
yields the category Alg(CX) which is the comma category (X ↓ X) of objects under
X (see Exercise 3K).

5.39 PROPOSITION
Each concrete category of the form Alg(T ) is fibre-discrete. �

5.40 DEFINITION
Let T : X → Set be a functor. Spa(T ) is the concrete category over X, the objects of

which (called T -spaces) are pairs (X, α) with α ⊆ T (X). Morphisms (X, α)
f−→ (Y, β)

(called T -maps) are X-morphisms f : X → Y such that T (f)[α] ⊆ β. The underlying

functor to X is given by:
∣∣(X, α)

f−→ (Y, β)
∣∣ = X

f−→ Y. Concrete categories of the form
Spa(T ) are called functor-structured categories.

5.41 EXAMPLES
(1) Consider the squaring functor S2 : Set → Set [3.20(10)]. Then the construct

Spa(S2) is equal to the construct Rel. Observe that such familiar constructs as
Prost and Pos can be considered as full subcategories of Spa(S2).

(2) Any functor T : 1→ Set consists of choosing a distinguished set A, and so, for this
case, Spa(T ) is just the power-set of A regarded as a poset or as a concrete category
over 1.

5.42 PROPOSITION
Each concrete category of the form Spa(T ) is fibre-complete. �

5.43 REMARK
We will see later (22.3) that every small-fibred “topological” category (A, U) over X
is isomorphic to a full concrete subcategory of Spa(T̂ ) for a suitable T̂ : X → Set.
A more natural representation of (A, U) is often obtained in terms of a full concrete
subcategory of (Spa(T ))op considered as a concrete category over X = (Xop)op for
some functor T : Xop → Set. Concrete categories of the form (Spa(T ))op are called
functor-costructured categories.

5.44 EXAMPLE
Consider the contravariant power-set functor Q : Setop → Set. Then the construct
(Spa(Q))op has as objects all pairs (X, τ) consisting of a set X and a set τ of subsets of
X, where a morphism f : (X, τ)→ (Y, σ) is a function f : X → Y such that Qf [σ] ⊆ τ .
In particular, Top is a full subconstruct of (Spa(Q))op.
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5.45 REMARK
Concrete categories of the form Spa(T ) can be very large. In fact, every construct A
can be fully embedded in

(a) Spa(P), where P is the covariant power-set functor;

(b) (Spa(Q))op, where Q is the contravariant power-set functor;

(c) the concrete category of topological spaces and open, continuous functions.

These and related results can be found in the monograph Pultr-Trnková (see References).
However, the corresponding embeddings usually will not be concrete.
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EXERCISES

5A. Fibres
(a) Show that the category TopGrp, as a concrete category over Top, is fibre-discrete

and, as a concrete category over Grp, is fibre-complete. What about the construct
TopGrp? What about the constructs HComp and Comp (of compact spaces)?

(b) Which concrete categories have the property that each fibre is a singleton?
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5B. Non-concrete Isomorphisms

Show that there is an illegitimate conglomerate of isomorphisms of Set onto itself, al-
though the only concrete isomorphism of the construct Set onto itself is id.

5C. Categories of Concrete Categories

Verify that for each small category X there is a category whose objects are all fibre-small
concrete categories over X and whose morphisms are all concrete functors. Nevertheless,
show that the conglomerate of all fibre-small constructs is illegitimate. [In fact, the
conglomerate of all full subcategories of Set is illegitimate.]

5D. Concrete Functors Between Constructs
(a) Show that there is precisely one concrete functor from Rel to Set (the forgetful

functor) and that there are precisely three concrete functors from Set to Rel, the
discrete functor, the diagonal functor (FX = (X, ∆), where ∆ = { (x, x) |x ∈ X }),
and the indiscrete functor.

(b) Show that there is precisely one concrete functor from Set to Pos.

(c) Show that there is no concrete functor from Set to Vec. Generalize this to other
algebraic constructs, and to Σ-Seq.

* (d) Show that there are precisely two concrete functors from Set to Top, but a proper
class of concrete functors from Top into itself. [Hint: For each cardinal number α
let Fα : Top → Top assign to each topological space X the space FαX generated
by intersections of α-indexed families of X-open sets.]

5E. Concrete Reflections
(a) Show that no proper subconstruct of Grp is concretely reflective (or coreflective).

Generalize this to all fibre-discrete concrete categories.

(b) Show that the full subconstruct of Rel formed by all objects (X, ρ) without proper
cycles (i.e., if x1ρx2, x2ρx3, · · · , xn−1ρxn, and x1 = xn, then x1 = x2 = · · · = xn) is
reflective, but not concretely reflective.

(c) Show that a reflective, isomorphism-closed, full concrete subcategory (A, U) of
a (non-transportable) concrete category (B, V ) over X with a reflector functor
(B, V ) R−−→ (A, U) that is concrete need not be concretely reflective. [Hint: Con-
sider the additive monoid of integers as base category X; let B be the category with

Ob(B) = N and homB(n, m) =

{
∅, if m = 0 < n

{(n, m)}, otherwise

}
; let the functor

B V−−→ X be defined by V (n, m) = n − m; and let (A, U) be the full concrete
subcategory of (B, V ) obtained by deleting the object 0.] Cf. Proposition 5.31.

* (d) Show that a reflective (nonfull) concrete subcategory (A, U) of a transportable con-
crete category (B, V ) over X with a reflector (B, V ) R−−→ (A, U) that is a concrete
functor need not be concretely reflective. [Hint: Consider the compositive monoid
of all order-preserving endomorphisms of the set N, with its natural order, as base

9th July 2006



76 Categories, Functors, and Natural Transformations [Chap. I

category X, and let (A, U) (resp. (B, V )) be the concrete category over X with

objects all pairs (N, n), with n ∈ N, and whose morphisms (N, n)
f−→ (N,m)

are all X-morphisms N
f−→ N that satisfy f(n + p) = m + p for all p ∈ N

(resp. f(n + p) = m + p for all p ≥ 1 and f(n) ≤ m).] Cf. Proposition 5.31.

5F. Amnestic Modification
(a) Describe the amnestic modification of the construct Metu of metric spaces and

uniformly continuous maps.

(b) What are the amnestic modifications for concrete categories over 1?

5G. Categories of T -Algebras

(a) Describe Alg(T ) for the constant functor T : Set→ Set

(1) with value ∅,

(2) with value 1 = {0}.

(b) Find a functor T : Set → Set such that Alg(T ) is concretely isomorphic to the
category of commutative binary algebras (i.e., algebras with a binary operation ·
satisfying x · y = y · x).

(c) Describe Alg(id).

(d) Let T : Pos → Pos be the functor that assigns to each poset (X,≤) the discretely
ordered set, and is defined on morphisms by: Tf = f . Describe Alg(T ).

5H. Categories of T -Spaces

(a) Describe Spa(T ) for the constant functor T : Set→ Set

(1) with value ∅,

(2) with value 1 = {0}.

(b) Find a functor T : Set → Set such that Spa(T ) is concretely isomorphic to the
construct of symmetric binary relations (i.e., if x is related to y, then y must be
related to x).

(c) Show that there is no functor T : Set → Set such that Spa(T ) is concretely iso-
morphic to the construct of reflexive binary relations.

5I. Cat as a Concrete Category

Cat can be viewed in various ways as a concrete category. Depending on the chosen
definition of category (cf. 3.1, 3.53 and 3C) and on the chosen forgetful functor, various
situations arise:

(a) Show that by assuming any of the two definitions of categories 3.1 or 3C, Cat can
be considered as a concrete category over Set× Set via the functor
U : Cat→ Set× Set, defined by

U(A F−−→ B) = (Ob(A) FO−−→ Ob(B) , Mor(A) FM−−−→Mor(B)),
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(where FO is the restriction of F to objects and FM is its restriction to morphisms),
and that in both cases U is uniquely transportable.

(b) Show that by assuming any of the three definitions of categories, Cat can be con-
sidered as construct via the functor U : Cat → Set, defined by U(A F−−→ B) =

Mor(A) FM−−−→ Mor(B). In the cases of Definition 3.1 and of Exercise 3C, U is
transportable, but not amnestic; and in the case of Definition 3.53, U is amnestic
and transportable. [Thus, when considered as a construct, Catof is usually preferred
to Cat.]

5J. Concretizable Categories

A category A is called concretizable over X provided that there exists a faithful
functor from A to X. Verify that

(a) A is concretizable over 1 if and only if A is thin.

(b) Setop is concretizable over Set.

(c) If A is concretizable over Set, then so is Aop.

* (d) There exist categories that are not concretizable over Set, e.g., the category hTop,
whose objects are topological spaces and whose morphisms are homotopy equivalence
classes of continuous maps.

(e) A is concretizable over Set if and only if A is embeddable into Set.

(f) There exist categories A that are not concretizable over Aop.

* 5K. Subconstructs That Are Simultaneously Reflective and
Coreflective Modifications

Show that the construct Rel has precisely six subconstructs that are simultaneously
reflective and coreflective modifications and that the five proper ones can be described
by the following implications:

(1) xρy ⇒ yρx (symmetry),

(2) xρy ⇒ xρx,

(3) xρy ⇒ yρy,

(4) xρy ⇒ (xρx and yρy),

(5) xρy ⇒ (xρx and yρx).

5L. The Constructs Topop
0 and Fram

(a) If Top0 denotes the construct of T0 topological spaces, show that Topop
0 can be

considered as a construct via the functor L : Topop
0 → Set that forgets not the

“structure” but rather the underlying set; i.e., for a continuous function
(Y, σ)

f−→ (X, τ), L((X, τ)
f−→ (Y, σ)) = τ

Lf−−→ σ, where Lf(A) = f−1[A].
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(b) Let Fram be the construct whose objects are frames, i.e., complete lattices that
satisfy the law a ∧

∨
i∈I bi =

∨
i∈I(a ∧ bi), and whose morphisms are frame-

homomorphisms, i.e., functions that preserve finite meets and arbitrary joins.
Show that there is a unique concrete functor Topop

0
T−−→ Fram over Set that sends

each topological space to its set of open subsets, ordered by inclusion.

[Loc=Framop is called the category of locales. The functor T op : Top0 → Loc is a
nonfull coreflective embedding, and its restriction to sober spaces is a full coreflective
embedding].

5M. HCompop as a Construct

Show that HCompop can be considered as a construct via the contravariant hom-functor
hom(−, [0, 1]) : HCompop → Set.

5N. Concrete Isomorphisms

(a) Show that the following constructs are concretely isomorphic:

(1) MCPos (complete lattices and meet-preserving maps),

(2) JCPos,

(3) the full subconstruct of Alg(P) consisting of those P-algebras (X, h) that satisfy
the following two conditions:

(i) h({x}) = x for each x ∈ X,

(ii) h(∪A) = h({h(A)
∣∣ A ∈ A}) for each A ⊆ PX.

(b) Show that the three constructs defined below are pairwise concretely isomorphic and
therefore provide three different approaches to topology.

(1) Approach via closure; the construct Clos:

Objects are closure spaces; i.e., pairs (X, cl) with cl : P(X) → P(X) a func-
tion that satisfies:

(i) cl(∅) = ∅,

(ii) A ⊆ cl(A) for each A ∈ P(X),

(iii) cl(A ∪B) = cl(A) ∪ cl(B) for each A,B ⊆ X.

Morphisms are closure-preserving maps; i.e., functions (X, cl)
f−→ (X ′, cl′)

such that f [cl(A)] ⊆ cl′(f [A]) for each A ⊆ X.

(2) Approach via convergence; the construct PrTop:

Objects are pretopological spaces; i.e., pairs (X, conv), where conv is the
relation that shows which filters converge to which points of X, subject to the
following conditions:

(i) for every x ∈ X the fixed ultrafilter at x (ẋ) converges to x,

(ii) if a filter converges to x, then so does every finer filter,
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(iii) if each member of a family of filters converges to x, then so does the
intersection of the family.

Morphisms are convergence-preserving maps; i.e., functions
(X, conv)

f−→ (X ′, conv′) such that whenever F converges to x, then the filter
generated by f [F ] converges to f(x).

(3) Approach via neighborhoods; the construct Neigh:

Objects are neighborhood spaces; i.e., pairs (X,N ), where N associates with
any x ∈ X a filter N (x), the neighborhood filter of x, subject to the condition
that if U is a neighborhood of x then x is a member of U .

Morphisms are all functions (X,N )
f−→ (X ′,N ′) such that whenever U is a

neighborhood of f(x), then f−1[U ] is a neighborhood of x.

5O. Realizations
Full concrete embeddings are called realizations. Show that

(a) There are precisely two realizations from Pos to Rel.

* (b) There are precisely two realizations from Top to Spa(Q)op.

(c) There is a realization from Alg(1) to Rel.

(d) There is a realization from Sgr to Spa(S3).

(e) For each Ω, there is a realization from Alg(Ω) to some functor-structured category.

(f) There is a realization from Prost to Top.

(g) There is no realization from Rel to Sgr.

(h) There is a proper class of realizations from Tych to Spa(Q)op.

(i) There are at least two realizations from Haus to Spa(Q)op. [It is unknown whether
there are more than two.]

(j) There is a no fibre-small construct (A, U) such that every fibre-small construct has
a realization to (A, U).

* (k) There is a construct (A, U) such that every construct has a realization to (A, U).

5P. Amnesticity

Show that a concrete category (A, U) over X is amnestic if and only if each A-iso-
morphism f is an A-identity whenever Uf is an X-identity.
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6 Natural transformations

Let V be a finite-dimensional real vector space and let V̂ be its dual (i.e., the set of
all linear functionals V → R with vector-space operations defined pointwise). V and

V̂ are known to be isomorphic. Hence V and its second dual ˆ̂
V are isomorphic as

well. However, there is a fundamental difference between these two situations. There
is a “natural” isomorphism τ : V → ˆ̂

V which to every vector x assigns the “evaluate
at x” functional τ(x) : V̂ → R. But there is no “natural” isomorphism between V
and V̂ . This section provides a formal definition for the intuitive notion of “natural
isomorphism” and (more generally) of “natural transformation”.

6.1 DEFINITION
Let F,G : A → B be functors. A natural transformation τ from F to G (denoted
by τ : F → G or F

τ−→ G) is a function that assigns to each A-object A a B-morphism
τA : FA→ GA in such a way that the following naturality condition holds: for each
A-morphism A

f−→ A′, the square

FA
τA //

Ff
��

GA

Gf
��

FA′
τA′
// GA′

commutes.

6.2 EXAMPLES
(1) Let A be a reflective subcategory of B with inclusion functor E, let B

rB−−→ RB be
an A-reflection arrow for each B-object B, and let R : B → A be the associated
reflector (4.23). Then r = (rB)B∈Ob(B) is a natural transformation: idB

r−→ E ◦R.

(2) Let U : Grp → Set be the forgetful functor, and let S : Grp → Set be the

“squaring-functor”, defined by S(G
f−→ H) = G2 f2

−−→ H2. For each group G, its
multiplication is a function τG : G2 → G. The family τ = (τG) is a natural transfor-
mation from S to U . The naturality condition simply means that f(x·y) = f(x)·f(y)

for any group homomorphism G
f−→ H and any x, y ∈ G. Thus “multiplication” in

groups can be regarded as a natural transformation. Likewise, for any type of alge-
bras, each of the defining operations can be considered as a natural transformation
between suitable functors.

(3) Let (ˆ̂) : Vec→ Vec be the second-dual functor for vector spaces defined by

Vec
( ˆ̂ )−−−→ Vec = (Vecop)op

( ˆ )op−−−−→ Vecop ( ˆ )−−−→ Vec,
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where (ˆ)op is the dual of the duality functor for vector spaces (cf. 3.20(12)
and 3.41), and let idVec be the identity functor on Vec. Then the linear transfor-

mations τV : V → ˆ̂
V , defined by (τV (x))(f) = f(x), yield a natural transformation

idVec
τ−→ (ˆ̂).

(4) The assignment of the Hurewicz homomorphism πn(X) → Hn(X) to each topo-
logical space X is a natural transformation from the nth homotopy functor
πn : Top→ Grp to the nth homology functor Hn : Top→ Grp.

(5) If B
f−→ C is an A-morphism, then

homA(C,−)
τf−−→ homA(B,−),

defined by τf (g) = g ◦ f , and

homA(−, B)
σf−−→ homA(−, C),

defined by σf (g) = f ◦ g, are natural transformations.

(6) Let U : Σ-Seq → Set be the forgetful functor. For each σ ∈ Σ, and each acceptor
A = (Q, δ, q0, F ), let σ̂A be the function δ(−, σ) : Q→ Q. Then σ̂ = (σ̂A) : U → U
is a natural transformation.

6.3 DEFINITION
If G, G′ : A→ B are functors and G

τ−→ G′ is a natural transformation, then

(1) for each functor F : C → A, the natural transformation τF : G ◦ F → G′ ◦ F is
defined by

(τF )C = τFC ,

(2) for each functor H : B → D, the natural transformation Hτ : H ◦ G → H ◦ G′ is
defined by

(Hτ)A = H(τA).

Likewise the natural transformation G′op τop

−−−→ Gop is defined by

τop
A = τA,

6.4 EXAMPLE
If S2 : Set → Set is the squaring functor [3.20(10)] and ∆ : id → S2 is the natural
transformation that associates with every set X the diagonal map ∆X : X → X2 given
by x 7→ (x, x), then

(1) S2∆ : S2 → S2 ◦ S2 is given by (x, y) 7→ ((x, x), (y, y)),

(2) ∆S2 : S2 → S2 ◦ S2 is given by (x, y) 7→ ((x, y), (x, y)).
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NATURAL ISOMORPHISMS

6.5 DEFINITION
Let F,G : A→ B be functors.

(1) A natural transformation F
τ−→ G whose components τA are isomorphisms is called

a natural isomorphism from F to G.

More generally, a natural transformation from F to G whose components belong to
some specified class M of B-morphisms is called an M-transformation.

(2) F and G are said to be naturally isomorphic (denoted by F ∼= G) provided that
there exists a natural isomorphism from F to G.33

6.6 EXAMPLES
(1) For each functor F : A→ B we have the identity natural transformation on F ,

idF : F → F given by (idF )A = idFA, which is clearly a natural isomorphism.

(2) Let F : Set→ Vec be a functor that assigns to each set X a vector space FX with

basis X, and to each function X
f−→ Y the unique linear extension FX

Ff−−→ FY
of f . This actually is not a correct definition of a functor, since there are many
different vector spaces with the same basis. However, the definition is “correct up to
natural isomorphism”. Whenever we choose, for each set X, a specific vector space
FX with basis X, we do obtain a functor F : Set→ Vec (since the above condition
determines the action of F on functions uniquely). Furthermore, any two functors
that are obtained in this way are naturally isomorphic.

(3) The natural transformation τ : idVec → (ˆ̂ ) from the identity functor on Vec to
the second-dual functor for vector spaces (ˆ̂ ) given in Example 6.2(3) becomes a
natural isomorphism when the above functors are restricted to the full subcategory
of finite-dimensional vector spaces.

(4) For any 2-element set A, hom(A,−) is naturally isomorphic to the squaring functor
S2 [3.20(10)] and hom(−, A) is naturally isomorphic to the contravariant power-set
functor Q [3.20(9)].

(5) If f is a morphism and τf and σf are the associated natural transformations for the
hom-functors [6.2(5)], then the following are equivalent:

(a) f is an isomorphism,

(b) σf is a natural isomorphism,

(c) τf is a natural isomorphism.

Thus, if A and B are isomorphic objects, then hom(A,−) and hom(B,−) are natu-
rally isomorphic functors, and so are hom(−, A) and hom(−, B). The converse holds
as well (cf. Exercise 6M).

33Observe that the relation ∼= is an equivalence relation on the conglomerate of all functors from A to
B.
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6.7 PROPOSITION
If A is a reflective subcategory of B, then any two reflectors for A are naturally isomor-
phic.

Proof: Let R and S be reflectors for A with associated reflection arrows B
rB−−→ RB

and B
sB−−→ SB. Then there exist A-morphisms RB

fB−−→ SB and SB
gB−−→ RB such

that the diagrams

B
rB //

sB
!!C

CC
CC

CC
C RB

fB

��

SB

and
B

sB //

rB
!!C

CC
CC

CC
C SB

gB

��

RB

commute. Uniqueness in the definition of reflection arrows implies that gB ◦ fB = idRB

and fB ◦ gB = idSB. Hence the fB’s are A-isomorphisms. That (fB)B∈Ob(A) is a
natural transformation (hence a natural isomorphism) follows from the fact that for any

B-morphism B
f−→ B′ the following diagrams 1 and 2 — hence, by the uniqueness

property for B
rB−−→ RB, also 3 — commute:

B
sB //

1f
��

SB

Sf
��

B′
sB′
// SB′

=

B
rB //

f
��

2

RB
fB //

Rf
��

3

SB

Sf
��

B′
rB′
// RB′

fB′
// SB′

In Proposition 3.36 we have seen that if A F−−→ B is an equivalence, then there is an
equivalence B G−−→ A. Now that we have the notion of natural isomorphism, we are able
to sharpen this result:

6.8 PROPOSITION
A functor A F−−→ B is an equivalence if and only if there exists a functor B G−−→ A such
that idA

∼= G ◦ F and F ◦G ∼= idB.

Proof: Let F be an equivalence. By following the proof of Proposition 3.36 we see
that there is a functor G and a natural isomorphism ε : F ◦ G → idB. Now for each
A-object A, ε−1

FA : FA→ (F ◦G ◦F )(A) is an isomorphism. Since F is full and faithful,
Proposition 3.31 implies that there is a unique isomorphism ηA : A→ (G ◦ F )(A) such
that F (ηA) = ε−1

FA. The naturality of η follows from that of ε−1 (cf. Exercise 6L) and
the faithfulness of F .

Conversely, let G : B → A be a functor and let idA
η−→ G ◦ F and F ◦ G

ε−→ idB be
natural isomorphisms. Since F (GB) εB−−→ B is an isomorphism for any B-object B,

it follows that F is isomorphism-dense. F is faithful, since for any pair A
f
//

g
// A′ of

B-morphisms the equality Ff = Fg implies ηA′ ◦ f = GFf ◦ ηA = GFg ◦ ηA = ηA′ ◦ g;
hence f = g. F is full, since for any B-morphism f : FA → FA′, η−1

A′ ◦ Gf ◦ ηA is an
A-morphism g : A→ A′ with Fg = f . �
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6.9 DEFINITION
A functor F : A → Set is called representable (by an A-object A) provided that F
is naturally isomorphic to the hom-functor hom(A,−) : A→ Set.

6.10 REMARK
Objects that represent the same functor (or two naturally isomorphic functors) are iso-
morphic. (Cf. Exercise 6M.) �

6.11 EXAMPLES
(1) Forgetful functors are often representable. For example,

(a) Vec→ Set is represented by the vector space R,

(b) Grp→ Set is represented by the group of integers Z,

(c) Top→ Set is represented by any one-point topological space.

(2) The underlying functor U for the construct Ban [5.2(3)] is not representable (see
Exercise 10J). However, the faithful unit ball functor O : Ban→ Set is represented
in the complex case by the Banach space C of complex numbers.

(3) The forgetful functor for Σ-Seq is not representable (since for each (finite) acceptor
A there exists a nonempty acceptor B with hom(A,B) = ∅).

6.12 REMARK
For constructs (A, U) the forgetful functor is represented by an object A if and only
if A is a free object over a singleton set [see Definition 8.22(2)]. This provides many
additional examples of representations.

FUNCTOR CATEGORIES

6.13 DEFINITION
If F,G,H : A→ B are functors and F

σ−→ G and G
τ−→ H are natural transformations,

then the composition of natural transformations τ ◦ σ : F → H is the natural
transformation that assigns to each A-object A the morphism τA ◦ σA : F (A)→ H(A).

6.14 REMARK
It is obvious that the composition of natural transformations is a natural transformation,
that this composition is associative, and that the identity natural transformations act
as units.

6.15 DEFINITION
For categories A and B the functor quasicategory [A,B] has as objects all functors
from A to B, as morphisms from F to G all natural transformations from F to G, as
identities the identity natural transformations, and as composition the composition of
natural transformations given above.
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6.16 REMARKS
(1) If A and B are small categories, then [A,B] is a category. If A is small and

B is large, then [A,B], though being a proper quasicategory, is isomorphic to a
category. Quasicategories that are isomorphic to categories are called legitimate
quasicategories and are treated as categories. If A and B are both large, then
[A,B] will generally fail to be isomorphic to a category. Such quasicategories are
called illegitimate.

(2) A natural transformation between functors from A to B is a natural isomorphism
if and only if it is an isomorphism in [A,B].

6.17 EXAMPLES
(1) If A is a discrete category with one object, then [A,B] is isomorphic to B.

(2) If A is a discrete category with two objects, then [A,B] is isomorphic to B×B.

(3) If 2 is a category of the form • → • with two objects and one non-identity morphism,
then [2,B] is isomorphic to the arrow category of B (cf. Exercise 3K).

(4) If M is a monoid, considered as a category, then [M,Set] is isomorphic to the
category M -Act of M -actions.

6.18 PROPOSITION
For any functor F : A→ Set, any A-object A and any element a ∈ F (A), there exists
a unique natural transformation τ : hom(A,−)→ F with τA(idA) = a.

Proof: Let τB(f) = (F (f))(a). Pointwise evaluations establish that τ is a natural
transformation. If δ : hom(A,−)→ F is such that δA(idA) = a, then by the naturality
of δ, δB(f) = δB(f◦idA) = (δB◦hom(A, f))(idA) = (F (f)◦δA)(idA) = F (f)(a) = τB(f).�

6.19 COROLLARY (YONEDA LEMMA)

If F : A→ Set is a functor and A is an A-object, then the following function

Y : [hom(A,−), F ]→ F (A) defined by Y (σ) = σA(idA),

is a bijection (where [hom(A,−), F ] is the set of all natural transformations from
hom(A,−) to F ). �

6.20 THEOREM
For any category A, the functor E : A→ [Aop,Set], defined by

E(A
f−→ B) = hom(−, A)

σf−−→ hom(−, B),

where σf (g) = f ◦ g, is a full embedding.

Proof: The described assignment clearly preserves identities and composition. Thus it
is a functor. If f and f ′ are distinct members of hom(A,B), then σf and σf ′ clearly differ
on idA. Hence E is faithful. Fullness follows from Corollary 6.19 with F = hom(B,−).�
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6.21 EXAMPLES
(1) If M is a monoid considered as a category, then the unique object assigned to it by

the above embedding is the Mop-action on the set M defined by right translations
in M .

(2) If A is a poset considered as a thin category, then the above embedding is the
representation of A by all the principal ideals in A.

CONCRETE NATURAL TRANSFORMATIONS
AND GALOIS CORRESPONDENCES

6.22 REMARK
From now on, when investigating concrete categories, we typically will use the notational
conventions described in Remark 5.3. In particular,

(1) we will denote a concrete category (A, U) over X by A alone and denote the under-
lying functor U by | |,

(2) the expression “|A| f−→ |B| is an A-morphism” means that for the X-morphism

|A| f−→ |B| there exists a (necessarily unique) A-morphism A→ B, which will also

be denoted by f , with |A→ B| = |A| f−→ |B|.

6.23 DEFINITION
If A and B are concrete categories over X and F,G : A→ B are concrete functors (5.9),
then a natural transformation τ : F → G is called concrete (or identity-carried)
provided that |τA| = id|A| for each A-object A.

6.24 PROPOSITION
If F,G : A→ B are concrete functors, then the following are equivalent:

(1) F ≤ G (5.18),

(2) there exists a (necessarily unique) concrete natural transformation τ : F → G. �

6.25 DEFINITION
Let A and B be concrete categories over X. If G : A→ B and F : B→ A are concrete
functors over X, then the pair (F,G) is called a Galois correspondence (between A
and B over X) provided that F ◦G ≤ idA and idB ≤ G ◦ F .

6.26 EXAMPLES
(1) Galois isomorphisms: If K : A → B is a concrete isomorphism, then (K−1,K)

is a Galois correspondence, called a Galois isomorphism.
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(2) Galois reflections and coreflections:

(a) If E : A → B is a concrete embedding and R : B → A is a concrete reflector,
then (R,E) is a Galois correspondence, called a Galois reflection.

(b) If E : A→ B is a concrete embedding and C : B→ A is a concrete coreflector,
then (E,C) is a Galois correspondence, called a Galois coreflection.

(3) Galois correspondences for constructs:

(a) Let U : Top→ Set be the forgetful functor, let D : Set→ Top be the discrete
functor, and let N : Set → Top be the indiscrete functor [3.29(5) and (6)].
Then (D,U) and (U,N) are both Galois correspondences.

(b) Let G : Top → Rel be the concrete functor (over Set) defined on objects by:
(X, τ) 7→ (X, ρτ ), where xρτy if and only if x is in the τ -closure of {y}. Let
F : Rel→ Top be the concrete functor defined on objects by (X, ρ) 7→ (X, τρ),
where A is τρ-closed if and only if A is a lower-set for ρ [i.e., a ∈ A and
a′ρa⇒ a′ ∈ A]. Then (F,G) is a Galois correspondence.

(c) If U : Unif → Top is the forgetful functor that assigns to any uniform space
the completely regular space underlying it, and F : Top → Unif is the fine
functor that assigns to any topological space the fine uniform space determined
by it, then (F,U) is a Galois correspondence.

(4) Galois connections:

(a) Recall that when X = 1, then concrete categories over X are essentially pre-
ordered classes and concrete functors between them are essentially order-preserv-
ing functions. Historically, a Galois connection between preordered classes A and
B has been defined as a pair (f, g) of order-preserving34 functions g : A → B
and f : B → A with the property that for all a ∈ A and b ∈ B, f(b) ≤ a if and
only if b ≤ g(a). Notice that the latter condition is equivalent to: (f ◦ g)(a) ≤ a
for all a ∈ A and b ≤ (g ◦f)(b) for all b ∈ B. Thus Galois connections are just
Galois correspondences with the base category X = 1. (See also Proposition
6.28 below.)

(b) Important special cases of Galois connections arise from (binary) relations:

Let ρ be a relation from the set X to the set Y , i.e., ρ ⊆ X × Y . Denote by A
the poset of all subsets of X ordered by inverse inclusion and by B the poset of
all subsets of Y ordered by inclusion. Then the following maps yield a Galois
connection:

g : A→ B, defined by g(S) = {y ∈ Y | sρy for all s ∈ S}

f : B → A, defined by f(T ) = {x ∈ X |xρt for all t ∈ T}.
34Many of the earlier definitions of Galois connections deal only with the case of par-

tially ordered sets and they usually adopt a “contravariant” formulation as follows: If
g : A → B and f : B → A are order-reversing functions between posets, then (f, g) is a (con-
travariant) Galois connection provided that a ≤ f(b) if and only if b ≤ g(a). Notice that this is the
same as the formulation above if the order on A is reversed. The order-preserving version corresponds
to what are frequently called residuated-residual pairs or (sometimes) Galois connections of mixed
type.
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6.27 PROPOSITION
(1) If (F,G) is a Galois correspondence between A and B and (F̂ , Ĝ) is a Galois corre-

spondence between B and C, then (F ◦ F̂ , Ĝ◦G) is a Galois correspondence between
A and C [sometimes denoted by (F̂ , Ĝ) ◦ (F,G)].

(2) If (F,G) is a Galois correspondence between A and B over X, then (Gop, F op) is a
Galois correspondence between Bop and Aop over Xop.

Proof:
(1). For any A-object A we obtain F̂ Ĝ(GA) ≤ GA. Application of the functor F yields

FF̂ ĜG(A) ≤ FGA. Since FGA ≤ A, transitivity of ≤ yields (FF̂ )(ĜG)(A) ≤ A.
Likewise B ≤ (ĜG)(FF̂ )B for each B-object B.

(2). Obvious. �

6.28 PROPOSITION
Let G : A → B and F : B → A be concrete functors over X. Then the following are
equivalent:

(1) (F,G) is a Galois correspondence,

(2) an X-morphism |F (B)| f−→ |A| is an A-morphism if and only if |B| f−→ |G(A)| is a
B-morphism.

Proof:
(1) ⇒ (2). If |FB| f−→ |A| is an A-morphism, then by applying G and using

idB ≤ G ◦ F , one has that |B|
id|B|−−−→ |(G ◦ F )(B)| f−→ |GA| is a B-morphism.

Conversely, the facts that |B| f−→ |GA| is a B-morphism and that F ◦ G ≤ idA imply

that |FB| f−→ |(F ◦G)(A)|
id|A|−−−→ |A| is an A-morphism.

(2) ⇒ (1). Since each |FB|
id|FB|−−−−→ |FB| is an A-morphism, from (2) we see that

B ≤ (G ◦ F )(B) for each B-object B. Similarly, (F ◦ G)(A) ≤ A for each A-object A.
Thus (F,G) is a Galois correspondence. �

6.29 PROPOSITION
The functors in a Galois correspondence between amnestic concrete categories determine
each other uniquely; in particular, if (F,G) and (F ′, G) are such Galois correspondences,
then F = F ′.

Proof: Let B be a B-object. If (F,G) is a Galois correspondence, B ≤ (G ◦ F )(B),
so that by the above proposition, if (F ′, G) is a Galois correspondence, F ′B ≤ FB.
Similarly, FB ≤ F ′B, so that by amnesticity, F = F ′. [Dually, it can be shown that if
each of (F,G) and (F,G′) are Galois correspondences, then G = G′.] �
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6.30 PROPOSITION
If (F,G) is a Galois correspondence between amnestic concrete categories, then G ◦ F ◦
G = G and F ◦G ◦ F = F .

Proof: Clearly, idB ≤ G ◦ F implies F = F ◦ idB ≤ F ◦ G ◦ F . Similarly, F ◦ G ≤ idA

implies F ◦ G ◦ F ≤ idA ◦ F = F , so that by amnesticity F = F ◦ G ◦ F . The other
equation holds by duality. �

6.31 COROLLARY
If (F,G) is a Galois correspondence between amnestic concrete categories, then (G◦F )◦
(G ◦ F ) = G ◦ F and (F ◦G) ◦ (F ◦G) = F ◦G. �

6.32 COROLLARY
Let G : A → B and F : B → A be concrete functors between amnestic concrete cat-
egories such that (F,G) is a Galois correspondence, and let A∗ be the full subcategory
of A with objects: {F (B) |B ∈ Ob(B)} and B∗ the full subcategory of B with objects:
{G(A) |A ∈ Ob(A)}. Then

(1) A∗ is coreflective in A, and A ∈ Ob(A∗) if and only if A = (F ◦G)(A).

(2) B∗ is reflective in B, and B ∈ Ob(B∗) if and only if B = (G ◦ F )(B).

(3) The restrictions of G and F to A∗and B∗are concrete isomorphisms, G∗ : A∗ → B∗

and F ∗ : B∗ → A∗, that are inverse to each other. �

6.33 EXAMPLES
(1) If (R,E) is a Galois reflection between amnestic concrete categories with E : A→ B,

then A∗ = B∗ = A. Similarly for Galois coreflections.

(2) For the Galois correspondence (D,U) of Example 6.26(3)(a) Set∗ = Set and Top∗

is the full subcategory of discrete spaces.

(3) For the Galois correspondence (U,N) of Example 6.26(3)(a) Set∗ = Set and Top∗

is the full subcategory of indiscrete spaces.

(4) For the Galois correspondence (F,G) of Example 6.26(3)(b) Rel∗ = Prost and Top∗

consists of those topological spaces for which arbitrary intersections of open sets are
open.

(5) For the Galois correspondence (F,U) of Example 6.26(3)(c) Top∗ is the full subcat-
egory of completely regular (= uniformizable) spaces, and Unif∗ is the full subcat-
egory of fine uniform spaces.

6.34 PROPOSITION
Let G : A → B and F : B → A be concrete functors between amnestic concrete cate-
gories such that (F,G) is a Galois correspondence. Then the following are equivalent:

(1) G is a full embedding,
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(2) G is full,

(3) G is injective on objects,

(4) F is surjective on objects,

(5) F ◦G = idA,

(6) up to Galois isomorphism, (F,G) is a Galois reflection; i.e., there exists a Galois re-
flection (R,E) and a Galois isomorphism (K−1,K) with (F,G) = (R,E)◦(K−1,K).

Proof:
(1) ⇒ (2). Trivial.

(2) ⇒ (3). If GA = GA′, then by fullness, A ≤ A′ and A′ ≤ A. Hence, by amnesticity,
A = A′.

(3) ⇒ (4). By Proposition 6.30 for any A-object A, we have (G ◦F ◦G)(A) = G(A), so
that by (3), F (GA) = A.

(4) ⇒ (5). For any A-object A there exists, by (4), a B-object B with F (B) = A.
Hence, by Proposition 6.30, (F ◦G)(A) = (F ◦G ◦ F )(B) = F (B) = A.

(5) ⇒ (6). Let B∗ be the full subcategory of B with objects {G(A) |A ∈ Ob(A)};
let K be the codomain restriction of G, i.e., K : A → B∗; let E : B∗ ↪→ B be the
inclusion; and let R = K ◦ F . Then by Corollary 6.32 K−1 = F ◦ E and (K−1,K) is
a Galois isomorphism. Clearly, G = E◦K and F = K−1◦R. It remains to be shown that
(R,E) is a Galois reflection; i.e., that R is a concrete reflector. For each B-object B,

B ≤ (G ◦ F )(B). But (G ◦ F )(B) = R(B). Thus |B|
id|B|−−−→ |R(B)| is a B-morphism so

that the reflection arrows are identity-carried.

(6) ⇒ (1). By amnesticity the embedding E must be full (5.24). Thus G = E ◦K is the
composition of full embeddings and so must be one too. �

6.35 DECOMPOSITION THEOREM FOR GALOIS
CORRESPONDENCES

Every Galois correspondence (F,G) between amnestic concrete categories is a composite
(F,G) = (R,EB) ◦ (K−1,K) ◦ (EA, C) of

(1) a Galois coreflection, (EA, C),

(2) a Galois isomorphism, (K−1,K) and

(3) a Galois reflection, (R,EB).

A
G //

C
��

B

A∗
K
// B∗

EB

OO A B
Foo

R
��

A∗

EA

OO

B∗
K−1
oo
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Proof: If G : A→ B and F : B→ A are concrete functors such that (F,G) is a Galois
correspondence, then let A∗ and B∗ be the full subcategories of A and B determined by
the images of F and G, respectively (Corollary 6.32). Let C : A→ A∗ and R : B→ B∗

be the codomain restrictions of F ◦ G and G ◦ F , respectively, let K : A∗ → B∗ and
K−1 : B∗ → A∗ be the corresponding restrictions of G and F , and let EA : A∗ → A
and EB : B∗ → B be the full embedding of these subcategories. The result then follows
immediately from Proposition 6.34 and its dual. �

6.36 REMARK
Notice that the above theorem actually gives a characterization of Galois correspondences
between amnestic concrete categories since the composition of Galois correspondences is
a Galois correspondence.

Suggestions for Further Reading

Eilenberg, S., and S. Mac Lane. General theory of natural equivalences. Trans. Amer.
Math. Soc. 58 (1945): 231–294.

Yoneda, N. On the homology theory of modules. J. Fac. Sci. Tokyo 7 (1954): 193–227.

Herrlich, H., and M. Hušek. Galois connections categorically. J. Pure Appl. Algebra
68 (1990): 165–180.

EXERCISES

6A. Composition of Natural Transformations

Let F, F ′ : A → B and G, G′ : B → C be functors and let F
τ−→ F ′ and G

σ−→ G′ be
natural transformations. Show that

(a) σF ′ ◦Gτ = G′τ ◦ σF . [This natural transformation is called the star product of τ

and σ and is denoted by G ◦ F
σ∗τ−−−→ G′ ◦ F ′.]

(b) σF = σ ∗ idF and Gτ = idG ∗ τ .

(c) idG ∗ idF = idG◦F .

(d) If H,H ′ : C→ D are functors and H
δ−→ H ′ is a natural transformation, then

δ ∗ (σ ∗ τ) = (δ ∗ σ) ∗ τ.

(e) If A F ′′
−−→ B and B G′′

−−→ C are functors and F ′ τ ′−−→ F ′′ and G′ σ′−−→ G′′ are natural
transformations, then

(σ′ ◦ σ) ∗ (τ ′ ◦ τ) = (σ′ ∗ τ ′) ◦ (σ ∗ τ).
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(f) If C H−−→ D is a functor, then (Hσ)F = H(σF ).

(g) If C H−−→ D is a functor, then (H ◦G)τ = H(Gτ).

(h) If D K−−→ A is a functor, then σ(F ◦K) = (σF )K.

(i) If B G′′
−−→ C and C H−−→ D are functors and G′ σ′−−→ G′′ is a natural transformation,

then H(σ′ ◦ σ)F = (Hσ′F ) ◦ (HσF ).

6B. Counting Natural Transformations

(a) Show that there is precisely one natural transformation idSet → idSet.

(b) Let M be a monoid considered as a category. Show that an element x of M yields
a natural transformation idM → idM if and only if x ◦ y = y ◦ x for each y ∈M .

(c) How many natural transformations are there from S2 to P? Cf. 3.20(8) and 3.20(10).
[Hint: Observe that S2 is naturally isomorphic to hom(2,−) and use Corollary 6.19.]

6C. Functor-Structured Categories

Let S, T : X→ Set be functors. Show that Spa(S) and Spa(T ) are concretely isomor-
phic if and only if S and T are naturally isomorphic.

6D. Functors Naturally Isomorphic to idA

Show that

(a) If a functor A F−−→ A is naturally isomorphic to idA, then F is an equivalence.

(b) A functor Set F−−→ Set is naturally isomorphic to idSet if and only if F is an equiv-
alence.

(c) If G is a group considered as a category, then a functor G F−−→ G (i.e., a group
endomorphism F ) is naturally isomorphic to idG if and only if F is an inner auto-
morphism of G.

(d) If A is a discrete category, then idA is the only functor from A to A that is naturally
isomorphic to idA.

6E. Ban O−−→ Set and Ban U−−→ Set
Show that O is representable, but U is not. Cf. 5.2(3).

6F. Representability of Power-Set Functors

Show that the contravariant power-set functor Setop Q−−→ Set is representable (by any

two-element set), but that the covariant power-set functor Set P−−→ Set is not repre-
sentable.

6G. Maps Induce Galois Connections

Let A
f−→ B be a map. Consider the functions PA

Pf−−→ PB and PB
Qf−−−→ PA

[cf. 3.20(8) and (9)] as concrete functors between the power-sets PA and PB, ordered
by inclusion, and show that (Pf,Qf) is a Galois connection.

9th July 2006



Sec. 6] Natural transformations 93

6H. Legitimate Functor Quasicategories.

(a) Prove that for each small category A all quasicategories [A,B] are legitimate.

(b) Prove that 1 and ∅ are the only categories B with the property that each quasicat-
egory [A,B] is legitimate.

(c) Prove that [Set,Set] is illegitimate.

6I. Total Categories

A category A is called total provided that the natural embedding E : A→ [Aop,Set]
of Theorem 6.20 maps it onto a reflective subcategory E[A] of [Aop,Set].

(a) Prove that Set is total. [Hint: A reflection of F : Setop → Set is given by
τ : F → hom(−, F (1)), where 1 = {0} and τA maps a ∈ F (A) to the function
τA(a) : A→ F (1) given by t 7→ Ff(a) for f : 1→ A, with f(0) = t.]

(b) Prove that Spa(T ) is total for each T : Set → Set. [Hint: Analogous to (a) with
(1, ∅) substituted for 1.]

(c) Prove that if A is a total category then every full reflective subcategory of A is total.

(d) Prove that a category isomorphic to a total category is total. Conclude that Pos,
Vec, Sgr, and Alg(Ω) are total categories. [Hint: Combine 6I(c) and 4K.]

6J. Yoneda Embedding

Show that the bijective function Y of Corollary 6.19 is “natural in the variables A and
F”, i.e., define functors H,G : [A,Set]×A→ Set on objects by H(F,A) = F (A) and
G(F,A) = [hom(A,−), F ] such that Y becomes a natural isomorphism from G to H.

6K. Representable Functors

If F : A → Set is a functor, then a universal point of F is a pair (A, a) consisting
of an A-object A and a point a ∈ FA with the following (universal) property: for each
A-object B and each point b ∈ FB there exists a unique A-morphism f : A→ B with
Ff(a) = b.

(a) Prove that a functor is representable if and only if it has a universal point.

(b) Find a universal point of each of the forgetful functors of Vec, Top, and Pos. Show
that the forgetful functor of Σ-Seq has no universal point.

(c) Find a universal point of Q : Setop → Set.

(d) For which sets M does the functor −×M : Set→ Set have a universal point?

(e) Does P : Set→ Set have a universal point?

6L. “Naturally Isomorphic” is an Equivalence Relation

Let F , G, and H be functors from A to B and let F
σ−→ G and G

τ−→ H be natural
isomorphisms. Show that:

(a) σ−1 = (σ−1
A ) : G→ F is a natural isomorphism.
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(b) τ ◦ σ : F → H is a natural isomorphism.

6M. Naturally Isomorphic Hom-Functors

Let τ : hom(A,−)→ hom(B,−) be a natural isomorphism. Show that τA(idA) : B → A
is an isomorphism.
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Chapter II

OBJECTS AND MORPHISMS
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7 Objects and morphisms in abstract cat-
egories

INITIAL AND TERMINAL OBJECTS

7.1 DEFINITION
An object A is said to be an initial object provided that for each object B there is
exactly one morphism from A to B.

7.2 EXAMPLES
(1) The empty set ∅ is the unique initial object for Set. Likewise, the empty partially

ordered set (resp. the empty topological space) is the unique initial object for Pos
(resp. Top).

(2) Every one-element group is an initial object for Grp; likewise for Vec.

(3) The empty category (i.e., the category with no objects and no morphisms) is the
only initial object for Cat. It is also the only initial object for the quasicategory
CAT, and, considered as a concrete category over X (via the inclusion), is the only
initial object in CAT(X).

(4) For any category of the form Spa(T ) (Definition 5.40) an object (X, α) is initial if
and only if X is an initial object in X and α = ∅.

(5) For any category of the form Alg(Ω) [Example 3.3(2)] let Ωn = {i ∈ I |ni = n}. If
Ω0 = ∅, then the unique initial object is the empty algebra. If Ω0 6= ∅, then an initial
object in Alg(Ω) is the term algebra. Its members are terms, defined inductively
as follows:

(a) each element of Ω0 is a term;

(b) if i ∈ Ωn and if ω1, ω2, . . . , ωn are terms, then iω1ω2 . . . ωn is a term; and

(c) all terms are obtained by iterative application of (a) and (b) above.

Each term algebra operation is concatenation via rule (b) resp. (a).

(6) The ring of integers is an initial object in the construct Rng of rings with unit and
unitary ring homomorphisms. For a ring R with unit e, the unique homomorphism
f : Z→ R is defined by f(n) = e + e + · · ·+ e [n summands], and f(−n) = −f(n).

(7) The two-element boolean algebras are initial objects in Boo.

(8) Σ-Seq has no initial object.

(9) In a poset considered as a category, an object is an initial object if and only if it is
a smallest element.
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7.3 PROPOSITION
Initial objects are essentially unique, i.e.,

(1) if A and B are initial objects, then A and B are isomorphic,

(2) if A is an initial object, then so is every object that is isomorphic to A.

Proof:
(1). By definition, there are morphisms A

k−→ B and B
h−→ A. Furthermore, h◦k = idA

since idA is the unique morphism from A to A. Analogously, k ◦ h = idB. Thus k is
an isomorphism.

(2). Let k : A′ → A be an isomorphism. For each object B there is a unique morphism
f : A→ B. Then f ◦ k : A′ → B is a morphism from A′ to B. It is unique since if
g : A′ → B, then g ◦ k−1 : A→ B. So g ◦ k−1 must be f ; i.e., g must be f ◦ k. �

Next we define terminal objects. They are dual to initial objects; i.e., A is terminal in
A if and only if A is initial in Aop.

7.4 DEFINITION
An object A is called a terminal object provided that for each object B there is exactly
one morphism from B to A.

A terminal object

7.5 EXAMPLES
(1) Every singleton set is a terminal object for Set.

(2) Frequently for constructs, there is only one structure on the singleton set {0}, and
in these cases the corresponding object is a terminal object. This is the case, for
example, in Vec, Pos, Grp, Top, and Catof .
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(3) In Rel there are two structures on the set {0}. Of these, the pair ({0}, {(0, 0)}) is
a terminal object.

(4) For any category of the form Spa(T) (Definition 5.40) an object (X, α) is terminal
if and only if X is a terminal object object in X and α = T (X).

(5) In Σ-Seq the acceptor with exactly one state that is both an initial and a final state
is a terminal object.

(6) In a poset considered as a category an object is a terminal object if and only if it is
a largest element.

(7) In CAT(X) an object (A, U) is terminal if and only if U : A→ X is an isomorphism.
In particular, (X, idX) is a terminal object.

7.6 PROPOSITION
Terminal objects are essentially unique. D

ZERO OBJECTS

7.7 DEFINITION
An object A is called a zero object provided that it is both an initial object and a
terminal object.

7.8 REMARK
Notice that since “terminal object” is dual to “initial object”, the notion of zero object
is self-dual; i.e., A is a zero object in A if and only if it is a zero object in Aop.

7.9 EXAMPLES
(1) Set and Top don’t have zero objects, but pSet and pTop (cf. Exercise 3B) do have

zero objects — the “singletons”.

(2) Vec, Ban, Banb, TopVec, and Mon have zero objects, but Sgr doesn’t.

(3) Ab and Grp have zero objects, but Rng doesn’t.

(4) Pos and Cat don’t have zero objects.

SEPARATORS AND COSEPARATORS

7.10 DEFINITION
An object S is called a separator provided that whenever A

f
//

g
// B are distinct mor-

phisms, there exists a morphism S
h−→ A such that

S
h−→ A

f−→ B 6= S
h−→ A

g−→ B.
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7.11 EXAMPLES
(1) In Set the separators are precisely the nonempty sets.

(2) In Top (resp. Pos) the separators are precisely the nonempty spaces (resp. nonempty
posets).

(3) In Vec the separators are precisely the nonzero vector spaces.

(4) The group of integers Z under addition is a separator for Grp and for Ab. The
monoid of natural numbers N under addition is a separator for Mon.

(5) (X, ρ) is a separator in Rel if and only if X 6= ∅ = ρ.

7.12 PROPOSITION
An object S of a category A is a separator if and only if hom(S,−) : A → Set is a
faithful functor.

Proof: The faithfulness of hom(S,−) means, by definition, that given distinct A-mor-

phisms A
f
//

g
// B , their hom(S,−) images are distinct; i.e., they differ in at least one

element h ∈ hom(S, A). In other words, f ◦ h 6= g ◦ h, and this is precisely the definition
of separator. �

7.13 REMARK
As we will see later, the existence of a separator in A often serves as a useful “smallness”
condition for A that guarantees that there are not “too many” A-objects. A slightly
weaker condition that serves the same purpose is the existence of a separating set.

7.14 DEFINITION
A set T of objects is called a separating set provided that for any pair A

f
//

g
// B of

distinct morphisms, there exists a morphism S
h−→ A with domain S a member of T

such that f ◦ h 6= g ◦ h.

7.15 EXAMPLES
(1) The empty set is a separating set for A if and only if A is thin.

(2) A one-element set {S} is a separating set if and only if S is a separator.

(3) Set × Set has no separators, but the set consisting of the two objects (∅, {0}) and
({0}, ∅) is a separating set.

(4) Aut has no separator, but {A1, A2} is a separating set, where A1 has states {q0, q1},
with q0 initial, no input, and output set {0, 1, 2}, with y(q0) = 0 and y(q1) = 1;
and A2 has states {qi | i ∈ N}, with q0 initial, one input σ, with δ(σ, qi) = qi+1, and
y(qi) = i.
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Next we introduce coseparators — the dual concept to separators. From the list of
examples one can discern that in familiar categories coseparators are more rare than
separators.

7.16 DEFINITION
An object C is a coseparator provided that whenever B

f
//

g
// A are distinct morphisms,

there exists a morphism A
h−→ C such that

B
f−→ A

h−→ C 6= B
g−→ A

h−→ C.

7.17 PROPOSITION
C is a coseparator for A if and only if hom(−, C) : Aop → Set is faithful. D

7.18 EXAMPLES
(1) In Set the coseparators are precisely those sets that have at least two elements. [If

C has at least two elements and if B
f
//

g
// A differ on b ∈ B, let h : A→ C be any

function with h(f(b)) 6= h(g(b)).]

(2) In Vec the coseparators are precisely the nonzero vector spaces.

(3) The coseparators in Pos are precisely the nondiscrete posets. To see this, suppose

that C has elements x < y and B
f
//

g
// A differ on b ∈ B, say, f(b) 6≤ g(b). Define

h : A→ C by

h(a) =

{
x if a ≤ g(b)
y if a 6≤ g(b).

(4) The coseparators in Top are precisely the non-T0-spaces. [If C is a non-T0-space,
then C has an indiscrete subspace with at least two points. Using this fact, proceed
as in (1) above.]

(5) The coseparators in Top0 are precisely the non-T1-spaces. To see this, suppose that
C is a T0-space that is not T1. Then there exist elements x and y with y ∈ c`{x}

and x 6∈ c`{y}. If B
f
//

g
// A differ on b ∈ B, then there exists an open set W in A

that contains precisely one of f(b) and g(b). Define h : A→ C by

h(a) =

{
x if a ∈W

y if a 6∈W.

(6) In a preordered class considered as a category, every element (= object) is simulta-
neously a separator and a coseparator.
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(7) Any two-element boolean algebra is a coseparator for Boo. The closed unit interval
is a coseparator for Tych. The Banach space of complex numbers is a cosepara-
tor for both Banb and Ban (Hahn-Banach Theorem). The circle group R/Z is a
coseparator for Ab and, considered as a compact group, it is a coseparator for the
category of locally compact abelian groups. Set is a coseparator for the quasicate-
gory CAT. [If F,G : B → A, with F 6= G, then hom(A,−) ◦ F 6= hom(A,−) ◦ G
for some A-object A.]

(8) None of the categories Rng, Grp, Sgr, or Haus has a coseparator. (This follows for
rings from the existence of arbitrarily large fields, for groups and semigroups from
the existence of arbitrarily large simple groups, and for Hausdorff spaces from the
fact that for each Hausdorff space X there exists a Hausdorff space Y with more
than one point such that every continuous map from Y to X is constant.) Indeed,
none of these categories even has a coseparating set.

SECTIONS AND RETRACTIONS

7.19 DEFINITION
A morphism A

f−→ B is called a section provided that there exists some morphism
B

g−→ A such that g ◦ f = idA (i.e., provided that f has a “left-inverse”).

Sections

7.20 EXAMPLES
(1) A morphism in Set is a section if and only if it is an injective function and is not

the empty function from the empty set to a nonempty set.

(2) In Vec the sections are exactly the injective linear transformations.

(3) In Ab a homomorphism f : A→ B is a section if and only if it is injective and f [A]
is a direct summand of B.
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(4) If X and Y are sets (resp. topological spaces) and if a ∈ Y , then the function
f : X → X × Y defined by f(x) = (x, a) is a section in Set (resp. Top). [Note that
the image of f is a “cross-section” of the product, which is in one-to-one correspon-
dence (resp. homeomorphic) to X. This motivates our use of the word “section” in
Definition 7.19.]

(5) The sections described in (4) are just special cases of the following situation: Let
f : X → Y be a morphism in Set (resp. Top, Grp, R−Mod). Consider the graph
of f as a subset (resp. subspace, subgroup, submodule) of the product X×Y . Then
the embedding of X into X×Y defined by x 7→ (x, f(x)) is a section in the category
in question.

(6) If T is a terminal object, then every morphism with domain T is a section.

(7) In a thin category, sections are precisely the isomorphisms.

7.21 PROPOSITION
(1) If A

f−→ B and B
g−→ C are sections, then A

f−→ B
g−→ C is a section.

(2) If A
f−→ B

g−→ C is a section, then f is a section.

Proof:
(1). Given h with h ◦ f = idA and k with k ◦ g = idB, then (h ◦ k) ◦ (g ◦ f) = idA.

(2). Given h with h ◦ (g ◦ f) = idA, we have (h ◦ g) ◦ f = idA. �

7.22 PROPOSITION
Every functor preserves sections (i.e., if F : A → B is a functor and f is an A-
section, then F (f) is a B-section).

Proof: If h ◦ f = idA, then Fh ◦ Ff = F (h ◦ f) = F (idA) = idFA. �

7.23 PROPOSITION
Every full, faithful functor reflects sections (i.e., if F : A→ B is full and faithful and
F (f) is a B-section, then f is an A-section).

Proof: Given h : FB → FA with h ◦F (f) = idFA, by fullness there is k : B → A with
h = F (k). Thus F (k ◦ f) = idFA = F (idA), so that by faithfulness k ◦ f = idA. �

The dual concept for “section” is “retraction”. The name comes from topology, where a
subspace Y of a space X is called a retract if there is a continuous function f : X → Y
with f(y) = y for each y ∈ Y ; so that if e : Y → X is the inclusion, f ◦ e = idY .

7.24 DEFINITION
A morphism A

f−→ B is called a retraction provided that there exists some morphism
B

g−→ A such that f ◦g = idB (i.e., provided that f has a “right-inverse”). If there exists
such a retraction, then B will be called a retract of A.
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7.25 EXAMPLES
(1) The retractions in Set are precisely the surjective functions. [Notice that this state-

ment is equivalent to the Axiom of Choice for sets.]

(2) In Vec the retractions are exactly the surjective linear transformations.

(3) A morphism f in Top is a retraction if and only if there is a topological retraction
r and a homeomorphism h such that f = h ◦ r. In other words, the retractions in
Top are (up to homeomorphism) exactly the topological retractions.

(4) In any thin category the concepts “retraction”, “section”, and “isomorphism” agree.

(5) The usual underlying functor U : Top → Set is a retraction in the quasicategory
CAT. It has precisely two right inverses, the discrete functor and the indiscrete
functor.

(6) In Ab retractions are (up to isomorphism) the projection homomorphisms, i.e.,
f : A → B is a retraction if and only if there is an abelian group C such that
A

f−→ B = A
h−→ B × C

p−→ B, where h is an isomorphism and p is a projection.

7.26 PROPOSITION
For a morphism f the following are equivalent:

(1) f is an isomorphism,

(2) f is a section and a retraction.

Proof: This follows immediately from Proposition 3.10. �

7.27 PROPOSITION
(1) If A

f−→ B and B
g−→ C are retractions, then A

g◦f−−−→ C is a retraction.

(2) If A
g◦f−−−→ C is a retraction, then g is a retraction. D

7.28 PROPOSITION
Every functor preserves retractions. D

7.29 PROPOSITION
Every full, faithful functor reflects retractions. D

7.30 REMARKS
(1) Notice that by combining Proposition 7.23 and its dual (7.29) we get the result

(already proved [3.32]) that every full, faithful functor reflects isomorphisms.

(2) Notice also that we did not need to define “sect” as the dual of retract, since “retract”
is self-dual.
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7.31 PROPOSITION
An isomorphism-closed full reflective subcategory A of a category B contains with any
object A each retract of A in B.

Proof: Let A
r−→ B be a B-retraction of an A-object A. Then there exist a section

s : B → A such that r ◦ s = idB and an A-reflection B
u−→ AB. By the definition of

reflection there is an A-morphism AB
t−→ A such that s = t◦u. Thus (r ◦ t)◦u = r ◦s =

idB. Hence u ◦ (r ◦ t) ◦ u = u = idAB
◦ u, so that by uniqueness u ◦ (r ◦ t) = idAB

. Thus
u is an isomorphism, and since A is isomorphism-closed in B, B must belong to A. �

MONOMORPHISMS AND EPIMORPHISMS

7.32 DEFINITION
A morphism A

f−→ B is said to be a monomorphism provided that for all pairs

C
h //

k
// A of morphisms such that f ◦ h = f ◦ k, it follows that h = k (i.e., f is “left-

cancellable” with respect to composition).

7.33 EXAMPLES
(1) A function is a monomorphism in Set if and only if it is injective. [To show that

a monomorphism f : A → B must be injective, take a, b ∈ A and consider the
constant functions â, b̂ : {p} → A.]

(2) For any morphism f in Vec, the following are equivalent:

(a) f is a monomorphism,

(b) f is a section,

(c) f is injective.

(3) In many constructs, monomorphisms are precisely those morphisms that have in-
jective underlying functions; e.g., this is the case for Pos, Top, Grp, Ab, Sgr,
Rng, Rel, and Alg(Ω). In fact this is true for any construct with a representable
underlying functor (7.37 and 7.38).

(4) In the construct {σ}-Seq (whose forgetful functor is not representable), monomor-
phisms are precisely the injective simulations. [If f : A → B is not injective, then
there exist distinct states x1 and x2 with f(x1) = f(x2), and there exist n, m, and k
such that σn+kx1 = σkx1 and σm+kx2 = σkx2. Let C be the acceptor obtained from
A by adding k+nm nonfinal states q1, . . . , qk+nm such that σqi = qi+1 for i < k+nm
and σqk+nm = qk+1. For i = 1, 2, there is a unique simulation gi : C → A that is
the inclusion on A-states and such that gi(q1) = xi. Then f ◦ g1 = f ◦ g2.]

(5) In the category DivAb of divisible abelian groups and group homomorphisms there
are monomorphisms that have non-injective underlying functions. Consider the
natural quotient Q→ Q/Z, where Q is the additive group of rational numbers and
Z is the additive group of integers.
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(6) There is a monomorphism X
f−→ Y in Top such that the homotopy class X

f̃−→ Y
of f is not a monomorphism in the category hTop, whose objects are topological
spaces and whose morphisms are homotopy equivalence classes of continuous maps.
[Consider the usual embedding of the bounding circle of a disc into the disc.]

(7) The monomorphisms in CAT are precisely the embedding functors.

(8) In the category of all fields35 and homomorphisms between them, every morphism
is a monomorphism.

(9) In any thin category every morphism is a monomorphism.

7.34 PROPOSITION
(1) If A

f−→ B and B
g−→ C are monomorphisms, then A

f−→ B
g−→ C is a monomor-

phism.

(2) If A
f−→ B

g−→ C is a monomorphism, then f is a monomorphism.

Proof: Let h, k : D → A.

(1). (g ◦ f) ◦ h = (g ◦ f) ◦ k ⇒ g ◦ (f ◦ h) = g ◦ (f ◦ k) ⇒ f ◦ h = f ◦ k ⇒ h = k.

(2). f ◦ h = f ◦ k ⇒ (g ◦ f) ◦ h = (g ◦ f) ◦ k ⇒ h = k. �

7.35 PROPOSITION
Every section is a monomorphism.

Proof: Suppose that g ◦ f = id and f ◦ h = f ◦ k. Then h = g ◦ f ◦ h = g ◦ f ◦ k = k.�

7.36 PROPOSITION
For any morphism f the following are equivalent:

(1) f is an isomorphism,

(2) f is a retraction and a monomorphism.

Proof: (1)⇒ (2) is clear from Propositions 7.26 and 7.35. To show that (2)⇒ (1), let
f be a monomorphism with f ◦ g = id. Then f ◦ (g ◦ f) = (f ◦ g) ◦ f = id ◦ f = f ◦ id, so
that by left-cancellation, g ◦ f = id. Hence f is an isomorphism. �

7.37 PROPOSITION
(1) Every representable functor preserves monomorphisms, i.e., if F : A → Set is

representable and if f is a monomorphism in A, then F (f) is a monomorphism in
Set (i.e., an injective function).

(2) Every faithful functor reflects monomorphisms, i.e., if F : A → B is faithful
and F (f) is a B-monomorphism, then f is an A-monomorphism.

35Recall that in each field 0 6= 1.
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Proof:
(1). Simple computations show that

(a) hom-functors hom(A,−) : A→ Set preserve monomorphisms,

(b) whenever functors F and G are naturally isomorphic and F preserves mono-
morphisms, then so does G.

(2). Suppose that f ◦ h = f ◦ k. Then Ff ◦ Fh = Ff ◦ Fk implies that Fh = Fk, so
that by faithfulness h = k. �

7.38 COROLLARY
In any construct all morphisms with injective underlying functions are monomorphisms.
When the underlying functor is representable, the monomorphisms are precisely the mor-
phisms with injective underlying functions. �

The categorical dual of “monomorphism” is “epimorphism”.

7.39 DEFINITION
A morphism A

f−→ B is said to be an epimorphism provided that for all pairs B
h //

k
// C

of morphisms such that h ◦ f = k ◦ f , it follows that h = k (i.e., f is “right-cancellable”
with respect to composition).

7.40 EXAMPLES
(1) In both Set and Vec the following are equivalent for any morphism f :

(a) f is an epimorphism,

(b) f is a retraction,

(c) f is surjective.

[To show that an epimorphism A
f−→ B in Set is surjective, consider two functions

from B to {0, 1}, one of them mapping every point of B to 0 and the other mapping

precisely the points of f [A] to 0. To show that A
f−→ B in Vec is surjective, use the

above idea with the quotient B/f [A] replacing {0, 1}.]

(2) In a number of constructs the epimorphisms are precisely the morphisms with surjec-
tive underlying functions. This is the case, for instance, in Top, Rel, each Alg(Ω),
Lat, Σ-Seq, Pos, Ab, Grp, and HComp. [For Top, argue as in Set, where {0, 1}
is given the indiscrete topology; similarly for Rel. For Ab and HComp, argue as
in Vec.] However, this situation occurs less frequently than that of monomorphisms
being precisely those morphisms with injective underlying functions. In quite a few
familiar constructs, epimorphisms fail to be surjective (see below), and even when
they are surjective, the proof may be far from obvious; e.g., for Grp see Exercise
7H.
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(3) In Haus the epimorphisms are precisely the continuous functions with dense images.
Also in Banb, and in Ban (with either of the two natural forgetful functors) [5.2(3)],
the epimorphisms are precisely the morphisms with dense images. In the category
of Hausdorff topological groups there exist epimorphisms with non-dense images.

(4) In the category of torsion-free abelian groups, a morphism A
f−→ B is an epimor-

phism if and only if the factor group B/f [A] is a torsion group. Thus, in this
category, the inclusion 2Z ↪→ Z is a non-surjective epimorphism.

(5) In Rng and Sgr there are epimorphisms that are not surjective; e.g., the usual

embedding Z
f−→ Q of the integers into the rationals is an epimorphism in Rng and

in Sgr. [If h and k are homomorphisms such that h ◦ f = k ◦ f and if n/m ∈ Q,
then

h(n/m) = h(n) · h(1/m) · h(1) = k(n) · h(1/m) · k(1)
= k(n) · h(1/m) · k(m) · k(1/m) = k(n) · h(1/m) · h(m) · k(1/m)
= k(n) · h(1) · k(1/m) = k(n) · k(1) · k(1/m) = k(n/m).]

(6) In Cat there are epimorphisms that are not surjective. Consider the epimorphism
F : A→ B, where A = • g−→ •, B is the additive monoid of natural numbers, and
F is the unique functor from A and B with F (g) = 1.

(7) There is an epimorphism X
f−→ Y in Top such that the homotopy class X

f̃−→ Y
of f is not an epimorphism in the category hTop. Consider the covering projection
of the real line onto the circle, defined by: x 7→ eix.

(8) In a thin category, each morphism is an epimorphism.

7.41 PROPOSITION
(1) If A

f−→ B and B
g−→ C are epimorphisms, then A

f−→ B
g−→ C is an epimorphism.

(2) If A
f−→ B

g−→ C is an epimorphism, then g is an epimorphism. D

7.42 PROPOSITION
Every retraction is an epimorphism. D

7.43 PROPOSITION
For a morphism, f , the following are equivalent:

(1) f is an isomorphism.

(2) f is a section and an epimorphism. D

7.44 PROPOSITION
Every faithful functor reflects epimorphisms. D
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7.45 COROLLARY
In any construct all morphisms with surjective underlying functions are epimorphisms. D

7.46 REMARK
Although faithful functors reflect epimorphisms and monomorphisms, they need not
preserve them (as the above examples show). In fact, even full embeddings may fail
to do so.36 For example, the full embedding E : Haus ↪→ Top doesn’t preserve epi-
morphisms [7.40(2) and (3)] and so the full embedding Eop : Hausop ↪→ Topop doesn’t
preserve monomorphisms. However, if such functors are also isomorphism-dense, then
they preserve monomorphisms and epimorphisms, as the following shows:

7.47 PROPOSITION
Every equivalence functor preserves and reflects each of the following: monomorphisms,
epimorphisms, sections, retractions, and isomorphisms.

Proof: By duality and Propositions 7.22, 7.23, and 7.37, we need only show preser-
vation of monomorphisms. Let F : A → B be an equivalence, let A′ f−→ A be an

A-monomorphism, and let B
r //

s
// FA′ be morphisms with Ff ◦ r = Ff ◦ s. Since F is

isomorphism-dense, there exists an A-object A′′ and a B-isomorphism FA′′ k−→ B. By

fullness there are A-morphisms A′′
r′ //

s′
// A′ with Fr′ = r ◦ k and Fs′ = s ◦ k. Thus

F (f ◦ r′) = Ff ◦ Fr′ = Ff ◦ r ◦ k = Ff ◦ s ◦ k = Ff ◦ Fs′ = F (f ◦ s′).

Faithfulness and the fact that f is a monomorphism imply that r′ = s′, from which it
follows readily that r = s. �

7.48 REMARK
The above is typical of equivalences. They preserve and reflect virtually all properties
that are considered to be categorical. In fact, a reasonable way to define a “categorical
property” would be as “a property of categories that is preserved and reflected by all
equivalences”. This is why equivalent categories are considered to be almost as much
alike as isomorphic ones.

7.49 DEFINITION
(1) A morphism is called a bimorphism provided that it is simultaneously a monomor-

phism and an epimorphism.

(2) A category is called balanced provided that each of its bimorphisms is an isomor-
phism.

36However, we will see later [Proposition 18.6 and Example 19.12(1)] that embeddings of reflective
subcategories must preserve monomorphisms.
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7.50 EXAMPLES
(1) Set, Vec, Grp, Ab, and HComp are balanced categories.

(2) Rel, Pos, Top, Mon, Sgr, Rng, Cat, Ban, and Banb are not balanced categories.
The inclusion Z ↪→ Q is a non-isomorphic bimorphism in Mon, Sgr, Rng, and Cat.
The function `∞

f−→ c0,37 defined by f(xn) = (xn
n ), is a non-isomorphic bimorphism

in Ban and Banb.

REGULAR AND EXTREMAL MONOMORPHISMS

Originally it was believed that monomorphisms would constitute the correct categorical
abstraction of the notion “embeddings of substructures” that exists in various constructs.
However, in many instances the concept of monomorphism is too weak; e.g., in Top
monomorphisms are just injective continuous maps and thus need not be embeddings.
Below we introduce two stronger notions (and there are several others in current use
— see Exercises 7D and 14C) that more frequently correspond with embeddings in
categories. However, a satisfactory concept of “embeddings” seems to be possible only
in the setting of constructs (see 8.6).

7.51 DEFINITION
Let A

f
//

g
// B be a pair of morphisms. A morphism E

e−→ A is called an equalizer of

f and g provided that the following conditions hold:

(1) f ◦ e = g ◦ e,

(2) for any morphism e′ : E′ → A with f ◦ e′ = g ◦ e′, there exists a unique morphism
e : E′ → E such that e′ = e ◦ e, i.e., such that the triangle

E′

e
��

e′

  
AA

AA
AA

A

E e
// A

f
//

g
// B

commutes.

7.52 EXAMPLES
(1) Let A be one of the categories Set, Vec, Pos, Top, or Grp. If A

f
//

g
// B are A-

morphisms, and if E denotes the set {a ∈ A | f(a) = g(a)} considered as a subset
(resp. linear subspace, subposet, subspace, subgroup) of A, then the inclusion from

E to A is an equalizer of f and g. [If E′ e′−−→ A is such that f ◦ e′ = g ◦ e′, then e is
the codomain restriction of e′.]

37`∞ (resp. c0) is the classical Banach space of all bounded sequences in the field K (resp. all sequences
in K that converge to 0) with the sup-norm.
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(2) If A is the full subcategory of Top that consists of sequential spaces (resp. compactly
generated spaces) and if E (as in (1)) is supplied with the coarsest sequential (resp.
compactly generated) topology for which the inclusion E

e−→ A is continuous, then
e is an equalizer of f and g in A.

7.53 PROPOSITION
Equalizers are essentially unique; i.e., given A

f
//

g
// B in a category, then the following

hold:

(1) if each of E
e−→ A and E′ e′−−→ A is an equalizer of f and g, then there is an

isomorphism k : E′ → E with e′ = e ◦ k,

(2) if E
e−→ A is an equalizer of f and g, and if E′ k−→ E is an isomorphism, then

E′ e◦k−−−→ A is also an equalizer of f and g.

Proof:
(1). Since f ◦ e′ = g ◦ e′, there is a k with e′ = e ◦ k. Analogously, there is an h with

e = e′ ◦ h. Thus e ◦ id = e = e′ ◦ h = e ◦ (k ◦ h), so that by the uniqueness
requirement in the definition of equalizer, id = k ◦ h. Similarly, h ◦ k = id, so that
k is an isomorphism.

(2). This is clear, since whenever e is a unique morphism with e ◦ e = e′, then k−1 ◦ e
will be a unique morphism with (e ◦ k) ◦ (k−1 ◦ e) = e′. �

7.54 PROPOSITION
If E

e−→ A is an equalizer of A
f
//

g
// B , then the following are equivalent:

(1) f = g,

(2) e is an epimorphism,

(3) e is an isomorphism,

(4) idA is an equalizer of f and g. �

7.55 PROPOSITION
If A

g−→ B
f−→ A = A

idA−−−→ A, then g is an equalizer of g ◦ f and idB.

Proof: Clearly (g ◦f)◦ g = g ◦ (f ◦ g) = g = idB ◦ g. Given h : C → B with (g ◦f)◦h =
idB ◦ h, then f ◦ h : C → A is the unique morphism k with h = g ◦ k. �

7.56 DEFINITION
A morphism E

e−→ A is called a regular monomorphism provided that it is an
equalizer of some pair of morphisms.
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7.57 REMARKS
(1) It is clear from the uniqueness requirement in the definition of equalizer that regular

monomorphisms must be monomorphisms.

(2) One should be aware of the difference between the concepts of equalizer and regular
monomorphism. “Equalizer” is defined relative to pairs of morphisms, whereas “reg-
ular monomorphism” is absolute. The difference is more than just a technical one.
For example, later we will see that it is possible for a functor to preserve regular
monomorphisms without preserving equalizers (13.6).

7.58 EXAMPLES
(1) In Set the regular monomorphisms are the injective functions, i.e., up to isomor-

phism, precisely the inclusions of subsets. [If E
e−→ A is an inclusion of a subset,

consider functions f and g from A to {0, 1}, where f maps every point of A to 1
and g maps precisely the points of E to 1. Then e is an equalizer of f and g.]

(2) In Top the regular monomorphisms are, up to isomorphism, precisely the embed-
dings of subspaces. [If E

e−→ A is an inclusion of a subspace, proceed as in (1), and
supply the set {0, 1} with the indiscrete topology.]

(3) In Haus the regular monomorphisms are, up to isomorphism, precisely the inclusions
of closed subspaces. [If e : E → A is an embedding of a closed subspace in Haus,
let A1 = A2 = A, and let Ã be the topological sum of A1 and A2 with embeddings
µ1 and µ2. Let q : Ã→ B be the quotient map that for each x ∈ E identifies µ1(x)
and µ2(x), but identifies nothing else. Then B is Hausdorff and e is an equalizer of
q ◦ µ1 and q ◦ µ2.] Similarly, in Metc (resp. Banb) the regular monomorphisms are
the topological embeddings of closed (linear) subspaces. In Met (resp. Ban) the
regular monomorphisms are the isometric embeddings of closed (linear) subspaces.

(4) In many “algebraic” categories, e.g., in Vec, Grp, and Alg(Ω), and also in HComp,
all monomorphisms are regular. [If e : E → A is a monomorphism in Vec, consider
the quotient space B = A/e[E], the zero map f : A→ B, and the natural quotient
map g : A → B. Then e is an equalizer of f and g.] However, in Sgr and Rng
monomorphisms need not be regular, e.g., the inclusion Z ↪→ Q is a non-regular
monomorphism. [If it were regular, then since it is an epimorphism [7.40(5)] by
Corollary 7.63 and Proposition 7.66 it would necessarily be an isomorphism.]

(5) In {σ}-Seq the regular monomorphisms are precisely the injective simulations that
map each nonfinal state to a nonfinal state.

7.59 PROPOSITION
(1) Every section is a regular monomorphism.

(2) Every regular monomorphism is a monomorphism.

Proof: (1) is immediate from Proposition 7.55 and (2) follows from the uniqueness
requirement in the definition of equalizer. �
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7.60 REMARK
Neither implication of the previous proposition can be reversed. For example, Z ↪→ Q

is a monomorphism in Sgr that is not regular, and every embedding of a non-connected
topological space into a connected one is a regular monomorphism in Top that is not a
section. Also the embedding of the unit circle into the unit disc is not a section in Top.
(This is the crucial lemma for Brouwer’s fixed-point theorem.)

Next, we introduce another type of monomorphism that is particularly useful because
(as is the case with regular monomorphisms) it often coincides with embeddings in
constructs, and, since it is defined by intrinsic properties, it is sometimes easier to
handle than regular monomorphisms.

7.61 DEFINITION
A monomorphism m is called extremal provided that it satisfies the following extremal
condition: If m = f ◦ e, where e is an epimorphism, then e must be an isomorphism.

7.62 PROPOSITION
Let A

f−→ B and B
g−→ C be morphisms.

(1) If f is an extremal monomorphism and g is a regular monomorphism, then g ◦ f is
an extremal monomorphism.

(2) If g ◦ f is an extremal monomorphism, then f is an extremal monomorphism.

(3) If g ◦ f is a regular monomorphism and g is a monomorphism, then f is a regular
monomorphism.

Proof:
(1). Let g be an equalizer of r and s. Let g ◦f = h◦e, where e is an epimorphism. Then

r ◦ h ◦ e = r ◦ g ◦ f = s ◦ g ◦ f = s ◦ h ◦ e implies that r ◦ h = s ◦ h. Thus there exists
a unique morphism k with h = g ◦ k. Hence g ◦ k ◦ e = h ◦ e = g ◦ f . Consequently,
k ◦ e = f , which implies that e is an isomorphism.

(2). Immediate.

(3). If g ◦ f is an equalizer of r and s, then f is an equalizer of r ◦ g and s ◦ g. �

7.63 COROLLARY
Every regular monomorphism is extremal. �

7.64 REMARK
A composite of extremal monomorphisms may fail to be extremal. However, if all ex-
tremal monomorphisms in a category are regular, then, by Proposition 7.62, in that
category the class of extremal (= regular) monomorphisms is closed under composition
and is cancellable from the left; i.e., its compositive behavior is similar to that of the
class of all monomorphisms (cf. Proposition 7.34). This is the case for most of the famil-
iar categories, e.g., for Set, Vec, Rel, Pos, Top, Haus, Grp, and Alg(Ω). (See also
the dual of Proposition 14.14.) However, this is not always the case, as the following
example and Exercises 7J and 14I show.
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7.65 EXAMPLE
Let FHaus denote the full subcategory of Top consisting of the functionally Hausdorff

spaces.38 Then a morphism A
f−→ B in FHaus is

(a) a monomorphism if and only if f is injective,

(b) an extremal monomorphism if and only if f is an embedding such that for every
subspace C of B with f [A] ( C, there exists a non-constant morphism C

g−→ R

with the restriction g|f [A] constant,

(c) a regular monomorphism if and only if f is an embedding of a subspace of B that
is an intersection of zerosets39 in B (cf. 7J).

7.66 PROPOSITION
For any morphism f the following are equivalent:

(1) f is an isomorphism,

(2) f is an extremal monomorphism and an epimorphism.

Proof: (1)⇒ (2) is immediate from Proposition 7.59, Corollary 7.63, and duality. If f
satisfies (2), the trivial factorization f = id ◦ f shows that f is an isomorphism. �

7.67 PROPOSITION
For any category A, the following are equivalent:

(1) A is balanced,

(2) in A each monomorphism is extremal.

Proof: (1) ⇒ (2) is immediate from Proposition 7.34(2), and (2) ⇒ (1) follows from
the proposition above (7.66). �

REGULAR AND EXTREMAL EPIMORPHISMS

One of the nice insights that can be gleaned from category theory is that the formation
of quotient structures (such as groups of cosets and identification topologies) can be
viewed as the dual of the formation of substructures. Analogous to the situation where
monomorphisms frequently are too weak to represent substructures, epimorphisms are
frequently too weak to represent quotient structures. The notions of regular epimorphism
and extremal epimorphism, which are the duals of the notions of regular monomorphism
and extremal monomorphism, frequently coincide with natural quotients in abstract
categories. However, as is the case with subobjects, a truly satisfactory concept of
“quotient” seems to be possible only in the setting of constructs (see 8.10).
38A topological space A is called a functionally Hausdorff space provided that for any two distinct

points a and b of A there exists a continuous map from A to the real numbers that has different
values at a and b.

39Z is called a zeroset in B provided that there exists a continuous map from B to the real numbers
such that Z is the inverse image of 0.
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7.68 DEFINITION
Let A

f
//

g
// B be a pair of morphisms. A morphism B

c−→ C is called a coequalizer of

f and g provided that the following conditions hold:

(1) c ◦ f = c ◦ g,

(2) for any morphism c′ : B → C ′ with c′ ◦ f = c′ ◦ g, there exists a unique morphism
c : C → C ′ such that c′ = c ◦ c; i.e., such that the triangle

A
f
//

g
// B

c //

c′   
AA

AA
AA

A C

c
��

C ′

commutes.

7.69 EXAMPLES
1. Given two functions A

f
//

g
// B in Set, let ∼ be the smallest equivalence relation on

B such that f(a) ∼ g(a) for all a ∈ A. Then the natural map q : B → B/∼, which
assigns to each b ∈ B the equivalence class to which b belongs, is a coequalizer of
f and g.

2. If A
f
//

g
// B are continuous functions in Top, then the procedure given above yields

a coequalizer of f and g, provided that B/∼ is assigned the finest topology that
makes q continuous (i.e., the final (or identification) topology).

3. Coequalizers in Rel and Prost are formed analogously to the way that they are
formed in Top. In Pos they are formed by first forming the coequalizers in Prost
and then taking the Pos-reflection of the resulting preordered set.

4. If A
f
//

g
// B are Ab-morphisms, let B0 be the subgroup {f(a) − g(a) | a ∈ A} of

B. Then the natural map q : B → B/B0 to the group of cosets is a coequalizer of
f and g.

5. If A
f
//

g
// B are homomorphisms in Alg(Ω), then a coequalizer for them is ob-

tained analogously as in Set by using, instead of equivalence relations, the smallest
congruence relation ∼ such that f(a) ∼ g(a) for all a ∈ A.

6. If A
f
//

g
// B are simulations in Σ-Seq, then a coequalizer for them is obtained

analogously as in Alg(Ω) with final states precisely the congruence classes that
contain some final state of B.
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7.70 REMARK
Since the concept of coequalizer is dual to that of equalizer, the general results about
equalizers can be translated (via the Duality Principle) into results about coequalizers.
For example,

(1) Coequalizers are essentially unique.

(2) If A
g−→ B

f−→ A = A
idA−−−→ A, then f is the coequalizer of g ◦ f and idB.

(3) If B
c−→ C is a coequalizer of A

f
//

g
// B , then the following are equivalent:

(a) f = g,

(b) c is a monomorphism,

(c) c is an isomorphism,

(d) idB is a coequalizer of f and g.

7.71 DEFINITION
A morphism B

c−→ C is called a regular epimorphism provided that it is a coequalizer
of some pair of morphisms.

7.72 EXAMPLES
(1) In Set the regular epimorphisms are the surjective functions. [Given e : A → B

surjective, consider the two projections from D = {(a, a′) ∈ A×A | e(a) = e(a′)} to
A.] In fact, in Set,

Retr = RegEpi = Surj = Epi.

(2) In Top the regular epimorphisms are precisely the topological quotient maps; i.e.,
the surjective continuous maps onto spaces with the final topology. [For such a map
e proceed as in Set with D considered as a subspace of A × A.] In Σ-Seq regular
epimorphisms are precisely the surjective simulations that have the property that
each final state in the codomain has a final preimage in the domain. Thus, in both
of these categories,

RegEpi ( Surj = Epi.

(3) In each Alg(Ω), Vec, Grp(cf. 7H), Ab, Lat, and HComp,

RegEpi = Surj = Epi.

(4) In Sgr, Mon, and Rng,
RegEpi = Surj ( Epi.

(5) In the constructs Cat and (Ban, O) there exist regular epimorphisms that are
not surjective. In Cat, consider the regular epimorphism A F−−→ B of Example
7.40(6). In (Ban, O), consider the regular epimorphism e : c0 → K, where K is
the field of real (or complex) numbers considered as a Banach space, c0 is the clas-
sical Banach space of all sequences in K converging to 0 with the sup-norm, and
e(xn) =

∑∞
n=1 xn/2n.
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7.73 REMARK
Each of the forgetful functors from Vec, Grp, and Top1 (T1-topological spaces) into
Set preserves regular epimorphisms. However, none of them preserves coequalizers.
(Cf. Remark 13.6.)

7.74 DEFINITION
An epimorphism e is called extremal provided that it satisfies the following extremal
condition: If e = m◦f, where m is a monomorphism, then m must be an isomorphism.

7.75 PROPOSITION
(1) Every retraction is a regular epimorphism.

(2) Every regular epimorphism is an extremal epimorphism. D

7.76 REMARK
(1) In most of the familiar categories the regular epimorphisms and the extremal epimor-

phisms coincide. See, e.g., Proposition 14.14. However, in Cat there exist extremal
epimorphisms that are not regular epimorphisms. An example is the composite G◦F
of the regular epimorphism (functor) F : A → B of Example 7.40(6) with the reg-
ular epimorphism (functor) G : B → C, where C is the multiplicative submonoid
{0, 1} of Z (considered as a category), G(n) = 0 for n > 0, and G(0) = 1.

(2) In general, “between” regular epimorphisms and extremal epimorphisms there are
several other commonly used types of epimorphisms, the “strong epimorphisms” (the
dual of which is introduced in Exercise 14C), the “swell epimorphisms” (introduced
in 15A), and the “strict epimorphisms” (introduced in Exercise 7D). Thus we have
the following diagram that summarizes the relative strengths of the various notions
introduced. Notice that the notions in the boxes frequently coincide (see (1) above),
but none of the implications can be reversed in general.

isomorphism

bimorphism

monomorphism epimorphism

section retraction

∨

�
��

�
��

�
��

�
��

Q
QQ

Q
QQ

Q
QQ

Q
QQ

regular mono

strict mono

swell mono

strong mono

extremal mono

regular epi

strict epi

swell epi

strong epi

extremal epi

∨ ∨

⇓

⇓

⇓

⇓

⇓

⇓

⇓

⇓

⇓

⇓
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SUBOBJECTS

For most of the familiar constructs, a canonical notion of “subobject” is generally un-
derstood. Category theory has made it apparent that “A being a subobject of B” is
not only a property of the object A, but also of the naturally associated “inclusion mor-
phism” from A into B. Hence we will define subobjects of B to be pairs (A,m), where
A is an object and m is an “inclusion morphism”.

Since, as we have seen, for different categories one may need different concepts of mor-
phism40 to characterize (up to isomorphism) the “inclusion morphisms of subobjects”,
the concept of subobject will be made dependent upon a chosen class M of morphisms
that represents (in each case) such inclusions.

7.77 DEFINITION
Let M be a class of monomorphisms. An M -subobject of an object B is a pair (A,m),
where A

m−−→ B belongs to M . In case M consists of all (regular, extremal) monomor-
phisms, M -subobjects are called (regular, extremal) subobjects.

7.78 REMARK
By the above definition, a subobject of a set B in Set is a pair (A,m), where m : A→ B
is an injective function. In order for the notion of subobject to correspond more closely
to the notion of subset, two subobjects (A,m) and (A′,m′) should be considered to be
essentially the same if m[A] = m′[A′]. Furthermore a subobject (A,m) of B in Set
should be considered to be “smaller than” the subobject (A′,m′) of B provided that
m[A] ⊆ m′[A′]. The following definitions capture these ideas.

7.79 DEFINITION
Let (A,m) and (A′,m′) be subobjects of B.

(1) (A,m) and (A′,m′) are called isomorphic provided that there exists an isomorphism
h : A→ A′ with m = m′ ◦ h.

(2) (A,m) is said to be smaller than (A′,m′) — denoted by (A,m) ≤ (A′,m′) —
provided that there exists some (necessarily unique) morphism41 h : A → A′ with
m = m′ ◦ h

A
h //

m
  

@@
@@

@@
@@

A′

m′

��

B

7.80 REMARK
Observe that for the class of all subobjects of a given object

40For example, in Rng the class of monomorphisms is appropriate, whereas the class of regular (=
extremal) monomorphisms is not. However, for Top the class of regular (= extremal) monomorphisms
is appropriate, whereas the class of monomorphisms is not.

41Observe that by Proposition 7.34, h must be a monomorphism.
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(1) the relation of being isomorphic is an equivalence relation, and

(2) the relation ≤ is a preorder; i.e., it is reflexive and transitive. In general, it fails to
be antisymmetric, but (A,m) ≤ (A′,m′) and (A′,m′) ≤ (A,m) imply that these two
subobjects are isomorphic.

7.81 EXAMPLES
(1) Let B be a set, let PB be the set of all subsets of B, let SB be the class of

all subobjects of B in Set, and let H : SB → PB be the function defined by:
H(A,m) = m[A]. Then

(a) (A,m) and (A′,m′) are isomorphic if and only if H(A,m) = H(A′,m′), and

(b) (A,m) ≤ (A′,m′) if and only if H(A,m) ⊆ H(A′,m′).

Hence, up to isomorphism, subsets of B correspond bijectively to subobjects of B,
where the correspondence is order-preserving.

(2) Similarly, in the categories Vec, Sgr, Mon, Grp, Ab, Rng, Alg(Ω), and
HComp, subobjects correspond to linear subspaces, subsemigroups, submonoids,
subgroups, subrings, subalgebras, and compact subspaces, respectively.

(3) Analogously, in Top, Rel, and Pos, regular (= extremal) subobjects correspond to
subspaces, subrelations, and subposets, respectively.

7.82 DEFINITION
Let M be a class of monomorphisms of a category A.

(1) A is called M -wellpowered provided that no A-object has a proper class of pair-
wise42 non-isomorphic M -subobjects.

(2) In case M is the class of all (regular, extremal) monomorphisms, then M -well-
powered is called (regular, extremally) wellpowered.

7.83 REMARK
Every wellpowered category must be regular wellpowered and extremally wellpowered,
but not conversely. [The thin category Ord of all ordinal numbers (with its usual
order) is wellpowered. Ordop is extremally wellpowered, but is not wellpowered. In
fact, each of its objects has a proper class of pairwise non-isomorphic subobjects, but
only one extremal subobject.] Thus one should be aware that even though the phrase
“extremally wellpowered” sounds stronger than “wellpowered”, it is actually weaker.

QUOTIENT OBJECTS

Often in mathematics one has a “quotient” or “identification” procedure that maps
points to equivalence classes or “collapses” parts of a structure. Frequently, both of
42“Pairwise” in this context means that any pair consisting of distinct members are assumed to be

non-isomorphic.
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these processes are considered to be essentially the same, and are used interchangeably.
For example, collapsing a subgroup of an abelian group to the identity element is un-
derstood either as the homomorphism onto the group of cosets or as the homomorphism
onto a particular set of representatives of the cosets. The reason that mathematicians
don’t distinguish these procedures is because they both give rise to essentially the same
quotient object — where “quotient object” is the dual concept to that of subobject.

7.84 DEFINITION
Let E be a class of epimorphisms. An E-quotient object of an object A is a pair (e,B),
where A

e−→ B belongs to E. In case E consists of all (regular, extremal) epimorphisms,
E-quotient objects are called (regular, extremal) quotient objects.

7.85 DEFINITION
Let (e,B) and (e′, B′) be quotient objects of A.

(1) (e,B) and (e′, B′) are called isomorphic provided that there exists an isomorphism
h : B → B′ with e′ = h ◦ e.

(2) (e,B) is said to be larger than (e′, B′) — denoted by (e,B) ≥ (e′, B′) — provided
that there exists some (necessarily unique) morphism h : B → B′ with e′ = h ◦ e.

A
e //

e′   
AA

AA
AA

A B

h
��

B′

7.86 EXAMPLES
(1) Let A be a set, let EA be the set of all equivalence relations on A, let KA be the set

of all quotient objects of A in Set, and let H : KA → EA be the function defined
by: H(e,B) = {(x, y) ∈ A×A | e(x) = e(y)}. Then

(a) (e,B) and (e′, B′) are isomorphic if and only if H(e,B) = H(e′, B′), and

(b) (e,B) ≥ (e′, B′) if and only if H(e,B) ⊆ H(e′, B′).

Hence, up to isomorphism, quotient objects of A correspond bijectively to equiva-
lence relations on A, where the correspondence is order-reversing.

(2) Similarly, in the constructs Top, Rel, and Pos the regular (= extremal) quotient
objects of an object correspond (up to isomorphism) bijectively to the equivalence
relations on its underlying set.

(3) Analogously, in HComp the quotient objects (= regular quotient objects) of an
object A correspond (up to isomorphism) bijectively to those equivalence relations
ρ on the underlying set of A that, considered as subsets of A×A, are closed.

(4) In algebraic constructs such as Vec, Sgr, Mon, Grp, Ab, Rng, and Alg(Ω), the
regular (= extremal) quotient objects of an object A correspond (up to isomorphism)
bijectively to the congruence relations on A; i.e., to the equivalence relations on the
underlying set of A that respect the operations.
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7.87 DEFINITION
Let E be a class of epimorphisms of a category A.

(1) A is called E-co-wellpowered provided that no A-object has a proper class of
pairwise non-isomorphic E-quotient objects.

(2) In case E is the class of all (regular, extremal) epimorphisms, then E-co-wellpowered
is called (regular, extremally) co-wellpowered.

7.88 THEOREM
Every construct is regular wellpowered and regular co-wellpowered.

Proof: Let (A, U) be a construct.

(1). To show that A is a regular co-wellpowered category, let A be an A-object and
let {(ei, Bi) | i ∈ I} be a class of pairwise non-isomorphic regular quotient objects
of A. Let EA be the set of all equivalence relations on UA and let the function
H : I → EA be defined by: H(i) = {(a, b) ∈ UA × UA | ei(a) = ei(b)}. To see
that H is injective, let i1, i2 ∈ I with H(i1) = H(i2). For k = 1, 2, let (eik , Bik) be

a coequalizer of Ak

rk //

sk

// A . The equality ei1 ◦ r1 = ei1 ◦ s1 implies that for each

a ∈ UA1 (r1(a), s1(a)) ∈ H(i1) = H(i2). Consequently, ei2 ◦ r1 = ei2 ◦s1, so that by
the definition of coequalizer (ei1 , Bi1) ≥ (ei2 , Bi2). By symmetry, and by using the
dual of Remark 7.80(2), we have that (ei1 , Bi1) and (ei2 , Bi2) are isomorphic and
hence, by assumption, i1 = i2. Thus H : I → EA is an injective function, so that
since EA is a set, I must be a set.

(2). That A is regular wellpowered follows immediately from (1) and the fact that
(Aop,Q ◦ Uop) is a construct [5.2(4)]. �

7.89 COROLLARY
Every category with a separator or a coseparator is regular wellpowered and regular co-
wellpowered.

Proof: If S is a separator in A, then (A,hom(S,−)) is a construct. If C is a cosep-
arator in A, then (A,Q ◦ hom(−, C)op) is a construct, where Q : Setop → Set is the
contravariant power-set functor. �

7.90 EXAMPLES
(1) Fibre-small transportable constructs for which the epimorphisms are precisely the

morphisms with surjective underlying functions must be co-wellpowered.

(2) Constructs are frequently co-wellpowered, even when they have non-surjective epi-
morphisms; e.g., Sgr, Rng, and Haus. However, in these cases establishing co-
wellpoweredness is more involved.
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(3) The construct of Urysohn spaces43 is not co-wellpowered. The proof is nontrivial.
Another non-co-wellpowered subcategory of Top is described in Exercise 7L. Both
of these constructs are regular co-wellpowered (since they are constructs). Ord is
obviously not co-wellpowered.

(4) Constructs need not be extremally co-wellpowered: consider the construct whose
objects are all sets and whose morphisms are all identities and all constant functions
from sets A to sets B, where the cardinality of B is greater than that of A.
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EXERCISES

7A. Zero Morphisms

A morphism A
f−→ B is called a constant morphism provided that for any pair

A′
r //

s
// A of morphisms we have f ◦ r = f ◦ s. Morphisms that are simultaneously

constant and coconstant are called zero morphisms. Show that

(a) If f is a constant morphism then so is any composite h ◦ f ◦ g.

(b) If f can be factored through a terminal object, then f is constant.

(c) If A has a zero object, 0, then an A-morphism is a zero-morphism if and only if it
can be factored through 0.

43A topological space is called a Urysohn space provided that any two distinct points have disjoint
closed neighborhoods.
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7B. Pointed Categories

A category is called pointed provided that each of its morphism sets hom(A,B) contains
a zero morphism. Show that a category is pointed if and only if it is a full subcategory
of a category with a zero object.

7C. Kernels and Normal Monomorphisms

In a pointed category an equalizer of A
f−→ B and a zero morphism A → B is called a

kernel of f . A morphism is called a normal monomorphism provided that it is the
kernel of some morphism. Show that

(a) Every normal monomorphism is regular.

(b) In Grp the normal monomorphisms are the embeddings of normal subgroups,
whereas the regular monomorphisms are the embeddings of subgroups. [Use 7H(a)].

(c) If A
f−→ B

g−→ C are morphisms in a pointed category and g is a monomorphism,
then f is a kernel of g if and only if A is a zero object.

(d) Each nonempty pointed category has a zero object if each of its morphisms has a
kernel.

(e) If A is a pointed category such that each of its morphisms has a kernel and a cokernel,
then the following hold:

(1) A morphism f is a normal monomorphism if and only if it is a kernel of a
cokernel of f .

(2) For each object A the preordered class of all non-isomorphic normal subobjects
of A is anti-isomorphic with the preordered class of all non-isomorphic normal
quotient objects of A.

7D. Strict Monomorphisms

A morphism A
f−→ B is called a strict monomorphism provided that whenever

A′ f ′−−→ B is a morphism with the property that for all morphisms B
r //

s
// C , r◦f = s◦f

implies that r◦f ′ = s◦f ′, then there exists a unique morphism A′ f−→ A with f ′ = f ◦f .
Show that:

(a) Every regular monomorphism is a strict monomorphism, but not vice versa.

(b) Every strict monomorphism is an extremal monomorphism, but not vice versa
(cf. 14I).

(c) If A
f−→ B is an extremal monomorphism and B

g−→ C is a strict monomorphism,

then A
f−→ B

g−→ C is an extremal monomorphism.

(d) If A
f−→ B is a strict monomorphism and B

g−→ C is a section, then A
f−→ B

g−→ C
is a strict monomorphism.
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(e) The composite of two strict monomorphisms is an extremal but not necessarily strict
monomorphism.

(f) If A
f−→ B

g−→ C is a strict monomorphism and B
g−→ C is a monomorphism, then

A
f−→ B is a strict monomorphism.

7E. Sections
Show that

(a) Every morphism with a terminal domain is a section.

(b) If A
f−→ B

g−→ C is a section and A
f−→ B is an epimorphism, then B

g−→ C is a
section.

(c) If A
f−→ B is a function and A has at least two elements, then in Set the following

are equivalent:

(1) f is an isomorphism,

(2) there exists precisely one function B
g−→ A with g ◦ f = idA.

(d) If A is a full subcategory of B, then an A-reflection arrow is a section if and only if
it is an isomorphism.

(e) In a construct each section (but not necessarily each regular monomorphism) is
injective.

(f) If a natural transformation τ = (τA) regarded as a morphism in the functor quasi-
category [A,B] is a section, then each τA is a B-section (but the converse need not
be true).

7F. Full Embeddings of Reflective Subcategories

Let A be a full reflective subcategory of B. Show that the inclusion functor A ↪→ B

(a) preserves and reflects monomorphisms, sections, retractions, and isomorphisms,

(b) preserves but need not reflect regular monomorphisms, extremal monomorphisms,
and strict monomorphisms,

(c) reflects but need not preserve regular epimorphisms, extremal epimorphisms, strict
epimorphisms, and epimorphisms.

7G. Faithful Functors
(a) Show that a faithful functor that reflects extremal epimorphisms must reflect iso-

morphisms.

(b) Show that a functor F : A → B that reflects equalizers (i.e., whenever E
e−→ A

and A
f
//

g
// B are A-morphisms such that Fe is an equalizer of Ff and Fg, then e

is an equalizer of f and g) is faithful.
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7H. Epimorphisms for Groups

* (a) Show that if K is a subgroup of the (finite) group H, then there exists a (finite)
group G and group homomorphisms f1, f2 : H → G such that

K = {h ∈ H
∣∣ f1(h) = f2(h) }.

[Hint: Consider the set X obtained from the set {hK
∣∣ h ∈ H } of all left K-cosets

of H by adjoining a single new element K̂. Let G be the permutation group of X,
and let ρ : X → X be the permutation that interchanges the elements eK (= K)
and K̂, and leaves all other elements of X fixed.

Define f1, f2 : H → G by

f1(h)(S) =

{
hh′K if S = h′K

K̂ if S = K̂

}
f2(h) = ρ ◦ f1(h) ◦ ρ−1.]

(b) Show that the epimorphisms in Grp are precisely the surjective homomorphisms.

(c) Show that the epimorphisms in the category of finite groups are precisely the
surjective homomorphisms.

(d) Show that in the category of commutative cancellative semigroups, A
f−→ B is an

epimorphism if and only if for each b ∈ B there exist a1, a2 ∈ A with f(a1) + b =
f(a2). [Hint: Embed each commutative cancellative semigroup in an abelian group.
There the epimorphisms are surjective.]

(e) Show that in the category of torsion-free abelian groups, a morphism A
f−→ B is

an epimorphism if and only if the factor group B/f [A] is a torsion group.

7I. Epimorphisms in FHaus

(a) Show that in FHaus a morphism A
f−→ B is an epimorphism if and only if each

morphism B
g−→ R is constant whenever g ◦ f is constant.

(b) Let B be the space with underlying set R that has τ ∪ {R \Q} as a subbase for its
topology (where τ is the usual topology on R). Let A be the subspace of B with
underlying set Q. Show that the (closed) embedding A ↪→ B is an epimorphism in
FHaus. Notice that this implies that A ↪→ B is not an extremal monomorphism in
FHaus.

7J. Regular Monomorphisms in FHaus

In the category of functionally Hausdorff spaces (cf. 7.65) consider the discrete spaces
A and B with underlying sets { 1

n |n ∈ N
+ } and {0} ∪ { 1

n |n ∈ N
+ }, the space C with

underlying set R, having τ ∪{R \A} as a subbase for its topology (where τ is the usual
topology on R), and the space D obtained as a quotient of C by identifying the points
0 and 1.
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(a) Show that the natural inclusions A
f−→ B and B

g−→ C are regular monomorphisms,
but that g ◦ f is not regular.

(b) Show that if C
h−→ D is the natural quotient map, then h ◦ (g ◦ f) is a regular

monomorphism, but that g ◦ f is not regular.

7K. Subobjects

Show that it is possible for (A,m) and (A′,m′) to be non-isomorphic subobjects of an
object B even though A and A′ are isomorphic.

* 7L. A Non-co-wellpowered Category of Topological Spaces

Let A be the full subcategory of Top that consists of those topological spaces in which
every compact subspace is Hausdorff. Show that

(a) A is a reflective subcategory of Top, and

(b) A is not co-wellpowered.

7M. Coequalizers

Let A
e−→ B be an epimorphism and let B

f
//

g
// C be a pair of morphisms. Show that c

is a coequalizer of f and g if and only if c is a coequalizer of f ◦ e and g ◦ e.

7N. Extremal Monomorphisms

Show that the composite of two extremal monomorphisms need not be extremal.

7O. Epi = RegEpi and Mono = RegMono

Show that the above equations hold in any of the following categories: Set, Vec, Ab,
Grp, Alg(Ω), and HComp.

* 7P. A Characterization of Monomorphisms by Sections

Let f be a morphism in a category A. Show that f is a monomorphism in A if and only
if A can be embedded into a category B such that f is a section in B.

7Q. Separating Sets and Concretizable Categories

(a) Show that if A has a separating set {Ai | i ∈ I } and I is the discrete category
associated with I, then A is concretizable over [I,Set]. (Cf. Proposition 7.12.)

(b) Show that if A has a separating set, then A is concretizable over Set.

(c) Exhibit a construct that has no separating set.

7R. Epi-Transformations and Mono-Transformations

Let S, T : X→ Set be functors. Show that

(a) If there exists an Epi-transformation from S to T , then Spa(T ) is concretely iso-
morphic to a reflective modification of Spa(S).
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(b) If there exists a Mono-transformation from S to T , then Spa(S) is concretely iso-
morphic to a coreflective modification of Spa(T ).

7S. Regular Epimorphisms in Cat

(a) Let A F−−→ B be the functor described in 7.40(6), let B G−−→ C be the functor

described in 7.76(1), let D be the category •
f
//

g
// • , let A H−−→ D be the inclusion

functor, and let D K−−→ B be the functor defined by K(g) = 1 and K(f) = 2. Show
that

(1) F and G are regular epimorphisms in Cat, but G ◦ F is not a regular epimor-
phism,

(2) F = K◦H is a regular epimorphism in Cat, but K is not a regular epimorphism,

(b) Consider the functors:

A1
f1
// B1 A2

f2
// B2

A3 f3

// B3

F−−→
A1

f

55

f1
// B1 = A2

f2
// B2

A3 f3

// B3

G−−→
A2

f1
// • f2

// B2

A3 f=f3

// B3

Show that in Cat:

(1) F is a regular epimorphism,

(2) G is a retraction,

(3) G ◦ F is not a regular epimorphism.

[Contrast this with Exercise 10M.]
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8 Objects and morphisms in concrete
categories

In this section we study special objects and morphisms in concrete categories. It will
become apparent that these concepts depend heavily upon the underlying functors, and,
hence, can be defined in the context of arbitrary (not necessarily faithful) functors.
The notational conventions of Remark 6.22 will be used throughout this section. In
particular, forgetful functors will be denoted by | |.

DISCRETE AND INDISCRETE OBJECTS

8.1 DEFINITION
An object A in a concrete category A over X is called discrete whenever, for each
object B, every X-morphism |A| → |B| is an A-morphism.

8.2 EXAMPLES
(1) In the construct Pos the discrete objects are precisely the sets ordered by equality.

(2) In Cat the discrete objects are the discrete small categories.

(3) In Top the discrete objects are the discrete topological spaces.

(4) Let PMet denote the construct of pseudometric spaces44 and contractions. For each
set X, the object (X, d), where d is defined by

d(x, y) =

{
0, if x = y

∞, if x 6= y,

is a discrete object in PMet. In contrast, in the construct Met no space with at
least two points is discrete.

(5) The constructs Vec, Grp, and Σ-Seq have no discrete objects. For Ω 6= ∅, Alg(Ω)
has no discrete object, with the possible exception of the empty Ω-algebra.

(6) In TopGrp, considered as a concrete category over Grp, the discrete objects are
the topological groups with discrete topology. In TopGrp, considered as a concrete
category over Top, no object is discrete.

44A pseudometric on a set X is a function d : X ×X → [0,∞], such that:

(1) d(x, x) = 0 for all x ∈ X,

(2) d(x, y) = d(y, x) for all x, y ∈ X,

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
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(7) In an abstract category considered as concrete over itself (w.r.t. the identity functor)
every object is discrete. In a poset A, considered as a concrete category over 1, an
object is discrete if and only if it is the smallest element of A.

Next we consider the concrete dual (5.20) of the concept of discrete object.

8.3 DEFINITION
An object A in a concrete category A over X is called indiscrete whenever, for each
object B, every X-morphism |B| → |A| is an A-morphism.

8.4 REMARK
Notice that if A is a discrete (resp. indiscrete) object in the concrete category A, then
A is the smallest (resp. largest) element in the fibre of |A| (cf. 5.4). The converse need
not hold, as seen below [8.5(2)].

8.5 EXAMPLES
(1) In the construct Pos the only indiscrete objects are the empty poset and the single-

ton posets; similarly in Cat.

(2) In Top the indiscrete objects are precisely the indiscrete topological spaces. In the
full subcategory Top1 of Top, consisting of all T1-spaces, only the empty space and
the singleton spaces are indiscrete. However, each fibre has a largest element — the
cofinite topology.

(3) In PMet (8.2) the indiscrete objects are precisely those for which every pair of
points has distance 0. The only indiscrete objects in Met are the metric spaces
with at most one point.

(4) In Vec, Grp, and Mon only the trivial objects with precisely one element are
indiscrete.

(5) In Σ-Seq an acceptor is indiscrete if and only if it has only one state and that state
is final.

(6) If TopGrp is considered as a concrete category over Grp, then the indiscrete objects
are the topological groups with indiscrete topology. If TopGrp is considered as a
concrete category over Top or Set, then the indiscrete objects are trivial.

EMBEDDINGS

In §7 several classes of monomorphisms have been introduced in order to formalize the
intuitive concept of “embeddings of subobjects”. However, none of these concepts works
in all situations. (Recall that monomorphisms fail in Top [7.33(3)] and extremal and
regular monomorphisms fail in Sgr [7.58(4), 7I].) Below, we introduce the concept of
embedding, which agrees with the intuitive notion of “embeddings of subobjects” in every
familiar construct.
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8.6 DEFINITION
Let A be a concrete category over X.

(1) An A-morphism A
f−→ B is called initial45 provided that for any A-object C an X-

morphism |C| g−→ |A| is an A-morphism whenever |C| f◦g−−−→ |B| is an A-morphism.

(2) An initial morphism A
f−→ B that has a monomorphic underlying X-morphism

|A| f−→ |B| is called an embedding.

(3) If A
f−→ B is an embedding, then (f,B) is called an extension of A and (A, f) is

called an initial subobject of B.

8.7 PROPOSITION
For any concrete category the following hold:

(1) Each embedding is a monomorphism.

(2) Each section (and in particular each isomorphism) is an embedding.

(3) If the forgetful functor preserves regular monomorphisms, then each regular mono-
morphism is an embedding.

Proof:
(1). Immediate from Proposition 7.37(2).

(2). Suppose that A
s−→ B and B

r−→ A are A-morphisms with r ◦ s = idA. Let
|C| g−→ |A| be an X-morphism for which |C| s◦g−−−→ |B| is an A-morphism. Then
g = r ◦ (s ◦ g) is an A-morphism. Thus A

s−→ B is initial, hence an embedding.

(3). Suppose that A
m−−→ B is an equalizer of a pair of morphisms (u, v), and let

g : |C| → |A| be an X-morphism such that m ◦ g is an A-morphism. Then since
u◦ (m◦g) = v ◦ (m◦g), there exists an A-morphism k : C → A with m◦g = m◦k.
Since, by assumption, m is a X-monomorphism, this implies that k = g. Thus
g = k : C → A is an A-morphism. Hence m is initial, and so is an embedding. �

8.8 EXAMPLES46

(1) If an abstract category A is considered to be concrete over itself via the identity
functor, then every morphism is initial. In particular,

Emb(A) = Mono(A).

(2) In the construct A = Top a continuous map f : (X, τ) → (Y, σ) is initial if and
only if τ is the “initial topology” with respect to f and σ, i.e., τ = { f−1[S] |S ∈ σ }.
Thus embeddings are precisely the “topological embeddings”, i.e., homeomorphisms
onto subspaces. In particular,

RegMono(A) = ExtrMono(A) = Emb(A) ( Mono(A).
45Notwithstanding their names, the concepts of initial object (7.1) and initial morphism are unrelated.
46Emb(A) is the class of all A-embeddings. Similarly, Mono(A) is the class of all A-monomorphisms,

etc. See the Table of Symbols.
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(3) In the construct A = Haus the initial morphisms are precisely the topological
embeddings. Hence

ExtrMono(A) ( Init(A) = Emb(A) ( Mono(A).

(4) In the construct A = FHaus of functionally Hausdorff spaces the initial morphisms
are precisely the topological embeddings. Hence (cf. 7.65, 7I and 7J)

RegMono(A) ( ExtrMono(A) ( Init(A) = Emb(A) ( Mono(A).

(5) In some “algebraic” constructs A such as Vec and Grp the initial morphisms coin-
cide with each of the other “reasonable” families of monomorphisms; i.e.,

RegMono(A) = Init(A) = Emb(A) = Mono(A).

However, if A is any of the constructs Rng, Banb, or (Ban, O), then

ExtrMono(A) ( Init(A) = Emb(A) = Mono(A).

(6) In the construct A = (Ban, U) injective morphisms usually fail to be initial; in-
stead the initial morphisms are precisely the isometric embeddings of (automatically
closed) subspaces. Thus

ExtrMono(A) = Init(A) = Emb(A) ( Mono(A).

(7) In the construct A = Met the initial morphisms are precisely the isometric embed-
dings of (not necessarily closed) subspaces. Thus

ExtrMono(A) ( Init(A) = Emb(A) ( Mono(A).

(8) In the constructs Rel and Pos a morphism f : (X, ρ)→ (Y, σ) is initial if and only
if the equivalence: xρy ⇔ f(x)σf(y) holds. Thus in Pos initial morphisms are
precisely the embeddings, and in both cases

ExtrMono(A) = Emb(A) ( Mono(A).

(9) Extremal monomorphisms need not be embeddings. In the full subconstruct A =
DRail of Top consisting of all discrete spaces and all infinite indiscrete spaces,
every injective map with finite discrete domain and indiscrete range is an extremal
monomorphism, but (for non-trivial domain) not an embedding. Hence

ExtrMono(A) 6⊆ Emb(A) = RegMono(A) ( ExtrMono(A).

(10) In the construct Cat the embeddings are precisely the embedding functors.

(11) In the construct Σ-Seq embeddings are those injective simulations A
f−→ B for

which any state a ∈ A, with f(a) final in B, must itself be final in A.
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(12) In a preordered class A considered as a concrete category over 1, initial morphisms
and isomorphisms coincide. Thus, if A is a nondiscrete poset, then

Iso(A) = Init(A) = Emb(A) = ExtrMono(A) ( Mono(A).

(13) If TopGrp is considered as a concrete category over Grp (resp. over Top), then a

morphism G
f−→ Ĝ is initial if and only if G has the initial topology with respect to

f (resp. if and only if it is injective).

8.9 PROPOSITION
(1) If A

f−→ B and B
g−→ C are initial morphisms (resp. embeddings), then A

g◦f−−−→ C
is an initial morphism (resp. an embedding).

(2) If A
g◦f−−−→ C is an initial morphism (resp. an embedding), then f is initial (resp. an

embedding). �

QUOTIENT MORPHISMS

The concepts of final morphism and quotient morphism are dual to the concepts of initial
morphism and embedding, respectively.

8.10 DEFINITION
Let A be a concrete category over X.

(1) An A-morphism A
f−→ B is called final provided that for any A-object C, an X-

morphism |B| g−→ |C| is an A-morphism whenever |A| g◦f−−−→ |C| is an A-morphism.

(2) A final morphism A
f−→ B with epimorphic underlying X-morphism |A| f−→ |B| is

called a quotient morphism.

(3) If A
f−→ B is a quotient morphism, then (f,B) is called a final quotient object

of A.

8.11 EXAMPLES
(1) In the construct Top a continuous function f : (X, τ) → (Y, σ) is final if and only

if σ = {A ⊆ Y | f−1[A] ∈ τ}; i.e., σ is the “final topology” on Y with respect to f
and τ . Thus in Top the quotient morphisms are the topological quotient maps.

(2) In the construct Rel a morphism f : (X, ρ) → (Y, σ) is final if and only if σ is the
final relation on Y with respect to f and ρ; i.e., σ = {(f(x), f(y)) | (x, y) ∈ ρ}.

(3) For any of the constructs Grp, Ab, Vec, Boo, Lat, HComp, BooSp, Mon, Sgr,
and Σ-Seq, we have47

Final(A) = Quot(A) = RegEpi(A).
47Final(A) is the class of all final morphisms in A. Similarly, Quot(A) is the class of all A-quotient

morphisms, etc. See the Table of Symbols.

9th July 2006



132 Objects and Morphisms [Chap. II

(4) For the constructs Cat and (Ban, O) there exist regular epimorphisms that are not
final. Some examples of such morphisms are the non-surjective regular epimorphisms
described in Example 7.72(5).

(5) In the construct Cat there exist surjective extremal epimorphisms that are not final.
An example of this is the functor G ◦ F : A→ C described in Remark 7.76(1).

(6) A morphism (X, d)
f−→ (Y, d̂) is final in PMet if and only if

d̂(y, y′) = inf
{ n−1∑

i=1

distd(f−1(yi),f−1(yi+1)) | (y1, . . . , yn) is a finite sequence in Y

with y1 = y and yn = y′
}

.

8.12 PROPOSITION
For any concrete category the following hold:

(1) Each quotient morphism is an epimorphism.

(2) Each retraction (and in particular each isomorphism) is a quotient morphism.

(3) If the forgetful functor preserves regular epimorphisms, then each regular epimor-
phism is a quotient morphism. D

8.13 PROPOSITION
(1) If A

f−→ B and B
g−→ C are final morphisms (resp. quotient morphisms), then

A
g◦f−−−→ C is final (resp. a quotient morphism).

(2) If A
g◦f−−−→ C is a final morphism (resp. a quotient morphism), then g is final (resp. a

quotient morphism). D

8.14 PROPOSITION
In a concrete category A over X, the following conditions are equivalent for each A-
morphism f :

(1) f is an A-isomorphism.

(2) f is an initial morphism and an X-isomorphism.

(3) f is a final morphism and an X-isomorphism.

Proof: (1) ⇒ (2) follows from Proposition 3.21 and Proposition 8.7(2).

(2) ⇒ (1). If A
f−→ B is an initial X-isomorphism, then |B| f−1

−−−→ |A| f−→ |B| =

|B| idB−−−→ |B| implies, by initiality, that |B| f−1

−−−→ |A| is an A-morphism. Thus A
f−→ B

is an A-isomorphism.

(1) ⇔ (3) follows by duality from (1) ⇔ (2). �
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STRUCTURED ARROWS

For concrete categories A over X, we have introduced properties of A-objects and of
A-morphisms. Next we will investigate properties of pairs (f,A) consisting of an X-
morphism f and a suitably related A-object A. First we define three concepts of “gen-
eration”. Whereas for “topological” constructs the concept of generation works better
than that of extremal generation, and for “algebraic” constructs the concept of extremal
generation works better than that of generation, the concept of concrete generation
works well in either setting.

8.15 DEFINITION
Let A be a concrete category over X.

(1) A structured arrow with domain X is a pair (f,A) consisting of an A-object A

and an X-morphism X
f−→ |A|. Such a structured arrow will often be denoted by

X
f−→ |A|.

(2) A structured arrow (f,A) is said to be generating provided that for any pair of
A-morphisms r, s : A→ B the equality r ◦ f = s ◦ f implies that r = s.

(3) A generating arrow (f,A) is called extremally generating (resp. concretely gen-
erating) provided that each A-monomorphism (resp. A-embedding) m : A′ → A,
through which f factors (i.e., f = m ◦ g for some X-morphism g), is an A-isomor-
phism.

(4) In a construct, an object A is (extremally resp. concretely) generated by a
subset X of |A| provided that the inclusion map X ↪→ |A| is (extremally resp.
concretely) generating.

8.16 PROPOSITION
In a concrete category A over X the following hold for each structured arrow
f : X → |A|:

(1) If (f,A) is extremally generating, then (f,A) is concretely generating.

(2) If (f,A) is concretely generating, then (f,A) is generating.

(3) If X
f−→ |A| is an X-epimorphism, then (f,A) is generating.

(4) If X
f−→ |A| is an extremal epimorphism in X, and if | | preserves monomorphisms,

then (f,A) is extremally generating. �

8.17 EXAMPLES48

(1) If an abstract category A is considered to be concrete over itself via the identity

functor, then an A-morphism A
f−→ B, considered as a structured arrow (f,B), is

48Gen(A) is the class of all generating structured arrows in A, ExtrGen(A) is the class of all extremally
generating structured arrows in A, ConcGen(A) is the class of all concretely generating structured
arrows in A, etc. See the Table of Symbols.
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generating (resp. extremally or concretely generating) if and only if f is an epimor-
phism (resp. an extremal epimorphism). That is,

Gen(A) = Epi(A) and ExtrGen(A) = ConcGen(A) = ExtrEpi(A).

(2) In Vec, Grp, Sgr, Rng, and other algebraic constructs, the concepts of concrete
generation and of extremal generation coincide with the familiar (non-categorical)
concept of generation.
In the constructs Sgr and Rng the inclusion map Z ↪→ Q is generating, but is not
concretely generating [cf. 7.40(5)].

(3) In the construct A = Top we have

ConcGen(A) = Gen(A) = Surjective maps, and
ExtrGen(A) = Surjective maps with discrete codomain.

(4) In the construct A = Haus we have

Gen(A) = Dense maps,
ConcGen(A) = Surjective maps, and
ExtrGen(A) = Surjective maps with discrete codomain.

(5) In a partially ordered set A, considered as a concrete category over 1, every struc-
tured arrow is concretely generating. A structured arrow (f, a) is extremally gener-
ating if and only if a is a minimal element of A.

(6) In Σ-Seq, given an acceptor A, the inclusion map of {q0}, where q0 is the initial
state, concretely generates A if and only if A is reachable.

8.18 REMARK
In a concrete category A, if an A-morphism A

f−→ B is regarded as a structured arrow
(f,B) with domain |A|, then the following hold:

(1) A
f−→ B is an epimorphism if and only if (f,B) is generating.

(2) If (f,B) is extremally generating and the forgetful functor preserves monomor-

phisms, then A
f−→ B is an extremal epimorphism.

(3) If A
f−→ B is an extremal epimorphism, then (f,B) is concretely generating.

8.19 DEFINITION
Let A be a concrete category over X.

(1) Structured arrows (f,A) and (g,B) in A with the same domain are said to be iso-
morphic provided that there exists an A-isomorphism k : A→ B with k ◦ f = g.
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(2) A is said to be concretely co-wellpowered provided that for each X-object X
any class of pairwise non-isomorphic concretely generating arrows with domain X
is a set.

8.20 EXAMPLES
Most of the familiar constructs such as Vec, Grp, Top, HComp, Pos, Alg(Ω) for each
Ω, and Σ-Seq for each Σ are concretely co-wellpowered. The construct with objects
all sets and morphisms all identity mappings is fibre-small and co-wellpowered, but
not concretely co-wellpowered. The constructs CLat and CBoo are not concretely co-
wellpowered (cf. Exercise 8E). A proper class, ordered by equality and considered as a
concrete category over 1, is co-wellpowered, but is not concretely co-wellpowered.

8.21 PROPOSITION
Each concretely co-wellpowered concrete category is extremally co-wellpowered.

Proof: This follows immediately from the following two facts:

(1) Each extremal quotient (f,B) of A, considered as a structured arrow with domain
|A|, is concretely generating. Cf. Remark 8.18(3).

(2) Extremal quotients (f1, B1) and (f2, B2) are isomorphic if and only if the structured
arrows (f1, B1) and (f2, B2) are isomorphic. �

UNIVERSAL ARROWS AND FREE OBJECTS

8.22 DEFINITION
In a concrete category A over X

(1) a universal arrow over an X-object X is a structured arrow X
u−→ |A| with domain

X that has the following universal property: for each structured arrow X
f−→ |B|

with domain X there exists a unique A-morphism f̂ : A→ B such that the triangle

X
u //

f
  

@@
@@

@@
@@

|A|

f̂
��

|B|

commutes,

(2) a free object over an X-object X is an A-object A such that there exists a universal
arrow (u, A) over X.

8.23 EXAMPLES
(1) In a construct, an object A is a free object

(a) over the empty set if and only if A is an initial object.
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(b) over a singleton set if and only if A represents the forgetful functor (6.9).

(2) In the construct Vec each object is a free object over any basis for it.

(3) In the constructs Top and Pos the free objects are precisely the discrete ones.

(4) In the construct Ab free objects over X are the free abelian groups generated by X.
They can be constructed as the group of all functions p : X → Z with finite carrier,
where addition is carried out componentwise, and, if A is such a group of functions,
a universal arrow u : X → |A| is given by

(u(x))(z) =

{
1, if z = x

0, if z 6= x.

Similarly, the familiar free group generated by a set X is a free object over X in the
construct Grp.

A non-free group and a free object

(5) In the construct Mon a free monoid X∗ over a set X is a free object over X;
elements are words (= finite sequences, including the empty one) formed from mem-
bers of X, with operation • of concatenation: (x1, x2, . . . , xn) • (y1, y2, . . . , ym) =
(x1, x2, . . . , xn, y1, y2, . . . , ym), and u : X → |A| is given by u(x) = (x). Analogously,
in the construct Sgr a free semigroup generated by X consists of all nonempty words
formed from members of X.

(6) In each construct Alg(Ω) the free objects over a set X can be described in a way
similar to the description of initial objects [cf. 7.2(5)] except that in step (a) each
element of Ω0 ]X should be required to be a “term”. Notice that in any Alg(Σ) a
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free unary algebra over a singleton set is, by coincidence, the algebra Σ∗ of all words
with unary operations given by concatenations. A free algebra over a set X is the
disjoint union of card(X) copies of Σ∗ (cf. Exercise 8H).

(7) In the construct CLat an initial object is the two-point chain, a free object over a
one-element set is the three-point chain, and a free object over a two-element set is
the six-element lattice formed by replacing the middle member of a three-element
chain by a four-element boolean algebra. There are no free objects over sets that
have more than two elements (cf. Exercise 8G). In the construct CBoo an initial
object is the two-point chain, the four-element boolean algebra is a free object over a
one-element set, and a free object over n (< ℵ0) generators has 22n

elements. There
is no free object over any infinite set. (See Exercise 8F.)

(8) In JCPos the free objects are, up to isomorphism, precisely the power sets (regarded
as JCPos objects). For each set X, the structured arrow X

u−→ |P(X)|, defined by
u(x) = {x}, is a universal arrow.
However, in the construct Λ-JCPos (with objects triples (X,≤, λ) consisting of a
complete lattice (X,≤) and a unary operation λ on X, and morphisms the join-
preserving {λ}-homomorphisms) there do not exist free objects over any set. In
particular, Λ-JCPos has no initial object [even though Λ-JCPos is extremally co-
wellpowered, the empty set extremally generates arbitrarily large objects!], and the
forgetful functor is not representable.

(9) In the construct Cat a free object over the set {0} is a category of the form • g−→ •
(where the universal arrow u sends 0 to g).

(10) In the construct Rng the polynomial ring Z[M ] over a set M of variables is a free
object over M .

(11) Let Y be a nonempty set and consider Set as a construct via the forgetful functor
U = hom(Y,−). Then the structured arrow X

u−→ U(X × Y ) = hom(Y, X × Y ),
defined by (u(x))(y) = (x, y), is universal.

(12) To construct a universal arrow in (Ban, O) over a set X, let `1(X) be the subspace
of the vector space KX consisting of all r = (rx)x∈X in KX whose norm ‖r‖ =∑

x∈X |rx| is finite. Then `1(X) is a Banach space. Define X
u−→ O(`1(X)) at y

by the Dirac function u(y) = (δyx)x∈X . Then (u, `1(X)) is a universal arrow over
X. Observe, for comparison, that for the construct (Ban, U) the only set having
a universal arrow is the empty set, and that for the construct Banb the only sets
having universal arrows are the finite ones.

(13) In an abstract category, considered as a concrete category over itself via the identity
functor, every object is free over itself.

(14) In an preordered set A, considered as a concrete category over 1, an object a is free
over the single object of 1 if and only if a is the smallest element of A.

(15) In the concrete category of Rng over Mon in which the forgetful functor “forgets
addition” a universal arrow over a monoid M is given by the monoid ring Z[M ] of M
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over the additive group (Z,+) and the arrow u : M → |Z[M ]| defined by u(x) = x.
Likewise in the concrete category of Rng over Ab, where multiplication is forgotten,
a universal arrow over an abelian group G is given by the tensor ring over G.

(16) No acceptor is free in the construct Σ-Seq. (In fact, if A is an acceptor on n states
and if B is the (n + 1)-state acceptor in which the next-state maps δ(−, σ) are
(n + 1)-cycles, then there is no simulation from A to B.)

8.24 PROPOSITION
Every universal arrow is extremally generating.

Proof: Let X
u−→ |A| be a universal arrow. By the uniqueness requirement, (u, A) is

generating. Let A′ m−−→ A be an A-monomorphism, and let X
g−→ |A′| be an X-morphism

with u = m ◦ g. Since (u, A) is universal, there exists an A-morphism A
ĝ−→ A′ with

g = ĝ ◦ u. Hence A
idA−−−→ A and A

m◦ĝ−−−→ A are A-morphisms with idA ◦ u = (m ◦ ĝ) ◦ u.
By the uniqueness requirement in the definition of universal arrow, this implies that
idA = m ◦ ĝ. Hence m is simultaneously an A-retraction and an A-monomorphism, and
so is an A-isomorphism (7.36). �

8.25 PROPOSITION
For any X-object X, universal arrows over X are essentially unique; i.e., any two uni-
versal arrows with domain X are isomorphic, and conversely, if X

u−→ |A| is a universal
arrow and A

k−→ A′ is an A-isomorphism, then X
k◦u−−−→ |A′| is also universal. A 4.19 49

8.26 DEFINITION
A concrete category over X is said to have free objects provided that for each X-object
X there exists a universal arrow over X.

8.27 EXAMPLES
By Examples 8.23 the constructs Vec, Grp, Ab, Mon, Sgr, Alg(Ω), Top, Pos, and
(Ban, O) have free objects; but the constructs CLat, CBoo, and (Ban, U) don’t. Nei-
ther do the constructs Banb and Met; however, PMet does. A partially ordered set,
considered as a concrete category over 1, has free objects if and only if it has a smallest
element.

8.28 PROPOSITION
If a concrete category A over X has free objects, then an A-morphism is an A-mono-
morphism if and only if it is an X-monomorphism.

49The symbol A 4.19 indicates that a proof of the preceding result can be obtained as a straightforward
analogue of the proof of Proposition 4.19.
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Proof: The sufficiency holds for all concrete categories [cf. Proposition 7.37(2)]. To see

the necessity, let A
f−→ B be an A-monomorphism, and let X

r //

s
// |A| be a pair of

X-morphisms with f ◦ r = f ◦ s. If X
u−→ |C| is a universal arrow over X, then there

exist A-morphisms C
r̂ //

ŝ
// A with r̂ ◦ u = r and ŝ ◦ u = s. Thus (f ◦ r̂) ◦ u = (f ◦ ŝ) ◦ u.

By the uniqueness requirement in the definition of universal arrow, this implies that
f ◦ r̂ = f ◦ ŝ. Since f is an A-monomorphism, it follows that r̂ = ŝ, so that r = s. Hence
f is an X-monomorphism. �

8.29 PROPOSITION
If a construct A has a free object over a singleton set, then the monomorphisms in A
are precisely those morphisms that are injective functions.

Proof: By Example 8.23(1) the forgetful functor for A is representable. Hence the
result follows from Corollary 7.38. �

OBJECTS AND MORPHISMS
WITH RESPECT TO A FUNCTOR

8.30 DEFINITION
Let G : A→ B be a functor, and let B be a B-object.

(1) A G-structured arrow with domain B is a pair (f,A) consisting of an
A-object A and a B-morphism f : B → GA.

(2) A G-structured arrow (f,A) with domain B is called

(a) generating provided that for any pair of A-morphisms A
r //

s
// Â , the equality

Gr ◦ f = Gs ◦ f implies that r = s,

(b) extremally generating provided that it is generating and whenever A′ m−−→ A
is an A-monomorphism and (g,A′) is a G-structured arrow with f = G(m) ◦ g,
then m is an A-isomorphism,

(c) G-universal for B provided that for each G-structured arrow (f ′, A′) with

domain B there exists a unique A-morphism A
f̂−→ A′ with f ′ = G(f̂) ◦ f , i.e.,

such that the triangle

B
f
//

f ′ !!D
DD

DD
DD

D GA

Gf̂
��

GA′

commutes.
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8.31 EXAMPLES
(1) For concrete categories (A, U) over X, we have the following:

U -structured arrow = structured arrow,

U -generating arrow = generating arrow,

extremally U -generating arrow = extremally generating arrow,

U -universal arrow = universal arrow.

(2) If A is a subcategory of B and E : A→ B is the associated inclusion functor, then
an E-structured arrow (u, A) with domain B is E-universal if and only if B

u−→ A
is an A-reflection arrow for B.

(3) Let A be a category and let G be the unique functor from A to 1. Then a G-
structured arrow (u, A) is G-universal if and only if A is an initial object in A.

(4) If G = hom(A,−) : A→ Set, then a G-structured arrow X
u−→ G(B) = hom(A,B)

is G-universal if and only if for every A-object C and every family (A
fx−−→ C)x∈X of

A-morphisms there exists a unique A-morphism B
f−→ C with fx = f ◦u(x) for each

x ∈ X. [By the definition of coproducts in §10, this is equivalent to ((u(x))x∈X , B)
being a coproduct of the family consisting of X copies of A; i.e., to B being an

X-copower of A with injections A
u(x)−−−→ B.]

(5) Minimal realization is universal. This means that for the category Beh of behav-
iors (i.e., triples (Σ, Y, b), where Σ∗ b−→ Y is a function) and behavior morphisms

[i.e., (f, g) : (Σ, Y, b) → (Σ′, Y ′, b′), where Σ
f−→ Σ′ and Y

g−→ Y ′ are functions
with (g ◦ b)(σ1σ2 · · ·σn) = b′(f(σ1)f(σ2) · · · f(σn))], the minimal realization functor
M : Beh → Autr has universal arrows. Here Autr denotes the full subcategory
of Aut [3.3(4)(b)] formed by those automata for which each state can be reached
from the initial one, and M assigns to each behavior its minimal realization. An
M -universal arrow A

η−→ M(Σ, Y, bA) (where bA : Σ∗ → Y is the external behavior
of A) is the unique simulation onto the minimal realization of bA.

8.32 PROPOSITION
If G : A→ B is a functor, then the following are equivalent:

(1) G is faithful,

(2) each A-epimorphism, considered as a G-structured arrow, is generating,

(3) each A-identity, considered as a G-structured arrow, is generating. �

8.33 PROPOSITION
Every G-universal arrow is extremally generating. A 8.24
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8.34 DEFINITION
G-structured arrows (f,A) and (f ′, A′) with the same domain are said to be isomorphic
provided that there exists an A-isomorphism k : A→ A′ with G(k) ◦ f = f ′.

8.35 PROPOSITION
For any functor G : A → B and any B-object B, G-universal arrows for B are es-
sentially unique; i.e., any two G-universal arrows with domain B are isomorphic, and,
conversely, if B

u−→ GA is a G-universal arrow and A
k−→ A′ is an isomorphism, then

B
Gk◦u−−−−→ GA′ is also G-universal. A 4.19

8.36 PROPOSITION
Let G : A→ B be a functor. If the triangle

X
u //

f
!!D

DD
DD

DD
D GA

Gf̂
��

GB

commutes, where (u, A) is a G-universal arrow and A
f̂−→ B is an A-morphism, then

the following hold:

(1) (f,B) is generating if and only if f̂ is an epimorphism.

(2) (f,B) is extremally generating if and only if f̂ is an extremal epimorphism.

Proof: It is clearly sufficient to show that whenever f̂ is an extremal epimorphism, then
(f,B) is extremally generating. Let X

g−→ GC be a G-structured arrow and let C
m−−→ B

be an A-monomorphism with f = Gm ◦ g. Then there exists an A-morphism A
ĝ−→ C

with g = Gĝ ◦ u. Thus the equality G(m ◦ ĝ) ◦ u = f = Gf̂ ◦ u implies that m ◦ ĝ = f̂ .
Hence m is an isomorphism. �

8.37 DEFINITION
(1) A functor G : A → B is called (extremally) co-wellpowered provided that for

any B-object B, any class of pairwise non-isomorphic (extremally) generating G-
structured arrows with domain B is a set.

(2) A faithful functor G : A→ B is called concretely co-wellpowered provided that
the concrete category (A, G) is concretely co-wellpowered.

8.38 PROPOSITION
If a faithful functor G : A→ B is co-wellpowered, then so is A. A 8.21
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8.39 REMARK
If a faithful functor G : A → B is extremally co-wellpowered, then A need not be
extremally co-wellpowered. Conversely, if A is co-wellpowered, then G : A → B need
not even be extremally co-wellpowered. Consider, e.g., the unique functor from a large
discrete category to 1.
More can be said if, e.g., for every B-object B there exists a universal G-structured
arrow for B. See 18.11 and 18B.

COSTRUCTURED ARROWS

All of the concepts relating to G-structured arrows have duals. In particular:

8.40 DEFINITION
Let G : A→ B be a functor and let B be a B-object.

(1) A G-costructured arrow with codomain B is a pair (A, f) consisting of an

A-object A and a B-morphism GA
f−→ B.

(2) A G-costructured arrow (A, f) with codomain B is called G-co-universal for B
provided that for each G-costructured arrow (A′, f ′) with codomain B there exists

a unique A-morphism A′ f̂−→ A with f ′ = f ◦G(f̂).

8.41 EXAMPLES
(1) If A is a subcategory of B and E : A→ B is the associated inclusion functor, then

an E-costructured arrow (A, u) with codomain B is E-co-universal if and only if
A

u−→ B is an A-coreflection arrow for B.

(2) For forgetful functors U of familiar concrete categories, U-co-universal arrows are
relatively rare. For example, Grp has U-co-universal arrows only for one-point sets,
and Pos has U-co-universal arrows only for sets with at most one point. However,

(a) in the construct Top for every set X there exists a co-universal arrow
(X, τ) id−−→ X, where τ is the indiscrete topology,

(b) if T : X→ Set is a functor and Spa(T ) is the associated concrete category over
X, then for every X-object X there exists a co-universal arrow
(X, T (X)) idX−−−→ X,

(c) in the constructs Alg(Σ) of unary algebras there exist co-universal arrows for
each set X: consider the Σ-algebra XΣ∗

of all functions from Σ∗ (the set of all
words over Σ) into X, with the operation σ ∈ Σ sending a function g : Σ∗ → X
to the function g(σ−), defined by: g(σ−)((σ1 · · ·σn)) = g(σσ1 · · ·σn). Then
ε : XΣ∗ → X given by ε(g) = g(∅) is co-universal. [In fact, given a Σ-algebra
A and a function f : A → X, the unique homomorphism f̂ : A → XΣ∗

with
f = ε ◦ f̂ is given by f̂(a)(σ1 · · ·σn) = f(σ1 · · ·σna).]
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EXERCISES

8A. Regular Monomorphisms vs. Embeddings

(a) Show that in a construct a regular monomorphism need not be an embedding. [Cf.
Proposition 8.7.]

(b) Prove that each regular monomorphism in a construct that has a free object over a
nonempty set must be an embedding.

(c) Prove that each embedding in a construct that has a two-element indiscrete object
must be a regular monomorphism.

8B. Initial Monomorphisms vs. Embeddings

Show that in constructs the embeddings are precisely the initial monomorphisms, but
that in concrete categories initial monomorphismss may fail to be embeddings.

8C. An Initial, Non-injective Morphism in Sgr

Show that if A resp. B are the semigroups with underlying sets {0, 1, 2} resp. {0, 1} and

multiplication defined by x · y = 0 for all x and y, then the non-injective map A
f−→ B,

defined by f(x) = Min{x, 1}, is an initial morphism in Sgr.

8D. A Characterization of Concretely Co-wellpowered Constructs

Show that a uniquely transportable construct is concretely co-wellpowered if and only if
it is fibre-small and for every cardinal number k there exists a cardinal number k such
that every object that is concretely generated by a set of cardinality not exceeding k has
an underlying set with cardinality not exceeding k.
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* 8E. CBoo is Extremally Co-wellpowered,
but Not Concretely Co-wellpowered

Let CBoo be the construct of complete boolean algebras and boolean homomorphisms
that preserve arbitrary meets and joins. Show that:

(a) CBoo is wellpowered and extremally co-wellpowered,

(b) CBoo is not concretely co-wellpowered,

(c) the forgetful functor CBoo→ Set is not extremally co-wellpowered.

[Hint for (b) and (c): Let X be a topological space. A subset A of X is called regular
open provided that int(clA) = A (where “int” designates “interior” and “cl” designates
“closure”). The set R(X) of all regular open subsets of X is a complete boolean algebra
with respect to the following operations:∨

M = int(cl(
⋃

M)), for M ⊆ R(X)∧
M = int(

⋂
M), for ∅ 6= M ⊆ R(X)

A′ = int(X −A), for A ∈ R(X).

Let K be an infinite cardinal number. Let X be the set of all ordinal numbers with
cardinality less than K, considered as a discrete topological space. Let P = XN be the
topological product of countably many copies of X, with projections πn : XN → X. The
complete boolean algebra R(XN) is extremally generated by the family
{π−1

n (ξ)
∣∣ n ∈ N, ξ ∈ X}, hence by the countable set {Am,n

∣∣ m,n ∈ N}, where
Am,n = {x ∈ XN

∣∣ πm(x) ≤ πn(x)}.]

8F. Free Objects in CBoo

Show that in the construct CBoo

(a) there exists a free object over each finite set.

(b) there does not exist a free object over any infinite set. [Hint: 8E.]

8G. Free Objects in JPos, JCPos, CLat, and Fram

Show that

* (a) the constructs JCPos and Fram have free objects.

(b) in the construct JPos there exists a free object over X if and only if card X 6= 1.

* (c) in the construct CLat there exists a free object over X if and only if card X ≤ 2.

8H. Free Objects in Alg(Ω)

As outlined in Example 8.23(6) free Ω-algebras can be constructed as algebras of terms.
Another, more graphic, description can be achieved via labeled trees: Consider the
infinite regular tree ω∗ of all words in ω (with root ∅, the empty word; the first level
consists of all natural numbers i ∈ ω; in the second level, the successors of i are all words
ij with j ∈ ω, etc.). An Ω-labeled tree in a set X is defined to be a “labeling” partial
function t : ω∗ → Ω ]X such that
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(a) the domain of definition Dt of t is finite, and it has ∅ as a member;

(b) if t(i1i2 · · · in) is an operation symbol of arity k, then i1i2 · · · inin+1 belongs to Dt if
and only if in+1 ∈ {0, 1, . . . , k − 1};

(c) if t(i1i2 · · · in) is an element of X, then i1i2 · · · inin+1 does not belong to Dt for any
in+1.

Show that the set of all Ω-labeled trees is an Ω-algebra that is isomorphic to the term
algebra, and hence is free.

[Given σ ∈ Ω of arity k, and given Ω-labeled trees t0, t1, . . . , tk−1, then the tree
σ(t0, t1, . . . , tk−1) = t is defined on i0i1 · · · in by

t(i0i1 · · · in) = ti0(i1 · · · in) for i0 < k, i1 · · · in ∈ Dti0
;

otherwise it is undefined.]

8I. Free Objects in Setop, Topop
0 , and HCompop

Show that the constructs Setop (see 5.2(4)), Topop
0 (see 5L), and HCompop (see 5M)

have free objects and, in each case, describe them explicitly.

8J. Free Objects in BooSp and HComp

Show that the constructs BooSp and HComp have free objects and, in each case,
describe them explicitly.

8K. Free Objects in (Ban, O) and (Ban, U)

Show that (Ban, O) has free objects (cf. 8.23(12)), but that (Ban, U) has free objects
only over the empty set.

* 8L. Isomorphic Free Objects

Show that it can happen that a construct A has free objects in such a way that any
two free objects over finite, nonempty sets are isomorphic (as objects). [Hint: Consider
the concrete full subcategory of Alg(Ω), where Ω = (1, 1, 2), consisting of those Ω-
algebras (X, (ω1, ω2, ω3)) that satisfy the equations ω1(ω3(x, y)) = x, ω2(ω3(x, y)) =
y and ω3(ω1(x), ω2(x)) = x. Show that whenever an object (X, (ω1, ω2, ω3)) of the
construct A is free over a set Y ] {x, y}, then it is free over Y ] {ω3(x, y)}.]

8M. Discrete Objects

Show that for concrete categories the following hold:

(a) Retracts of discrete objects are discrete.

(b) An object A is discrete if and only if the structured arrow |A| id−−→ |A| is universal.

8N. A Characterization of Faithfulness
Show that a functor A G−−→ B is faithful if and only if every A-epimorphism A

f−→ Â,
considered as a G-structured arrow (Gf, Â), is generating.
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8O. Regular Epimorphisms and Finality

Let A be a concrete category over X that has free objects, and let f be an A-morphism
such that Uf is a regular epimorphism in X. Show that f is a regular epimorphism in
A if and only if f is final.

8P. Free Automata
(a) Show that the construct Σ-Seq has free objects if and only if Σ = ∅.

(b) Show that Aut considered as a concrete category over Set×Set×Set has only the
(trivial) free objects over (Σ, Q, Y ) with Q = Y = ∅.
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9 Injective objects and essential embed-
dings

Earlier it has been shown that many familiar constructions, particularly “completions”
such as the completion of a metric space or the Čech-Stone compactification of a Ty-
chonoff space, can be naturally regarded as reflections. However, there also exist familiar
completions that cannot be (or only artificially can be) regarded as such. Examples are
the Mac Neille completion of a poset and the algebraic closure of a field.50 In both cases,
and in several others, the construction in question can be regarded rather naturally as an
injective hull, a concept that will be studied in this section. Roughly speaking, an object
C is called injective provided that for any object A, any morphism from a subobject
of A into C can be extended to a morphism from A into C. Since a satisfactory con-
cept of subobjects is available for concrete categories, but not for arbitrary categories,
we will first define injective objects for concrete categories only. Later, for arbitrary
categories A and arbitrary classes M of A-morphisms, M -injective objects will be intro-
duced in such a way that for concrete categories the injective objects are precisely the
Emb(A)-injective objects.

INJECTIVITY IN CONCRETE CATEGORIES

For concrete categories we will use the notational conventions described in Remark 6.22.

9.1 DEFINITION
In a concrete category an object C is called injective provided that for any embedding

A
m−−→ B and any morphism A

f−→ C there exists a morphism B
g−→ C extending f , i.e.,

such that the triangle
A

m //

f
��

@@
@@

@@
@ B

g

��

C

commutes.

9.2 REMARK
The morphism g in the above definition is not required to be uniquely determined by m
and f . This contrasts sharply with many categorical definitions in which existence and
uniqueness requirements are coupled (see 4.16 for a typical example).

9.3 EXAMPLES
In Examples (1)–(5) below, we consider injective objects in various constructs:

50Observe, e.g., that there exist two different automorphisms of the field of complex numbers (the
algebraic closure of the field of real numbers) that keep the reals pointwise fixed.
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(1) In Set the injective objects are precisely the nonempty sets.

(2) In Pos the injective objects are precisely the complete lattices. [Injectivity of a
complete lattice C follows from the fact that, for given m and f as in Definition
9.1, the map g : B → C defined by g(b) = sup{f(a) | a ∈ A and m(a) ≤ b} is order-
preserving. Completeness of an injective object C follows from 9.5 and the fact that
C is a retract of its Mac Neille completion.] Similarly the injective objects

(a) in Boo (and in the construct DLat of distributive lattices) are precisely the
complete Boolean algebras,

(b) in the construct SLat (posets with finite meets and maps that preserve finite
meets) are precisely the frames [see Exercise 5L(b)],

(c) in JCPos are precisely the completely distributive complete lattices.

(3) (Algebra)

(a) In Vec every object is injective.

(b) In Ab the injective objects are precisely the divisible abelian groups.

(c) In Alg(1) the injective objects are precisely those unary algebras whose single
unary operation is surjective and has a fixed point. Analogously, a {σ}-acceptor
is injective in {σ}-Seq if and only if every state is final and its next state function
is a permutation with a fixed point.

(d) In Grp only the terminal objects are injective [since each group can be properly
embedded into a simple group]. Analogously, terminal objects are the only
injective objects in Lat, Mon, Sgr, and Rng.

(4) (Topology)

(a) In HComp the injective objects are precisely the retracts of powers [0, 1]I of the
unit interval [0, 1]. In particular, [0, 1] is injective (Tietze-Urysohn Theorem).

(b) In BooSp the injective objects are precisely the retracts of Cantor spaces, i.e.,
of powers of the two-element Boolean space B = ({0, 1},P{0, 1}).

(c) In Top0 the injective objects are precisely the retracts of powers of the Sierpinski
space S = ({0, 1}, {∅, {0}, {0, 1}}).

(d) In Top the injective objects are precisely the retracts of powers CI of the space
C = ({0, 1, 2}, {∅, {0, 1}, {0, 1, 2}}).

(e) In Met an object (X, d) is injective if and only if it is hyperconvex, i.e., if for
any superadditive map51 f : X → R+ there exists z ∈ X with d(z, x) ≤ f(x)
for all x ∈ X.

(f) In the construct Unif of uniform spaces and uniformly continuous functions,
the unit interval [0, 1] is injective, but the real line R is not.

51f : X → R
+ is superadditive provided that d(x, y) ≤ f(x) + f(y) for all x, y ∈ X.
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(g) In some constructs (e.g., for Top1, Haus, and Tych) only the terminal objects
are injective [since a map f from R \ {0} into a T1-space X, sending all r < 0
to x and all r > 0 to y, can be extended to a continuous map f : R → X only
if x = y].

(5) (Analysis)

In Ban(K) (Banach spaces over K) the injective objects are (up to isomorphism)
precisely the function spaces C(X, K) for extremally disconnected compact Haus-
dorff spaces X. [In case K is the field R of real numbers, these are precisely the
hyperconvex spaces (see (4)(e) above). In case K is the field C of complex numbers,
the zero-space is the only hyperconvex injective object.] In particular, K itself is
injective (Hahn-Banach Theorem).

(6) In a partially ordered set, considered as a concrete category over 1, every object is
injective.

9.4 PROPOSITION
Every terminal object is injective. �

9.5 PROPOSITION
Every retract of an injective object is injective.

Proof: Let C
r−→ D be a retraction with C an injective object. Then there exists

D
s−→ C with r ◦ s = idD. Let A

m−−→ B be an embedding and A
f−→ D be a morphism.

Since C is an injective object, there exists an extension B
g−→ C of A

s◦f−−−→ C; i.e., a
morphism g such that

A
m //

f

��

B

g

��

D s
// C

commutes. Thus r ◦ g is an extension of f . �

9.6 DEFINITION
In a concrete category an object C is called an absolute retract provided that any
embedding with domain C is a section.

9.7 PROPOSITION
Every injective object is an absolute retract. �

9.8 REMARK
One can easily provide constructs in which absolute retracts fail to be injective. However,
as we shall see below (9.10), under reasonable assumptions, injective objects are precisely
the absolute retracts. From Examples 9.17 we see that this is the case in the constructs
Set, Vec, Pos, Ab, Met, (Ban, O), and Field (= fields and algebraic field extensions).
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9.9 DEFINITION
A concrete category has enough injectives provided that each of its objects is an
initial subobject of an injective object.

9.10 PROPOSITION
If a concrete category A has enough injectives, then in A injective objects are precisely
the absolute retracts.

Proof: Let C be an absolute retract in A, and let C
m−−→ D be an initial monomorphism

with D an injective object. Since C is an absolute retract, m is a section, i.e., there
exists a retraction D

r−→ C with r ◦m = idC . By Proposition 9.5, C is injective. �

9.11 REMARK
If a concrete category has enough injectives, one may ask whether for every object A

there exists a distinguished injective extension (i.e., an embedding A
m−−→ B with B

an injective object), e.g., one which is in some sense minimal or smallest. The crucial
concept needed in order to describe and analyze such “injective hulls” is that of essen-
tial extensions, i.e., extensions that are in a certain sense “dense” (but not necessarily
epimorphic).

9.12 DEFINITION
In a concrete category an embedding A

m−−→ B is called essential provided that a

morphism B
f−→ C is an embedding, whenever A

f◦m−−−→ C is an embedding.

9.13 EXAMPLES
In Examples (1)–(8) below, we consider essential embeddings for various constructs:

(1) In Vec the essential embeddings are the isomorphisms.

(2) In Set the only essential embeddings are the bijective functions and the maps
∅ → {a} with empty domain and one-element codomain.

(3) In Pos the essential embeddings are the embeddings that are meet-dense and join-
dense (e.g., the embedding of Q into R).

(4) In Boo the essential embeddings are the join-dense embeddings (which are auto-
matically meet-dense).

(5) In Ab an embedding A
m−−→ B is essential if and only if every nontrivial subgroup

of B meets m[A] nontrivially (e.g., the embedding of (Z,+) into the rationals).

(6) In Tych the essential embeddings are precisely the homeomorphisms, the one-point
compactifications of locally compact, noncompact spaces, and the embeddings of the
empty space into one-point spaces. In particular this example shows that epimorphic
embeddings need not be essential.

(7) In Met an embedding A
m−−→ B is essential if and only if it is tight, i.e., if and only

if it satisfies the following two conditions:
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(a) dB(b1, b2) = sup{ dB(m(a), b1)− dB(m(a), b2)
∣∣ a ∈ A } for all b1, b2 ∈ B.

(b) For each b ∈ B, the map f : A → R+, defined by f(a) = dB(m(a), b), is a
minimal superadditive map [cf. 9.3(4)(e)].

In particular, if A is a subspace of R with
∧

A = a and
∨

A = b, then the embedding
A→ [a, b] is essential.

(8) In Lat every object has arbitrarily large essential extensions (see Exercise 9H).

9.14 PROPOSITION
(1) Every isomorphism is essential.

(2) The composite of essential embeddings is essential.

(3) If f and g are embeddings with g ◦ f essential, then g is essential.

(4) If f and g ◦ f are essential embeddings, then g is an essential embedding. �

9.15 PROPOSITION
Injective objects have no proper essential extensions.

Proof: If C
m−−→ D is an extension of an injective object C, then there is a retraction g

with idC = g ◦m. If m is essential, then g is an embedding, and hence an isomorphism.
Thus m is an isomorphism as well. �

9.16 DEFINITION
An injective hull of A is an extension A

m−−→ B of A such that B is injective and m is
essential.

9.17 EXAMPLES
In Examples (1)–(6) below, we describe injective hulls for various constructs:

(1) In Vec every object A has an injective hull, namely, A
idA−−−→ A.

(2) In Set every object A has an injective hull, namely,{
A

idA−−−→ A, in case A 6= ∅;
A −−→ {a}, in case A = ∅.

(3) In Pos every object has an injective hull, namely, its Mac Neille completion (=
completion by cuts). Likewise in Boo every object has an injective hull, its Mac
Neille completion.

(4) In Ab every object has an injective hull. The embedding Z ↪→ Q is an example.

(5) In the construct Field every object has an injective hull, namely, its algebraic clo-
sure. The embedding R ↪→ C is an example.
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(6) In Met every object has an injective hull, namely, its hyperconvex envelope. If A
is a subspace of R with

∧
A = a and

∨
A = b, then the embedding A ↪→ [a, b] is an

injective hull. Likewise in (Ban, O) every object has an injective hull.

9.18 REMARK
It is sometimes difficult to decide whether or not every object in a given concrete category
has an injective hull. The existence of enough injectives is a necessary but not sufficient
condition. For example, the construct BooSp has enough injectives, since every Boolean
space is a subspace of some Cantor space [cf. 9.3(4)(b)], but no nonempty Boolean space
has a proper essential extension. A similar situation occurs for HComp (cf. Exercise
9D). In Exercise 9C we will formulate conditions that guarantee the existence of injective
hulls.

9.19 PROPOSITION
Injective hulls are essentially unique, i.e.,

(1) if (m,B) and (m′, B′) are injective hulls of A, then there exists an isomorphism
B

k−→ B′ with m′ = k ◦m,

(2) if (m, B) is an injective hull of A, and if B
k−→ B′ is an isomorphism, then (k◦m,B′)

is an injective hull of A.

Proof:
(1). Since m is an embedding and B′ is injective, there exists a morphism B

k−→ B′ with
m′ = k ◦m. By Proposition 9.14(4), k is an essential embedding. Since B has no
proper essential extension, k is an isomorphism.

(2). Obvious. �

9.20 PROPOSITION
If an object A has an injective hull, then for any extension (m,B) of A the following
conditions are equivalent:

(1) (m,B) is an injective hull of A,

(2) (m,B) is a maximal essential extension of A (i.e., (m,B) is an essential exten-
sion of A, and B has no proper essential extension),

(3) (m,B) is a largest essential extension of A (i.e., (m,B) is an essential exten-
sion of A, and for every essential extension (m′, B′) of A there exists an essential
embedding B′ m−−→ B with m = m ◦m′),

(4) (m,B) is a smallest injective extension of A (i.e., (m,B) is an injective exten-
sion of A, and for every injective extension (m′, B′) of A there exists an embedding
B

m−−→ B′ with m′ = m ◦m),

(5) (m,B) is a minimal injective extension of A (i.e., (m,B) is an injective exten-

sion of A and whenever A
m−−→ B = A

m′
−−→ B′ m−−→ B with m′ and m embeddings,

and B′ an injective object, then m is an isomorphism).
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Proof: Let (m0, B0) be an injective hull of A.

(1) ⇒ (2). Immediate from Proposition 9.15.

(2) ⇒ (1). Let (m,B) be a maximal essential extension of A. Since B0 is injective,
there exists a morphism f with m0 = f ◦m. By Proposition 9.14(4), f is an essential
embedding. Since (m,B) is a maximal essential extension, f must be an isomorphism.
Hence (m,B) is an injective hull of A.

(1)⇒ (3). Let (m,B) be an essential extension of A. By the injectivity of B0, there exists
a morphism f with m0 = f ◦m. By Proposition 9.14(4), f is an essential embedding.

(3)⇒ (1). Let (m, B) be a largest essential extension of A. Then there exists a morphism
g with m = g ◦ m0. By Proposition 9.14(4) g is an essential embedding, and so by
Proposition 9.15 is an isomorphism. Hence (m,B) is an injective hull of A.

(1) ⇒ (4). Immediate.

(4)⇒ (1). If (m,B) is a smallest injective extension of A, then there exists an embedding
m with m0 = m ◦m. By Proposition 9.14(3), m is essential and hence, since B has no
proper essential extension, m is an isomorphism. Thus (m,B) is an injective hull of A.

(1) ⇒ (5). Let (m,B) be an injective extension of A and let (m,B0) be an extension of
B with m0 = m ◦m. Then by Proposition 9.14(3), m is an essential embedding; hence,
since B has no proper essential extensions, m is an isomorphism.

(5) ⇒ (1). Let (m,B) be a minimal injective extension of A. Since B is injective, there
exists a morphism f with m = f ◦m0. Since m0 is essential, f is an embedding; hence,
by (5) an isomorphism. Thus (m,B) is an injective hull of A. �

9.21 REMARK
If A has no injective hull, then the concepts mentioned in the above proposition may
fall apart. For example, in Tych every object has a simultaneously largest and max-
imal essential extension, but no space with more than one point has an injective hull
[cf. 9.13(6) and 9.3(4)]. For further “negative” examples see Exercises 9F and 9G.

M-INJECTIVES IN ABSTRACT CATEGORIES

9.22 DEFINITION
Let M be a class of morphisms in a category A.

(1) An object C is called M-injective provided that for every morphism A
m−−→ B in

M and every morphism A
f−→ C there exists a morphism B

g−→ C with f = g ◦m.

(2) A morphism A
m−−→ B in M is called M-essential provided that a morphism

B
f−→ C belongs to M whenever f ◦m does.

(3) An M-injective hull of an object A is a pair (m, B) consisting of an M -injective
object B and an M -essential morphism A

m−−→ B.
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(4) A has enough M-injectives provided that for each object A there exists an M -
injective object C and a morphism A

m−−→ C in M .

9.23 REMARK
If M is the class of all embeddings in a concrete category A, then the concepts defined
above specialize to those of injective objects, essential embeddings, and injective hulls.
Also the previous results of this section carry over to the more general context of M -
injectivity, provided that suitable assumptions are imposed on M , e.g.,

(a) Iso(A) ⊆ M ⊆ Mono(A); i.e., M is a class of A-monomorphisms that contains all
A-isomorphisms,

(b) M ◦M ⊆M ; i.e., M is closed under composition.

We refrain from explicitly formulating the corresponding results.

9.24 EXAMPLES
(1) In any category, if M consists of all sections, then every object is M -injective.

(2) In Met, if M consists of all dense embeddings, then the M -injective objects are the
complete metric spaces, and the M -injective hulls are the metric completions.

(3) In Top0, if M consists of all front-dense embeddings, then the M -injective objects
are the sober spaces, and the M -injective hulls are the sober reflections.

(4) In Top, if M consists of all embeddings X → X ∪{p} of infinite discrete spaces into
ultrafilter spaces (i.e., p is a point of the Čech-Stone compactification of X), then
the M -injective objects are the compact spaces.

(5) In Top, if M consists of the single embedding {0, 1} → [0, 1], then the M -injective
objects are the pathwise connected spaces. Similarly, if M consists of the single
embedding of the unit circle into the unit disc, then a complex domain is an M -
injective object if and only if it is simply connected.

(6) In Top a metrizable space X satisfies dim X ≤ n if and only if the n-sphere Sn is
an M -injective object, where M consists of all embeddings of closed subspaces of X
into X.

(7) In Top, if M consists of all embeddings of closed subspaces of normal spaces, then
[0, 1] and R are M -injective objects [Tietze-Urysohn Theorem].

(8) In Ab, if M consists of all pure embeddings, then the M -injective objects are the
algebraically compact abelian groups, or, equivalently, are all the direct summands
of direct products of cocyclic abelian groups.

(9) In CAT(X), if M consists of all concrete full embeddings, then the M -injective
objects are the “topological” concrete categories over X. Such categories will be
defined and studied in detail in §21. In particular, the constructs Top, Unif , Rel,
Prost, and each Spa(T ) are topological.
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(10) In a (meet) semilattice C, considered as a category, an object is Mono-injective if
and only if it is the largest element of C.

9.25 PROPOSITION
If B is a reflective, isomorphism-closed, full subcategory of A and M is the class of all
B-reflection arrows, then

(1) the M -injective objects of A are precisely the B-objects, and

(2) the M -injective hulls are precisely the B-reflections.

Proof:
(1). Clearly each B-object is M -injective. Let C be an M -injective object, and let

C
r−→ B be an B-reflection arrow for C. Then there exists some B

f−→ C for which
idC = f ◦ r. The fact that idB ◦ r = (r ◦ f) ◦ r and the uniqueness in the definition
of reflection arrow show that idB = r ◦ f . Thus r is an isomorphism, so that since
B is isomorphism-closed, C is a B-object.

(2). By (1) we need only show that each B-reflection arrow A
r−→ B is M -essential.

Suppose that A
r−→ B

f−→ B′ belongs to M , i.e., is also a B-reflection arrow.
Since B-reflection arrows for A are essentially unique (4.19), we can conclude that

B
f−→ B′ is an isomorphism, and hence is a member of M . �

9.26 REMARK
We may call a class B of A-objects (resp. the associated full subcategory B of A) an
injectivity class in A, whenever there exists a class M of A-morphisms such that
B is precisely the class of M -injective objects. The above proposition shows that every
reflective, isomorphism-closed, full subcategory of A is an injectivity class. The converse
is not true. By Example 9.24(4) compact spaces form an injectivity class in Top, but
the associated subcategory is not reflective in Top. A characterization of injectivity
classes by suitable stability properties is unknown even for “nice” categories (e.g., for
Top). Connected spaces, which have stability properties similar to those of compact
spaces (e.g., they are closed under the formation of products and of continuous images),
do not form an injectivity class in Top. In fact the only injectivity class in Top that
contains all connected spaces is Top itself.
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PROJECTIVITY

9.27 TABLE OF DUAL CONCEPTS

The following table provides the names for the concepts dual to those investigated in
this section:

Concept Dual Concept

embedding quotient morphism
injective object projective object
essential embedding coessential quotient morphism
injective hull projective cover
M -injective object M -projective object
M -essential morphism M -coessential morphism
M -injective hull M -projective cover

9.28 EXAMPLES
In Examples (1)–(4) below, we consider projective objects in various constructs:

(1) In Set and in Vec every quotient morphism is a retraction. Hence in either con-
struct every object is projective, and the coessential quotient morphisms are the
isomorphisms. Thus, in these constructs, each object has a projective cover.

(2) In any of the constructs Top, Pos, Ab, and Grp the projective objects are precisely
the free objects. Projective covers generally fail to exist.

(3) In BooSp and in HComp the projective objects are the extremally disconnected
compact Hausdorff spaces (= the retracts of Čech-Stone compactifications of dis-
crete spaces), and the coessential quotient morphisms are the irreducible quotient
morphisms (= those continuous surjections f : X → Y that map no proper closed
subset of X onto Y ). Projective covers exist for each object (and are called projective
resolutions).

(4) In Alg(Ω) the projective objects are precisely the retracts of the free objects. This
follows from the next proposition:

9.29 PROPOSITION
If (A, U) is a concrete category over X that has free objects, and E is the class of all
A-morphisms f for which Uf is a retraction, then the following are equivalent:

(1) A is an E-projective object,

(2) A is a retract of a free object.
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Proof: (1) ⇒ (2). Let (u, B) be a universal arrow over UA. Then there exists a unique
A-morphism e : B → A with idUA = Ue ◦ u. So e belongs to E. Hence, by (1), there
exists an A-morphism f : A → B with idA = e ◦ f . Consequently A is a retract of the
free object B.

(2) ⇒ (1). Let A be a free object (with universal arrow (u, A)), let e : B → C be
a morphism in E, and let f : A → C be a A-morphism. Since in X every object is
UE-projective there exists an X-morphism g such that the diagram

X
u //

g

��

UA

Uf

��

UB
Ue
// UC

commutes. Since (u, A) is universal, there exists a unique A-morphism k : A→ B with
g = Uk ◦ u. Hence Uf ◦ u = Ue ◦ g = Ue ◦ Uk ◦ u = U(e ◦ k) ◦ u, which implies that
f = e ◦ k. Hence A is E-projective. By the dual of Proposition 9.5 every retract of A is
also E-projective. �

Projectivity and retracts of a free object

9.30 COROLLARY
If in a construct with free objects every surjective morphism is a quotient morphism,
then the projective objects are precisely the retracts of the free objects. �
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9.31 EXAMPLES
The above corollary applies to such constructs as Grp, Lat, HComp (and many others).
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EXERCISES

* 9A. The Axiom of Choice
Many results of this book can be expressed (in localized form) in the realm of Zermelo-
Fraenkel set theory (ZF). But if the axiom of choice for sets (AC) is not assumed, several
results fail to be true. Consider the following:

(ET) In Set every epimorphism is a retraction.

(PT) In Set every product of injective objects is injective.

(BT) The injective objects in Ab are precisely the divisible abelian groups.

(ST) The injective objects in Boo are precisely the complete Boolean algebras.

(UT) In Boo the two-element Boolean algebra is injective.

(GT) The projective objects in HComp are the extremally disconnected compact Haus-
dorff spaces.

(a) that in ZF the following implications hold:
(AC) ⇐⇒ (ET) ⇐⇒ (PT) ⇐⇒ (BT) =⇒ (ST) =⇒ (UT).

(b) Show that in ZF the following holds: (ST) ⇐⇒ [(GT) and (UT)].

(c) Does (ST) imply (AC)? [Unsolved.]

9B. A Characterization of Injective Objects

Let A be a construct satisfying

(1) A has enough injectives, and

(2) for every embedding A
m−−→ B there exists a morphism B

f−→ C such that

A
f◦m−−−→ C is an essential embedding.

Show that in A injective objects are precisely those objects that have no proper essential
extension.

9C. Existence of M-Injective Hulls

Let M be a class of morphisms in a category A and let M∗ be the class of M -essential
morphisms. Assume that the following conditions are satisfied:

(1) Iso(A) ⊆M ⊆Mono(A),

(2) M ◦M ⊆M ,

(3) for any m ∈M , there exists an A-morphism f such that f ◦m ∈M∗,

(4) for every 2-source B
m←−− A

f−→ C with m ∈M , there exists a 2-sink

B
f−→ D

m←−− C with m ∈M and f ◦m = m ◦ f ,

(5) every well-ordered system in M has an upper bound in M ,
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(6) A is M∗-co-wellpowered (in the obvious sense; M∗ need not consist of epimorphisms
only).

Show that

(a) For A-objects A the following conditions are equivalent:

(a1) A is M -injective,

(a2) every A
m−−→ B in M is a section,

(a3) every A
m−−→ B in M∗ is an isomorphism.

(b) Every A-object has an M -injective hull.

* 9D. Enough Injectives and Injective Hulls in HComp

Show that HComp has enough injectives, but that the only compact Hausdorff space
that has a proper essential extension is the empty space.

9E. Regular Projective Objects

Show that the RegEpi-projective objects

* (a) in Top are the discrete topological spaces,

* (b) in Haus are the discrete topological spaces,

(c) in Set2 are the injective functions,

(d) in (Set2)op are the surjective functions with nonempty domain.

9F. Injective Objects and Maximal Essential Extensions in Top1

Show that

(a) In Top1 the following conditions are equivalent:

(1) X is injective,

(2) X is an absolute retract,

(3) X is a terminal object.

(b) If a T1-space X has a point such that each of its neighborhoods is cofinite in X,
then X has no proper essential extension. If a T1-space X has no such point, then it
has an essentially unique proper essential extension. [Add a point p to X with each
neighborhood of p cofinite in X ∪ {p}.]

(c) In Top1 every object has an essentially unique maximal essential extension.

(d) In Top1 the only objects that have injective hulls are the initial object and the
terminal objects.

(e) If M is the class of embeddings in Top1, then all the conditions of Exercise 9C are
satisfied except condition (3).
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* 9G. Minimal and Smallest Injective Extensions

Show that

(a) Minimal injective extensions need not be smallest injective extensions. [In the con-
struct that consists of all sets X with card(X) 6= 1 together with all identities
and constant maps as morphisms, every ∅ → B with B 6= ∅ is a minimal injective
extension. However, ∅ has no smallest injective extension.]

(b) Smallest injective extensions need not be minimal. [In the full subconstruct of Set
that contains ∅ and all infinite sets, ∅ → N is a smallest injective extension. However,
∅ has no minimal injective extension.]

(c) Injective extensions that are simultaneously smallest and minimal need not be in-
jective hulls. [In the full subconstruct of Set that consists of all sets X with
card(X) 6= 1, the inclusion ∅ ↪→ {1, 2} is simultaneously a smallest and a mini-
mal injective extension. However, ∅ has no M -injective hull.]

9H. Essential Extensions in Lat
Show that every lattice that has at least two elements has arbitrarily large essential
extensions. [Hint: First assume that L is a lattice with smallest element 0 and largest
element 1. Show that for any set A that has at least three elements and is disjoint from
L, if A is ordered by equality, then the embedding

1

L \ {0, 1}

vvvvvvvvvv

HH
HH

HH
HH

HH

0

� � //

1

==
==

==
==

L \ {0, 1}

vvvvvvvvvv

HH
HH

HH
HH

HH
A

0

��������

is an essential extension of L.]

9I. Injective Automata

(a) Prove that the following are equivalent for each object A of {σ}-Seq:

(1) A is injective,

(2) A is an absolute retract,

(3) all states in A are final, and δ(−, σ) is a permutation with a fixed point.

Whenever Σ has more than one element, show that there exists an object of Σ-Seq
that is not an absolute retract, although every state is final and each δ(−, σ) is a
permutation with a fixed point.

(b) Characterize those objects of Σ-Seq that have an injective hull.
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Chapter III

SOURCES AND SINKS

A source

A sink
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10 Sources and sinks

SOURCES

A basic categorical concept that simultaneously generalizes the concepts of objects and
of morphisms is that of sources.

10.1 DEFINITION
A source is a pair (A, (fi)i∈I) consisting of an object A and a family of morphisms
fi : A → Ai with domain A, indexed by some class I. A is called the domain of the
source and the family (Ai)i∈I is called the codomain of the source.

10.2 REMARK
(1) Whenever convenient we use more concise notations, such as (A, fi)I , (A, fi) or

(A
fi−−→ Ai)I .

(2) The indexing class I of a source (A, fi)I may be a proper class, a nonempty set, or
the empty set. In case I = ∅, the source is determined by A. In case I 6= ∅, the
source is determined by the family (fi)I .

(3) Sources indexed by the empty set are called empty sources and are denoted by
(A, ∅). Whenever convenient, objects may be regarded as empty sources.

(4) Sources that are indexed by a set are called set-indexed or small.

(5) Sources that are indexed by the set {1, . . . , n} are called n-sources and are denoted
by (A, (f1, . . . , fn)). Whenever convenient, morphisms f : A→ B may be regarded
as 1-sources (A, f).

(6) There are properties of sources that depend heavily on the fact that (fi)I is a family,
i.e., an indexed collection (e.g., the property of being a product). There are other
properties of sources (A, fi), depending on the domain A and the associated class
{ fi | i ∈ I } only (e.g., the property of being a mono-source). In order to avoid
a clumsy distinction between indexed and non-indexed sources, we will sometimes
regard classes as families (indexed by themselves via the corresponding identity
function). Hence for any object A and any class S of morphisms with domain A,
the pair (A,S) will be considered as a source. A particularly useful example is the
total source (A,SA), where SA is the class of all morphisms with domain A.

10.3 DEFINITION
If S = (A

fi−−→ Ai)I is a source and, for each i ∈ I, Si = (Ai
gij−−→ Aij)Ji is a source, then

the source
(Si) ◦ S = (A

gij◦fi−−−−→ Aij)i∈I, j∈Ji

is called the composite of S and the family (Si)I .
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10.4 REMARKS
(1) For a source S = (A

fi−−→ Ai)I and a morphism f : B → A we use the notation

S ◦ f = (B
fi◦f−−−→ Ai)I .

(2) The composition of morphisms can be regarded as a special case of the composition
of sources.

MONO-SOURCES

10.5 DEFINITION
A source S = (A, fi)I is called a mono-source provided that it can be cancelled from

the left, i.e., provided that for any pair B
r //

s
// A of morphisms the equation S ◦r = S ◦s

(i.e., fi ◦ r = fi ◦ s for each i ∈ I) implies r = s.

10.6 EXAMPLES
(1) An empty source (A, ∅) is a mono-source if and only if for each object B there is at

most one morphism from B to A.

(2) A 1-source (A, f) is a mono-source if and only if f is a monomorphism.

(3) In Set mono-sources are precisely the point-separating sources (A, fi)I , i.e.,
sources (A, fi)I such that for any two different elements a and b of A there exists
some i ∈ I with fi(a) 6= fi(b).

(4) In many familiar constructs, e.g., in Vec, Grp, Top, and Pos, a source is a mono-
source if and only if it is point-separating. [See Corollary 10.8.]

(5) In every preordered class, considered as a category, every source is a mono-source.
This property characterizes thin categories. [Consider the empty sources.]

10.7 PROPOSITION
(1) Representable functors preserve mono-sources (i.e., if G : A → Set is a repre-

sentable functor and S is a mono-source in A, then GS is a mono-source in Set).

(2) Faithful functors reflect mono-sources (i.e., if G : A → B is a faithful functor,
S = (A, fi) is a source in A, and GS = (GA, Gfi) is a mono-source in B, then S
is a mono-source in A).

Proof: 52

(1). If a functor preserves mono-sources, then, clearly, so does every functor that is nat-

urally isomorphic to it. Thus it suffices to show that each mono-source (B
fi−−→ Bi)I

is sent by each hom-functor hom(A,−) : A→ Set into a point-separating source:

(hom(A,B)
hom(A,fi)−−−−−−−→ hom(A,Bi))I .

52Even though the proof is immediate by arguments analogous to those used in the proof of Proposition
7.37, we nevertheless sketch a proof so that the reader may gain some familiarity with notation
concerning sources.
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But this is immediate from the definition of mono-source.

(2). Let G and S be as described. If B
r //

s
// A is a pair of A-morphisms with S ◦ r =

S ◦ s, then GS ◦Gr = G(S ◦ r) = G(S ◦ s) = GS ◦Gs. Since GS is a mono-source,
this implies Gr = Gs. Since G is faithful, this gives r = s. �

10.8 COROLLARY
In a construct (A, U) every point-separating source is a mono-source. The converse
holds whenever U is representable. �

10.9 PROPOSITION
Let T = (Si) ◦ S be a composite of sources.

(1) If S and all Si are mono-sources, then so is T .

(2) If T is a mono-source, then so is S. �

10.10 PROPOSITION
Let (A, fi)I be a source.

(1) If (A, fj)J is a mono-source for some J ⊆ I, then so is (A, fi)I .

(2) If fj is a monomorphism for some j ∈ I, then (A, fi)I is a mono-source. �

10.11 DEFINITION
A mono-source S is called extremal provided that whenever S = S ◦ e for some epi-
morphism e, then e must be an isomorphism.

10.12 EXAMPLES
(1) A 1-source (A, f) is an extremal mono-source if and only if f is an extremal mono-

morphism.

(2) In balanced categories (e.g. in Set, Vec, and Grp) every mono-source is extremal.
[This follows immediately from Proposition 10.9(2).] Conversely, if every mono-
source in C is extremal, then C is balanced (cf. Proposition 7.67).

(3) A source (A
fi−−→ Ai)I in Pos is an extremal mono-source provided that the following

equivalence holds:
a ≤ b⇔ ∀ i ∈ I fi(a) ≤ fi(b).

(4) A mono-source (A
fi−−→ Ai)I in Top is extremal if and only if A carries the initial

(= weak) topology with respect to (fi).

(5) A mono-source (A
fi−−→ Ai)I in Σ-Seq is extremal if and only if a state q of A is final

whenever each state fi(q) is final in Ai.

(6) In a poset, considered as a category, a source (A→ Ai)I is an extremal mono-source
if and only if A is a maximal lower bound of {Ai | i ∈ I }.
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10.13 PROPOSITION
(1) If a composite source (Si) ◦ S is an extremal mono-source, then so is S.

(2) If S ◦ f is an extremal mono-source, then f is an extremal monomorphism. �

10.14 REMARK
If S and each Si are extremal mono-sources, then (Si) ◦ S need not be extremal. See
Exercise 7N.

10.15 PROPOSITION
Let (A, fi)I be a source.

(1) If (A, fj)J is an extremal mono-source for some J ⊆ I, then so is (A, fi)I .

(2) If fj is an extremal monomorphism for some j ∈ I, then (A, fi)I is an extremal
mono-source. �

10.16 REMARK
The concept of source allows a simple description of coseparators: namely, A is a cosep-
arator if and only if, for any object B, the source (B,hom(B,A)) is a mono-source. This
suggests the following definition:

10.17 DEFINITION
An object A is called an extremal coseparator provided that for any object B the
source (B,hom(B,A)) is an extremal mono-source.

10.18 EXAMPLES
(1) In a balanced category every coseparator is extremal.

(2) In the nonbalanced category Pos every coseparator is extremal [cf. 7.18(3)].

(3) A topological space is an extremal coseparator in Top if and only if it contains an
indiscrete subspace with two elements and a Sierpinski subspace (i.e., a nondiscrete
T0-space with two elements) [cf. 7.18(4)].

(4) The unit interval [0, 1] is an extremal coseparator in HComp.

(5) The category Tych of Tychonoff spaces and continuous maps has no extremal cosep-
arator [cf. 7.18(7)].

(6) Let Σ-Seq0 denote the category of sequential Σ-acceptors that have no initial state
and that are observable (i.e., the observability equivalence of Example 4.17(7) is
equality). Then Σ-Seq0 has an extremal coseparator: the acceptor (Rat, δ, F ) of
all rational languages in Σ, where δ(L, σ) = {σσ1 · · ·σn |σ1 · · ·σn ∈ L } and F =
{L ∈ Rat | ∅ ∈ L }. [For each acceptor A consider the simulation f : A→ (Rat, δ, F )
that assigns to each state q the language f(q) ∈ Rat accepted by A in the initial
state q. Then f is an extremal monomorphism.]
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PRODUCTS

Cartesian products of pairs of sets or, more generally, of families of sets (resp. direct
products of families of vector spaces, resp. topological products of families of topological
spaces) can be regarded as objects together with families of (projection) morphisms
emanating from them, i.e., as sources. As such — but not as objects alone — they can
be characterized, up to isomorphism, by the following categorical property:

10.19 DEFINITION
A source P = (P

pi−−→ Ai)I is called a product provided that for every source S =

(A
fi−−→ Ai)I with the same codomain as P there exists a unique morphism A

f−→ P with
S = P ◦ f . A product with codomain (Ai)I is called a product of the family (Ai)I .

10.20 EXAMPLES
(1) In the category Set, given sets A1 and A2, the projections from the cartesian product

π1 : A1 × A2 → A1 and π2 : A1 × A2 → A2 (given by: πi(x1, x2) = xi) form a

product source (A1 × A2
πi−−→ Ai)i=1,2. Indeed, given a source (A

fi−−→ Ai)i=1,2,

there is a unique A
f−→ A1 × A2 with fi = πi ◦ f, namely, f(a) = (f1(a), f2(a)).

More generally, let (Ai)I be a family of sets indexed by a set I, and let
∏

i∈I Ai be
its cartesian product, i.e., the set of all functions g : I →

⋃
I Ai with the property

that g(i) ∈ Ai. Then the family of projection functions πj :
∏

i∈I Ai → Aj , given
by: g 7→ g(j), is a product in Set.

(2) Likewise in the categories Vec, Ab, and Grp the “direct products”, in Pos the
“ordinal products”, and in Top the “topological products”, considered as sources
via the projections, are products.

(3) If (Ai)i∈I is a set-indexed family of objects in the category AbTor of abelian torsion
groups, its direct product

∏
i∈I Ai need not be a torsion group. However, a product

of the family does exist in AbTor. Let P be the torsion-subgroup of
∏

i∈I Ai (i.e.,
the subgroup consisting of all torsion-elements), and for each j ∈ I let pj : P → Aj

be the restriction of the jth projection πj :
∏

i∈I Ai → Aj . Then (P
pi−−→ Ai)i∈I is

a product in AbTor. [Indeed, given a source (A
fi−−→ Ai)I in AbTor, each a ∈ A

is a torsion-element of A, so that (fi(a))I is a torsion-element of
∏

Ai. Thus the

function A
f−→ P , given by f(a) = (fi(a))I , satisfies the above definition.]

(4) Similarly, in Ban products can be obtained as the subspaces of the direct products
of the corresponding vector spaces, consisting of those elements a = (ai)i∈I with
‖a‖ = supi∈I ‖ai‖ <∞, supplied with the restrictions of the projection-maps.

(5) In Σ-Seq the product of two acceptors A1 × A2 is their parallel connection (the
state of which is determined by knowing the state of both A1 and A2). Thus finite
products have a clear interpretation in Σ-Seq, although infinite products usually
don’t exist, since acceptors are by definition finite.
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(6) In a partially ordered class, considered as a category [3.3(4)(d)], a source (P
pi−−→ Ai)I

is a product if and only if P =
∧

i∈I Ai.

(7) An empty source (P, ∅) is a product if and only if P is a terminal object. Thus,
regarding empty sources as objects, one might say: terminal objects are empty
products.

(8) A 1-source (P, p) is a product if and only if p is an isomorphism. Thus, regarding
1-sources as morphisms, one might say: isomorphisms are 1-products.

10.21 PROPOSITION
Every product is an extremal mono-source.

Proof: If P = (P, pi) is a product and A
r //

s
// P is a pair of morphisms with P ◦ r =

P ◦ s, then S = P ◦ r = P ◦ s is a source with the same codomain as P. The uniqueness
requirement in the definition of product implies that r = s. Hence P is a mono-source.
To show that P is extremal, let P = Q◦ e for some epimorphism e. Since P and Q have
the same codomain, there exists a unique morphism f with Q = P ◦ f . Since P is a
mono-source, the equation P ◦ idp = P = Q ◦ e = P ◦ (f ◦ e) implies that idp = f ◦ e.
Consequently, e is a section and an epimorphism, hence an isomorphism. �

10.22 PROPOSITION
For any family (Ai)I of objects, products of (Ai)I are essentially unique; i.e., if P =
(P

pi−−→ Ai)I is a product of (Ai)I , then the following hold:

(1) for each product Q = (Q
qi−−→ Ai)I there exists an isomorphism Q

h−→ P with
Q = P ◦ h,

(2) for each isomorphism A
h−→ P the source P ◦ h is a product of (Ai)I .

Proof:
(1). Since P and Q are products with the same codomain, there exist unique morphisms

h and k with Q = P ◦ h and P = Q ◦ k. Therefore Q ◦ idQ = Q ◦ (k ◦ h) and
P ◦ idP = P ◦ (h ◦ k). Since P and Q are mono-sources, these equations imply that
idQ = k ◦ h and idP = h ◦ k. Hence h is an isomorphism.

(2). Obvious. �

10.23 REMARK
The above uniqueness result allows us to introduce special notations for products (pro-
vided that they exist):

(1) Products of (Ai)I will be denoted by (
∏

i∈I Ai
πj−−→ Aj)j∈I , or, more simply, by

(
∏

Ai
πj−−→ Aj)I , and the morphisms πj will be called projections.
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(2) If (
∏

Ai
πj−−→ Aj)I is a product and (A

fj−−→ Aj)I is a source with the same codomain,
then the unique morphism f : A →

∏
Ai with fj = πj ◦ f for each j ∈ I will be

denoted by 〈fi〉:

A
〈fi〉
//

fj !!C
CC

CC
CC

C
∏

Ai

πj

��

Aj

(∗)

(3) In case I = {1, 2, . . . , n} the following notation will often be used instead of that
above:

A
〈f1,f2,...,fn〉

//

fj
**TTTTTTTTTTTTTTTTTTTTTT A1 ×A2 × · · · ×An

πj

��

Aj

(∗∗)

10.24 REMARK
The above diagram (∗) makes visible why products are useful. The correspondence
(A, fi) 7→ 〈fi〉 provides a bijection from the collection of all sources with domain A
and codomain (Ai)I to the set of all morphisms with domain A and codomain

∏
i∈I Ai.

Hence products allow one to treat sources as if they were morphisms. Propositions 10.26
and 10.38 below show how this correspondence works.

10.25 PROPOSITION
Let Q = (Pi) ◦ P be a composite of sources.

(1) If P and all Pi are products, then so is Q.

(2) If Q is a product and all Pi are mono-sources, then P is a product.

Proof: This follows immediately from the definition of products and the fact that prod-
ucts are mono-sources (10.21). �

10.26 PROPOSITION
Consider

A
〈fi〉
//

fj !!C
CC

CC
CC

C
∏

Ai

πj

��

Aj

Then

(1) (A, fi)I is a mono-source if and only if 〈fi〉 is a monomorphism.

(2) (A, fi)I is an extremal mono-source if and only if 〈fi〉 is an extremal monomorphism.

(3) (A, fi)I is a product if and only if 〈fi〉 is a product; i.e., an isomorphism.
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Proof: (1) follows from Proposition 10.9, (3) follows from Propositions 10.21 and 10.25,
and the “only if ” part of (2) follows from Proposition 10.13. To show the “if ” part
of (2), let 〈fi〉 be an extremal monomorphism. By (1), (A, fi) is a mono-source. Let
A

e−→ B be an epimorphism and (B, gi)I be a source with fi = gi ◦ e for each i ∈ I.
Then, since the product is a mono-source,

πi ◦ 〈fi〉 = gi ◦ e = πi ◦ 〈gi〉 ◦ e implies that 〈fi〉 = 〈gi〉 ◦ e.

Hence e is an isomorphism. �

10.27 REMARK
Whereas each product is an extremal mono-source, the single projections are usually
retractions, as the following result shows. That this need not always be the case is
demonstrated in Set by the projection: ∅ ×N→ N.

10.28 PROPOSITION
If (P

pi−−→ Ai)I is a product and if i0 ∈ I is such that hom(Ai0 , Ai) 6= ∅ for each i ∈ I,
then pi0 is a retraction.

Proof: For each i ∈ I choose fi ∈ hom(Ai0 , Ai) with fi0 = idAi0
. Then 〈fi〉 : Ai0 → P

is a morphism with pi0 ◦ 〈fi〉 = fi0 = idAi0
. �

10.29 DEFINITION
(1) A category has products provided that for every set-indexed family (Ai)I of objects

there exists a product (
∏

Ai
πj−−→ Aj)I .

(2) A category has finite products provided that for every finite family (Ai)I of objects
there exists a product (

∏
Ai

πj−−→ Aj)I .

10.30 PROPOSITION
A category has finite products if and only if it has terminal objects and products of pairs
of objects.

Proof: The result follows from the observations that

(1) empty products are terminal objects [10.20(7)],

(2) products of singleton families always exist [10.20(8)],

(3) products of n-indexed families for n ≥ 3 can be constructed via induction by com-
posing products of pairs [cf. 10.25(1)]:

A1 ×A2 × · · · ×An = (· · · ((A1 ×A2)×A3)× · · · ×An). �

10.31 EXAMPLES
(1) The categories Set, Vec, Grp, Top, Rel, Pos, Alg(Ω), and Aut have products.
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(2) Met and Σ-Seq have finite products, Metu and Metc have countable products,
and PMet has products. [In fact, a set-indexed family (Xi)i∈I of nonempty metric
spaces each having finite diameter diam(Xi) has a product in Met if and only if the
set { diam(Xi) | i ∈ I } is bounded.]

(3) Banb has finite products, and Ban has products.

(4) A poset, considered as a category, has products if and only if it is a complete lattice.

10.32 THEOREM
(1) A category that has products for all class-indexed families must be thin.

(2) A small category has products if and only if it is equivalent to a complete lattice.

Proof:
(1). Assume that A has all class-indexed products, but that the set hom(A,B) has at

least two elements. Consider the family (Bi)i∈I with I = Mor(A) and Bi = B
for each i ∈ I. Since hom(A,B) has at least two members, there are at least as
many distinct sources with domain A and codomain (Bi)I as there are subclasses
of I. Hence hom(A,

∏
Bi) contains at least as many members as this (cf. 10.24),

contradicting the fact that hom(A,
∏

Bi) is contained in I.

(2). Since A is small, Mor(A) is a set, so that if A has products, the above proof shows
that it is thin. Thus it is a preordered set with meets of all subsets, and, hence, is
equivalent to a complete lattice [cf. 10.31(4)]. The converse is clear. �

10.33 REMARK
The above theorem shows why in Definition 10.29(1) we didn’t require the existence of
products for families of objects indexed by arbitrary (hence also proper) classes. Such
a requirement would be far too strong. None of our familiar constructs [e.g., from
Examples 10.31 (1)–(3)] satisfies this condition, yet many of them do satisfy the weaker
condition of having products of all set -indexed families. This observation demonstrates
strikingly that when working with categories one needs to distinguish carefully between
sets and proper classes (resp. between “small” and “large” collections).

10.34 DEFINITION
If (Ai

fi−−→ Bi)I is a family of morphisms and if (
∏

Ai
πj−−→ Aj)I and (

∏
Bi

pj−−→ Bj)I are
products, then the unique morphism

∏
Ai →

∏
Bi that makes the following diagram

commute for each j ∈ I ∏
Ai

Πfi //

πj

��

∏
Bi

pj

��

Aj
fj

// Bj

is denoted by Πfi and is called the product of the family (fi)I . If I = {1, . . . , n} then
Πfi is usually written as f1 × f2 × · · · × fn.
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10.35 PROPOSITION
Let (fi)I be a set-indexed family of morphisms with product Πfi. If each fi has any of
the following properties, then so does Πfi:

(1) isomorphism,

(2) section,

(3) retraction,

(4) monomorphism,

(5) regular monomorphism (provided that the category in question has products).

Proof: (1), (2), and (3) follow immediately from the observation that Πgi ◦ Πfi =
Π(gi ◦ fi). (4) follows from Propositions 10.9 and 10.21.

(5) follows from the next proposition. (Observe that products of regular monomorphisms
are always extremal monomorphisms. Cf. also 10D) �

10.36 PROPOSITION
In a category with products, if I is a set and if Ei

ei−−→ Ai is an equalizer of Ai

fi //

gi

// Bi

for each i ∈ I, then
∏

Ei
Πei−−−→

∏
Ai is an equalizer of

∏
Ai

Πfi //

Πgi

//
∏

Bi .

Proof: ∏
Ei

Πei //

πj

��

∏
Ai

Πfi //

Πgi

//

pj

��

∏
Bi

qj

��

Ej ej

// Aj

fj
//

gj

// Bj

That Πfi ◦ Πei = Πgi ◦ Πei follows from the fact that the product (
∏

Bi
qj−−→ Bj)

is a mono-source. If C
h−→

∏
Ai is a morphism such that Πfi ◦ h = Πgi ◦ h, then

fj ◦ pj ◦ h = gj ◦ pj ◦ h for each j ∈ I. Hence for each j ∈ I there exists a morphism
hj : C → Ej with pj ◦ h = ej ◦ hj . Consequently, 〈hi〉 : C →

∏
Ei is a morphism with

pj ◦Πei ◦ 〈hi〉 = ej ◦ πj ◦ 〈hi〉 = ej ◦ hj = pj ◦ h; hence with Πei ◦ 〈hi〉 = h. Therefore h
factors through Πei. Since, by Proposition 10.35(4), Πei is a monomorphism, h factors
uniquely. �

10.37 DEFINITION
If I is a set and (

∏
Ai

πj−−→ Aj)I is a product with Ai = A for each i ∈ I, then
∏

Ai is
denoted by AI and called an Ith power of A.

10.38 PROPOSITION
In a category that has products, an object A is an (extremal) coseparator if and only if
every object is an (extremal) subobject of some power AI of A.
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Proof: Let A and B be objects. Consider the source S = (B,hom(B,A)) and the
morphism B

m−−→ Ahom(B,A) defined by f = πf ◦ m for each f ∈ hom(B,A). By
Proposition 10.26, S is an (extremal) mono-source if and only if m is an (extremal)
monomorphism. Hence A is an (extremal) coseparator if and only if B

m−−→ Ahom(B,A)

is an (extremal) monomorphism for each object B. Finally, B
g−→ AI is an (extremal)

monomorphism for some I [i.e., the source (B, πi ◦ g)i∈I is an (extremal) mono-source] if
and only if S = (B,hom(B,A)) is an (extremal) mono-source. Cf. Propositions 10.10(1)
and 10.15(1). �

10.39 REMARKS
(1) In a category A that has products and an (extremal) coseparator the above result

provides a useful description of the A-objects. For example, since the two-element
chain 2 is a coseparator for Pos, posets are precisely the subobjects of powers of
2 in Pos, and since the unit interval [0, 1] is an extremal coseparator for HComp,
compact Hausdorff spaces are precisely the extremal subobjects (= closed subspaces)
of powers of [0, 1] in HComp.

(2) In a category that has products, M -coseparators may be defined (for any class M
of monomorphisms) as objects A such that each object is an M -subobject of some
power of A.

10.40 PROPOSITION
For any class M of morphisms, every product of M -injective objects is M -injective.53�

SOURCES IN CONCRETE CATEGORIES

Next we turn our attention to sources in concrete categories. As before, in the context
of concrete categories, we use the notational conventions of Remark 6.22.

INITIAL SOURCES

10.41 DEFINITION
Let A be a concrete category over X. A source (A

fi−−→ Ai) in A is called initial
provided that an X-morphism f : |B| → |A| is an A-morphism whenever each composite
fi ◦ f : |B| → |Ai| is an A-morphism.

10.42 EXAMPLES
(1) An empty source (A, ∅) is initial if and only if A is indiscrete.

(2) A 1-source (A, f) is initial if and only if f is an initial morphism (cf. 8.6).

53The special case for products that are empty sources yields Proposition 9.4.
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(3) A source (A, fi)I in Top is initial if and only if A carries the initial (= weak) topology
with respect to the family (fi)I . In particular, a topological space X is completely
regular if and only if the source S(X,R), consisting of all continuous maps from X
to the real line, is initial (in the construct Top); and X is a Tychonoff space if and
only if S(X,R) is an initial mono-source.

(4) In Spa(T ) a source ((X, α)
fi−−→ (Xi, αi))I is initial if and only if α =

⋂
i∈I(Tf)−1[αi].

In particular, a source ((X, ρ)
fi−−→ (Xi, ρi))I in Rel is initial if and only if the

equivalence: xρy ⇔ ∀i ∈ I fi(x)ρifi(y) holds.

(5) In PMet a source ((X, d)
fi−−→ (Xi, di))I is initial if and only if

d(x, y) = sup
i∈I

di(fi(x), fi(y)).

(6) In Pos and in Σ-Seq the initial sources are precisely the extremal mono-sources
(cf. 10.12).

(7) In any of the constructs Vec, Ab, Grp, Mon, Rng, Boo, and Alg(Ω) the initial
sources are precisely the mono-sources.

(8) In a preordered class, considered as a concrete category over 1, the initial sources are
precisely the products [cf. 10.20(6)]. This fact is not as accidental as it may seem.
As we will see later in this section (cf. 10.58), a source in an arbitrary category A is
a product if and only if it is T -initial, where T : A → 1 is the unique functor from
A to 1.

10.43 PROPOSITION
If (A

fi−−→ Ai)I is an initial source in A, then

A = max{ B ∈ Ob(A)
∣∣ |B| = |A| and all |B| fi−−→ |Ai| are A-morphisms }.54 �

10.44 REMARK
The above property often characterizes initial sources, e.g., in such constructs as Top or
Spa(T ). However, in the construct Top1, there are non-initial sources with the above
property. In fact, as shown in Example 8.5(2), for each set X the fibre of X has a largest
element AX , hence the empty source (AX , ∅) satisfies the above property. But (AX , ∅)
is initial (i.e., AX is indiscrete) only for card(X) ≤ 1.

10.45 PROPOSITION
Let T = (Si) ◦ S be a composite of sources in a concrete category.

(1) If S and all Si are initial, then so is T .

(2) If T is initial, then so is S. �

54Recall the order on the fibre of |A| [5.4(1)].
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10.46 PROPOSITION
Let (A, fi)I be a source in a concrete category. If (A, fi)J is initial for some J ⊆ I, then
so is (A, fi)I . �

10.47 DEFINITION
A concrete functor F : A → B over X is said to preserve initial sources provided
that for every initial source S in A, the source FS is initial in B.

10.48 EXAMPLES
(1) The forgetful concrete functor Rng → Ab over Set, which forgets multiplication,

preserves initial sources [cf. 10.42(7)].

(2) The concrete functor Top → Rel over Set, which assigns to each topological space
(X, τ) the object (X, ρ) with xρy if and only if x ∈ cl{y}, preserves initial sources.

(3) An order-preserving map between preordered classes, considered as a concrete func-
tor over 1, preserves initial sources if and only if it preserves all existing meets.

10.49 PROPOSITION
If (F,G) is a Galois correspondence, then G preserves initial sources.

Proof: Let G : A → B and F : B → A be concrete functors over X such that (F,G)

is a Galois correspondence over X. Let (A
fi−−→ Ai)I be an initial source in A and let

B
h−→ GA be an X-morphism such that all B

h−→ GA
fi−−→ GAi are B-morphisms. Then

by Proposition 6.28, all FB
h−→ A

fi−−→ Ai are A-morphisms. Hence FB
h−→ A is an

A-morphism. Again by Proposition 6.28, B
h−→ GA is a B-morphism. �

10.50 COROLLARY
Embeddings of concretely reflective subcategories preserve initial sources. �

10.51 REMARK
Let G : A → B be a monotone map between posets, considered as a concrete functor
over 1. If A is a complete lattice, then G preserves initial sources (= meets) if and
only if there exists a (necessarily unique) monotone map F : B → A such that (F,G)
is a Galois connection. [Namely, F (b) =

∧
{ a ∈ A | b ≤ G(a) }]. Theorem 21.24 is a

corresponding result for concrete functors over arbitrary base categories X.

CONCRETE PRODUCTS

10.52 DEFINITION
Let A be a concrete category over X. A source S in A is called a concrete product
in A if and only if S is a product in A and |S| is a product in X.
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10.53 PROPOSITION
A source S in a concrete category A over X is a concrete product if and only if it is
initial in A and |S| is a product in X. �

10.54 DEFINITION
A concrete category A has concrete products if and only if for every set-indexed
family (Ai)I of A-objects there exists a concrete product (P

pi−−→ Ai)I in A, i.e., if and
only if A has products and the forgetful functor preserves them.

10.55 EXAMPLES
(1) Many familiar constructs, e.g., Vec, Grp, Ab, Rng, Top, Rel, Pos, and Alg(Ω),

have concrete products. According to Proposition 10.53 they can be constructed in
two steps: Given a family of objects (Ai)I in A, first form the cartesian product
(
∏
|Ai|

πj−−→ |Aj |)I of the underlying sets, and then supply the set
∏
|Ai| with the

initial structure with respect to (πj)I .

(2) The construct (Ban, O) has concrete products, but the products in (Ban, U) gen-
erally fail to be concrete [cf. 10.20(4)].

(3) Products in the construct AbTor generally fail to be concrete [cf. 10.20(3)].

(4) In a concrete category over 1 every product is concrete.

10.56 PROPOSITION
Let Q = (Pi) ◦ P be a composite of sources in a concrete category A.

(1) If P and all Pi are concrete products, then so is Q.

(2) If Q is a concrete product and each |Pi| is a mono-source, then P is a concrete
product. �

G-INITIAL SOURCES

Now we investigate sources not only in relation to forgetful functors of concrete cate-
gories, but also in relation to arbitrary functors. This will throw additional light on
products.

10.57 DEFINITION
Let G : A → B be a functor. A source S = (A

fi−−→ Ai)I in A is called G-initial

provided that for each source T = (B
gi−−→ Ai)I in A with the same codomain as S and

each B-morphism GB
h−→ GA with GT = GS ◦ h there exists a unique A-morphism

B
h−→ A with T = S ◦ h and h = Gh.

B

h
��

gi

  
AA

AA
AA

A

A
fi

// Ai

GB

Gh=h
��

Ggi

""F
FFFFFFF

GA
Gfi

// GAi
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10.58 EXAMPLES
(1) If (A, U) is a concrete category, then U -initial sources are precisely the initial sources

in (A, U).

(2) If A is a category and G : A→ 1 is the unique functor from A to 1, then G-initial
sources are precisely the products in A.

10.59 PROPOSITION
For a functor G : A→ B the following conditions are equivalent:

(1) G is faithful,

(2) for each A-object A the 2-source (A, (idA, idA)) is G-initial,

(3) whenever (A, fi)I is a source in A and (A, fj)J is G-initial for some J ⊆ I, then
(A, fi)I is G-initial.

Proof: Obviously (1) ⇒ (3) ⇒ (2). To show that (2) implies (1) let A
r //

s
// B be a

pair of A-morphisms with Gr = Gs. Consider the 2-sources S = (B, (idB, idB)) and
T = (A, (r, s)) in A and the B-morphism h = Gr : GA → GB. Then GT = GS ◦ h.
Hence, by G-initiality of S, there exists an A-morphism h : A→ B with T = S ◦h, i.e.,
with r = idB ◦ h = s. �

10.60 PROPOSITION
If G : A → B is a functor such that each mono-source in A is G-initial, then the
following hold:

(1) G is faithful,

(2) G reflects products,

(3) G reflects isomorphisms.

Proof:
(1). follows from Proposition 10.59, since in A each 2-source (A, (idA, idA)) is a mono-

source.

(2). If P is a source in A such that GP is a product in B, then GP is a mono-source
in B. Hence, by (1), P is a mono-source in A and, consequently, is G-initial. This,
together with faithfulness of G, immediately implies that P is a product in A.

(3). follows from (2), since isomorphisms are 1-products. �

10.61 REMARK
The property that all mono-sources be initial, is not unfamiliar. As we will see in §23,
it is typical for “algebraic” categories.
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SINKS

The concept dual to that of source is called sink. Whereas the concepts of sources
and sinks are dual to each other, frequently sources occur more naturally than sinks
(cf. §15 and §17). However, there are cases where the opposite is true. Cf. in particular
Definition 10.69 and Proposition 10.71 below.

10.62 DEFINITION
A sink is a pair ((fi)i∈I , A) [sometimes denoted by (fi, A)I or (Ai

fi−−→ A)I ] consisting
of an object A (the codomain of the sink) and a family of morphisms fi : Ai → A in-
dexed by some class I. The family (Ai)i∈I is called the domain of the sink. Composition
of sinks is defined in the (obvious) way dual to that of composition of sources.

10.63 TABLE OF DUAL CONCEPTS
The following table provides the names for the concepts dual to those investigated in
this section:

Concept Dual Concept

source sink
mono-source epi-sink

extremal mono-source extremal epi-sink
extremal coseparator extremal separator

initial source final sink
G-initial source G-final sink

product (
∏

Ai, πj)j∈I coproduct (µj ,
∐

Ai)j∈I

projection πj injection µj

A
〈fi〉
//

fj !!C
CC

CC
CC

C
∏

Ai

πj

��

Aj

A
∐

Ai
[fi]
oo

Aj

fj

aaCCCCCCCC
µj

OO

power AI copower IA

C
〈f,g〉−−−→ A×B C

[f,g]←−−− A + B∏
fi ; f × g

∐
fi ; f + g
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10.64 EXAMPLES OF EPI-SINKS
(1) In Set a sink (Ai

fi−−→ A)I is an epi-sink if and only if it is jointly surjective, i.e., if
and only if A =

⋃
i∈I fi[Ai].

In every construct, all jointly surjective sinks are epi-sinks. The converse implication
holds, e.g., in Vec, Pos, Top, and Σ-Seq.

(2) In Sgr we have seen that there are epimorphisms that are not surjective [7.40(5)].
Thus, there are epi-sinks that are not jointly surjective.

(3) A category A is thin if and only if every sink in A is an epi-sink.

10.65 EXAMPLES OF EXTREMAL EPI-SINKS
(1) Every epi-sink (= jointly surjective sink) is an extremal epi-sink in Set, Vec, and

Ab.

(2) In Top an epi-sink (Ai
fi−−→ A) is extremal if and only if A carries the final topology

with respect to (fi)i∈I .

(3) In Pos an epi-sink (Ai
fi−−→ A)I is extremal if and only if the ordering of A is the

transitive closure of the relation consisting of all pairs (fi(x), fi(y)) with i ∈ I and
x ≤ y in Ai.

(4) In Σ-Seq an epi-sink (Ai
fi−−→ A)I is extremal if and only if each final state of A has

the form fi(q) for some i ∈ I and some final state q of Ai.

10.66 EXAMPLES OF EXTREMAL SEPARATORS
(1) Every separator is extremal in Set, Vec, and Ab.

(2) In Pos the separators are precisely the nonempty posets, whereas the extremal
separators are precisely the nondiscrete posets.

(3) Top has no extremal separator.

10.67 EXAMPLES OF COPRODUCTS
Many familiar categories have coproducts. However, as opposed to the situation for
products, coproducts in familiar constructs often fail to be concrete.

(1) If (Ai)I is a pairwise-disjoint family of sets, indexed by a set I, then the sink of
inclusion maps (Aj

µj−−→
⋃

i∈I Ai)j∈I is a coproduct in Set. If (Ai)I is an arbi-
trary set-indexed family of sets, then it can be “made disjoint” by pairing each
member of Ai with the index i, i.e., by working with Ai × {i}, rather than Ai.
The union

⋃
i∈I(Ai × {i}) is called the disjoint union of the family (Ai)I and is

denoted by
⊎

i∈I Ai. The sink of natural injections (Aj
µj−−→

⊎
i∈I Ai)j∈I [where

µj(a) = (a, j)] is a coproduct55 in Set of the the family (Ai)I . [Indeed, given a sink

(Aj
fi−−→ B)j∈I in Set, the unique function f :

⊎
i∈I Ai → B satisfying fi = f ◦ µi

for all i is defined by: f(a, i) = fi(a).]
55For a disjoint family of sets, the union and the disjoint union (together with associated injections)

each form a coproduct. This is not a contradiction since coproducts are determined only up to
isomorphism. Compare this with the corresponding result for products: Proposition 10.22.
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(2) In the construct Top coproducts are called “topological sums” and can be con-
structed as for sets by supplying the disjoint union with the final topology. Thus,
Top has concrete coproducts.

(3) In the construct Pos coproducts are called “cardinal sums” and can be constructed
as for sets by supplying the disjoint union of the underlying sets with the order
that agrees on each Ai × {i} with the order on Ai, and where members of distinct
summands are incomparable. Thus, Pos has concrete coproducts.

(4) Vec has nonconcrete coproducts called direct sums. The direct sum
⊕

i∈I Ai of a
family (Ai)I of vector spaces is the subspace of the direct product

∏
i∈I Ai consisting

of all elements (ai)i∈I with finite carrier (i.e., { i ∈ I | ai 6= 0 } is finite), together
with the injections µj : Aj →

⊕
Ai given by:

µj(a) = (ai)i∈I with ai =

{
a, if i = j

0, if i 6= j.

The description of coproducts in Ab is analogous.

(5) HComp has nonconcrete coproducts, namely the Čech-Stone compactifications of
the topological sums.

(6) Grp has nonconcrete coproducts, called “free products”.

(7) The constructs Alg(Ω) all have coproducts. They are concrete if and only if all the
operations are unary.

(8) In a poset A, considered as a category, coproducts are joins. Thus A has coproducts
if and only if it is a complete lattice.

(9) In every category every 1-indexed family (A) has a coproduct A
id−−→ A; an empty

sink with codomain A is a coproduct if and only if A is an initial object.

10.68 EXAMPLES OF FINAL SINKS
(1) An empty sink (∅, A) in a concrete category is final if and only if A is discrete.

(2) A singleton sink A
f−→ B in a concrete category is final if and only if f is a final

morphism.

(3) A sink ((Xi, τi)
fi−−→ (X, τ))I in Top is final if and only if τ is the final topology with

respect to the maps (fi)I , i.e., τ = {U ⊆ X | for all i ∈ I, f−1
i [U ] ∈ τi }.

(4) A sink ((Xi,≤i)
fi−−→ (X,≤))I in Pos is final if and only if ρ is the transitive closure

of the relation { (x, x) |x ∈ X } ∪
⋃

I{ (fi(x), fi(y)) |x ≤i y }.

(5) A sink ((Xi, αi)
fi−−→ (X, α))I in Spa(T ) is final if and only if α =

⋃
I Tfi[αi].
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10.69 DEFINITION
A full concrete subcategory A of a concrete category B is said to be finally dense in

B provided that for every B-object B there is a final sink (Ai
fi−−→ B)I in B with Ai in

A for all i ∈ I.

Dual Notion: initially dense.

10.70 EXAMPLES
A. Final density in constructs

(1) In Met the full subcategory consisting of all two-element metric spaces is finally
dense.

(2) In Pos the full subcategory whose only object is a 2-chain is finally dense.

(3) In Vec the full subcategory whose only object is R2 is finally dense. In general, in
a construct of algebras with operations of arity at most n, any free algebra on n
generators, considered as a full subcategory with one object, is finally dense.

(4) Top does not have any small, finally dense subcategory.

(5) Σ-Seq does not have any finite, finally dense subcategory. [Consider an automaton
whose transitions form a cycle larger than the number of objects of the given finite
subcategory.]

B. Final density in concrete categories

(6) For a poset B, considered as a concrete category over 1, a subset A is finally dense
if and only if it is join-dense (i.e., each b ∈ B is a join of a subset of A).

(7) For a category A considered as concrete over itself, the empty subcategory is finally
dense.

10.71 PROPOSITION
If A is a finally dense full concrete subcategory of a concrete category B, then every
initial source in A is initial in B.

Proof: Let A = (A
fi−−→ Ai)I be an initial source in A, let B be a B-object, and

|B| f−→ |A| be an X-morphism, such that each |B| fi◦f−−−→ |Ai| is a B-morphism. To show

that |B| f−→ |A| is a B-morphism, let B = (Cj
gj−−→ B)J be a final sink in B with each

Cj belonging to A. Then each

|Cj |
gj−−→ |B| f−→ |A| fi−−→ |Ai|

is an A-morphism. Since A is initial in A and each Cj belongs to A, each

|Cj |
gj−−→ |B| f−→ |A| is an A-morphism. Since B is final, |B| f−→ |A| is a B-morphism.�
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10.72 REMARK
A full concrete embedding E : A → B is called finally dense if its image is a finally
dense subcategory of B. The above proposition states, more succinctly, that finally
dense embeddings preserve initiality.

Suggestions for Further Reading

Mac Lane, S. Duality for groups. Bull. Amer. Math. Soc. 56 (1950): 485–516.

Taylor, J. C. Weak families of maps. Canad. Math. Bull. 8 (1965): 771–781.

Pumplün, D. Initial morphisms and monomorphisms. Manuscr. Math. 32 (1980): 309–
333.

EXERCISES

10A. A Characterization of (Extremal) Mono-Sources

Let A be a category such that for any pair A
f
//

g
// B of morphisms there exists a co-

equalizer in A. Show that

(a) A source S in A is a mono-source provided that whenever S = S ◦e for some regular
epimorphism e, it follows that e is an isomorphism.

(b) A source S in A is an extremal mono-source provided that whenever S = S ◦ e for
some epimorphism e, it follows that e is an isomorphism.

10B. A Characterization of Extremal (Co)Separators

Show that an object S of a category A is

(a) an extremal separator if and only if the functor A
hom(S,−)−−−−−−−→ Set is faithful and

reflects isomorphisms, and

(b) an extremal coseparator if and only if the functor Aop hom(−,S)−−−−−−−→ Set is faithful and
reflects isomorphisms.

10C. Extremal (Co)Separators in HComp, BooSpa, and Tych

Show that

(a) In HComp every nonempty space is an extremal separator, and [0, 1] is an extremal
coseparator.

(b) In BooSpa every nonempty space is an extremal separator, and every space with
at least two points is an extremal coseparator.

* (c) Tych has neither an extremal separator nor an extremal coseparator.
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10D. Products of Special Morphisms

Show that

(a) Products of regular monomorphisms are extremal monomorphisms.

(b) In a category with products, products of regular monomorphisms are regular mono-
morphisms.

(c) Products of regular monomorphisms may fail to be regular.

(d) Products of extremal monomorphisms may fail to be extremal.

(e) Products of epimorphisms may fail to be epimorphisms.

10E. Hom-Functors Preserve and “Collectively Detect” Products

Show that a source S is a product in A if and only if for each A-object A the source
hom(A,−)(S) is a product in Set.

10F. Concrete Products and Hom-Functors
Let A be a free object over a nonempty set in a construct A. Prove that a source S in
A is a concrete product if and only if S is initial and hom(A,−)(S) is a product in Set.

10G. Products in Ab
Let (G2, (π1, π2)) be the cartesian product of an abelian group G with itself (where the

group operation is given by G2 +−−→ G). Show that each of (G2, (π1, π2)), (G2, (π1,+))
and (G2, (π2,+)) is a product of the pair (G, G) in Ab.

10H. Products with Terminal Objects

In A let T be a terminal object, A be an arbitrary object, and A
tA−−→ T be the unique

morphism from A to T . Show that (A, (idA, tA)) is a product of the pair (A, T ) in A.

10I. No (Co)Products in Fields or in a Group

Show that neither Field nor a nontrivial group (nor a nontrivial finite monoid), consid-
ered as a category, has finite products or finite coproducts.

10J. Products for Banach Spaces

Show that

(a) Banb has finite products, but Banb does not have products.

(b) Ban has products, but (Ban, U) does not have concrete products.

(c) (Ban, O) has concrete products.

10K. Comparison of Powers

Let I be a subset of K and let AI and AK be powers of A in A. Show that:

(a) If I 6= ∅, then AI is a retract of AK.

(b) If I = ∅, then AI need not even be a subobject of AK. [Hint: Consider A = ∅ in
Set.]
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* 10L. A Characterization of Concretizable Categories Over Set

Show that a category that has equalizers and finite products is concretizable over Set if
and only if it is regular wellpowered.

10M. Composites of Regular Monomorphisms With Sections

Show that in a category that has finite products the composite s ◦m of a regular mono-
morphism m and a section s is a regular monomorphism. [Hint: If r ◦ s = id and m is
an equalizer of f and g, then s◦m is an equalizer of 〈f ◦ r, id〉 and 〈g ◦ r, s◦ r〉.] Contrast
this with Exercise 7S.

10N. Dualities and Representability

Let (A, U) and (B, V ) be concrete categories that are dually equivalent; i.e., there are
contravariant functors G : A→ B and F : B→ A such that F ◦G ∼= 1A and G◦F ∼= 1B.
Suppose that the A-object A represents U and the B-object B represents V , and let
Ã = F (B) and B̃ = G(A). Prove that

(a) U(Ã) ∼= V (B̃).

(b) V ◦G ∼= homA(−, Ã) and U ◦ F ∼= homB(−, B̃).

If, moreover, B has products, then show that

(c) for each A-object X there exists a monomorphism mX : G(X)→ B̃U(X) such that
V (mX) is the embedding of V (G(X)) ∼= homA(X, Ã) into
homSet(U(X), U(Ã)) ∼= homSet(U(X), V (B̃)) = (V (B̃))U(X) ∼= V (B̃U(X)).

10O. Composites of F -Initial Sources

Let F : A→ B be a functor and let T = (Si) ◦ S be a composite of sources in A. Show
that

(a) If S and Si are F -initial, then so is T .

(b) If T is F -initial and all Si are mono-sources, then S is F -initial.

(c) If T is F -initial, then S need not be F -initial. [Hint: Consider the unique functor
F from

1

��
>>

>>
>>

>

''NNNNNNNNNNNNNN

2 // 3

0

@@�������

@@�������

77pppppppppppppp

OO

to

1

��
>>

>>
>>

>

''NNNNNNNNNNNNNN

2 // 3

0

@@�������

77pppppppppppppp

OO

which leaves the four objects fixed. Then 1→ 2 is not F -initial, but 1→ 2→ 3 is.]

10P. Universally Initial Morphisms

Let f be a morphism in a category A. Show that

* (a) f is an isomorphism if and only if f is F -initial with respect to every functor F
that has domain A.
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* (b) If f is a section, then f is F -initial with respect to every faithful functor A F−−→ B.
Does the converse hold?

(c) f is initial with respect to every full and faithful functor with domain A.

10Q. A Characterization of Products
Show that a source in A is a product if and only if it is initial with respect to every

functor A F−−→ B that preserves mono-sources.

10R. Copowers Versus Free Objects in Constructs

Let (A, U) be a construct such that U is representable by an object A. Show that for
any set I and any A-object B the following conditions are equivalent:

(1) B is a free object over I,

(2) B is an Ith copower IA of A.

10S. Copowers in CBoo and CLat

Show that neither CBoo nor CLat has small copowers. [Hint: Use 10R, 8.23(1)(b),
8.23(7), and 8F resp. 8G.]

10T. Mono-Sources in Σ-Seq

Prove that mono-sources in {σ}-Seq are precisely the point-separating sources — al-
though the forgetful functor is not representable (cf. Corollary 10.8).

10U. Coproducts of Functors

Given functors Fi : A → B, where B is a category with coproducts, then F =
∐

Fi

denotes the functor of “pointwise” coproducts, i.e.,

F (A
f−→ A′) =

∐
FiA

qFif−−−−→
∐

FiA
′.

(a) Verify that F is a coproduct of the family (Fi) in the functor quasicategory [A,B]
(6.15).

(b) Verify that for each type Ω there exists a coproduct T of functors Sn [3.20(10)] such
that Alg(Ω) is concretely isomorphic to Alg(T ).

10V. The Diagonal-Morphism ∆A

∆A = 〈idA, idA〉 : A → A × A is called the diagonal morphism of A. Consider the
product A

π1←−− A×A
π2−−→ A and show that (A,∆A) is an equalizer of (π1, π2).
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10W. Products and Constant Morphisms

Consider the diagram

A
f

// B

A×A
f×f

//

π1

OO

π2

��

B ×B

p1

OO

p2

��

A
f

// B

Show that the following are equivalent:

(1) f is constant,

(2) f ◦ π1 = f ◦ π2,

(3) p1 ◦ (f × f) = p2 ◦ (f × f),

(4) f × f factors through ∆B, i.e., for some g:

A×A
f×f−−−→ B ×B = A×A

g−→ B
∆B−−−→ B ×B.
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11 Limits and colimits

Many basic constructions in mathematics can be described as limits (or dually as co-
limits). Such constructions associate with a given diagram a distinguished object to-
gether with morphisms connecting this object with the objects of the diagram; i.e., a
certain source called the limit of the diagram. This limit can be characterized, up to
isomorphism, by a purely categorical property. We have encountered two special cases
of limits already: equalizers and products. The main new type of limit introduced below
is that of pullback. Unlike products, the usefulness of pullbacks was generally recognized
only after the emergence of category theory.

LIMITS

11.1 DEFINITION
(1) A diagram in a category A is a functor D : I→ A with codomain A. The domain,

I, is called the scheme of the diagram.56

(2) A diagram with a small (or finite) scheme is said to be small (or finite).

11.2 EXAMPLES
(1) A diagram in A with discrete scheme is essentially just a family of A-objects.

(2) A diagram in A with scheme • ⇒ • is essentially just a pair of A-morphisms with
common domain and common codomain.

11.3 DEFINITION
Let D : I→ A be a diagram.

(1) An A-source (A
fi−−→ Di)i∈Ob(I) is said to be natural for D provided that for each

I-morphism i
d−→ j, the triangle

A

fi

��

fj

  B
BB

BB
BB

B

Di Dd
// Dj

commutes.
56Although there is technically no difference between a diagram and a functor, or between a scheme and

a category, we use the alternate terminology when treating limits and colimits, for reasons of both its
historical development and to indicate a slight change of perspective. For example, we often denote
the image of an object i under a diagram D by Di rather than D(i). This produces notation that is
more consistent with that introduced earlier for sources and sinks.
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(2) A limit of D is a natural source (L `i−−→ Di)i∈Ob(I) for D with the (universal )

property that each natural source (A
fi−−→ Di)i∈Ob(I) for D uniquely factors through

it; i.e., for every such source there exists a unique morphism f : A → L with fi =
`i ◦ f for each i ∈ Ob(I).

11.4 EXAMPLES
(1) For a diagram D : I → A with a discrete scheme, every source with codomain

(Di)i∈Ob(I) is natural. A source is a limit of D if and only if it is a product of the
family (Di)i∈Ob(I). Expressed briefly: products are limits of diagrams with discrete
schemes. In particular, an object, considered as an empty source, is a limit of the
empty diagram (i.e., the one with empty scheme) if and only if it is a terminal object.

(2) For a pair of A-morphisms A
f
//

g
// B , considered as a diagram D with scheme •⇒ •,

a source (A e←− C
h−→ B) is natural provided that g ◦ e = h = f ◦ e. Observe that

in this case h is determined by e. Hence, C
e−→ A is an equalizer of A

f
//

g
// B if and

only if the source (A e←− C
f◦e−−−→ B) is a limit of D. Thus we may say (imprecisely)

that equalizers are limits of diagrams with scheme • ⇒ •. If, in the above scheme,
the two arrows are replaced by an arbitrary set of arrows, then limits of diagrams
with such schemes are called multiple equalizers.

(3) If I is a down-directed57 poset (considered as a category), then limits of diagrams
with scheme I are called projective (or inverse) limits. If, e.g., I = Nop is the
poset of all non-negative integers with the opposite of the usual ordering, a diagram
D : I→ A with this scheme is essentially a sequence

· · · d2−−→ D2
d1−−→ D1

d0−−→ D0

of A-morphisms (where D(n + 1→ n) = Dn+1
dn−−→ Dn, D(n + 2→ n) = dn ◦ dn+1,

etc.). A natural source for D is a source (A
fn−−→ Dn)n∈N with fn = dn ◦ fn+1

for each n. In Set a projective limit of a diagram D with scheme Nop is a source
(L `n−−→ Dn)n∈N, where L is the set of all sequences (xn)n∈N with xn ∈ Dn and
dn(xn+1) = xn for each n ∈ N; and where each `m is a restriction of the mth
projection πm :

∏
n∈NDn → Dm.

(4) If D : A → A is the identity functor, then a source L = (L `A−−→ A)A∈ObA is a
limit of D if and only if L is an initial object of A. The sufficiency is obvious.
For the necessity let L be a limit of D and let L

f−→ A be a morphism. By the
naturality of L for D we obtain f ◦ `L = `A. Application of this to f = `A yields
`A ◦ `L = `A = `A ◦ idL for each object A. Hence, by the uniqueness requirement

57Down-directed means that every pair of elements has a lower bound. The dual notion is up-
directed.
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in the definition of limit, `L = idL. Consequently, f = f ◦ idL = f ◦ `L = `A. Thus
hom(L,A) = {`A} for each object A.

(5) If the category I has an initial object i0 with hom(i0, i) = {mi} for each i ∈ Ob(I),

then every diagram D : I→ A with scheme I has a limit: (Di0
Dmi−−−−→ Di)i∈Ob(I).

11.5 REMARK
If D : I → A is a diagram, then natural sources for D can be regarded as natural
transformations from constant functors C : I→ A to the functor D.

11.6 PROPOSITION
Every limit is an extremal mono-source. A 10.21

11.7 PROPOSITION
Limits are essentially unique; i.e., if L = (L `i−−→ Di)i∈Ob(I) is a limit of D : I → A,
then the following hold:

(1) for each limit K = (K ki−−→ Di)i∈Ob(I) of D, there exist an isomorphism K
h−→ L

with K = L ◦ h,

(2) for each isomorphism A
h−→ L, the source L ◦ h is a limit of D. A 10.22

PULLBACKS

11.8 DEFINITION
(1) A square

P
f
//

g

��

B

g

��

A
f
// C

(∗)

is called a pullback square provided that it commutes and that for any commuting
square of the form

P̂
f̂
//

ĝ

��

B

g

��

A
f
// C

there exists a unique morphism P̂
k−→ P for which the following diagram commutes

P̂

ĝ

��

f̂

""
k
��

??
??

??
??

P
f

//

g

��

B

g

��

A
f
// C
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(2) If (∗) is a pullback square, then the 2-source A
g←− P

f−→ B is called a pullback of

the 2-sink A
f−→ C

g←− B and f is called a pullback of f along g.

11.9 REMARKS
(1) A square (∗) is a pullback square if and only if the 3-source (P, (g, f ◦ g, f)) is a

limit of the 2-sink A
f−→ C

g←− B, considered as a diagram in A with scheme
• −→ • ←− •. Shortly (and imprecisely) pullbacks are limits of diagrams with
scheme • −→ • ←− •.

(2) If the square (∗) is a pullback, then (P, (f, g)) is a extremal mono-source. This
follows from (1) and Proposition 11.6.

11.10 PROPOSITION
Let

• //

��

• //

��

•

��
• // • // •

commute in A. Then

(1) if the squares are pullback squares, then so is the outer rectangle; i.e., pullbacks can
be composed by “pasting” them together,

(2) if the outer rectangle and right-hand square are pullback squares, then so is the
left-hand square. �

RELATIONSHIP OF PULLBACKS TO OTHER LIMITS

11.11 PROPOSITION (Canonical Construction of Pullbacks)

Let A
f−→ C

g←− B be a pair of morphisms with common codomain.

If A
πA←−− A×B

πB−−→ B is a product of A and B, and E
e−→ A × B is an equalizer of

A×B
f◦πA //

g◦πB

// C , then

E
πA◦e //

πB◦e
��

A

f

��

B g
// C

is a pullback square.
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Proof: Let
P

s //

r

��

A

f

��

B g
// C

be a commuting square. Then P
〈s,r〉−−−→ A×B is a morphism for which f ◦ πA ◦ 〈s, r〉 =

g ◦πB ◦ 〈s, r〉. Since e is an equalizer of (f ◦πA, g ◦πB), there is a morphism P
k−→ E for

which 〈s, r〉 = e ◦ k. Thus πA ◦ e ◦ k = s and πB ◦ e ◦ k = r. That k is the only morphism
with this property follows from the fact that A

πA◦e←−−−− E
πB◦e−−−−→ B is, as a composition

of mono-sources, a mono-source. �

11.12 EXAMPLES
Application of the above construction provides concrete descriptions of pullbacks in many
cases:

(1) Let A
f−→ C

g←− B be a pair of maps in Set, let P = {(a, b) ∈ A×B | f(a) = g(b)},

and let P
g−→ A and P

f−→ B be the domain restrictions of the projections from
A×B. Then

P
g
//

f
��

A

f

��

B g
// C

is a pullback square.

(2) In any of the constructs Pos, Top, or Vec pullbacks can be constructed as for sets
by supplying P in each case with the initial structure with respect to its inclusion
into the product A×B; i.e.,

(a) for Pos, by the pointwise order,

(b) for Top, by the subspace topology,

(c) for Vec, by defining operations coordinatewise.

11.13 PROPOSITION
If T is a terminal object, then the following are equivalent:

(1)

P
pA //

pB

��

A

��

B // T

is a pullback square,

(2) (P, (pA, pB)) is a product of A and B. �
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11.14 PROPOSITION (Construction of Equalizers via Products and Pullbacks)

If A
f
//

g
// B are morphisms, (A×B, πA, πB) is a product of (A,B), and

P
p1

//

p2

��

A

〈idA,f〉
��

A 〈idA,g〉
// A×B

is a pullback square, then p1 = p2 is an equalizer of f and g.

Proof: Since 〈idA, f〉 ◦ p1 = 〈idA, g〉 ◦ p2, we have

p1 = πA ◦ 〈idA, f〉 ◦ p1 = πA ◦ 〈idA, g〉 ◦ p2 = p2.

Similarly, f ◦ p1 = πB ◦ 〈idA, f〉 ◦ p1 = πB ◦ 〈idA, g〉 ◦ p2 = g ◦ p2 = g ◦ p1.
Suppose that K

k−→ A is a morphism such that f ◦ k = g ◦ k. Then

πB ◦ 〈idA, f〉 ◦ k = πB ◦ 〈idA, g〉 ◦ k, and

πA ◦ 〈idA, f〉 ◦ k = πA ◦ 〈idA, g〉 ◦ k.

Since the product is a mono-source, we obtain 〈idA, f〉 ◦ k = 〈idA, g〉 ◦ k, so that since
the square is a pullback square, there is a unique h : K → P such that k = p1 ◦ h. �

PULLBACKS RELATED TO SPECIAL MORPHISMS

11.15 LEMMA
Suppose that the diagram

•
1

//

��

•

��

��~~
~~

~~
~

•
h

��
@@

@@
@@

@

•

??~~~~~~~
// •

commutes.

(1) If the outer square is a pullback square, then so is 1 .

(2) If 1 is a pullback square and h is a monomorphism, then the outer square is a
pullback square. �
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11.16 PROPOSITION
A

f−→ B is a monomorphism if and only if

A
idA //

idA

��

A

f
��

A
f
// B

is a pullback square. �

11.17 DEFINITION
A class M of morphisms in a category is called pullback stable (or closed under the
formation of pullbacks) provided that for each pullback square

P
f
//

g

��

B

g

��

A
f
// C

(∗)

with f ∈M , it follows that f ∈M .

11.18 PROPOSITION
Monomorphisms, regular monomorphisms, and retractions are pullback stable.

Proof: Let f be a monomorphism in the above pullback square (∗).
(1). If h, k : Q→ P are morphisms such that f ◦ h = f ◦ k, then

f ◦ (g ◦ h) = g ◦ (f ◦ h) = g ◦ (f ◦ k) = f ◦ (g ◦ k),

so that g ◦ h = g ◦ k. Since pullbacks are mono-sources, this implies that h = k.

(2). Suppose that f is an equalizer of p and q. Then (p ◦ g) ◦ f = (q ◦ g) ◦ f . To show
that f is an equalizer of p ◦ g and q ◦ g, let t : Q → B be a morphism such that
(p ◦ g) ◦ t = (q ◦ g) ◦ t. Then, by the definition of equalizer, there is some u : Q→ A
with f ◦u = g ◦ t. Thus, by the definition of pullback, there is some h : Q→ P such
that t = f ◦ h. Uniqueness of h follows from the fact that f is a monomorphism.

(3). If f is a retraction, then there is some C
s−→ A with f ◦ s = idC . Hence f ◦ (s ◦

g) = g ◦ idB, so that by the definition of pullback there is some h : B → P with
idB = f ◦ h. �

11.19 REMARK
If (A,m) is a subobject of B, C

g−→ B is an arbitrary morphism and

P
m //

g

��

C

g

��

A m
// B
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is a pullback square, then by the above proposition (P,m) is a subobject of C. It is called
an inverse image of (A,m) under g, since it corresponds to the concept of “inverse
image” in familiar constructs. In particular, in Set, if C

g−→ B is a function and A is
a subset of B, considered as a subobject of B via its inclusion function, then g−1[A],
considered as a subobject of C via its inclusion function, is an inverse image of A under
g.

CONGRUENCES

If f : A → B is a group homomorphism, then the group-theoretic congruence relation
determined by f is the subset C of A×A consisting of all pairs (a, b) with f(a) = f(b).
Obviously, C can be regarded as a subgroup of A × A, and if m : C ↪→ A × A is the

inclusion and A×A
π1 //

π2

// A are the projections, then (according to Proposition 11.11)

the square

C
π1◦m //

π2◦m
��

A

f

��

A
f
// B

is a pullback square.

This motivates our next definition.

11.20 DEFINITION
(1) If

• p
//

q

��

•
f
��

•
f
// •

is a pullback square, then the pair (p, q) is called a congruence relation of f .

(2) A pair (p, q) of morphisms is called a congruence relation provided that there
exists some morphism f such that (p, q) is a congruence relation of f .

11.21 LEMMA
Let (p, q) be a congruence relation of A

f−→ B. Then

(1) (p, q) is a congruence relation of A
m◦f−−−→ C, for each monomorphism B

m−−→ C,

(2) if f = g ◦ h and h ◦ p = h ◦ q, then (p, q) is a congruence relation of h.

Proof: Apply Lemma 11.15. �
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11.22 PROPOSITION
(1) If (p, q) is a congruence relation and c is a coequalizer of p and q, then (p, q) is a

congruence relation of c.

(2) If c is a regular epimorphism and (p, q) is a congruence relation of c, then c is a
coequalizer of p and q.

Proof:
(1). Immediate from Lemma 11.21(2).

(2). Let c be a coequalizer of r and s. By the pullback property there exists a morphism
k with p ◦ k = r and q ◦ k = s. To show that c is a coequalizer of p and q, let f be
a morphism with f ◦ p = f ◦ q. Then f ◦ r = f ◦ s. Hence, since c is a coequalizer
of r and s, there exists a unique morphism f with f = f ◦ c. �

INTERSECTIONS

11.23 DEFINITION
LetA be a family of subobjects (Ai,mi) of an object B, indexed by a class I. A subobject
(A,m) of B is called an intersection of A provided that the following two conditions
are satisfied:

(1) m factors through each mi; i.e., for each i there exists an fi with m = mi ◦ fi,

(2) if a morphism C
f−→ B factors through each mi, then it factors through m.58

11.24 EXAMPLES
(1) Let B be a set and let (Ai)I be a family of subsets of B, considered (via inclusions)

as subobjects of B in Set. Then
⋂

i∈I Ai, considered as a subobject of B, is an
intersection in the sense of Definition 11.23. Similarly for Vec, Top, Σ-Seq, etc.

(2) In a poset, considered as a category, intersections are meets.

(3) For two subobjects (A1,m1) and (A2,m2) of B, an intersection is the diagonal mor-
phism of a pullback of A1

m1−−→ B
m2←−− A2.

11.25 REMARKS
(1) Intersections can be regarded as limits (cf. Exercises 11F and 11L).

(2) Any two intersections of a family of subobjects of B are isomorphic subobjects of
B.

(3) Let A
h−→ B be a morphism. Then (A, h) is an intersection of the empty family of

subobjects of B if and only if h is an isomorphism.

58Observe that any intersection (A, m) of a family of subobjects (Ai, mi) of an object B, indexed by
a class I, depends only on the class {(Ai, mi) | i ∈ I} of subobjects of B and not on the indexing
function. Hence we sometimes also speak of an intersection of a class of subobjects of B.
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11.26 DEFINITION
A class M of monomorphisms is said to be closed under the formation of intersec-
tions provided that whenever (A,m) is an intersection of a family of subobjects (Ai,mi)
of B and each mi belongs to M , then m belongs to M .

COLIMITS

The notion of colimit is dual to that of limit; namely,

11.27 DEFINITION
Let D : I→ A be a diagram.

(1) An A-sink (Di
fi−−→ A)i∈Ob(I) is said to be natural for D provided that for each

I-morphism i
d−→ j, the triangle

Di
Dd //

fi   B
BB

BB
BB

B
Dj

fj

��

A

commutes.

(2) A colimit of D is a natural sink (Di
ci−−→ K)i∈Ob(I) for D with the (universal )

property that each natural sink for D uniquely factors through it.

11.28 EXAMPLES
(1) Coproducts are precisely the colimits of diagrams with discrete schemes. In par-

ticular, initial objects are the colimits of empty diagrams.

(2) For a pair of morphisms A
f
//

g
// B , considered as a diagram D with scheme • ⇒ •,

B
c−→ C is a coequalizer of f and g if and only if (B c−→ C

c◦f←−−− A) is a colimit of
D.

(3) The dual of the concept of an intersection of a family of subobjects of B is the
concept of a cointersection of a family of quotient objects of B. In particular,

(a) If B is a set and if (ρi)I is a family of equivalence relations on B considered (as in
7.86) as quotient objects of B in Set, then the smallest equivalence relation ρ on
B generated by

⋃
i∈I ρi, considered as a quotient object of B, is a cointersection

of the family in Set.

(b) In a poset, considered as a category, cointersections are joins.
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(4) The dual of the concept of projective limit is that of directed colimit (also called
inductive limit). That is, directed colimits are colimits of diagrams whose schemes
are up-directed posets.

Every diagram D : I→ Set, whose scheme is an up-directed poset, has a canonical

colimit. Denote D(i → j) by Di
dij−−→ Dj , let C =

⋃
i∈I(Di × {i}) be the disjoint

union of the family (Di)i∈I , and let (Dj
µj−−→ C)j∈Ob(I) be the canonical coproduct

of the family (Di)i∈Ob(I) in Set, as constructed in 10.67(1). Define an equivalence
relation ∼ on C by: (x, i) ∼ (y, j) if and only if there exists k ≥ i, j with dik(x) =
djk(y). If C

q−→ Q is the natural map from C onto the set Q = C/∼ of equivalence
classes under ∼, then (Di

q◦µi−−−→ Q)i∈Ob(I) is a colimit of D.

Observe that directed colimits in any construct of the form Alg(Ω) can be con-
structed as in Set: Let Ω = (nk)k∈K and let D : I → Alg(Ω) be a diagram for

an up-directed poset I. Denote D(i → j) by (Di, (ωi
k)k∈K)

dij−−→ (Dj , (ω
j
k)k∈K) and

form (as above) the colimit (Di
q◦µi−−−→ Q)i∈Ob(I) of the diagram I U◦D−−−−→ Set, where

Alg(Ω) U−−→ Set is the forgetful functor. Since I is up-directed, for each k ∈ K
and each (x1, . . . , xnk

) ∈ Qnk there exists some i ∈ Ob(I) and (y1, . . . , ynk
) ∈ Dnk

i

with (q ◦ µi)nk(y1, . . . , ynk
) = (x1, . . . , xnk

). Define ωk(x1, . . . , xnk
) =

q ◦ µi ◦ ωi
k(y1, . . . , ynk

). Then up-directedness of I implies that the so-defined map
Qnk

ωk−−→ Q is the unique function that makes the following diagram commute for
each i ∈ Ob(I):

Dnk
i

(q◦µi)
nk
//

ωi
k

��

Qk

ωk

��

Di q◦µi

// Q

It follows that the sink ((Di, (ωi
k)k∈K)

q◦µi−−−→ (Q, (ωk)k∈K))i∈Ob(I) is a colimit of D.

(5) The dual of the concept of pullback is that of pushout, explicitly described below.

11.29 PROPOSITION
Colimits are essentially unique and each colimit is an extremal epi-sink. D

11.30 DEFINITION
(1) The square

C
f
//

g

��

A

g

��

B
f

// P

(∗)
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is called a pushout square provided that it commutes and that for any commuting
square of the form

C
f
//

g

��

A

ĝ
��

B
f̂

// P̂

there exists a unique morphism P
k−→ P̂ for which the diagram

C
f
//

g

��

A

ĝ

��

g

��

B
f
//

f̂ ++

P
k

��
??

??
??

??

P̂

commutes.

(2) If (∗) is a pushout square, the 2-sink ((g, f), P ) is called a pushout of the 2-source
(C, (f, g)), and f is called a pushout of f along g.

Pullback and Pushout

9th July 2006



200 Sources and Sinks [Chap. III

11.31 REMARK
Since pushouts are dual to pullbacks, there is a canonical construction of pushouts via
coequalizers and coproducts (cf. 11.11).

11.32 DEFINITION
A square that is simultaneously a pullback square and pushout square is called a pula-
tion square.

11.33 PROPOSITION
Consider a commuting square

• p
//

q

��

•
c

��
•

c
// •

(∗)

(1) If (∗) is a pushout square, then c is a coequalizer of p and q.

(2) If (p, q) is a congruence relation of c, and c is a regular epimorphism, then (∗) is a
pulation square.

Proof:
(1). Immediate.

(2). Let

• p
//

q

��

•
q̂
��

•
p̂
// •

be a commutative square. Since (∗) is a pullback square and c ◦ id = c ◦ id, there
exists a morphism k such that id = p ◦ k = q ◦ k. Hence p̂ ◦ q = q̂ ◦ p implies that

p̂ = p̂ ◦ q ◦ k = q̂ ◦ p ◦ k = q̂.

Hence p̂ ◦ p = p̂ ◦ q. Since by Proposition 11.22, c is a coequalizer of p and q, there
exists a unique morphism h with p̂ = h ◦ c; i.e., with p̂ = h ◦ c and q̂ = h ◦ c. Hence
(∗) is a pushout square. �
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EXERCISES

11A. Schemes With Initial Objects

Show that for categories A the following conditions are equivalent:

(1) A has an initial object,

(2) the diagram A
idA−−−→ A has a limit,

(3) each diagram with scheme A has a limit.

11B. Products as Projective Limits of Finite Products

Let (Ai)i∈J be a family of objects in A, indexed by an infinite set J . Let I be the
set of all finite subsets of J , ordered by: M ≤ N ⇔ N ⊆ M . For each M ∈ I let

(
∏

M Ai, (pM
i )) be a product of (Ai)i∈M in A (where

∏
{i} Ai

p
{i}
i−−−→ Ai = Ai

id−−→ Ai for
each i ∈ J). Show that

(a) There exists a diagram D : I → A that associates with M ≤ N in I the unique

morphism
∏

M Ai
fMN−−−−→

∏
N Ai that satisfies pN

i ◦ fMN = pM
i for each i ∈ N .

(b) If (P, (pN )N∈I) is a (projective) limit of D, then (P, (p{i})i∈J) is a product of (Ai)i∈I .

11C. Pullbacks as Products in Comma Categories

Show that a commuting square

P
pA //

pB

��

A

f
��

B g
// C

with f ◦ pA = g ◦ pB = p

is a pullback square in A if and only if ((P, p), (pA, pB)) is a product of f and g in the
comma category (A ↓ C).

11D. Products of Morphisms as Pullbacks

Show that each diagram of the form

A×B
πB //

idA×f

��

B

f

��

A× C πC

// C

is a pullback square.
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11E. Kernels as Pullbacks
Show that in a category A with a zero-object 0, k is a kernel of f if and only if

• //

k
��

0

��
•

f
// •

is a pullback square.

11F. Intersections as Pullbacks
Let m1 and m2 be monomorphisms and let

A
m2 //

m1

��

A1

m1

��

A2 m2

// B

be a commuting square with m = m1◦m2 = m2◦m1. Show that the square is a pullback
square if and only if (A,m) is an intersection of the family ((Ai,mi))i∈{1,2} of subobjects
of B.

11G. Pushouts as Pullbacks
Show that in a group, considered as a category, the pushout squares are precisely the
pullback squares.

11H. Pullback Stability of Special Monomorphisms

Show that

(a) in any category the class of strict monomorphisms is pullback stable,

(b) in Set the class of sections is not pullback stable,

(c) in DRail the class of extremal monomorphisms is not pullback stable.

11I. Pullback Stability of Epi-Sinks in Set

For each i ∈ I let

Bi
ki //

gi

��

Ai

fi

��

B
f
// A

be a pullback square in Set. Show that whenever (Ai
fi−−→ A)I is an epi-sink, then so is

(Bi
gi−−→ B)I .

11J. Stable Epimorphisms

A morphism f is called a stable epimorphism provided every pullback of f is an
epimorphism. Show that
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(a) Every retraction is a stable epimorphism.

(b) Every stable epimorphism is an epimorphism.

* (c) In Cat not all regular epimorphisms are stable.

* (d) In Haus and in Met: ExtrEpi ( StableEpi = SurjMorph ( Epi.

(e) Stable epimorphisms are pullback stable.

(f) If A has pullbacks of all 2-sinks, then in A stable epimorphisms are closed under
composition.

11K. Intersections
Show that

(a) in Set an intersection of two sections need not be a section,

(b) if A has products, then in A an intersection of a set-indexed family of regular
subobjects is a regular subobject.

[Hint: If (A,m) is an intersection of the family (Ai,mi)I , where each mi is an

equalizer of B
ri //

si

// Ci , then m is an equalizer of B
〈ri〉
//

〈si〉
//
∏

Ci .]

11L. Multiple Pullbacks

A pair (f,S), consisting of a morphism A
f−→ B and a source S = (A

fi−−→ Ai)I , is called
a multiple pullback of a sink (Ai

gi−−→ B)I provided that

(1) f = gi ◦ fi for each i ∈ I, and

(2) for each pair (f ′,S ′), with A′ f ′−−→ B a morphism and S ′ = (A′ f ′i−−→ Ai)I a source
for which f ′ = gi ◦ f ′i for each i ∈ I, there exists a unique morphism A′ g−→ A with
f ′ = f ◦ g and f ′i = fi ◦ g for each i ∈ I.

(a) Interpret multiple pullbacks as limits.

(b) Interpret pullbacks as multiple pullbacks of 2-sinks.

(c) Interpret intersections as multiple pullbacks. In particular, show that whenever

R = ((Ai,mi))I is a family of subobjects of B and A
f−→ B is a morphism, then

the following are equivalent:

(1) (A, f) is an intersection of R,

(2) there exists a (unique) source S such that (f,S) is a multiple pullback of
the sink (Ai

mi−−→ B)i∈I .

(d) Show that each sink that consists of isomorphisms alone has a multiple pullback.
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11M. Products as Multiple Pullbacks

Let A have a terminal object T , and let (Ai)I be a family of A-objects. Show that a
source P = (P

pi−−→ Ai)I is a product of (Ai)I if and only if (P → T,P) is a multiple
pullback of the sink (Ai → T )I .

11N. A Characterization of Monomorphisms by Multiple Pullbacks

Show that a morphism A
m−−→ B is a monomorphism if and only if, for each class I, the

sink (Ai
mi−−→ B)I , defined by mi = m for each i ∈ I, has a multiple pullback.

11O. Directed Colimits in Ab
Show that an abelian group is torsion free if and only if it is a directed colimit in Ab of
free abelian groups.

11P. Pushout Stability of Monomorphisms and Mono-Sources in Set

(a) Show that in Set the class of monomorphisms is pushout stable.

(b) For each i ∈ I let

A
f
//

mi

��

B

ni

��

Ai gi

// Bi

be a pushout square in Set. Show that the fact that (A mi−−→ Ai)I is a mono-source
does not imply that the source (B ni−−→ Bi)I is a mono-source. [Contrast this with
11I.]

11Q. Epimorphisms and Pulation Squares

(a) Let (p, q) be a congruence relation of e. Show that e is a regular epimorphism if and
only if the square

• p
//

q

��

•
e

��
•

e
// •

is a pulation square (cf. 11.32).

(b) Dualize part (a).

11R. A Characterization of Monomorphisms

Show that a morphism is a monomorphism if and only if it has a congruence relation of
the form (p, p).
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11S. A Construction of Equalizers

Show that if

• p2
//

p1

��

B

〈id,id〉
��

A 〈f,g〉
// B ×B

is a pullback square, then p1 is an equalizer of f and g.
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12 Completeness and cocompleteness

In this section we consider the existence of limits in a given category A. Only rarely
does every diagram in A have a limit. [Recall that any such A must be thin (cf. 10.32
and 10.33).] However, in many familiar categories A, every small diagram has a limit,
and for each object A in A every (possibly large) family of subobjects of A has an
intersection. This leads to the following definitions:

12.1 DEFINITION
A category is said to

(1) have (finite) products provided that for each (finite) set-indexed family of objects
there exists a product (cf. Definition 10.29),

(2) have equalizers provided that for each parallel pair of morphisms there exists an
equalizer,

(3) have pullbacks provided that for each 2-sink there exists an pullback,

(4) have (finite) intersections provided that for each object A, and every (finite)
family of subobjects of A, there exists an intersection.

Dual Notions: have (finite) coproducts, have coequalizers, and have (finite)
cointersections.

12.2 DEFINITION
A category A is said to be

(1) finitely complete if for each finite diagram in A there exists a limit,

(2) complete if for each small diagram in A there exists a limit,

(3) strongly complete if it is complete and has intersections.

Dual Notions: finitely cocomplete, cocomplete, and strongly cocomplete cat-
egories.

12.3 THEOREM
For each category A the following conditions are equivalent:

(1) A is complete,

(2) A has products and equalizers,

(3) A has products and finite intersections.

206
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Proof:
(1) ⇒ (3) is immediate.

(3) ⇒ (2) follows from Proposition 11.14 and Example 11.24(3).

(2) ⇒ (1). Suppose that A has products and equalizers, and let D : I → A be a
small diagram. For each morphism t : i → j in I let d(t) = i and c(t) = j. Form the
products (

∏
i∈Ob(I) Di

πj−−→ Dj)j∈Ob(I) and (
∏

t∈Mor(I) Dc(t)
π̂s−−→ Dc(s))s∈Mor(I). For each

t ∈ Mor(I) there is a pair of morphisms πc(t), Dt◦πd(t) :
∏

i∈Ob(I) Di → Dc(t), and these
define a pair of morphisms

〈πc(t)〉, 〈Dt ◦ πd(t)〉 :
∏

i∈Ob(I)

Di −→
∏

t∈Mor(I)

Dc(t).

Let e : E →
∏

Di be an equalizer of this pair. We claim that (E πi◦e−−−→ Di)i∈Ob(I) is a
limit of D in A. Indeed,

(a) It is a natural source for D because for each morphism i
s−→ j in I, we have

πj ◦ e = πc(s) ◦ e = π̂s ◦ 〈πc(t)〉 ◦ e = π̂s ◦ 〈Dt ◦ πd(t)〉 ◦ e = Ds ◦ πd(s) ◦ e = Ds ◦ πi ◦ e.

(b) Suppose that (A
fi−−→ Di) is a natural source for D and let f = 〈fi〉 : A →

∏
Di.

For each morphism s of I, naturality of the source implies that fc(s) = Ds ◦ fd(s).
Consequently,

π̂s ◦ 〈πc(t)〉 ◦ f = πc(s) ◦ f = fc(s) = Ds ◦ fd(s) = Ds ◦ πd(s) ◦ f = π̂s ◦ 〈Dt ◦ πd(t)〉 ◦ f.

Since the product is a mono-source, 〈πc(t)〉 ◦ f = 〈Dt ◦ πd(t)〉 ◦ f . Thus there is a

unique A
f ′−−→ E such that f = e◦f ′. Thus fi = πi ◦e◦f ′ for each i, and f ′ is clearly

seen to be unique with respect to the latter property. �

12.4 THEOREM
For each category A the following conditions are equivalent:

(1) A is finitely complete,

(2) A has finite products and equalizers,

(3) A has finite products and finite intersections,

(4) A has pullbacks and a terminal object.

Proof: (1) ⇔ (2) ⇔ (3) can be proved as in Theorem 12.3.

(1) ⇒ (4) is immediate.

(4) ⇒ (3). Recall that products of pairs of objects can be formed via pullbacks of
morphisms to a terminal object (11.13) and that intersections of pairs of subobjects are
formed via pullbacks [11.24(3)]. �
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12.5 PROPOSITION
Each complete and wellpowered category is strongly complete.

Proof: Let A be complete and wellpowered. For each family (Ai
mi−−→ A)I of subobjects

of some object A, there exists a subset J ⊆ I such that each subobject Ai
mi−−→ A, i ∈ I,

is isomorphic to some Aj
mj−−→ A, j ∈ J . Obviously, any intersection (B,m) of the small

sink (Aj
mj−−→ A)J is an intersection of the original sink (Ai

mi−−→ A)I . �

12.6 EXAMPLES
(1) Each of the categories Set, Vec, Top, HComp, Pos, Grp, Cat, and Σ-Seq is

strongly complete and strongly cocomplete.

Observe however that the quasicategory CAT fails to have coequalizers.

(2) Met has equalizers, but not products. JPos has products, but not equalizers.

(3) Every non-trivial group, considered as a category, has pullbacks and pushouts, but
not equalizers or coequalizers, nor products or coproducts of pairs, nor terminal or
initial objects.

(4) A poset, considered as a category, is (co)complete if and only if it is a complete
lattice. Thus, for posets, completeness and cocompleteness coincide.

However, the partially ordered class Ord of all ordinal numbers is not complete (it
has no terminal object) even though it is cocomplete (but not strongly cocomplete).

(5) The categories CLat and CBoo (= complete boolean algebras and boolean homo-
morphisms) are strongly complete, but not cocomplete (cf. Exercise 12I).

(6) The category of finite sets is finitely complete and finitely cocomplete, but is neither
complete nor cocomplete.

(7) The category Field is neither finitely complete nor finitely cocomplete.

COCOMPLETENESS ALMOST IMPLIES COMPLETENESS

Although completeness and cocompleteness are not equivalent, the constructions of limits
and colimits are intimately related. In fact, as is shown below, under suitable “smallness
conditions”, completeness and cocompleteness are equivalent.

12.7 THEOREM
A small category is complete if and only if it is cocomplete.

Proof: Immediate from Theorem 10.32(2). �

12.8 PROPOSITION (Canonical Construction of Limits via Large Colimits)

For a small diagram D : I → A, let SD be the category whose objects are all natural
sources (A, fi) for D, whose morphisms (A, fi)

g−→ (A′, f ′i) are all those A-morphisms
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A
g−→ A′ with (A, fi) = (A′, f ′i) ◦ g, and whose identity morphisms and composition law

are as in A. If D∗ : SD → A is the diagram given by:

D∗((A, fi)
g−→ (A′, f ′i)) = A

g−→ A′,

then for each A-object L, the following conditions are equivalent:

(1) D has a limit L = (L `i−−→ Di)i∈Ob(I),

(2) D∗ has a colimit K = (D∗(S) kS−−→ L)S∈Ob(SD),

(3) SD has a terminal object L = (L `i−−→ Di)i∈Ob(I).

Proof: (1) ⇔ (3) is immediate.

(3) ⇒ (2) follows from the dual of Example 11.4(5).

(2) ⇒ (3). Given an object j of I and an object S = (A, fi) in SD let D∗(S)
fS−−→ Dj be

the morphism A
fj−−→ Dj in the source S that is indexed by j. Then for each j ∈ Ob(I)

(D∗(S)
fS−−→ Dj)S∈Ob(SD)

is a natural sink for D∗, so that by the definition of colimit there is a unique morphism

L
`j−−→ Dj with the property that fj = fS = `j ◦ kS for each S in SD.

To see that the source L = (L `i−−→ Di)i∈Ob(I) is natural for D, let i
d−→ j be any morphism

in I. If S is any natural source for D, then fj = D(d)◦fi, so that `j ◦kS = D(d)◦ `i ◦kS .
Since K, being a colimit, is an epi-sink, it follows that `j = D(d) ◦ `i. Consequently, L
is an object of SD.

To see that L is a terminal object, first notice that if S = (A
fi−−→ Di)i∈Ob(I) is a natural

source for D, then the A-morphism A
kS−−→ L is also a morphism S kS−−→ L in SD.

Moreover if S g−→ L is any SD-morphism, then since K is a natural sink for D∗, this
implies that kL ◦ g = kS . In particular, if for each object S in SD one lets g take on the
role of kS , this yields:

kL ◦ kS = kS = idL ◦ kS for each S in SD.

Since K is an epi-sink, this gives kL = idL. Consequently, g = idL ◦ g = kL ◦ g = kS , so
that kS is the unique morphism from S to L. �

12.9 PROPOSITION
A cocomplete category A has a terminal object if and only if it has a weak terminal
object K; i.e., for each A-object A, there exists at least one morphism from A to K.
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Proof: Let K be a weak terminal object in a cocomplete category A. Then let K be
the full subcategory of A that consists of the single object K, let D : K → A be the
inclusion functor, and let (K k−→ T ) be a colimit of D. We shall prove that T is a
terminal object of A.

For each A-object A there is some morphism f : A → K, and hence a morphism g =
k ◦ f : A→ T . Suppose that g′ : A→ T . Then to show that g = g′, form a coequalizer

T
c−→ C of A

g
//

g′
// T . One need only show that c is an monomorphism. Indeed, there

exists a morphism f ′ : C → K, and since f ′ ◦ c ◦ k is an element of hom(K, K), the
naturality of the colimit of D implies that k ◦ f ′ ◦ c ◦ k = k. Furthermore, k is an
epimorphism (since it is a singleton colimit sink) and, hence, k ◦ f ′ ◦ c = idT ; so c is a
section, and thus a monomorphism. �

12.10 DEFINITION
A full subcategory B of a category A with embedding E : B → A is called colimit-
dense in A provided that for every A-object A there exists a diagram D : I→ B such
that the diagram E ◦D : I→ A has a colimit with codomain A.

12.11 EXAMPLES
(1) A full subcategory of Set is colimit-dense in Set if and only if it contains at least

one nonempty set as an object. [Observe that every set X is a coproduct of card(X)
copies of {0}.]

(2) A full subcategory of Pos is colimit-dense in Pos if and only if it contains at least
one nondiscrete poset as an object.

(3) A full subcategory of Vec is colimit-dense in Vec if and only if it contains at least
one nonzero vector space as an object.

(4) Any full subcategory of Ab that contains Z× Z× Z is colimit-dense in Ab.

(5) The full subcategory of Top that consists of all zero-dimensional Hausdorff spaces is
colimit-dense in Top. [Observe that every topological space is a (regular) quotient
of a zero-dimensional Hausdorff space.]

12.12 THEOREM
Every cocomplete category with a small colimit-dense subcategory is complete.

Proof: Let B be a small, colimit-dense subcategory of a cocomplete category A. For
each small diagram D : I → A, consider the category SD of all natural sources for D
(cf. 12.8).

First we establish that SD is cocomplete. Let D0 : J → SD be a small diagram (such
that for each object j of J, D0(j) = (Aj , fji)I) and let D∗ : SD → A be the diagram
of Proposition 12.8. Form the colimit (Aj

cj−−→ K)j∈Ob(J) of the composite diagram

J D0−−→ SD D∗
−−→ A. Since for each object i of I (Aj

fji−−→ Di)Ob(J) is a natural sink
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for D∗ ◦ D0, we have the existence of a unique morphism gi : K → Di such that gi ◦
cj = fji. Since (cj ,K)Ob(J) is an epi-sink, (K, gi)Ob(I) is a natural source for D and

((Aj , fji)
cj−−→ (K, gi))Ob(J) is a colimit of D0. Thus SD is cocomplete.

Now to show that the small diagram D : I → A has a limit, by Propositions 12.8 and
12.9 it is sufficient to prove that the category SD has a weak terminal object. Let I∗

be the full subcategory of SD given by all those natural sources S = (A, fi)Ob(I) whose
domain A is a member of B. Since B is small, so is I∗, and since SD is cocomplete, the
inclusion I∗ ↪→ SD has a colimit (S cS−−→ K)S∈Ob(I∗) in SD. We claim that K = (K, pi)
is a weak terminal object in SD.

To see this, let Ŝ = (A, fi)Ob(I) be any object of SD. By the colimit density, there exists
a small diagram D̂ : K→ B with a colimit (D̂k

ak−−→ A)Ob(K) in A. Now for each object
k of K, Sk = (D̂k , fi◦ak)Ob(I) is an object of I∗. Thus cSk

: Sk → K is an SD-morphism,
and since (cS ,K) is a colimit, for each K-morphism k

g−→ k′ we have cSk
= cSk′ ◦ D̂(g).

Thus (cSk
,K)k∈Ob(K) is natural for D̂, so that since (ak, A)Ob(K) is a colimit of D̂, there

is a unique A
tA−−→ K such that tA ◦ ak = cSk

. Since (ak, A) is an epi-sink, it follows that
tA is a morphism in SD. Thus K is a weak terminal object. �

12.13 THEOREM
Every co-wellpowered cocomplete category with a separator is wellpowered and complete.

Proof: Let A be a co-wellpowered cocomplete category with a separator S. First we
prove the following two facts about A:

(1) For every source S there exist an epimorphism e and a mono-source M with S =
M◦ e.

(2) If M = (A mi−−→ Ai)I is a small mono-source, then A is a quotient object of
ΠI hom(S,Ai)S or a quotient object of ∅S.

(1). Let (ej)J be the collection of those epimorphisms ej , for which there exists a source
Sj with S = Sj ◦ ej . If e is a cointersection of (ej)J , then there exists a source M
with S = M ◦ e. To show that M is a mono-source, let r and s be morphisms with
M ◦ r = M ◦ s. If c is a coequalizer of r and s, then there exists a source T with
M = T ◦ c. This implies that S = T ◦ (c ◦ e). Thus there exists some ̂ ∈ J with
c ◦ e = ê. By the definition of e, there exists a morphism f̂ with e = f̂ ◦ ê. Since e is
an epimorphism, the equations (f̂ ◦ c) ◦ e = f̂ ◦ ê = e = id ◦ e imply that f̂ ◦ c = id.
Thus c is a section and, consequently, an isomorphism. Hence r = s.

(2). Since M is a small mono-source, the map ϕ : hom(S, A) →
∏

i∈I hom(S, Ai),
given by (ϕ(f))(i) = mi ◦ f , is injective. Thus either hom(S, A) = ∅ or there exists
an epimorphism ΠI hom(S,Ai)S → hom(S,A)S. (Cf. the dual of Exercise 10K.) Since S is
a separator, there exists an epimorphism hom(S,A)S → A (cf. the proof of Proposition
10.38). Thus A is a quotient object of ∅S or a quotient object of ΠI hom(S,Ai)S.
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Since A is co-wellpowered, (2) immediately implies that A is wellpowered. It remains to
be shown that every small diagram D : I→ A has a limit. Let D be such a diagram and
let Z be a set that represents all quotient objects of ∅S and of Πi∈Ob(I) hom(S,D(i))S. Then

the collection G = { Sj | j ∈ J } of all natural sources Sj = (Qj
fji−−→ D(i))i∈Ob(I) for D,

whose domain Qj belongs to Z, is a set. Let (µj ,
∐

Qj)j∈J be a coproduct of the small

family (Qj)j∈J . Then there exists a unique source T = (
∐

Qj
fi−−→ D(i))i∈Ob(I) such

that Sj = T ◦µj for each j ∈ J . By (1) there exist an epimorphism e and a mono-source
L with T = L ◦ e. Since each Sj is natural for D, so are T and L. To verify that L is
a limit of D it remains to be shown that every natural source S for D factors uniquely
through L. By (1) there exist an epimorphism e and a mono-sourceM with S =M◦ e.
Since S is natural for D, so is M. By (2) there exist ̂ ∈ J and an isomorphism h with
M = Ŝ ◦ h. Thus f = e ◦ µ̂ ◦ h ◦ e is a morphism with S = L ◦ f . That f is uniquely
determined by S = L ◦ f follows from the fact that L is a mono-source. �

12.14 REMARK
For slight modifications of the last two theorems see Exercise 12N.

Suggestions for Further Reading

Isbell, J. R. Structure of categories. Bull. Amer. Math. Soc. 72 (1966): 619–655.

Trnková, V. Limits in categories and limit preserving functors. Comment. Math. Univ.
Carolinae 7 (1966): 1–73.
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EXERCISES

12A. Regular Monomorphisms vs. Strict Monomorphisms

Show that

(a) The class of strict monomorphisms is closed under the formation of intersections.
Neither the class of regular monomorphisms nor the class of extremal monomor-
phisms need be closed under the formation of intersections.

(b) Intersections of regular monomorphisms are strict monomorphisms.

(c) If A has equalizers, then in A strict subobjects are precisely the intersections of
families of regular subobjects.

(d) If A is strongly complete, then in A StrictMono = RegMono.

(e) If A has pushouts, then in A StrictMono = RegMono.

12B. Regular Monomorphisms via Extremal Monomorphisms

Show that

(a) If A is strongly complete and in A regular monomorphisms are closed under com-
position, then in A RegMono = ExtrMono [cf. Corollary 14.20].

(b) If A has equalizers and pushouts and in A regular monomorphisms are closed under
composition, then in A RegMono = ExtrMono [cf. Proposition 14.22].

12C. Multiple Pullbacks and Completeness

Show that:

(a) A category is complete if and only if it has a terminal object and multiple pullbacks
of small sinks.

(b) A group, considered as a category, has multiple pullbacks for all (even large) sinks,
but — if nontrivial — it fails to have equalizers or finite products.

12D. Dense Subcategories

A full subcategory B of a category A is called dense provided that each A-object A is
a colimit of its “canonical diagram” with scheme B ↓ A (see 3K) given on objects by
(X → A) 7→ X and on morphisms by h 7→ h (with the canonical colimit sink).

(a) Verify that the colimit-dense subcategories of Example 12.11(1), (2), (4), and (5)
are in fact dense.

(b) Verify that R is colimit-dense in Vec, but is not dense in Vec.

(c) Let B be a small subcategory of A. Define E : A→ [Bop,Set] by assigning to each
A-object A the restriction of hom(−, A) : Aop → Set to Bop. Prove that E is full
and faithful if and only if B is dense.

12E. Limit-Dense and Codense Subcategories

(a) Formulate the concepts of limit-density (dual to 12.10) and codensity (dual to 12D).

9th July 2006



214 Sources and Sinks [Chap. III

(b) Let A be the full subcategory of Set that consists of all finite sets, and let B be the
full subcategory of A that consists of ∅ and of all finite sets that have cardinality a
power of 2. Show that:

(1) A has no proper limit-closed subcategory (cf. 13.26) that contains {0, 1}. How-
ever, {0, 1} is not limit-dense in A.

(2) {0, 1} is limit-dense in B, but is not codense in B.

* (c) Prove the equivalence of the following statements:

(1) the monoid of all functions from N to N is a codense subcategory of Set,

(2) no cardinal is measurable; i.e., every ultrafilter that is closed under the formation
of countable meets is closed under the formation of all meets.

[Hints: For (1)⇒ (2), let F be an ultrafilter on X that is closed under the formation
of countable meets. For each function f : X → N define f̂ : {0} → N by: f̂(0) = n,
where n is the unique member of N with f−1(n) ∈ F . For each natural source

(X
fi−−→ N)I the source (f̂i)I is also natural. Thus, it factors through (fi)I by a

unique g : {0} → X. Then g(0) ∈
⋂
F .

For (2) ⇒ (1), notice that given a set X, a natural source of the canonical diagram
X ↓ {N} → Set is a set A and a function ϕ : hom(X,N)→ hom(A,N) with
ϕ(p ◦ f) = p ◦ ϕ(f) for all p : N→ N. Given a ∈ A, prove that the collection of all
subsets Y ⊆ X with ϕ(fY )(a) = 1 (where fY (x) = 1 if x ∈ Y , else 0) is an ultrafilter
closed under countable meets. Define h : A→ X by {h(a)} =

⋂
{Y |ϕ(fY )(t) = 1 },

then ϕ(f) = f ◦ h for each f .]

* (d) Prove that the following statements are equivalent:

(1) Set has a small codense subcategory,

(2) there do not exist arbitrarily large measurable cardinals; i.e., for some n, every
ultrafilter closed under n-meets is closed under all meets.

12F. Weakly Terminal Sets of Objects

Define the concept of weakly terminal set of objects. Prove that a cocomplete
category has a terminal object if and only if it has a weakly terminal set of objects.

12G. Existence of Coproducts

Let A be complete and wellpowered. Show that:

(a) If an A-object A has an Ith copower IA, then it has a Kth copower KA for each
nonempty subset K of I.

(b) If A is connected and
∐

I Xi exists for some family (Xi)I , then
∐

K Xi exists for
each subset K of I (including the case K = ∅).

* 12H. Copowers and Cocompleteness

Let A be complete, wellpowered, co-wellpowered, and have a separator S. Prove that
the following are equivalent:
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(1) A is cocomplete,

(2) for each set I there exists an Ith copower IS of S in A.

* 12I. Strongly Complete but not Cocomplete

(a) Show that the categories CBoo and CLat are each complete, wellpowered, and
extremally co-wellpowered, but not cocomplete. (Cf. 8E and 10S.)

(b) Show that the construct A, whose objects are triples (X, λ, µ), where X
λ−→ X and

PX \ {∅} µ−→ X are functions, and whose morphisms (X, λ, µ)
f−→ (X ′, λ′, µ′) are

those functions X
f−→ X ′ that make the diagram

PX \ {∅} µ
//

f [ ]
��

X

f

��

λ // X

f

��

PX ′ \ {∅}
µ′
// X ′

λ′
// X ′

commute, is complete, wellpowered, and co-wellpowered, but not cocomplete.

12J. Completeness and Coequalizers

Show that a category A has coequalizers whenever A is complete, wellpowered, and
extremally co-wellpowered. (Cf. 15.25 and 15.7.)

* 12K. Cocomplete Subcategories of HComp

Show that a full subcategory of HComp is reflective in HComp if and only if it is
cocomplete.

* 12L. Completions of Abstract Categories

(a) Show that the following category A cannot be fully embedded into a category B
such that the pair (A,B) has a product in B and the embedding preserves products
of pairs:

A

A // Aα

Cβ

@A

GF EDrβ

��

GF

@A BC
sβ

OO

OO

fαβ
//

��

Aα ×Bα
gα

//

OO

��

D

B // Bα

where α and β are ordinals and gα ◦ fαβ =

{
rβ, if α = β

sβ, if α 6= β.
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[Hint: If (P, (πA, πB)) were a product of (A,B) in B, then homB(P,D) would be a
proper class.]

(b) Show that the following category A cannot be fully embedded into a category B such
that the pair (r, s) has an equalizer in B and the embedding preserves equalizers:

A

D Cβ

fαβ

��   A
AA

AA
AA

AA
AA

//
GF ED��pβ

oo

qβ

oo A

fα

��

r //

s
// B

Eα

gα

``@@@@@@@@@@@
// Aα

rα

??~~~~~~~~~~~
sα

??~~~~~~~~~~~

where α and β are ordinals, r = rα ◦ fα, s = sα ◦ fα, and

gα ◦ fαβ =

{
pβ , if α = β

qβ, if α 6= β.

[Hint: If E
e−→ A were an equalizer of r and s in B, then homB(E,D) would be a

proper class.]

(c) Show that for every category A that has a separating set there exists a full limit-
dense embedding, A E−−→ B, where B is complete and E preserves small limits.

(d) Show that every category can be fully embedded into a complete quasicategory.

* 12M. Universal Completions of Concrete Categories

A full concrete embedding (A, U) E−−→ (B, V ) is called a universal completion of
(A, U) provided that the following conditions are satisfied:

(1) (B, V ) is concretely complete [i.e., every small diagram has a concrete limit in
(B, V )] and is uniquely transportable,

(2) E preserves concrete limits of small diagrams,

(3) E is concrete limit-dense, i.e., for every B-object B there exists a small diagram
D : I→ A, such that B is (the object part of) a concrete limit of E ◦D,

(4) for every concretely complete and uniquely transportable category (C,W ) and every
concrete functor (A, U) G−−→ (C,W ) that preserves concrete limits of small diagrams,

there exists a unique concrete functor (B, V ) G−−→ (C,W ) that preserves concrete
limits of small diagrams, with G = G ◦ E.

Show that

(a) Every amnestic concrete category over a complete category has a universal comple-
tion that is uniquely determined up to concrete isomorphism.

(b) If A is the construct of finite Boolean spaces (equivalently: the construct of finite
sets), then the inclusion A ↪→ BooSp is a universal completion.
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* 12N. Re: Theorems 12.12 and 12.13
(a) Show that every cocomplete category with a small colimit-dense subcategory is

strongly complete.

(b) Show that a strongly cocomplete category with a separating set is strongly complete.

(c) Construct a strongly cocomplete category with a separator that is neither well-
powered nor co-wellpowered.

12O. Completeness of Functor-Categories

(a) Show that limits and colimits in the category [A,B] are formed componentwise.

(b) Show that for each small category A and each strongly (co)complete category B,
[A,B] is strongly (co)complete.
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13 Functors and limits

In this section the behavior of limits with respect to functors A F−−→ B is investigated.
The following problems receive special attention:

(A) Does F “preserve” limits?

The information that a functor A F−−→ B preserves limits is particularly useful if the do-
main category A is known to have enough limits. See, e.g., the adjoint functor theorems
in §18.

In many cases, particularly for embedding functors of full subcategories and for forgetful
functors of concrete categories, it is not immediately clear whether or not the domain
category A of the functor A F−−→ B in question has enough limits, but it is known that
the codomain category B does. In these cases the following questions arise naturally:

(B) Can limits in B be lifted along F to limits of A?

If so, to which extent is the lifting unique?
If not, are there suitable properties of F that at least guarantee the existence of
limits in A provided that limits exist in B?

PRESERVATION OF LIMITS

13.1 DEFINITION
(1) A functor F : A → B is said to preserve a limit L = (L `i−−→ Di) of a diagram

D : I→ A provided that FL = (FL
F`i−−−→ FDi) is a limit of the diagram

F ◦D : I→ B.

(2) F is said to preserve limits over a scheme I provided that F preserves all limits
of diagrams D : I→ A with scheme I.

(3) F preserves equalizers if and only if F preserves all limits over the scheme •⇒ •;
F preserves products if and only if F preserves all limits over small discrete
schemes; F preserves small limits if and only if F preserves limits over all small
schemes; F preserves strong limits if and only if F preserves small limits and
arbitrary intersections; etc.

Dual Notions: F preserves colimits (over a scheme I), coequalizers, coprod-
ucts, small colimits, strong colimits, etc.

13.2 EXAMPLES
(1) For the constructs Top, Rel, and Alg(Σ), the forgetful functors preserve limits and

colimits.
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(2) For constructs of the form Alg(Ω) the forgetful functors preserve limits and directed
colimits [see Example 11.28(4)], but generally fail to preserve coproducts or coequal-
izers. Also for the following constructs, the forgetful functors preserve limits and
directed colimits, but neither coproducts nor coequalizers: Vec, Grp, Sgr, Mon,
Rng, and Σ-Seq.

(3) For the constructs AbTor and (Ban,U) the forgetful functors preserve equalizers,
but not products (cf. 10.55).

(4) The full embeddings Haus→ Top and Pos→ Rel preserve limits and coproducts,
but not coequalizers.

(5) The covariant power-set functor P : Set→ Set preserves neither products (of pairs),
nor coproducts (of pairs), nor equalizers, nor coequalizers.

13.3 PROPOSITION
If F : A→ B is a functor and A is finitely complete, then the following conditions are
equivalent:

(1) F preserves finite limits,

(2) F preserves finite products and equalizers,

(3) F preserves pullbacks and terminal objects.

Proof: Immediate from the characterizations of finite limits (12.4). �

13.4 PROPOSITION
For a complete category A, a functor F : A→ B preserves small limits if and only if it
preserves products and equalizers.

Proof: This follows immediately from the construction of small limits via products and
equalizers, presented in the proof of Theorem 12.3. �

13.5 PROPOSITION
(1) If a functor preserves finite limits, then it preserves monomorphisms and regular

monomorphisms.

(2) If a functor preserves (small) limits, then it preserves (small) mono-sources.

Proof: (1) follows from Proposition 11.16.

(2) follows from the observation that a source (A
fi−−→ Ai)I is a mono-source if and only

if the source

A
idA //

idA

��

fi

  
@@

@@
@@

@ A

A Ai

(i ∈ I)
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is a limit of the diagram
A

fi

��

A
fi

// Ai

(i ∈ I) �

13.6 REMARK
If a functor F preserves equalizers, then F (obviously) preserves regular monomorphisms.
The converse is not true: the forgetful functors from the categories Vecop, Grpop, Posop,
and Hausop to Setop preserve regular monomorphisms, but don’t preserve equalizers.

13.7 PROPOSITION
Hom-functors preserve limits.

Proof: Let F = hom(A,−) : A→ Set be a hom-functor, let D : I→ A be a diagram,

and let L = (L `i−−→ Di) be a limit of D. Then FL is obviously a natural source for

F ◦D. Let S = (X
fi−−→ hom(A,Di)) be an arbitrary natural source for F ◦D. Then,

for each element x of X, (A
fi(x)−−−−→ Di) is a natural source for D. Hence for each x ∈ X

there exists a unique morphism f(x) : A→ L with fi(x) = `i ◦ f(x) for each i ∈ Ob(I).
This defines a function f : X → hom(A,L) which is the unique function f : X → FL
that satisfies S = FL ◦ f . �

13.8 PROPOSITION
If F and G are naturally isomorphic functors, then F preserves limits over a scheme I
if and only if G does.

Proof: Straightforward computation. �

13.9 COROLLARY
Representable functors preserve limits. �

13.10 REMARK
Since the forgetful functors for constructs are quite often representable, the above corol-
lary explains why limits in constructs are much more often concrete (Definition 13.12)
than are colimits. In §18 we will show that adjoint functors (in particular embeddings
of reflective subcategories) preserve limits. Next we will show that embeddings of “suf-
ficiently big” subcategories preserve limits as well.

13.11 PROPOSITION
Embeddings of colimit-dense subcategories preserve limits.
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Proof: Let A be a colimit-dense subcategory of B with embedding E : A→ B, and let
D : I → A be a diagram with a limit L = (L `i−−→ Di). Then L is a natural source for

E ◦D. Let S = (B
fi−−→ Di) be an arbitrary natural source for E ◦D. By colimit-density

there exists a diagram G : J → A and a colimit (Gj
cj−−→ B) of E ◦G. For each object

j of J, (Gj
fi◦cj−−−−→ Di)i∈ObI is a natural source for D. Hence for each j ∈ Ob(J) there

exists a unique morphism gj : Gj → L with fi ◦ cj = `i ◦ gj for each i ∈ I.

Gj
cj
//

gj

��

B

fi

��

L
`i

// Di

Since L is a mono-source in A, it follows that (Gj
gj−−→ L) is a natural sink for G and

hence for E◦G. Consequently, there exists a unique morphism f : B → L with gj = f◦cj

for each j. Since (Gj
cj−−→ B) is an epi-sink, this implies that fi = `i ◦ f for each i. To

show that f is the unique morphism with this property, let f ′ : B → L be a morphism
with fi = `i ◦ f ′ for each i. Since (L `i−−→ Di) is a mono-source in A, this implies that
gj = f ′ ◦ cj for each j, and hence that f ′ = f . �

CONCRETE LIMITS

13.12 DEFINITION
(1) Let (A, U) be a concrete category. A limit L of a diagram D : I → A is called a

concrete limit of D in (A, U) provided that it is preserved by U.

(2) A concrete category (A, U) has (small) concrete limits, resp. concrete prod-
ucts, etc., if and only if A has (small) limits, resp. products, etc., and U preserves
them.

Dual Notions: (has) (small) concrete colimits, concrete coproducts, etc.

13.13 EXAMPLES
(1) The constructs Top, Rel, Prost, and Alg(Σ) have small concrete limits and small

concrete colimits. So have all constructs of the form Spa(T).

(2) The constructs Vec, Grp, Pos, and Haus have small concrete limits and non-
concrete small colimits. Alg(Ω) has small concrete limits; it has small concrete
colimits only if the defining operations are all unary.

(3) The construct Σ-Seq has finite concrete limits and finite colimits that are not con-
crete.

(4) The concrete category Aut over Set×Set×Set has small concrete limits and small
colimits that are not concrete.
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13.14 PROPOSITION
A concrete category has small concrete limits if and only if it has concrete products and
concrete equalizers. A 12.3

13.15 PROPOSITION
If (A, U) is a concrete category and D : I→ A is a diagram, then L = (L `i−−→ Di)i∈Ob(I)

is a concrete limit in (A, U) if and only if U(L) is a limit of U ◦D and L is an initial
source in (A, U). A 10.53

13.16 REMARK
By the above, a concrete limit can be constructed in two steps: first form the limit
of the underlying diagram in the base category, and then provide an initial lift of this
(underlying) limit.

LIFTING OF LIMITS

13.17 DEFINITION
A functor F : A→ B is said to

(1) lift limits (uniquely) provided that for every diagram D : I→ A and every limit
L of F ◦D there exists a (unique) limit L′ of D with F (L′) = L,

(2) create limits provided that for every diagram D : I → A and every limit L of

F ◦D there exists a unique source S = (L
fi−−→ Di) in A with F (S) = L, and that,

moreover, S is a limit of D.

Similarly, one has lifts small limits, lifts products, creates equalizers, creates
finite limits, etc.

Dual Notions: lift colimits (uniquely), create colimits, etc.

13.18 EXAMPLES
The forgetful functors for the constructs

(1) of the form Alg(Σ) create limits and colimits,

(2) of the form Alg(Ω) create limits and directed colimits [see Example 11.28(4)],

(3) Vec, Grp, Sgr, Mon, Lat, CATof , and HComp create limits,

(4) Top, Rel, and Prost lift limits and colimits uniquely, but create neither,

(5) Metc and Banb lift finite limits, but do not lift them uniquely,

(6) Σ-Seq lifts finite limits uniquely.

9th July 2006



Sec. 13] Functors and limits 223

13.19 THEOREM
If a functor A F−−→ B lifts limits and B is (strongly) complete, then A is (strongly)
complete and F preserves small limits (and arbitrary intersections).

Proof: If F lifts limits and B is complete, then obviously A is complete and F preserves
small limits. Hence, by Proposition 13.5, F preserves monomorphisms. Thus, if B has
arbitrary intersections, so does A, and F preserves them. �

Lifting of limits

13.20 REMARKS
(1) The obvious implications

F creates limits ⇒ F lifts limits uniquely ⇒ F lifts limits

cannot be reversed.

(2) If B has certain limits and F : A → B lifts them, then A has these limits and
F preserves them. Hence the concepts of lifting and creating limits are useful for
functors A F−−→ B with range categories B that have enough limits. In general,
functors that create limits need not even preserve them. An example of this is the
embedding of the terminal category 1 = {•} = A into B = •⇒ ◦.

13.21 PROPOSITION
For functors F : A→ B the following conditions are equivalent:
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(1) F lifts limits uniquely,

(2) F lifts limits and is amnestic.

Proof: (1) ⇒ (2). To show amnesticity, let A′ f−→ A be an isomorphism in A with

Ff = idB. The 1-indexed sources (A′ f−→ A) and (A idA−−−→ A) are products of the

1-indexed family (A). Since they are mapped via F to the product (B idB−−−→ B) of the
1-indexed family (B) = (FA), uniqueness implies that f = idA.

(2) ⇒ (1). If L = (L `i−−→ Di) and L′ = (L′ `i
′

−−→ Di) are limits of a diagram D : I→ A,
then there exists an isomorphism h : L→ L′ with L = L′ ◦h. If F (L) = F (L′) is a limit
of F ◦D, then Fh = idFL. Hence, by amnesticity, h = idL. Consequently, L = L′. �

13.22 DEFINITION
A functor F : A→ B is said to

(1) reflect limits provided that for each diagram D : I→ A an A-source S =

(A
fi−−→ Di)i∈Ob(I) is a limit of D whenever F (S) is a limit of F ◦D,

(2) detect limits, provided that a diagram D : I→ A has a limit whenever F ◦D has
one.

Similarly, one has reflect equalizers, detect products, etc.

Dual Notions: reflect colimits, detect colimits, etc.

13.23 EXAMPLES
(1) Every functor that lifts limits, detects them.

(2) The forgetful functor U : Top→ Set lifts limits uniquely (and detects and preserves
them), but does not reflect them.

(3) Full embeddings reflect limits, but they need not lift, preserve, nor detect them.

13.24 PROPOSITION
A functor that reflects equalizers is faithful.

Proof: Let F : A → B be a functor and let A
f
//

g
// B be a pair of A-morphisms with

Ff = Fg. Then S = (A idA−−−→ A) is a 1-source and FS is an equalizer of Ff and Fg. If
F reflects equalizers, then S is an equalizer of f and g. Hence f = idA◦f = idA◦g = g.�

13.25 PROPOSITION
For any functor F : A→ B the following conditions are equivalent:

(1) F creates limits,

(2) F lifts limits uniquely and reflects limits,
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(3) F lifts limits, is faithful and amnestic, and reflects isomorphisms in the sense that
whenever Ff is a B-isomorphism, then f is an A-isomorphism.

Proof: (1) ⇔ (2) is obvious.

(2) ⇒ (3) follows from Propositions 13.21, 13.24, and Example 10.20(8).

(3) ⇒ (2). To show that F reflects limits, let D : I → A be a diagram and let S =

(A
fi−−→ Di)i∈Ob(I) be a source in A such that F (S) is a limit of F ◦ D. Since F lifts

limits, there exists a limit L = (L `i−−→ Di) of D with F (L) = F (S). Since F is

faithful, S is a natural source for D. Hence there exists a morphism A
f−→ L with

S = L ◦ f . Consequently, F (L) = F (S) = F (L) ◦ Ff , which implies that Ff = idFL.
Since F reflects isomorphisms, f is an isomorphism. Hence, by amnesticity, f = idL.
Consequently, S = L. Thus S is a limit of D. �

13.26 REMARK
Embeddings E : A → B of full subcategories obviously reflect limits. Hence they lift
limits if and only if they create them. A more suggestive term for such full subcategories
is that they are closed under the formation of limits (or just limit-closed) in B.

13.27 PROPOSITION
A full reflective subcategory A of B is limit-closed in B if and only if A is isomorphism-
closed in B.

Proof: If A is limit-closed in B, then obviously A is isomorphism-closed in B. For
the converse, consider a diagram D : I → A such that E ◦ D : I → B has a limit
L = (L `i−−→ Di), where E : A → B denotes the embedding. Let L

r−→ A be an
A-reflection arrow for L. Then for each i there exists a morphism fi : A → Di with
`i = fi◦r. By the uniqueness property of reflection arrows and the fact that all Di belong
to A, S = (A

fi−−→ Di) must be a natural source for D resp. for E ◦ D. Consequently,
there exists a morphism f : A→ L with S = L ◦ f . Hence L = S ◦ r = L ◦ f ◦ r, which
implies that f ◦ r = idL. Therefore (r ◦ f) ◦ r = r ◦ idL = idA ◦ r, which implies that
r ◦ f = idA. Hence r is an isomorphism, and, consequently, L belongs to A. �

13.28 COROLLARY
If a category has certain limits, then so does each of its isomorphism-closed full reflective
subcategories. �

13.29 REMARK
Isomorphism-closed full reflective subcategories A of B usually fail to be colimit-closed.
However, the following proposition shows that the associated inclusion functors detect
colimits.
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13.30 PROPOSITION
Let A be a full subcategory of B with embedding E : A → B, and let D : I → A be a
diagram. If C = (Di

ci−−→ C) is a colimit of E ◦ D, and if C
r−→ A is an A-reflection

arrow for C, then C′ = r ◦ C is a colimit of D.

Proof: Obviously, C′ is a natural sink for D. Let S = (Di
fi−−→ A′) be an arbitrary

natural sink for D. Then S is a natural sink for E ◦ D. Hence there exists a unique
morphism C

f−→ A′ with S = f ◦ C. Since r is an A-reflection arrow, there exists a
unique morphism A

g−→ A′ with f = g ◦ r. Hence S = f ◦ C = g ◦ r ◦ C = g ◦ C′.
Uniqueness of g is obtained by retracing the steps of the above construction. �

13.31 EXAMPLES
(1) HComp is a full reflective subcategory of Top. The construction of coproducts in

HComp given in Example 10.67(5) is a special case of the above result.

(2) AbTor is a full coreflective subcategory of Ab. The construction of products in
AbTor given in Example 10.20(3) is a special case of the dual of the above result.

13.32 COROLLARY
Embeddings of full reflective subcategories detect colimits. �

13.33 REMARKS
(1) Embeddings of nonfull reflective subcategories may be quite awkward. See Exercise

13K.

(2) As will be seen in Chapter VI, all “reasonable” forgetful functors of concrete cate-
gories lift limits uniquely and detect colimits.

13.34 PROPOSITION
If a functor A F−−→ B preserves limits, then the following conditions are equivalent:

(1) F lifts limits (uniquely),

(2) F detects limits and is (uniquely) transportable.

Proof: (1) ⇒ (2) follows immediately from the fact that isomorphisms are products of
1-indexed families.

(2) ⇒ (1). Let D : I → A be a diagram and let S = (L `i−−→ FDi)I be a limit of

F ◦ D. Since F detects limits, D has a limit L = (A
fi−−→ Di)I . Since F preserves

limits, FL = (FA
Ffi−−−→ FDi)I is a limit of F ◦D. Hence there exists a B-isomorphism

FA
h−→ L with S = h ◦ FL. By transportability, h can be lifted to an A-isomorphism

A
k−→ B. Hence (B

fi◦k−1

−−−−−→ Di)I is a limit of D that lifts S. The uniqueness part follows
from Proposition 13.21. �
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CREATION AND REFLECTION OF ISOMORPHISMS

Since isomorphisms can be regarded as the limits of diagrams with scheme 1, the concepts
of creation and reflection of limits specialize to the following concepts:

13.35 DEFINITION
A functor A G−−→ B is said to

(1) create isomorphisms provided that whenever h : X → GA is a G-structured B-
isomorphism, there exists precisely one A-morphism ĥ : B → A with G(ĥ) = h,
and, moreover, ĥ is an isomorphism,

(2) reflect isomorphisms provided that an A-morphism f is an A-isomorphism when-
ever Gf is a B-isomorphism.

13.36 PROPOSITION
(1) If G creates (resp. reflects) limits, then G creates (resp. reflects) isomorphisms.

(2) G creates isomorphisms if and only if G reflects isomorphisms and is uniquely trans-
portable.

(3) If G creates isomorphisms, then G reflects identities. �

13.37 EXAMPLES
(1) Let E : A → B be the embedding of a full subcategory. Then E reflects isomor-

phisms. E creates isomorphisms if and only if A is isomorphism-closed in B.

(2) Let A be a monoid, considered as a category. Then the unique functor A G−−→ 1
reflects isomorphisms if and only if A is a group. G creates isomorphisms if and
only if A is a trivial (one-element) group.

(3) Each of the forgetful functors from Vec, Grp, and Mon to Set creates isomor-
phisms. None of the forgetful functors from Top, Rel, and Pos to Set reflects
isomorphisms.

13.38 REMARK
The following diagram summarizes some of the relationships between functors and limits.

HH
HHj

creates limits

creates isomorphisms

reflects identities

amnestic

↓

↓

↓
reflects limits

reflects isos

lifts limits uniquely

uniquely transportable

transportable

�����

�����

H
HHHj

H
HHj

lifts limits

detects limits

↓

��
���

�
��� ↓

↓ ↓
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Suggestions for Further Reading

Trnková, V. Some properties of set functors. Comment. Math. Univ. Carolinae 10
(1969): 323–352.

Trnková, V. When the product-preserving functors preserve limits. Comment. Math.
Univ. Carolinae 11 (1970): 365–378.

Adámek, J., J. Rosický, and V. Trnková. Are all limit-closed subcategories of locally
presentable categories reflective? Springer Lect. Notes Math. 1348 (1988): 1–18.

EXERCISES

13A. Preservation of Multiple Pullbacks

Let A be a complete category. Show that a functor A F−−→ B preserves small limits if
and only if F preserves small multiple pullbacks and terminal objects.

13B. Preservation of Limits by Set-Valued Functors

Show that

(a) If a functor A G−−→ Set has a G-universal arrow with a nonempty domain, then G
preserves limits. Deduce Corollary 13.9.

(b) If A is a full subcategory of Set that contains at least one nonempty set, then the
embedding A→ Set preserves limits.

* (c) Every functor Set→ Set preserves nonempty finite intersections.

(d) A functor Set→ Set preserves products if and only if it is representable.

(e) A functor Set → Set preserves coproducts if and only if it is naturally equivalent,
for some set A, to the functor A×− : Set→ Set, defined by

(A×−)(X
f−→ Y ) = A×X

idA×f−−−−→ A× Y.

13C. Reflection of Concrete Limits
Let (A, U) have small concrete limits. Show that U reflects small limits if and only if U
reflects isomorphisms.

13D. Lifting of Limits and Faithfulness

Show that

(a) A functor that lifts equalizers is faithful if and only if it reflects epimorphisms.

(b) A functor that lifts limits need not be faithful.

13E. Lifting of Limits and Transportability

Show that a functor that lifts limits (uniquely) is (uniquely) transportable.
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13F. Reflection of Isomorphisms

Show that a functor that reflects equalizers (or finite products) reflects isomorphisms.

13G. Initial Mono-Sources and Reflection of Limits
Show that if mono-sources are G-initial, then G reflects limits. [Cf. Proposition 10.60.]

13H. Hom-Functors and Limits
Show that

(a) If D : I → A is a diagram, then a source S = (L `i−−→ Di)i∈Ob(I) is a limit of D if
and only if, for each A-object A, hom(A,−)(S) is a limit of hom(A,−) ◦D.

(b) If A is a nonempty set, then hom(A,−) : Set→ Set reflects limits.

13I. Limit- and Colimit-Closed Full Subcategories

(a) Show that

(1) Set has no proper full subcategory that is both limit-closed and colimit-closed.

* (2) Top has no proper full subcategory that is both limit-closed and colimit-closed.

(3) Vec has precisely two full subcategories that are both limit-closed and colimit-
closed.

(b) Determine all full subcategories of Rel that are both limit-closed and colimit-closed.

13J. Limit-Closed vs. Reflective Full Subcategories

Show that

(a) Every full subcategory of the partially ordered set Z, considered as a category, is
limit- and colimit-closed in Z, but generally fails to be either reflective or coreflective
in Z.

(b) A full subcategory of a complete lattice A, considered as a category, is reflective in
A if and only if it is limit-closed in A.

* (c) There exist limit-closed full subcategories of Top that are not reflective in Top.
[Cf. 16D.]

13K. A Misbehaved Nonfull Reflective Embedding

Consider the following nonfull embedding A E−−→ B of preordered sets, considered as
categories:

• •

•

??~~~~~~~

__@@@@@@@
� � E //

•

��
@@

@@
@@

@ // •oo

��~~
~~

~~
~

•

??~~~~~~~

__@@@@@@@

Show that

(a) A is reflective in B,

(b) B is complete and cocomplete,
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(c) A is neither complete nor cocomplete,

(d) E detects neither limits nor colimits.

13L. Colimit-Dense Full Embeddings

Show that colimit-dense full embeddings preserve limits.

13M. Creation of Isomorphisms

Show that

(a) G creates limits if and only if G is faithful, lifts limits, and creates isomorphisms.

(b) G creates isomorphisms if and only if G creates 1-indexed products.

(c) If G creates isomorphisms, then G reflects identities.

(d) If G reflects identities, then G is amnestic.

13N. Creation of Limits of T -Algebras

Prove that for each functor T : X→ X the forgetful functor of Alg(T ) creates limits.
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Chapter IV

FACTORIZATION STRUCTURES

Every function A
f−→ B can be factored through its image, i.e., written as a composite

A
f−→ B = A

e−→ f [A] m−−→ B, where A
e−→ f [A] is the codomain-restriction of f and

f [A] m−−→ B is the inclusion. This fact, though simple, is often useful. Similarly, in
constructs such as Vec, Grp, and Top every morphism can be factored through its
“image”. Since

(a) for categories in general, no satisfactory concept of “embedding of subobjects” and
hence of “image of a morphism” is available,

and

(b) for certain constructs, factorizations of morphisms different from the one through
the image are of interest (e.g., in Top the one through the closure of the image:

A
f−→ B = A→ clBf [A] ↪→ B),

categorists have created an axiomatic theory of factorization structures (E,M) for mor-
phisms of a category A. Here E and M are classes of A-morphisms59 such that
each A-morphism has an (E,M)-factorization A

f−→ B = A
e∈E−−−→ C

m∈M−−−−→ B.
Naturally, without further assumptions on E and M such factorizations might be quite
useless. A careful analysis has revealed that the crucial requirement that causes (E,M)-
factorizations to have appropriate characteristics is the so-called “unique (E,M)-diago-
nalization” condition, described in Definition 14.1. Such factorization structures for
morphisms have turned out to be useful, especially for “well-behaved” categories (e.g.,
those having products and satisfying suitable smallness conditions). They have been
transformed into powerful categorical tools by two successive generalizations

(a) factorization structures for sources in a category, and

(b) factorization structures for G-structured sources with respect to a functor G.

Instead of describing the most general concept first and then specializing to the others,
our presentation will follow the historical development described above.

59The requirements E ⊆ Epi(A) and M ⊆ Mono(A) were originally included, but later dropped.
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14 Factorization structures for mor-
phisms

In this section factorization structures for morphisms are defined and investigated. In
particular, it is shown that every strongly complete category is simultaneously (ExtrEpi,
Mono)-structured and (Epi, ExtrMono)-structured (see 14.21).

14.1 DEFINITION
Let E and M be classes of morphisms in a category A.

(E,M) is called a factorization structure for morphisms in A and A is called
(E,M)-structured provided that

(1) each of E and M is closed under composition with isomorphisms,60

(2) A has (E,M)-factorizations (of morphisms); i.e., each morphism f in A has a
factorization f = m ◦ e, with e ∈ E and m ∈M, and

(3) A has the unique (E,M)-diagonalization property; i.e., for each commutative
square

A
e //

f

��

B

g

��

C m
// D

(∗)

with e ∈ E and m ∈M there exists a unique diagonal, i.e., a morphism d such that
the diagram

A
e //

f

��

B
d

~~~~
~~

~~
~

g

��

C m
// D

commutes (i.e., such that d ◦ e = f and m ◦ d = g).

14.2 EXAMPLES
(1) For any category, (Iso, Mor) and (Mor, Iso)61 are (trivial) factorization structures

for morphisms.
60 Condition (1) can be replaced by the following conditions (1a) and (1b):

(1a) if e ∈ E and h ∈ Iso(A), and h ◦ e exists, then h ◦ e ∈ E,

(1b) if m ∈ M and h ∈ Iso(A), and m ◦ h exists, then m ◦ h ∈ M.

This follows from Proposition 14.6 below since for its proof not the full strength of (1) but only that
of (1a) and (1b) is used. When generalizing factorization structures to sources or to functors, the
formulation in terms of (1a) and (1b) turns out to be more appropriate.

61Recall that Iso resp. Iso(A) is the class of all isomorphisms (in the category A); similarly for Mor,
Mono, etc. See the Table of Symbols.
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(2) For Set, Vec, Grp, Mon, Σ-Seq, each Alg(Ω) and many other categories of alge-
bras, (RegEpi, Mono) is a factorization structure for morphisms.

(3) For Cat, (RegEpi, Mono) is not a factorization structure for morphisms. [Regu-
lar epimorphisms are not closed under composition (cf. 14.6 and 7.76).] However,
(ExtrEpi, Mono) is a factorization structure for morphisms in Cat.

(4) Set has precisely four factorization structures for morphisms: besides the three
mentioned above, namely, (Epi, Mono) = (RegEpi, RegMono) and the two trivial
ones, the following (pathological) (E,M), where

E = {X e−→ Y |X = ∅ ⇒ Y = ∅}; and

M = {X m−−→ Y |m is a bijection or X = ∅}.

(5) Top has a proper class (even an illegitimate conglomerate) of factorization structures
for morphisms. Each of

(Epi, RegMono) = (surjection, embedding),
(RegEpi, Mono) = (quotient, injection),
(dense, closed embedding), and
(front-dense, front-closed embedding),

is a factorization structure for morphisms in Top, but (Epi, Mono) is not.

(6) (dense C∗-embedding, perfect map) is a factorization structure for morphisms in
Tych.

14.3 PROPOSITION
A is (E,M)-structured if and only if Aop is (M,E)-structured. �

14.4 PROPOSITION
If A is (E,M)-structured, then (E,M)-factorizations are essentially unique, i.e.,

(1) if A
ei−−→ Ci

mi−−→ B are (E,M)-factorizations of A
f−→ B for i = 1, 2, then there

exists a (unique) isomorphism h, such that the diagram

A
e1 //

e2

��

C1

h

~~||
||

||
||

m1

��

C2 m2

// B

commutes,

(2) if A
f−→ B = A

e−→ C
m−−→ B is an (E,M)-factorization and C

h−→ D is an

isomorphism, then A
f−→ B = A

h◦e−−−→ D
m◦h−1

−−−−−→ B is also an (E,M)-factorization.
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Proof:
(1). By the diagonalization-property there exist morphisms h and k such that the dia-

grams

A
e1 //

e2

��

C1

h

~~||
||

||
||

m1

��

C2 m2

// B

and

A
e2 //

e1

��

C2

k

~~||
||

||
||

m2

��

C1 m1

// B

commute. Hence, also the diagrams

A
e1 //

e1

��

C1

k◦h

~~||
||

||
||

m1

��

C1 m1

// B

and

A
e2 //

e2

��

C2

h◦k

~~||
||

||
||

m2

��

C2 m2

// B

commute. By uniqueness we conclude k ◦ h = idC1 and h ◦ k = idC2 . Therefore h is
an isomorphism.

(2). This follows directly from the assumption that each of E and M is closed under
composition with isomorphisms. �

14.5 LEMMA
Let A be (E,M)-structured and let e ∈ E and m ∈M. If the diagram

• e //

id
��

•
d

��~~
~~

~~
~

m

��
•

f
// •

commutes, then e is an isomorphism and f ∈M.

Proof: The diagram
• e //

e

��

•
x

��~~
~~

~~
~

m

��
•

m
// •

commutes for x = id and for x = e ◦ d. Hence, by uniqueness, e ◦ d = id. Consequently,
e is an isomorphism. Thus f = m ◦ e belongs to M by our assumptions on M. �

14.6 PROPOSITION
If A is (E,M)-structured, then the following hold:

(1) E ∩M = Iso(A),

(2) each of E and M is closed under composition,
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(3) E and M determine each other via the diagonalization-property;62 in particular, a
morphism m belongs to M if and only if for each commutative square of the form
(∗) (see Definition 14.1) with e ∈ E there exists a diagonal.

Proof:
(1). For any f ∈ E ∩M there exists a diagonal d that makes the diagram

• f
//

id
��

•
d

��~~
~~

~~
~

id
��

•
f
// •

commute. Hence f ∈ Iso(A). Conversely, if f ∈ Iso(A) and f = m ◦ e is an
(E,M)-factorization of f , then for d = f−1 ◦m the diagram

• e //

id
��

•
d

��~~
~~

~~
~

m

��
•

f
// •

commutes. Hence, by Lemma 14.5, f ∈M. By duality f ∈ E.

(2). Let A
m1−−→ B and B

m2−−→ C be morphisms in M. If m2 ◦m1 = m ◦ e is an (E,M)-
factorization, then diagonals d1 and d2 can be constructed successively such that
the diagrams

A
e //

m1

��

•
d1

~~~~
~~

~~
~~

m

��

B m2

// C

and

A
e //

id
��

•
d2

��~~
~~

~~
~~

d1

��

A m1

// B

and hence

A
e //

id
��

•
d2

��~~
~~

~~
~~

m

��

Am2◦m1

// C

commute. By Lemma 14.5 this implies m2 ◦m1 ∈ M. By duality, E is also closed
under composition.

(3). This follows for M immediately from Lemma 14.5, and for E via duality. �

14.7 PROPOSITION
If E and M are classes of morphisms in A, then A is (E,M)-structured if and only if
the following conditions are satisfied

(1) Iso(A) ⊆ E ∩M,

(2) each of E and M is closed under composition,

62Here the diagonal needn’t be required to be unique.
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(3) A has the (E,M)-factorization property, unique in the sense that for any pair of
(E,M)-factorizations m1 ◦ e1 = f = m2 ◦ e2 of a morphism f there exists a unique
isomorphism h, such that the diagram

• e1 //

e2

��

•
h

��~~
~~

~~
~

m1

��
•

m2

// •

commutes.

Proof: By Propositions 14.4 and 14.6, conditions (1)–(3) are necessary. To show that
they suffice, the unique (E,M)-diagonalization property must be established. Let

• e //

f
��

•
g

��
•

m
// •

(∗)

be a commutative square with e ∈ E and m ∈ M. Let f = m′ ◦ e′ and g = m′′ ◦ e′′

be (E,M)-factorizations. Then there exists a unique isomorphism h that makes the
diagram

•
e′

��

e // •
e′′

��
•

m′

��

•
h
oo

m′′

��
•

m
// •

(∗∗)

commute. Hence d = m′ ◦ h ◦ e′′ is a diagonal for (∗). To show uniqueness, let d̃ be a
diagonal for (∗). If d̃ = m̃ ◦ ẽ is an (E,M)-factorization, then there exist isomorphisms
h′ and h′′ such that the diagrams

• ẽ◦e //

e′

��

•
h′

��~~
~~

~~
~

m̃
��

•
m′
// •

and

• e′′ //

ẽ
��

•
h′′

��~~
~~

~~
~

m′′

��
•

m◦m̃
// •

commute. Hence in (∗∗) h can be replaced by h′ ◦ h′′, which implies that h = h′ ◦ h′′.
Consequently, d̃ = m̃ ◦ ẽ = m′ ◦ h′ ◦ h′′ ◦ e′′ = m′ ◦ h ◦ e′′ = d. �

14.8 REMARK
If condition (3) in the above proposition would be weakened by just requiring the
existence but not the uniqueness of h, then (1)–(3) would not imply that (E,M)-
factorizations are unique. To see this, let A be a category with three objects A, B,
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and C, and four non-identity morphisms, three of which are depicted in the commuta-
tive diagram

A

f
  

@@
@@

@@
@

e //

e

��

B

m

��

B m
// C

and for which the fourth is B
h−→ B with h ◦ h = h. If E = Iso(A) ∪ {e} and M =

Iso(A) ∪ {m}, then both h and idB serve as diagonals of the above square. See also
Exercise 14B.

14.9 PROPOSITION
Let A be (E,M)-structured and let f ◦ g ∈M.

(1) If f ∈M, then g ∈M.

(2) If f is a monomorphism, then g ∈M.

(3) If g is a retraction, then f ∈M.

Proof:
(1). Let g = m ◦ e be an (E,M)-factorization. Then (f ◦ m) ◦ e and (f ◦ g) ◦ id are

(E,M)-factorizations of f ◦ g. By Proposition 14.4 there is an isomorphism h with
h ◦ e = id. Consequently, e is an isomorphism, and thus g = m ◦ e belongs to M.

(2). Let g = m◦e be an (E,M)-factorization. Then there exists a diagonal d that makes
the diagram

• e //

id
��

•
d

��~~
~~

~~
~

f◦m
��

•
f◦g
// •

commute. Since f is a monomorphism, the diagram

• e //

id
��

•
d

��~~
~~

~~
~

m

��
•

g
// •

commutes as well. Hence Lemma 14.5 implies that g ∈M.

(3). Let f = m ◦ e be an (E,M)-factorization, and let s be a morphism with id = g ◦ s.
Then there exists a diagonal d that makes the diagram

• e //

s

��

•
d

��~~
~~

~~
~

m

��
•

f◦g
// •
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commute. Hence
• e //

id
��

•
g◦d

��~~
~~

~~
~

m

��
•

f
// •

commutes, so that, by Lemma 14.5, f ∈M. �

RELATIONSHIP TO SPECIAL MORPHISM CLASSES

14.10 PROPOSITION
If A is (E,M)-structured, then the following hold:

(1) E ⊆ Epi(A) implies that ExtrMono(A) ⊆M.

If, moreover, A has (Epi,Mono)-factorizations, then

(2) Epi(A) ⊆ E implies that M ⊆ ExtrMono(A).

(3) Epi(A) = E implies that M = ExtrMono(A).

Proof:
(1). If f = m ◦ e is an (E,M)-factorization of an extremal monomorphism, then

e ∈ Epi(A) implies that e ∈ Iso(A). Hence f ∈M.

(2). We will show that whenever m ∈M is factored as m = f ◦ e, where e is an epimor-
phism, then e is an isomorphism. This will imply that: (a) m is a monomorphism
(consider an (Epi, Mono)-factorization of m), and (b) m is extremal. It is clearly
sufficient to show that e is a section, and this follows from the existence of a diagonal
d for the diagram

• e //

id
��

•
d

��~~
~~

~~
~

f

��
•

m
// •

(3) follows from (1) and (2). �

14.11 PROPOSITION
If A is (E,M)-structured and has products of pairs, then the following conditions are
equivalent:

(1) E ⊆ Epi(A),

(2) ExtrMono(A) ⊆M,

(3) Sect(A) ⊆M,

(4) for each object A, the diagonal morphism ∆A = 〈idA, idA〉 : A → A × A belongs to
M,
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(5) f ◦ g ∈M implies that g ∈M,

(6) f ◦ e ∈M and e ∈ E imply that e ∈ Iso(A),

(7) M = {f ∈ Mor(A) | f = g ◦ e and e ∈ E imply that e ∈ Iso(A)}.

Proof: The implication (1) ⇒ (2) follows from Proposition 14.10(1). The implications
(2) ⇒ (3) ⇒ (4), are obvious.

(4) ⇒ (1). Consider A
e−→ B in E and B

r //

s
// C with r ◦ e = s ◦ e (= h). Then there

exists a diagonal morphism d that makes the diagram

A
e //

h
��

B
d

{{wwwwwwwww
〈r,s〉
��

C
∆C

// C × C

commute. Hence r = d = s, so that e is an epimorphism.

Therefore conditions (1)–(4) are equivalent.

(1) ⇒ (6). If e ∈ E and f ◦ e ∈M, then there exists a diagonal morphism d that makes
the diagram

• e //

id
��

•
d

��~~
~~

~~
~

f

��
•

f◦e
// •

commute. Hence e is a section and an epimorphism, i.e., an isomorphism.

(6) ⇒ (7) is obvious.

(7)⇒ (5). If f◦g ∈M and g = m◦e is an (E,M)-factorization, then e is an isomorphism.
Hence g ∈M.

(5) ⇒ (3) follows from Iso(A) ⊆M. �

14.12 COROLLARY
If A is (E, Mono)-structured and has products of pairs, then E = ExtrEpi(A).

Proof: Immediate from the Proposition 14.11 and the dual of Proposition 14.10(3). �

14.13 REMARKS
(1) If A does not have products of pairs, the conditions of the above proposition need

no longer be equivalent. Consider, e.g., a category A with Ob(A) = Z, and

homA(n, m) having exactly


0
2
1

 elements if


m < n

m = n + 1
otherwise
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If E = Mor(A) and M = Iso(A) = Mono(A) = Epi(A), then A is (E,M)-structured
and conditions (2), (3), (5), (6), and (7) of Proposition 14.11 are satisfied, but (1)
is not.

The fact that A is (M,E)-structured also shows that the results (2) and (3) of
Proposition 14.10 need not hold for factorization structures for morphisms in arbi-
trary categories.

(2) As will be seen in Theorem 15.4, factorization structures (E,M) for sources in a
category A always satisfy E ⊆ Epi(A).

14.14 PROPOSITION
If A has (RegEpi, Mono)-factorizations, then the following hold:

(1) A is (RegEpi, Mono)-structured,

(2) RegEpi(A) = ExtrEpi(A),

(3) the class of regular epimorphisms in A is closed under composition,

(4) if f ◦ g is a regular epimorphism in A, then so is f .

Proof:
(1). Obviously, every category has the unique (RegEpi, Mono)-diagonalization property.

(2). This follows from the dual of Proposition 14.10(3).

(3). This follows from (1) and Proposition 14.6(2).

(4). This follows from (2). �

RELATIONSHIP TO LIMITS

14.15 PROPOSITION
If A is (E,M)-structured, then M is closed under the formation of products and pull-
backs, and M ∩Mono(A) is closed under the formation of intersections.63

Proof:
(1). Let

∏
Ai

Πmi−−−→
∏

Bi be a product of morphisms mi in M, and let∏
Ai

Πmi−−−→
∏

Bi =
∏

Ai
e−→ C

m−−→
∏

Bi be an (E,M)-factorization. Then for
each index j there exists a diagonal morphism dj that makes the following diagram
commute (where πj and ρj are the projection morphisms):∏

Ai
e //

πj

��

C
dj

}}zz
zz

zz
zz

z
ρj◦m
��

Aj mj

// Bj

63 In fact, M is closed under the formation of multiple pullbacks (cf. Exercise 11L).
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This implies that 〈di〉 ◦ e = idΠAi and Πmi ◦ 〈di〉 = m. Therefore Lemma 14.5
implies that Πmi ∈M.

(2). Let the diagram

A
m //

f
��

B

f
��

D m
// C

be a pullback with m ∈ M, and let A
m−−→ B = A

e−→ A′ m̃−−→ B be an (E,M)-
factorization. Then there exists a diagonal morphism d that makes the diagram

A
e //

f
��

A′

d

~~}}
}}

}}
}

f◦m̃
��

D m
// C

commute. By the pullback-property there exists a morphism A′ g−→ A with m̃ =
m ◦ g and d = f ◦ g. This implies that m ◦ (g ◦ e) = m and f ◦ (g ◦ e) = f and hence
that g ◦ e = idA. By Lemma 14.5 this implies that m ∈M.

(3). Let A
f−→ B = A

fi−−→ Ai
mi−−→ B be an intersection with each mi being a monomor-

phism in M, and let A
f−→ B = A

e−→ C
m−−→ B be an (E,M)-factorization. Then

for each index i there exists a diagonal morphism di that makes the diagram

A
e //

fi

��

C
di

~~}}
}}

}}
}

m

��

Ai mi

// B

commute. Thus m factors through each mi. Hence there exists a morphism C
d−→ A

with m = f ◦ d. Consequently, f ◦ d ◦ e = f , which implies that d ◦ e = idA. So, by
Lemma 14.5, f ∈M. �

We conclude this section with several results showing that the existence of suitable
limits or colimits in a category guarantees the existence of distinguished factorization
structures for morphisms.

14.16 FACTORIZATION LEMMA
Let A have intersections and equalizers, let C

f−→ D be an A-morphism, and let M ⊆
Mono(A) satisfy the following conditions:

(a) intersections of families of M -subobjects of D belong to M,

(b) if f = m̂ ◦ g ◦ h with m̂ ∈M and g ∈ RegMono(A), then m̂ ◦ g ∈M.

Then there exist m ∈M and e ∈ Epi(A), such that
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(1) f = m ◦ e,

(2) if f = m ◦ g with m ∈M, then there exists a diagonal d that makes the diagram

• e //

g

��

•
d

��~~
~~

~~
~

m

��
•

m
// •

commute,

(3) if e = m ◦ g, where m ◦m ∈M, then m ∈ Iso(A).

Proof: Let S be the sink consisting of all M -subobjects Di
mi−−→ D of D through which

f factors (i.e., f = mi ◦ gi for some gi), and let (B,m) be the intersection of S. Then
m ∈M and there exists a morphism e with f = m◦e. By construction, (2) is immediate.
To establish (3) consider a factorization e = m ◦ g of e with m ◦m ∈ M. Then, by (2),
there exists a diagonal d that makes the diagram

• e //

g

��

•
d

��~~
~~

~~
~

m

��
•

m◦m
// •

commute. Since m is a monomorphism, this implies that m ◦ d = id. Hence m is a
retraction and, being the first factor of the monomorphism m ◦ m, a monomorphism;
thus an isomorphism. Hence (3) holds. It remains to be shown that e is an epimorphism.
Consider a pair (r, s) of morphisms with r ◦ e = s ◦ e, and let g be an equalizer of (r, s).
Then there exists a morphism h with e = g ◦ h. Hence f = m ◦ g ◦ h. By (b) m ◦ g ∈M,
so that by (3) g is an isomorphism. Thus r = s. �

14.17 THEOREM
If A has finite limits and intersections, then A is (ExtrEpi, Mono)-structured.

Proof: Application of Lemma 14.16 to M = Mono(A) yields that A is (ExtrEpi,
Mono)-factorizable. To show that A has the (automatically unique) (ExtrEpi, Mono)-
diagonalization property, consider a commutative diagram

• e //

f
��

•
g

��
•

m
// •

with e an extremal epimorphism and m a monomorphism. Let

• m̂ //

ĝ

��

•
g

��
•

m
// •
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be a pullback. Then there exists a unique morphism h such that the diagram

• e //

h
��

@@
@@

@@
@

f

��

•

• •
ĝ
oo

m̂

OO

commutes. Since e is an extremal epimorphism and m̂ (being a pullback of a mono-
morphism) is a monomorphism, m̂ must be an isomorphism. Hence d = ĝ ◦ m̂−1 is the
desired diagonal. �

14.18 PROPOSITION
If A has the (Epi, ExtrMono)-diagonalization property, then the class of extremal mono-
morphisms in A is closed under composition and intersections.

Proof: Since monomorphisms are closed under composition and intersections, only the
stability of the extremal-property needs to be verified. If m and m are extremal mono-
morphisms and m ◦m = f ◦ e for some epimorphism e, then by assumption there exists
a diagonal d that makes the diagram

• e //

m
��

•
d

��~~
~~

~~
~

f

��
•

m
// •

commute. Hence m = d ◦ e implies that e is an isomorphism.

Now let A = (Ai
mi−−→ A)I be a family of extremal subobjects of A. If D

d−→ A =

D
di−−→ Ai

mi−−→ A is an intersection of A, and if d = f ◦ e for some epimorphism e, then
for each i ∈ I there exists a diagonal ki that makes the diagram

• e //

di

��

•
ki

��~~
~~

~~
~

f

��
•

mi

// •

commute. Since the intersection (being a limit) is an extremal mono-source, the epimor-
phism e must be an isomorphism. �

14.19 THEOREM
If A has equalizers and intersections, then A is (Epi, ExtrMono)-structured.

Proof: First we show that A has the (Epi, ExtrMono)-diagonalization property. Let

A
c //

g

��

B

h
��

C
f
// D
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be a commutative diagram, where c is an epimorphism and f is an extremal monomor-
phism. Let M be the class of all subobjects (Dm,m) of D with the property that there
exist (necessarily unique) morphisms fm and hm that make the diagram

A
c //

g

��

B
hm

}}{{
{{

{{
{{

h

��

Dm

m
!!C

CC
CC

CC
C

C

fm

==||||||||

f
// D

commute. Then M satisfies the conditions (a) and (b) of Lemma 14.16, so that there
exists an (Epi, M)-factorization f = m ◦ e. Since f is an extremal monomorphism, this
implies that e (= fm) is an isomorphism. Thus d = e−1 ◦ hm is the desired diagonal.
Consequently, A is (Epi, ExtrMono)-diagonalizable. This fact, together with Proposition
14.18, implies that the class M = ExtrMono(A) satisfies conditions (a) and (b) of Lemma
14.16 for every A-morphism f . Hence A is (Epi, M)-factorizable. �

14.20 COROLLARY
In a category with equalizers and intersections the class of extremal monomorphisms is
the smallest class of morphisms that contains all regular monomorphisms and is closed
under composition and intersections.

Proof: By the above results (14.18 and 14.19) and Corollary 7.63, ExtrMono(A) con-
tains all regular monomorphisms and is closed under composition and intersections. If
M̂ is a class of morphisms with these properties, then M = M̂ ∩ Mono(A) satisfies
conditions (a) and (b) of Lemma 14.16 for every A-morphism f , which implies that
A is (Epi, M)-factorizable. If f = m ◦ e is an (Epi, M)-factorization of an extremal
monomorphism f , then e is an isomorphism, and so belongs to M. Thus f = m◦e ∈M.�

14.21 COROLLARY
Every strongly complete category is (ExtrEpi, Mono)-structured and (Epi, ExtrMono)-
structured. �

14.22 PROPOSITION
A category with pullbacks and coequalizers is (RegEpi, Mono)-structured if and only if
regular epimorphisms are closed under composition.

Proof: The composition closure is a necessary condition, by Proposition 14.6(2). To
show that it is sufficient, observe that by Proposition 14.14 it need only be shown that
every morphism f has a (RegEpi, Mono)-factorization. Let (p, q) be a congruence-
relation of f , and let c be a coequalizer of (p, q). Then there exists a unique morphism
m with f = m◦ c. To show that m is a monomorphism, let (r, s) be a pair of morphisms
with m ◦ r = m ◦ s and let c be a coequalizer of (r, s). Then there exists a unique
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morphism g with m = g ◦ c. Since (p, q) is a congruence relation of f = g ◦ c◦ c and since
c ◦ p = c ◦ q, (p, q) is a congruence relation of c and of c ◦ c. Since c and c ◦ c are both
regular epimorphisms, each (by Proposition 11.22) is a coequalizer of (p, q). Hence, by
essential uniqueness of coequalizers, c must be an isomorphism. So r = s. Thus m is a
monomorphism. �

14.23 EXAMPLES
(1) Many familiar categories are (RegEpi, Mono)- and (Epi, RegMono)-structured, e.g.,

Set, Vec, Grp, Pos, Top, Aut, Σ-Seq, and HComp. So are any of the constructs
Alg(Ω) and Spa (T).

(2) Cat is (ExtrEpi, Mono)-structured, but it has extremal epimorphisms that are not
regular (cf. 7.76).

(3) Sgr is (Epi, ExtrMono)-structured, but it has extremal monomorphisms that are
not regular (cf. 14I).
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EXERCISES

14A. Factorization Structures for Morphisms in Special Categories

Let A
f−→ B be a morphism in one of the categories Set, Vec, Top, Pos, Sgr, or Rng.

Show that the familiar “image”-factorization A
f−→ B = A

e−→ f [A] m−−→ B is

(a) an (Epi, ExtrMono)-factorization in Set, Vec, Top, and Pos,

(b) an (ExtrEpi, Mono)-factorization in Set, Vec, Sgr, and Rng.
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14B. Diagonals

1. Show that Set has

(1) (Mono, Epi)-factorizations and -diagonalizations, but not unique ones,

(2) (Section, Projection)-factorizations and -diagonalizations, but not unique ones.

2. Show that every category that has pullbacks has the unique (ExtrEpi, Mono)-
diagonalization property.

14C. Strong Monomorphisms

A monomorphism m in A is called strong provided A has the unique (Epi, {m})-
diagonalization property. Show that

(a) Every strict monomorphism is strong, but not vice versa.

(b) Every strong monomorphism is extremal, but not vice versa.

(c) The class of strong monomorphisms is closed under composition, intersections, pull-
backs, products, and left-cancellation.

(d) If A has pushouts, then in A StrongMono = ExtrMono.

(e) If A has equalizers and intersections, then in A StrongMono = ExtrMono [cf. The-
orem 14.19].

(f) If A is (Epi, M)-structured for some class M of monomorphisms, then
M = StrongMono = ExtrMono.

(g) If A is (Epi, M)-structured, then M need not consist of monomorphisms alone [cf.
Remark 14.13(1)].

14D. (RegEpi, Mono)-Structured Categories

Let A have pullbacks and coequalizers. Show that

(a) A is (RegEpi, Mono)-structured if and only if RegEpi(A) = ExtrEpi(A). [Cf. Propo-
sitions 14.22 and 7.62(1).]

(b) If regular epimorphisms are stable in A(cf. Exercise 11J), then A is (RegEpi, Mono)-
structured.

(c) If there exists a faithful functor from A into a (RegEpi, Mono)-structured cate-
gory that preserves and reflects regular epimorphisms, then A is (RegEpi, Mono)-
structured.

14E. Regular Categories

A category A is called regular provided that it satisfies the following conditions:

(1) A has finite limits,

(2) A is (RegEpi, Mono)-structured,

(3) In A regular epimorphisms are stable (cf. 11J).
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Show that

(a) If A has coequalizers, then A is regular provided that it satisfies (1) and (3) above.

(b) If A is regular and X is small, then [X,A] is regular.

14F. Exact Categories

Pointed categories that are (NormalEpi, NormalMono)-structured are called exact.
Show that

(a) A pointed category is exact if and only if it has (NormalEpi, NormalMono)-factoriza-
tions.

(b) If A is exact, then so is Aop.

(c) In an exact category every monomorphism is normal.

(d) An exact category has kernels and finite intersections.

(e) A nonempty exact category has a zero-object.

(f) An exact category is wellpowered if and only if it is co-wellpowered.

(g) Exact constructs are wellpowered and co-wellpowered.

(h) Vec and Ab are exact, but none of Grp, Mon, or pSet is exact.

14G. Closure Properties

Let A be (E,M)-structured. Show that

(a) M is closed under the formation of multiple pullbacks (cf. Proposition 14.15).

(b) M is closed under formation of retracts in the arrow category A2 (cf. Exercise
3K(b)).

* 14H. (E, −)-structured Categories

A is called (E,−)-structured provided that there exists some M such that A is
(E,M)-structured. Show that a cocomplete category A is (E,−)-structured if and only
if E ⊆Mor(A) satisfies the following conditions:

(1) Iso(A) ⊆ E,

(2) E is closed under composition,

(3) E is closed under the formation of pushouts,

(4) E is closed under the formation of colimits,

(5) if e = f ◦ e with e and e in E, then f ∈ E,
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(6) (solution set condition) for each A-morphism f there exists a set of factorizations
f = gi ◦ ei, i ∈ I, with ei ∈ E such that for each factorization f = g ◦ e with e ∈ E
there is some i ∈ I and some morphism h such that the following diagram commutes:

• e //

ei

��

•
h

��~~
~~

~~
~

g

��
•

gi

// •

14I. Regular Monomorphisms in the Category of Semigroups

Let C = {0, a, b, c, d, e} and consider the following multiplication table:

· 0 a b c d e

0 0 0 0 0 0 0
a 0 0 0 0 b c
b 0 0 0 0 c 0
c 0 0 0 0 0 0
d 0 b c 0 e 0
e 0 c 0 0 0 0

(a) Prove that C with the above multiplication · is a semigroup.

(b) A = {0, a, b} and B = {0, a, b, c} are subsemigroups of C. Let f : A ↪→ B and
g : B ↪→ C be the inclusion homomorphisms. Prove that f and g are regular
monomorphisms and that g ◦ f is an extremal monomorphism in Sgr.

(c) Prove that if C
h //

k
// D are morphisms in Sgr that coincide on A, then h and k

coincide on B. [Hint: Use the equalities b = da and c = bd.] Conclude that g ◦ f is
not a regular monomorphism in Sgr.

(d) Let B̂ be the free semigroup on three generators {â, b̂, ĉ}; let Â be the subsemigroup
of B̂ generated by {â, b̂â, âĉ}; let Ĉ be the quotient semigroup obtained by identifying
the words â and b̂âĉ; and let i : Â ↪→ B̂ and p : B̂ → Ĉ be the inclusion map and
natural map, respectively.

(1) Construct a semigroup D̂ and homomorphisms Ĉ
r //

s
// D̂ such that p ◦ i is an

equalizer of r and s.

(2) Show that i is not a regular monomorphism in Sgr.

(e) Conclude that for the complete, wellpowered category Sgr, the following hold:

(1) The class of regular monomorphisms coincides with the class of strict monomor-
phisms.

(2) There exist extremal monomorphisms that are not regular.

(3) The class of regular monomorphisms is not closed under composition.

(4) Sgr is not (Epi, RegMono)-factorizable.
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(5) The first factor of a regular monomorphism is not necessarily regular.

14J. Dominions
Let A be a wellpowered complete category, and let X

f−→ Y be an A-morphism. Prove
that

(a) X
f−→ Y has a factorization X

g−→ D
d−→ Y , where d is a regular monomorphism

that is characterized uniquely by any of the following equivalent conditions:

(1) for all morphisms r and s, r ◦ f = s ◦ f implies that r ◦ d = s ◦ d,

(2) (D, d) is the smallest regular subobject of Y through which f can be factored,

(3) d is the intersection of all regular subobjects of Y through which f can be
factored.

(D, d) is called a dominion of f .

(b) Any two dominions of f are isomorphic subobjects of Y .

(c) In A the extremal monomorphisms are precisely the regular monomorphisms if and
only if the (Epi, ExtrMono)-factorization of any morphism is the same as its domin-
ion factorization.

(d) f is an epimorphism if and only if (Y, idY ) is a dominion of f .

(e) f is a regular monomorphism if and only if (X, f) is a dominion of f .

(f) If f = r ◦ s, where s is an epimorphism, then the dominions of f and r coincide.

(g) Consider the pushout square

• f
//

f
��

•
p

��
•

q
// •

Then (D, d) is a dominion of f if and only if d is an equalizer of p and q.
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15 Factorization structures for sources

Because of their generality, factorization structures for sources are frequently a more
powerful categorical tool than factorizations for morphisms. However, in two respects
they are more restrictive. Namely, if (E,M) is a factorization structure for sources in
A, then

(1) E must be contained in the class of epimorphisms of A (15.4), and

(2) certain colimits of diagrams in A involving morphisms in E must exist (15.14).

Such source factorization structures occur quite frequently (15.10 and 15.25), and for
co-wellpowered categories with products there is no essential difference between these
two approaches to factorization since for such categories A every factorization structure
for morphisms, with E ⊆ Epi(A), has a unique extension to a factorization structure
for sources (15.21). In particular, every strongly complete, co-wellpowered category has
both (Epi, ExtrMono-Source) and (ExtrEpi, Mono-Source) as factorization structures
for sources (15.25).

15.1 DEFINITION
Let E be a class of morphisms and let M be a conglomerate of sources in a category A.
(E,M) is called a factorization structure on A, and A is called an (E,M)-category
provided that

(1) each of E and M is closed under compositions with isomorphisms in the following
sense:

(1a) if e ∈ E and h ∈ Iso(A) and h ◦ e exists, then h ◦ e ∈ E,

(1b) if S ∈M and h ∈ Iso(A) and S ◦ h exists, then S ◦ h ∈M,

(2) A has (E,M)-factorizations (of sources); i.e., each source S in A has a factor-
ization S =M◦ e with e ∈ E andM∈M, and

(3) A has the unique (E,M)-diagonalization property; i.e., whenever A
e−→ B and

A
f−→ C are A-morphisms with e ∈ E, and S = (B

gi−−→ Di)I andM = (C mi−−→ Di)I

are sources in A withM∈M, such thatM◦ f = S ◦ e, then there exists a unique
diagonal, i.e., a morphism B

d−→ C such that for each i ∈ I the diagram

A
e //

f

��

B
d

~~}}
}}

}}
}}

gi

��

C mi

// Di

commutes.
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Factorization of sources

15.2 REMARKS
(1) As opposed to the concept of factorization structures for morphisms the concept

of factorization structures (for sources) is not self-dual. The dual concept, that of
factorization structures for sinks, will not be explicitly formulated here.

(2) Another distinction from factorization structures for morphisms is the fact that the
uniqueness requirement for diagonals in the definition of factorization structures (for
sources) is redundant. Cf. Exercise 14B on the one hand, and the proof of Theorem
15.4 on the other.

(3) If (E,M) is a factorization structure on A and M is the class of those A-morphisms
that (considered as 1-sources) belong to M, then (E,M) is a factorization structure
for morphisms on A. (Cf. footnote to Definition 14.1) Hence all the results of §14
apply.

(4) Factorization of sources applies to empty sources too. If (E,M) is a factorization
structure on A, and AM is the class of all A-objects A such that the empty source
(A, ∅) with domain A belongs to M, then conditions (2) and (3) in Definition 15.1
translate into:

(2∅) for every object A there exists a morphism A
e−→ B in E with B ∈ AM,

(3∅) for every morphism A
e−→ B in E and every morphism A

f−→ C with C ∈ AM

there exists a unique morphism B
d−→ C with f = d ◦ e.
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15.3 EXAMPLES
(1) Every category is an (Iso, Source)-category.64 This factorization structure is called

trivial. Also, every category has the (unique) (RegEpi, Mono-Source)-diagonaliza-
tion property, although not all categories are (RegEpi, Mono-Source)-categories
(cf. Proposition 15.13).

(2) Set is an (Epi, Mono-Source)-category. For Set this is the only nontrivial factor-

ization structure. (Epi, Mono-Source)-factorizations of a source (A
fi−−→ Ai)I in Set

can be obtained via either of the following two constructions:

(a) Define an equivalence relation on A by: “a ∼ b if and only if fi(a) = fi(b) for
each i ∈ I”, and let A

e−→ A/∼ be the naturally associated surjection. Then for
each i ∈ I there exists a unique map A/∼ mi−−→ Ai with fi = mi ◦ e. Then

A
fi−−→ Ai = A

e−→ A/∼ mi−−→ Ai

is an (Epi, Mono-Source)-factorization of (fi) in Set.

(b) Consider the cartesian product (
∏

Ai, πi)I of the codomain (Ai)I — that is, the
conglomerate65 of all functions x with domain I such that x(i) ∈ Ai for each

i ∈ I. The function A
f−→

∏
Ai defined by a 7→ f(a), where (f(a))(i) = fi(a)

for each i ∈ I, has a factorization A
f−→

∏
Ai = A

e−→ B
m−−→

∏
Ai, with e

a surjective function and m an injective one. Since A is a set and A
e−→ B

is surjective, B is codable by a set; i.e., there exists a set B′ and a bijection
B′ b−→ B. Then for B

mi−−→ Ai defined by mi(b) = (m(b))(i), it follows that

A
fi−−→ Ai = A

b−1◦ e−−−−→ B′ mi◦ b−−−−→ Ai

is an (Epi, Mono-Source)-factorization of (fi) in Set.

For various constructs, one of the above constructions can be used to obtain (Epi,
Mono-Source)-factorizations.

(3) Many algebraic constructs such as Vec, Grp, Mon, Rng, and Alg(Ω) are
(RegEpi, Mono-Source)-categories.

(4) Cat is an (ExtrEpi, Mono-Source)-category.
64Source (resp. Source(A)) is the conglomerate of all sources (in the category A). Similarly, Mono-Source

is the conglomerate of all mono-sources in the given category, etc. See the Table of Symbols.
65One might be tempted to describe this construction more categorically by forming the quasicategory

Class of all classes and all functions, and by letting (
Q

Ai, πi)I be the product of (Ai)I in that
quasicategory. This, however, is not possible, since the conglomerate (

Q
Ai)I frequently fails to be a

class and, hence, to be an object of the quasicategory Class. In fact, the quasicategory Class behaves
badly with respect to many familiar constructions (recall, e.g., that there is a largest class, U). This
problem could be resolved, e.g., by introducing in addition to “sets”, “classes”, and “conglomerates”,
one higher level of entities, say, “collections”. Then the collection of all conglomerates and all
functions between them would form a rather well-behaved “quasi-quasicategory”. Since there are
only a few occasions in this text where the use of something like this would be advantageous, we have
refrained from complicating the foundations by introducing it.
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(5) Aut is an (RegEpi, Mono-Source)-category.

(6) Top has a proper class (even an illegitimate conglomerate) of factorization structures
(cf. Exercise 15L). In particular, Top is an (Epi, ExtrMono-Source)-category, an
(ExtrEpi, Mono-Source)-category, and a (Bimorphism, Initial-Source)-category.

15.4 THEOREM
If A is an (E,M)-category, then E ⊆ Epi(A).

Proof: Consider e ∈ E and a pair (r, s) of morphisms with r ◦ e = s ◦ e. The source
(hf )f∈Mor(A), defined by hf = r ◦ e, has an (E,M)-factorization (hf ) = (mf ) ◦ e. The
source (gf )f∈Mor(A), defined by

gf =

{
r, if mf ◦ f = s

s, otherwise,

satisfies the equation (mf ) ◦ e = (gf ) ◦ e. Hence there exists a diagonal d that makes the
diagram

• e //

e
��

•
d

��~~
~~

~~
~

gf

��
•

mf

// •

commute for each f ∈ Mor(A). In particular,

md ◦ d = gd =

{
r, if md ◦ d = s

s, otherwise.

This is possible only for r = s. Thus e is a epimorphism. �

15.5 PROPOSITION
If A is an (E,M)-category, then the following hold:

(1) (E,M)-factorizations are essentially unique,

(2) E ⊆ Epi(A) and ExtrMono-Source(A) ⊆M,

(3) E ∩M = Iso(A),

(4) each of E and M is closed under composition,

(5) if f ◦ g ∈ E and g ∈ Epi(A), then f ∈ E,

(6) if f ◦ g ∈ E and f ∈ Sect(A), then g ∈ E,

(7) if (Si) ◦ S ∈M, then S ∈M,

(8) if a subsource of S belongs to M, then S belongs to M,

(9) E and M determine each other via the diagonalization-property; moreover,
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(a) a source belongs to M if and only if every E-morphism through which it factors
is an isomorphism,

(b) if M consists of mono-sources only, then a morphism f belongs to E if and only
if f = m ◦ g with m ∈M implies that m ∈ Iso(A).

Proof: (8) follows from (9). All other conditions are proved as in §14 by use of Theorem
15.4. �

RELATIONSHIP TO SPECIAL MORPHISMS
AND SPECIAL SOURCES

15.6 PROPOSITION
If A is a (RegEpi, M)-category, then M contains all mono-sources of A.

Proof: Let S be a mono-source and S = M◦ e be a (RegEpi, M)-factorization of S.
Let e be a coequalizer of r and s. Then S ◦ r =M◦ e ◦ r =M◦ e ◦ s = S ◦ s. Since S
is a mono-source, this implies that r = s. Hence e is an isomorphism, so that S ∈M.�

15.7 PROPOSITION
For (E,M)-categories A, the following are equivalent:

(a) M ⊆ Mono-Source(A),

(b) A has coequalizers and RegEpi(A) ⊆ E.

Proof: (a) ⇒ (b). Let A
r //

s
// B be a pair of morphisms. Consider the source S =

(B
fi−−→ Bi)I that consists of all morphisms fi with fi ◦ r = fi ◦ s. If S = M ◦ e is

an (E,M)-factorization, then, since M is a mono-source, e is a coequalizer of (r, s).
Hence A has coequalizers. If c is a coequalizer of some pair (r, s), and c = m ◦ e is an
(E,M)-factorization, then e is a coequalizer of (r, s). Hence m ∈ Iso(A), so that c ∈ E.

(b)⇒ (a). LetM belong to M and let (r, s) be a pair of morphisms withM◦r =M◦s.
ThenM factors through the coequalizer c of (r, s). Hence c ∈ E implies, by Proposition
15.5(9)(a), that c is an isomorphism. So r = s. �

15.8 PROPOSITION
For (E,M)-categories A the following hold:

(1) if M = Mono-Source(A), then E = ExtrEpi(A),

(2) if M = ExtrMono-Source(A), then E = Epi(A),

(3) if E = Epi(A), then the following conditions are equivalent:

(a) M = ExtrMono-Source(A),
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(b) A has coequalizers,

(4) if E = ExtrEpi(A) or E = RegEpi(A), then the following conditions are equivalent:

(a) M = Mono-Source(A),

(b) A has coequalizers.

Proof:
(1). Apply Theorem 15.4 and Proposition 15.5(9)(b).

(2). E ⊆ Epi(A) by Theorem 15.4. If f is an epimorphism and f = m ◦ e is an (E,M)-
factorization, then m is an extremal monomorphism and (as the second factor of
an epimorphism) an epimorphism; hence an isomorphism. Thus f ∈ E.

(3a) ⇒ (3b) and (4a) ⇒ (4b) follow from Proposition 15.7.

(3b) ⇒ (3a) follows from Propositions 15.5(9)(a) and 15.7.

(4b) ⇒ (4a). By Proposition 15.7, M ⊆ Mono-Source(A). If S is a mono-source and
S =M◦ e is an (E,M)-factorization, then e is an extremal epimorphism and a mono-
morphism; hence an isomorphism. Thus S ∈M. �

15.9 EXAMPLE
The category A described in Example 14.13(1) is simultaneously an (Epi, Source)-
category, an (ExtrEpi, Source)-category and a (RegEpi, Source)-category. But in A
not every source is a mono-source.
Also, every group, considered as a category, is an (Epi, Source)-category; but for a
nonzero group the empty source is not a mono-source.

EXISTENCE OF FACTORIZATION STRUCTURES

15.10 THEOREM
Every category that has (Epi, Mono-Source)-factorizations is an (ExtrEpi, Mono-
Source)-category.

Proof: Let A have (Epi, Mono-Source)-factorizations and let S = (A
fi−−→ Ai)I be a

source in A. Consider the source T = (A
ej−−→ Bj)J that consists of all epimorphisms

ej for which there exists a (necessarily unique) mono-source Mj = (Bj
mij−−−→ Ai)I with

S = Mj ◦ ej . Let T = N ◦ e = (A e−→ B
nj−−→ Bj)J be an (Epi, Mono-Source)-

factorization. Then the sources (Mj) ◦ nj do not depend upon j and thus each can
be denoted by M = (B mi−−→ Ai)I . Hence S = M ◦ e is an (Epi, Mono-Source)-
factorization. To show that e is an extremal epimorphism, consider a factorization
e = m ◦ g with monomorphic m. Let g = n ◦ e be an (Epi, Mono)-factorization of
g. Then S = (M ◦ m ◦ n) ◦ e is an (Epi, Mono-Source)-factorization of S. Hence
there exists some j in J with M◦m ◦ n = Mj and e = ej . For this j, the equations
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m◦n◦nj◦e = m◦n◦ej = m◦n◦e = m◦g = e hold. Since e is an epimorphism, we conclude
that m ◦ n ◦ nj = id. Hence m is a monomorphic retraction, i.e., an isomorphism. Thus
A is (ExtrEpi, Mono-Source)-factorizable. To show that A has the (ExtrEpi, Mono-
Source)-diagonalization property, consider morphisms ej and sources Sj , for j = 1, 2,
such that e1 is an extremal epimorphism, S2 is a mono-source, and S1 ◦ e1 = S2 ◦ e2. If
(A

ej−−→ Bj)j∈{1,2} = (A e−→ B
mj−−→ Bj)j∈{1,2} is an (Epi, Mono-Source)-factorization,

then S1 ◦m1 ◦ e = S1 ◦ e1 = S2 ◦ e2 = S2 ◦m2 ◦ e. Hence S1 ◦m1 = S2 ◦m2.

• e1 //

e

��
@@

@@
@@

@

e2

��

•

S1

��

•
m2

��~~
~~

~~
~

m1

??~~~~~~~

•
S2

// •

Let C
r //

s
// B be a pair of morphisms with m1 ◦ r = m1 ◦ s. Then

S2 ◦m2 ◦ r = S1 ◦m1 ◦ r = S1 ◦m1 ◦ s = S2 ◦m2 ◦ s.

Since S2 is a mono-source, this implies that m2 ◦ r = m2 ◦ s. Since (B
mj−−→ Bj)j∈{1,2} is

a mono-source, this implies that r = s. Thus m1 is a monomorphism. Since e1 = m1 ◦ e
is an extremal epimorphism, this implies that m1 is an isomorphism. Consequently,
d = m2 ◦m−1

1 is the desired diagonal. �

15.11 REMARK
As the above result shows, every (Epi, Mono-Source)-factorizable category is an
(E, Mono-Source)-category for a suitable class E. However, it need not be an (Epi,
M)-category for any conglomerate M:

Every poset, considered as a category, is an (ExtrEpi, Mono-Source)-category. But a
poset with a smallest element is an (Epi, M)-category for some M if and only if it is a
complete lattice.

15.12 DEFINITION
A category is said to have regular factorizations provided that it is (RegEpi, Mono-
Source)-factorizable.

15.13 PROPOSITION
If a category has regular factorizations, then it is a (RegEpi, Mono-Source)-category.

Proof: Every category has the (RegEpi, Mono-Source)-diagonalization property. �

15.14 THEOREM
If E is a class of morphisms in A, then A is an (E,M)-category for some M if and
only if the following conditions are satisfied:
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(1) Iso(A) ⊆ E ⊆ Epi(A),

(2) E is closed under composition,

(3) for every A
e−→ B in E and every morphism A

f−→ C there exists a pushout square

A
e //

f

��

B

f
��

C
e
// D

for which e ∈ E,

(4) for every source (A ei−−→ Ai)I that consists of E-morphisms, there exists a cointer-
section

A
e−→ B = A

ei−−→ Ai
pi−−→ B

for which e ∈ E.

Proof: Necessity: (1) and (2) follow from Theorem 15.4 and Proposition 15.5. To

see (3), let A
e−→ B and A

f−→ C be morphisms with e ∈ E. Consider the source

S = (C
fi−−→ Ci)I consisting of those morphisms fi for which there exists a (necessarily

unique) morphism gi with fi ◦ f = gi ◦ e. Let S = M ◦ e be an (E,M)-factorization.
Then there exists a diagonal that makes the diagram

A
e //

e◦f
��

B
d

~~~~
~~

~~
~~

gi

��

•
M
// Ci

commute. As can be seen easily, the diagram

A
e //

f

��

B

d

��

C
e
// •

is a pushout.

To establish (4), let (A ei−−→ Ai)I be a source consisting of E-morphisms. Consider the

source S = (A
fj−−→ Bj)J that consists of those morphisms fj that have the property

that for each i ∈ I there exists a (necessarily unique) morphism fij with fj = fij ◦ ei,
and proceed as in the proof of part (3).

Sufficiency: Define M to be the conglomerate of all sources that do not factor through
a non-isomorphic morphism in E. In order to show that A has (E,M)-factorizations,

let (A
fi−−→ Ai)I be a source in A. Consider the source S = (A

ej−−→ Bj)J that consists
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of those morphisms ej ∈ E that have the property that for every i ∈ I there exists a
(necessarily unique) morphism fij with fi = fij ◦ ej . Let

A
e−→ B = A

ej−−→ Bj
pj−−→ B

be a cointersection of S such that e ∈ E. Then for each i ∈ I there exists a morphism
mi that makes the diagram

A
fi //

ej

��
??

??
??

??

e

��
//

//
//

//
//

//
//

/ Ai

Bj
pj

��

fij

>>}}}}}}}

B

mi

FF���������������

commute for each j ∈ J . To show that the source M = (B mi−−→ Ai)I belongs to M, let
M = T ◦ ê be a factorization with ê ∈ E. Then there exists some j ∈ J with ê ◦ e = ej .
Hence, for this j the equality e = pj ◦ ej = pj ◦ ê ◦ e implies that pj ◦ ê = id. Thus ê is
an epimorphic section; hence an isomorphism.

To show that A has the (E,M)-diagonalization property, let e and f be morphisms with
e ∈ E, and let M = (mi)I and S = (fi)I be sources with M ∈M and M◦ f = S ◦ e.
Let

• e //

f

��

•
f̂
��

•
ê
// •

be a pushout square for which ê ∈ E. Then for each i ∈ I there exists a morphism gi

that makes the diagram
• e //

f

��

•

fi

��

f̂

��~~
~~

~~
~

•

gi
��

@@
@@

@@
@

•

ê
??~~~~~~~
mi

// •

commute. Hence M factors through ê ∈ E, which implies that ê is an isomorphism.
Thus ê−1 ◦ f̂ is the desired diagonal. �

15.15 COROLLARY
Let A be a category with pushouts and cointersections. Then a class E of A-morphisms
is part of a factorization structure on A (i.e., A is an (E,M)-category for some M)
if and only if Iso(A) ⊆ E ⊆ Epi(A) and E is closed under composition, pushouts, and
cointersections. �
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15.16 COROLLARY
(1) A is an (Epi, M)-category for some M if and only if A has cointersections and has

a pushout for every 2-source of the form • f←− • e−→ • with epimorphic e.

(2) A is an (Epi, ExtrMono-Source)-category if and only if A has cointersections,

pushouts for 2-sources of the form • f←− • e−→ • with epimorphic e, and has co-
equalizers. �

15.17 COROLLARY
Every strongly cocomplete category is an (Epi, ExtrMono-Source)-category. �

15.18 EXAMPLE
The partially ordered class of all ordinals, considered as a category, is a cocomplete
(ExtrEpi, Mono-Source)-category, but is not (Epi, ExtrMono-Source)-factorizable. [Con-
sider empty sources.] See also Exercise 15D.

Further results concerning the existence of factorization structures will follow after some
necessary preparations, cf., e.g., Theorem 15.25.

EXTENSIONS OF FACTORIZATION STRUCTURES

Factorization structures may be considered for certain specified sources only; e.g., for

(1) empty sources (= objects), see Exercise 15G,

(2) 1-sources (= morphisms), see §14,

(3) 2-sources, see Exercise 15I,

(4) set-indexed sources (= small sources), see Exercise 15J.

Here we are concerned with the question: Under which conditions is it possible to
extend factorization structures (E,M) for morphisms to factorization structures (E,M)
for sources, or at least for small sources?

15.19 PROPOSITION
(1) If A has products, then every factorization structure (E,M) for morphisms on A

can be uniquely extended to a factorization structure (E,M) for small sources.

(2) Conversely, if A has an initial object and each factorization structure (E,M) for
morphisms on A can be extended to a factorization structure (E,M) for small
sources, then A has products.

Proof:
(1). Let (E,M) be a factorization structure for morphisms. If M is the class of all

small sources of the form P ◦m, where P is a product and m ∈ M , then (E,M)
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is a factorization structure for small sources. Indeed, if S = (A
fi−−→ Ai)I is a set-

indexed source, let 〈fi〉 = A
e−→ B

m−−→
∏

Ai be an (E,M) factorization. Then
S = (B πi◦m−−−−→ Ai)I ◦ e is an (E,M)-factorization.
Uniqueness of the extension follows from the observation that M is determined by
E as in Proposition 15.5(9).

(2). Let (Mor(A), M) be an extension of the factorization structure (Mor(A), Iso(A))
for morphisms to a factorization structure for small sources. Then M consists
precisely of the set-indexed products in A. In fact, if (Ai)I is a set-indexed family
of objects, Q is an initial object, S = (Q → Ai)I is the associated source, and
S =M◦ e is a (Mor(A), M)-factorization, then M is a product of (Ai)I . �

15.20 PROPOSITION
If (E,M) is a factorization structure for small sources on A and A is co-wellpowered,
then the following conditions are equivalent:

(1) (E,M) can be uniquely extended to a factorization structure (E,N) on A,

(2) E ⊆ Epi(A),

(3) Sect(A) ⊆ M,

(4) for each object A the 2-source (idA, idA) belongs to M,

(5) whenever a subsource of a small source S belongs to M, then so does S.

Proof: (1) ⇔ (2). By Theorem 15.4, (1) implies (2). For the converse it suffices to
verify that E satisfies the conditions (1)–(4) of Theorem 15.14. That 15.14(1) and
15.14(2) hold follows from Proposition 14.6. The validity of 15.14(3) can be established
as in the corresponding part of the proof of Theorem 15.14 by replacing the source
S = (C

fi−−→ Ci)I by a small subsource that contains a representative for each fi ∈ E.
Likewise the validity of 15.14(4) can be established as in the corresponding part of the

proof of Theorem 15.14 by replacing the source S = (A
fj−−→ Bj)J by a small subsource

that contains a representative for each fj ∈ E.

The equivalence of the conditions (2)–(5) can be established as in Proposition 14.11 by
using the fact that the assumption made there that products of pairs exist is not needed
here, since we have (E,M)-factorizations for 2-sources. Details are left to the reader.�

15.21 COROLLARY
In a co-wellpowered category A with products, every factorization structure (E,M) for
morphisms with E ⊆ Epi(A) can be uniquely extended to a factorization structure (E,M)
for sources. �

15.22 EXAMPLE
The factorization structure (dense maps, closed embeddings) for morphisms

• cannot be extended to a factorization structure (dense maps, M) on Top, but
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• can be uniquely extended to a factorization structure (dense maps, M) on Haus.

The latter is one of the most important factorization structures on Haus.

15.23 REMARK
Proposition 15.19 shows that products are a suitable tool for extending factorization
structures for morphisms to those for small sources. Proposition 15.20 shows that co-
wellpoweredness is a suitable tool for extending factorization structures for small sources
to those for sources. The next proposition shows that factorization structures themselves
can be used to extend factorization structures of morphisms to those for sources.

15.24 PROPOSITION
In an (E,M)-category A every factorization structure (C,N) for morphisms with
C ⊆ E can be uniquely extended to a factorization structure (C,N) for sources.

Proof: Let N be the conglomerate of all sources of the form M◦ n with M ∈M and
n ∈ N . If S is a source with (E,M)-factorization S =M◦ e and e = n ◦ c is a (C,N)-
factorization, then S = (M◦ n) ◦ c is a (C,N)-factorization. If f and c are morphisms
with c ∈ C, and N =M◦ n and S are sources with n ∈ N and M ∈M (i.e., N ∈ N)
and if N ◦ f = S ◦ c, then diagonals d1 and d2 can be successively constructed such that
the diagrams

• c //

n◦f
��

•
d1

��~~
~~

~~
~

S
��

•
M
// •

and

• c //

f

��

•
d2

��~~
~~

~~
~

d1

��
•

n
// •

and hence

• c //

f
��

•
d2

��~~
~~

~~
~

S
��

•
N
// •

commute. Uniqueness follows from c ∈ C ⊆ E ⊆ Epi(A). �

FACTORIZATION STRUCTURES AND LIMITS

The fact that in an (E,M)-category every extremal mono-source belongs to M
[cf. 15.5(2)] implies that all limit sources belong to M (cf. Proposition 11.6). Below, we
further explore the relationship between factorization structures and limits.

15.25 THEOREM
Let A be a strongly complete, extremally co-wellpowered category. Then the following
hold:

(1) A is an (ExtrEpi, Mono-Source)-category.

(2) If A is co-wellpowered, then A is an (Epi, ExtrMono-Source)-category.

(3) If in A regular epimorphisms are closed under composition, then A is a
(RegEpi, Mono-Source)-category.
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Proof:
(1). Let S = (A

fi−−→ Ai)I be a source. By Theorem 14.17, for each i ∈ I there is

an (ExtrEpi, Mono)-factorization A
fi−−→ Ai = A

ei−−→ Bi
mi−−→ Ai. Since A is

extremally co-wellpowered, there exists a subset J of I, and for each i ∈ I there is
a j(i) ∈ J and an isomorphism hi with ei = hi ◦ ej(i) (where for i ∈ J we can choose

j(i) = i and hi = id). The family (Bj)j∈J has a product (P
pj−−→ Bj)J . Let

A
〈ej〉−−−→ P = A

e−→ B
m−−→ P

be an (Epi, Mono)-factorization. Then

A
fi−−→ Ai = A

e−→ B
mi◦hi◦pj(i)◦m−−−−−−−−−−→ Ai

is an (Epi, Mono-Source)-factorization of S. Hence (1) follows from Theorem 15.10.

(2). Since A has equalizers and intersections, it is (Epi, ExtrMono)-structured (14.19).
By Corollary 15.21, A is an (Epi, M)-category for a suitable conglomerate M of
sources. Moreover, by (1), A is an (ExtrEpi, Mono-Source)-category. Hence by
Proposition 15.8(4), A has coequalizers. Thus by Proposition 15.8(3), M is the
conglomerate of all extremal mono-sources.

(3). By (1) and Proposition 15.7, A has coequalizers. Thus by Proposition 14.22, A is
(RegEpi, Mono)-structured. By Proposition 15.24 this implies that A is a (RegEpi,
M)-category for some conglomerate M. By 15.8(4) it follows that M is the con-
glomerate of all mono-sources in A. �

15.26 REMARK
If A is a strongly complete, extremally co-wellpowered category, there need not be any
M for which A is an (Epi, M)-category. See Exercise 15D.
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EXERCISES

15A. Swell Epimorphisms

A morphism f in A is called a swell epimorphism provided that A has the unique
({f}, Mono-Source)-diagonalization property. Show that

(a) Every strict epimorphism is swell, but not vice versa.

(b) Every swell epimorphism is an epimorphism.

(c) Every swell epimorphism is a strong epimorphism (cf. 14C), but not vice versa.

(d) The class of swell epimorphisms is closed under right-cancellation, composition, and
the formation of cointersections, pushouts, and coproducts.

(e) Under each of the following assumptions the equality SwellEpi = ExtrEpi holds in
A:

(e1) In A 2-sources are (Epi, Mono-Source)-factorizable [but cf. Exercise 15B(b)].

(e2) A is strongly complete and extremally co-wellpowered.

(e3) A is complete and in A every mono-source contains a small mono-source.

(e4) A is strongly cocomplete. [Cf. (d), Corollary 15.15, Proposition 15.7, and (f).]

(f) If A is an (E, Mono-Source)-category, then E = SwellEpi = ExtrEpi.

15B. (E, −)-Categories

A is called an (E,−)-category provided it is an (E,M)-category for some M. Show
that

(a) Every (Epi,−)-category is a (SwellEpi,−)-category [cf. Theorem 15.14].

(b) The category
• //

�� ��
@@

@@
@@

@

��
@@

@@
@@

@ •

• •

OO

oo

is a (SwellEpi, −)-category, but neither an (Epi, −)-category nor an (ExtrEpi, −)-
category. In particular, SwellEpi 6= ExtrEpi.

(c) Every partially ordered set, considered as a category, is an (ExtrEpi, Mono-Source)-
category [and SwellEpi = ExtrEpi]. But a partially ordered set (X,≤) is an
(Epi, −)-category if and only if for each x ∈ X the set {y ∈ X | x ≤ y} is a complete
lattice. [E.g.,

•
��� 999

•
LLLLL •

sssss

• •
is an (Epi, −)-category, but the addition of a smallest element destroys this property.]
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(d) Let A be an (E,−)-category. Show that for any D ⊆ E, A is a (D,−)-category if and
only if Iso(A)⊆ D and D is closed under composition, pushouts, and cointersections.

15C. (ExtrEpi, Mono-Source)- vs. (Epi, ExtrMono-Source)-Categories

Show that

(a) Every (Epi, ExtrMono-Source)-category is an (ExtrEpi, Mono-Source)-category [cf.
Ex. 15B(a) and 15A(e)].

(b) Not every (ExtrEpi, Mono-Source)-category is an (Epi, ExtrMono-Source)-category
[cf. Ex. 15B(c), 15D, or 16A(b)].

* 15D. A Strongly Complete, Extremally Co-wellpowered,
Non-(Epi, –)-Category

Let Λ-CCPos be the construct that has as objects all triples (X,≤, λ) with (X,≤) a
partially ordered set in which each nonempty chain has a join and λ : X → X a unary
(not necessarily order-preserving) operation, and as morphisms all λ-homomorphisms
that preserve joins of nonempty chains. Show that

(a) Λ-CCPos is complete, cocomplete, and wellpowered, hence strongly complete.

(b) Λ-CCPos is extremally co-wellpowered but not concretely co-wellpowered, hence
not co-wellpowered. [Hint: Consider for each limit ordinal α the natural injection
B0

eα−−→ Aα, where B0 = (N,=, λ) with λ(n) = n + 1 and where Aα = (Xα,≤, λα)
with (Xα,≤) the ordered set of all ordinals less than or equal to α and λα : Xα → Xα

defined by λα(β) = Min{β + 1, α}.]

(c) Λ-CCPos is an (ExtrEpi, Mono-Source)-category [cf. Theorem 15.25].

(d) Λ-CCPos does not have cointersections. [Hint: Consider for each ordinal α the
natural injection B0

eα−−→ Bα, where Bα = (Yα,≤, λα) with (Yα,≤) the set of all
ordinals less than α + ω, ordered by β < γ ⇔ (β < γ ≤ α w.r.t. the natural order of
ordinals), and λα(β) = β + 1.]

(e) Λ-CCPos is not an (Epi, −)-category [cf. 15.16(2)], but (Epi, Small ExtrMono-
Source) is a factorization-structure for small sources on Λ-CCPos [cf. Proposition
15.19 and Corollary 14.21].

15E. Re: Theorem 15.14
Consider the three-element chain {0, 1, 2} with its natural order as a category A and let
E consist of all A-morphisms except 0→ 2. Show that A and E satisfy conditions (1),
(3), and (4) of Theorem 15.14, but not condition (2).

15F. Existence of Coequalizers

(a) Show that each category A that satisfies one of the following conditions, has co-
equalizers:

(1) A has (Epi, Mono-Source)-factorizations,

(2) A is strongly complete and extremally co-wellpowered [cf. Theorem 15.25].
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(b) Construct a strongly complete category that does not have coequalizers.

15G. Factorization Structures for Empty Sources

(a) Let (E,M) be a factorization structure for empty sources on A. Show that

(1) An empty source (A, ∅) belongs to M if and only if A is E-injective.

(2) The full subcategory of A that consists of all E-injective objects is reflective in
A.

(b) Let E be a class of epimorphisms in A that is closed under composition with iso-
morphisms. Show that the following are equivalent:

(1) There exists a class M of empty sources such that (E,M) is a factorization
structure for empty sources on A.

(2) A has enough E-injectives, i.e., for each A-object A there exists an E-
injective object B and a morphism A

e−→ B in E.

(c) Let (E,M) be a factorization structure for morphisms on a category A with a
terminal object T . Let N be the class of all empty sources (A, ∅) with A→ T ∈M .
Show that (E,N) is a factorization structure for empty sources on A.

15H. E-Injectives

Show that every (E,M)-category has enough E-injectives.

15I. Factorization Structures for 2-Sources and 1-Sources
Let (E,M) be a factorization structure for 2-sources and 1-sources on A. Show that

(a) Conditions (1), (2), (3), (5), and (6) of Proposition 14.11 are equivalent to each
other and to each of the following conditions:

(7a) a morphism f belongs to M iff f = g ◦ e and e ∈ E imply e ∈ Iso(A).

(7b) a 1-source or 2-source F belongs to M iff F = G◦e and e ∈ E imply e ∈ Iso(A).

(8) for each object A the 2-source A
id←−− A

id−−→ A belongs to M,

(9) for each 1-source A
m−−→ B in M the 2-source B

m←−− A
m−−→ B belongs to M,

(10) for each 1-source A
m−−→ B in M and each morphism A

f−→ C the 2-source

B
m←−− A

f−→ C belongs to M.

(b) The full subcategory B of A that consists of those objects A for which the 2-source
A

id←−− A
id−−→ A belongs to M is closed under the formation of products and M-

subobjects.

15J. Factorization Structures for Small Sources
Show that

(a) (Mor, Small Product) is a factorization structure for small sources on Set, but Set
is not a (Mor, −)-category.
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(b) (Epi, Small ExtrMono-Source) is a factorization structure for small sources on
Λ-CCPos, but Λ-CCPos is not an (Epi, −)-category.

15K. Source-Sink-Diagonals

Show that if (Xi
ei−−→ X)I is an epi-sink, (Xi

fi−−→ Y )I is an arbitrary sink, (Y
mj−−→ Yj)J

is a mono-source, and (X
gj−−→ Yj)J is an arbitrary source in Set, then there exists a

unique function X
d−→ Y such that the following diagram commutes:

Xi
ei //

fi

��

X
d

~~~~
~~

~~
~~

gj

��

Y mj

// Yj

* 15L. Dispersed Factorization Structures

Let (E,M) be a fixed factorization structure on A. For a full subcategory B of A call
an A-morphism f B-concentrated provided that f ∈ E and each B-object is {f}-
injective, and call an A-source S with domain A B-dispersed provided that the source
obtained from S by adding all morphisms with domain A and codomain in B belongs
to M. Show that

(a) A is a (B-Concentrated, B-Dispersed)-category.

(b) If B is E-reflective, then the following are equivalent for each A-object A:

(1) A belongs to B,

(2) the empty source with domain A is B-dispersed,

(3) A is B-Concentrated-injective.

(c) There are at least as many factorization structures on A as there are E-reflective
subcategories of A.

(d) Each of the categories Top and Rere has a proper class of factorization structures.

(e) If (C,D) is a factorization structure on A with C ⊆ E, then the following are
equivalent:

(1) there exists a full subcategory B of A with C = B-Concentrated morphisms
and D = B-Dispersed sources,

(2) if g ◦ f ∈ C and f ∈ E, then f ∈ C.

15M. Factorization Structures on Cat
Show that

(a) Cat is an (Epi, ExtrMono-Source)-category.

(b) Cat is an (ExtrEpi, Mono-Source)-category.

(c) Cat is not a (RegEpi, −)-category.
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15N. Factorization Structures on Set2 and (Set2)op

Show that Set2 and (Set2)op have regular factorizations.

15O. Re: Proposition 15.19

Show that one cannot omit the hypothesis in Proposition 15.19(2) that an initial object
exists. [Consider discrete categories.]
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16 E-reflective subcategories

In this section we will demonstrate that factorization structures provide a convenient
tool to investigate reflective subcategories. The typical situation is this: B is an (E,M)-
category and A is an isomorphism-closed full E-reflective subcategory of B.

16.1 DEFINITION
Let B be a category and let E be a class of B-morphisms. An isomorphism-closed, full
subcategory A of B is called E-reflective in B provided that each B-object has an
A-reflection arrow in E. In particular, we use the terms epireflective (resp. monore-
flective, bireflective) in case E is the class of epimorphisms (resp. monomorphisms, bi-
morphisms) in B. Likewise, we use the terms regular epireflective (resp. extremally
epireflective) in case E is the class of regular (resp. extremal) epimorphisms in B.

Dual Notion: E-coreflective subcategory.

16.2 EXAMPLES
(1) In Met the full subcategory of complete metric spaces is bireflective [cf. 4.17(8)].

(2) HComp is reflective but not epireflective in Top, even though HComp is epire-
flective in Haus, and Haus is epireflective in Top.

(3) Ab is regular epireflective in Grp [cf. 4.17(4)] and Pos is regular epireflective in
Prost [cf. 4.17(3)].

(4) An isomorphism-closed full concrete subcategory of a concrete category B is (identity
carried)-reflective in B if and only if it is concretely reflective in B (cf. 5.22).

(5) The construct of minimal acceptors is regular epireflective in the construct of reach-
able acceptors [cf. 4.17(7)].

Haus is epireflective in Top

268
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16.3 PROPOSITION
Every monoreflective subcategory of B is bireflective in B.

Proof: Let A be a monoreflective (hence by Definition 16.1 a full) subcategory of B.

Consider an A-reflection-arrow B
r−→ A for some B-object B and a pair A

p
//

q
// B′ of

B-morphisms with p ◦ r = q ◦ r. Let B′ r′−−→ A′ be an A-reflection arrow for B′. Then
(r′ ◦ p) ◦ r = (r′ ◦ q) ◦ r and A′ ∈ Ob(A) imply that r′ ◦ p = r′ ◦ q. Since r′ is assumed to
be a monomorphism, this implies that p = q. Hence r is an epimorphism. �

16.4 PROPOSITION
Every coreflective isomorphism-closed full subcategory of B that contains a B-separator
is bicoreflective in B.

Proof: Let S be a separator in B, let A be a coreflective full subcategory of B that
contains S, and let A

c−→ B be an A-coreflection arrow. By the dual of Proposition 16.3

it suffices to show that c is an epimorphism. Let B
p
//

q
// B′ be distinct morphisms. Then

there exists a morphism S
h−→ B with p ◦h 6= q ◦h. Since S belongs to A, there exists a

unique morphism S
h′−−→ A with h = c◦h′. Consequently, p◦c◦h′ = p◦h 6= q◦h = q◦c◦h′,

which implies that p ◦ c 6= q ◦ c. �

16.5 EXAMPLES
The above proposition immediately implies that

(1) Every coreflective isomorphism-closed full subcategory of Top (resp. Pos) that con-
tains a nonempty space (resp. a nonempty poset) is bicoreflective in Top (resp. Pos);
hence it is a coreflective modification.

(2) Every reflective isomorphism-closed full subcategory of Top0 (resp. Pos) that con-
tains the Sierpinski space (resp. a two-element chain) is bireflective in Top0 (resp.
Pos); hence it is a reflective modification.

(3) Set (resp. Vec) contains precisely one proper coreflective, isomorphism-closed, full
subcategory — namely, the one consisting of the empty set (resp. the zero vector
spaces).

(4) Set contains precisely two proper reflective, isomorphism-closed, full subcategories
— namely, the one consisting of all one-element sets and the one consisting of all sets
with at most one element. Vec contains precisely one proper reflective, isomorphism-
closed, full subcategory — namely, the one consisting of all zero vector spaces.

16.6 REMARK
It is not always easy to determine whether or not a given subcategory is reflective. (For
example, which of the full subcategories consisting of regular spaces, or of connected
spaces, or of compact spaces is reflective in Top?) Fortunately, for E-reflectivity we
have powerful and easily applied criteria, as will be seen in the next results.
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16.7 DEFINITION
Let M be a conglomerate of sources in a category B. A subcategory A of B is said to

be closed under the formation of M-sources provided that whenever (B
fi−−→ Ai)I

is a source in M such that all Ai belong to A, then B belongs to A.

16.8 THEOREM
If A is a full subcategory of an (E,M)-category B, then the following conditions are
equivalent:

(1) A is E-reflective in B.

(2) A is closed under the formation of M-sources in B.

In the case that B has products and is E-co-wellpowered, the above conditions are equiv-
alent to:

(3) A is closed under the formation of products and M-subobjects66 in B.

Proof: (1) ⇒ (2). Let S = (B mi−−→ Ai)I be a source in M such that all Ai belong to
A. If B

e−→ A is an A-reflection arrow for B in E, then S factors through e. Hence, by
Proposition 15.5(9)(a), e is an isomorphism. Thus B belongs to A.

(2) ⇒ (1). For any B-object B, consider the source S with domain B, consisting of all
morphisms with domain B and codomain in A. If S =M◦ e is an (E,M)-factorization,
then e is an A-reflection arrow for B.

(2) ⇒ (3). Obvious.

(3) ⇒ (2). Consider a source M = (B mi−−→ Ai)I in M such that all Ai belong to A.
For each i ∈ I let B

mi−−→ Ai = B
ei−−→ Bi

ni−−→ Ai be an (E,M)-factorization. Then each
Bi, being an M-subobject of Ai, belongs to A. Since B is E-co-wellpowered, we can
select a subset J of I and for each i ∈ I a j(i) ∈ J and an isomorphism hi : Bj(i) → Bi

with ei = hi ◦ ej(i). If (P, πj)J is a product of the family (Bj)j∈J , then P belongs to A.
If

B
〈ej〉−−−→ P = B

e−→ C
m−−→ P

is an (E,M)-factorization, then C belongs to A, and we have commutativity of the
diagram

B

e

||zz
zz

zz
zz

zz
zz

zz
zz

zz
z

〈ej〉

��
























ej(i)

��

ei

��
55

55
55

55
55

55
55

mi

""F
FFFFFFFFFFFFFFFFFF

C m
// P πj(i)

// Bj(i)
hi

// Bi ni

// Ai

Since M factors through e, and e ∈ E, by Proposition 15.5(9)(a), e is an isomorphism.
Thus B belongs to A. �
66An M-subobject is simply a singleton M-source. It need not be a monomorphism.
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16.9 COROLLARY
A full subcategory of a co-wellpowered, strongly complete category B is epireflective in B
if and only if it is closed under the formation of products and extremal subobjects in B.

Proof: Immediate from Theorems 16.8 and 15.25(2). �

16.10 EXAMPLE
The full subcategory B of BiTop that consists of all bitopological spaces with both
topologies Hausdorff is strongly complete (but not co-wellpowered). The full subcate-
gory BiComp of B [cf. 4F(b)] is closed under the formation of products and extremal
subobjects in B, but is not reflective in B.

SUBCATEGORIES DEFINED BY
EQUATIONS AND IMPLICATIONS

16.11 MOTIVATING REMARK

Many familiar mathematical objects (e.g., semigroups, monoids, groups, abelian groups,
rings, lattices, boolean algebras, vector spaces, etc.) can be defined by means of opera-
tions and equations. Moreover, the corresponding categories (Sgr, Mon, Grp, etc.) can
be obtained as full subcategories of categories of the form Alg(Ω), consisting of those
objects that satisfy suitable equations. This singling out of subcategories by equations
(or, more generally, by implications) will be described here in some detail in order to
motivate the much simpler and far more elegant categorical concepts introduced below.
As an example, consider Sgr, which is the full subcategory of the category Alg(2) of
algebras with one binary operation (usually written as multiplication) consisting of those
algebras that satisfy the equation:

∀x ∀y ∀z x · (y · z) = (x · y) · z. (e)

In order to find a categorical description of the above equation (e) and of those al-
gebras that satisfy (e), observe that the expressions x · (y · z) and (x · y) · z can be
interpreted as elements t and s of the free algebra F on the set {x, y, z} of generators. If
η : {x, y, z} → F is the corresponding universal arrow, then, for any algebra A in Alg(2),
the following conditions are equivalent:

(1) A is a semigroup,

(2) A satisfies equation (e),

(3) for every map f : {x, y, z} → |A| (i.e., for every interpretation of the variables x,y,
and z), the unique homomorphism f : F → A, determined by f = f ◦ η, satisfies
f(t) = f(s).

There is a further characterization: if ρ is the congruence on F generated by (t, s), (i.e.,
the smallest congruence relation on the algebra F such that tρ s) and F

e−→ F/ρ is the
natural map onto the quotient algebra F/ρ, then (3) is equivalent to
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(4) A is {e}-injective (i.e., every homomorphism from F to A factors through e).

Hence an algebra satisfies equation (e) if and only if it is injective with respect to a
suitable morphism e. In general, an equation in Alg(Ω) is a pair (t, s) of elements in
some free Ω-algebra F . An Ω-algebra A satisfies the equation (t, s) if and only if A is
{e}-injective, where F

e−→ F/ρ is the quotient map corresponding to the congruence
relation ρ on F generated by (t, s).

Slightly more complicated — but in its categorical formulation even simpler (!) — is the
concept of implications. An implication P ⇒ K consist of a set P of equations, called
premises, and a set K of equations, called conclusions. For example, the implication

∀x ∀y ∀z x · y = x · z ⇒ y = z (i)

describes, together with above equation (e), the left-cancellative semigroups. It is clear
what it means to satisfy implication (i): whenever an interpretation of variables satisfies
the premise, then it also satisfies the conclusion. (In this example, both the set of
premises and the set of conclusions are singletons.) Formally, an implication P

X⇒ K in
Alg(Ω) consists of a set X (of “variables”), a subset P of |F | × |F | (called the set of
“premises”), and a subset K of |F |×|F | (called the set of “conclusions”), where F denotes
the canonical free Ω-algebra on X. (Cf. Example 8.23(6).) An Ω-algebra A satisfies the
implication P

X⇒ K provided that under each interpretation of variables (i.e., for each
map f : X → |A|) such that each premise (p, q) ∈ P becomes true (i.e., such that the
homomorphic extension f : F → A of f satisfies f(p) = f(q) for each (p, q) ∈ P ), each
conclusion (t, s) ∈ K must be true (i.e., f(t) = f(s) for each (t, s) ∈ K). If π resp.
γ are the congruence relations on F generated by P resp. by P ∪ K, if F

eP−−→ F/π

and F
eK−−→ F/γ are the associated quotient maps, and if F/π

e−→ F/γ is the unique
homomorphism satisfying eK = e ◦ eP , then the following conditions are easily seen to
be equivalent for any Ω-algebra A:

(1) A satisfies the implication P
X⇒ K,

(2) A is {e}-injective in Alg(Ω).

Since in Alg(Ω) morphisms of the form F/π
e−→ F/γ are, up to isomorphism, precisely

the surjective homomorphisms (= epimorphisms = regular epimorphisms), we are led to
the following definition:

16.12 DEFINITION
(1) (Regular) epimorphisms are called (regular) implications.

(2) An object Q satisfies the implication A
e−→ B provided that Q is {e}-injective

(i.e., provided that for each morphism A
f−→ Q there exists a morphism B

f−→ Q
with f = f ◦ e).

(3) A full subcategory A of B is called implicational provided that there exists a class
C of implications in B such that A consists precisely of those B-objects that satisfy
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each implication in C. Constructs that are concretely isomorphic to implicational
subconstructs of Alg(Ω) for some Ω are called finitary quasivarieties.67

In case C can be chosen to be a subclass of some class E of implications in B, A is called
E-implicational.

16.13 EXAMPLES
(1) Pos is an implicational subcategory of Rel. Consider the following implications:

REFLEXIVITY: ({x}, ∅) id−−→ ({x}, {(x, x)}),

TRANSITIVITY: ({x, y, z}, {(x, y), (y, z)}) id−−→ ({x, y, z}, {(x, y), (y, z), (x, z)}),
ANTISYMMETRY: ({x, y}, {(x, y), (y, x)}) e−→ ({x}, {(x, x)}),
where e(x) = e(y) = x.
A binary relation satisfies the above implications if and only if it is a poset.

(2) T1-spaces form an implicational subcategory of Top. If P is the Sierpinski space
and P ′ is a singleton space, then a topological space is T1 if and only if it satisfies
the implication P → P ′.

(3) In Σ-Seq, Σ = {σ}, consider all the automata with permutation transition (i.e.,
δ(σ, x) = δ(σ, y) ⇒ x = y). These form an implicational class given by Pn → P ′

n

(n = 1, 2, . . .), where Pn has states x, y, 1, . . . , n such that δ(σ, x) = δ(σ, y) = 1 and
1, . . . , n form a cycle, and P ′

n is the quotient of Pn obtained by merging x with y.

(4) The constructs Vec, R-Mod, Ab, Grp, Mon, Sgr, Rng, Lat, DLat, SLat, Boo,
pSet, and AbTop (= abelian topological groups) are finitary quasivarieties. How-
ever, Field is not a finitary quasivariety.

16.14 THEOREM
A full subcategory of an (E,M)-category B is E-implicational if and only if it is E-
reflective in B.

Proof: Let C be a subclass of E and let A be the full subcategory of B determined
by C; i.e., given by those objects that satisfy each implication in C. Consider a source
(B mi−−→ Ai)I in M such that all Ai belong to A. By Theorem 16.8, it is sufficient to

show that B belongs to A. Let Q
e−→ R be an element of C and let Q

f−→ B be a
morphism. Then for each i ∈ I there exists a morphism R

gi−−→ Ai with gi ◦ e = mi ◦ f .
Hence there exists a diagonal d that makes the diagram

Q
e //

f

��

R
d

��~~
~~

~~
~~

gi

��

B mi

// Ai

commute. In particular f = d ◦ e. Hence B belongs to A.
67Recall that in Alg(Ω), Epi = RegEpi = surjective homomorphisms.
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Conversely, let A be a E-reflective full subcategory of B. Consider the class C of all
A-reflection arrows for B-objects, and let C be the implicational subcategory of B
determined by C. Obviously, A ⊆ C. For the converse, let D be an object of C and
let D

c−→ A be an A-reflection arrow for D. Since D satisfies the implication c, there
exists a morphism f with idD = f ◦ c. Thus c is an epimorphic section (cf. 15.4); hence
an isomorphism. Since A is isomorphism-closed, this implies that D belongs to A.
Therefore C = A. �

16.15 REMARK
As indicated in Remark 16.11, equations in Alg(Ω) are those implications that have
the empty set P of premises; equivalently, they are those implications A

e−→ B whose
domain A is a free Ω-algebra. The concept of free Ω-algebras, unfortunately, refers to the
construct Alg(Ω) and not to the abstract category Alg(Ω). Fortunately, however, as we
will see below, a full subcategory A of Alg(Ω) is E-implicational, where E is the class of
all (regular) implications in Alg(Ω) with free domain, if and only if A is E-implicational,
where E is the class of all (regular) implications in Alg(Ω) with (regular-) projective
domain. This motivates the following definition:

16.16 DEFINITION
(1) Let E be a class of epimorphisms in a category B. An implication in E with E-

projective domain is called an E-equation. Regular epimorphic equations are called
regular equations. A full subcategory A of B is called E-equational provided
that there exists a class C of E-equations in B such that A consists precisely of
those B-objects that satisfy each E-equation in C.

(2) Let B be a construct. Regular implications with free domain are called equations.
A full subcategory A of B is called equational provided that it can be defined as
above by a class C of equations in B.

(3) Constructs that are concretely isomorphic to equational subconstructs of Alg(Ω)
for some Ω are called finitary varieties.

16.17 THEOREM
Let B be an (E,M)-category with enough E-projectives (9.22 dual). Then the following
conditions are equivalent for any full subcategory A of B:

(1) A is E-equational in B.

(2) A is closed under the formation of M-sources and E-quotients in B.

In the case that B has products and is E-co-wellpowered, the above conditions are equiv-
alent to:

(3) A is closed under the formation of products, M-subobjects, and E-quotients in B.

9th July 2006



Sec. 16] E-reflective subcategories 275

Proof: (1) ⇒ (2). By Theorems 16.8 and 16.14, A is closed under the formation of
M-sources in B. Let A be in A and be A

e−→ B be in E. To show that B is in A we will
verify that B satisfies any E-equation C

c−→ D that is satisfied by all A-objects. Since
C is E-projective, for each morphism C

f−→ B there exists a morphism f with f = e◦f .
Since A is in A, there exists a morphism f̃ with f = f̃ ◦ c. Hence f = (e ◦ f̃) ◦ c. Thus
B belongs to A.

C
c //

f   
@@

@@
@@

@

f
��

D

f̃
��

B Ae
oo

(2)⇒ (1). By Theorem 16.8, A is E-reflective in B. Let C be the class of all A-reflection
arrows for E-projective objects P , and let C be the subcategory of B determined by C.
Obviously, A ⊆ C. For the converse, let D be an object of C. Then there exists an
E-projective object P and a morphism P

e−→ D in E. Let P
c−→ A be an A-reflection

arrow for P . Since D satisfies the E-equation c, there exists a morphism A
f−→ D with

e = f ◦ c. Since c is an epimorphism, this implies, by Proposition 15.5(5), that A
f−→ D

belongs to E. Thus D is an E-quotient of an A-object, and so belongs to A.

(2) ⇔ (3). Immediate from Theorem 16.8. �

16.18 THEOREM
Let B be a fibre-small, transportable, complete construct that has free objects and for
which the surjective morphisms, extremal epimorphisms and regular epimorphisms coin-
cide. Then for full subconstructs A of B the following conditions are equivalent:

(1) A is equational in B,

(2) A is regular-equational in B,

(3) A is regular epireflective and closed under the formation of regular quotients (=
homomorphic images) in B,

(4) A is closed under the formation of products, subobjects, and homomorphic images
in B.

Proof: In B the extremal epimorphisms are precisely the surjective morphisms, and, by
Proposition 8.28 the monomorphisms are precisely the injective morphisms. Thus fibre-
smallness and transportability imply wellpoweredness and extremal co-wellpoweredness.
Hence completeness implies strong completeness. Since surjective morphisms are closed
under composition, by Theorem 15.25(3), B is a (RegEpi, Mono-Source)-category. Con-
sequently, Theorem 16.8 and Theorem 16.17 imply the equivalence of the conditions (2),
(3), and (4). Since by Proposition 9.29 every free object is regular projective, (1) implies
(2). To show that (3) implies (1), let C be the class of all A-reflection arrows F

c−→ A
for free objects F in B, and let C be the subcategory of B determined by C. Since in
B every object is a homomorphic image of a free object, the same argument as in the
proof of Theorem 16.17 shows that C = A. �
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16.19 COROLLARY
For full subcategories A of Alg(Ω), the following hold:

(1) A is implicational in Alg(Ω) if and only if A is closed under the formation of
products and subalgebras.

(2) A is equational in Alg(Ω) if and only if A is closed under the formation of products,
subalgebras and homomorphic images. �

E-REFLECTIVE HULLS

16.20 PROPOSITION
For (E,M)-categories B, the following hold:

(1) The intersection of any conglomerate of E-reflective subcategories of B is E-reflec-
tive in B.

(2) For every full subcategory A of B there exists a smallest E-reflective subcategory of
B that contains A.

Proof: (1) follows from Theorem 16.8. (2) follows from (1). �

16.21 DEFINITION
If A is a full subcategory of an (E,M)-category B, then the smallest E-reflective sub-
category of B that contains A is called the E-reflective hull of A in B.

16.22 PROPOSITION
If A is a full subcategory of an (E,M)-category B, then a B-object B belongs to the

E-reflective hull of A in B if and only if there exists a source (B
fi−−→ Ai)I in M with

all Ai in A. �

16.23 Examples

B A Epireflective hull
of A in B

Top S (= Sierpinski-space) Top0

Top [0, 1] Tych
Haus [0, 1] HComp
Rel ({0, 1},≤) Pos
Set {0, 1} Set
Vec R Vec
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16.24 PROPOSITION (Reflectors as Composites of Epireflectors)

If A is a full reflective subcategory of an (Epi, Mono-Source)-factorizable category B,
and if C is the extremally epireflective hull of A in B, then A is epireflective in C and
C is epireflective in B.

Proof: By Theorem 15.10, B is an (ExtrEpi, Mono-Source)-category. Hence A has an
ExtrEpi-reflective hull C. Obviously, C is epireflective in B, and A is reflective in C. For
any C in C there exists, by Proposition 16.22, a mono-sourceM = (C mi−−→ Ai)I with all
Ai in A. Let C

r−→ A be an A-reflection arrow for C. ThenM factors through r, which
implies that r is a monomorphism in B, hence also in C. Thus A is monoreflective in
C, so that by Proposition 16.3 it is epireflective in C.

16.25 REMARK
If we generalize the situation that we are working in just slightly, our results may break
down completely. Here are two examples, the first very simple, the second very deep:

(1) Consider the ordered set of all natural numbers as a category A. Then A almost
satisfies the assumptions of Theorem 15.25: A is well-powered, co-wellpowered, and
“almost” strongly complete (every nonempty diagram has a limit). But A is not an
(Epi, M)-category for any M. If B (resp. C) is the isomorphism-closed, epireflective
subcategory consisting of all even (resp. all odd) numbers, then B ∩C is empty —
hence not even reflective.

(2) The category Top is strongly complete, wellpowered, and co-wellpowered. However,
there exist two isomorphism-closed full reflective subcategories of Top whose inter-
section is not reflective in Top. [For a corresponding example in the category of
bitopological spaces see Exercise 4F(b).]

If in a category B the intersection of two (epi)reflective isomorphism-closed full subcat-
egories is not (epi)reflective, then this intersection obviously has no (epi)reflective hull
in B.

If there is an isomorphism-closed full subcategory of B that does not have an (epi)reflec-
tive hull in B, then (epi)reflective subcategories of B cannot be characterized among the
isomorphism-closed full subcategories of B by suitable closure properties.
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Hušek, M. Lattices of reflections and coreflections in continuous structures. Springer
Lect. Notes Math. 540 (1976): 404–424.

Nyikos, P. Epireflective categories of Hausdorff spaces. Springer Lect. Notes Math. 540
(1976): 452–481.

Marny, T. On epireflective subcategories of topological categories. Gen. Topol. Appl.
10 (1979): 175–181.

Hoffmann, R.-E. Reflective hulls of finite topological spaces. Archiv Math. 33 (1979):
258–262.
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EXERCISES

16A. Epireflective Subcategories with Bad Behavior

(a) Let I be a proper class, and let the category B have as objects A0
0, A1

1, Ai
2 for i ∈ I,

A3
3, and A4

4; and morphism-sets such that

homB(Ai
n, Aj

m) has


no element, if m < n or (m = n and i 6= j)
precisely two elements, if (n, m) = (0, 1) or (n, m) = (2, 3)
precisely one element, otherwise.

Let A be the full subcategory obtained from B by removing object A3
3.

Show that

(1) A is regular epireflective in B.

(2) B is co-wellpowered, but A is not even extremally co-wellpowered.

(3) The inclusion functor A ↪→ B sends certain extremal epimorphisms to non-
epimorphisms.

(b) Let the category B have as objects A0
2n for n ∈ N, and A1

n, for n ∈ N; and morphism-
sets such that

homB(Ai
n, Aj

m) has


precisely two elements, if n = m and i < j

no elements, if m < n or j < i

precisely one element, otherwise.
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Let A be the full subcategory of B whose objects are all A0
2n and all A1

2n.
Show that

(1) A is epireflective in B.

(2) B has regular factorizations, but A is not even (Epi, Mono-Source)-factorizable.
[Consider empty sources.]

(3) The inclusion functor A ↪→ B sends certain regular epimorphisms to non-
extremal epimorphisms.

16B. Inheritance of Factorization Structures
Let E : A ↪→ B be the embedding of a subcategory. Show that

(a) If B has regular factorizations and A is regular epireflective in B, then A has regular
factorizations and E preserves and reflects regular epimorphisms.

(b) If B is an (ExtrEpi, Mono-Source)-category and A is extremally epireflective in B,
then A is an (ExtrEpi, Mono-Source)-category and E preserves and reflects extremal
epimorphisms.

(c) If B is an (Epi, ExtrMono-Source)-category and A is epireflective in B, then E need
not preserve epimorphisms [cf. Haus and Top].

(d) If B has regular factorizations and A is epireflective in B, then A need not be an
(ExtrEpi, Mono-Source)-category and E need neither preserve regular nor preserve
extremal epimorphisms [cf. Exercise 16A(b)].

16C. Co-wellpoweredness and (Epi)Reflective Hulls

Let A be an isomorphism-closed full subcategory of a complete, well-powered, and co-
wellpowered category C, and let B be the epireflective hull of A in C. Show that

(a) A is epireflective in C if and only if A is closed under the formation of products and
regular subobjects in C.

(b) The embedding A ↪→ B preserves epimorphisms.

(c) If D is an isomorphism-closed full subcategory of B that contains A, then the
following are equivalent:

(1) D is reflective in C,

(2) D is epireflective in B.

(d) B is strongly complete.

(e) If B is co-wellpowered, then the epireflective hull of A in B is a reflective hull of
A in C, i.e., the smallest isomorphism-closed full reflective subcategory of C that
contains A.

(f) The following are equivalent:

(1) A is reflective in C and co-wellpowered,
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(2) A is limit-closed in C and B is co-wellpowered.

(g) The following are equivalent:

(1) A has a co-wellpowered reflective hull in C,

(2) A has a co-wellpowered epireflective hull in C.

* 16D. Subcategories of Top

(a) Show that a full reflective subcategory of Top is co-wellpowered if and only if its
epireflective hull in Top is co-wellpowered.

(b) Construct an epireflective, non-co-wellpowered subcategory of Top. [Cf. Example
7.90(3).]

(c) Construct a full, limit-closed, non-reflective subcategory of Top.

16E. Smallest E-Reflective Subcategories

Let (E,M) be a factorization structure for empty sources (resp. for morphisms) on a
category A (with a terminal object T ). Show that

(a) A is E-injective if and only if (A, ∅) ∈M (resp. A→ T ∈M).

(b) The full subcategory B of A that consists of all E-injective objects is the smallest
E-reflective subcategory of A. Moreover, a morphism A

r−→ B is a B-reflection
arrow if and only if (A, ∅) = A

r−→ (B, ∅) is an (E,M)-factorization [resp. if and
only if A→ T = A

r−→ B −→ T is an (E,M)-factorization].

16F. The Čech-Stone Compactification

Show that if E is the class of dense C∗-embeddings and M is the class of perfect maps,
then (E,M) is a factorization structure for morphisms on Tych. Apply the results of
Exercise 16E.

16G. A Generalized Birkhoff Theorem
Let A be a full subcategory of an (E,M)-category B and let Q be a class of epimorphisms
in B such that

(α) B has enough Q-projectives,

(β) if g ◦ e ∈ Q and e ∈ E, then g ∈ Q.

(a) Show that the following conditions are equivalent:

(1) A is closed under the formation of M-sources and Q-quotients.

(2) A is definable by implications B
e−→ C in E with Q-projective domain B.

(b) Show that in the case that A is co-wellpowered and has products, the above condi-
tions are equivalent to

(3) A is closed under the formation of products, M-subobjects, and Q-quotients.
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16H. Epireflective Subcategories Are Closed Under Extremal Mono-Sources

Let A be an epireflective subcategory of B and let (B mi−−→ Bi)I be an extremal mono-
source in B. Show that whenever all Bi belong to A, then so does B.

16I. The Lattice of Regular Epireflective Subcategories

Show that the lattice of regular epireflective subcategories of

(a) Set has precisely two elements,

(b) Set2 has the form
5

xxx
3

4
xxx

1

2
xxx

0

(c) (Set2)op has the form
4

��
��
�� ::

:

3
1

//
//

//
2

��
�

0

* 16J. Injective Hulls for Finitary Varieties

Show that in a finitary variety (A, U) every object has an injective hull if and only if
the following conditions (cf. 9C) are satisfied:

(1) Monomorphisms are pushout stable,

(2) A is M -co-wellpowered, where M is the class of essential monomorphisms.

* 16K. Finitary Quasivarieties Isomorphic to Finitary Varieties

Show that a finitary quasivariety (A, U) is a finitary variety if and only if there exists a

finitary variety (B, V ) and an isomorphism A H−−→ B.

* 16L. Strongly Limit-Closed vs. Epireflective Subcategories

A full subcategory A of B is called strongly limit-closed in B provided that whenever

(L
fi−−→ Di)Ob(I) is a limit of a diagram D : I→ B and for each i ∈ Ob(I) there exists a

j ∈ Ob(I) with Dj in A and homI(j, i) 6= ∅, then L belongs to A. Show that:

(a) If A is epireflective in B, then A is strongly limit-closed in B.
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(b) If B is complete, wellpowered, and co-wellpowered, then a full subcategory A of B
is epireflective in B if and only if A is strongly limit-closed in B.

16M. A Characterization of Extremally Epireflective Subcategories

Show that a full subcategory of an extremally co-wellpowered, strongly complete category
B is extremally epireflective in B if and only if it is closed under the formation of products
and subobjects in B.

16N. Finitary Varieties and Finitary Quasivarieties

Show that

(a) All the finitary quasivarieties exhibited in Example 16.13(4) are finitary varieties.

(b) The full subconstruct TfAb of Ab is a finitary quasivariety, but is not a finitary
variety. [Cf. 20.41(2) and 24.7.]

(c) Every regular epireflective subconstruct of a finitary quasivariety is a finitary quasi-
variety.

(d) The finitary variety Grp is a full, isomorphism-closed, reflective subconstruct of the
finitary variety Sgr. However, Grp is not even implicational in Sgr.
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17 Factorization structures for functors

In §8 we have generalized the concept of morphisms to that of G-structured arrows,
where G is a functor. Here we will generalize, in an analogous way, the concept of
sources to that of G-structured sources. Many (but by no means all) of the results on
factorization structures of sources can be carried over to the context of G-structured
sources. Sometimes even proofs of the more general results can be readily obtained by
adapting the corresponding proofs from §15.

This section contains the basic results on factorization structures for functors. Special
classes of functors, defined by means of particular factorization properties, will be studied
in greater detail in the remaining chapters; especially: adjoint functors (Chapter V); and
topological, algebraic, and topologically algebraic functors (Chapter VI).

Domain and codomain of a source

17.1 DEFINITION
Let G : A → X be a functor. A G-structured source S is a pair (X, (fi, Ai)i∈I) that

consists of an X-object X and a family of G-structured arrows X
fi−−→ GAi with domain

X, indexed by some class I.

X is called the domain of S and the family (Ai)i∈I is called the codomain of S.

17.2 REMARKS
(1) Whenever it is convenient, we use notations for G-structured sources such as

(X
fi−−→ GAi)i∈I or (X

fi−−→ GAi)I (which is reminiscent of notations used for sources
in §15).
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(2) As with sources, we use, whenever convenient, such expressions as

(a) G-structured empty sources (i.e., X-objects),

(b) G-structured 1-sources (i.e., G-structured arrows),

(c) G-structured 2-sources (when the cardinality of the index class is 2), and

(d) G-structured small sources (when the index class is a set).

(3) As with sources, every pair (X,S) that consists of an X-object X and a class S of
G-structured arrows with domain X can be considered to be a G-structured source
via indexing S by itself.

17.3 DEFINITION
Let G : A → X be a functor, let E be a class of G-structured arrows, and let M be a
conglomerate of A-sources. (E,M) is called a factorization structure for G, and G
is called an (E,M)-functor provided that

(1) E and M are closed under composition with isomorphisms in the following sense:

(1a) if X
e−→ GA ∈ E and A

h−→ B ∈ Iso(A), then X
e−→ GA

Gh−−→ GB ∈ E,

(1b) if (A mi−−→ Ai)I ∈ M and B
h−→ A ∈ Iso(A), then (B h−→ A

mi−−→ Ai)I ∈ M.

(2) G has (E,M)-factorizations, i.e., for each G-structured source (X
fi−−→ GAi)I

there exists X
e−→ GA ∈ E andM = (A mi−−→ Ai)I ∈ M such that

X
fi−−→ GAi = X

e−→ GA
Gmi−−−→ GAi for each i ∈ I.

(3) G has the unique (E,M)-diagonalization property, i.e., whenever X
f−→ GA

and X
e−→ GB are G-structured arrows with (e,B) ∈ E, and M = (A mi−−→ Ai)I

and S = (B
fi−−→ Ai)I are A-sources with M ∈M, such that (Gmi) ◦ f = (Gfi) ◦ e

for each i ∈ I, then there exists a unique diagonal, i.e., an A-morphism B
d−→ A

with f = Gd ◦ e and S = M ◦ d, which will be expressed (imprecisely) by saying
that the following diagram commutes:

X
e //

f

��

GB
Gd

||xxxxxxxx
Gfi

��

GA
Gmi

// GAi

17.4 REMARKS
(1) A category A is an (E,M)-category if and only if the identity functor on A is an

(E,M)-functor (provided that we identify each A-morphism A
e−→ B with the idA-

structured arrow (e,B)). Hence (E,M)-categories can be considered as special cases
of (E,M)-functors.
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(2) The dual of a factorization structure on G is a factorization structure on Gop, hence
it concerns factorizations of G-costructured sinks.

(3) A functor G is called an (E,−)-functor provided that there exists some M for which
G is an (E,M)-functor. Analogously for (−,M)-functors.

(4) Whereas every category is an (E,M)-category for suitably chosen E and M, a
functor is an (E,M)-functor for suitably chosen E and M if and only if it is an
adjoint functor (cf. 18.3).

17.5 EXAMPLES
(1) The forgetful functor U : Top → Set is a (Generating, Initial Mono-Source)-

functor. The desired factorizations of U -structured sources of the form (X
fi−−→

(Xi, τi))I

can be obtained in two steps: First, let X
fi−−→ Xi = X

e−→ Y
mi−−→ Xi be an

(Epi, Mono-Source)-factorization in Set. Second, let τ be the initial topology on Y
with respect to the mi and τi. Then

X
fi−−→ (Xi, τi) = X

e−→ (Y, τ) mi−−→ (Xi, τi)

provides a factorization with the desired properties. By using similar arguments, U
can be seen to be an (Extremally Generating, Mono-Source)-functor and a (Bijection,
Initial Source)-functor.

(2) The forgetful functor U : Grp→ Set is an (Extremally Generating, Mono-Source)-
functor. (Recall that X

e−→ UG is extremally generating if and only if the set e[X]
generates the group G in the familiar algebraic sense.) The desired factorizations of

U -structured sources (X
fi−−→ UGi)I can be obtained by either of the following two

constructions, each being of independent interest:

(a) Let X
u−→ UF be a universal arrow in Grp. Then each fi can be uniquely

extended to a homomorphism F
f i−−→ Gi. Let

F
f i−−→ Gi = F

e−→ G
mi−−→ Gi, i ∈ I,

be an (Epi, Mono-Source)-factorization of the source (f i)I in the category Grp.
Then the factorization

X
fi−−→ UGi = X

Ue◦u−−−−→ UG
Umi−−−→ UGi, i ∈ I,

has the desired properties.

(b) Form the cartesian product conglomerate
∏

I Gi and consider this as a (possibly
illegitimate) group by defining the operation coordinate wise. [That is, the mem-
bers of

∏
I Gi are functions x : I →

⋃
Gi with x(i) ∈ Gi, and (x·y)(i) = x(i)·y(i)

and x−1(i) = (x(i))−1.] Define a function f : X →
∏

I Gi by (f(x))(i) = fi(x).
Then f [X] is a subset of

∏
I Gi, and it clearly generates a (small) subgroup
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H of the (possibly illegitimate) group
∏

I Gi. Thus the codomain restriction
e : X → UH of f together with the functions mi : H → Gi, defined by
mi(x) = x(i), form the desired factorization.68

Observe that the second construction is more elementary than the first one, even
though it uses the generalized group

∏
I Gi (which often fails to be a group because

it often fails to be a set).

(3) The forgetful functors U of many familiar constructs are (Extremally Generating,
Mono-Source)-functors, e.g., those of Top, Haus, Pos, Rel, Vec, Grp, Rng, Sgr,
Mon, Lat, Boo, HComp, Cat, and Alg(Ω). In each case a construction anal-
ogous to one of those given in (1) and (2) yields the desired factorizations. The
diagonalization property holds automatically: cf. Theorem 17.10.

17.6 THEOREM
If G is an (E,M)-functor, then each member of E is generating. A 15.4

17.7 PROPOSITION
If G : A→ B is an (E,M)-functor, then the following hold:

(1) (E,M)-factorizations are essentially unique,

(2) M determines E via the unique diagonalization property,

(3) if A is an (Ẽ,M)-category, (e,A) ∈ E and A
ẽ−→ B ∈ Ẽ, then ((Gẽ) ◦ e,B) ∈ E.

A 15.5

17.8 REMARK
Even though (E,M)-functors are analogous to (E,M)-categories, not all of the prop-
erties of (E,M)-categories carry over to (E,M)-functors. In particular, for (E,M)-
functors

(1) M need not be determined by E [cf. 15.5(9)]. [The canonical forgetful functor
U : Top→ Set is simultaneously an (E,Mi)-functor for i = 1, 2, where E consists
of all U -structured arrows (e,A) with e bijective and A discrete, M1 consists of all
sources in Top, and M2 consists of all sources in Top with discrete domain.]

(2) Extremal mono-sources need not all belong to M[cf. 15.5(2)]. [In (1) above, there are
limit sources — even isomorphisms (considered as 1-sources) — that do not belong
to M2.]

(3) M need not be closed under composition [cf. 15.5(4)]. [If U and E are as in (1)
above, and M3 = M2 ∪ {Q ↪→ R,R ↪→ C}, then U is an (E,M3)-functor, but
Q ↪→ C does not belong to M3.]

68If I is a set, then the entire construction above is just the image factorization of f = 〈fi〉 (as f = m◦e)
composed with the product source (πi), i.e., mi = πi ◦m. Even if I is a proper class, the construction
could be performed in the quasicategory of “large groups”, but in order to introduce this entity we
would need to enrich our foundations.
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17.9 PROPOSITION
If G is an (E, Mono-Source)-functor, then E consists precisely of those structured arrows

that are extremally generating. A 15.8(1)

17.10 THEOREM
If a functor G has (Generating, Mono-Source)-factorizations, then G is an
(Extremally Generating, Mono-Source)-functor. A 15.10

FACTORIZATION STRUCTURES AND LIMITS

17.11 THEOREM
Let A be a strongly complete category and let A G−−→ X be a functor that preserves strong
limits.

(1) If G is extremally co-wellpowered or if A has a coseparator, then G is an (ExtrGen,
Mono-Source)-functor.

(2) If G is faithful and concretely co-wellpowered, then G is a (ConGen, Initial Mono-
Source)-functor.

Proof:
(1). In case G is extremally co-wellpowered, the result is a straightforward generaliza-

tion of Theorem 15.25(1). In case A has a coseparator C, we conclude as above
that G has (ExtrGen, Mono-Source)-factorizations for set-indexed G-structured
sources. As in Theorem 15.10 this implies that G has the (ExtrGen, Mono-Source)-
diagonalization property (for arbitrary sources). Let X be an arbitrary X-object.
For each G-structured morphism X

h−→ G(Chom(X,GC)) select an (ExtrGen, Mono)-
factorization:

X
h−→ G(Chom(X,GC)) = X

gh−−→ GAh
Gmh−−−−→ G(Chom(X,GC)).

Likewise for each G-structured morphism X
k−→ G(C∅) select an (ExtrGen, Mono)-

factorization:
X

k−→ G(C∅) = X
gk−−→ GAk

Gmk−−−−→ G(C∅).

Then M = {(gh, Ah)
∣∣ h ∈ hom(X, G(Chom(X,C)))} ∪ {(gk, Ak)

∣∣ k ∈ hom(X, G(C∅))}
is a set. Next we show that every G-structured morphism X

f−→ GA has an
(M , Mono)-factorization. Analogous to Theorem 15.25(1) this implies that G is

(ExtrGen, Mono Source)-factorizable. Let X
f−→ GA = X

e−→ GB
Gm−−−→ GA be a

(Gen, Mono)-factorization. Since C is a coseparator, there exists a monomorphism
B

n−→ ChomA(B,C). In case homA(B,C) = ∅, choose k = Gn ◦ e. Then there exists
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a diagonal Ak
d−→ B such that the diagram

X
gk //

e

��

GAk

Gd

{{wwwwwwwww
Gmk

��

GB
Gn
// G(C∅)

commutes. Since mk is a monomorphism, so is d. Thus

X
f−→ GA = X

gk−−→ GAk
G(m◦d)−−−−−→ GA

is an (M , Mono)-factorization. In case homA(B,C) 6= ∅, there exists a monomor-
phism ChomA(B,C) ñ−→ ChomX(X,GC), since the map

ϕ : homA(B,C)→ homX(X, GC),

defined by ϕ(`) = G`◦e, is injective (cf. Exercise 10K). By choosing h = G(ñ◦n)◦e
and proceeding as before, one obtains an (M , Mono)-factorization of X

f−→ GA.

(2). This follows as a ready adaptation of the proof of Theorem 15.25 since regular
monomorphisms are G-initial [cf. Proposition 8.7(3)]. �

FACTORIZATIONS OF STRUCTURED 2-SOURCES

17.12 PROPOSITION
If G-structured 2-sources have (Generating, −)-factorizations, then G preserves
mono-sources.

Proof: Let A G−−→ X be a functor. LetM = (A mi−−→ Ai)I be a mono-source in A, and

let X
r1 //

r2

// GA be a pair of X-morphisms with GM◦ r1 = GM◦ r2. If

X
ri−−→ GA = X

e−→ GB
Gsi−−−→ GA, i ∈ {1, 2}

is an (Generating, −)-factorization of the structured 2-source (X ri−−→ GA)i∈{1,2}, then
G(mi ◦ s1) ◦ e = Gmi ◦Gs1 ◦ e = Gmi ◦ r1 = Gmi ◦ r2 = Gmi ◦Gs2 ◦ e = G(mi ◦ s2) ◦ e
for each i ∈ I. Since (e,B) is generating, this implies that mi ◦ s1 = mi ◦ s2 for each
i ∈ I. Since (A mi−−→ Ai)I is a mono-source, this implies that s1 = s2. Thus r1 = r2. �

17.13 PROPOSITION
If G : A → B is a functor such that G-structured 2-sources have (Generating, Mono-
Source)-factorizations, then the following conditions are equivalent:

(1) G reflects isomorphisms,
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(2) each mono-source is G-initial,

(3) G is faithful and reflects extremal epimorphisms,

(4) G reflects limits,

(5) G reflects equalizers.

Proof: (1) ⇒ (2). LetM = (A mi−−→ Ai)I be a mono-source in A, let S = (B
fi−−→ Ai)I

be a source in A, and let GB
f−→ GA be an B-morphism with GS = GM◦ f . Consider

a (Generating, Mono-Source)-factorization:

GB

GB

f
""F

FFFFFFF

idGB

<<xxxxxxxx g
// GC

Gm

OO

Gn
��

GA

of the G-structured 2-source GB
id←−− GB

f−→ GA. Then G(M◦ n) ◦ g = G(S ◦m) ◦ g
implies that M◦ n = S ◦m. Thus, since (n, m) and M are mono-sources, this implies
that m is a monomorphism. Hence, by Proposition 17.12, Gm is a monomorphism and a
retraction, so an isomorphism. By (1), m is an isomorphism. Thus f = n◦m−1 : B → A
is an A-morphism with Gf = f and S =M◦ f . It is the unique morphism with these
properties, since M is a mono-source.

(2) ⇒ (3). By Proposition 10.60 G is faithful and reflects isomorphisms. Let e be
an A-morphism such that Ge is an extremal epimorphism. By faithfulness, e is an
epimorphism. If e = m ◦ g is a (−, Mono)-factorization of e, then, by Proposition 17.12,
Ge = Gm ◦Gg is a (−, Mono)-factorization of Ge. Hence Gm is an isomorphism in B.
Thus m is an isomorphism in A.

(3) ⇒ (1). G reflects extremal epimorphisms and, by faithfulness, monomorphisms.
Hence, by the dual of Proposition 7.66, G reflects isomorphisms.

(2) ⇒ (4). By Proposition 10.60 G is faithful. Let D : I → A be a diagram and let

L = (L `i−−→ Di)I be a source in A such that GL is a limit of G ◦D. By faithfulness L
is a natural source for D. Let S = (A

fi−−→ Di)I be an arbitrary natural source for D.
Then GS is a natural source for G ◦D. Hence there exists a B-morphism GA

g−→ GL
with GS = GL ◦ g. Since GL, being a limit, is a mono-source, the faithfulness of G
implies that L is a mono-source; hence it is G-initial. Thus there exists an A-morphism
A

f−→ L with Gf = g and S = L◦f . Since L is a mono-source, f is uniquely determined
by the latter property. Hence L is a limit of D.

(4) ⇒ (5). Obvious.

(5) ⇒ (1). Immediate, since a morphism A
f−→ B is an equalizer of (idB, idB) if and

only if f is an isomorphism. �
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17.14 REMARK
Observe that in the diagram below, all arrows indicate implications that hold without any
assumptions, whereas those labeled 1, 2, 3, and 4 are equivalences under the hypothesis
of the preceding Proposition (cf. 17G).

monosources
are initial

reflects limits

reflects equalizers faithful

reflects
isomorphisms

faithful and
reflects extremal
epimorphisms

?

?
-

?

�

6

1

2

3

4

17.15 PROPOSITION
A functor A G−−→ X is faithful if and only if for each A-object A the G-structured source

(GA
id←−− GA

id−−→ GA) is (Generating, Initial Source)-factorizable.

Proof: If G is faithful, then
GA

GA

idGA ""E
EE

EE
EE

E

idGA

<<yyyyyyyy idGA // GA

GidA

OO

GidA

��

GA

is, by Proposition 8.16(3) and Proposition 10.59, a (Generating, Initial Source)-factori-

zation. Conversely, if A
r //

s
// B is a pair of A-morphisms with Gr = Gs and

GA

GA

idGA ""F
FF

FF
FF

F

idGA

<<yyyyyyyy g
// GC

Gm

OO

Gn
��

GA

is a (Generating, Initial Source)-factorization, then there exists an A-morphism

A
g−→ C with Gg = g and m ◦ g = idA = n ◦ g. Since (g, C) is generating, the equalities
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G(r ◦ m) ◦ g = Gr ◦ Gm ◦ g = Gr = Gs = Gs ◦ Gn ◦ g = G(s ◦ n) ◦ g imply that
r ◦m = s ◦ n. Thus r = r ◦ idA = r ◦m ◦ g = s ◦ n ◦ g = s ◦ idA = s. �

17.16 COROLLARY
If G-structured 2-sources are (Generating, Initial Source)-factorizable, then G is faith-
ful. �

Suggestions for Further Reading

Tholen, W. Factorizations of cones along a functor. Quaest. Math. 2 (1977): 335–353.

Herrlich, H., and G. E. Strecker. Semi-universal maps and universal initial comple-
tions. Pacific J. Math. 82 (1979): 407–428.

Nakagawa, R. A note on (E,M)-functors. Springer Lect. Notes Math. 719 (1979):
250–258.

EXERCISES

17A. A Characterization of Generating Arrows

Let (A, U) be a concrete category that has concrete equalizers. Show that a structured
arrow is

(a) generating if and only if it does not factor through a non-isomorphic regular mono-
morphism,

(b) concretely generating if and only if it does not factor through a non-isomorphic
embedding,

(c) extremally generating if and only if it does not factor through a non-isomorphic
monomorphism.

17B. Composites of (Generating,−)-Factorizable Functors

Show that whenever A F−−→ B is (Generating, Mono-Source)-factorizable and B G−−→ C

is (Generating, −)-factorizable, then A
G◦F−−−→ C is (Generating, Mono-Source)-factoriza-

ble.

Conclude that a functor with an (Epi, Mono-Source)-factorizable domain is (Generating,
Mono-Source)-factorizable if and only if it is (Generating,−)-factorizable.

17C. Existence of Factorization Structures
Let (A, U) be a concrete category over X. Show that

(a) If (A, U) has concrete equalizers and concrete intersections, then structured arrows
have (Extremally Generating, Mono)-factorizations.
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(b) If X is strongly complete and if U lifts limits and is concretely co-wellpowered, then
U is a (Concretely Generating, Initial Mono-Source)-functor.

17D. Uniqueness of Diagonals

Show that a functor is an (E,M)-functor if it has (E,M)-factorizations and the (not
necessary unique) (E,M)-diagonalization property.

17E. Properties of (E, M)-Functors

Consider the following properties of an (E,M)-functor A G−−→ B:

(1) If GA
e−→ GA′ is a B-morphism and (e,A′) belongs to E, then there exists an

A-morphism A
e−→ A′ with Ge = e.

(2) E is closed under composition.

(3) (idGA, A) ∈ E for each A-object A.

(4) Any source in M is G-initial.

(5) A source (A mi−−→ Ai)I belongs to M if and only if for every commutative diagram

B
e //

f

��

GA

Gfi

��

GA
Gmi

// GAi

with (e,A) ∈ E there exists a unique diagonal.

Show that

(a) (1) implies (2), but not conversely.

(b) (2) implies (3) if each A-object is the codomain of a member of E.

(c) (3) and (4) are equivalent.

(d) (4) implies (5), but not conversely.

(e) (5) implies that every A-isomorphism, considered as source, belongs to M.

(f) (3) implies that G is faithful and that all extremal mono-sources belong to M.

17F. Factorizations of Structured 2-Sources
Show that

(a) If G has (Generating, Mono-Source)-factorizations for structured 2-sources, then G
has the unique (Extremally Generating, Mono-Source)-diagonalization property (for
all structured sources).

(b) If G has (Concretely Generating, Initial Mono-Source)-factorizations for structured
2-sources, then G has the unique (Concretely Generating, Initial Mono-Source)-
diagonalization property.
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(c) If G has the (E, Extremal Mono-Source)-diagonalization property for structured
2-sources, then each (e,A) in E is generating.

(d) If G has the (E, Mono-Source)-diagonalization property for structured 2-sources,
then each (e,A) in E is extremally generating.

(e) If G is faithful and G has the (E, Initial Mono-Source)-diagonalization property for
2-sources, then each (e,A) in E is concretely generating.

17G. Re: Remark 17.14
Show that

(a) A functor need not be faithful even though it reflects every type of monomorphism
and every type of epimorphism introduced above (extremal, regular, strict, strong,
section, retraction, isomorphism, etc.). [Hint: Consider the functor G from 0 ⇒ 1
to 0→ 1 with G(0) = 0 and G(1) = 1.]

(b) A faithful functor that reflects isomorphisms and extremal epimorphisms need not
reflect equalizers. Hint: Consider the inclusion functor from

0

��
>>

>>
>>

>

''NNNNNNNNNNNNNN

2 //
// 3

1

@@�������

77pppppppppppppp

into

0

��
>>

>>
>>

>

''NNNNNNNNNNNNNN

��

2 //
// 3

1

@@�������

77pppppppppppppp

(c) A functor that reflects equalizers need reflect neither limits nor regular monomor-
phisms. Hint: For limits consider the inclusion functor from the discrete category
with objects 0 and 1 into 0→ 1; for regular monomorphisms consider the inclusion
functor from

0

��

1

into

0

�� ��
>>

>>
>>

>

1 //
// 2

(d) If a functor A G−−→ B reflects limits, then mono-sources in A need not be G-initial.
Hint: Consider the inclusion functor from

0

��
>>

>>
>>

> 1

��

2

into

0 //

��
>>

>>
>>

> 1

��

2

(e) If mono-sources are G-initial, then G need not reflect extremal epimorphisms. Hint:
Consider the inclusion functor from

0

��

1

into

2 //
//

��
>>

>>
>>

> 0

��

1
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* 17H. A Generalization of Theorem 17.11
Let A be a strongly complete category with a coseparating set. Show that every functor

A G−−→ B that preserves strong limits is an (ExtrGen, Mono-Source)-functor.

17I.
Prove that if A has equalizers and intersections and G : A → B preserves these lim-
its, then G-structured arrows have (Extremal Generating, Mono)-factorizations. Cf.
Theorem 14.19.

17J.
Let (A, U) be a concrete category over a strongly complete category X. Show that if
U is concretely co-wellpowered and preserves and detects limits, then U is (Concretely
Generating, Initial Mono-Source)-factorizable, thus a (−,−)-functor.

17K.
Let (A, U) be a fibre-small, transportable concrete category over a wellpowered category
X. Prove that if (A, U) has concrete limits and bounded generation, then U is an
(Extremal Generating, Mono-Source)-functor.

17L.
Show that the nonfull embedding

3
��� :::

1
:::

2
���

0

� � //

3

2

1

0

satisfies all of the conditions of Proposition 17.13 except condition (2). Cf. also Propo-
sition 10.60.
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Chapter V

ADJOINTS AND MONADS
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18 Adjoint functors

Perhaps the most successful concept of category theory is that of adjoint functor. Adjoint
functors occur frequently in many branches of mathematics and the “adjoint functor
theorems” have a surprising range of applications.

18.1 DEFINITION
A functor G : A → B is said to be adjoint provided that for every B-object B there
exists a G-universal arrow with domain B (cf. 8.30).

Dually, a functor G : A→ B is said to be co-adjoint provided that for every B-object
B there exists a G-co-universal arrow with codomain B (cf. 8.40).

18.2 EXAMPLES
(1) A subcategory A of a category B is (co)reflective in B if and only if the associated

inclusion A ↪→ B is a (co-)adjoint functor [cf. 8.31(2) and 8.41(1)].

(2) The forgetful functor U of a concrete category (A, U) over X is adjoint if and only
if for each X-object X there exists a free object over X. In particular, the forgetful
functors:

(a) of the constructs Rel, Top, and Alg(Σ) are both adjoint and co-adjoint (cf. 8.23
and 8.41),

(b) of the constructs Vec, Grp, Pos, and Cat are adjoint but not co-adjoint,

(c) of the constructs CLat and CBoo are neither adjoint nor co-adjoint,

(d) of the concrete categories of the form Spa(T ) are both adjoint and co-adjoint,

(e) TopGrp → Grp, TopGrp → Top, and TopGrp → Set are adjoint.

(3) O : Ban→ Set is adjoint, but U : Ban→ Set is not [cf. 8.23(12)].

(4) Each equivalence is adjoint and co-adjoint.

(5) If A is a category, then the unique functor A→ 1 is adjoint if and only if A has an
initial object [cf. 8.31(3)].

(6) A hom-functor hom(A,−) : A → Set is adjoint if and only if there exist arbitrary
copowers of A in A [cf. 8.31(4)].

(7) For each set M , the endofunctor (M ×−) : Set→ Set that sends A
f−→ B to

M × A
idM×f−−−−−→ M × B is co-adjoint. “Evaluation” ev : M × AM → A defined by

(m, f) 7→ f(m) is an (M ×−)-co-universal arrow for A (cf. §27).

(8) The minimal realization functor M : Beh→ Autr is adjoint [cf. 8.31(5)].
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18.3 PROPOSITION
For a functor G : A→ B the following conditions are equivalent:

(1) G is adjoint,

(2) G has (Generating69,−)-factorizations,

(3) G is an (E,M)-functor for some E and M,

(4) G is a (Universal69, Source)-functor.

Proof: (1) ⇒ (4) ⇒ (3). Obvious.

(3) ⇒ (2). Theorem 17.6.

(2) ⇒ (1). For any B-object B let B
fi−−→ GAi = B

e−→ GA
Gmi−−−→ GAi be a

(Generating,−) factorization of the G-structured source that consists of all G-structured
arrows (fi, Ai) with domain B. Then the G-structured arrow (e,A) is universal for B.�

18.4 PROPOSITION
If A is an (Epi,M)-category, then for any functor G : A→ B the following are equiv-
alent:

(1) G is adjoint,

(2) G is a (Generating,M)-functor.

Proof: (1) ⇒ (2). Let (B
fi−−→ GAi)I be a G-structured source. If B

u−→ GA is

a universal arrow, then for each i ∈ I there exists an A-morphism A
f i−−→ Ai with

fi = Gf i ◦ u. If A
f i−−→ Ai = A

e−→ A
mi−−→ Ai is an (Epi,M)-factorization, then

B
fi−−→ GAi = B

(Ge)◦u−−−−−→ GA
Gmi−−−→ GAi is a (Generating,M)-factorization. To show

the (Generating,M)-diagonalization property, consider a commutative diagram

B
g
//

f
��

GA

Gfi

��

GA′
Gmi

// GAi

(∗)

with (g,A) generating and (A′ mi−−→ Ai)I in M. If B
u−→ GA is a universal arrow, then

there exist A-morphisms A
f−→ A′ and A

g−→ A with f = Gf ◦ u and g = Gg ◦ u. This
implies that mi ◦ f = fi ◦ g for each i ∈ I. Since (g,A) is generating, g must be an
epimorphism. Hence there exists an A-morphism A

d−→ A′ that makes

A
g
//

f
��

A
d

~~~~
~~

~~
~~

fi

��

A′
mi

// Ai

69“Generating” in this context denotes the class of all generating G-structured arrows; likewise, “Uni-
versal” denotes the class of all universal G-structured arrows.
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commute. Obviously, d is a diagonal for (∗). Uniqueness follows from the fact that (g,A)
is generating.

(2) ⇒ (1). Proposition 18.3. �

PROPERTIES OF ADJOINT FUNCTORS

18.5 PROPOSITION
If A G1−−→ B and B G2−−→ C are adjoint, then so is A G2◦G1−−−−−→ C.

Proof: If C
u−→ G2B is universal for C, and B

v−→ G1A is universal for B, then

C
(G2v)◦u−−−−−−→ G2G1A is universal for C. �

18.6 PROPOSITION
Adjoint functors preserve mono-sources.

Proof: Let G : A→ B be an adjoint functor, let S = (A mi−−→ Ai)I be a mono-source in

A, and let B
r //

s
// GA be a pair of B-morphisms with GS ◦ r = GS ◦ s. If B

u−→ GA is a

universal arrow, then there exist A-morphisms A
r //

s
// A with r = Gr◦u and s = Gs◦u.

This implies that G(S ◦ r) ◦u = G(S ◦ s) ◦u; hence S ◦ r = S ◦ s, so that r = s, and thus
r = s. �

18.7 COROLLARY
Embeddings of reflective subcategories preserve and reflect mono-sources. �

18.8 REMARK
(1) As shown in Example 7.33(5) embeddings of full subcategories need not preserve

monomorphisms, hence they need not preserve mono-sources.

(2) Full, reflectiveembeddings preserve extremal monomorphisms. (Cf. 7F.)

18.9 PROPOSITION
Adjoint functors preserve limits.

Proof: Let G : A → B be an adjoint functor, let D : I → A be a diagram, and let
L = (L `i−−→ Di)I be a limit of D. Then GL is a natural source for G ◦ D. Let S =

(B
fi−−→ GDi)I be a natural source for G ◦ D. If B

u−→ GA is a universal arrow for B,
then for each i ∈ I there exists an A-morphism f i : A → Di with fi = Gf i ◦ u. Since

(u, A) is generating, the source S = (A
f i−−→ Di) is natural for D. Hence there exists

an A-morphism f : A → L with S = L ◦ f . Consequently, f = Gf ◦ u : B → GL is a
B-morphism with S = GL ◦ f . Uniqueness follows from the fact that, by Proposition
18.6, GL is a mono-source. �

9th July 2006



Sec. 18] Adjoint functors 299

18.10 COROLLARY
If (A, U) is a concrete category over X that has free objects, then the following hold:

(1) all limits in (A, U) are concrete,

(2) U preserves and reflects mono-sources,

(3) if (A, U) is fibre-small and transportable, then wellpoweredness of X implies well-
poweredness of A. �

18.11 PROPOSITION
If G : A → B is an adjoint functor and A is co-wellpowered, or extremally co-well-
powered, then so is G.

Proof: Immediate from Proposition 8.36. �

ADJOINT FUNCTOR THEOREMS

We have seen above that adjoint functors preserve limits. Next we will see that this
property in conjunction with certain completeness and smallness conditions actually
characterizes such functors. We have seen before that both general constructions and
smallness conditions are essential ingredients of category theory. The adjoint functor
theorems of this section are prime examples of this fact. Below we will see that each of
them contains a completeness condition and a smallness condition, neither of which can
be eliminated.

18.12 ADJOINT FUNCTOR THEOREM
A functor G : A→ B, whose domain A is complete, is adjoint if and only if G satisfies
the following conditions:

(1) G preserves small limits,

(2) for each B-object B there exists a G-solution set, i.e., a set-indexed G-structured

source (B
fi−−→ GAi)I through which each G-structured arrow factors (in the sense

that given any B
f−→ GA, there exists a j ∈ I and a Aj

g−→ A in A such that

B
fj
//

f
!!C

CC
CC

CC
C GAj

Gg

��

GA

commutes).

Proof: If G is an adjoint functor, then, by Proposition 18.9, G preserves limits. If
B

u−→ GA is a G-universal arrow for B, then the G-structured source SB consisting
of (u, A) alone is a G-solution set for B. Hence conditions (1) and (2) are necessary.
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To show the converse, suppose that (1) and (2) are satisfied. Let B be a B-object
and let SB = ((ui, Ai))I be a G-solution set for B. If (P, πi)I is a product of the
family (Ai)I in A, then by (1) (GP,Gπi)I is a product of (GAi)I in B. Thus u =
〈ui〉 : B → GP is a G-structured arrow such that the G-structured source, consisting
of (u, P ) alone, is a G-solution set for B. Consider the family (gj)J consisting of all
A-morphisms P

gj−−→ P with (Ggj) ◦ u = u. If E
e−→ P is a multiple equalizer of

(gj)J , then by (1) GE
Ge−−→ GP is a multiple equalizer of (Ggj)J . Thus there is a

B-morphism B
v−→ GE with u = Ge ◦ v. The G-structured source, consisting of the

G-structured arrow (v,E) alone, is a G-solution set for B. Thus to prove that (v,E) is

a G-universal arrow, it need only be shown that (v,E) is G-generating. Let E
r //

s
// A

be a pair of A-morphisms with Gr ◦ v = Gs ◦ v. If E
e−→ E is an equalizer of r and s,

then by (1) GE
Ge−−→ GE is an equalizer of Gr and Gs. Thus there exists a B-morphism

B
f−→ GE with v = Ge ◦ f . Since ((u, P )) is a G-solution set for B, there exists an

A-morphism P
g−→ E with f = Gg ◦ u. Hence P

e◦e◦g−−−−→ P is an A-morphism with
G(e ◦ e ◦ g) ◦ u = G(e ◦ e) ◦ f = Ge ◦ v = u. Therefore there exists some j ∈ J with
gj = e ◦ e ◦ g. There also exists some k ∈ J with gk = idP . Thus gj ◦ e = gk ◦ e implies
e ◦ e ◦ g ◦ e = e. Since e is a monomorphism, this implies that e ◦ g ◦ e = idE . Thus e
is a retraction, which by Proposition 7.54 implies that r = s. Consequently, (v,E) is a
G-universal arrow for B. Thus G is an adjoint functor. �

18.13 EXAMPLES
The following functors have complete domains and preserve limits, but fail to be adjoint:

(1) the unique functor Ordop → 1, where Ord is the partially ordered class of all ordinal
numbers, considered as a category,

(2) the forgetful functors CLat → Set and CBoo → Set [cf. 8.23(7)].

Whereas the “limit-preservation” condition in the above theorem is usually easy to check,
the “solution set” condition is often rather cumbersome, particularly since the theorem
gives no idea of how to find such a set. In the next results, attention is focused on
“canonical” candidates for solution sets.

18.14 THEOREM
If A is strongly complete and (extremally) co-wellpowered, then the following conditions

are equivalent for any functor A G−−→ B:

(1) G is adjoint,

(2) G preserves small limits and is (extremally) co-wellpowered.

Moreover the implication (2) ⇒ (1) holds without the assumption that A be (extremally)
co-wellpowered.

Proof: (1) ⇒ (2). Immediate from Propositions 18.9 and 18.11.

(2) ⇒ (1). Immediate from Proposition 18.3 and Theorem 17.11(1). �
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18.15 COROLLARY
Fibre-small, concretely co-wellpowered constructs that are concretely complete have free
objects. �

An adjoint functor is co-wellpowered and preserves small limits

18.16 EXAMPLES
The conditions in the above theorem are carefully balanced as the following examples
show:

1. There exist full embeddings A G−−→ B such that A is complete and co-wellpowered
and G preserves limits and is extremally co-wellpowered, but G is neither adjoint
nor co-wellpowered. [Let C be the partially ordered class of all ordinals, considered
as a category, let A = Cop, let B be obtained from A by adding an initial object,
and let A G−−→ B be the inclusion.]

2. There exist strongly complete categories A that are not co-wellpowered, even
though the unique functor A G−−→ 1 is adjoint and co-wellpowered. [Consider
Λ-CCPos.]

For suitable categories A the somewhat cumbersome solution set condition completely
vanishes, as the following result shows:

18.17 SPECIAL ADJOINT FUNCTOR THEOREM
If A is a strongly complete category with a coseparator, then for any functor G : A→ B,
the following conditions are equivalent:

(1) G is adjoint,
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(2) G preserves strong limits.

Proof: Immediate from Theorem 17.11, Proposition 18.3, and Proposition 18.9. �

18.18 REMARK
The categories Set, Vec, Pos, Top, and HComp are complete, wellpowered, and have
coseparators (cf. 7.18), so that the above theorem applies to them. Since many familiar
categories have separators but fail to have coseparators, the dual of the Special Adjoint
Functor Theorem is applicable even more often than the theorem itself.

18.19 CONCRETE ADJOINT FUNCTOR THEOREM
Let G : (A, U) → (B, V ) be a concrete functor. If (A, U) is complete, wellpowered,
co-wellpowered, and has free objects, then G is adjoint if and only if G preserves small
limits.

Proof: As before, it suffices to show that the above assumptions imply that G is co-
wellpowered. Let B be a B-object and let V B

u−→ UAB be a (fixed) universal U -
structured arrow with domain V B. It suffices to show that for every generating G-
structured arrow B

g−→ GA, A can be considered (via a suitable epimorphism) as a
quotient-object of AB. By universality there exists a unique A-morphism g : AB → A
such that the triangle

V B
u //

V g
&&MMMMMMMMMMM UAB

Ug

��

V GA = UA

commutes. Since (g,A) is a generating G-structured arrow, g is an epimorphism; hence
A is a quotient-object of AB. �

18.20 REMARKS
(1) Faithfulness of U is not needed for the above result, but faithfulness of V is essential.

(2) If (A, U) and (B, V ) satisfy the assumptions of the above result and if V reflects
limits, then every concrete functor (A, U) → (B, V ) preserves limits, and hence
must be adjoint. Similar situations will be investigated in §23. (Observe that the
reflection of limits is typical for forgetful functors of “algebraic” concrete categories.)

Suggestions for Further Reading

Kan, D. N. Adjoint functors. Trans. Amer. Math. Soc. 87 (1958): 294–329.

Freyd, P. Functor theory. Ph. D. dissertation, Princeton University, 1960.
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EXERCISES

18A. Functors that are Simultaneously Adjoint and Co-adjoint

Let A G−−→ B be a functor. Show that

(a) If G is an equivalence then G is adjoint and co-adjoint.

(b) If G is adjoint and co-adjoint and A = B = Set, then G is an equivalence.

(c) If A and B are monoids, considered as categories, then G is adjoint iff G is co-adjoint.

(d) If A has an initial and a terminal object and B = 1, then G is adjoint and co-adjoint.

(e) If A = 1 and G maps the single object of A to a zero object in B, then G is adjoint
and co-adjoint.

(f) The forgetful functor Top→ Set is adjoint and co-adjoint.

(g) The forgetful functor Alg(1) → Set is adjoint and co-adjoint, where the η : X →
(X ×N, λ), defined by η(x) = (x, 0) and λ(x, n) = (x, n + 1), are universal arrows,
and the ε : (XN, µ)→ X, defined by ε(xn) = x0 and µ(xn) = (xn+1) are couniversal
arrows.

(h) If A is small and C is a category that is complete and cocomplete, then the functor

[B,C]
[G,id]−−−−→ [A,C] is adjoint and co-adjoint.

18B. Smallness Conditions For Adjoints

(a) Let A G−−→ B be a faithful adjoint functor. Show that A is co-wellpowered if and
only if G is co-wellpowered.

(b) Let A G−−→ B be an adjoint functor such that mono-sources are G-initial. Show that
A is extremally co-wellpowered if and only if G is extremally co-wellpowered.

(c) Show that the unique functor Λ-CCPos → 1 is adjoint and co-wellpowered, even
though Λ-CCPos is not co-wellpowered. Cf. Exercise 15D.

18C. Adjoints via Representable Functors

Show that

(a) A functor A G−−→ Set is adjoint if and only if G is representable by an object for
which arbitrary copowers exist (cf. Exercise 10R).

(b) A functor A G−−→ B is adjoint if and only if for each B-object B the functor

A G−−→ B
hom(B,−)−−−−−−−→ Set is representable.
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18D. (Co-)Adjoints and Colimits

(a) Show that a functor Set→ A is co-adjoint if and only if it preserves coproducts.

(b) Let A G−−→ Set be a faithful and representable functor whose domain is a complete,
wellpowered, and co-wellpowered category A. Show that G is adjoint if and only if
A is cocomplete.

18E. Power-Set Functors
Show that the covariant power-set functor P : Set → Set is neither adjoint nor co-
adjoint, but that the contravariant power-set functor Q : Setop → Set is adjoint.

18F. Upper Semicontinuity as Adjointness

Let A be a complete totally ordered set and let R be the ordered set of real numbers.
Let G : A → R be an order-preserving map, considered as a functor. Show that G is
adjoint if and only if G is upper semicontinuous.

18G. Complete Boolean Algebras

Show that (cf. Exercises 8E, 8F, and 10R):

(a) CBoo is complete, well-powered, and extremally co-wellpowered.

(b) CBoo is not cocomplete.

(c) The forgetful functor CBoo −→ Set is not adjoint.

18H. Adjoint Functors between Posets

Consider order-preserving functions A
f−→ B between posets as functors and show that

(a) f is adjoint if and only if for each b ∈ B, the set { a ∈ A
∣∣ b ≤ f(a) } has a smallest

element.

(b) If A = B = N (with the usual order), then

(1) f is adjoint if and only if it is unbounded.

(2) f is co-adjoint if and only if it is unbounded and f(0) = 0.

(c) If A = B = Z (with the usual order), then f is adjoint if and only if it is co-adjoint.

18I. Stable Epimorphisms and Adjoints

Show that faithful adjoints reflect stable epimorphisms.

* 18J. Extremal Monomorphisms and Adjoints

Show that adjoint functors need not preserve extremal monomorphisms.

18K. Compact Categories

A category A is called compact provided that each functor with domain A that pre-
serves colimits is co-adjoint. Prove that

(a) Each cocomplete co-wellpowered category that has a separator is compact.
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(b) Each compact category is complete. [Hint: For each small diagram D in A the
functor F : A→ Setop that assigns to each A-object A the set of all natural sources
for D with domain A preserves colimits. Thus F op is representable.]

18L. Coseparating Sets

(a) Prove that a set S of objects of a category A that has products is an (extremally)
coseparating set for A if and only if every A-object is an (extremal) subobject of
some product of objects in S (cf. Proposition 10.38).

(b) Using (a) prove that the Special Adjoint Functor Theorem (18.17) holds also for all
strongly complete categories A that have a coseparating set.
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19 Adjoint situations

With every adjoint functor A G−−→ B there can be naturally associated (in an essentially
unique way) a functor B F−−→ A and two natural transformations idB

η−→ G ◦ F and
F ◦G

ε−→ idA. There is an intricate web of relationships between the functors G and F
and the natural transformations η and ε, including an inherent duality, that is largely
responsible for the importance of adjoint functors.

19.1 THEOREM
Let G : A→ B be an adjoint functor, and for each B-object B let ηB : B → G(AB) be a
G-universal arrow. Then there exists a unique functor F : B→ A such that F (B) = AB

for each B-object B, and idB
η=(ηB)−−−−−→ G ◦ F is a natural transformation.

Moreover, there exists a unique natural transformation F ◦ G
ε−→ idA that satisfies the

following conditions:

(1) G
ηG−−→ GFG

Gε−−→ G = G
idG−−−→ G,

(2) F
Fη−−→ FGF

εF−−→ F = F
idF−−−→ F .

Proof:
(a). The existence of a unique F with the required properties follows analogously to the

proof of Proposition 4.22.

(b). For each A-object A, there exists a unique A-morphism FGA
εA−−→ A such that

GA
ηGA //

idGA $$I
IIIIIIII GFGA

GεA

��

GA

commutes. Thus if ε = (εA) is a natural transformation from FG to idA, it is the

unique one that satisfies (1). To show naturality, consider an A-morphism A
f−→ A′.

Then it follows that G(f ◦ εA) ◦ ηGA = Gf ◦GεA ◦ ηGA = Gf = GεA′ ◦ ηGA′ ◦Gf =
GεA′ ◦GFGf ◦ ηGA = G(εA′ ◦ FGf) ◦ ηGA by the naturality of η. Hence f ◦ εA =
εA′ ◦ FGf .

(c). Since η : idB → GF is natural, we get ηGF ◦ η = GFη ◦ η. Hence (1) implies that
G(idF ) ◦ η = idGF ◦ η = GεF ◦ ηGF ◦ η = GεF ◦GFη ◦ η = G(εF ◦ Fη) ◦ η. Thus
idF = εF ◦ Fη, i.e., (2) holds. �

19.2 REMARK
Below (cf. 19.7) it is shown that conditions (1) and (2) of Theorem 19.1 play a crucial

role. In particular, given functors A G−−→ B and B F−−→ A and natural transformations
idB

η−→ GF and FG
ε−→ idA that satisfy the above conditions, the following hold:
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• G is adjoint.

• F is co-adjoint.

• Each B
ηB−−→ G(FB) is a G-universal arrow.

• Each F (GA) εA−−→ A is an F -co-universal arrow.

19.3 DEFINITION
An adjoint situation (η, ε) : F � G : A → B consists of functors A G−−→ B and

B F−−→ A and natural transformations idB
η−→ GF (called the unit) and FG

ε−→ idA

(called the co-unit) that satisfy the following conditions:

(1) G
ηG−−→ GFG

Gε−−→ G = G
idG−−−→ G,

(2) F
Fη−−→ FGF

εF−−→ F = F
idF−−−→ F .

19.4 EXAMPLES
By Theorem 19.1 every adjoint functor gives rise to an adjoint situation. (Cf. Examples
18.2 of adjoint functors.) In particular:

(1) every embedding A E−−→ B of a full reflective subcategory gives rise to an adjoint
situation (η, ε) : R � E : A→ B, where R is a reflector, the ηB’s are A-reflection
arrows, and the εA’s are isomorphisms,

(2) every concrete category (A, U) over X with free objects gives rise to an adjoint
situation (η, ε) : F � U : A→ X, where F is called a free functor, the ηX ’s are
universal arrows (also called insertions of generators), and each εA expresses A
as a retract of the free object generated by UA,

(3) for each set M , (η, ε) : (M×−) � hom(M,−) : Set→ Set is an adjoint situation,
where (M ×−) is the endofunctor of Example 18.2(7), each B

ηB−−→ hom(M,M ×B)
is defined by (ηB(b))(m) = (m, b), and each M × hom(M,A) εA−−→ A is defined by
εA(m, f) = f(m).

19.5 REMARK
We have seen that every adjoint functor gives rise to an adjoint situation. Below it will
be shown that

(1) every adjoint situation arises in this way (cf. 19.7),

(2) every adjoint situation (η, ε) : F � G : A → B is, up to a natural isomorphism,
uniquely determined by G (cf. 19.9).

First, however, we exhibit a duality that is inherent in the concept of adjoint situations.

19.6 DUALITY THEOREM FOR ADJOINT SITUATIONS
If (η, ε) : F � G : A→ B is an adjoint situation, then
(εop, ηop) : Gop � F op : Bop → Aop is an adjoint situation.
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Proof: If A G−−→ B and B F−−→ A are functors, then so are Aop Gop

−−−→ Bop and
Bop F op

−−−→ Aop. If idB
η−→ GF and FG

ε−→ idA are natural transformations, then
so are GopF op ηop

−−−→ idBop and idAop
εop

−−−→ F opGop. If Gε ◦ ηG = idG, it follows that
ηopGop ◦Gopεop = idGop , and if εF ◦Fη = idF , it follows that F opηop ◦ εopF op = idF op .�

19.7 PROPOSITION
If (η, ε) : F � G : A→ B is an adjoint situation, then the following hold:

(1) G is an adjoint functor,

(2) for each B-object B, B
ηB−−→ GFB is a G-universal arrow,

(3) F is a co-adjoint functor,

(4) for each A-object A, FGA
εA−−→ A is a F -co-universal arrow.

Proof: It suffices to prove (2), since (2) implies (1), and (3) and (4) follow by the

Duality Theorem 19.6 from (1) and (2). Let B
f−→ GA be a G-structured arrow. Then

the commutative diagram

B
f

//

ηB

��

GA

ηGA

��

idGA

$$I
IIIIIIII

GFB
GFf

// GFGA
GεA

// GA

shows that FB
εA◦Ff−−−−−→ A is an A-morphism f with f = Gf ◦ ηB. Conversely, if

FB
f−→ A is an A-morphism with f = Gf ◦ ηB, then the commutative diagram

FB

FηB

$$J
JJJJJJJJ Ff

''

idB

!!

FGFB
FGf

//

εFB

��

FGA

εA

��

FB
f

// A

shows that f = εA ◦ Ff . �

19.8 REMARKS
(1) Observe that Theorem 19.1 and Proposition 19.7 imply that G : A→ B is an adjoint

functor if and only if there exists an adjoint situation (η, ε) : F � G : A→ B.

(2) A functor G : A→ B is an equivalence if and only if there exists an adjoint situation
(η, ε) : F � G : A→ B with natural isomorphisms η and ε. Cf. Proposition 6.8.
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(3) If G : A→ B and F : B→ A are concrete functors over X, then (F,G) is a Galois
correspondence if and only if there exist concrete natural transformations η and ε
for which (η, ε) : F � G : A→ B is an adjoint situation. (Cf. 6.24 and 6.25.)

19.9 PROPOSITION
Adjoint situations associated with a given adjoint functor G : A → B are essentially
unique, i.e., for each adjoint situation (η, ε) : F � G : A→ B, the following hold:

(1) if (η, ε) : F � G : A → B is an adjoint situation, then there exists a natural
isomorphism F

τ−→ F for which η = Gτ ◦ η and ε = ε ◦ τ−1G,

(2) if F : B→ A is a functor and F
τ−→ F is a natural isomorphism, then

(Gτ ◦ η , ε ◦ τ−1G) : F � G : A→ B is an adjoint situation.

Proof:
(1). By Proposition 19.7, for each B-object B, B

ηB−−→ GFB and B
ηB−−→ GFB are

G-universal arrows for B. Hence by Proposition 8.25 there exists an isomorphism

FB
τB−−→ FB with GτB ◦ ηB = ηB. It follows that F

τ=(τB)−−−−−→ F is a natural
isomorphism with η = Gτ ◦ η. For each A-object A the equalities GεA ◦ ηGA =
idGA = GεA◦ηGA = GεA◦GτGA◦ηGA = G(εA◦τGA)◦ηGA imply that εA = εA◦τGA.
Hence ε = ε ◦ τG.

(2). Straightforward computations show that G(ε ◦ τ−1G) ◦ (Gτ ◦ η)G = idG and that
(ε ◦ τ−1G)F ◦ F (Gτ ◦ η) = idF . �

19.10 DEFINITION
Let A G−−→ B and B F−−→ A be functors. Then F is called a co-adjoint for G and
G is called an adjoint for F (in symbols: F � G) provided that there exist natural
transformations η and ε such that (η, ε) : F � G : A→ B is an adjoint situation.

19.11 REMARKS
(1) Every adjoint functor G has, by Theorem 19.1, a co-adjoint F ; and any two co-

adjoints F and F of G are, by Proposition 19.9, naturally equivalent. Thus every
adjoint functor has, up to natural equivalence, a unique co-adjoint. Conversely, if a
functor G has a co-adjoint, then, by Proposition 19.7, G is an adjoint functor. Thus
a functor is adjoint if and only if it has a co-adjoint. Moreover, by Proposition 19.7,
the co-adjoint of a functor is a co-adjoint functor.

(2) By duality, a functor is co-adjoint if and only if it has an (essentially unique) adjoint.
A functor F is a co-adjoint for G if and only if G is an adjoint for F . Thus adjoint
functors and co-adjoint functors naturally come in pairs, and these pairs are parts
of adjoint situations.

(3) The reader should be aware that the following alternative terminology is also used:

G is right adjoint = G has a left adjoint = G is adjoint.

F is left adjoint = F has a right adjoint = F is co-adjoint.
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19.12 EXAMPLES
(1) Let A be a reflective subcategory of B. Then a functor B R−−→ A is a co-adjoint for

the inclusion functor A ↪→ B if and only if R is a reflector for A.

(2) Let A be a coreflective subcategory of B. Then a functor B C−−→ A is an adjoint for
the inclusion functor A ↪→ B if and only if C is a coreflector for A.

(3) If a construct (A, U) has free objects, i.e., if U is an adjoint functor, then co-adjoints
for U are the free functors for (A, U).

(4) The discrete functor D : Set→ Top is a co-adjoint for the forgetful functor
U : Top→ Set, and the indiscrete functor I : Set→ Top is an adjoint for U .

(5) If a functor G is an isomorphism, then G−1 is simultaneously an adjoint and a co-
adjoint for G. More generally, for every equivalence A G−−→ B there exists a functor
B F−−→ A that is simultaneously an adjoint and a co-adjoint for G. Cf. Proposition
6.8.

(6) Let A be a category with a zero-object. Then the zero-functor 1→ A is simultane-
ously an adjoint and a co-adjoint for the functor A→ 1. Cf. Exercise 4H(b).

(7) A co-adjoint for the minimal realization functor [cf. 18.2(8)] is the behavior functor
B : Autr → Beh that assigns to each reachable automaton its behavior function
[cf. 8.31(5)].

19.13 PROPOSITION
Adjoint situations can be composed; specifically, if (η, ε) : F � G : A→ B and
(η, ε) : F � G : B→ C are adjoint situations, then so is

(GηF ◦ η , ε ◦ FεG) : F ◦ F � G ◦G : A→ C. �

19.14 THEOREM
If (η, ε) : F � G : A→ B is an adjoint situation, then the following hold:

(1) The following are equivalent:

(a) G is faithful,

(b) G reflects epimorphisms,

(c) ε is an Epi-transformation.

(2) The following are equivalent:

(a) G is faithful and reflects isomorphisms,

(b) G reflects extremal epimorphisms,

(c) ε is an (Extremal Epi)-transformation.

(3) G is full if and only if ε is a Section-transformation.
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(4) G is full and faithful if and only if ε is a natural isomorphism.

(5) If G reflects regular epimorphisms, then each mono-source is G-initial.70

Proof: (1a) ⇒ (1b) ⇒ (1c) is immediate, since Gε is a Retraction-transformation.

(1c) ⇒ (1a). If A
f
//

g
// Â is a pair of A-morphisms with Gf = Gg, then the equations

f ◦ εA = εÂ ◦ FGf = εÂ ◦ FGg = g ◦ εA imply that f = g.

(2a) ⇒ (2b) ⇒ (2c) is immediate, since G, being adjoint, preserves monomorphisms.

(2c) ⇒ (2a). By (1), G is faithful. Let A
f−→ Â be an A-morphism such that Gf

is an isomorphism. Since f ◦ εA = εÂ ◦ FGf is a composite of an isomorphism with
an extremal epimorphism, and so is an extremal epimorphism, the dual of Proposition
7.62(2) implies that f is an extremal epimorphism. By the faithfulness of G, f is a
monomorphism as well; hence it is an isomorphism.

(3). Let G be full. Then for each A-object A there exists an A-morphism A
sA−−→ FGA

with GsA = ηGA. Hence the equations G(sA ◦ εA) ◦ ηGA = GsA ◦ GεA ◦ ηGA = GsA =
G(idFGA) ◦ ηGA imply that sA ◦ εA = idFGA. Thus εA is a section. Conversely, let ε

be a Section-transformation, let A and Â be A-objects, and let GA
f−→ GÂ be a B-

morphism. Then there exists an A-morphism A
r−→ FGA with r ◦ εA = idFGA. Hence

A
f̂−→ Â = A

r−→ FGA
Ff−−→ FGÂ

εÂ−−→ Â is an A-morphism. Since εÂ is an F -co-
universal arrow, the equalities εÂ ◦ FGf̂ = f̂ ◦ εA = εÂ ◦ Ff ◦ r ◦ εA = εÂ ◦ Ff imply
that Gf̂ = f . Thus G is full.

(4). This follows from (1) and (3).

(5). If G reflects regular epimorphisms, then ε is a (Regular Epi)-transformation. Let

(A mi−−→ Ai)I be a mono-source, (Â
fi−−→ Ai)I be a source in A, and GÂ

f−→ GA be a
B-morphism such that Gfi = Gmi ◦ f for each i ∈ I. Then the equalities fi ◦ εÂ =
εAi ◦ FGfi = εAi ◦ FGmi ◦ Ff = mi ◦ εA ◦ Ff imply that for each i ∈ I the diagram

FGÂ
εÂ //

εA◦Ff

��

Â

fi

��

A mi

// Ai

commutes. Since every category has the (Regular Epi, Mono-Source)-diagonalization
property, there exists a diagonal Â

d−→ A. In particular fi = mi ◦ d. Since, by (1), G is
faithful, this implies that the mono-source (A mi−−→ Ai)I is G-initial. �

70See Exercise 19B(c) for a characterization of adjoint functors G with the property that each mono-
source is G-initial.
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Suggestions for Further Reading

Booth, P. I. Sequences of adjoint functors. Archiv Math. 23 (1972): 489–493.

Hoffmann, R.-E. Sequences of adjoints for Ens-valued functors. Manuscr. Math. 32
(1980): 191–210.

EXERCISES

19A. Alternative Description of Adjoint Situations

Show that functors A G−−→ B and B F−−→ A yield an adjoint situation if and only if there
exists an isomorphism hom(FA,B) ∼= hom(A,GB) that is natural in the variables A
and B; more precisely,

Let A G−−→ B and B F−−→ A be functors. Define functors hom(F−,−) : Bop ×A → Set
and hom(−, G−) : Bop ×A→ Set by

hom(F−,−)(B,A) = homA(FB,A)
hom(F−,−)(f, g) = hom(Ff, g), where hom(Ff, g)(k) = g ◦ k ◦ Ff

hom(−, G−)(B,A) = homB(B,GA)
hom(−, G−)(f, g) = hom(f,Gg), where hom(f,Gg)(k) = Gg ◦ k ◦ f.

(a) Let (η, ε) : F � G be an adjoint situation.
Define τ(B,A) : homA(FB,A) → homB(B,GA) by τ(B,A)(f) = Gf ◦ ηB and show
that τ = (τB,A) : hom(F−,−)→ hom(−, G−) is a natural isomorphism.

(b) Let τ : hom(F−,−) → hom(−, G−) be a natural isomorphism. Define η = (ηB) by
ηB = τ(B,FB)(idFB) and ε = (εA) by εA = τ−1

(GA,A)(idGA) and show that
(η, ε) : F � G is an adjoint situation.

(c) The constructions described in (a) and (b) are essentially inverse to each other.

19B. Adjoints Reflecting Special Epimorphisms

Let (η, ε) : F � G : A→ B be an adjoint situation. Show that

(a) If f is G-final and Gf is an extremal (resp. a regular) epimorphism, then f is an
extremal (resp. a regular) epimorphism.

(b) G reflects regular epimorphisms if and only if every A-morphism f , for which Gf is
a regular epimorphism, is G-final.

(c) The following are equivalent:

(1) mono-sources are G-initial,

(2) G reflects swell epimorphisms,

(3) ε is a (Swell Epi)-transformation.
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(d) Each of the following conditions implies but is not equivalent to its immediate suc-
cessor:

(1) G reflects regular epimorphisms,

(2) G reflects swell epimorphisms,

(3) G reflects extremal epimorphisms,

(4) G reflects epimorphisms.

(e) If G reflects swell epimorphisms, then G reflects limits.

(f) If G reflects isomorphisms and A has equalizers, then G is faithful.

(g) If G reflects isomorphisms, then G need not be faithful.

19C. Hom-functors Reflecting Epimorphisms

Let hom(A,−) : A→ Set be a covariant hom-functor that reflects epimorphisms. Show
that

(a) If in A arbitrary copowers IA of A exist, then hom(A,−) is faithful.

(b) In general hom(A,−) need not be faithful.

19D. Galois Adjunctions

An adjoint situation (η, ε) : F � G is called a Galois adjunction provided that ηG
is a natural isomorphism. Show that

(a) For adjoint situations the following conditions are equivalent:

(1) (η, ε) : F � G is a Galois adjunction,

(2) Fη is a natural isomorphism,

(3) ηG is an Epi-transformation,

(4) Fη is an Epi-transformation,

(5) GFη = ηGF .

(b) If (η, ε) : F � G is a Galois-adjunction, then so is (εop, ηop) : Gop � F op.

(c) If (η, ε) : F � G is an adjoint situation and if η is an Epi-transformation or if G
is full, then (η, ε) : F � G is a Galois-adjunction.

(d) If (η, ε) : F � G is a Galois-adjunction, then G and GFG are naturally isomorphic.

19E. Galois Correspondences

(a) Let (A, U) G−−→ (B, V ) and (B, V ) F−−→ (A, U) be concrete functors over X. Show
that (F,G) is a Galois correspondence if and only if there exists an adjoint situation
(η, ε) : F � G with concrete natural transformations η and ε.

* (b) Construct a concrete functor G that has a concrete co-adjoint, but is not a part of
a Galois correspondence (F,G). Cf. Exercise 21E(b).
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* 19F. Adjoint Sequences

Consider the poset N as a category and show that

(a) There is a sequence of functors Gn : N→ N, no two of which are naturally isomor-
phic, such that G0(x) = x + 1 and Gn+1

� Gn for each n ∈ N.

(b) If Gn : N → N is a sequence of functors such that Gn
� Gn+1 for each n ∈ N,

then Gn = idN for each n ∈ N.

19G. Self-Adjoints

(a) Let A G−−→ A be an endofunctor of A with G � G. Show that

(1) If A is a poset, considered as a category, then G is an isomorphism.

(2) If A = Set, then G is an equivalence.

(b) Let A be a category with a zero object A and let G : A→ A be the constant functor
with value A. Show that G � G.

19H. Adjoint Situations and Equivalences

(a) Show that a functor A G−−→ B is an equivalence if and only if there exists an adjoint
situation (η, ε) : F � G : A→ B with natural isomorphisms η and ε.

(b) Let (A, U) be a construct. Show that F � U � F implies that F is an equiva-
lence.

* 19I.
Show that if F � G � H, then F is full and faithful if and only if H is full and
faithful.

19J. Units and Co-units
Let (η, ε) : F � G : A→ B be an adjoint situation. Show that

(a) GFη ◦ η = ηGF ◦ η.

(b) ε ◦ εFG = ε ◦ FGε.

(c) If B
f−→ GA is a G-structured arrow, then f = εA ◦ Ff is the unique A-morphism

FB
f−→ A with f = Gf ◦ ηB.

19K. Swell Separators

In A an object S is called a swell separator provided that mono-sources in A are
hom(S,−)-initial. Show that

(a) Every swell separator is an extremal separator.

(b) If S is a swell separator, then hom(S,−) reflects limits.

(c) If in A arbitrary copowers IS of S exist, then the following hold:

(1) S is a swell separator if and only if hom(S,−) reflects swell epimorphisms.
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(2) S is an extremal separator if and only if hom(S,−) reflects extremal epimor-
phisms.

(3) S is a separator if and only if hom(S,−) reflects epimorphisms. [But cf. 19C(b).]

(4) If hom(S,−) reflects regular epimorphisms, then S is a swell separator.

(d) In Set every separator is swell.

9th July 2006



20 Monads

Algebraic constructs (A, U), such as Vec, Grp, Mon, and Lat, can be fully described
by the following data, called the monad associated with (A, U):

1. the functor T : Set → Set, where T = U ◦ F and F : Set → A is the associated
free functor (19.4(2)),

2. the natural transformation η : idSet → T formed by universal arrows, and

3. the natural transformation µ : T ◦ T → T given by the unique homomorphism
µX : T (TX)→ TX that extends idTX.

In fact, in the above cases, there is a canonical concrete isomorphism K between (A, U)
and the full concrete subcategory of Alg(T ) consisting of those T -algebras TX

x−→ X
that satisfy the equations x ◦ ηX = idX and x ◦ Tx = x ◦ µX . The latter subcategory is
called the Eilenberg-Moore category of the monad (T, η, µ).

The above observation makes it possible, in the following four steps, to express the
“degree of algebraic character” of arbitrary concrete categories that have free objects:

Step 1: With every concrete category (A, U) over X that has free objects (or, more gen-
erally, with every adjoint functor A U−−→ X) one can associate, in an essentially
unique way, an adjoint situation (η, ε) : F � U : A→ X. (See Theorem 19.1
and Proposition 19.9.)

Step 2: With every adjoint situation (η, ε) : F � U : A → X one can associate a
monad T = (T, η, µ) on X, where T = U ◦F : X→ X. (See Proposition 20.3.)

Step 3: With every monad T = (T, η, µ) on X one can associate a concrete subcategory
of Alg(T ) denoted by (XT, UT) and called the category of T-algebras. (See
Definition 20.4.)

Step 4: With every concrete category (A, U) over X that has free objects one can
associate a distinguished concrete functor (A, U) K−−→ (XT, UT) into the asso-
ciated category of T-algebras called the comparison functor for (A, U). (See
Proposition 20.37 and Definition 20.38.)

Concrete categories that are concretely isomorphic to a category of T-algebras for some
monad T have a distinct “algebraic flavor”. Such categories (A, U) and their forgetful
functors U are called monadic. It turns out that a concrete category (A, U) is monadic if
and only if it has free objects and its associated comparison functor (A, U) K−−→ (XT, UT)
is an isomorphism. Thus, for concrete categories (A, U) that have free objects, the
associated comparison functor can be considered as a means of measuring the “algebraic
character” of (A, U); and the associated category of T-algebras can be considered to be
the “algebraic part” of (A, U). In particular,

(a) every finitary variety (see Definition 16.16) is monadic,
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(b) the category TopGrp, considered as a concrete category

(1) over Top, is monadic,

(2) over Set, is not monadic; the associated comparison functor is the forgetful
functor TopGrp→ Grp, so that the construct Grp may be considered as the
“algebraic part” of the construct TopGrp,

(c) the construct Top is not monadic; the associated comparison functor is the forgetful
functor Top → Set itself, so that the construct Set may be considered as the
“algebraic part” of the construct Top; hence the construct Top may be considered
as having a trivial “algebraic part”.

Among constructs, monadicity captures the idea of “algebraicness” rather well (as will
be demonstrated in §24). Unfortunately, however, the behavior of monadic categories in
general is far from satisfactory. Monadic functors can fail badly to reflect nice properties
of the base category (e.g., the existence of colimits or of suitable factorization structures),
and they are not closed under composition. Such deficiencies are shown near the end of
this section. Better behaved (and, moreover, simpler) concepts of “algebraicity” will be
developed in §23.

MONADS AND ALGEBRAS

20.1 DEFINITION
A monad on a category X is a triple T = (T, η, µ) consisting of a functor T : X → X
and natural transformations

η : idX → T and µ : T ◦ T → T

such that the diagrams

T ◦ T ◦ T
Tµ
//

µT

��

T ◦ T

µ

��

T ◦ T µ
// T

and
T

Tη
//

id
""F

FF
FF

FF
FF T ◦ T

µ

��

T
ηT
oo

id
||yy

yy
yy

yy
y

T

commute.

20.2 EXAMPLES
(1) On every category X there is the trivial monad T = (T, η, µ) with T = idX and

η = µ = idT .

(2) In Set the word-monad T = (T, η, µ) is defined as follows:

(a) T : Set → Set assigns to each set X the set TX =
⋃

n∈NXn of tuples or

“words” over X and to each function X
f−→ Y the function TX

Tf−−→ TY that
sends the empty word (∈ X0) to the empty word and for n > 0 sends each word
(x1, . . . , xn) to (f(x1), . . . , f(xn)),
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(b) ηX : X → TX is defined by ηX(x) = (x), i.e., ηX interprets each member of X
as a one-letter word,

(c) µX : T (TX)→ TX is given by concatenation:

µX ((x11, . . . , x1n1), (x21, . . . , x2n2), . . . , (xk1, . . . , xknk
)) =

(x11, . . . , x1n1 , x21, . . . , x2n2 , . . . , xk1, . . . , xknk
),

i.e., µX interprets each word of words in the natural way, as a word.

(3) In Set the power-set monad T = (P, η, µ) is defined as follows:

(a) P : Set→ Set is the power-set functor,

(b) ηX : X → PX is defined by ηX(x) = {x},

(c) µX : P(PX)→ PX is defined by µX(Z) =
⋃

Z.

(4) Let X be a poset, considered as a category. A monad T on X consists of an order-
preserving function T : X → X with s ≤ Ts (due to η) and T = T ◦ T (since
(T ◦ T )s ≤ Ts due to µ) — in other words, T is a closure operator on X.

20.3 PROPOSITION
Each adjoint situation (η, ε) : F � G : A → X gives rise to the associated monad
(T, η, µ) on X, defined by

T = G ◦ F : X→ X and µ = GεF : T ◦ T → T.

Proof:
(1). µ◦Tµ = GεF ◦GFGεF = G(ε◦FGε)F = G(ε◦εFG)F = GεF ◦GεFGF = µ◦µT ,

since ε ◦ FGε = ε ◦ εFG, in view of the fact that ε is a natural transformation.
(Cf. Exercise 19J.)

(2). µ ◦ Tη = GεF ◦GFη = G(εF ◦ Fη) = G(id) = id.

(3). µ ◦ ηT = GεF ◦ ηGF = (Gε ◦ ηG)F = (id)F = id. �

20.4 DEFINITION
Let T = (T, η, µ) be a monad on X. The full concrete subcategory of Alg(T ) consisting
of all algebras TX

x−→ X that satisfy

(1) x ◦ ηX = idX , and

(2) x ◦ Tx = x ◦ µX : T (TX)→ X

is denoted by (XT, UT) and is called the Eilenberg-Moore category of the monad
T, or the category of T-algebras.

20.5 EXAMPLES
(1) If T is the trivial monad on X, then (XT, UT) is concretely isomorphic to (X, idX).
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(2) If T is the word-monad on X = Set, then (XT, UT) is concretely isomorphic to the
construct Mon of monoids. [If TX

x−→ X is a T-algebra, multiplication in X is
defined by a · b = x((a, b)), and if e is the value of x at the empty word, then (X, ·, e)
is a monoid.]

(3) If T is the power-set monad on X = Set, then (XT, UT) is concretely isomorphic
to the construct JCPos. [If TX

x−→ X is a T-algebra, then a ≤ b if and only if
x({a, b}) = b defines a partial order on X with x(A) = supA for each A ⊆ X; the
T-morphisms are precisely the join-preserving maps.] Cf. Exercise 5N(a).

(4) If T = (T, η, µ) is a monad on a partially ordered set X, considered as a category,
and if E : Y → X is the embedding of the full subcategory Y of X, whose objects
are the fixed points of T , then (XT, UT) is concretely isomorphic to (Y, E).

(5) The construct Vec is concretely isomorphic to the construct AbT for the following
monad T = (T, η, µ) on abelian groups: for each abelian group X, let TX = R⊗X
be the tensor product, with morphisms ηX : X → R⊗X given by x 7→ 1⊗ x, and
µX : R⊗R⊗X → R⊗X given by r1 ⊗ r2 ⊗ x 7→ (r1r2)⊗ x.

20.6 REMARK
As outlined in the introduction of this section, with each concrete category (A, U) over

X that has free objects (or, more generally, with every adjoint functor A U−−→ X) one
can associate a category (XT, UT) of T-algebras in three steps. Since the first of these
steps does not yield a unique result, (XT, UT) is not uniquely determined by (A, U).
However, any two categories of algebras that are obtained from (A, U) in this manner
are concretely isomorphic. (See Exercise 20A.) Thus, by “abuse of language”, we will
sometimes designate any category of algebras that is obtained from (A, U) via the proce-
dure outlined above as the category of algebras associated with (A, U) (resp. with
the functor U).

20.7 PROPOSITION
Every monad T = (T, η, µ) on X gives rise to an associated adjoint situation
(η, ε) : FT � UT : XT → X, where

(1) XT and UT are defined as in Definition 20.4,

(2) X FT

−−−→ XT is defined by FT(X
f−→ Y ) = (TX, µX)

Tf−−→ (TY, µY ),
in particular, (TX, µX) is a free object over X in (XT, UT),

(3) FTUT ε−→ idXT is defined by ε(X,x) = x.

Moreover, the monad associated with the above adjoint situation (20.3) is T itself.

Proof: Straightforward computations. �
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MONADIC CATEGORIES AND FUNCTORS

20.8 DEFINITION
(1) A concrete category over X is called monadic provided that it is concretely isomor-

phic to (XT, UT) for some monad T on X.

(2) A functor A U−−→ X is called monadic provided that U is faithful and (A, U) is
monadic.

20.9 REMARK
In Proposition 20.40 it will be shown that every monadic category is concretely isomor-
phic to its associated category of algebras.

20.10 EXAMPLES
(1) Every isomorphism is monadic [cf. 20.5(1)].

(2) The construct Mon is monadic [cf. 20.5(2)]. So is every finitary variety (cf. 20.20).

(3) The construct JCPos is monadic [cf. 20.5(3)].

(4) An embedding of a full subcategory A of X into X is monadic if and only if A is
isomorphism-closed and reflective in X. (See Proposition 20.12, Theorem 20.17, and
Exercise 20F.) A concrete category (A, U) over a partially ordered set X is monadic
if and only if, up to isomorphism, A U−−→ X is the embedding of a full reflective
subcategory of X [cf. 20.5(4)]. In particular, a partially ordered set, considered as a
concrete category over 1, is monadic if and only if it contains precisely one element.

(5) None of the constructs Top, Rel, or Pos is monadic since the corresponding forgetful
functors don’t reflect isomorphisms (cf. 20.12).

20.11 LEMMA
The Eilenberg-Moore category of a monad T = (T, η, µ) is closed under the formation of
mono-sources in Alg(T ).

Proof: Let T = (T, η, µ) be a monad on X, and suppose that the diagram

TX
Tmi //

x

��

TXi

xi

��

X mi

// Xi

commutes for each i ∈ I, where (X mi−−→ Xi)I is a mono-source in X, and each (Xi, xi)
is a T-algebra. To show that (X, x) is a T-algebra, first notice that the commutativity
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of the diagram

X
mi //

ηX

��

Xi

ηXi

��

TX
Tmi

//

x

��

TXi

xi

��

X mi

// Xi

and the fact that xi ◦ ηXi = idXi imply mi ◦ (x ◦ ηX) = xi ◦ Tmi ◦ ηX = xi ◦ ηXi ◦mi =
idXi ◦ mi = mi ◦ idX , and thus x ◦ ηX = idX. The commutativity of the five inner
quadrangles in the diagram

T 2X
Tx //

T 2mi

##G
GG

GG
GG

GG

µX

��

TX
Tmi

||yy
yy

yy
yy

y

x

��

T 2Xi
Txi //

µXi

��

TXi

xi

��

TXi xi

// Xi

TX

Tmi

::vvvvvvvvv

x
// X

mi

ccFFFFFFFFF

implies that mi ◦ (x ◦ µX) = mi ◦ (x ◦ Tx) and thus x ◦ µX = x ◦ Tx. �

20.12 PROPOSITION
For monadic functors A U−−→ X the following hold:

(1) U is faithful,

(2) (A, U) is fibre-small,

(3) U is adjoint, i.e., (A, U) has free objects,

(4) (A, U) is uniquely transportable, hence amnestic,

(5) U creates isomorphisms, hence reflects them,

(6) U reflects epimorphisms and extremal epimorphisms,

(7) U preserves and reflects mono-sources,

(8) in (A, U) mono-sources are initial,

(9) U detects wellpoweredness, i.e., if X is wellpowered, then so is A,

(10) U creates limits.

Proof: Since all of the properties mentioned above are invariant under concrete iso-
morphisms, we may assume that (A, U) = (XT, UT) for some monad T = (T, η, µ) on
X.
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(1) and (2) follow immediately from the definition of monadicity.

(3) follows from Proposition 20.7.

(7) follows from (1) and (3).

(8) is immediate by straightforward computation.

(9) follows from (7) and (8).

(10). Let D : I→ XT be a diagram and let L = (L `i−−→ Di)Ob(I) be a limit of UT◦D. For

each i ∈ Ob(I) let Di = (Xi, xi). Then the source S = (TL
T`i−−−→ TXi

xi−−→ Xi)Ob(I)

is natural for UT ◦ D. Hence there exists a unique X-morphism TL
y−→ L with

S = L ◦ y, i.e., such that each diagram

TL
T`i //

y

��

TXi

xi

��

L
`i

// Xi

commutes. Thus it remains to be shown that (L, y) is a T-algebra and that the

source
(
(L, y) `i−−→ Di

)
Ob(I)

is a limit of D. The former follows from the fact that

L is a mono-source and from Lemma 20.11. The latter follows from (7) and (8)
via Proposition 13.15.

(4) and (5) follow immediately from (10), by Proposition 13.36.

(6) follows immediately from (1), the preservation of monomorphisms (7) and the
reflection of isomorphisms (5). �

20.13 REMARK
Even though monadic functors behave perfectly with respect to limits, their relationship

to colimits is rather complex. For example, if A U−−→ X is a monadic functor with X
cocomplete and if A has coequalizers, then A is cocomplete (see Exercise 20D); but
A needn’t have coequalizers (see 20.47). In fact, monadic functors are characterized
by their (somewhat strange) behavior with respect to coequalizers, as will be seen in
Theorem 20.17.

20.14 DEFINITION
1. A fork A

p
//

q
// B

c // C is called a congruence fork provided that (p, q) is a

congruence relation of c, and c is a coequalizer of p and q.
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2. A fork A
p
//

q
// B

c // C is called a split fork and c is called a split coequalizer

of (p, q) provided that there exist morphisms s and t such that the diagram

B
c //

id

��

t

��
@@

@@
@@

@ C
s

~~~~
~~

~~
~

id

��

A
p
//

q
��~~

~~
~~

~
B

c
  

@@
@@

@@
@

B
c // C

commutes.

3. A colimit K of a diagram D : I→ A is called an absolute colimit provided that
for each functor A G−−→ B the sink GK is a colimit of G ◦D.
In particular, c is called an absolute coequalizer of p and q in A provided that
for each functor A G−−→ B, Gc is a coequalizer of Gp and Gq in B.

4. A functor A G−−→ B is said to create absolute colimits provided that for each
diagram I D−−→ A and each absolute colimit K of G ◦D there exists a unique sink
C = (Di

ci−−→ C)Ob(I) such that GC = K and, moreover, C is a (not necessarily
absolute) colimit of D.

A monadic functor creating colimits

20.15 EXAMPLES
(1) If A is a category, f is an A-morphism, (p, q) is a congruence relation of f in A,
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and c is a coequalizer of p and q in A, then •
p
//

q
// • c // • is a congruence fork in

A. (Cf. Proposition 11.22.)

(2) A congruence fork •
p
//

q
// • c // • is a split fork if and only if c is a retraction.

(3) If •
p
//

q
// • c // • is a split fork, then c is an absolute coequalizer of p and q.

(4) If (η, ε) : F � U : A→ X is an adjoint situation, then for each A-object A

UFUFUA
UFUεA //

UεFUA

// UFUA
UεA // UA

is a split fork in B since the diagram

UFUA
UεA //

ηUFUA
''OOOOOOOOOOO

id

��

UA
ηUA

zzuuuuuuuuu

id

��

UFUFUA

UεFUAwwppppppppppp

UFUεA // UFUA

UεA $$I
IIIIIIII

UFUA
UεA // UA

commutes.

(5) If T = (T, η, µ) is a monad on X, then for each T-algebra (X, x)

T 2X
Tx //

µX

// TX
x // X

is a split fork in X. Hence, in particular, for each X-object X

T 3X
TµX //

µTX

// T 2X
µX // TX

is a split fork in X.

20.16 PROPOSITION
Each monadic functor U creates absolute colimits.

Proof: Let T = (T, η, µ) be a monad on X and let (XT, UT) be the associated category
of T-algebras. Let D : I → XT be a diagram and let K = (UTDi

ci−−→ C)Ob(I) be an

absolute colimit of UT◦D. Then TK = (TUTDi
T ci−−−→ TC)Ob(I) is a colimit of T ◦UT◦D.

If Di = (Xi, xi) for each i ∈ Ob(I), then S = (TXi
xi−−→ Xi

ci−−→ C)Ob(I) is a natural sink
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for T ◦ UT ◦D. Hence there exists a unique morphism TC
c−→ X with S = c ◦ TK, i.e.,

such that for each i ∈ Ob(I) the diagram

TXi
T ci //

xi

��

TC

c

��

Xi ci

// C

commutes. Thus it remains to be shown that (C, c) is a T-algebra and that the sink
(Di

ci−−→ (C, c))Ob(I) is a colimit of D. The former follows from the fact that K and T 2K,
being colimits, are epi-sinks and from the equations

(c ◦ ηC) ◦ ci = c ◦ Tci ◦ ηXi = ci ◦ xi ◦ ηXi = ci ◦ idXi = idC ◦ ci

and

(c◦Tc)◦T 2ci = c◦Tci ◦Txi = ci ◦xi ◦Txi = ci ◦xi ◦µXi = c◦Tci ◦µXi = (c◦µC)◦T 2ci.

For the latter, consider a natural sink X = (Di
fi−−→ (X, x))Ob(I) for D. Then UTX =

(Xi
fi−−→ X)Ob(I) is a natural sink for UT ◦D. Thus there exists a unique X-morphism

C
f−→ X with fi = f ◦ ci for each i ∈ Ob(I). Hence Tfi = Tf ◦ Tci for each i ∈ Ob(I)

and so x ◦Tf ◦Tci = x ◦Tfi = fi ◦ xi = f ◦ ci ◦ xi = f ◦ c ◦Tci. Since TK is an epi-sink,
this implies that x ◦ Tf = f ◦ c, i.e., (C, c)

f−→ (X, x) is the unique T -homomorphism
with X = f ◦ K. �

20.17 CHARACTERIZATION THEOREM FOR MONADIC FUNCTORS
For any functor A U−−→ X the following conditions are equivalent:

(1) U is monadic,

(2) U is adjoint and creates absolute coequalizers,

(3) U is adjoint and creates split coequalizers (as defined in 20.14).

Proof: (1) ⇒ (2) follows from Propositions 20.12 and 20.16.

(2) ⇒ (3) follows from Example 20.15(3).

(3)⇒ (1). Since U is adjoint, there is an adjoint situation (η, ε) : F � U : A→ X. Let
T = (T, η, µ) be the associated monad and let (XT, UT) be the associated category of T-
algebras. It suffices to construct functors A K−−→ XT and XT L−−→ A with U = UT ◦K,
L ◦ K = idA, and K ◦ L = idXT ; since then U would be faithful, (A, U) would be a
concrete category, and (A, U) K−−→ (XT, UT) would be a concrete isomorphism.

Construction of K: For each A-object A the pair (UA,UεA) is a T-algebra [cf. 20.15(4)],

and for each A-morphism A
f−→ B, (UA,UεA)

Uf−−→ (UB,UεB) is an T -homomorphism.
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Thus there exists a unique functor A K−−→ XT with K(A) = (UA,UεA) for each A-object
A.

Construction of L: For each XT-object (X, x) the fork

T 2X
Tx //

µX

// TX
x // X = U(FUFX)

U(Fx)
//

U(εFX)
// U(FX) x // X

is a split fork [cf. 20.15(5)]. Hence, by condition (3), U(FX) x−→ X has a unique U-lift
FX

x−→ L(X) and x is a coequalizer of εFX and Fx in A. For each T -homomorphism

(X, x)
f−→ (Y, y) the following equalities hold:

(y ◦ Ff) ◦ εFX = y ◦ εFY ◦ FUFf = y ◦ Fy ◦ FTf = (y ◦ Ff) ◦ Fx.

Since x is a coequalizer of εFX and Fx in A, there exists a unique A-morphism

L(X)
L(f)−−−→ L(Y ) with y ◦ Ff = L(f) ◦ x. Since x is an epimorphism, the equali-

ties UL(f) ◦ x = UL(f) ◦ Ux = Uy ◦ UFf = y ◦ Tf = f ◦ x imply that UL(f) = f ,

i.e., U(L(X, x)
L(f)−−−→ L(Y, y)) = X

f−→ Y = UT((X, x)
f−→ (Y, y)). Thus L defines a

concrete functor XT L−−→ A. The equation L◦K = idA immediately follows (via concrete-

ness) from the fact that, for each A-object A, FUA
εA−−→ A U-lifts UFUA

UεA−−−→ UA,
so that L ◦K(A) = A. To show that K ◦ L = idXT , let (X, x) be an T-algebra. Then
(K ◦ L)(X, x) = (UL(X, x), UεL(X,x)). Since UL(X, x) = X, it remains (in view of
concreteness) to be shown that x = εL(X,x). By the universality of η, the equations
Ux ◦ ηX = x ◦ ηX = idX = UεL(X,x) ◦ ηUL(X,x) = UεL(X,x) ◦ ηX imply that x = εL(X,x)

and hence that x = Ux = UεL(X,x). �

20.18 PROPOSITION
Each construct of the form Alg(Ω) is monadic.

Proof: By Example 8.23(6) the forgetful functor Alg(Ω) U−−→ Set is adjoint, so by the
above theorem it suffices to show that U creates absolute coequalizers. Consider a pair

(A, (αi)I)
p
//

q
// (B, (βi)I) of Ω-homomorphisms and an absolute coequalizer B

c−→ C

of p and q in Set. For each i ∈ I, the functor Sni : Set → Set [3.20(10)] preserves
this coequalizer. Thus Bni

cni−−−→ Cni is a coequalizer of pni and qni in Set. Since
(c◦βi)◦pni = c◦p◦αi = c◦q◦αi = (c◦βi)◦qni, there exists a unique function Cni

γi−−→ C
with c ◦ βi = γi ◦ cni . Thus (B, (βi)I)

c−→ (C, (γi)I) is the unique U-lift of the costruc-
tured map (B, (βi)I)

c−→ C. It follows easily that (B, (βi)I)
c−→ (C, (γi)I) is a coequalizer

of (A, (αi)I)
p
//

q
// (B, (βi)I) in Alg(Ω). Thus U creates absolute coequalizers. �

20.19 PROPOSITION
Let (A, U) be a monadic category over X. Then each concrete full reflective subcategory
of A that is closed under the formation of regular quotients is also monadic over X.
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Proof: Immediate from Theorem 20.17. �

20.20 PROPOSITION
Each finitary variety is a monadic construct.

Proof: Immediate from Propositions 20.18 and 20.19. �

E-MONADS AND E-MONADIC
CATEGORIES AND FUNCTORS

20.21 DEFINITION
(1) A monad T = (T, η, µ) on X is called an E-monad provided that X is an (E,M)-

category for some M and T [E] ⊆ E.

RegEpi-monads in categories with regular factorizations are called regular monads.

(2) A concrete category (A, U) over X (or a faithful functor A U−−→ X) is called E-
monadic (resp. regularly monadic) provided that (A, U) is concretely isomorphic
to (XT, UT) for some E-monad (resp. regular monad) T on X.

20.22 PROPOSITION
Every monad on Set is regular.

Proof: This follows from the facts that in Set every regular epimorphism is a retraction
and that every functor preserves retractions. �

20.23 DEFINITION
A functor A U−−→ X lifts (E,M)-factorizations uniquely provided that for any source
S in A and any (E,M)-factorization US =M◦e in X there exists a unique factorization
S = M̂ ◦ ê in A with UM̂ =M and Uê = e.

20.24 PROPOSITION
If X is an (E,M)-category and A U−−→ X is E-monadic, then U lifts (E,M)-factoriza-
tions uniquely.

Proof: Assume that (A, U) = (XT, UT) for some E-monad T = (T, η, µ) on X. Let

S = ((X, x)
fi−−→ (Xi, xi))I be a source in XT and (X

fi−−→ Xi)I = (X e−→ Y
mi−−→ Xi)I

be an (E,M)-factorization of UTS in X. Since Te ∈ E, there exists a unique diagonal
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TY
y−→ Y in X that makes the diagram

TX

x

��

Tfi //

Te
""E

EEEEEEE TXi

xi

��

TY

Tmi

<<xxxxxxxx

y

��

Y
mi

""F
FF

FF
FF

FF

X

e

<<yyyyyyyyy

fi

// Xi

(i ∈ I)

commute. That (Y, y) is a T-algebra follows from the fact that e and T 2e are epimor-
phisms [15.5(2)] and from the equations

y ◦ ηY ◦ e = y ◦ Te ◦ ηX = e ◦ x ◦ ηX = e ◦ idX = idY ◦ e

and

(y ◦ Ty) ◦ T 2e = y ◦ T (y ◦ Te) = y ◦ T (e ◦ x) = y ◦ Te ◦ Tx = e ◦ x ◦ Tx = e ◦ x ◦ µX

= y ◦ Te ◦ µX = (y ◦ µY ) ◦ T 2e. �

20.25 PROPOSITION
Let A be a full subcategory of an (E,M)-category B. Then the inclusion functor A U−−→ B
is E-monadic if and only if the following conditions are satisfied:

(1) A is reflective in B,

(2) if A
e−→ B

m−−→ A′ is an (E,M)-factorization of an A-morphism A
m◦e−−−→ A′, then

B belongs to A.

Proof: If U is E-monadic, then by Propositions 20.12(3) and 20.24, conditions (1) and
(2) are satisfied. Conversely, let (1) and (2) be satisfied, and let (η, ε) : F � U : A→ B
be an adjoint situation. If T = (T, η, µ) is the associated monad, then (A, U) can be
shown to be concretely isomorphic to (BT, UT). To see this consider the concrete functor
K : (A, U) → (BT, UT) given by KA = (A, η−1

A ). K is an isomorphism since for each
T-algebra (B, b) we have b ◦ ηB = idB (where ηB is an A-reflection for B) and hence
ηB ◦ b ◦ ηB = ηB implies that ηB ◦ b = id. Thus b = η−1

B , and B ∈ Ob(A) since, by (2),
A is isomorphism-closed. It remains to be shown that T [E] ⊆ E. Consider a morphism
B

e−→ B′ in E. Let TB
Te−−→ TB′ = TB

ê−→ B′′ m̂−−→ TB′ be an (E,M)-factorization of
Te. Then there exists a diagonal B

d−→ B′′ that makes the following diagram commute:

B
e //

ê◦ηB

��

B′

d

||yy
yy

yy
yy

ηB′

��

B′′
m̂
// TB′
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By the universal property of η there exists a morphism TB′ d̂−→ B′′ with d = d̂ ◦ ηB′ .
Thus m̂ ◦ d̂ ◦ ηB′ = m̂ ◦ d = ηB′ implies that m̂ ◦ d̂ = id. Moreover, d̂ ◦ m̂ ◦ ê ◦ ηB =
d̂ ◦ m̂ ◦ d ◦ e = d̂ ◦ ηB′ ◦ e = d ◦ e = ê ◦ ηB implies that d̂ ◦ m̂ ◦ ê = ê. Thus, since ê is
an epimorphism, d̂ ◦ m̂ = id. Hence m̂ is an isomorphism and, consequently, Te = m̂ ◦ ê
belongs to E. �

20.26 COROLLARY
If A is an E-reflective subcategory of an (E,M)-category B, then the inclusion-functor
A→ B is E-monadic.

Proof: Immediate from Theorem 16.8 and Proposition 20.25. �

20.27 EXAMPLES
As the following examples show, there exist full subcategories A of (E,M)-categories B
such that the inclusion functor A→ B is E-monadic, but such that A is neither closed
under the formation of M-subobjects nor under the formation of E-quotient objects:

(1) Sgr is a (RegEpi, Mono-Source)-category, the full embedding Grp → Sgr is regu-
larly monadic, and Grp is closed under the formation of regular quotients in Sgr.
But Grp is not closed under the formation of subobjects in Sgr.

(2) Top is an (Epi, ExtrMono-Source)-category and the full embedding of HComp into
Top is Epi-monadic. But HComp is neither closed under the formation of quotients
nor closed under the formation of extremal subobjects in Top.

20.28 PROPOSITION
If (A, U) is an E-monadic category over an (E,M)-category X, then the following hold:

(1) Every A-morphism f with Uf ∈ E is final in (A, U).

(2) A is an (U−1[E], U−1[M])-category.

Proof:
(1). Assume that (A, U) = (XT, UT) for some E-monad T = (T, η, µ) on X. Let

(X, x) e−→ (Y, y) be a T -homomorphism with X
e−→ Y in E, and let Y

f−→ Z be

an X-morphism such that (X, x)
f◦e−−−→ (Z, z) is a T -homomorphism. Since Te is an

epimorphism, the equalities

(f ◦ y) ◦ Te = (f ◦ e) ◦ x = z ◦ T (f ◦ e) = (z ◦ Tf) ◦ Te

imply that f ◦ y = z ◦ Tf , i.e., that (Y, y)
f−→ (Z, z) is a T -homomorphism.

(2). By Proposition 20.24, A has (U−1[E], U−1[M])-factorizations. By (1) and the fact
that U−1[E] ⊆ Epi(A), A has the unique (U−1[E], U−1[M])-diagonalization prop-
erty. �
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20.29 COROLLARY
If (A, U) is E-monadic over an E-co-wellpowered category, then A is U−1[E]-co-well-
powered. �

20.30 PROPOSITION
If (A, U) is regularly monadic, then A has regular factorizations and U preserves and
reflects regular and extremal epimorphisms.

Proof: By Proposition 20.28, A is an (E, Mono-Source)-category, where E is the class
U−1[RegEpi(X)]. Thus, by Proposition 15.8(1), E = ExtrEpi(A). It suffices to show
that in A every extremal epimorphism A

e−→ B is regular. Since Ue is an extremal
epimorphism and hence a regular epimorphism in the base category X, it is a coequalizer

of some pair X
r1 //

r2

// UA of X-morphisms. If X
η−→ UC is a universal arrow over X,

then for each i = 1, 2 there exists an A-morphism C
r̂i−−→ A with ri = (Ur̂i)◦η. Since Ue

is a coequalizer of r1 and r2 in X, the finality of e [cf. Proposition 20.28(1)] implies that
e is a coequalizer of r̂1 and r̂2 in A(cf. Exercise 8O). Hence e is a regular epimorphism
in A. �

20.31 COROLLARY
Regularly monadic functors detect extremal co-wellpoweredness. �

20.32 CHARACTERIZATION THEOREM FOR
REGULARLY MONADIC FUNCTORS

A functor A U−−→ X is regularly monadic if and only if the following conditions hold:

(1) U is monadic,

(2) X has regular factorizations,

(3) U preserves regular epimorphisms.

Proof: By Proposition 20.30 every regularly monadic functor satisfies the above condi-
tions. Conversely, assume that (A, U) = (XT, UT) for some monad T = (T, η, µ) on X,
and that conditions (2) and (3) are satisfied. Then FT and hence T = UT ◦FT preserve
regular epimorphisms. Thus T is a regular monad and (A, U) is regularly monadic. �

20.33 PROPOSITION
Regularly monadic functors detect colimits.

Proof: Let (A, U) be a regularly monadic category over X, let D : I→ A be a diagram,
and let (UDi

ci−−→ C)i∈Ob(I) be a colimit of U ◦ D. Consider the structured source

(C
fj−−→ UAj)j∈J) consisting of all structured morphisms for which each UDi

fj◦ci−−−−→ UAj

is an A-morphism . If C
ηC−−→ UA is a universal arrow over C, then for each j ∈ J
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there exists a unique A-morphism A
gj−−→ Aj with fj = gj ◦ ηC . Let (A

gj−−→ Aj)J =
(A e−→ B

mj−−→ Aj)J be a (RegEpi, Mono-Source)-factorization.

UDi
ci //

**TTTTTTTTTTTTTTTTTTTT C
fj

!!C
CC

CC
CC

C
ηC // UA

gj

||yyyyyyyy
e // UB

mj

ttiiiiiiiiiiiiiiiiiiiiii

UAj

Since mono-sources are initial and each UDi
fj◦ci−−−−→ UAj is an A-morphism, each

UDi
e◦ηC◦ci−−−−−→ UB is an A-morphism. It follows easily that (Di

e◦ηC◦ci−−−−−→ B)i∈Ob(I)

is a colimit of D. �

MONADIC CONSTRUCTS

20.34 PROPOSITION
Monadic constructs are complete, cocomplete, wellpowered, extremally co-wellpowered,
and have regular factorizations.

Proof: Let (A, U) be a monadic construct. By Proposition 20.12, A is complete and
wellpowered. By Proposition 20.22, U is regularly monadic. Hence Corollary 20.31
implies that A is extremally co-wellpowered, Proposition 20.30 implies that A has regular
factorizations, and Proposition 20.33 implies that A is cocomplete. �

20.35 CHARACTERIZATION THEOREM FOR
MONADIC CONSTRUCTS

For constructs (A, U) the following conditions are equivalent:

(1) U is monadic,

(2) U is regularly monadic,

(3) U is adjoint and creates finite limits and coequalizers of congruence relations,

(4) U is extremally co-wellpowered and creates limits and coequalizers of congruence
relations.

Proof: (1) ⇔ (2) by Proposition 20.22.

(1) ⇒ (3). It suffices to show that U creates coequalizers of congruence relations. Let

A
p
//

q
// B be a pair of A-morphisms and let UA

Up
//

Uq
// UB

c // C be a congruence fork

in Set. By Example 20.15(2) it is a split fork. Thus the result follows from Theorem
20.17.
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(3) ⇒ (1). By Theorem 20.17 it suffices to show that U creates coequalizers of split

forks. Let A
p
//

q
// B be a pair of A-morphisms and let

UB

id

��

t

""F
FFFFFFF

c // C
s

}}{{
{{

{{
{{

id

��

UA

Uq
||xxxxxxxx

Up
// UB

c
!!C

CC
CC

CC
C

UB
c // C

be a commutative diagram in Set. Let (c1, c2) be a congruence relation of c in Set and
let (p1, p2) be a congruence relation of p in A. Then (Up1, Up2) is a congruence relation
of Up in Set. Thus there exist unique functions u and v that make the diagrams

UP
Up1

//

Up2

��

u

""

UA

Uq

��

Q

c2

��

c1 // UB

c

��

UA
Uq
// UB c

// C

and

Q
c1 //

c2

��

v

""

UB

t

��

UP
Up1
//

Up2

��

UA

Up

��

UB
t
// UA

Up
// UB

commute.

The equations ci ◦ (u ◦ v) = Uq ◦Upi ◦ v = Uq ◦ t ◦ ci = ci = ci ◦ id for i = 1, 2 imply that

u◦ v = id. Thus, if L
`1 //

`2
// UP is a congruence relation of u, then u is a coequalizer of `1

and `2. A straightforward computation shows that the source (L, (`i)) can be considered
as a limit of the diagram

L
`1 //

`2

��

UP

U(q◦p2)

��
..

..
..

..
..

..
..

..
..

..
.

U(q◦p1)

��

UP
U(q◦p1)

//

U(q◦p2)
**UUUUUUUUUUUUUUUUUUUUUU UB

UB

Since U creates finite limits, there is a unique lift (L̂
ˆ̀
i−−→ P ) for the structured source

(L `i−−→ UP ). Since UL̂
U ˆ̀

1 //

U ˆ̀
2

// UP
u // Q is a congruence fork, UP

u−→ Q has a unique
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lift P
û−→ Q̂ and û is a coequalizer of ˆ̀

1 and ˆ̀
2 in A. Thus the equations ci ◦ Uû =

ci ◦u = U(q ◦pi) and the faithfulness of U imply that each ci can be lifted uniquely to an

A-morphism Q̂
ĉi−−→ B. Since UQ̂

Uĉ1 //

Uĉ2
// UB

c // C is a congruence fork, UB
c−→ C has

a unique lift B
ĉ−→ Ĉ and ĉ is a coequalizer of ĉ1 and ĉ2 in A. It remains to be shown

that ĉ is a coequalizer of p and q. Since ĉ ◦ p = ĉ ◦ q, this follows from the fact that
whenever Ĉ

f−→ D is an A-morphism with f ◦ p = f ◦ q, then f ◦ ĉ1 ◦ û = f ◦ q ◦ p1 =
f ◦ p ◦ p1 = f ◦ p ◦ p2 = f ◦ q ◦ p2 = f ◦ ĉ2 ◦ û, and hence that f ◦ ĉ1 = f ◦ ĉ2.

(3)⇒ (4). In view of Proposition 18.11 this follows from (3)⇒ (1) and Proposition 20.34.

(4) ⇒ (3). Since U creates limits and Set is strongly complete, so is A. Hence by
Theorem 17.11(1), U has (Generating,−)-factorizations, i.e., it is adjoint. �

20.36 EXAMPLES
(1) The construct HComp is monadic. Condition (3) of the above theorem is easily

seen to hold.

(2) Neither of the constructs Catof and (Ban,O) is monadic. The corresponding for-
getful functors don’t preserve extremal epimorphisms [cf. 7.72(5)].

THE COMPARISON FUNCTOR

Next we will show that every monadic category is not only concretely isomorphic to
some category of algebras, but even to its associated category of algebras (cf. Remark
20.6). Moreover, for every concrete category (A, U) that has free objects, there exists a
distinguished concrete functor into its associated category of algebras; and that functor
turns out to be an isomorphism if and only if (A, U) is monadic. (See Proposition 20.40.)

20.37 PROPOSITION
If (η, ε) : F � U : A → X is an adjoint situation and (XT, UT) is the associated

category of algebras, then there exists a unique functor A K−−→ XT such that the diagram

X
F //

FT

��

A
K

}}||
||

||
||

U
��

XT
UT

// X

commutes.

Proof: Existence: The functor A K−−→ XT, defined by

K(A
f−→ B) = (UA,UεA)

Uf−−→ (UB, UεB),

has the desired properties.
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Uniqueness: Let A K̂−−→ XT be a functor satisfying U = UT ◦ K̂ and FT = K̂ ◦ F.
Consider an A-morphism A

f−→ B, and denote K̂(A
f−→ B) by (X, x)

g−→ (Y, y). Then

U = UT ◦ K̂ implies that UA
Uf−−→ UB = X

g−→ Y . Thus X = UA, Y = UB, and
g = Uf . It remains to be shown that x = UεA. Since FUA

εA−−→ A is an A-morphism,
K̂(FUA

εA−−→ A) = FTUA
UεA−−−→ K̂A is a T -homomorphism. Thus the diagram

TUA

id

!!

TηUA

%%K
KKKKKKKK id

''

TTUA
TUεA //

UεFUA

��

TUA

x

��

TUA
UεA

// UA

commutes.

This implies that x = UεA, so that K̂ = K. �

20.38 DEFINITION
(1) For each adjoint situation (η, ε) : F � U : A→ X, the unique functor A K−−→ XT

of the above proposition is called its comparison functor.

(2) For each adjoint functor A U−−→ X (resp. each concrete category (A, U) that has
free objects) the comparison functor of an associated adjoint situation is called a
comparison functor for U (resp. for (A, U)).

20.39 REMARKS
(1) In view of the essential uniqueness of comparison functors for U (cf. 20A) we will,

by “abuse of language”, usually speak of the comparison functor for U .

(2) Let (η, ε) : F � U : A→ X be an adjoint situation. Then Proposition 20.37 can
be interpreted as saying that the adjoint situation (ηT, εT) : FT � UT : XT → X
induced from the associated monad T is the “largest” one with the same associated
monad. In Exercise 20B it is indicated that every monad also has a “smallest
realization”, called its Kleisli category.

20.40 PROPOSITION
An adjoint functor is monadic if and only if the associated comparison functor is a
concrete isomorphism.

Proof: If the comparison functor for an adjoint functor U is an isomorphism, then U is
obviously monadic. Conversely, let A U−−→ X be a functor, let T be a monad on X, and let
(A, U) H−−→ (XT, UT) be a concrete isomorphism. Let (η, ε) : FT � UT : XT → X be
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the adjoint situation associated with T. Then (η, H−1εH) : H−1 ◦ FT � U : A→ X
is an adjoint situation whose associated monad is T. Since the diagram

X
H−1◦FT

//

FT

��

A
H

}}{{
{{

{{
{{

U
��

XT
UT

// X

commutes, H is the associated comparison functor for U . Thus the comparison functor
is an isomorphism. �

20.41 EXAMPLES
(1) The constructs Grp and TopGrp induce the same monads on Set. Thus the forget-

ful functor TopGrp→ Grp is the comparison functor for the construct TopGrp.

(2) Since the constructs TfAb and Ab of torsion-free abelian groups and of abelian
groups induce the same monads in Set, the full embedding TfAb → Ab is the
comparison functor for TfAb.

(3) The construct Catof is not monadic. If Grph (= the category of oriented graphs)
is the full subconstruct of Alg(1, 1) that consists of all objects (X, c, d) that satisfy
the equations c ◦ c = d ◦ c = c and d ◦ d = c ◦ d = d, then the concrete functor

Catof
K−−→ Grph, defined by KC = (Mor(C), c, d) (where Mor(C)

c //

d
//Mor(C)

are given by d(A
f−→ B) = idA and c(A

f−→ B) = idB), is the comparison functor
for Catof . K is not full.

(4) The full concrete embedding of the construct (Ban, O) into the construct TConv
of totally convex spaces is the comparison functor for (Ban, O).

(5) Since the constructs Top and Set induce the same monad on Set, the forgetful
functor Top→ Set is the comparison functor for Top.

20.42 THEOREM
Let (A, U) K−−→ (XT, UT) be a comparison functor. If A has coequalizers, then K is
adjoint.

Proof: Let (η, ε) : F � U : A → X be an adjoint situation and let T = (T, η, µ) be
the associated monad. Let (X, x) be a T-algebra and let FX

c−→ C be a coequalizer of

FUFX
Fx−−→ FX and FUFX

εFX−−−→ FX. Then (X, x)
Uc◦ηX−−−−−→ KC is a K-universal

arrow as shown below:

(a). Since (Uc ◦ ηX) ◦ x = Uc ◦ UFx ◦ ηUFX = Uc ◦ UεFX ◦ ηUFX = Uc ◦ idUFX =
Uc ◦ UidFX = Uc ◦ U(εFX ◦ FηX) = U(c ◦ εFX) ◦ UFηX = U(εC ◦ FUc) ◦ UFηX =

UεC ◦ T (Uc ◦ ηX), it follows that (X, x)
Uc◦ηX−−−−−→ (UC, UεC) is an T -homomorphism.
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(b). Let (X, x)
f−→ KA be an arbitrary K-structured arrow. Then FX

f̂−→ A =

FX
εA◦Ff−−−−−→ A is the unique A-morphism with f = Uf̂ ◦ ηX (cf. 19J). The equations

U(f̂ ◦ Fx) ◦ ηUFX = Uf̂ ◦ UFx ◦ ηUFX = Uf̂ ◦ ηX ◦ x = f ◦ x = UεA ◦ UFf = Uf̂ =
Uf̂◦UεFX◦ηUFX = U(f̂◦εFX)◦ηUFX imply that f̂◦Fx = f̂◦εFX . Since c is a coequalizer

of Fx and εFX in A, there exists an A-morphism C
f̃−→ A with f̂ = f̃ ◦ c. This implies

that (X, x)
f−→ KA = (X, x)

Uc◦ηX−−−−−→ KC
Kf̃−−−→ KA, since f = Uf̂ ◦ ηX = Uf̃ ◦ Uc ◦ ηX

and Kf̃ = Uf̃ . Uniqueness of f̃ follows from the fact that c is an epimorphism in A. �

20.43 THEOREM
Let (η, ε) : F � U : A→ X be an adjoint situation with associated comparison functor

A K−−→ XT. Then:

(1) K is faithful if and only if U is faithful,

(2) K is full and faithful if and only if ε is a RegEpi-transformation.

Proof:
(1). Obvious.

(2). Let ε be a RegEpi-transformation. Then, by Theorem 19.14(1), U is faithful.

Thus K is faithful as well. Let A and B be objects in A and let KA
f−→ KB be

an XT-morphism. If εA is a coequalizer of C
r //

s
// FUA , then the equations

UεB ◦ UFf ◦ Ur = f ◦ UεA ◦ Ur = f ◦ UεA ◦ Us = UεB ◦ UFf ◦ Us imply that
εB ◦Ff ◦r = εB ◦Ff ◦s by the faithfulness of U . Thus there exists an A-morphism

A
f̂−→ B with εB ◦ Ff = f̂ ◦ εA. Since UεA as a retraction is an epimorphism, the

equations Kf̂ ◦ UεA = Uf̂ ◦ UεA = UεB ◦ UFf = f ◦ UεA imply that Kf̂ = f .
Thus K is full. Conversely, let K be full and faithful and let A be an A-object.
Then εA ◦ εFUA = εA ◦ FUεA. To see that εA is a coequalizer of εFUA and
FUεA, let FUA

f−→ B be an A-morphism with f ◦ εFUA = f ◦ FUεA. The
equalities (Uf ◦ ηUA) ◦ UεA = Uf ◦ UFUεA ◦ ηUFUA = Uf ◦ UεFUA ◦ ηUFUA =
Uf = Uf ◦ UεUFA ◦ UFηUA = UεB ◦ UFUf ◦ UFηUA = UεB ◦ T (Uf ◦ ηUA)

imply that KA
Uf◦ηUA−−−−−−→ KB is an T -homomorphism. By the fullness of K,

there exists an A-morphism A
f̂−→ B with Kf̂ = Uf ◦ ηUA. The equalities

Uf ◦ ηUA = Kf̂ = Uf̂ = Uf̂ ◦ UεA ◦ ηUA = U(f̂ ◦ εA) ◦ ηUA imply that f = f̂ ◦ εA.
Uniqueness follows from the fact that (due to the faithfulness of K and hence of
U) εA is an epimorphism [cf. Theorem 19.14(1)]. �

20.44 COROLLARY
The comparison functor (A, U) K−−→ (XT, UT) of a uniquely transportable concrete cat-
egory, for which U reflects regular epimorphisms, is an isomorphism-closed full embed-
ding. �
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DEFICIENCIES OF MONADIC FUNCTORS

20.45 EXAMPLE
A composite of two regularly monadic functors need not be monadic. Consider

TfAb
U //

V ◦U
$$I

IIIIIIII Ab

V
��

Set

20.46 EXAMPLE
Concrete functors between monadic categories need not be adjoint. Consider

Ab∞
E //

U
$$I

IIIIIIII Grp∞

V
��

Set∞

where (in each case) A∞ is the full subcategory of A that consists of those objects of A
that have infinite underlying sets, where U and V are the forgetful functors, and E is
the inclusion functor.

20.47 EXAMPLE
Monadic functors need not detect colimits. The following yields a monadic category over
Pos that is not cocomplete.

Denote by P0 : Set→ Pos the power-set functor equipped with the ordering of PX such
that ∅ is the least element, and PX−{∅} is discretely ordered. Denote by H : Pos→ Set
the functor that assigns to each poset (X,≤) the set

H(X,≤) = { (x, y, z) ∈ X3
∣∣ x < y < z} ∪ {α} (where α 6∈ X3)

and to each order-preserving function f : (X,≤)→ (Y,≤), the map Hf with Hf(α) =
α, and

Hf(x, y, z) =

{
(f(x), f(y), f(z)), if f(x) 6= f(y) 6= f(z)
α, otherwise.

(a) The functor T = P0 ◦H : Pos→ Pos is such that Alg(T ) has free objects. In fact,
for each poset A we have TA = T (A + TA) and, hence, the free T-algebra over A

is (A + TA, ϕ), where TA
ϕ−→ A + TA is the second coproduct injection, whereas

the universal arrow A
η−→ A + TA is the first coproduct injection. Hence, Alg(T ) is

monadic over Pos.

(b) Alg(T ) does not have the coproduct of the following T-algebra (X, x) with itself:
X is the 3-chain a < b < c, and x : TX → X is the constant map to a.
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To prove this, for each ordinal i define T -homomorphisms fi, gi : (X, x) → (Yi, yi) as
follows: Yi is the following poset

c1

@@
@@

@@
@@

c2 0

��
��

��
��

1

...

ppppppppppppppp . . . j

...

ggggggggggggggggggggggggggggg . . .

b

a

(j < i)

and for each j < i,

j = yi({ (a, b, k)
∣∣ k < j } ∪ { (a, b, ci)

∣∣ i = 1, 2 }),

and otherwise, yi is constant to a. Finally, fi(a) = gi(a) = a, fi(b) = gi(b) = b, and
fi(c) = c1, gi(c) = c2. It is easy to verify that fi and gi are homomorphisms such that
whenever (X, x)+(X, x) exists, the factorizing homomorphism (X, x)+(X, x)→ (Yi, yi)
is surjective. This is impossible.

20.48 EXAMPLE
Monadic categories over co-wellpowered categories need not be extremally co-
wellpowered. See Exercise 16A(a).

20.49 EXAMPLE
Monadic categories over categories with regular factorizations need not have (Epi, Mono-
Source)-factorizations. See Exercise 16A(b).

20.50 EXAMPLE
Monadic functors need not preserve either extremal epimorphisms or regular epimor-
phisms. In fact they can map regular epimorphisms into non-extremal epimorphisms
[see Exercise 16A(b)] and extremal epimorphisms into non-epimorphisms [see Exercise
16A(a)].

20.51 EXAMPLE
In monadic categories, regular epimorphisms need not be final. The comparison functor

Catof
K−−→ Grph for the construct Catof , described in Example 20.41(3), is monadic.

The functor F , described in Example 7.40(6), is a regular epimorphism in Catof that is
not final in (Catof ,K).

20.52 EXAMPLE
Monadic functors need not reflect regular epimorphisms. As above, the comparison

functor Catof
K−−→ Grph is monadic. The functor A G◦F−−−→ C, described in Remark

7.76(1), is not a regular epimorphism in Catof , but K(G ◦ F ) is a regular epimorphism
in Grph.
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VARIETORS AND FREE MONADS

We now explain the role that the categories of the form Alg(T ) play among monadic
categories. They are, up to isomorphism, precisely the Eilenberg-Moore categories of
free monads (introduced below).

20.53 DEFINITION
A functor T : X→ X is called a varietor provided that the concrete category Alg(T )
has free objects.

20.54 EXAMPLES
(1) Sn : Set→ Set is a varietor. Each set generates a free Sn-algebra (i.e., an algebra

with one n-ary operation; cf. 8.23(6)).

(2) If X has countable colimits, then idX is a varietor. Each object X generates a free
idX-algebra whose underlying object is a coproduct of countably many copies of X.

More generally, every functor T : X → X that preserves colimits of ω-chains is a
varietor (cf. Exercise 20P).

(3) The power-set functor P is not a varietor. If Alg(P) would have an initial object
(X, x), then x : PX → X would be an isomorphism (cf. Exercise 20I). However,
cardPX > cardX.

20.55 DEFINITION
(1) Given monads T = (T, η, µ) and T′ = (T ′, η′, µ′) over X, a natural transformation

τ : T → T ′ is called a monad morphism (denoted by τ : T→ T′) provided that
η′ = τ ◦ η and τ ◦ µ = µ′ ◦ τT ′ ◦ Tτ .

(2) A free monad generated by a functor T : X→ X is a monad T# = (T#, η#, µ#)
together with a natural transformation λ : T → T# that has the following universal
property: for every monad T′ = (T ′, η′, µ′) and every natural transformation
τ : T → T ′ there exists a unique monad morphism τ# : T# → T′ with τ = τ# ◦ λ.

20.56 THEOREM
If T : X→ X is a varietor, then Alg(T ) is monadic over X and the associated monad
is a free monad generated by T .

Proof: Let U : Alg(T )→ X denote the forgetful functor, let F : X→ Alg(T ) be the
free functor, let T# = U ◦ F , and let T# = (T#, η#, µ#) be the associated monad.

(1). U is monadic because it creates absolute coequalizers (20.17). If (X, x)
f1
//

f2

// (Y, y)

are T -homomorphisms and X
f1
//

f2

// Y
c // Z is an absolute coequalizer in X, then

Tc is a coequalizer of Tf1 and Tf2, and since

(c ◦ y) ◦ Tf1 = c ◦ f1 ◦ x = c ◦ f2 ◦ x = (c ◦ y) ◦ Tf2,
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there is a unique TZ
z−→ Z for which c : (Y, y) → (Z, z) is a T -homomorphism.

The fact that Tc is a (regular) epimorphism makes it easy to see that

(X, x)
f1
//

f2

// (Y, y) c // (Z, z) is a coequalizer in Alg(T ).

(2). If FX = (X#, ϕX), then the morphisms

TX
λX−−−→ T#X = TX

TηX−−−→ TX# ϕX−−−→ X#

obviously satisfy the naturality condition; i.e., they form a natural transformation
λ : T → T#. To verify the universal property, let (T ′, η′, µ′) be a monad, and let
τ : T → T ′ be a natural transformation. For each X-object X we have a T -algebra

T (T ′X)
(τT ′)X−−−−−→ (T ′)2X

µ′X−−−→ T ′X.

Furthermore, there exists a unique T -homomorphism τ#
X : FX → (T ′X, [µ′◦τT ′]X)

with τ#
X ◦ηX = η′X . It is a straightforward computation to verify that the morphisms

Uτ#
X form a natural transformation τ# : T# → T ′ that satisfies all the required

equalities. �

20.57 COROLLARY
If T : X→ X is a varietor, then the category Alg(T ) is concretely isomorphic to XT#

for a free monad T#. �

20.58 REMARK
The following theorem provides a partial converse to the above (in the case where X is
strongly complete).

20.59 THEOREM
If X is a strongly complete category, then every functor T : X → X that generates a
free monad is a varietor.

Proof: Let (T#, η#, µ#) together with λ : T → T# be a free monad over T . To
prove that the forgetful functor U : Alg(T ) → X is adjoint, it is sufficient to verify
the solution-set condition of Theorem 18.12, since Alg(T ) is complete and U preserves
limits (13N). We will show that for each X-object X the T -algebra

T (T#X)
λ

T#X−−−−→ (T#)2X
µ#

X−−−→ T#X

together with the X-morphism η#
X : X → T#X forms a singleton solution set. In

other words, for each T -algebra (Y, y) and each X-morphism f : X → Y there is a
T -homomorphism

g : (T#X, µ#
X ◦ λT#X)→ (Y, y) with f = g ◦ η#

X .
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Denote by (B, U ′) the full concrete subcategory of Alg(T ) consisting of all subalgebras
of products of the T -algebra (Y, y). Then B is closed under the formation of limits in
Alg(T ). Thus B is strongly complete and U ′ preserves limits. Moreover, (Y, y) is a
coseparator of B (10.38), and hence, U ′ is adjoint (18.17). Let F ′ : X → B denote the
free functor, F ′X = (X∗, ϕX), and let (T ′, η′, µ′) be the associated monad. Then the
morphisms

TX
TηX−−−→ TX∗ ϕX−−−→ X∗

clearly form a natural transformation τ : T → T ′. By the universal property of λ there
exists a unique natural transformation τ# : T# → T ′ with (a) τ = τ# ◦ λ,
(b) η′ = τ# ◦ η#, and (c) τ# ◦ µ# = µ′ ◦ τ#T ′ ◦ T#τ#.

If f : X → Y is a morphism, then since (Y, y) lies in B, there is a unique T -homomor-
phism f∗ : T ′X → (Y, y) with f = f∗ ◦ η′X . Then g = f∗ ◦ τ#

X : T#X → Y is the
desired morphism. In fact, from (b) it follows that f = g ◦ η#

X , and from (a) and (c)
and the properties of monads it is easy to verify that g is a T -homomorphism (i.e., that
y ◦ Ty = g ◦ µ#

X ◦ λT#x). �
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EXERCISES

20A. Associated Categories of T-Algebras Are Essentially Unique

Show that

(a) If (η, ε) : F � U : A → X and (η, ε) : F � U : A → X are adjoint situations
that are isomorphic in the sense of Proposition 19.9, then the associated monads
T = (T, η, µ) and T = (T , η, µ) are isomorphic in the following sense: there exists
a natural isomorphism T

σ−→ T that is a monad morphism (20.55).

(b) If monads T = (T, η, µ) and T = (T , η, µ) in X are isomorphic in the above sense,
then the associated categories of T-algebras and T-algebras are concretely isomor-
phic.

(c) If (A, U) is a concrete category over X with free objects and if (A, U) K−−→ (XT, UT)

and (A, U) K−−→ (XT, UT) are associated comparison functors, then there exists a
concrete isomorphism (XT, UT) H−−→ (XT, UT) with K = H ◦K.

20B. The Kleisli Category of a Monad

The Kleisli category of a monad T = (T, η, µ) in X is the following concrete category
(XT, UT) over X: Ob(XT) = Ob(X), homXT

(X, Y ) = homX(X, TY ), (idX)XT
= ηX ,

and the composition of X
f−→ TY with Y

g−→ TZ in XT is given by µZ ◦ Tg ◦ f (in X).

Furthermore, UT(X
f−→ TY ) = TX

µY ◦Tf−−−−−→ TY.

(a) Prove that UT has a co-adjoint FT with FT(X
f−→ Y ) = (X

ηY ◦f−−−−→ TY ), and that
the associated monad of this adjoint situation is T.

(b) Prove that for each adjoint situation F � G : A � X with the associated monad
T, there exists a unique functor K∗ : XT → A with F = K∗ ◦FT and UT = G◦K∗.

(c) Describe the Kleisli category of the power-set monad as the category of “sets and
relations”.

(d) Show that UT need not detect finite limits. [Consider (c).]
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* 20C. Algebraic Theories

(a) Let T be a monad over Set. Verify that in the Kleisli category XT (20B) each object
(set) X is a coproduct of X copies of 1 = {0} with coproduct injections kx : 1→ X
in XT corresponding to ηX(x) ∈ TX. Prove that for each T-algebra A the functor
FA : XT

op → Set given by

FA(X
f−→ Y ) = hom((TX, µX), A)

FAf−−−→ hom((TY, µY ), A)

[where FAf(h) = h ◦ µX ◦ Tf (in Set)] preserves products.

(b) Conversely, prove that every product-preserving functor F : (XT)op → Set is nat-
urally isomorphic to FA for some T-algebra A. [Hint: Choose A to be (F (1), ϕ),
where ϕ : TF (1) → F (1) assigns to each element of TF (1) represented by an XT-
morphism f : 1→ F (1), the element of F (1) that the function Ff : F 2(1)→ F (1)
assigns to id ∈ (F (1))F (1).] Conclude that SetT is equivalent to the quasicategory
of all product-preserving functors from (XT)op to Set.

(c) An algebraic theory is a category L whose objects are precisely all sets and such
that each object X is a coproduct of X copies of 1. A model of L is a product-
preserving functor from Lop into Set. The quasicategory Mod(L) of models of
L is the full subcategory of [Lop,Set] that has models as objects. Prove that
Mod(L) is equivalent to a monadic construct. Moreover, show that the Kleisli
category of the corresponding monad is equivalent to L.

(d) Verify that the above transitions between monads and algebraic theories are essen-
tially inverse to each other (i.e., inverse up to isomorphism of monads and up to
equivalence of algebraic theories).

* 20D. Cocompleteness of Monadic Categories

Let (A, U) be a monadic category over X and let A have coequalizers. Show that

(a) A has colimits over each scheme over which colimits exist in X.

(b) If X is cocomplete then so is A.

* 20E. Concrete Functors Between Monadic Categories

Let (A, U) G−−→ (B, V ) be a concrete functor between monadic categories. Show that

(a) If A has coequalizers, then G is monadic.

(b) If (A, U) and (B, V ) are regularly monadic, then G is regularly monadic.

20F. Idempotent Monads

A monad T = (T, η, µ) is called idempotent provided that T 2 µ−→ T is a natural
isomorphism. Show that

(a) For a monad T = (T, η, µ) the following conditions are equivalent:

(1) T is idempotent,
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(2) Tη is an Epi-transformation,

(3) XT UT

−−−→ X is full,

(4) XT UT

−−−→ X is an isomorphism-closed full reflective embedding.

(b) If A U−−→ X is an isomorphism-closed full reflective embedding, then the associated
monad is idempotent.

(c) The monad associated with the forgetful functor Top→ Set is idempotent.

* 20G. Monads With Rank
A monad T = (T, η, µ) is said to have rank k, where k is a regular cardinal, provided
that T preserves k-directed colimits, i.e., colimits of diagrams whose schemes are posets
in which every subset of cardinality less than k has an upper bound.

(a) Prove that for each variety of finitary algebras the corresponding monad in Set has
rank ℵ0.

(b) Let B be an isomorphism-closed, full reflective subcategory of a category A. Prove
that the corresponding idempotent monad in A has rank k if and only if B is closed
under the formation of k-direct colimits in A.

(c) For each small category A prove that the forgetful functor [A,Set]→ [Ob(A),Set]
(where the set Ob(A) is considered to be a discrete category) is monadic, and that
the corresponding monad has rank ℵ0.

* 20H. Locally Presentable Categories

An object A of a category A is called presentable provided that hom(A,−) : A→ Set
preserves k-directed colimits for some regular cardinal k. A category A is called locally
presentable provided that it is cocomplete and has a dense (see 12D) subcategory
formed by presentable objects.

(a) Show that every object A is presentable in Set, Vec, Pos, and Aut. [Choose any
regular cardinal k larger than card A.] Show that in Top the only presentable objects
are the discrete spaces, and in HComp only the empty space is presentable.

(b) Show that Set, Vec, Pos, and Aut are locally presentable categories. Furthermore,
show that [A,Set] is locally presentable for each small category A.

(c) Show that for each monad T with rank over a locally presentable category X the
category XT is locally presentable. In particular, if Setm denotes the category
Setm for some cardinal number m, then

Setm, SetmT1 , (SetmT1)T2 , . . .

are locally presentable categories for arbitrary monads T1,T2, . . . with rank.

(d) Conversely, prove that every locally presentable category A is equivalent to a cat-
egory (SetmT1)T2 for some monads T1,T2 with rank; in fact, let B be a dense
subcategory of A formed by presentable objects, then show that
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(1) the full and faithful functor E : A→ [Bop,Set] of Exercise 12D(c) maps A onto
a reflective subcategory E[A], and the corresponding idempotent monad T2 on
[Bop,Set] has rank,

(2) [Bop,Set] is monadic with rank ℵ0 over Setn = Setn for n = cardB [20G(c)].

(e) Let us call an object A strongly n-generated provided that hom(A,−) preserves
colimits of n-directed diagrams whose connecting morphisms are strong monomor-
phisms. Prove that then every quotient of A is also strongly n-generated.

In a locally n-presentable category X the strongly n-generated objects are precisely
the quotients of n-presentable objects. And given a monad T with rank n prove that
a T-algebra is strongly n-presentable in XT iff it is a quotient of the free algebra
TX for some strongly n-generated object X.

(f) In every locally presentable category X prove that every object is strongly n-pre-
sentable for some n. Conclude that if X has, for every regular cardinal n, only a
set of strongly n-generated objects up to isomorphism, then X is co-wellpowered.
Moreover, XT is also co- wellpowered for every monad T with rank.

(g) Conclude that every locally presentable category is complete, wellpowered, and co-
wellpowered.

20I. Initial T -algebras

For an initial object (X, x) of Alg(T ) prove that x is an isomorphism. [Hint: Use the
T -algebra (TX, Tx).]

* 20J. Monadic Towers
Let A be cocomplete and let A U−−→ X be an adjoint functor. Call the associated monad

T1 and the associated comparison functor A U1

−−→ XT1
. Then U = UT1 ◦ U1. By

Theorem 20.42, U1 is adjoint. Denote the associated monad by T2 and the associated
comparison functor by U2. Then the diagram

XT2

UT2

��

A
U2
oo

U1

}}||
||

||
||

U

��

XT1

UT1
// X

commutes. This process can be iterated over all ordinals (with limit-steps obtained by
forming a limit in the quasicategory CAT).

(a) Show that UT2
is an equivalence whenever U maps regular epimorphisms to epimor-

phisms.

(b) Let An (n a natural number) be the construct whose objects are pairs (X, (αi)i≤n),
where X is a set and αi is a partial endofunction of X defined on x ∈ X if and only if
αj(x) = x for all j < i. Morphisms from (X, (αi)i<n) to (X ′, (α′i)i<n) are functions
f : X → X ′ such that f(αi(x)) = α′i(f(x)) whenever αi(x) is defined. Describe
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the free algebras, comparison functors, etc. in detail and prove that the iteration
described above takes precisely n steps. That is, if U0 is the forgetful functor of An

and Uk+1 is the comparison functor associated with the kth step (k = 0, 1, 2, . . .),
then Un is an equivalence but Un−1 is not.

(c) Show that there exists a construct for which the above iteration does not stop.

20K. The Constructs Topop
0 and Fram

Show that (cf. 5L)

(a) Fram is monadic.

(b) Topop
0 has free objects.

(c) The concrete functor Topop
0

T−−→ Fram described in Exercise 5L is a comparison
functor.

20L. Regularly Monadic Functors Lift Regularity

Show that

(a) If X is regular and A U−−→ X is regularly monadic, then A is regular.

(b) Monadic constructs are regular.

20M. Extremally Monadic Functors

A functor A U−−→ X (resp. a concrete category (A, U) over X) is called extremally
monadic provided that X is an (ExtrEpi, Mono-Source)-category and U is ExtrEpi-
monadic. Show that a concrete category (A, U) over X is regularly monadic if and only
if it is extremally monadic and X has regular factorizations.

20N. When Are Order Preserving Maps Monadic?

(a) Show that a morphism in Pos, considered as a functor between thin categories, is
monadic if and only if it is an embedding of a full reflective subcategory.

(b) For any function A
f−→ B consider PA

Pf−−→ PB as a functor (cf. Exercise 6G).
Show that Pf is monadic if and only if f is surjective.

20O. Monadic Functors and Extremal Monomorphisms

Determine whether or not monadic functors preserve extremal monomorphisms.

* 20P. Varietors and Colimits of ω-chains
Let T : X→ X be a functor with X having countable colimits. For each object X define
a diagram D : N→ X (where N is the thin category of natural numbers) by

D0 = X,

Dn+1 = X + TDn,

D(0→ 1) = X → X + TX, the first coproduct injection,

D(n + 1→ m + 1) = X + TDn
idX+TD(n→m)−−−−−−−−−−−→ X + TDm.
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(a) If T preserves the colimit of D, prove that X generates a free T -algebra. [Hint: If
(Dn

dn−−→ C)N is a colimit of D, then there is a unique c : TC → C with c ◦ Tdn =

dn+1 ◦un, where un : TDn → X +TDn is the second injection. Then X
d0−−→ |(C, c)|

is universal.]

(b) Conclude that each functor T : X → X that preserves colimits of ω-chains (i.e.,
diagrams with the scheme N) is a varietor.

(c) Find a varietor that does not preserve colimits of ω-chains.
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Chapter VI

TOPOLOGICAL AND ALGEBRAIC

CATEGORIES

As demonstrated in §5, the vague concept of “structure” has a formalization in the
concept of a “concrete category” — the idea being that the forgetful or underlying
functor “forgets” the structure in question. Many structures can be decomposed into
more basic ones, which often can be classified as “topological” or “algebraic”. The nature
of a structure is reflected not so much in properties of its abstract category, but rather
in properties of its underlying functor. For example, topological groups can be regarded:

(a) as topological structures via the forgetful functor TopGrp U−−→ Grp, i.e., as topo-
logical structures over Grp, or

(b) as algebraic structures via the forgetful functor TopGrp V−−→ Top, i.e., as algebraic
structures over Top, or

(c) as topologically algebraic structures via the forgetful functor TopGrp W−−→ Set, i.e.,
as topologically algebraic structures over Set.

Since it is the underlying functor rather than the abstract category that determines
the character of a structure (= concrete category), in each case we study properties of
functors first. Surprisingly, each of the crucial properties under investigation (U being
topological, algebraic, or topologically algebraic ) implies that the functor U in question
is faithful, i.e., is the forgetful functor of a concrete category.

We choose terminology such that a concrete category (A, U) has a certain property P
if and only if its forgetful functor U has the property P . A desirable characteristic of
such properties will be that they are closed under composition. Moreover, for “algebraic”
properties P , it will be desirable that concrete functors between concrete categories with
property P will automatically have property P as well.

Most properties under investigation can be defined either in a rigid (uniquely trans-
portable) version or in a more flexible (closed under equivalences) one. We have found
it somewhat more convenient and consistent with the current usage to choose the rigid
version in the topological and algebraic cases, and the flexible version in the topologically
algebraic case.
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The following phenomena are typical for topological categories (A, U):

(1) (A, U) is initially complete, i.e., every structured source (X
fi−−→ UAi)I has a unique

initial lift (A
fi−−→ Ai)I ,

(2) (A, U) is finally complete, i.e., every structured sink (UAi
fi−−→ X)I has a unique

final lift (Ai
fi−−→ A)I ,

(3) (A, U) is fibre-complete, i.e., every fibre is a (possibly large) complete lattice (cf. De-
finition 5.7),

(4) (A, U) has discrete structures, i.e., every X-object has a discrete lift,

(5) (A, U) has indiscrete structures, i.e., every X-object has an indiscrete lift.

As we will see, the above conditions are not independent of each other. In fact, (1)
and (2) are equivalent [Topological Duality Theorem (21.9)], and imply all the others.
Moreover, (1) and (2) have many other pleasant consequences. For example, they imply
that U lifts limits (and colimits) uniquely. The unique lifting of limits implies, together
with (5), all of the other conditions (21.18). However, forgetful functors of algebraic
categories also lift limits uniquely (see §23). Hence the very simple condition (5) in
some sense may be considered to be at the heart of topology.

TOPOLOGICAL FUNCTORS

21.1 DEFINITION
A functor A G−−→ B is called topological provided that every G-structured source

(B
fi−−→ GAi)I has a unique G-initial lift (A

f i−−→ Ai)I .

21.2 EXAMPLES
(1) The forgetful functors of the constructs Top, Unif , PMet, Rel, and Prost are

topological, but those of the constructs Haus, Met, Vec, and Pos are not topolog-
ical.

(2) For a thin category A, the unique functor to 1 is topological if and only if A is a
(possibly large) complete lattice.

21.3 THEOREM
Topological functors are faithful.
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Proof: Let A
r //

s
// A′ be a pair of A-morphisms with Gr = Gs. Consider the source

S = (GA
fh−−→ GAh)h∈Mor(A) with (fh, Ah) = (Gr,A′) for each h ∈ Mor(A). Let

Ŝ = (Â
f̂h−−→ A′)h∈Mor(A) be a G-initial lift of S. Define a source T = (A

gh−−→ A′) by

gh =

{
r, if f̂h ◦ h = s

s, otherwise.

Then GT = GŜ ◦ idGA. By G-initiality of Ŝ there exists a morphism A
k−→ Â with

T = Ŝ ◦ k, i.e., gh = f̂h ◦ k for each h ∈ Mor(A). In particular, we obtain gk = f̂k ◦ k,
which — by the definition of the gh’s — is possible only for r = s. �

Lifting of a source in a topological category

21.4 REMARK
We will see below that “to be topological” is a very strong and pleasant property. Much
of the strength lies in the fact that the G-structured sources are allowed to be large
(as can be discerned from the preceding proof). For example, the natural “forgetful”
functor G from the category of modules to the category of rings is not faithful, hence not
topological, even though each small G-structured source has a G-initial lift (see Exercise
21D).

21.5 PROPOSITION
If A G−−→ B is a functor such that every G-structured source has a G-initial lift, then the
following conditions are equivalent:
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(1) G is topological,

(2) (A, G) is uniquely transportable,

(3) (A, G) is amnestic.

Proof: (1) ⇒ (2) is immediate from Proposition 8.14, once it is observed that G is
faithful. The latter follows as in the proof of Theorem 21.3.

(2) ⇒ (3) follows from Proposition 5.29.

(3)⇒ (1). If (A
f i−−→ Ai)I and (Ã

f̃i−−→ Ai)I are initial lifts of (X
fi−−→ GAi)I , then A ≤ Ã

and Ã ≤ A; hence by (3), A = Ã. �

21.6 PROPOSITION
If A G−−→ B and B F−−→ C are topological, then so is A F◦G−−−→ C.

Proof: Immediate by Proposition 21.5, since amnesticity and existence of initial liftings
are compositive properties. �

TOPOLOGICAL CATEGORIES

21.7 DEFINITION
A concrete category (A, U) is called topological provided that U is topological.

21.8 EXAMPLES
(1) The constructs Top, Unif , PMet, Rel, and Prost are topological.

(2) All functor-structured categories Spa(T ) and all functor-costructured categories
(Spa(T ))op are topological.

(3) A partially ordered set, considered as concrete category over 1, is topological if and
only if it is a complete lattice.

(4) TopGrp is topological if it is considered as a concrete category over Grp, but not
if it is considered as a concrete category over Top or over Set.

(5) The construct Top1 is not topological, even though for every structured source

(X
fi−−→ (Xi, τi))I there exists a largest Top1-structure (= the smallest T1-topology)

τ on X making each (X, τ)
fi−−→ (Xi, τi) continuous.

The following theorem generalizes the well-known fact that each meet-complete poset is
also join-complete.

21.9 TOPOLOGICAL DUALITY THEOREM
If (A, U) is topological over X, then (Aop, Uop) is topological over Xop (i.e., the existence
of unique U-initial lifts of U-structured sources implies the existence of unique U-final lifts
of U-structured sinks).
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Proof: Let (A, U) be topological. It must be shown that in (A, U) every structured

sink S = (UAi
fi−−→ X)I has a final lift (since uniqueness follows from amnesticity).

Consider the structured source T = (X
gj−−→ UBj)J consisting of all structured arrows

(gj , Bj) with the property that UAi
fi−−→ X

gj−−→ UBj is an A-morphism for each i ∈ I.

If (A
gj−−→ Bj)J is an initial lift of T , then (Ai

fi−−→ A)I is a final lift of S. �

21.10 REMARK
The above Topological Duality Theorem implies that (as was the case for abstract and
for concrete categories) there is also a Duality Principle available for topological cat-
egories. However, observe that, since the dual of a concrete (resp. topological) category
over X is a concrete (resp. topological) category over Xop, this does not imply a Duality
Principle for (topological) concrete categories over a fixed category X (unless Xop = X,
as for X = 1). In particular, there is not a Duality Principle available for topological
constructs.

21.11 PROPOSITION
Topological categories are fibre-complete. The smallest (resp. largest) member of each
fibre is discrete (resp. indiscrete).

Proof: Let (A, U) be topological over X, let X be an X-object, and let (Ai)I be a

family of A-objects with UAi = X. If (A idX−−−→ Ai)I is an initial lift of (X idX−−−→ UAi)I ,
then A = inf(Ai) in the fibre of X. For I = ∅, we have that A is the largest element of
the fibre of X. It is an indiscrete object, since (A, ∅) is an initial source [cf. 10.42(1)].
By duality, the smallest element of the fibre of X must be discrete. �

21.12 PROPOSITION
If (A, U) is topological over X, then

(1) U is an adjoint functor; its co-adjoint X F−−→ A (the discrete functor) is a full
embedding, satisfying U ◦ F = idX.

(2) U is a co-adjoint functor; its adjoint X G−−→ A (the indiscrete functor) is a full
embedding, satisfying U ◦G = idX.

Proof: Immediate from Proposition 21.11. �

21.13 PROPOSITION
If (A, U) is topological over X, then the following hold:

(1) U preserves and reflects mono-sources and epi-sinks.

(2) An A-morphism is an extremal (resp. regular) monomorphism if and only if it is
initial and an extremal (resp. regular) X-monomorphism.

(3) An A-morphism is an extremal (resp. regular) epimorphism if and only if it is final
and an extremal (resp. regular) X-epimorphism.
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In particular, in topological constructs, the following hold:

(4) embeddings = extremal monomorphisms = regular monomorphisms.

(5) quotient morphisms = extremal epimorphisms = regular epimorphisms.

Proof:
(1). Since U is faithful and (co)adjoint, it reflects and preserves mono-sources (epi-sinks).

(2). Let A
m−−→ B be an extremal monomorphism in A. Then, by (1), UA

m−−→ UB is

a monomorphism in X. Let UA
m−−→ UB = UA

e−→ X
f−→ UB be an (Epi,−)-

factorization in X. Then UA
e−→ X has a final lift A

e−→ C. Consequently, by (1),

A
m−−→ B = A

e−→ C
f−→ B is an (Epi,−)-factorization in A. Therefore, e is an

isomorphism in A and hence in X. Thus UA
m−−→ UB is an extremal monomorphism

in X. To show initiality of A
m−−→ B, let A′ m−−→ B be an initial lift of UA

m−−→ UB.
Then A

m−−→ B = A
idUA−−−→ A′ m−−→ B is an (Epi,−)-factorization. Thus A

idUA−−−→ A′

is an isomorphism; hence by amnesticity A = A′. So A
m−−→ B = A′ m−−→ B is initial.

For the converse, let A
m−−→ B be an initial morphism such that UA

m−−→ UB is an
extremal monomorphism in X. Then, by (1), A

m−−→ B is a monomorphism in A.

Let A
m−−→ B = A

e−→ C
f−→ B be an (Epi,−)-factorization in A. Then UA

e−→ UC
is an X-isomorphism and A

e−→ C is initial. Hence, by Proposition 8.14, A
e−→ C is

an isomorphism. Thus A
m−−→ B is an extremal monomorphism in A.

Next, let A
m−−→ B be a regular monomorphism in A. Then it is extremal and hence

initial. By adjointness, UA
m−−→ UB is a regular monomorphism in X. Conversely,

let A
m−−→ B be an initial morphism such that UA

m−−→ UB is an equalizer of

UB
r //

s
// X in X. If B

r //

s
// C is a final lift, then by Proposition 13.15, m is an

equalizer of r and s in A.

(3) follows by duality (21.9).

(4) and (5) are immediate from (2) and (3). �

21.14 PROPOSITION
If (A, U) is topological over an (E,M)-category X, then the following hold:

(1) A is an (E,Minit)-category, where Minit consists of all initial sources in M.

(2) A is an (Efin,M)-category, where Efin consists of all final E-morphisms. �

21.15 PROPOSITION
If (A, U) is topological over X, then U uniquely lifts both limits (via initiality) and
colimits (via finality), and it preserves both limits and colimits.

Proof: The unique lifting follows immediately from Proposition 13.15 and its dual; the
preservation from (co)adjointness of U . �
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21.16 THEOREM
If (A, U) is topological over X, then the following hold:

(1) A is (co)complete if and only if X is (co)complete.

(2) A is (co-)wellpowered if and only if (A, U) is fibre-small and X is (co-)wellpowered.

(3) A is extremally (co-)wellpowered if and only if X is extremally (co-)wellpowered.

(4) A is (Epi, Mono-Source)-factorizable if and only if X is (Epi, Mono-Source)-factori-
zable.

(5) A has regular factorizations if and only if X has regular factorizations.

(6) A has a (co)separator if and only if X has a (co)separator.

Proof: Let G : X→ A be the indiscrete functor.

(1). If X is complete, then A is complete, since U lifts limits. Conversely, if A is
complete, D : I → X is a small diagram, and L is a limit of G ◦D : I → A, then
UL is a limit of U ◦G ◦D = D.

(2). Let (A, U) be fibre-small and X be wellpowered. For any A-object A consider a set
M = {Xi

mi−−→ UA | i ∈ I } of X-subobjects of UA such that every subobject of UA

is isomorphic to some member of M. If M̂ consists of all possible lifts Ai
mi−−→ A

of members of M, then, by fibre-smallness, M̂ is a set. By transportability each
subobject of A is isomorphic to some member of M̂. Hence A is wellpowered.
Conversely, let A be wellpowered. For every X-object X, it is clear that the class
A = {A ∈ Ob(A) | UA = X } is a set, since otherwise {A

idX−−−→ GX |A ∈ A}
would by amnesticity be a proper class of pairwise non-isomorphic subobjects of
GX. Thus (A, U) is fibre-small. If (Xi

mi−−→ X)I would be a proper class of
pairwise non-isomorphic subobjects of X, then (GXi

mi−−→ GX)I would be a proper
class of pairwise non-isomorphic subobjects of GX in A. Hence X is wellpowered.

(3). Let X be extremally wellpowered. For any A-object A let M = {Xi
mi−−→ UA }i∈I

be a set of extremal subobjects of UA such that every extremal subobject of UA
is isomorphic to some member of M. For each i ∈ I let Ai

mi−−→ A be the unique
initial lift of Xi

mi−−→ UA. Then every extremal subobject of A is isomorphic to
some member of the set {Ai

mi−−→ A | i ∈ I }. Hence A is extremally wellpowered.
Conversely, let A be extremally wellpowered. If (Xi

mi−−→ X)I were a proper class of
pairwise non-isomorphic extremal subobjects of some X-object X, it would follow
that (GXi

mi−−→ GX)I would be a proper class of pairwise non-isomorphic extremal
subobjects of GX in A. Hence X is extremally wellpowered.

(4). If (A
fi−−→ Ai)I is a source in A, (UA

fi−−→ UAi) = (UA
e−→ X

mi−−→ UAi) is
an (Epi, Mono-Source)-factorization in X, and (B mi−−→ Ai)I is an initial lift of

(X mi−−→ UAi)I , then (A
fi−−→ Ai) = (A e−→ B

mi−−→ Ai) is an (Epi, Mono-Source)-

factorization in A. Conversely, if (X
fi−−→ Xi)I is a source in X and GX

fi−−→ GXi =

GX
e−→ A

mi−−→ GXi is an (Epi, Mono-Source)-factorization in A, then X
fi−−→ Xi =

X
e−→ UA

mi−−→ Xi is an (Epi, Mono-Source)-factorization in X.
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(5). This follows as in (4) by means of Proposition 21.13(3).

(6). If A is an A-separator, then UA is an X-separator. If X is an X-separator, then
the discrete object A with UA = X is an A-separator.

The “co”-parts follow by duality. �

21.17 COROLLARY
Each topological construct

(1) is complete and cocomplete,

(2) is wellpowered (resp. co-wellpowered) if and only if it is fibre-small,

(3) is an (Epi, Extremal Mono-Source)-category,

(4) has regular factorizations,

(5) has separators and coseparators. �

21.18 INTERNAL TOPOLOGICAL CHARACTERIZATION THEOREM
A concrete category (A, U) over X is topological if and only if it satisfies the following
conditions:

(1) U lifts limits uniquely,

(2) (A, U) has indiscrete structures, i.e., every X-object has an indiscrete lift.

Proof: By Propositions 21.11 and 21.15 topological categories satisfy (1) and (2).
Conversely, let (A, U) satisfy (1) and (2). Then (A, U) is uniquely transportable. Hence,
by Proposition 21.5 and by duality (21.9), it suffices to show that every structured sink

(UAi
fi−−→ X)I has a final lift. Let B0 be the indiscrete object with UB0 = X and

let (Bj)J be the family of all A-objects Bj such that UBj = X and UAi
fi−−→ UBj

is an A-morphism for each i ∈ I. The family (UBj
idX−−−→ UB0)J has an intersection

X
idX−−−→ UB0 in X. By (1) this intersection can be lifted to an intersection B

idX−−−→ B0

of the family (Bj
idX−−−→ B0)J . Consequently, S = (Ai

fi−−→ B)I is a sink in A. To show

that it is final, let UB
g−→ UC be an X-morphism such that each UAi

fi−−→ UB
g−→ UC

is an A-morphism. Let C0 be the indiscrete object with UC0 = UC. Then the pullback
in X

X
g
//

idX

��

UC

idUC

��

UB g
// UC0

can be lifted to a pullback in A

P
g
//

idX

��

C

idUC

��

B g
// C0
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Since, for each i ∈ I, the diagram

Ai
g◦fi //

fi

��

C

idUC

��

B g
// C0

commutes, by the pullback-property each UAi
fi−−→ UP is an A-morphism. Conse-

quently, P is a member of (Bj)J . This implies that B ≤ P . Hence, by amnesticity,

B = P . Thus B
g−→ C = P

g−→ C is an A-morphism. Consequently, (Ai
fi−−→ B)I is a

final lift of (UAi
fi−−→ X)I . �

21.19 REMARK
As we will see later, the unique lifting of limits is a widespread property shared by many
reasonable forgetful functors not only in topology, but also in algebra. Hence the above
theorem shows that the existence of indiscrete structures is the crucial condition that
makes (A, U) topological.

21.20 EXAMPLE
For any construct of the form Alg(Σ) the forgetful functor Alg(Σ) → Set lifts limits
and colimits uniquely. But Alg(Σ) is topological only if Σ is the empty family, i.e., only
if Alg(Σ) is concretely isomorphic to the construct Set.

21.21 EXTERNAL TOPOLOGICAL CHARACTERIZATION THEOREM
Let CAT(X) be the quasicategory of all concrete categories and concrete functors over
a fixed category X. If M is the conglomerate of all full functors in CAT(X), then for
each concrete category (A, U) over X the following are equivalent:

(1) (A, U) is topological over X.

(2) (A, U) is an M-injective object in CAT(X).

Proof: (1) ⇒ (2). Suppose that (A, U) is topological over X, (B, V ) E−−→ (C,W )
belongs to M, and (B, V ) G−−→ (A, U) is a concrete functor over X. For each C-object

C consider the E-structured source (C
fi−−→ EBi)I consisting of all pairs (fi, Bi) with

Bi ∈ Ob(B) and C
fi−−→ EBi ∈ Mor(C). Application of W yields the U-structured

source (WC
fi−−→ UGBi)I . By hypothesis it has a U-initial lift (AC

fi−−→ GBi)I . Let

(C,W ) Ĝ−−→ (A, U) be the unique concrete functor with ĜC = AC for each C-object C.
Then G = Ĝ ◦ E.

(2) ⇒ (1). Suppose that (A, U) is M-injective in CAT(X). By Proposition 5.33 there
exists an amnestic (B, V ) and a functor (A, U) P−−→ (B, V ) that is surjective on objects
and belongs toM. By injectivity, P is a section, hence an isomorphism. Thus (A, U) is
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amnestic. It remains to be shown that every U-structured source S = (X
fi−−→ UAi)I has

a U-initial lift. Embed (A, U) as a concrete and full subcategory of a concrete category
(B, V ) by adding one object B with V B = X and adding the following morphisms (for
A-objects A and X-morphisms f):

UA
f−→ V B ∈Mor(B) ⇐⇒ UA

fi◦f−−−→ UAi ∈Mor(A) for each i ∈ I,

V B
f−→ UA ∈Mor(B) ⇐⇒ there exists i ∈ I and an A-morphism

Ai
g−→ A with f = g ◦ fi,

V B
f−→ V B ∈Mor(B) ⇐⇒ V B

fi◦f−−−→ UAi ∈Mor(B) for each i ∈ I.

By M-injectivity, (A, U) is a retract of (B, V ), i.e., the identity on A can be extended

to a concrete functor (B, V ) G−−→ (A, U). Then (GB
fi−−→ Ai)I = (GB

fi−−→ GAi)I is a
U-initial lift of S. �

21.22 REMARKS
(1) The above result remains true if only fibre-small or only amnestic concrete categories

are considered. In the amnestic case M consists precisely of the concrete full em-
beddings [cf. 5.10(4)]. Application of the fibre-small amnestic case to X = 1 yields
the result that the injectives in Pos are precisely the complete lattices [cf. 9.3(2)].

(2) From the above proof it is easily seen that topological categories have an alternative
external characterization as precisely the M-absolute retracts in CAT(X). For a
description ofM-essential extensions andM-injective hulls in CAT(X) see Exercise
21J.

INITIALITY-PRESERVING CONCRETE FUNCTORS

An important property of abstract functors is the preservation of limits. Recall that every
adjoint functor preserves limits and that, under suitable assumptions, this preservation
property characterizes adjoints (see the adjoint functor theorems of §18). For concrete
categories a similar condition is that of the preservation of initial sources. (See Definition
10.47.) Among other things, we will show that for Galois correspondences (F,G) the
concrete functor G preserves initial sources, and that if G has a topological domain, this
preservation property characterizes those concrete functors G that are part of a Galois
correspondence.

21.23 PROPOSITION
Initiality-preserving concrete functors preserve indiscrete objects.

Proof: Immediate by Example 10.42(1). �

21.24 GALOIS CORRESPONDENCE THEOREM
For concrete functors (A, U) G−−→ (B, V ) with topological domain (A, U) the following
conditions are equivalent:
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(1) G preserves initial sources,

(2) G is adjoint and has a concrete co-adjoint (B, V ) F−−→ (A, U),

(3) there exists a (unique) (B, V ) F−−→ (A, U) such that (F,G) is a Galois correspon-
dence.

Proof:
(1) ⇒ (2). For any B-object B consider the G-structured source SB = (B

fi−−→ GAi)I

consisting of all pairs (fi, Ai) with Ai ∈ Ob(A) and B
fi−−→ GAi ∈ Mor(B). Appli-

cation of V yields the U-structured source ŜB = (V B
fi−−→ UAi)I . Let (AB

fi−−→ Ai)I

be a U-initial lift of ŜB. By (1), (GAB
fi−−→ GAi)I is V-initial.

Since each V B
idV B−−−−→ V GAB

fi−−→ V GAi is a B-morphism, V B
idV B−−−−→ V GAB must be a

B-morphism. Thus (idV B, AB) is a G-universal arrow for B. Since it is identity-carried,
the associated co-adjoint F of G satisfies V = U ◦ F .

(2) ⇒ (3). Let (B, V ) F−−→ (A, U) be a concrete co-adjoint of G, induced by G-universal
arrows B

ηB−−→ GFB. By Theorem 19.1 each FB
ηB−−→ FGFB is a section in A;

hence V B
ηB−−→ UFB is a section in X. To show that it is an epimorphism in X, let

UFB
r //

s
// X be a pair of X-morphisms with r ◦ ηB = s ◦ ηB. If A is an indiscrete

object in (A, U) with UA = X, then FB
r //

s
// A is a pair of A-morphisms. Since

(ηB, FB) is G-generating, the equality Gr ◦ ηB = Gs ◦ ηB implies that r = s. Thus
V B

ηB−−→ UFB is an X-isomorphism. Let AB
ηB−−→ FB be a U-initial lift. Then,

by Proposition 8.14, AB
ηB−−→ FB is an A-isomorphism. Hence, by Proposition 8.35,

B
idV B−−−−→ GAB = B

ηB−−→ GFB
G(ηB)−1

−−−−−−→ GAB is a G-universal arrow for B. If F̂ is the
associated co-adjoint of G, then (F̂ , G) is a Galois-correspondence. Uniqueness follows
from the amnesticity of U .

(3) ⇒ (1). Immediate from Proposition 10.49. �

21.25 REMARK
If (A, U) is not topological, then conditions (1) and (2) of the above theorem do not
imply (3). See Exercise 21E(b).

21.26 DEFINITION
Let A U−−→ X and B V−−→ Y be functors. An adjoint situation (η̂, ε̂) : F̂ � Ĝ : Â→ B̂
is said to lift an adjoint situation (η, ε) : F � G : X→ Y along U and V provided
that the following conditions are satisfied:

(1) the diagrams

A
Ĝ //

U
��

B

V
��

X
G
// Y

and
B

F̂ //

V
��

A

U
��

Y
F
// X
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commute.

(2) V η̂ = ηV,

(3) Uε̂ = εU .

21.27 REMARKS
(1) In the presence of (1), conditions (2) and (3) in the above definition imply each

other. They have both been included to make the symmetry apparent. If (1) and
(2) hold, then (3) can be deduced from the equations GUε̂A◦ηGUA = V Ĝε̂A◦ηV ĜA =
V Ĝε̂A ◦ V η̂ĜA = V (Ĝε̂A ◦ η̂ĜA) = V (idĜA) = idV ĜA = idGUA = GεUA ◦ ηGUA, since
ηGA is G-generating.

(2) The following theorem, applied to G = idX , provides a new proof of the equivalence
of conditions (1) and (3) in Theorem 21.24.

21.28 TAUT LIFT THEOREM
Let (A, U) be a topological category over the base category X and (B, V ) be a concrete

category over the base category Y. If A Ĝ−−→ B is a functor and X G−−→ Y is an adjoint
functor with V ◦ Ĝ = G ◦ U, then the following conditions are equivalent:

(1) Ĝ sends U-initial sources into V-initial sources,

(2) every adjoint situation (η, ε) : F � G : X → Y can be lifted along U and V to
an adjoint situation (η̂, ε̂) : F̂ � Ĝ : A→ B.

Proof:
(1) ⇒ (2). For each B-object B consider the Ĝ-structured source SB = (B

fi−−→ ĜAi)

consisting of all pairs (fi, Ai) with Ai ∈ Ob(A) and B
fi−−→ ĜAi ∈ Mor(B). For each

i ∈ I let FV B
f̂i−−→ UAi be the unique X-morphism with

V B
V fi−−−→ GUAi = V B

ηV B−−−→ GFV B
Gf̂i−−−→ GUAi.

Then the U-structured source (FV B
f̂i−−→ UAi)I has a U-initial lift TB = (AB

f̃i−−→ Ai)I .
By (1), ĜTB is V-initial. Since V SB = V ĜTB ◦ ηV B

V B
ηV B //

V fi

��

GFV B

Gf̂i

��

GUAB

GUf̃i

��

V ĜAB

V Ĝf̃i

��

V ĜAi GUAi GUAi V ĜAi

there exists a unique B-morphism B
η̂B−−→ ĜAB with V η̂B = ηV B and SB = ĜTB ◦ η̂B.

To show that the Ĝ-structured arrow (η̂B, AB) is Ĝ-generating and hence Ĝ-universal,

let AB
r //

s
// A be a pair of A-morphisms with Ĝr ◦ η̂B = Ĝs ◦ η̂B. Then GUr ◦ ηV B =

V Ĝr ◦ ηV B = V (Ĝr ◦ η̂B) = V (Ĝs ◦ η̂B) = V Ĝs ◦ ηV B = GUs ◦ ηV B implies that
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Ur = Us. Hence r = s by the faithfulness of U . If (η̂, ε̂) : F̂ � Ĝ : A → B is the
adjoint situation determined by Ĝ and the Ĝ-universal arrows (η̂B, AB), then V η̂B = ηV B

and U ◦ F̂ (B) = U(AB) = F ◦ V (B) for each B-object B. Thus for each B-morphism

B
f−→ B the equality GUF̂f◦ηV B = V (ĜF̂ f◦η̂B) = V (η̂B◦f) = ηV B◦V f = GFV f◦ηV B

implies that UF̂f = FV f . Hence U ◦ F̂ = F ◦ V .

(2) ⇒ (1). Let (η, ε) : F � G : X→ Y be an adjoint situation, let the adjoint situa-

tion (η̂, ε̂) : F̂ � Ĝ : A → B be a lift along U and V, and let S = (A
fi−−→ Ai)I be a

U-initial source. To show that ĜS is V-initial, let T = (B
gi−−→ ĜAi)I be a B-source and

V B
h−→ V ĜA be a Y-morphism with V T = V ĜS ◦ h. For each i ∈ I let F̂B

ĝi−−→ Ai

be the unique A-morphism with gi = Ĝĝi ◦ η̂B. Furthermore, let FV B
ĥ−→ UA be the

unique X-morphism with h = Gĥ ◦ ηV B.

GUA

GUfi

$$J
JJJJJJJJJJJJJJJJJJJJJJJ

V ĜA
V Ĝfi

$$J
JJJJJJJJ

V B

h

OO

V gi //

V η̂B

��

ηV B

����
��

��
��

��
��

��
��

��
V ĜAi GUAi

V ĜF̂B

V Ĝĝi

::ttttttttt

GFV B

Gĥ

FF

GUF̂B

GUĝi

::uuuuuuuuuuuuuuuuuuuuuuuu

Then G(Ufi ◦ ĥ) ◦ ηV B = GUĝi ◦ ηV B implies that Ufi ◦ ĥ = Uĝi. Since S is U-initial,

there exists a unique A-morphism F̂B
h̃−→ A with Uh̃ = ĥ. Thus h∗ = Ĝh̃ ◦ η̂B is a

B-morphism with V h∗ = V Ĝh̃ ◦ V η̂B = GUh̃ ◦ ηV B = Gĥ ◦ ηV B = h. Consequently,
V (B h∗−−→ ĜA) = V B

h−→ V ĜA. Thus ĜS is V-initial. �

TOPOLOGICAL SUBCATEGORIES

21.29 DEFINITION
A full concrete subcategory (A, U) of a concrete category (B, V ) is called initially
closed in (B, V ) provided that every V-initial source whose codomain is a family of
A-objects has its domain in A.

Dual Notion: finally closed subcategory.

21.30 PROPOSITION
An initially closed subcategory of a topological category is topological. �
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21.31 PROPOSITION
For any full concrete subcategory (A, U) of a topological category (B, V ) the following
conditions are equivalent:

(1) (A, U) is initially closed in (B, V ),

(2) (A, U) is concretely reflective in (B, V ).

Proof: (1) ⇒ (2) follows from Theorem 21.24 applied to the inclusion functor G.

(2) ⇒ (1). Let S = (B
fi−−→ Ai)I be a V-initial source with each Ai in A, and let

B
idV B−−−−→ A be an identity-carried A-reflection arrow for B. Then each A

fi−−→ Ai is a
morphism. Thus, by initiality of S, it follows that A

idV B−−−−→ B is a morphism. Hence, by
amnesticity of (B, V ), A = B. Thus B belongs to A. �

21.32 PROPOSITION
If a topological category (A, U) is a finally dense full concrete subcategory of (B, V ),
then (A, U) is concretely reflective in (B, V ).

Proof: For each B-object B consider the source (B
fi−−→ Ai), consisting of all morphisms

B
fi−−→ Ai with Ai in A, and let S = (A

fi−−→ Ai)I be a U-initial lift of the U-structured

source (V B
fi−−→ UAi)I . By Proposition 10.71, S is V-initial. Thus V B

idV B−−−−→ V A is a
morphism; hence it is an identity-carried A-reflection arrow for B. �

21.33 THEOREM
For a full concrete subcategory (A, U) of a topological category (B, V ) the following
conditions are equivalent:

(1) (A, U) is topological,

(2) there exists a concretely reflective subcategory (C,W ) of (B, V ) such that (A, U) is
concretely coreflective in (C,W ),

(3) there exists a concretely coreflective subcategory (C,W ) of (B, V ) such that (A, U)
is concretely reflective in (C,W ),

(4) there exists a concrete functor (B, V ) R−−→ (A, U) that leaves each A-object fixed.

Proof: (1)⇒ (2). Let (C,W ) be the full concrete subcategory of (B, V ) that consists of

all B-objects B for which there exists a V-initial source (B
fi−−→ Ai)I with domain B and

codomain in A. Then (C,W ) is initially closed in (B, V ), hence concretely reflective in
(B, V ). Moreover, (A, U) is initially dense in (C,W ), so that by the dual of Proposition
21.32 it is concretely coreflective in (C,W ).

(2) ⇒ (4). If (B, V ) R1−−→ (C,W ) is a concrete reflector and (C,W ) R2−−→ (A, U) is a
concrete coreflector, then R = R2 ◦R1 has the desired properties.

9th July 2006



Sec. 21] Topological categories 363

(4) ⇒ (1). Let S = (X
fi−−→ UAi)I be a U-structured source. Considered as a V-

structured source it has a V-initial lift T = (B
fi−−→ Ai)I . Then RT = (RB

fi−−→ Ai)I is
easily seen to be a U-initial lift of S.

(1) ⇔ (3) follows from (1) ⇔ (2) by duality (21.9). �

FIBRE-SMALL TOPOLOGICAL CATEGORIES

21.34 PROPOSITION
For fibre-small concrete categories (A, U), the following conditions are equivalent:

(1) (A, U) is topological,

(2) every small structured source (X
fi−−→ UAi)I has a unique initial lift,

(3) every small structured sink (UAi
fi−−→ X)I has a unique final lift.

Proof: (1) ⇒ (2) is obvious.

(2) ⇒ (1). Let (X
fi−−→ UAi)I be a structured source. For each i ∈ I there exists an

initial lift Bi
fi−−→ Ai of X

fi−−→ UAi. By fibre-smallness {Bi

∣∣ i ∈ I } is a set. Thus

there exists a subset J of I with {Bj

∣∣ j ∈ J } = {Bi

∣∣ i ∈ I }. Let (A
fj−−→ Aj)J be the

initial lift of (X
fj−−→ UAj)J . Then A ≤ Bj for each j ∈ J ; hence A ≤ Bi for each i ∈ I.

Thus each A
fi−−→ Ai is a morphism. Consequently, by Proposition 10.46, (A

fi−−→ Ai)I is
initial. Uniqueness is immediate.

(1) ⇔ (3) follows from (1) ⇔ (2) by duality. �

21.35 PROPOSITION
A fibre-small concrete category (A, U) over a category X with products is topological if
and only if it satisfies the following conditions:

(1) (A, U) has concrete products,

(2) (A, U) has initial subobjects, i.e., every structured X-monomorphism X
m−−→ UA

has a unique initial lift,

(3) (A, U) has indiscrete objects.

Proof: The conditions (1) – (3) are obviously necessary. To see that they are sufficient,

suppose that (X
fi−−→ UAi)I is a small structured source. Choose an element j0 with

j0 6∈ I, use Aj0 to denote the indiscrete object with UAj0 = X, let fj0 = idX , let

J = I ∪ {j0}, and let (P
pj−−→ Aj)J be a concrete product. Then X

〈fj〉−−−→ UP is

a structured X-section, and so has an initial lift A
〈fj〉−−−→ P . By 10.53 and 10.45(1)
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the source (A
fj−−→ Aj)J is initial. Since Aj0 is indiscrete, (A

fi−−→ Ai)I is initial too.
Uniqueness follows from the uniqueness requirement in condition (2). Thus Proposition
21.34 implies that (A, U) is topological. �

21.36 PROPOSITION
In a fibre-small topological category, a source (A

fi−−→ Ai)I is initial if and only if there

exists a subset J of I such that (A
fj−−→ Aj)J is initial.

Proof: Immediate from the proof of (2) ⇒ (1) in Proposition 21.34. �

21.37 PROPOSITION
Let (A, U) be a full concrete subcategory of a fibre-small topological category (B, V ) over
a category X with products. Then (A, U) is concretely reflective in (B, V ) if and only if
it is closed under the formation of

(a) products,

(b) initial subobjects, and

(c) indiscrete objects.

Proof: By Proposition 21.31, (A, U) is concretely reflective in (B, V ) if and only if it is
initially closed in (B, V ). The latter is the case if and only if (A, U) is closed under the
formation of (a)–(c) in (B, V ). (Cf. the proof of Proposition 21.35.) �

M-TOPOLOGICAL AND MONOTOPOLOGICAL CATEGORIES

Many familiar full subconstructs of Top, Unif , or Rel, defined by “separation axioms”,
e.g., Top0, Top1, Haus, Tych, Reg1, HUnif, or Pos fail to be topological even though
they are “almost” so. This leads to a natural generalization of the concept of topological
categories over X that depends, however, on a distinguished factorization structure on
X. In particular, for constructs this leads to the concept of monotopological constructs,
since Set has only one interesting factorization structure:

21.38 DEFINITION
A concrete category (A, U) over an (E,M)-category X is said to be M-topological
provided that every structured source in M has a unique initial lift. If M = Mono-
Sources, the term monotopological is used.

21.39 EXAMPLES
(1) The topological functors are precisely the Source-topological functors.

(2) The construct Pos is monotopological since it is closed under the formation of initial
mono-sources in Rel.
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(3) The constructs Top0, Top1, Haus, Tych, and Reg1 (regular T1 topological spaces)
are monotopological (since they are closed under the formation of initial mono-
sources in Top).

(4) The construct HUnif of separated uniform spaces is monotopological.

(5) Let PAlg(Ω) denote the construct of partial algebras of type Ω = (ni), i.e., pairs
of the form (X, {ωi}), where X is a set and the ωi : Xni → X are partial func-
tions, i.e., functions ωi : Di → X, whose domains Di are subsets of Xni. Partial
algebra homomorphisms (X, {ωi})

f−→ (Y, {ω′i}) are functions f : X → Y satisfying
f(ωi(g)) = ω′i(f

ni(g)) whenever ωi(g) is defined. Then PAlg(Ω) is monotopological.

(6) For concrete categories over 1, monotopological = topological.

(7) Unif , considered as a concrete category over Top is M-topological, where M is the
collection of initial mono-sources in Top.

21.40 M-TOPOLOGICAL CHARACTERIZATION THEOREM
A concrete category (A, U) over an (E,M)-category X is M-topological if and only if
(A, U) is an E-reflective concrete subcategory of some topological category over X.

Proof: If (B, V ) is topological over X, then by Proposition 21.14, B is an (E,Minit)-
category. Thus if (A, U) is an E-reflective subcategory of B, then by Theorem 16.8, A
is closed under Minit-sources in B. Hence (A, U) is M -topological.

Conversely, let (A, U) be M-topological. Define a concrete category (A∗, U∗) over
X as follows. A∗-objects are triples (X, e, A) with X ∈ Ob(X), A ∈ Ob(A), and
X

e−→ UA ∈ E. A∗-morphisms from (X, e, A) to (X ′, e′, A′) are pairs (f, g) consist-

ing of an X-morphism X
f−→ X ′ and an A-morphism A

g−→ A′ such that the diagram

X
f
//

e

��

X ′

e′

��

UA g
// UA′

commutes. A∗-composition is defined coordinatewise. Let U∗ : A∗ → X be defined by

U∗((X, e, A)
(f,g)−−−→ (X ′, e′, A′)) = X

f−→ X ′.

Since E ⊆ Epi(X) (15.4), U∗ is faithful. Hence (A∗, U∗) is a concrete category over

X. Moreover every U∗-structured source S = (X
fi−−→ U∗(Xi, ei, Ai))I has an initial lift

that can be constructed as follows: Let X
fi−−→ Xi

ei−−→ UAi = X
e−→ Y

mi−−→ UAi be an
(E,M)-factorization and let (A mi−−→ Ai)I be a U-initial lift of the U-structured M-source
(Y mi−−→ UAi)I . By the (E,M)-diagonalization-property, it is easily seen that the source

((X, e, A)
(fi,mi)−−−−−→ (Xi, ei, Ai))I is a U∗-initial lift of S. However, initial lifts need not

be uniquely determined. By Proposition 5.33 there exists an amnestic concrete category
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(B, V ) and a surjective concrete equivalence (A∗, U∗) P−−→ (B, V ). By Proposition 21.5,
(B, V ) is topological. Now define a concrete full embedding (A, U) E∗

−−→ (A∗, U∗) by

E∗(A
f−→ B) = (UA, idA, A)

(f,f)−−−−→ (UB, idB, B).

Then E∗[A] is E-reflective in A∗, since for each A∗-object (X, e, A) the A∗-morphism

(X, e, A)
(e,idA)−−−−−→ E∗A is an E∗[A]-reflection arrow. Thus

(A, U) E−−→ (B, V ) = (A, U) E∗
−−→ (A∗, U∗) P−−→ (B, V )

is a full concrete embedding, whose image is an E-reflective subcategory of the topolog-
ical category (B, V ). �

21.41 REMARKS
(1) Let (A, U) E−−→ (B, V ) be the concrete embedding constructed in the above proof.

Then the following hold, as can be seen easily:

(a) E preserves M-initial sources. Thus E[A] is M-initially closed in (B, V ).

(b) If X is E-co-wellpowered and (A, U) is fibre-small, then (B, V ) is fibre-small.

(c) If (A, U) is topological, E needn’t be an isomorphism. For example, if Set is
considered as a monotopological construct (A, U) via the identity functor, then
(B, V ) is the construct of equivalence relations.

(2) Whereas M-topological categories, i.e., E-reflective concrete subcategories of topo-
logical categories, still have a typical topological flavor, full reflective concrete sub-
categories of topological categories can have a completely different character. As we
will see in §25 the constructs Vec, Grp, and Rng are examples of this kind.

21.42 THEOREM
Let (A, U) be a fibre-small concrete category over an E-co-wellpowered (E,M)-category
with products. Then (A, U) is M-topological if and only if it satisfies the following
conditions:

(1) (A, U) has concrete products,

(2) (A, U) has M-initial subobjects, i.e., every structured M-morphism X
m−−→ UA

has a unique initial lift.

Proof: If (A, U) is M-topological, then it has concrete products, since X-products,
being extremal mono-sources, belong to M.

Conversely, let (A, U) satisfy the conditions (1) and (2). If S = (X mi−−→ UAi)I

is a small structured M-source and (
∏

Ai
πj−−→ Aj)I is a concrete product of (Aj)I ,

then the structured M-morphism X
〈mi〉−−−→ UP has an initial lift A

〈mi〉−−−→ P . Thus
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(A mi−−→ Ai)I = (A
〈mi〉−−−→ P

πi−−→ Ai)I is an initial lift of S. If S = (X mi−−→ UAi)I is a
large structured M-source, for each i ∈ I let

X
mi−−→ UAi = X

ei−−→ Xi
ni−−→ UAi

be an (E,M)-factorization and let Bi
ni−−→ Ai be an initial lift of Xi

ni−−→ UAi. Since X
is E-co-wellpowered and (A, U) is fibre-small, the structured source T = (X ei−−→ UBi)I

is representable by a small source, i.e., there exists a subset J of I such that for each
i ∈ I there is a j(i) ∈ J and an isomorphism hi : Bj(i) → Bi with ei = hi ◦ ej(i).
By Proposition 15.5(7), T belongs to M, and hence so does the small source T ′ =
(X

ej−−→ UBj)J . Thus T ′ has an initial lift (A
ej−−→ Bj)J . It follows immediately that

the source
(A mi−−→ Ai)I = (A

ej(i)−−−→ Bj(i)
hi−−→ Bi

ni−−→ Ai)I

is an initial lift of S. �

21.43 COROLLARY
A fibre-small construct is monotopological if and only if it has concrete products and
initial subobjects. �

21.44 EXAMPLES
(1) The constructs Vec and Grp have concrete products but fail to have initial subob-

jects.

(2) The constructs Met and Metc have initial subspaces but fail to have concrete
products.
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Brümmer, G. C. L., and R.-E. Hoffmann. An external characterization of topological
functors. Springer Lect. Notes Math. 540 (1976): 136–151.

Hoffmann, R.-E. Topological functors admitting generalized Cauchy-completions.
Springer Lect. Notes Math. 540 (1976): 286–344.

Porst, H.-E. Characterizations of Mac Neille completions and topological functors.
Bull. Austral. Math. Soc. 18 (1978): 201–210.

Tholen, W. On Wyler’s taut lift theorem. Gen. Topol. Appl. 8 (1978): 197–206.

Herrlich, H. Categorical topology 1971-1981. General Topology and its Relations to
Modern Analysis and Algebra V. Proceedings of the Fifth Prague Topological Sym-
posium 1981 (ed. J. Novak), Heldermann, Berlin, 1982, 279–383.

Brümmer, G. C. L. Topological categories. Topol. Appl. 18 (1984): 27–41.

Nakagawa, R. Categorical Topology. Topics in General Topology (eds. K. Morita and
J. Nagata), North Holland, Amsterdam, 1989, 563–623.

EXERCISES

21A. Existence of Indiscrete Structures
For transportable concrete categories, (A, U), prove that the following conditions are
equivalent:

(1) (A, U) has indiscrete structures,

(2) U has an adjoint G with U ◦G = idX,

(3) U has an adjoint G that is a full embedding,

(4) there exists a Galois correspondence (U,G) : (X, idX)→ (A, U).

21B. Fibre-Smallness
Show that in fibre-small topological categories (resp. constructs) a sink (Ai

fi−−→ A)I

is final (resp. is a final epi-sink) if and only if there exists a subset J of I such that

(Aj
fj−−→ A)J is final (resp. is a final epi-sink).

21C. Characterization of Topological Categories

Show that a concrete category (A, U) over X is topological if and only if the following
conditions are satisfied:

(a) (A, U) is fibre-complete,

(b) in (A, U) each structured arrow X
f−→ UA has a unique initial lift B

f−→ A,

(c) in (A, U) each co-structured arrow UA
f−→ X has a unique final lift A

f−→ B.
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21D. Non-topological Functors and Categories

* (a) Consider the functor from Mod→ Rng described as follows: Mod, the category
of modules, has as objects all pairs (R,M) consisting of a ring R and a left R-

module M , and as morphisms (R,M)
(f,g)−−−→ (R′,M ′) all pairs (f, g) consisting of

a ring homomorphism R
f−→ R′ and an (abelian) group homomorphism M

g−→M ′

satisfying the identity g(r ·m) = f(r) ·g(m). Let Mod G−−→ Rng be the “forgetful”
functor, defined by

G((R,M)
(f,g)−−−→ (R′,M ′)) = R

f−→ R′.

Show that

(1) Each small G-structured source has a G-initial lift.

(2) There exists a functor Rng F−−→Mod that is simultaneously an adjoint and a
co-adjoint for G.

(3) G is not faithful.

(4) G is not topological.

(b) Let A be the full subconstruct of Top consisting of all discrete and all indiscrete
spaces. Show that

(1) For each structured source (X
fi−−→ (Xi, τi))I there exists a largest A-structure

τ on X making all (X, τ)
fi−−→ (Xi, τi) continuous.

(2) For each structured sink ((Xi, τi)
fi−−→ X)I there exists a smallest A-structure

τ on X making all (Xi, τi)
fi−−→ (X, τ) continuous.

(3) A is fibre-complete.

(4) A has discrete and indiscrete structures.

(5) A is neither complete nor cocomplete.

(6) A is not topological.

(c) Show that the unique functor G from • // •oo to • is not topological, even though
G is faithful and each G-structured source has an initial lift.

21E. Concrete Co-adjoints and Galois Correspondences

(a) Let X be a category consisting of a single object X and two morphisms idX and s
with s2 = idX ; let A be the concrete category over X, consisting of two objects A0

and A1 and the following morphism sets:

homA(Ai, Aj) =

{
{idX}, if i = j

{s}, if i 6= j;

and let G and F be concrete functors from A to A over X defined by GAi = Ai and
FAi = A1−i. Show that
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(1) F is a co-adjoint for G.

(2) (F,G) is not a Galois correspondence between A and itself over X.

* (b) Show that a concrete functor A G−−→ B may have a concrete co-adjoint without being
part of a Galois correspondence (F,G). [Hint: Consider the concrete embedding
A −→ B constructed in Exercise 5E(d).] Cf. Theorem 21.24.

21F. Comma Categories

(a) Let (A, U) be topological over X, and let B be an A-object. Show that A ↓ B is
topological over X ↓ UB via the obvious forgetful functor induced by U .

(b) Consider

A ↓ B
W //

T
��

A

U

��

X ↓ UB
V

// X

where V,W, T are the obvious forgetful functors. Show that

(1) If U is topological, then so is T .

(2) W preserves initiality (i.e., sends T -initial sources into U-initial sources), but in
general does not preserve finality.

* 21G. Initial Completions

A full concrete embedding (A, U) E−−→ (B, V ) is called an initial completion of (A, U)
provided that (B, V ) is topological and E[A] is initially dense in (B, V ). [Dual Notion:

final completion.] An initial completion (A, U) E1−−→ (B1, U1) is said to be smaller

than an initial completion (A, U) E2−−→ (B2, U2) of (A, U) — in symbols: E1 ≤ E2,
provided that there exists a full concrete embedding (B1, U1)

E−−→ (B2, U2) with E2 =
E ◦ E1. Show that for initial completions E1 of (A, U) the following hold:

(a) The relation ≤ is reflexive and transitive.

(b) E1 ≤ E2 and E2 ≤ E1 hold simultaneously if and only if there exists a concrete
isomorphism (B1, U1)

H−−→ (B2, U2) with E2 = H ◦ E1.

(c) The following conditions are equivalent:

(1) E1 ≤ E2,

(2) there exists a (unique) initiality-preserving concrete functor
(B2, U2)

G−−→ (B1, U1) with E1 = G ◦ E2,

(3) there exist (unique) concrete functors (B1, U1)
E−−→ (B2, U2) and

(B2, U2)
G−−→ (B1, U1) with E2 = E ◦ E1, E1 = G ◦ E2 and G ◦ E = id.
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* 21H. Mac Neille Completions

A completion of (A, U) that is simultaneously an initial completion and a final comple-
tion is called a Mac Neille completion of (A, U). Show that

(a) [Uniqueness] If (A, U) E1−−→ (B1, V1) and (A, U) E2−−→ (B2, V2) are Mac Neille
completions, then there exists a concrete isomorphism (B1, V1)

H−−→ (B2, V2) with
E2 = H ◦ E1.

(b) [Minimality] If (A, U) E−−→ (B, V ) is a Mac Neille completion and if

(A, U) E′
−−→ (B′, V ′) is a full concrete embedding of (A, U) into a topological category

(B′, V ′), then there exists a full concrete embedding (B, V ) H−−→ (B′, V ′) with V ′ =
H ◦ V . In particular, Mac Neille completions of (A, U) are the smallest initial
completions of (A, U).

(c) [Construction] If (A, U) is a full concrete subcategory of a topological category
(B, V ), if (B′, V ′) is the concretely reflective hull of A in (B, V ), and if (B′′, V ′′)
is the concretely coreflective hull of A in (B′, V ′), then (B′′, V ′′) is a Mac Neille
completion of (A, U).

(d) [Existence] Let (A, U) be an amnestic concrete category over X.

(1) If A is small, then (A, U) has a Mac Neille completion. In particular, each
poset, considered as a concrete category over 1, has a Mac Neille completion (=
its familiar Dedekind-Mac Neille completion).

(2) If (A, U) is M-topological, then it has a Mac Neille completion.

(e) [Non-existence] Let C be a proper class. Order X = C × {0, 1} by

(x, i) ≤ (y, j)⇔


(x, i) = (y, j)
or
i = 0 and j = 1 and x 6= y.

Then (X,≤), considered as concrete category over 1, has no Mac Neille completion.

* 21I. Universal Initial Completions

An initial completion (A, U) E−−→ (B, V ) of (A, U) is called a universal initial com-
pletion of (A, U) provided that the following hold:

(1) E preserves initiality,

(2) whenever (C,W ) is topological and (A, U) F−−→ (C,W ) is an initiality-preserving
concrete functor, then there exists a unique initiality-preserving concrete functor
(B, V ) G−−→ (C,W ) with F = G ◦ E.

Show that

(a) [Uniqueness] If (A, U) E1−−→ (B1, V1) and (A, U) E2−−→ (B2, V2) are universal initial
completions, then there exists a concrete isomorphism (B1, V1)

H−−→ (B2, V2) with
V2 = H ◦ V1.
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(b) [Maximality] Universal initial completions of (A, U) are the largest initiality-preser-
ving initial completions of (A, U).

(c) Every M-topological category has a universal initial completion.

(d) The construct Prox of (not necessarily T1) proximity spaces is a universal initial
completion (but not a Mac Neille completion) of HComp.

(e) If A is small and (A, U) is amnestic, then (A, U) has a universal initial completion.
In particular, if A is a finite set with n ≥ 2 elements, ordered by equality and
considered as a concrete category over 1, then the universal initial completion of A
has 2n elements, whereas the Mac Neille completion of A has n + 2 elements.

(f) A proper class, ordered by equality and considered as concrete category over 1, has
a Mac Neille completion, but no universal initial completion.

* 21J. Essential Full Concrete Embeddings

Show that in the quasicategory CAT(X) of amnestic concrete categories and concrete

functors over X, a full concrete embedding (A, U) E−−→ (B, V ) is

(a) essential [with respect to full concrete embeddings; cf. Definition 9.22(2)] if and only
if it is initially dense and finally dense,

(b) a Mac Neille completion of (A, U) if and only if it is an injective hull (with respect
to full concrete embeddings).

21K. M-Topological Functors

Let M be a conglomerate of sources in X. A functor G : A→ X is called M-topological
provided that every G-structured source in M has a unique G-initial lift.

Prove that if X is an (E,M)-category, then every M-topological functor G : A→ X is
faithful and uniquely transportable.

21L. Uniqueness of Forgetful Functors

Show that whenever (A, U) and (A, V ) are topological constructs, then U and V are
naturally isomorphic.

21M. Topological Functors and Bimorphisms

Show that if A U−−→ X is a topological functor, then E = U−1[Iso(X)] satisfies:

(1) E ⊆ Bimor(A) (= the class of bimorphisms in A),

(2) if X is balanced, then E = Bimor(A),

(3) A is an (E,−)-category and Aop is an (E,−)-category.

21N. Balanced Topological Categories

Show that a topological category (A, U) over X is balanced if and only if X is balanced
and U is an isomorphism.
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22 Topological structure theorems

Universal algebra can be understood as the branch of mathematics in which “nice” sub-
constructs of the fundamental algebraic constructs Alg(Ω) of Ω-algebras are investigated.
Among these are the finitary varieties and quasivarieties. These “nice” subconstructs are
determined either internally (by means of suitable equations or implications) or exter-
nally (by means of certain closure properties). It turns out that an analogous situation
exists in the realm of topological categories over arbitrary (!) base categories. The role
of the fundamental topological categories is played by the functor-structured categories
Spa(T ) of T -spaces. “Nice” subcategories are determined either internally (by topolog-
ical axioms) or externally (by suitable closure properties). In addition, duality provides
a dual structure theorem.

TOPOLOGICAL AXIOMS

Functor-structured categories Spa(T ) have been defined in Definition 5.40. By Example
21.8(2) they are fibre-small topological categories. Hence, by Proposition 21.30, each of
their initially closed (= concretely reflective) full concrete subcategories is a fibre-small
topological category as well. The main result of this section states that — conversely —
every fibre-small topological category can be obtained in this way. Since, moreover, by
Theorem 16.14 the isomorphism-closed E-reflective subcategories of an (E,M)-category
B are precisely the E-implicational subcategories of B, concretely reflective subcategories
of topological categories B are precisely the identity-carried implicational subcategories
of B. This justifies the following terminology (cf. Definition 16.12):

22.1 DEFINITION
Let (A, U) be a concrete category over X.

(1) Each identity-carried morphism P
p−→ P ′ is called a topological axiom in (A, U).

An A-object A is said to satisfy the axiom p provided that A is {p}-injective; that
is, each A-morphism f : P → A is also an A-morphism f : P ′ → A.

(2) A full subcategory B of A is said to be definable by topological axioms in (A, U)
provided that it is E-implicational in A, where E is a class of topological axioms in
(A, U); i.e., the objects in B are precisely those A-objects that satisfy each of the
axioms in E.

22.2 EXAMPLES
(1) The construct Prost is definable by the following two topological axioms in Rel =

Spa(S2). Cf. Example 16.13(1).

(A1) • −→ • qq
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(A2)
•
��

// • qq

��
•QQ

−→
•
��

//

��
@@

@@
@ • qq

��
•QQ

(2) Let Bor denote the construct of bornological spaces, i.e., pairs (X, β), where X is
a set and β is a bornology (i.e., a cover of X such that U ∈ β implies V ∈ β for all
V ⊆ U and U1, U2 ∈ β implies U1 ∪ U2 ∈ β). Morphisms f : (X, β) → (X ′, β′) are
functions f : X → X ′ such that U ∈ β implies f [U ] ∈ β′. Bor is definable by the
following (proper) class of topological axioms in Spa(P):

(A0) (∅, ∅)→ (∅,P(∅)),
(A1) ({1}, ∅)→ ({1},P{1}),

(AX,M,N ) (X, {M,N})→ (X,P(M ∪N)) for any set X and any M,N ⊆ X.

Bor cannot be defined by a set of topological axioms in Spa(P).

(3) Let Simp denote the construct of simplicial complexes, i.e., pairs (X, α), where X
is a set and α is a complex (i.e., a set of finite subsets of X that contains all subsets
with at most one member and has the property that U ∈ α implies V ∈ α for all
V ⊆ U). Morphisms f : (X, α) → (X ′, α′) are functions f : X → X ′ such that
U ∈ α implies f [U ] ∈ α′. Let Pfin : Set→ Set be the finite power-set functor that
associates with each set X the set Pfin(X) of all finite subsets of X. Then Simp is
definable by the following (proper) class of topological axioms in Spa(Pfin):

(A0) (∅, ∅)→ (∅,P(∅)),
(A1) ({1}, ∅)→ ({1},P{1}),
(AX,M ) (X, {M})→ (X,P(M)) for every set X and every finite subset M of X.

(4) Let U : Set → Set be the ultrafilter functor defined as follows: For each set X,
U(X) is the set of all ultrafilters on X, and for each function f : X → Y , Uf(F) =

{M ⊆ Y
∣∣ f−1[M ] ∈ F }. Let F : Set → Set be defined by F (X

f−→ Y ) =

UX ×X
Uf×f−−−−→ UY ×Y . Then the construct PsTop of pseudotopological spaces is

definable by one topological axiom in Spa(F ). An object (X, α) of Spa(F ) is given
by a set α ⊆ U(X) ×X of pairs (F , x), where F is an ultrafilter and x is a point.
[Think of F → x if and only if (F , x) ∈ α.] Such an object is a pseudotopological
space if and only if for each point x, α contains the pair (ẋ, x) (where ẋ is the trivial
ultrafilter induced by x).

Thus PsTop is definable by the following topological axiom in Spa(F ):

({1}, ∅)→ ({1}, F{1}).

(5) Also Top is definable by topological axioms in Spa(F ). However, a proper class of
such axioms is needed.
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22.3 TOPOLOGICAL STRUCTURE THEOREM
For concrete categories (A, U), the following conditions are equivalent:

(1) (A, U) is fibre-small and topological,

(2) (A, U) is concretely isomorphic to an initially closed full subcategory of a functor-
structured category,

(3) (A, U) is concretely isomorphic to an isomorphism-closed concretely reflective sub-
category of some functor-structured category,

(4) (A, U) is concretely isomorphic to a subcategory of a functor-structured category
Spa(T ) that is definable by topological axioms in Spa(T ).

Proof:
(1)⇒ (2). Let (A, U) be a fibre-small topological category over X. Let T : X→ Set be
the associated fibre-functor, defined on objects X by: TX = {A ∈ Ob(A)

∣∣ UA = X }
and on morphisms X

f−→ Y by: Tf(A) = B ⇔ A
f−→ B is final. Then for each A-

object A the pair (UA , {B ∈ TUA
∣∣ B ≤ A }) is a T -space EA. The unique concrete

functor E : (A, U) → Spa(T ), defined on objects as just described, is easily seen to
be a full embedding. Hence it remains to be shown that its image is initially closed in
Spa(T ). To see this, consider an initial source ((X, α)

fi−−→ EAi)I in Spa(T ), and let

(A
fi−−→ Ai)I be the initial lift of the structured source (X

fi−−→ UAi)I in (A, U). Then
by Example 10.42(4) the following conditions are equivalent for elements B of TX:

(a) B ∈ α,

(b) Tfi(B) ≤ Ai for each i ∈ I,

(c) B
fi−−→ Ai is an A-morphism for each i ∈ I,

(d) B ≤ A.

Thus (X, α) = EA.

(2)⇒ (1) is immediate from Proposition 21.30 and the fact that each functor-structured
category is topological.

(2) ⇔ (3). Proposition 21.31.

(3) ⇔ (4) is immediate from Theorem 16.14, since each functor-structured category is
an (Identity-Carried, Initial Source)-category. �

22.4 COROLLARY
For a construct (A, U) the following conditions are equivalent:

(1) (A, U) is fibre-small and topological,

(2) (A, U) can be concretely embedded in a functor-structured construct as a full sub-
construct that is closed under the formation of:

(a) products,
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(b) initial subobjects, and

(c) indiscrete objects.

Proof: This follows from Theorem 22.3 and Proposition 21.37. �

22.5 REMARK
If (A, U) is a topological category over X, then (Aop, Uop) is a topological category over
Xop. Thus, by the above structure theorem, there exists a functor T : Xop → Set, such
that (Aop, Uop) is concretely isomorphic (over Xop) to a full concrete subcategory of
Spa(T ) that is definable by topological axioms. Thus, by duality, (A, U) is concretely
isomorphic over X to a full concrete subcategory of the functor-costructured category
Spa(T )op, definable by the dual of topological axioms, called topological co-axioms.
Such a representation of a topological category is sometimes more natural than the one
provided directly by the Topological Structure Theorem (22.3). Below we formulate
these results more explicitly and provide several examples.

22.6 DEFINITION
Let (A, U) be a concrete category over X.

(1) Each identity-carried morphism P ′ p−→ P is called a topological co-axiom in
(A, U).71 An A-object A is said to satisfy the co-axiom p provided that A is {p}-
projective; that is, each A-morphism f : A→ P is also an A-morphism f : A→ P ′.

(2) A full subcategory B of A is said to be definable by topological co-axioms in A
if there exists a class of topological co-axioms in A such that an A-object A satisfies
each of these co-axioms if and only if A ∈ Ob(B).

22.7 EXAMPLES
(1) The construct Sym of symmetric relations is definable in Rel either

(a) by the topological axiom

• → • id−−→ • ↔ •

or

(b) by the topological co-axiom

• oo //
��

• qqOO
��
•QQ

−→
•

��
@@

@@
@
oo //
��

• qqOO
��
•QQ

71Observe that f is a topological co-axiom if and only if it is a topological axiom. However, the concept
“A satisfies the topological co-axiom f” is dual to the concept “A satisfies the topological axiom f”.
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(2) The construct Top is definable by the following (proper) class of topological co-
axioms in Spa(Q)op:

(C1) ({0}, {{0}, ∅})→ ({0}, ∅),

(C2) ({0, 1, 2, 3}, {{0, 1}, {0, 2}, {0}})→ ({0, 1, 2, 3}, {{0, 1}, {0, 2}}),

(CA
X) (X,A ∪ {

⋃
A})→ (X,A), for each set X and each family A of subsets of X.

22.8 THEOREM
For a concrete category (A, U) the following are equivalent:

(1) (A, U) is fibre-small and topological,

(2) (A, U) is concretely isomorphic to a finally closed full subcategory of some functor-
costructured category,

(3) (A, U) is concretely isomorphic to a full concretely coreflective subcategory of some
functor-costructured category,

(4) (A, U) is concretely isomorphic to a subcategory of some functor-costructured cate-
gory Spa(T )op that is definable by topological co-axioms in Spa(T )op. D

M-TOPOLOGICAL STRUCTURE THEOREMS

22.9 M-TOPOLOGICAL STRUCTURE THEOREM
For concrete categories (A, U) over an E-co-wellpowered (E,M)-category the following
conditions are equivalent:

(1) (A, U) is fibre-small and M-topological,

(2) (A, U) is concretely isomorphic to an M-initially closed full subcategory of a functor-
structured category,

(3) (A, U) is concretely isomorphic to an isomorphism-closed E-reflective subcategory
of a functor-structured category,

(4) (A, U) is concretely isomorphic to an E-implicational subcategory of a functor-
structured category.

Proof: (1) ⇒ (2). By Theorem 21.40 and Remark 21.41(1) there exists a full concrete
embedding (A, U) E−−→ (B, V ) of (A, U) into a fibre-small topological category such
that E[A] is M-initially closed in (B, V ). By Theorem 22.3 there exists a full concrete
embedding (B, V ) F−−→ Spa(T ) of (B, V ) into some functor-structured category such
that F (B) is initially closed in Spa(T ). Thus (A, U) F◦E−−−→ Spa(T ) is a full concrete
embedding such that (F ◦ E)[A] is M-initially closed in Spa(T ).

(2) ⇒ (1) is obvious.

(2) ⇔ (3) follows from Theorem 16.8 in view of Proposition 21.14(1).

(3) ⇔ (4) follows from Theorem 16.14. �
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22.10 COROLLARY
For constructs (A, U) the following conditions are equivalent:

(1) (A, U) is fibre-small and monotopological,

(2) (A, U) is concretely isomorphic to a full subconstruct of a functor-structured con-
struct that is closed under the formation of products and initial subobjects,

(3) (A, U) is concretely isomorphic to an implicational subconstruct of a functor-struc-
tured construct.

Proof: This follows immediately from Theorem 22.9 and the observation that in a fibre-
small construct, for each initial mono-source (A

fi−−→ Ai)I , there exists a subset J of I

such that (A
fj−−→ Aj)J is an initial mono-source (cf. Proposition 21.36). �
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EXERCISES

22A. Characterization of Functor-Structured Categories

Show that a concrete category (A, U) is concretely isomorphic to some functor-structured
category Spa(T ) if and only if the following conditions are satisfied:

(1) (A, U) is a topological category,

(2) (A, U)-fibres are complete atomic Boolean algebras,

(3) if A
f−→ B is final in (A, U), then the following hold:

(a) if A is an atom (in its fibre), then so is B,

(b) if B is discrete, then so is A.
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22B. Topological Theories

A topological theory in X is a functor X T−−→ JCPos. For each topological theory
T in X denote by Top(T ) the concrete category over X whose objects are pairs (X, t)

with X ∈ Ob(X) and t ∈ T (X), and whose morphisms (X, t)
f−→ (Y, s) are those X-

morphisms X
f−→ Y that satisfy Tf(t) ≤ s.

(a) Show that if T is a topological theory in X, then Top(T ) is a fibre-small topological
category over X.

(b) Let (A, U) be a topological category over X. Consider the so-called fibre-functor
T : X → JCPos that assigns to each X-object X the U-fibre of X, and to each
X-morphism X

f−→ Y the unique function TX
Tf−−→ TY such that A

f−→ Tf(A) is
a final morphism in (A, U) for each A ∈ TX. Prove that T is a topological theory
in X and that (A, U) is concretely isomorphic to Top(T ).

(c) Show that if G : X → Set is a functor and P : Set → JCPos is the covariant
power-set functor, then P ◦ G is a topological theory in X and Top(P ◦ G) =
Spa(G).

* 22C. Sets of Axioms
Prove that Top cannot be axiomatized by a set of axioms in a functor-structured cate-
gory.

22D. Co-Axiomatization
Find a co-axiomatization of Prost in a functor-costructured category.
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23 Algebraic categories

In this section we introduce the concept of algebraic category, which is aimed at capturing
the intuitive concept of “algebras over a base category”. An attempt to describe algebraic
structures, via monads, has been presented in §20. For constructs this approach has been
quite successful. Unfortunately, however, besides being rather complicated, the concepts
of monadic functors and monadic categories have the severe deficiencies pointed out in
§20.

Here we provide the concepts of essentially algebraic, algebraic, and regularly algebraic
functors and concrete categories. They are free from the above-mentioned deficiencies of
monadic functors and categories. Moreover, as we will see in §24, the regularly algebraic
functors form the compositive hull of the regularly monadic functors.

ESSENTIALLY ALGEBRAIC FUNCTORS

Each of the following concepts, which under rather mild assumptions are equivalent (see
17.13), captures the “essence of algebraicity” of a functor G:

(1) G reflects isomorphisms,

(2) G reflects limits,

(3) G reflects equalizers,

(4) G is faithful and reflects extremal epimorphisms,

(5) mono-sources are G-initial.

Each of these concepts is too weak to have many striking consequences. However, when
any of them is combined with a suitably chosen factorization condition, such as (Generat-
ing, Mono-Source)-factorizability (which by itself has nothing to do with “algebraicity”),
a theory emerges that is surprisingly close to intuitive notions of what concrete categories
of algebras should be. Just for convenience we will also require unique transportability.
This, however, is an inessential requirement.

23.1 DEFINITION
A functor is called essentially algebraic provided that it creates isomorphisms and is
(Generating, Mono-Source)-factorizable.

23.2 PROPOSITION
For a uniquely transportable (Generating, Mono-Source)-factorizable functor
G : A→ B, the following conditions are equivalent:

(1) G is essentially algebraic,

(2) G reflects isomorphisms,
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(3) G reflects limits,

(4) G reflects equalizers,

(5) G is faithful and reflects extremal epimorphisms,

(6) every mono-source in A is G-initial.

Proof: Immediate from Propositions 17.13 and 13.36. �

23.3 PROPOSITION
Each essentially algebraic functor is a faithful adjoint functor.

Proof: Immediate from Propositions 23.2 and 18.3. �

23.4 PROPOSITION
Essentially algebraic functors are closed under composition. �

ESSENTIALLY ALGEBRAIC CATEGORIES

23.5 DEFINITION
A concrete category (A, U) is called essentially algebraic provided that U is essentially
algebraic.

23.6 EXAMPLES
(1) All monadic constructs, e.g., Alg(Ω), Vec, Grp, and HComp, are essentially alge-

braic. However, the monadic category over Pos exhibited in Example 20.47 is not
essentially algebraic (since it is not cocomplete, cf. Theorem 23.11).

(2) The constructs BooSp, TfAb, Catof , and (Ban,O) are essentially algebraic, but
not monadic.

(3) Categories of topological algebras (e.g., topological groups, topological semigroups,
etc.), considered as concrete categories over Top, are essentially algebraic.

(4) A topological category (A, U) is essentially algebraic only if U is an isomorphism.

(5) A partially ordered class, considered as a concrete category over 1, is essentially
algebraic if and only if it has precisely one element.

23.7 PROPOSITION
In any essentially algebraic category, the embeddings are precisely the monomorphisms.

Proof: Immediate from Proposition 23.2. �
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23.8 CHARACTERIZATION THEOREM FOR
ESSENTIALLY ALGEBRAIC CATEGORIES

A concrete category (A, U) is essentially algebraic if and only if the following conditions
are satisfied:

(1) U creates isomorphisms,

(2) U is adjoint,

(3) A is (Epi, Mono-Source)-factorizable.

Proof:
(a). If (A, U) is essentially algebraic, then conditions (1) and (2) are clearly satisfied

(cf. 23.2 and 23.3). To show (3), let S = (A
fi−−→ Ai)I be a source in A, and let

UA
Ufi−−−→ UAi = UA

g−→ UB
Umi−−−→ UAi

be a (Generating, Mono-Source)-factorization of the corresponding structured
source. Since by Proposition 23.2 each mono-source is U-initial, A

g−→ B is an
A-morphism. Hence A

fi−−→ Ai = A
g−→ B

mi−−→ Ai is an (Epi, Mono-Source)-
factorization of S.

(b). Let conditions (1), (2), and (3) be satisfied, and let S = (X
fi−−→ UAi)I be a

structured source. If X
u−→ UA is a universal arrow, then for each i ∈ I there exists

an A-morphism A
gi−−→ Ai with fi = (Ugi)◦u. If A

gi−−→ Ai = A
e−→ B

mi−−→ Ai is an

(Epi, Mono-Source)-factorization, then X
fi−−→ UAi = X

(Ue)◦u−−−−−→ UB
Umi−−−→ UAi is

a (Generating, Mono-Source)-factorization of S. �

23.9 REMARKS
(1) Condition (3) in the above theorem is surprising since it is a requirement on A and

not on U . In particular, the identity functor on a category A is essentially algebraic
if and only if A has (Epi, Mono-Source)-factorizations.

(2) Monadic categories satisfy conditions (1) and (2) of the above theorem, but may
fail to satisfy (3). Hence a monadic category (A, U) is essentially algebraic if and
only if A has (Epi, Mono-Source)-factorizations. In particular, regularly monadic
categories are essentially algebraic.

23.10 COROLLARY
If (A, U) is essentially algebraic, then A has coequalizers.

Proof: Immediate since (Epi, Mono-Source)-factorizable categories have coequalizers.
(Cf. Proposition 15.7 and Theorem 15.10.) �

23.11 THEOREM
Every essentially algebraic functor
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(1) detects colimits,

(2) preserves and creates limits.

Proof: Let (A, U) be an essentially algebraic category.

(1). Let D : I → A be a diagram, and let (UDi
ci−−→ K)I be a colimit of U ◦ D.

Consider the structured source S = (K
fj−−→ UAj)J consisting of those structured

arrows (fj , Aj) with the property that UDi
fj◦ci−−−−→ UAj is an A-morphism for each

i ∈ I. Let K
fj−−→ UAj = K

g−→ UA
Umj−−−−→ UAj be a (Generating, Mono-Source)-

factorization of S. Since mono-sources in A are initial, each UDi
g◦ci−−−→ UA is an

A-morphism. Hence (Di
g◦ci−−−→ A)I is a colimit of D.

UDi
ci //

fj◦ci ##F
FFFFFFF K

fj

��

g
// UA

Umj||yyyyyyyy

UAj

(2). As an adjoint functor, U preserves limits. To show creation, let D : I → A be a

diagram and let L = (L `i−−→ UDi) be a limit of the composite functor U ◦ D. If

L
`i−−→ UDi = L

g−→ UA
Umi−−−→ UDi is a (Generating, Mono-Source)-factorization,

then M = (A mi−−→ Di)I is a natural source for D. Let S = (B
fi−−→ Di)I be an

arbitrary natural source for D. Then US is a natural source for U◦D. Consequently,
there exists a morphism UB

f−→ L with US = L ◦ f .

UB

f

��

Ufj

##F
FFFFFFF

L
`i //

g

��

UDi

UA

Umi

;;xxxxxxxx

Since M is a mono-source and, hence, is initial, UB
g◦f−−−→ UA is an A-morphism

with S =M◦ (g ◦ f). Thus M is a limit of D. Since U preserves limits, UM is a
limit of U ◦D. Hence L

g−→ UA is an isomorphism. Therefore, transportability of
U implies that U lifts limits. Hence, by Proposition 13.25, U creates limits. �

23.12 PROPOSITION
If (A, U) is essentially algebraic over X, then the following hold:

(1) If X is (strongly) complete, then A is (strongly) complete.

(2) If X has coproducts, then A is cocomplete.
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(3) If X is wellpowered, then A is wellpowered.

Proof: (1) follows from Theorem 23.11 and the fact that U , being adjoint, preserves
monomorphisms.

(2) follows from Theorem 23.11 and Corollary 23.10.

(3) follows from the fact that monomorphisms are initial and U preserves and reflects
them. �

23.13 COROLLARY
Every essentially algebraic construct is complete, cocomplete, and wellpowered. �

23.14 PROPOSITION
For essentially algebraic categories, the following conditions are equivalent:

(1) A is extremally co-wellpowered,

(2) U is extremally co-wellpowered,

(3) U is concretely co-wellpowered.

Proof: (1) ⇒ (2) follows from Proposition 18.11.

(2) ⇔ (3) is immediate by Proposition 23.7.

(3) ⇒ (1) is immediate by Remark 8.18(3). �

23.15 THEOREM
If (A, U) is a concretely co-wellpowered category over a strongly complete category X,
then the following conditions are equivalent:

(1) (A, U) is essentially algebraic,

(2) U creates limits.

Proof: (1) ⇒ (2) follows from Theorem 23.11.

(2) ⇒ (1). By Theorem 13.19, A is strongly complete and U preserves strong limits.
Thus (1) follows from Theorem 17.11(2). �

23.16 COROLLARY
Concretely co-wellpowered monadic categories over strongly complete categories are es-
sentially algebraic. �

23.17 THEOREM
Concrete functors between essentially algebraic categories are essentially algebraic.

9th July 2006



Sec. 23] Algebraic categories 385

Proof: Let (A, U) G−−→ (B, V ) be a concrete functor between essentially algebraic cat-
egories over X. G reflects isomorphisms since V preserves and U reflects them. G
is faithful and amnestic since U is. G is transportable since U is transportable, V is
amnestic, and B-monomorphisms are V-initial. Hence G creates isomorphisms. Let
S = (B

fi−−→ GAi)I be a G-structured source. Consider a (Generating, Mono-Source)-
factorization

V B
V fi−−−→ UAi = V B

g−→ UA
Umi−−−→ UAi

of the U-structured source (V B, (V fi, Ai)I). Since U preserves and V reflects mono-

sources, (GA
Gmi−−−→ GAi)I is a mono-source, and hence is V-initial. Thus there exists a

B-morphism B
ĝ−→ GA with V ĝ = g and fi = Gmi ◦ ĝ for each i ∈ I. The G-structured

morphism (ĝ, A) is generating, since the U-structured morphism (V ĝ, A) is generating.
Hence

B
fi−−→ GAi = B

ĝ−→ GA
Gmi−−−→ GAi

is a (Generating, Mono-Source)-factorization of the G-structured source S. �

23.18 COROLLARY
The forgetful functors Rng→ Ab and Rng→Mon are essentially algebraic functors;
in particular, they are adjoint functors. �

ALGEBRAIC FUNCTORS AND CATEGORIES

Since (Epi, Mono-Source)-factorizable categories are (Extremal Epi, Mono-Source) cat-
egories (15.10), there is a certain symmetry between mono-sources on the one hand and
extremal epimorphisms on the other. Unfortunately, essentially algebraic functors, as
nice as they are otherwise, may not interact well with this symmetry. In particular,

(1) they preserve mono-sources, but may fail to preserve extremal epimorphisms, e.g.,
Ban O−−→ Set or Catof

U−−→ Set, cf. Example 7.72(5),

(2) they detect wellpoweredness, but may fail to detect extremal co-wellpoweredness, cf.
Exercise 23I,

(3) mono-sources must be initial, but extremal epimorphisms may fail to be final, e.g,
Ban O−−→ Set or Catof

U−−→ Set, cf. Example 8.11(4).

The following condition, which is quite often satisfied, restores a proper interaction with
this symmetry.

23.19 DEFINITION
(1) A functor is called algebraic provided that it is essentially algebraic and preserves

extremal epimorphisms.

(2) A concrete category (A, U) is called algebraic provided that U is algebraic.
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23.20 EXAMPLES
(1) Each regularly monadic category and, in particular, each monadic construct is alge-

braic (cf. 20.30).

(2) Every full subconstruct of a monadic construct that is closed under the formation of
products and subobjects is algebraic. In particular, BooSp and TfAb are algebraic.
Neither, however, is monadic.

(3) The constructs Catof and (Ban, O) are essentially algebraic, but not algebraic
[cf. 7.72(5)].

(4) Catof , considered as a concrete category over Alg(1, 1) via the functor that forgets
composition, is essentially algebraic and monadic but is not algebraic.

(5) TopGrp, considered as a concrete category over Top, is algebraic. The category of
Hausdorff semigroups, considered as a concrete category over Haus, is essentially
algebraic and monadic, but is not algebraic.

(6) The embedding Reg ↪→ Top of the full subcategory of Top that consists of all regu-
lar spaces (the T1-condition not being required) is essentially algebraic and monadic,
but is not algebraic.

23.21 PROPOSITION
Algebraic functors are closed under composition. �

23.22 PROPOSITION
Each concrete functor between algebraic categories is algebraic.

Proof: This follows from Theorem 23.17 and the fact that (essentially) algebraic func-
tors reflect extremal epimorphisms. �

23.23 PROPOSITION
In algebraic categories every extremal epimorphism is final.

Proof: Suppose that A
e−→ B is an extremal epimorphism in an algebraic category

(A, U) over X. Let UB
f−→ UC be an X-morphism and A

g−→ C be an A-morphism
with Ug = f ◦ Ue. If

B

A

e
>>~~~~~~~ e //

g
  

@@
@@

@@
@ D

m

OO

n

��

C

is an (ExtrEpi, Mono-Source)-factorization of the 2-source B
e←− A

g−→ C (which exists
in view of Theorems 23.8 and 15.10), then Un ◦ Ue = Ug = f ◦ Ue = f ◦ Um ◦ Ue.
Since U is algebraic, Ue is an (extremal) epimorphism in X, which implies that Un =

9th July 2006



Sec. 23] Algebraic categories 387

f ◦Um. Since (Um,Un) is a mono-source, Um is a monomorphism in X, so that m is a
monomorphism in A. Since e is an extremal epimorphism, m must be an isomorphism.

Thus B
n◦m−1

−−−−−→ C is the unique A-morphism with U(n ◦m−1) = f . �

23.24 COROLLARY
Algebraic functors reflect regular epimorphisms.

Proof: This follows from Proposition 23.23, as in the proof of Proposition 20.30. �

23.25 REMARK
Algebraic functors need not preserve regular epimorphisms. See Exercise 23J.

23.26 COROLLARY
In any algebraic category over a balanced category, the quotient morphisms are precisely
the extremal epimorphisms. �

23.27 COROLLARY
If (A, U) is algebraic over an extremally co-wellpowered category X, then A is extremally
co-wellpowered. �

23.28 PROPOSITION
If (A, U) is algebraic over X, then the following hold:

(1) If extremal epimorphisms are closed under the formation of pullbacks (resp. products)
in X, then they are closed under the formation of pullbacks (resp. products) in A.

(2) If X has enough extremal projectives, then so does A.

Proof:
(1). This follows from the fact that U preserves limits and preserves and reflects extremal

epimorphisms.

(2). Let A be an A-object. Then in X there exists an extremal epimorphism P
e−→ UA

with extremally projective domain P . If P
u−→ UP̂ is a universal arrow, then there

exists a unique A-morphism P̂
ê−→ A with e = Uê ◦ u. Since e is an extremal

epimorphism, so is Uê. Since U reflects extremal epimorphisms, ê is an extremal
epimorphism in A. It remains to show that P̂ is extremally projective. Let B

g−→ C

be an extremal epimorphism in A and P̂
f−→ C be an arbitrary A-morphism. Since

Ug is an extremal epimorphism in X, there exists some X-morphism P
k−→ UB

such that the square
P

u //

k
��

UP̂

Uf

��

UB
Ug
// UC

commutes. If P̂
k̂−→ B is the unique A-morphism with k = Uk̂ ◦u, then f = g ◦ k̂.�
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23.29 COROLLARY
Any algebraic construct is complete, cocomplete, wellpowered, and extremally co-well-
powered. It has enough extremal projectives, and its extremal epimorphisms are closed
under composition and the formation of pullbacks and products. �

23.30 CHARACTERIZATION THEOREM FOR
ALGEBRAIC CATEGORIES

A concrete category (A, U) is algebraic if and only if the following conditions are satisfied:

(1) A is (Epi, Mono-Source)-factorizable,

(2) U is adjoint,

(3) U is uniquely transportable,

(4) U preserves and reflects extremal epimorphisms.

Proof: The necessity of these conditions has already been established. Conversely, it
need only be shown that for any concrete category (A, U) with the above properties,
U must reflect isomorphisms. This follows immediately from the fact that U reflects
extremal epimorphisms and monomorphisms. �

23.31 THEOREM
For a concrete category (A, U) over an (Extremal Epi, Mono-Source)-category X the
following conditions are equivalent:

(1) (A, U) is algebraic,

(2) U is an adjoint functor and lifts (Extremal Epi, Mono-Source)-factorizations
uniquely,

(3) U is an adjoint functor and creates (Extremal Epi, Mono-Source)-factoriza-
tions, i.e., U lifts these factorizations uniquely and reflects extremal epimorphisms
and mono-sources.

Proof: (1) ⇒ (3). Since, by Theorem 23.30 and Theorem 15.10, A has (Extremal Epi,
Mono-Source)-factorizations and U preserves these and is transportable, U lifts such
factorizations. Since, moreover, U reflects extremal epimorphisms and mono-sources
and is amnestic, the liftings are uniquely determined.

(3) ⇒ (2). Trivial.

(2)⇒ (1). Since U , being faithful, reflects epimorphisms and mono-sources, A has (Epi,
Mono-Source)-factorizations. Observe that U reflects identities, i.e., any A-morphism

A
f−→ B with Uf = idX must be idA, since the (Extremal Epi, Mono-Source)-

factorization UA
Uf−−→ UB = UA

idX−−−→ X
idX−−−→ UB has the lifts A

f−→ B
idB−−−→ B

and A
idA−−−→ A

f−→ B. Next consider the class E of A-morphisms that are mapped by
U into extremal epimorphisms. To show that any element A

e−→ B of E is final, let
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UB
f−→ UC be an X-morphism and let A

g−→ C be an A-morphism with Ug = f ◦ Ue.
Then the (Extremal Epi, Mono-Source)-factorization in X

UB

UA

Ue
<<xxxxxxxx Ue //

Ug
""F

FFFFFFF UB

idUB

OO

f

��

UC

has a lift

B

A

e
??�������� e //

g
��

??
??

??
?? B

k

OO

f
��

C

in A.

Since Uk = idUB, we conclude that k = idB; in particular, B = B. Hence B
f−→ C is an

A-morphism with Uf = f . This finality-property implies that A is an (E,M)-category,
where M is the conglomerate of all A-sources that are mapped via U to mono-sources
in X. Since U is faithful and adjoint, M consists precisely of the mono-sources in A.
Thus, by Proposition 15.8(1), E consists precisely of the extremal epimorphisms in A.
Hence U preserves and reflects extremal epimorphisms. It remains to be shown that U is
transportable. If X

h−→ UA is a structured isomorphism, then the (Extremal Epi, Mono-

Source)-factorization UA
U(idA)−−−−−→ UA = UA

h−1

−−−→ X
h−→ UA has a lift A

f−→ B
g−→ A.

Hence B
g−→ A is a morphism with Ug = h. Since U reflects extremal epimorphisms

and monomorphisms, g is both, i.e., an isomorphism. �

23.32 COROLLARY
A full concrete subcategory (A, U) of an algebraic category (B, V ) is algebraic if and only
if A is reflective in B and contains with every source its (Extremal Epi, Mono-Source)-
factorization in B.

Proof: By Propositions 23.21 and 23.22, (A, U) is algebraic if and only if the inclusion
functor A→ B is algebraic. Since B has (Epi, Mono-Source)-factorizations and hence is
an (Extremal Epi, Mono-Source)-category, the desired result follows immediately from
Theorem 23.31. �

23.33 COROLLARY
Each extremally epireflective concrete subcategory of an algebraic category is algebraic.�

23.34 EXAMPLES
(1) The constructs Grp and Sgr are algebraic, but Grp is not closed under the forma-

tion of subobjects in Sgr.

(2) HComp and Top, considered as concrete categories over Top, are algebraic, but
HComp is closed neither under the formation of subobjects nor under the formation
of extremal quotient objects in Top.

(3) Epireflective full concrete subcategories of algebraic categories need not be algebraic.
See Exercise 16A.
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REGULARLY ALGEBRAIC FUNCTORS AND CATEGORIES

Algebraic functors whose codomains have regular factorizations are particularly well-
behaved. They are closely related to regularly monadic functors — in fact, they form
the compositive hull of the regularly monadic functors (see Theorem 24.2). This suggests
the following terminology:

23.35 DEFINITION
(1) A functor A U−−→ X is called regularly algebraic provided that U is algebraic and

X has regular factorizations.

(2) A concrete category (A, U) is called regularly algebraic provided that U is regu-
larly algebraic.

23.36 PROPOSITION
Regularly monadic functors are regularly algebraic.

Proof: Immediate from Proposition 20.24 and Theorem 23.31. �

23.37 COROLLARY
Monadic constructs are regularly algebraic. �

23.38 CHARACTERIZATION THEOREM FOR
REGULARLY ALGEBRAIC CATEGORIES

A concrete category (A, U) over X is regularly algebraic if and only if the following
conditions are satisfied:

(1) A has coequalizers,

(2) X has regular factorizations,

(3) U is adjoint,

(4) U is uniquely transportable,

(5) U preserves and reflects extremal epimorphisms.

Proof: By Theorem 23.30 it suffices to show that conditions (1) – (5) imply that A is

(Epi, Mono-Source)-factorizable. Let (A
fi−−→ Ai)I be a source in A and let

UA
Ufi−−−→ UAi = UA

e−→ X
mi−−→ UAi

be a (RegEpi, Mono-Source)-factorization in X. Then e is a coequalizer of some pair

Y
p1
//

p2

// UA of morphisms in X. Let Y
ηY−−→ UB be a universal arrow for Y . Then there

exist A-morphisms B
p̂j−−→ A with pj = (Up̂j) ◦ ηY for j = 1, 2. Let A

c−→ C be a
coequalizer of p̂1 and p̂2 in A. For each i ∈ I the equalities U(fi ◦ p̂1) ◦ ηY = Ufi ◦ p1 =
mi ◦ e ◦ p1 = mi ◦ e ◦ p2 = Ufi ◦ p2 = U(fi ◦ p̂2) ◦ ηY imply that fi ◦ p̂1 = fi ◦ p̂2.
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Thus for each i ∈ I there exists a unique A-morphism C
ni−−→ Ai with fi = ni ◦ c.

It remains to be shown that (C ni−−→ Ai)I is a mono-source in A. Since Uc ◦ p1 =

U(c ◦ p̂1) ◦ ηY = U(c ◦ p̂2) ◦ ηY = Uc ◦ p2, there exists a unique X-morphism X
f−→ UC

with Uc = f ◦ e. Since, by (5), Uc is an extremal (and hence a regular) epimorphism
in X and (X mi−−→ Ai)I is a mono-source in X, there exists a unique diagonal d in the
following diagram:

UA
Uc //

e

��

UC
d

||xx
xx

xx
xx

x
Uni

��

X mi

// UAi

Thus f ◦d◦Uc = f ◦e = Uc implies that f ◦d = idUC and d◦f ◦e = d◦Uc = e implies that
d ◦ f = idX . Hence d is an isomorphism and U(C ni−−→ Ai)I = (UC

d−→ X
mi−−→ UAi)I

is a mono-source. By faithfulness, (C ni−−→ Ai)I is a mono-source. �

23.39 COROLLARY
If (A, U) is a regularly algebraic category, then A has regular factorizations and U
preserves and reflects regular epimorphisms.

Proof: In the proof of Theorem 23.38 regular factorizations have been constructed.
Since in categories with regular factorizations every extremal epimorphism is regular
(cf. 14.14), U preserves and reflects regular epimorphisms. �

23.40 COROLLARY
Concrete functors between regularly algebraic categories are regularly algebraic. �

23.41 THEOREM
A construct (A, U) is monadic if and only if it is algebraic and U reflects congruence
relations.

Proof: (1). Let (A, U) be a monadic construct. By Corollary 23.37, (A, U) is alge-
braic. That U reflects congruence relations follows easily from the facts that U creates
coequalizers of congruence relations (20.35) and that every point-separating 2-source in
A is a mono-source and, hence, is initial.

(2). Let (A, U) be an algebraic construct and let U reflect congruence relations. By
Theorem 20.35 it suffices to show that U creates coequalizers of congruence relations.

Let A
p
//

q
// B be a pair of A-morphisms and let UA

Up
//

Uq
// UB

c−→ C be a congruence

fork in Set. Let B
ĉ−→ Ĉ be a coequalizer of p and q in A. Since U reflects congru-

ence relations, Proposition 11.22(1) implies that A
p
//

q
// B

ĉ−→ Ĉ is a congruence fork

in A. Since Uĉ is an extremal (and hence a regular epimorphism) in Set and since
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U preserves pullbacks, Proposition 11.22(2) implies that UA
Up
//

Uq
// UB

Uĉ−−→ UĈ is a

congruence fork in Set. Thus there is an isomorphism C
h−→ UĈ with Uĉ = h ◦ c.

By transportability, h lifts to an isomorphism C̃
h̃−→ Ĉ in A. Thus

B
c̃−→ C̃ = B

ĉ−→ Ĉ
h̃−1

−−−→ C̃

is a lift of UB
c−→ C to a coequalizer of p and q in A. Let B

c′−−→ C ′ be an arbitrary
lift of UB

c−→ C. Then faithfulness implies that c′ ◦ p = c′ ◦ q. Thus there exists an
A-morphism C̃

k−→ C ′ with c′ = k ◦ c̃. Application of U yields c = Uk ◦ c. Thus
Uk = idC . Amnesticity yields C̃

k−→ C ′ = C̃ ′ id−−→ C̃. Therefore U creates coequalizers
of congruence relations. �

23.42 REMARK
The following diagram exhibits some of the results on the “algebraic character” of func-

tors A U−−→ X:

regularly monadic

?

creates regular factorizations regularly algebraic preserves regular epis� -

?creates
(Extremal Epi, Mono-Source)-

factorizations
algebraic reflects regular epis

detects extremal co-wellpoweredness detects stability properties
of extremal epis

extremal epis are final preserves extremal epis

� -

�
�

��	

@
@

@@R

%&� -

?

mono-sources are initial essentially algebraic reflects extremal epis

domain category is
(Epi, Mono-Source)-factorizable

creates limits (cf. 13.38)

� -

�
�

�	

@
@R

�
�

�
�

�
�

�
�	

@
@

@
@

@
@

@
@R

�
�

�
�

�
�
��

A
A
A
A
A
A
AU

detects wellpoweredness faithful adjoint detects colimits
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An algebraic construct (A, U) is monadic iff U reflects congruence relations
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Bargenda, H. Algebraische Hüllen rechtsadjungierter Funktoren. Ph. D. dissertation,
Bremen University, 1987.

Im, G. B., and G. M. Kelly. Adjoint triangle theorems for conservative functors. Bull.
Austral. Math. Soc. 36 (1987): 133–136.

9th July 2006



394 Topological and Algebraic Categories [Chap. VI

EXERCISES

23A. Weakly Algebraic Functors

A functor G : A → B is called weakly algebraic provided that it is an adjoint and
mono-sources in A are G-initial. Show that

(a) G is weakly algebraic if and only if G is an adjoint functor that reflects swell epi-
morphisms. (Cf. Exercise 15A).

(b) Weakly algebraic functors

(1) reflect extremal epimorphisms, swell epimorphisms, epimorphisms, and isomor-
phisms,

(2) are faithful,

(3) preserve and reflect mono-sources,

(4) preserve and reflect limits,

(5) detect wellpoweredness.

(c)

(1) Every monadic functor is weakly algebraic.

(2) Every essentially algebraic functor is weakly algebraic.

(3) Every full reflective embedding is weakly algebraic.

(4) Weakly algebraic embeddings need not be full. [A = pointed sets and all maps,
B = pSet.]

(5) A poset, considered as a concrete category over 1, is weakly algebraic if and
only if it contains exactly one element.

(d) G : A → B is essentially algebraic if and only if G is uniquely transportable and
weakly algebraic and A is (Epi, Mono-Source)-factorizable.

(e) Weakly algebraic functors are closed under composition.

(f) Concrete functors between weakly algebraic categories need not be weakly algebraic.
(Cf. Example 20.46.)

(g) If G : A → B is weakly algebraic and B has (Epi, Mono-Source)-factorizations,
then each co-adjoint for G preserves extremal epimorphisms.

23B. Essentially Algebraic Embeddings

(a) Prove that the embedding E : A → B of a full subcategory is essentially algebraic
if and only if the following two conditions hold:

(1) E is monadic; i.e., A is reflective and isomorphism-closed in B.

(2) A is (Epi, Mono-Source) factorizable.
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(b) Show that embeddings of extremally epireflective, full, isomorphism-closed subcate-
gories into (Epi, Mono-Source)-factorizable categories are essentially algebraic.

(c) Prove that embeddings of epireflective, full, isomorphism-closed subcategories into
(Epi, Mono-Source)-factorizable categories need not be essentially algebraic. [See
Exercise 16A(b).]

23C. Essentially Algebraic vs. Monadic Functors

Prove that a monadic functor with an extremally co-wellpowered domain and strongly
complete codomain is essentially algebraic. [Cf. Theorem 23.16 and Proposition 18.11.]

23D. Algebraic Categories

(a) Let (A, U) be a concrete category over an (E,M)-category and let U lift (E,M)-
factorizations uniquely. Show that

(1) each A-morphism f with Uf ∈ E is a final epimorphism,

(2) A is an (U−1[E], U−1[M])-category.

(b) Prove that algebraic functors reflect regular epimorphisms. [Hint: Proposition
23.23.]

23E. Regularly Algebraic Functors and Categories

Show that

(a) If B has regular factorizations, then the following are equivalent for any functor
G : A→ B:

(1) G is regularly algebraic,

(2) G is essentially algebraic and preserves regular epimorphisms,

(3) G is essentially algebraic and preserves swell epimorphisms,

(4) G is adjoint and creates regular factorizations,

(5) A has regular factorizations and G is adjoint, uniquely transportable, and pre-
serves and reflects regular epimorphisms.

(b) Regularly algebraic functors are closed under composition.

(c) Regular epireflective full isomorphism-closed subcategories of regularly algebraic cat-
egories are regularly algebraic.

(d) If B has regular factorizations and G : A→ B is an embedding of a full, reflective
subcategory, then the following are equivalent:

(1) G is regularly algebraic,

(2) A contains with any source its regular factorization in B,

(3) A contains with any morphism its regular factorization in B,
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(4) A contains any B-object that is simultaneously a subobject of some A-object
and a regular quotient object of some A-object,

(5) A is isomorphism-closed in B, and G preserves regular epimorphisms.

(e) If B has regular factorizations, then the following conditions are equivalent for any
functor G : A→ B:

(1) G is regularly monadic,

(2) G is regularly algebraic and monadic.

* 23F. Varietal Functors and Varietal Categories

A functor G : A → B is called varietal provided that G is regularly algebraic, B has
pullbacks, and G reflects congruence relations. A concrete category (A, U) is called
varietal provided that U is varietal. Show that

(a) A concrete category (A, U) over a category with pullbacks and regular factorizations
is varietal if and only if (A, U) is algebraic and U creates coequalizers of congruence
relations.

(b) A regularly algebraic category (A, U) over a category with pullbacks is monadic if
and only if U creates those coequalizers of congruence relations that are retractions.

(c) Every varietal functor is regularly monadic.

(d) A construct is varietal if and only if it is monadic.

(e) The full embeddings TfAb ↪→ Ab and BooSp ↪→ Top are regularly monadic, but
are not varietal.

(f) Varietal functors are closed under composition.

(g) Concrete functors between varietal categories are varietal.

(h) If A G−−→ B is varietal, then A has pullbacks and regular factorizations.

23G. Extremal Epimorphisms and Quotients

Prove that for algebraic constructs, quotients = extremal epimorphisms = swell epimor-
phisms = strict epimorphisms = regular epimorphisms.

23H. Extremal Projectives

Show that if A G−−→ B is algebraic with co-adjoint F and if P is extremally projective in
B, then FP is extremally projective in A.

* 23I. Extremal Co-wellpoweredness

Show that the following (legitimate quasi-)construct (A, U) is essentially algebraic but
is not extremally co-wellpowered:
A-objects are pairs (X, (λβ)), consisting of a set X and a family (λβ), indexed by all
ordinals, of maps λβ : Xβ → X, where

Xβ = {x ∈ X |λγ(x) = x for each λ < β }.
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A-morphisms (X, (λβ))
f−→ (X ′, (λ′β)) are functions X

f−→ X ′ that satisfy the following
conditions:

(a) f [Xβ] ⊆ X ′
β, for all ordinals β,

(b) x ∈ Xβ implies that f(λβ(x)) = λ′β(f(x)).

23J. Algebraic Functors Need Not Preserve Regular Epimorphisms

Show that the full embedding of

•
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// •
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@@
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◦
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// •
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◦
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•

is algebraic, but does not preserve regular epimorphisms.

* 23K. Algebraic Hulls

Let (A, U) be a concrete category over X. A concrete functor (A, U) G−−→ (B, V ) is called
an algebraic hull of (A, U) provided that (B, V ) is algebraic and for every concrete

functor (A, U) G′
−−→ (B′, V ′) with algebraic (B′, V ′) there exists a unique concrete functor

(B, V ) F−−→ (B′, V ′) with G′ = F ◦G.

Let X have regular factorizations and enough RegEpi-projective objects, let (A, U) be
amnestic, and let U be adjoint. Show that:

(a) (A, U) has an essentially unique algebraic hull.

(b) The algebraic hull of (A, U) is a full embedding if and only if U reflects regular
epimorphisms.

(c) The algebraic hull of (A, U) is a full reflective embedding if and only if A has
coequalizers and U reflects regular epimorphisms.

(d) If X has coproducts, (A, U) is finitary and (A, U) G−−→ (B, V ) is the algebraic hull
of (A, U), then (B, V ) is finitary.

23L. Full Reflective Restrictions of Algebraic Functors

Show that a functor A U−−→ X into a category X that has regular factorizations and
enough RegEpi-projective objects is a restriction of an algebraic functor B → X to a
full, reflective subcategory A if and only if A has coequalizers and U is faithful, amnestic,
and reflects regular epimorphisms.

23M. Regularly Algebraic Functors Lift Regularity

Show that
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(a) If X is regular and A U−−→ X is regularly algebraic, then A is regular.

(b) Algebraic constructs are regular.

23N. Extremally Monadic Functors Are Algebraic

Show that the title statement is true.
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24 Algebraic structure theorems

In the preceding sections the “algebraic nature” of concrete categories has been described
in various ways:

(a) via operations and implications resp. equations in §16, which leads to the concepts
of finitary quasivarieties and finitary varieties,

(b) via monads in §20, which leads to the concepts of monadic categories and regularly
monadic categories,

(c) via axiomatic descriptions in §23, which leads to the concepts of algebraic categories
and regularly algebraic categories.

Here we analyze the relationships among the various descriptions of “algebraicness”.

REGULARLY ALGEBRAIC VIA
REGULARLY MONADIC FUNCTORS

24.1 PROPOSITION
If A U−−→ X is a regularly algebraic functor, then the associated monad T is regular and

the associated comparison functor A K−−→ XT is an embedding whose image is a regular
epireflective subcategory of XT.

Proof: Let F be a co-adjoint for U . Then F preserves regular epimorphisms (dual of
Proposition 18.9) as does U (Corollary 23.39) and, hence, so does T = U ◦ F . Thus T
is a regular monad and (XT, UT) is a regularly monadic category over X. By Proposi-
tion 20.30, XT has regular factorizations. By Corollary 20.44, the comparison functor
A K−−→ XT is an isomorphism-closed full embedding. Hence (by Theorem 16.8) it
remains to be shown that (X, x) belongs to K[A] for any K-structured mono-source
((X, x) mi−−→ KAi)I . Consider such a mono-source. Then (X mi−−→ UAi)I is a mono-
source in X, and the diagram

TX
Tmi //

x

��

TUAi

UεAi

��

X mi

// UAi

commutes for each i ∈ I. Let (FX
Fmi−−−→ FUAi

εAi−−−→ Ai)I = (FX
e−→ B

ni−−→ Ai)I be a
(RegEpi, Mono-Source)-factorization in A. Then Ue is a regular epimorphism in X and
Uni ◦ Ue = UεAi ◦ Tmi = mi ◦ x. Thus there exists a diagonal d in X that makes the
diagram

TX
Ue //

x

��

UB
d

{{xx
xx

xx
xx

x
Uni

��

X mi

// UAi
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commute. Since x is a retraction, so is d. Since (Uni)I is a mono-source, d is a
monomorphism and thus an isomorphism. Since (mi)I is a mono-source, the equations
mi ◦ (d ◦ UεB) = U(ni ◦ εB) = U(εAi ◦ FUni) = UεAi ◦ Tmi ◦ Td = mi ◦ (x ◦ Td) imply

d ◦ UεB = x ◦ Td, i.e., that K(B) d−→ (X, x) is a morphism in XT. Since UT is known
to reflect isomorphisms, K(B) d−→ (X, x) is an isomorphism in XT. Finally, since K[A]
is isomorphism-closed in XT, the object (X, x) must belong to K[A]. �

24.2 DECOMPOSITION THEOREM FOR
REGULARLY ALGEBRAIC FUNCTORS

For a functor A U−−→ X into a category X that has regular factorizations, the following
conditions are equivalent:

(1) U is (regularly) algebraic,

(2) U is the restriction of a regularly monadic functor to a regular epireflective
subcategory,

(3) U is a composite of regularly monadic functors.

Proof: (1) ⇒ (2) follows from Proposition 24.1.

(2) ⇒ (3) follows from Corollary 20.26.

(3) ⇒ (1) follows from Proposition 23.36 and Proposition 23.21. �

24.3 COROLLARY
Algebraic constructs are precisely the regular epireflective subconstructs of monadic con-
structs. �

FINITARY (QUASI)VARIETIES

Finitary (quasi)varieties are characterized axiomatically below. The crucial concept that
describes “finiteness” in the realm of algebra is the following:

24.4 DEFINITION
(1) A functor A U−−→ X is called finitary provided that it maps directed colimits into

epi-sinks; i.e., whenever (Di
ci−−→ K)i∈I is a colimit of a diagram D : I → A with

scheme an up-directed partially ordered set, then (UDi
Uci−−−→ UK)i∈I is an epi-sink

in X.

(2) A concrete category (A, U) is called finitary provided that U is finitary.

(3) A monad T = (T, η, µ) is called finitary provided that T is finitary.

24.5 EXAMPLES
(1) Topological functors preserve all colimits, and hence are finitary.
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(2) Constructs of the form Alg(Ω) are finitary. In fact the associated forgetful functors
Alg(Ω)→ Set preserve directed colimits [see Example 11.28(4)].
Since by Proposition 13.30 every U−1[Epi]-reflective concrete subcategory of a fini-
tary concrete category (A, U) is obviously finitary, all finitary (quasi)varieties are
finitary. For finitary varieties (A, U) the functor U even preserves directed colimits.
However, for finitary quasivarieties this need not be the case. (See Exercise 24A(b).)

(3) Neither HComp nor JCPos is finitary.

24.6 PROPOSITION
A monad T in Set is finitary if and only if the Eilenberg-Moore category (SetT, UT) is
finitary.

Proof: Let T = (T, η, µ) be a monad in Set, and let (A, U) = (SetT, UT) be the
Eilenberg-Moore category.

(1). Suppose that T is finitary. Let D : I→ A be a diagram in A with directed scheme,
denote Di by (Xi, xi) for each I-object i, let ((Xi, xi)

ci−−→ (C, c))Ob(I) be a colimit

of D, and let (Xi
ki−−→ K)Ob(I) be a colimit of U ◦ D. Then there exists a unique

function K
f−→ C with ci = f ◦ki for each i ∈ Ob(I). Let K

f−→ C = K
e−→ X

m−−→ C
be an (Epi, Mono)-factorization in Set. Since e is a retraction, so is Te. Since T is

finitary, (TXi
Tki−−−→ TK)Ob(I) is an epi-sink in Set. Thus (TXi

Te◦Tki−−−−−→ TX)Ob(I)

is an epi-sink in Set. Since m is a monomorphism in Set, there exists (by Exercise
15K) a diagonal map x that makes the diagram

TXi
T ci //

T (e◦ki) ##
FFFFFFFF

xi

��

TC

c

��

TX

x

��

Tm

<<yyyyyyyy

X
m

""E
EE

EE
EE

EE

Xi

e◦ki

;;xxxxxxxxx

ci

// C

commute. By Lemma 20.11, (X, x) is a T-algebra, and thus

((Xi, xi)
ci−−→ (C, c))Ob(I) = ((Xi, xi)

e◦ki−−−→ (X, x) m−−→ (C, c))Ob(I)

is a (−, Mono)-factorization of a colimit in A. Since each colimit is an extremal
epi-sink, m must be an isomorphism, and hence

(Xi
ci−−→ C)Ob(I) = (Xi

ki−−→ K
e−→ X

m−−→ C)Ob(I)

is an epi-sink in Set.
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(2). Let UT be finitary. Then T = UT ◦ FT is finitary, since FT (being a co-adjoint)
preserves all colimits. �

24.7 CHARACTERIZATION THEOREM FOR FINITARY VARIETIES
For any construct (A, U) the following conditions are equivalent:

(1) (A, U) is a finitary variety,

(2) (A, U) is finitary and monadic.

Proof: (1) ⇒ (2) follows from Proposition 20.20 and Example 24.5(2).

(2) ⇒ (1). By Proposition 24.6 we can assume that (A, U) = (SetT, UT) for some
finitary monad T = (T, η, µ) in Set. For notational convenience we assume that n =
{0, 1, . . . , n− 1} for each n ∈ N. Define

I = { (i, n)
∣∣ n ∈ N and i ∈ Tn } and

Ω = (n(i,n))(i,n)∈I , where n(i,n) = n.

For each T-algebra (X, x) and each (i, n) ∈ I define a map ωx
(i,n) : Xn → X by

ωx
(i,n)(g) = (x ◦ Tg)(i) (where g ∈ Xn is considered as a map from n = {0, 1, . . . , n− 1}

to X). Then E(X, x) = (X, (ωx
(i,n))(i,n)∈I) is an Ω-algebra. To show that this construc-

tion determines a full concrete embedding (A, U) E−−→ Alg(Ω), it needs to be verified

that for any function (X, x)
f−→ (Y, y) between A-objects the following conditions are

equivalent:

(a) (X, x)
f−→ (Y, y) is an A-morphism (i.e., a T -homomorphism),

(b) E(X, x)
f−→ E(Y, y) is an Ω-homomorphism.

First, assume that (a) holds. Then f ◦ x = y ◦ Tf . Hence for any (i, n) ∈ I and any
g ∈ Xn the following equations hold:

(f ◦ ωx
(i,n))(g) = f(ωx

(i,n)(g)) = f((x ◦ Tg)(i)) = (f ◦ x ◦ Tg)(i) = (y ◦ Tf ◦ Tg)(i)

= (y ◦ T (f ◦ g))(i) = ωy
(i,n)(f ◦ g) = ωy

(i,n)(f
n(g)) = (ωy

(i,n) ◦ fn)(g).

Thus f ◦ ωx
(i,n) = ωy

(i,n) ◦ fn, i.e., (b) holds.

Next, assume that (b) holds. Then for each n ∈ N, g ∈ Xn, and i ∈ Tn, we have the
following equations:

(f ◦ x ◦ Tg)(i) = f((x ◦ Tg)(i)) = f(ωx
(i,n)(g)) = ωy

(i,n)(f
n(g))

= ωy
(i,n)(f ◦ g) = (y ◦ T (f ◦ g))(i) = (y ◦ Tf ◦ Tg)(i).

Therefore (f ◦x)◦Tg = (y ◦Tf)◦Tg. Since the set X is a colimit of the directed system

of its finite subsets and since T is finitary, it follows that the sink (Tn
Tg−−→ TX)n∈N,g∈Xn

is an epi-sink in Set. Thus f ◦ x = y ◦ Tf , i.e., (a) holds.
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Thus (A, U) E−−→ Alg(Ω) is a full concrete embedding. Hence, by Corollary 16.19, it
suffices to show that E[A] is closed under the formation of mono-sources and of ho-
momorphic images in Alg(Ω). Let ((X, (ω(i,n))(i,n)∈I)

mj−−→ E(Xj , xj))j∈J be a mono-
source in Alg(Ω). For each n ∈ N and g ∈ Xn define a map f(n,g) : Tn → X by
f(n,g)(i) = ω(i,n)(g). Then for each j ∈ J the following equations hold:
(mj ◦ f(n,g))(i) = mj(ω(i,n)(g)) = ω

xj

(i,n)(m
n
j (g)) = ω

xj

(i,n)(mj ◦ g) = (xj ◦ Tmj ◦ Tg)(i).

Thus mj ◦ f(n,g) = xj ◦ Tmj ◦ Tg. Since (X
mj−−→ Xj)j∈J is a mono-source and

(Tn
Tg−−→ TX)n∈N,g∈Xn is an epi-sink (as seen earlier), this implies (see Exercise 15K)

that there exists a diagonal map x that makes the diagram

Tn
Tg
//

f(n,g)

��

TX
x

}}zzzzzzzz
xj◦Tmj

��

X mj

// Xj

commute (for every n ∈ N and every g ∈ Xn). By Lemma 20.11, (X, x) is a T-algebra.
Thus both (E(X, x)

mj−−→ E(Xj , xj))j∈J and ((X, (ω(i,n))(i,n)∈I)
mj−−→ E(Xj , xj))j∈J are

mono-sources in Alg(Ω). Thus amnesticity and the initiality of mono-sources in Alg(Ω)
imply that E(X, x) = (X, (ω(i,n))(i,n)∈I). Hence E[A] is closed under the formation
of mono-sources in Alg(Ω). Finally let E(X, x) c−→ (Y, (ω(i,n))(i,n)∈I) be a surjective
Ω-homomorphism. Then c is a regular epimorphism and thus a coequalizer of its con-

gruence relation P
p
//

q
// E(X, x) in Alg(Ω). Since pullbacks are mono-sources, the above

implies that P belongs to E[A], i.e., there exists a T-algebra (Z, z) with E(Z, z) = P .

Since U(Z, z)
p
//

q
// U(X, x) c−→ Y is a congruence fork and hence a split fork in Set,

and since, by Theorem 20.17, U = UT creates coequalizers of split forks, U(X, x) c−→ Y

can be lifted via U to a coequalizer (X, x) c−→ (Y, y) of (Z, z)
p
//

q
// (X, x) in A. Thus

E(X, x) c−→ E(Y, y) and E(X, x) c−→ (Y, (ω(i,n))(i,n)∈I) are surjective morphisms in
Alg(Ω). Hence amnesticity and finality of surjective (= regular epi) morphisms in
Alg(Ω) imply that E(Y, y) = (Y, (ω(i,n))(i,n)∈I . �

24.8 REMARK
In view of the above theorem, the Characterization Theorem for Monadic Constructs
(20.35), as well as Theorem 23.41, provides axiomatic descriptions of finitary varieties.

24.9 CHARACTERIZATION THEOREM FOR
FINITARY QUASIVARIETIES

For constructs (A, U) the following conditions are equivalent:

(1) (A, U) is a finitary quasivariety,

(2) (A, U) is finitary and algebraic,
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(3) (A, U) is a regular epireflective subconstruct of some finitary variety,

(4) (A, U) is a regular epireflective subconstruct of some finitary monadic construct.

Proof: (1) ⇔ (3) is immediate by Corollary 16.19.

(3) ⇔ (4) follows from Theorem 24.7.

(2) ⇒ (4). Let (A, U) be algebraic. If T is the associated monad, then by Proposition
24.1 the associated comparison functor (A, U) K−−→ (SetT, UT) is the embedding of a
regular epireflective subcategory. If U is finitary, then so is T and hence, by Proposition
24.6, (SetT, UT) is finitary as well.

(4) ⇒ (2). By Theorem 23.41 a regular epireflective subconstruct (A, U) of a monadic
construct (B, V ) is algebraic. If (B, V ) is finitary, then so is (A, U) in view of the
construction of colimits in reflective subcategories (see Proposition 13.30) and the fact
that U preserves regular epimorphisms. �

24.10 REMARK
Because of the above theorem, Theorems 23.30, 23.31, and 23.38 provide axiomatic
descriptions of finitary quasivarieties.

VARIETIES AND QUASIVARIETIES

24.11 REMARK
In the characterization theorems 24.7 and 24.9 the concept finitary plays an important
role. This, however, does not mean that the concepts algebraic and finitary are closely
related — in fact, they are not related at all. The correspondence is due to the fact that
in the definition of Alg(Ω) the operations were assumed to be finitary. If this restriction
is dropped (which can be done naturally in two steps), Theorems 24.7 and 24.9 can be
generalized to infinitary algebras. Whereas the first step is straightforward, the second
one involves tricky problems of size:

First Generalization: For any family Ω = (ni)i∈I of cardinal numbers ni, indexed by a set
I, one may define Alg(Ω) as in Example 3.3(2)(e). Bounded (quasi)varieties can be
defined as constructs that are concretely isomorphic to equational (resp. to implicational)
subconstructs of some Alg(Ω). Constructs (A, U) can be called bounded provided that
there exists some infinite cardinal number k such that U maps k-directed colimits72

into epi-sinks. Then the following two theorems can be proved in a way completely
analogous to the proofs of Theorems 24.7 and 24.9:

Theorem A

Bounded varieties are precisely the bounded monadic constructs.

72A partially ordered set is called k-directed provided that each subset of cardinality less than k has
an upper bound. Colimits of those diagrams whose schemes are k-directed partially ordered sets are
called k-directed colimits.
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Theorem B

Bounded quasivarieties are precisely the bounded algebraic constructs.

Second Generalization: For any family Ω = (ni)i∈I of cardinal numbers, indexed by
some class I, one may define Alg(Ω) as in Example 3.3(2)(e). However several problems
arise:

(a) Alg(Ω) will generally be a quasiconstruct only — often an illegitimate one.

(b) In the illegitimate case, Alg(Ω) fails to have free objects, so that a careful redefinition
of “equation” is needed. However, this is possible under suitable assumptions on the
set theory involved.

(c) Legitimate equational or implicational subquasiconstructs of some Alg(Ω) may fail
to have free objects, as the constructs CBoo, CLat, and Λ-JCPos demonstrate [cf.
Examples 8.23(7) and (8)].

However, the following result holds:

Theorem C

A construct is monadic (resp. algebraic) if and only if it is concretely isomorphic to
a concretely co-wellpowered equational (resp. implicational) subquasiconstruct of some
Alg(Ω).

This justifies the following terminology:

24.12 DEFINITION
Monadic constructs are called varieties. Algebraic constructs are called quasivarieties.

24.13 EXAMPLES
(1) TConv is a bounded variety. For every regular infinite cardinal number k, the

construct that consists of those partially ordered sets for which each subset of car-
dinality less than k has a join (where morphisms are those functions between them
that preserve such joins) is a bounded variety.

(2) Fram, JCPos, and HComp are (unbounded) varieties.

(3) BooSp is an (unbounded) quasivariety.

(4) CBoo, CLat, and Λ-JCPos fail to be quasivarieties.

24.14 REMARK
Constructive descriptions of essentially algebraic constructs by means of monads or
by means of partial operations and equations are possible, but are more complicated.
Roughly speaking, a co-wellpowered construct (A, U) is essentially algebraic if and only
if U can be expressed, as described in Exercise 20J, as a (possibly infinite) composite of
monadic functors. Precise formulations of such structure theorems are beyond the scope
of this book. The description of the essentially algebraic construct Catof by means
of partial operations and equations, given in Exercise 24D, may however provide some
insight.
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EXERCISES

24A. Directed Colimits in Finitary Quasivarieties

(a) Show that the forgetful functor of a finitary variety preserves directed colimits.

(b) Let A be the epireflective hull of all finite abelian groups in Ab and let A U−−→ Set
be the associated forgetful functor. Show that (A, U) is a finitary quasivariety, but
that U does not preserve directed colimits. [Hint: Consider the directed diagram of
all finite subgroups of Q/Z.]

* 24B. Finitary Quality of Extremally Epireflective Concrete Subcategories

(a) Show that an extremally epireflective concrete subcategory of a finitary algebraic
category over X is finitary algebraic.

(b) Construct a non-finitary extremally epireflective concrete subconstruct of some fini-
tary construct.

24C. Cat and Ban
(a) Show that the construct Cat is finitary.

(b) Show that the construct (Ban, O) is not finitary.
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24D. Categories and Banach Spaces as Equational Partial Algebras

(a) Let I be the ordered set {1, 2, 3} and let Ω = (ni)i∈I be defined by n1 = n2 = 1 and
n3 = 2. Let (B, V ) be the full subconstruct of PAlg(Ω) (21.39) consisting of those
partial Ω-algebras (X, (ωi)i∈I) that satisfy the conditions

(1) domain ω1 = domain ω2 = X = {x ∈ X
∣∣ x = x },

(2) domain ω3 = { (x, y) ∈ X2
∣∣ ω1(x) = ω2(y) },

(3) ω1 ◦ ω1 = ω2 ◦ ω1 = ω1,

(4) ω2 ◦ ω2 = ω1 ◦ ω2 = ω2,

(5) ω1(ω3(x, y)) = ω1(y),

(6) ω2(ω3(x, y)) = ω2(x),

(7) ω3(x, ω3(y, z)) = ω3(ω3(x, y), z),

(8) ω3(x, ω1(x)) = x,

(9) ω3(ω2(x), x) = x.

Show that the concrete functor (B, V ) H−−→ (Catof , U), defined by H(X, (ωi)i∈I) =
(X, ω3), is a concrete isomorphism.

(b) Provide a description of (Ban, O) analogous to the one given in (a) for Catof .
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25 Topologically algebraic categories

In this section we investigate a common generalization of topological and algebraic func-
tors, namely, functors that

(a) forget some topological structure, e.g., Top→ Set, or

(b) forget some algebraic structure, e.g., Grp→ Set, or

(c) simultaneously forget some topological and some algebraic structure, e.g.,
TopGrp→ Set.

Such functors share several pleasant properties. In particular they are adjoint functors
that detect limits and colimits. Also, they often can be decomposed into topological and
algebraic functors, as the following diagram suggests:

TopGrp //

%%KKKKKKKKKK

��

Grp

��

Top // Set

Throughout this section we find it slightly more convenient to treat the more flexible
form of functors by requiring neither transportability nor amnesticity.

TOPOLOGICALLY ALGEBRAIC FUNCTORS AND CATEGORIES

25.1 DEFINITION
(1) A functor is called topologically algebraic provided that it is (Generating, Initial

Source)-factorizable.

(2) A concrete category (A, U) is called topologically algebraic provided that U is
topologically algebraic.

25.2 EXAMPLES
(1) Topological (even M -topological) functors are topologically algebraic.

(2) Essentially algebraic functors are topologically algebraic.

(3) Full reflective embeddings are topologically algebraic. However, nonfull reflective
embeddings need not be topologically algebraic. Consider, e.g., the natural injection
of the preordered set

• •

•

__@@@@@@@

??~~~~~~~
into the preordered set

• oo // •

•
��

__@@@@@@@
��

??~~~~~~~

both considered as categories. Cf. Exercise 13K.
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(4) Equivalences are topologically algebraic.

(5) The constructs TopGrp and HausVec (of Hausdorff topological vector spaces) are
topologically algebraic.

(6) A partially ordered set, considered as a concrete category over 1, is topologically
algebraic if and only if it is a complete lattice. Hence adjoint functors may fail badly
to be topologically algebraic.

(7) Monadic constructs are topologically algebraic. However, the monadic functor
Alg(T ) −→ Pos, exhibited in Example 20.47, fails to be topologically algebraic
since it does not detect colimits (see Theorems 25.11 and 25.14).

25.3 PROPOSITION
Every topologically algebraic functor is faithful and adjoint.

Proof: Immediate from Corollary 17.16 and Proposition 18.3. �

25.4 DEFINITION
A structured arrow (e,A) in a concrete category (A, U) is called strongly generating
provided that U has the ({(e,A)}, Initial Source)-diagonalization property.

25.5 PROPOSITION
Strongly generating structured arrows are generating.

Proof: Let X
e−→ UA be strongly generating and let A

f1
//

f2

// B be A-morphisms with

Uf1 ◦ e = Uf2 ◦ e = f . The source B
m1 //

m2

// B , defined by m1 = m2 = idB, is initial by

Proposition 10.59. Hence there exists a diagonal d

X
e //

f

��

UA
Ud

||xxxxxxxx
Ufi

��

UB
Umi

// UB

which implies that f1 = m1 ◦ d = m2 ◦ d = f2. �

25.6 CHARACTERIZATION THEOREM FOR
TOPOLOGICALLY ALGEBRAIC CATEGORIES

For concrete categories (A, U) the following conditions are equivalent:

(1) (A, U) is topologically algebraic,

(2) U is a (Strongly Generating, Initial Source)-functor,

(3) U is an (E,M)-functor for some E and M, such that every identity-carried struc-
tured morphism belongs to E,
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(4) U is an (E,M)-functor for some E and M, such that every source in M is initial,

(5) U is an adjoint functor and A is (Epi, Initial Source)-factorizable.

Proof: (1)⇒ (2). It need only be shown that U is (Strongly Generating, Initial Source)-

factorizable. Let S = (X
fi−−→ UAi)I be a structured source and let S = (X

fj−−→ UAj)J

be the smallest structured source with the following properties:

(a) S contains S, i.e., I ⊆ J and (fi, Ai)I is the corresponding restriction of (fj , Aj)J ,

(b) if (f,A) belongs to S and A
g−→ B is an A-morphism, then (g ◦ f,B) belongs to S,

(c) if (A mk−−−→ Ak)K is an initial source and X
f−→ UA is a structured arrow such that

each (mk ◦ f,Ak) belongs to S, then (f,A) belongs to S.

Let X
fj−−→ UAj = X

e−→ UA
Ugj−−−→ UAj be a (Generating, Initial Source)-factorization

of S. Then, by condition (c), the structured arrow X
e−→ UA belongs to S. This implies

that X
e−→ UA is strongly generating. Also, the initiality of (A

gj−−→ Aj)J immediately
implies the initiality of the restriction (A

gi−−→ Ai)I . Hence

X
fi−−→ UAi = X

e−→ UA
Ugi−−−→ UAi (i ∈ I)

is the desired factorization of S.

(2) ⇒ (3) is immediate since every identity-carried structured arrow X
idX−−−→ UA is

strongly generating.

(3)⇒ (4). Let U be an (E,M)-functor such that every identity-carried structured arrow
belongs to E. It suffices to show that every source (A mi−−→ Ai)I in M is initial. Let

UB
f−→ UA be an X-morphism such that all B

mi◦f−−−−→ Ai are A-morphism. Since
(idUB, B) belongs to E, there exists a diagonal d:

UB
idUB //

f

��

UB
d

||xx
xx

xx
xx

x
mi◦f
��

UA mi

// UAi

Thus B
f−→ A = B

d−→ A is an A-morphism.

(4) ⇒ (5). Let U be an (E,M)-functor such that every source in M is initial. It follows

from Proposition 18.3 that U is adjoint. Let S = (A
fi−−→ Ai)I be a source in A, and let

UA
Ufi−−−→ UAi = UA

e−→ UB
Umi−−−→ UAi be an (E,M)-factorization of U [S], considered

as a structured source. Since (B mi−−→ Ai)I is initial, UA
e−→ UB is an A-morphism.

Hence A
fi−−→ Ai = A

e−→ B
mi−−→ Ai is an (Epi, Initial Source)-factorization of S.

(5) ⇒ (1). Let S = (X
fi−−→ UAi)I be a structured source, and let X

u−→ UA be
a universal arrow. Then for each i ∈ I there exists a unique morphism A

gi−−→ Ai
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with fi = Ugi ◦ u. Let A
gi−−→ Ai = A

e−→ B
mi−−→ Ai be an (Epi, Initial Source)-

factorization. Then X
fi−−→ UAi = X

(Ue)◦u−−−−−→ UB
Umi−−−→ UAi is a (Generating, Initial

Source)-factorization of S. �

SOLID FUNCTORS AND SOLID CATEGORIES

Topologically algebraic functors have several pleasant properties, such as detecting lim-
its and colimits. However, they fail to be closed under composition (see Exercise 25E
and Theorem 26.1). Those functors that can be expressed as composites of topologically
algebraic functors share such properties as detection of limits and colimits and, in addi-
tion, are closed under composition. Hence they form a more convenient family than do
the topologically algebraic functors. They are called solid and can be defined by means
of semifinal solutions:

25.7 DEFINITION
Let A G−−→ B be a functor and let S = (GAi

fi−−→ B)I be a G-structured sink. Then
a pair (B e−→ GA , (Ai

gi−−→ A)I) is called a semifinal solution for S provided that

Ggi = e ◦ fi for each i ∈ I, and whenever (B e−→ GA , (Ai
gi−−→ A)I) is a pair with

Ggi = e ◦ fi for each i ∈ I, then there exists a unique A-morphism A
g−→ A with

e = Gg ◦ e and gi = g ◦ gi for each i ∈ I.

GA

Gg

��

GAi

Ggi

66mmmmmmmmmmmmmm fi //

Ggi
((QQQQQQQQQQQQQQ B

e

==||||||||

e

  
BB

BB
BB

BB

GA

25.8 REMARK
For faithful functors A U−−→ X, resp. for concrete categories (A, U) over X, the concept of
semifinal solutions can be expressed more succinctly as follows: a semifinal arrow for a
U-structured sink S = (UAi

fi−−→ X)I is a structured arrow X
e−→ UA with the property

that each UAi
e◦fi−−−→ UA is an A-morphism, and for each structured arrow X

e−→ UA

such that each UAi
e◦fi−−−→ UA is an A-morphism, there exists a unique A-morphism

A
g−→ A with e = Ug ◦ e. Then S has a semifinal solution if and only if it has a semifinal

arrow. [The semifinal solution is formed by the pair (X e−→ UA, (Ai
e◦fi−−−→ A)I).] Notice

that semifinal arrows are generating. See Exercise 25C.

25.9 EXAMPLES
(1) Let S = (UAi

fi−−→ X)I be a structured sink in the construct
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(a) Top. If (Ai
fi−−→ A)I is the final lift of S, then X

id−−→ UA is a semifinal arrow for
S. Similarly, semifinal arrows can be constructed in all topological categories.

(b) Pos. Consider Pos as an epireflective subcategory of Prost. Let the sink

(Ai
fi−−→ A)I be a final lift of S in Prost, and let A

e−→ B be a Pos-reflection
for A. Then X

e−→ UB is a semifinal arrow for S. Similarly, semifinal arrows
can be constructed in all M -topological categories.

(c) TopGrp. Consider the structured source T = (X
kj−−→ UAj)J consisting of all

(kj , Aj) such that UAi
kj◦fi−−−−→ UAj is an A-morphism for each i ∈ I. Let

X
kj−−→ UAj = X

e−→ UA
Umj−−−−→ UAj be a (Generating, Initial Source)-

factorization of T . Then X
e−→ UA is a semifinal arrow for S. Similarly,

semifinal arrows can be constructed in all topologically algebraic categories.

(2) If (A, U) is a concrete category over X, then

(a) X
e−→ UB is a universal arrow over X if and only if it is a semifinal arrow for

the empty structured sink with codomain X,

(b) (idUA, A) is a semifinal arrow for the structured 1-sink (UA
id−−→ UA).

25.10 DEFINITION
(1) A functor G is called solid provided that each G-structured sink has a semifinal

solution.

(2) A concrete category (A, U) is called solid provided that U is solid.

25.11 PROPOSITION
Topologically algebraic functors are solid.

Proof: Let A G−−→ B be a topologically algebraic (and hence faithful) functor and let

S = (GAi
fi−−→ B)I be a G-structured sink. Consider the G-structured source T =

(B
kj−−→ GAj)J consisting of all (kj , Aj) such that GAi

kj◦fi−−−−→ GAj is an A-morphism

for each i ∈ I. Let B
kj−−→ GAj = B

e−→ GA
Gmj−−−−→ GAj be a (Generating, Initial

Source)-factorization of T . Then B
e−→ GA is a semifinal arrow for S. �

25.12 PROPOSITION
Solid functors are faithful and adjoint.

Proof: Let A G−−→ B be a solid functor.

(1). To show faithfulness, let A
r //

s
// B be a pair of A-morphisms with Gr = Gs = f .

Consider the G-structured sink S = (GAi
fi−−→ X)I with I = Mor(A), X = GA, and
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(Ai, fi) = (A, idX) for each i ∈ I. Let (X e−→ GC , (Ai
gi−−→ C)I) be a semifinal solution

for S. Consider (X e−→ GC , (Ai
gi−−→ C)I) with (e, C) = (f,B) and

gi =

{
r, if i ◦ gi = s

s, otherwise.

Then Ggi = f ◦ fi for each i ∈ I. Hence there exists a unique A-morphism C
g−→ C

with e = Gg ◦ e and gi = g ◦ gi for each i ∈ I. By choosing i = g we obtain gg = g ◦ gg,
which is possible only in the case that r = s.

(2). Adjointness follows immediately from Example 25.9(2)(a). �

25.13 PROPOSITION
Solid functors are closed under composition.

Proof: If A G−−→ B and B F−−→ C are solid, then G, F , and hence F ◦G are faithful. Let
S = (FGAi

fi−−→ C)I be an (F ◦G)-structured sink. Let C
e−→ FB be a semifinal arrow

for S, considered as an F -structured sink. Then (FGAi
e◦fi−−−→ FB)I can be considered

as a sink (GAi
e◦fi−−−→ B)I in B, hence as a G-structured sink. If B

e−→ GA is a semifinal
arrow for this sink, then C

Fe◦e−−−−→ FGA is a semifinal arrow for S. �

25.14 THEOREM
Solid functors detect colimits and preserve and detect limits.

Proof: Let (A, U) be a solid category over X and let I D−−→ A be a diagram.

(1). Let S = (UDi
ci−−→ K)I be a colimit of U ◦D. If K

e−→ UA is a semifinal arrow for
the structured sink S, then (Di

e◦ci−−−→ A)I is a colimit of D.

(2). Preservation of limits follows from adjointness. Let (L `i−−→ UDi)I be a limit of

U ◦ D. Consider the structured sink S = (UAj
fj−−→ L)J consisting of all costructured

arrows (Aj , fj) such that UAj
`i◦fj−−−−→ UDi is a morphism for each i ∈ I. Let L

e−→ UA be

a semifinal arrow for S. Then, for each i ∈ I, there exists a unique morphism A
fi−−→ Di

with `i = Ufi ◦ e. The source (A
fi−−→ Di)I is easily seen to be a limit of D. �

25.15 COROLLARY
Every solid category over a complete (resp. strongly complete, resp. cocomplete) category
is complete (resp. strongly complete, resp. cocomplete). �

25.16 COROLLARY
Solid constructs are strongly complete and cocomplete. �
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25.17 REMARK
(1) A solid construct need be neither topologically algebraic nor strongly cocomplete.

The construct Λ-CCPos is neither strongly complete nor topologically algebraic,
since the source (B0

eα−−→ Bα) described in Exercise 15D(d), has no cointersection,
and the structured source (|B0|

eα−−→ Aα) described in Exercise 15D(b) has no (Gen-
erating, Initial Source)-factorization. However, Λ-CCPos is solid. The latter follows
from the observation that Λ-CCPos is a full reflective concrete subcategory of the
topologically algebraic construct that is defined in the same way as Λ-CCPos except
that λ is required only to be a partial unary operation.

(2) Although there exist solid categories that are not topologically algebraic, the con-
cepts of solid and topologically algebraic categories coincide under rather natural
assumptions, as the following results and Exercise 25D demonstrate.

25.18 THEOREM
Let (A, U) be a concrete category over a strongly complete category X. If U is concretely
co-wellpowered, then the following conditions are equivalent:

(1) (A, U) is topologically algebraic,

(2) (A, U) is solid,

(3) U detects and preserves limits.

Proof: (1) ⇒ (2) ⇒ (3) has already been established.

(3) ⇒ (1) is an immediate consequence of Theorem 17.11. �

25.19 CHARACTERIZATION THEOREM FOR SOLID CATEGORIES
Let (A, U) be a concrete category. If A is an (Epi,−)-category (in particular, if A is
strongly cocomplete), then the following conditions are equivalent:

(1) (A, U) is topologically algebraic,

(2) (A, U) is solid,

(3) U is adjoint.

Proof: (1) ⇒ (2) ⇒ (3) has already been established.

(3) ⇒ (1). Let A be an (Epi, M)-category. By adjointness it follows that U is a
(Generating, M)-functor. By faithfulness, every identity-carried structured morphism is
generating. Hence, by Theorem 25.6, (A, U) is topologically algebraic. �

25.20 REMARKS
(1) A partially ordered set with a smallest element, considered as a concrete category

(A, U) over 1, may fail badly to be cocomplete and hence solid, even though A is
co-wellpowered and U is adjoint.

(2) Monadic categories over Pos may fail to be cocomplete and hence to be solid (cf.
Example 20.47).
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25.21 PROPOSITION
Solid functors preserve extremal monomorphisms.

Proof: Let (A, U) be a solid category over X. If A
m−−→ B is an extremal monomorphism

in A, then UA
m−−→ UB is a monomorphism in X. To show that it is extremal, let

UA
m−−→ UB = UA

e−→ X
f−→ UB be an (Epi,−)-factorization in X. If X

e−→ UC

is a semifinal arrow for the structured 1-sink (UA
e−→ X), then UA

e◦e−−−→ UC is an

A-morphism and there exists a unique A-morphism C
f−→ B with f = f ◦ e. Thus

A
m−−→ B = A

e◦e−−−→ C
f−→ B is a factorization in A. Since A

e◦e−−−→ C is (easily seen to
be) an epimorphism in A, it is an isomorphism in A and hence in X. Thus e is a section
in X and, consequently, an isomorphism in X. �

25.22 REMARK
The following diagram exhibits several results of this section in diagrammatic form.

M-topological
essentially

algebraic (cf. 23.42)
full reflective
embedding equivalence

PPPPPPPPPq

@
@@R

�
��	

��������)

topologically algebraic

?

solid��������������9

�
���

���
?

H
HHH

HHj

XXXXXXXXXXXXXXz

adjoint detects limits
preserves

extremal monos detects colimits faithful
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Trnková, V. Automata and categories. Springer Lect. Notes Comp. Sci. 32 (1975):
132–152.

Hoffmann, R.-E. Semi-identifying lifts and a generalization of the duality theorem for
topological functors. Math. Nachr. 74 (1976): 295–307.

Fay, T. H. An axiomatic approach to categories of topological algebras. Quaest. Math.
2 (1977): 113–137.

9th July 2006



416 Topological and Algebraic Categories [Chap. VI

Tholen, W. Semi-topological functors I. J. Pure Appl. Algebra 15 (1979): 53–73.

Börger, R., and W. Tholen. Remarks on topologically algebraic functors. Cahiers Top.
Geom. Diff. 20 (1979): 155–177.

Herrlich, H., R. Nakagawa, G. E. Strecker, and T. Titcomb. Equivalence of topolog-
ically algebraic and semi-topological functors. Canad. J. Math. 32 (1980): 34–39.

Porst, H.-E. T -regular functors. Categorical Topology. Proceedings of the International
Conference, Toledo, Ohio, 1983 (ed. H. L. Bentley et. al.), Heldermann, Berlin,
1984, 425–440.

EXERCISES

25A.
Prove that

(a) Every faithful (Generating, −)-functor is topologically algebraic.

(b) Set→ 1 is a (Generating, Source)-functor that is not faithful.

25B. M-Topological =⇒ Topologically Algebraic

Show that if X is an (E,M)-category and A U−−→ X is M-topological, then U is topo-
logically algebraic.

25C. Semifinal Solutions and Semifinal Arrows
Show that

(a) Semifinal arrows are concretely generating.

(b) If (B e−→ GA, (Ai
gi−−→ A)I) is a semifinal solution for a G-structured sink, then

B
e−→ GA need not be G-generating. [Hint: Consider the nonfaithful functor

A G−−→ B indicated by

A1
f

//

rf

��
33

33
33

33
33

33
3

sf

��
33

33
33

33
33

33
3 A2

r

����
��

��
��

��
��

�

s

����
��

��
��

��
��

�

A3

G−−→

GA1

G(rf)=G(sf)

��
55

55
55

55
55

55
55

5
k

##G
GG

GG
GG

GG
Gf

// GA2

Gr=Gs

��		
		

		
		

		
		

		
	

B

e
;;wwwwwwwww

`
��

GA3

and the semifinal solution (B e−→ GA2 , (A1
f−→ A2)) of the G-structured 1-sink

(GA1
k−→ B).]

* 25D. Solid = Topologically Algebraic

Show that in any of the following situations, A G−−→ B is solid if and only if G is
topologically algebraic:
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(a) A is finite,

(b) A is strongly complete and co-wellpowered,

(c) B = 1,

(d) G is full.

* 25E. Solid 6= Topologically Algebraic

(a) Let B be the following subcategory of Set:

B1

gn

&&NNNNNNNNNNNNN

r

��

B3

hn

tt

B2

s

OO

kn

88ppppppppppppp

with B1 = {1}, B2 = {2}, B3 = N, r(1) = 2, s(2) = 1, gn(1) = kn(2) = n, and
hn(m) = n + m. Let A be the subcategory of B obtained by removing r and g0.
Show that the inclusion functor A G−−→ B is solid but is not topologically algebraic.

(b) Denote by ∆Pos the category of ∆-complete partially ordered sets (i.e., partially
ordered sets in which each nonempty up-directed subset has a join) and ∆-continuous
functions (i.e., functions preserving up-directed joins).

(1) Verify that ∆Pos is a solid construct (cf. Theorem 25.18).

(2) If T : ∆Pos → ∆Pos is the “discretization” concrete functor that sends each
partially ordered set to the discrete partially ordered set on its underlying set,
verify that Alg(T ) is a solid concrete category over ∆Pos. [Hint: Alg(T ) is a
reflective subcategory of the category of partial T -algebras, defined analogously
to Alg(T ) except that objects (X, x) are given by partial maps x : TX → X.
The latter category is topologically algebraic over ∆Pos.]

(3) If U is the composite of the forgetful functors Alg(T )→ ∆Pos→ Set, conclude
that the construct (Alg(T ), U) is solid. Show, however, that it is not topologi-

cally algebraic since the source ((N, x)
fi−−→ (Yi, yi))O defined below has no (Epi,

Initial Source)-factorization:

O is the class of all infinite ordinals;

N has the discrete ordering, with x(n) = n + 1;

Yi is the set of all ordinals smaller than i + ω with the natural linear order
on i (= {j

∣∣ j < i}) and with i + n incompatible to any other element for
all n ∈ N, yi(j) = j + 1;

fi(n) = n.
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(4) Verify that Alg(T ) is not strongly cocomplete by showing that the source in (3)
consists of epimorphisms and has no cointersection.

* 25F. Solid vs. Monadic Functors
A solid functor whose associated monadic functor is not solid:

(a) For the non-cocomplete monadic category Alg(T ) over Pos of Example 20.47 denote
by A the full subcategory of all T -algebras (X, x) such that x(∅) lies in no 3-chain
of X [more precisely, if (p1, p2, p3) ∈ H(X), then x(∅) 6= pi]. Verify that A contains
all free T -algebras, and conclude that its underlying functor is an adjoint functor
A U−−→ Pos whose associated monadic functor is not solid [it being just the forgetful
functor of Alg(T )].

(b) Prove that A is closed under the formation of limits in Alg(T ), and conclude that
A is strongly complete.

(c) Prove that U is co-wellpowered, and hence is solid (cf. Theorem 25.18).

* 25G. Solid Categories and Mac Neille Completions

Show that the following conditions are equivalent for amnestic concrete categories (A, U):

(1) U is solid,

(2) (A, U) has a Mac Neille completion (A, U) E−−→ (B, V ) and E[A] is reflective in B,

(3) If (A, U) E−−→ (B, V ) is an initially dense and finally dense full concrete embedding,
then E[A] is reflective in B.

* 25H. Topologically Algebraic Categories and Universal Initial Completions

Show that the following conditions are equivalent for amnestic concrete categories (A, U):

(1) (A, U) is topologically algebraic,

(2) (A, U) has a universal initial completion (A, U) E−−→ (B, V ) and E[A] is reflective
in B(cf. Exercise 21I),

(3) if (A, U) E−−→ (B, V ) is an initiality-preserving and initially dense full concrete em-
bedding, then E[A] is reflective in B.

25I. A Characterization for Solid Categories

Let (A, U) be a concrete category over a cocomplete category X. Prove that if A is
co-wellpowered, then the following conditions are equivalent:

(1) (A, U) is topologically algebraic,

(2) (A, U) is solid,

(3) A is cocomplete and U is adjoint.
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25J. Solid vs. Topological

Prove that a solid category is topological if and only if it is uniquely transportable and
has indiscrete structures.

25K. Alternative Proof of Theorem 12.13
Use results of this section to obtain a short proof that every strongly cocomplete cate-
gory A with a separating set S is strongly complete (cf. Exercise 12N). [Define a faithful
functor A U−−→ [Sop,Set] by restricting the contravariant hom-functors and the corre-
sponding natural transformations. Use cocompleteness to show that U is adjoint and
Theorem 25.19 to show that it is solid. Apply Corollary 25.15.]

25L. Topologically Algebraic Functors and Lifting Adjoints

Let G, Ĝ, U , and V be functors with V ◦ Ĝ = G ◦ U . Let U be topologically algebraic,
V faithful, and let Ĝ send U -initial sources into V -initial sources. Show that adjointness
of G implies adjointness of Ĝ. [Cf. Theorem 21.28.]
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26 Topologically algebraic structure the-
orems

26.1 THEOREM
For a functor G the following conditions are equivalent:

(1) G is solid,

(2) G can be expressed as the composite G = F ◦K of two topologically algebraic functors,

(3) G can be expressed as the composite G = T ◦H ◦ E of a topological functor T , an
equivalence H, and a full reflective embedding E,

(4) G belongs to the smallest conglomerate of functors that contains all topologically
algebraic functors and is closed under composition,

(5) G belongs to the smallest conglomerate of functors that contains all topological func-
tors, all equivalences, all full reflective embeddings, and is closed under composition.

Proof: (1) ⇒ (3). If A G−−→ X is a solid functor, consider (A, G) as a concrete category
over X, and let (B, U) be the following concrete category over X: objects are pairs
(X, (e,A)), consisting of an X-object X and a semifinal G-structured arrow X

e−→ GA;

morphisms (X, (e,A))
f−→ (X ′, (e′, A′)) are those X-morphisms X

f−→ X ′ for which there
exists a (necessarily unique) A-morphism A

g−→ A′ with e′ ◦ f = Gg ◦ e. The concrete
functor (A, G) E−−→ (B, U) defined by E(A) = (GA, (idGA, A)) is a full embedding.
Moreover, for each B-object (X, (e,A)), the E-structured arrow (X, (e,A)) e−→ EA is
E-universal. Hence A E−−→ B is a full reflective embedding. In (B, U) every structured

source S = (X
fi−−→ U(Xi, (ei, Ai)))I has a (not necessarily unique) initial lift. This can

be seen as follows: in (A, G) consider the structured sink T = (GAk
gk−−→ X)K that

consists of all pairs (Ak, gk) such that GAk
ei◦fi◦gk−−−−−−→ GAi is an A-morphism for each

i ∈ I. Let the G-structured arrow X
e−→ GA be a semifinal arrow for T . It follows

that ((X, (e,A))
fi−−→ (Xi, (ei, Ai)))I is a U-initial lift of S. Hence (B, U) may fail to be

topological only by not being amnestic. By Proposition 5.33 there exists an amnestic
concrete category (C, T ) over X and a surjective concrete equivalence (B, U) H−−→ (C, T ).
Obviously, T is topological. Hence G = T ◦H ◦ E is the desired factorization.

(3) ⇒ (5) is obvious.

(5) ⇒ (4) is immediate from the fact that topological functors, equivalences, and full
reflective embeddings are topologically algebraic.

(4) ⇒ (1) is immediate from the fact that topologically algebraic functors are solid and
solid functors are closed under composition.

(3) ⇒ (2) and (2) ⇒ (4) are obvious. �
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26.2 COROLLARY
A concrete category is solid and amnestic if and only if it is a full reflective concrete
subcategory of a topological category.

Proof: In the proof of Theorem 26.1 amnesticity of G implies that A H◦E−−−−→ C is a full
reflective embedding. �

26.3 DECOMPOSITION THEOREM FOR SOLID FUNCTORS
For any functor G between (Epi, Mono-Source)-factorizable categories, the following
conditions are equivalent:

(1) G is solid and uniquely transportable,

(2) G can be expressed as a composite G = T ◦ A of a topological functor T and an
essentially algebraic functor A,

(3) G belongs to the smallest conglomerate of functors that contains all topological and
all essentially algebraic functors and is closed under composition.

Proof: (1)⇒ (2). By Theorem 26.1 G can be expressed as a composite G = T ◦H ◦E of
a topological functor T , an equivalence H, and a full reflective embedding E. In the case
that G is uniquely transportable, the above constructed A = H ◦ E is an isomorphism-
closed full reflective embedding. Hence, by Theorem 23.8, it is an essentially algebraic
functor.

(2) ⇒ (3) ⇒ (1) is obvious. �

26.4 THEOREM
For any functor A G−−→ X into a category X that has regular factorizations the following
conditions are equivalent:

(1) G is solid, uniquely transportable, and preserves regular epimorphisms,

(2) G can be expressed as a composite G = T ◦ R of a topological functor T and a
regularly monadic functor R,

(3) G belongs to the smallest conglomerate of functors that contains all topological and
all regularly monadic functors and is closed under composition.

Proof: (1) ⇒ (2). In view of Theorem 20.32 it suffices to show that the full reflec-
tive embedding A E−−→ B constructed in the proof of Theorem 26.1 preserves regular
epimorphisms. Let B

c−→ C be a regular epimorphism in A, and thus a coequalizer

of some pair A
p
//

q
// B of A-morphisms. Then GB

Gc−−→ GC is a regular epimorphism

in X, and so is a coequalizer of some pair X
r //

s
// GB of X-morphisms. Consider the

G-structured sink S = (GAi
fi−−→ X)I that consists of those G-costructured arrows

GAi
fi−−→ X, for which GAi

r◦fi−−−→ GB and GAi
s◦fi−−−→ GB are A-morphisms, and
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let X
e−→ GA be a semifinal arrow for S. Then there exist A-morphisms A

r−→ B

and A
s−→ B with r = Gr ◦ e and s = Gs ◦ e. Thus (X, (e,A))

r //

s
// E(B) is a pair

of B-morphisms. It suffices to show that E(B c−→ C) = E(B) Gc−−→ E(C) is a co-

equalizer of this pair in B. Obviously, Gc ◦ r = Gc ◦ s. Let E(B)
f−→ (X, (e,B))

be a B-morphism with f ◦ r = f ◦ s. Since Gc is a coequalizer of r and s in X,

there exists a unique X-morphism GC
f−→ X with f = f ◦ Gc. Hence it suffices to

show that E(C)
f−→ (X, (e,B)) is a B-morphism. Since E(B)

f−→ (X, (e,B)) is a
B-morphism, there exists an A-morphism B

g−→ B with e ◦ f = Gg ◦ idGB. Thus
G(g ◦ p) = e ◦ f ◦ Gp = e ◦ f ◦ Gc ◦ Gp = e ◦ f ◦ Gc ◦ Gq = e ◦ f ◦ Gq = G(g ◦ q).
Hence g ◦ p = g ◦ q. Since c is a coequalizer of p and q in A, there exists an A-morphism
C

g−→ B with g = g◦c. Thus the equations Gg◦Gc = Gg = e◦f = e◦f ◦Gc and the fact

that Gc is an epimorphism in X imply that Gg = e ◦ f , i.e., that E(C)
f−→ (X, (e,B))

is a B-morphism.

GAi
fi // X

r

��

s

��

e // GA

Gr
��

Gs
��

GB
id //

Gc
��f

����
��

��
��

��
��

��
��

��
GB

Gc
�� Gg

��
>>

>>
>>

>>
>>

>>
>>

>>
>>

GA
Gp

oo

Gq
oo

GC
id //

f
wwppppppppppppp GC

Gg
''NNNNNNNNNNNN

X
e // GB

(2) ⇒ (3) ⇒ (1) obvious. �

Next we wish to characterize those concrete categories that can be embedded as full
reflective concrete subcategories of fibre-small topological categories. By Theorem 22.3
this will provide a characterization of full reflective subcategories of functor-structured
categories. By the above theorem they must be solid and, obviously, fibre-small. But
fibre-smallness is not enough. We now introduce a slightly stronger condition than fibre-
smallness, and show that for concrete categories that have this property, solidness is
equivalent to being a reflective subcategory of some functor-structured category.

26.5 DEFINITION
(1) Structured arrows X

f1−−→ UA1 and X
f2−−→ UA2 in a concrete category (A, U) are

said to be equivalent if for each costructured arrow UB
g−→ X the following holds:

B
f1◦g−−−→ A1 is an A-morphism if and only if B

f2◦g−−−→ A2 is an A-morphism.

(2) A concrete category over X is said to be strongly fibre-small provided that for
each X-object X there exists no proper class of pairwise non-equivalent structured
arrows with domain X.
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26.6 EXAMPLES
(1) Each strongly fibre-small amnestic concrete category is fibre-small.

(2) A topological category is strongly fibre-small if and only if it is fibre-small. This

follows immediately from the fact that each structured arrow X
f−→ UA is equivalent

(via its initial lift) to a structured arrow of the form X
idX−−−→ UA′.

(3) Each fibre-small hereditary (i.e., monomorphisms have initial lifts) construct (e.g.,
each of Pos, Top, Haus, and Met) is strongly fibre-small: for each structured

arrow X
f−→ UA consider the factorization of f as a surjective function X

f ′−−→ UA′

followed by an initial monomorphism A′ → A. Then two such arrows X
fi−−→ UAi,

i = 1, 2, are equivalent if and only if X
f ′i−−→ UA′

i are equivalent.

(4) Each fibre-small uniquely transportable construct that has (surjective, injective)-
factorizations is strongly fibre-small. Thus Vec, Grp, HComp, Ban, Boo, Σ-Seq,
etc. are strongly fibre-small constructs.

(5) For concrete categories over X = 1, smallness, fibre-smallness, and strong fibre-
smallness are equivalent.

(6) Let A be a large discrete category and let U : A→ Set be an injective functor with
card(UA) = 1 for all A-objects A. Then (A, U) is fibre-small, but not strongly
fibre-small.

26.7 STRUCTURE THEOREM FOR SOLID CATEGORIES
For a concrete category (A, U) the following conditions are equivalent:

(1) (A, U) is amnestic, solid, and strongly fibre-small,

(2) (A, U) is a full reflective concrete subcategory of a fibre-small topological category,

(3) (A, U) is concretely isomorphic to a full reflective subcategory of some functor-
structured category.

Proof: (1) ⇒ (2). Let (A, G) be a solid category and let (A, G) E−−→ (B, U) and
(B, U) H−−→ (C, T ) be the concrete functors constructed in the proof of Theorem 26.1.
If G is amnestic, then H ◦ E is a full reflective embedding. Thus it suffices to show
that strong fibre-smallness of (A, G) implies fibre-smallness of (C, T ). For this it is
sufficient to show that for any two B-objects (X, (e,A)) and (X, (e′, A′)) that are equiv-

alent when considered as G-structured arrows X
e−→ GA and X

e′−−→ GA′, the equality
H(X, (e,A)) = H(X, (e′, A′)) holds. This follows immediately from the fact that for any

such pair (X, (e,A)) idX−−−→ (X, (e′, A′)) is a B-isomorphism.

(2) ⇒ (3) follows from Theorem 22.3.

(3) ⇒ (1) follows immediately from Corollary 26.2, Example 26.6(2), and the fact that
every full concrete subcategory of a strongly fibre-small category is strongly fibre-small.�
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26.8 COROLLARY
For a co-wellpowered concrete category (A, U) over a cocomplete base category, the fol-
lowing are equivalent:

(1) (A, U) is cocomplete, amnestic, and has free objects,

(2) (A, U) is concretely isomorphic to a full reflective subcategory of a functor-structured
category.

Proof: (1) ⇒ (2). By Proposition 18.11, U is co-wellpowered. By Corollary 15.17, A
is an (Epi, ExtrMono-Source)-category, so that by Theorem 25.19, U is topologically
algebraic, and thus has (Generating, InitialSource)-factorizations. These two facts im-
mediately imply that (A, U) is strongly fibre-small. Thus (2) follows from Theorem
26.7.

(2) ⇒ (1) is immediate from the fact that full reflective embeddings detect colimits
(cf. 13.32). �
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EXERCISES

* 26A. Decomposition of Functors and Factorization Structures

Let A G−−→ B be a uniquely transportable, solid functor, and let B have regular factor-
izations. Show that:

(a) A need not have (Epi, Mono-Source)-factorizations. [Cf. Exercise 16A(b).]

(b) There need not exist a decomposition G = T ◦A with T topological and A essentially
algebraic.

26B. Composites are Topologically Algebraic

Show that each composite G = A ◦ T of a monotopological functor T and an essentially
algebraic functor A is topologically algebraic.
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26C. Topological-Algebraic via Algebraic-Topological Decompositions

(a) Consider the conditions:

(1) there exist a topological functor T and an essentially algebraic functor A with
G = A ◦ T ,

(2) there exist a topological functor T and an essentially algebraic functor A with
G = T ◦A.

Show that:

(i) (1) implies (2).

(ii) If (A, U) is a non-topological, monotopological construct and there exists an
A-object A such that UA has at least 2 points, then U satisfies (2) but not
(1).

(iii) The forgetful functor for Λ-CCPos satisfies (2) but not (1). Cf. Exercise 26B.

(b) Let (A, U) be a concrete category over a category X with regular factorizations. Let
U be uniquely transportable, solid, and preserve regular epimorphisms. Let E be the
class of those A-morphisms whose underlying morphisms are regular epimorphisms
in X. Show that the following conditions are equivalent:

(1) A is an (E, InitMono-Source)-category,

(2) U can be expressed as a composite U = A ◦ T of a monotopological functor T
and a regularly monadic functor A,

(3) the comparison functor for U is monotopological.

26D. Strong Fibre-Smallness

(a) Verify that a construct is strongly fibre-small if and only if it can be fully embedded
into a fibre-small topological construct. Under what assumptions on X does the
same result hold for concrete categories over X?

(b) Show that in Corollary 26.8 it is not possible to delete the (co-)wellpoweredness
hypothesis. [Hint: Consider Ord as a concrete category over itself.]
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27 Cartesian closed categories

In some constructs, we can form objects BA by structuring the set of all morphisms from
A to B in such a way that the evaluation map

ev : A×BA → B given by: (x, f) 7→ f(x)

becomes a co-universal arrow. For example, in Set we have the set BA of all functions
from A to B, in Pos we have the poset BA of all order-preserving functions from A to
B (ordered pointwise), etc. We will study this phenomenon first for abstract categories,
then for concrete ones, and finally for constructs.

If a category A has finite products, then for each A-object A we can define a functor
(A × −) : A → A by (B

f−→ B′) 7→ (A × B
idA×f−−−−→ A × B′). (Since products are

not unique, such a rule usually gives a large collection of pairwise naturally isomorphic
endofunctors of A. By an “abuse of language” we will, however, speak about the functor
(A×−), meaning that a certain product A×B has been chosen for each B.)

27.1 DEFINITION
A category A is called cartesian closed provided that it has finite products and for
each A-object A the functor (A×−) : A→ A is co-adjoint.

27.2 NOTATION
The essential uniqueness of products and of co-universal arrows allows us to introduce
the following standard notation for cartesian closed categories: “The” adjoint functor
for (A×−) is denoted on objects by B 7→ BA, and “the” associated co-universal arrows
are denoted by

ev : A×BA → B.

Thus, a category with finite products is cartesian closed if and only if for each pair (A,B)
of objects there exists an object BA and a morphism ev : A×BA → B with the following
universal property: for each morphism f : A × C → B there exists a unique morphism
f̂ : C → BA such that

A× C

idA×f̂
��

f

##G
GGGGGGGG

A×BA
ev

// B

commutes. We call the objects BA power objects, the morphisms ev : A × BA → A
evaluation morphisms, and the f̂ , associated with f , the exponential morphism
for f .
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A power object in a cartesian closed category

27.3 EXAMPLES
(1) The following categories are cartesian closed:

(a) Set: BA is the set of all functions from A to B; ev is the usual evaluation map;
(f̂(c))(a) = f(a, c).

(b) Rel: (B, σ)(A,ρ) is (BA, τ) with fτg ⇔ [aρa′ ⇒ f(a)σg(a′)]; ev is the usual
evaluation map; (f̂(c))(a) = f(a, c).

(c) Pos: (B,≤)(A,�) is the set of all order-preserving functions from A to B, ordered
as follows: f ≤ g ⇔ f(a) ≤ g(a) for all a ∈ A; ev is the usual evaluation map;
(f̂(c))(a) = f(a, c).

(d) Alg(1) (algebras with one unary operation): BA is the set of all homomorphisms
from A × N to B [where N denotes the algebra of all natural numbers with
the successor operation], together with the unary operation that sends each
h : A×N→ B to h′ : A×N→ B, where h′(a, n) = h(a, n+1); ev(a, f) = f(a, 0);
and for each homomorphism f : A × C → B, f̂(c) sends (a, n) to f(a, γn(c)),
where γ is the unary operation for C.

(e) Cat: BA is the functor category [A,B]; ev : A×BA → B is defined on objects
by ev(A,F ) = FA and on morphisms by ev(h, τ) = τA′ ◦ Fh [where A

h−→ A′];
for F : A×C→ B we have F̂C : A→ B defined by

F̂C(A h−→ A′) = F (A,C)
F (h,id)−−−−−→ F (A′, C).
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(2) Top is not cartesian closed (since (Q×−) : Top→ Top does not preserve quotients,
and hence does not preserve coequalizers). However, Top has cartesian closed su-
percategories [e.g., Conv and PsTop, where the power objects carry the structure
of “continuous convergence” (see Exercise 27G)] as well as cartesian closed subcate-
gories [e.g., the category kTop of (compact Hausdorff)-generated topological spaces,
where the power objects are formed by the kTop-coreflections of the compact-open
topologies].

(3) A poset A, considered as a category, is cartesian closed if and only if A has finite
meets and for each pair (a, b) of elements, the set {x ∈ A

∣∣ a∧x ≤ b } has a largest
member. In particular, a complete lattice is cartesian closed if and only if it satisfies
the distributive law: a ∧

∨
bi =

∨
(a ∧ bi); i.e., if and only if it is a frame.

27.4 CHARACTERIZATION THEOREM FOR
CARTESIAN CLOSED CATEGORIES

Let A be a cocomplete and co-wellpowered category that has a separator. Then A is
cartesian closed if and only if it has finite products, and for each A-object A the functor
(A×−) preserves colimits.

Proof: Immediate from the Special Adjoint Functor Theorem (18.17). �

27.5 DEFINITION
Let A be a cartesian closed category. For each object C

(1) “the” covariant exponential functor for C, denoted by (−)C : A→ A, is “the”

adjoint functor for (C ×−) and is defined (for an A-morphism A
f−→ B) by:

(−)C(A
f−→ B) = AC fC

−−→ BC ,

where fC is the unique A-morphism that makes the diagram

C ×AC ev //

id×fC

��

A

f

��

C ×BC
ev

// B

commute;

(2) “the” contravariant exponential functor for C, denoted by C(−) : Aop → A,

is defined (for an A-morphism A
f−→ B) by

C(−)(A
f−→ B) = CB Cf

−−→ CA,

where Cf is the unique A-morphism that makes the diagram

A× CB
f×id

//

id×Cf

��

B × CB

ev

��

A× CA
ev

// C
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commute.

27.6 REMARK
Observe that exponential functors are not determined uniquely, but that any two covari-
ant (resp. contravariant) exponential functors for an A-object C are naturally isomor-
phic.

27.7 PROPOSITION
In a cartesian closed category A, every contravariant exponential functor C(−) is an
adjoint functor and has its own dual (C(−))op as a co-adjoint.

Proof: Let A be an A-object and let s : CA × A → A × CA be the isomorphism that
is determined by interchanging the projections. Then the unique A-morphism
uA : A → C(CA) that makes the diagram

CA ×A
s //

id×uA

��

A× CA

ev

��

CA × C(CA)
ev

// C

commute is a C(−)-universal arrow for A. To see this let f : A→ CB be a C(−)-structured
arrow, let s : A × B → B × A be the isomorphism determined by interchanging the
projections, and let f : B → CA be the unique A-morphism that makes the diagram

A×B
(id×f)◦s

//

id×f
��

B × CB

ev

��

A× CA
ev

// C

commute. Then id×f = s◦(f×id)◦s implies that in the following diagram 1 commutes:

B ×A

id×uA

}}||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||

id×f

��
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

?

f×id
��

CA ×A

id×uA

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

2

s

$$H
HHHHHHHH

4 1

A× CA

ev

  
@@

@@
@@

@@

CA × C(CA)
ev //

3

C

B × C(CA)

id×Cf

//

f×id

66mmmmmmmmmmmmm

B × CB

ev

eeJJJJJJJJJJJ
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2 commutes by the definition of u, 3 commutes by the definition of C(−), and 4
commutes trivially. Thus f = C(f◦uA). That f is determined by this equality follows
immediately by retracing the steps from Cf via f to f in the above diagram. Thus
uA : A→ C(CA) is a C(−)-universal arrow. In order to see that (C(−))op : A→ Aop is a
co-adjoint for C(−) it need only be shown that for any A-morphism f : A→ B the equal-
ity uB ◦f = C(C(−))op(f) ◦uA holds. This follows immediately from the commutativity of
the following diagram, where s, s, and s̃ are isomorphisms determined by interchanging
the projections

CB ×A
id×f

ssgggggggggggggggggggggggggg

s
||xx

xx
xx

xx
x

Cf×id ""F
FFFFFFF

id×uA

++XXXXXXXXXXXXXXXXXXXXXXXXXXXX

CB ×B

id×uB

��

s

$$J
JJJJJJJJJ A× CB

f×id

||xx
xx

xx
xx

x
id×Cf

""F
FF

FF
FF

FF
CA ×A

s

||yy
yy

yy
yy

y
id×uA

$$I
IIIIIIII CB × C(CA)

Cf×id

xxqqqqqqqqqq

id×C(Cf )

��

CB × C(CB)

ev

++WWWWWWWWWWWWWWWWWWWWWWWWWWW B × CB

ev

))SSSSSSSSSSSSSSSSS A× CA

ev

��

CA × C(CA)

ev

uujjjjjjjjjjjjjjjjjj
CB × C(CB)

ev

rrfffffffffffffffffffffffffffffff

C
�

27.8 PROPOSITION
In a cartesian closed category the following hold:

(1) First Exponential Law: AB×C ∼= (AB)C ,

(2) Second Exponential Law: (
∏

Ai)B ∼=
∏

(AB
i ),

(3) Third Exponential Law: AqBi ∼=
∏

(ABi),

(4) Distributive Law: A×
∐

Bi
∼=

∐
(A×Bi),

(5) Finite products of epimorphisms are epimorphisms.

Proof:
(1). This follows from the definition of covariant exponential functors (27.5) and the

fact that, up to natural equivalence, the functor ((B ×C)×−) is the composite of
(B ×−) with (C ×−).

(2). (−)B preserves products since it is an adjoint functor.

(3). A(−) : Aop → A preserves products since it is an adjoint functor.

(4). (A×−) preserves coproducts since it is a co-adjoint functor.

(5). This follows from the fact that the functors (A × −), as co-adjoints, preserve epi-
morphisms and the fact that

A1 ×A2
f1×f2−−−−→ B1 ×B2 = A1 ×A2

f1×id−−−−→ B1 ×A2
id×f2−−−−→ B1 ×B2. �
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CARTESIAN CLOSED SUBCATEGORIES

27.9 PROPOSITION
Let A be an isomorphism-closed full subcategory of a cartesian closed category B.

(1) If A is reflective in B and the A-reflector preserves finite products, then A is closed
under the formation of finite products and powers in B, and hence is cartesian
closed.

(2) If A is coreflective in B and is closed under the formation of finite products in B,
then A is cartesian closed.

Proof:
(1). Let A and B be A-objects and let r : BA → A be an A-reflection arrow for BA.

Then by assumption id× r : A×BA → A×A is an A-reflection arrow for A×BA.
Thus there exists a unique morphism e : A × A → B with ev = e ◦ (idA × r).
Furthermore, there exists a unique morphism s : A→ BA with e = ev ◦ (idA × s).

A×A
e

##G
GGGGGGGG

A×BA

idA×r

OO

ev
// B

A×A
e

##G
GGGGGGGG

idA×s
��

A×BA
ev

// B

This immediately implies that s ◦ r = idBA . Hence r ◦ s ◦ r = idA ◦ r, so that
r ◦ s = idA. Consequently, r : BA → A is an isomorphism; i.e., BA belongs to A.

(2). If A and B are A-objects, ev : A× BA → B is an evaluation morphism in B, and
c : A→ BA is an A-coreflection arrow for BA, then ev ◦ (idA × c) : A× A→ B is
easily seen to be an evaluation morphism in A. �

27.10 EXAMPLES
(1) The full subcategory Sym of Rel is cartesian closed (and is closed under the for-

mation of power objects in Rel) since it is a reflective subcategory of Rel and
the reflector preserves products. In contrast, Pos, although it is cartesian closed,
is not closed under the formation of power objects in Rel. Also, the full (reflec-
tive) subcategory that consists of all transitive relations is not cartesian closed: for
A = ({0, 1}, {0, 1}) the functor (A×−) does not preserve the quotient of A+A that
identifies 1 of the first copy of A with 0 of the second copy.

(2) Top is not cartesian closed even though it is a reflective subcategory of Conv, which
is cartesian closed.

CARTESIAN CLOSED CONCRETE CATEGORIES

27.11 DEFINITION
A concrete category (A, U) over X is called concretely cartesian closed provided
that the following hold:

9th July 2006



434 Cartesian Closedness and Partial Morphisms [Chap. VII

(1) A and X are cartesian closed,

(2) U preserves finite products, power objects, and evaluation; in particular, whenever
A×BA ev−−→ B is an evaluation in A, then

U(A×BA ev−−→ B) = UA× UBUA ev−−→ UB

is an evaluation in X.

27.12 EXAMPLES
(1) Rel is a concretely cartesian closed construct. Cf. Example 27.3(1)(b).

(2) Pos and Alg(1) are constructs that are cartesian closed but not concretely so. Cf.
Examples 27.3(1)(c) and (d).

(3) A partially ordered set, considered as concrete category over 1, is cartesian closed if
and only if it is concretely so.

(4) Spa(P) is concretely cartesian closed. More generally, a functor-structured category
is cartesian closed if and only if it is concretely so (cf. Exercise 27I).

27.13 REMARK
For topological categories, concrete cartesian closedness is well understood, as the fol-
lowing results indicate.

27.14 PROPOSITION
If (A, U) is a topological category over X and if A is cartesian closed, then so is X.

Proof: X is isomorphic to the full subcategory of A consisting of all indiscrete objects,
which by Proposition 27.9(1) is cartesian closed. �

27.15 CHARACTERIZATION THEOREM FOR CONCRETELY
CARTESIAN CLOSED TOPOLOGICAL CATEGORIES

For a topological category (A, U) over a cartesian closed category X the following are
equivalent:

(1) (A, U) is concretely cartesian closed,

(2) A is cartesian closed and every A-morphism with a discrete codomain has a discrete
domain,

(3) for each A-object A the functor (A×−) preserves final sinks.

Proof: (1) ⇒ (3). Let S = (Bi
fi−−→ B)I be a final sink. To show that A × S =

(A × Bi
idA×fi−−−−−→ A × B)I is final, let U(A × B)

f−→ UC be an X-morphism such that

all A × Bi
f◦(idA×fi)−−−−−−−→ C are A-morphisms. Let A × CA ev−−→ C be an evaluation in A.

Then by (1), UA × UCUA ev−−→ UC is an evaluation in X. Thus in A, for each i ∈ I,
there exists a unique morphism Bi

gi−−→ CA with f ◦ (idA × fi) = ev ◦ (idA × gi), and
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in X there exists a unique morphism UB
g−→ UCUA with f = ev ◦ (idUA × g). Hence

ev ◦ (idA × (g ◦ fi)) = ev ◦ ((idA × g) ◦ (idA × fi)) = f ◦ (idA × fi) = ev ◦ (idA × gi) implies
that g◦fi = gi, so that since S is final, UB

g−→ U(CA) is an A-morphism. Consequently,

U(A×B)
f−→ UC = U(A×B)

idA×g−−−−→ U(A× CA) ev−−→ UC is an A-morphism as well.

(3) ⇒ (1). Let A and B be A-objects and let UA × UBUA ev−−→ UB be an evaluation

morphism in X. Consider the structured sink S = (UAi
fi−−→ UBUA)I consisting of all X-

morphisms fi such that U(A×Ai)
ev◦(idA×fi)−−−−−−−−→ UB is an A-morphism. Let (Ai

fi−−→ BA)I

be a final lift of S. Then, by (3), the sink (A× Ai
idA×fi−−−−−→ A×BA)I is final too. Thus

U(A×BA) ev−−→ UB is an A-morphism. It is easily seen to be the desired evaluation in
A.

(1) ⇒ (2). Let A
f−→ D be an A-morphism with discrete codomain D. To show that A

is discrete, consider an X-morphism UA
g−→ UB. Let (A×D , (πA, πD)) be a product.

Since an object C is discrete if and only if the empty sink with codomain C is final,
(3) implies that A × D is discrete. Hence U(A × D)

g◦πA−−−−→ UB is an A-morphism.

Consequently, UA
g−→ UB = UA

〈idA,f〉−−−−−→ U(A×D)
g◦πA−−−−→ UB is an A-morphism.

(2) ⇒ (1). Let A × BA ev−−→ B be an evaluation in A. To establish that its image

UA×U(BA) ev−−→ UB is an evaluation in X, let UA×X
f−→ UB be an X-morphism and

let D be the discrete object with UD = X. By condition (2), A×D is discrete since the

projection A×D
πD−−→ D is an A-morphism. Thus U(A×D)

f−→ UB is an A-morphism.
Hence there exists a unique A-morphism D

g−→ BA with f = e ◦ (idA × g). Thus, by
discreteness of D, X

g−→ U(BA) is the unique X-morphism with f = e ◦ (idUA × g). �

CARTESIAN CLOSED CONSTRUCTS

Relatively few of the familiar cartesian closed constructs are concretely cartesian closed.
More frequently, the underlying sets U(BA) of powers in cartesian closed constructs
(A, U) are not of the form UBUA, but rather of the form homA(A,B). As we will see,
this phenomenon is closely related to the fact that the terminal objects are often discrete,
or, equivalently, that all constant maps between A-objects are A-morphisms.

27.16 PROPOSITION
Every concretely cartesian closed amnestic construct with discrete terminal object is, up
to concrete isomorphism, a full subconstruct of Set.

Proof: In Theorem 27.15 the implication (1) ⇒ (2) holds without the assumption that
(A, U) is topological. Thus the discreteness of the terminal object implies that every
object is discrete. �

27.17 DEFINITION
A construct (A, U) is said to have function spaces provided that the following hold:
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(1) (A, U) has finite concrete products,

(2) A is cartesian closed and the evaluation morphisms A × BA ev−−→ B can be chosen
in such a way that U(BA) = homA(A,B) and ev is the restriction of the canonical
evaluation map in Set.

27.18 PROPOSITION
Let (A, U) be a construct with finite concrete products. If A is cartesian closed, then the
following conditions are equivalent:

(1) (A, U) has function spaces,

(2) terminal A-objects are discrete,

(3) each constant function73 between A-objects is an A-morphism.

Proof: (1) ⇒ (2). Let T be a terminal object in A and let UT
f−→ UA be a function.

Then f is a constant function, whose value will be denoted by a. Consider the evaluation
T × AT ev−−→ A as specified by Definition 27.17. Since the projection T × A

π−→ A is a
morphism, A

π̂−→ AT is a morphism. Hence π̂(a) ∈ hom(T,A). Since π̂(a) agrees with

f , it follows that UT
f−→ UA is a morphism. Thus T is discrete.

(2) ⇒ (1). Let A×BA ev−−→ B be an evaluation morphism in A and let T be a terminal
A-object. Since empty products are concrete, UT is a singleton set, say, {t}. Since T
is terminal, it is clear that the function h : homA(A,B) → homA(A × T,B) defined

by h(A
f−→ B) = A × T

πA−−→ A
f−→ B is a bijection. Also, we have the bijection

k : homA(A× T,B)→ homA(T,BA) that associates with any morphism A× T
f−→ B

the unique morphism T
k(f)−−−→ BA with f = ev ◦ (idA × k(f)). The function

` : homA(T,BA) → U(BA) defined by `(f) = f(t) is a bijection since T is termi-
nal, hence discrete by (2).
Let C

`◦k◦h−−−−→ BA be an initial lift of the bijection homA(A,B) `◦k◦h−−−−→ U(BA) and set
ev = ev ◦ (idA× (` ◦k ◦h)). Then A×C

ev−−→ B is an evaluation with UC = homA(A,B).
A simple calculation shows that ev(a, f) = f(a) for a ∈ UA and f ∈ homA(A,B). Thus
(A, U) has function spaces.

(2) ⇔ (3) is obvious. �

27.19 REMARK
In topological constructs, terminal objects are discrete if and only if the fibres of each
one-element set contain exactly one element. To avoid uninteresting pathologies we will
require a little more:

27.20 DEFINITION
A construct is called well-fibred provided that it is fibre-small and for each set with at
most one element, the corresponding fibre has exactly one element.
73A function is called constant provided that it factors through a one-element set.
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27.21 EXAMPLES
The following topological constructs are well-fibred and have function spaces: Conv of
convergence spaces, PsTop of pseudotopological spaces, sTop of sequential topological
spaces, kTop of (compact Hausdorff)-generated topological spaces, Bor of bornological
spaces, Simp of simplicial complexes, Prost of preordered sets, and Rere of reflexive
relations.

27.22 THEOREM
For well-fibred topological constructs the following conditions are equivalent:

(1) A is cartesian closed,

(2) (A, U) has function spaces,

(3) for each A-object A the functor (A×−) preserves final epi-sinks,

(4) for each A-object A the functor (A×−) preserves colimits,

(5) for each A-object A the functor (A×−) preserves (a) coproducts and (b) quotients.

Proof:
(1) ⇔ (2). Immediate from Proposition 27.18.

(1) ⇔ (4). Theorem 27.4.

(4) ⇒ (5) follows from the fact that quotient maps are regular epimorphisms. (Cf.
Proposition 21.13.)

(5)⇒ (3) follows from the facts that: (a) a sink (Bi
fi−−→ B)I is a final epi-sink if and only

if there exists a subset J of I such that the small sink (Bj
fj−−→ B)J is a final epi-sink,

and (b) a small sink (Bj
fj−−→ B)J is a final epi-sink if and only if

∐
J Bj

[fj ]−−−→ B is a
quotient map.

(3) ⇒ (4) follows from concreteness of both colimits and finite products in (A, U) and
the fact that the functor (UA×−) : Set→ Set preserves colimits. �

27.23 EXAMPLES
(1) Top is a well-fibred topological construct that satisfies the above condition (5)(a),

but not (5)(b).

(2) Unif is a well-fibred topological construct that satisfies the above condition (5)(b),
but not (5)(a).

(3) Alg(1) and Cat [considered as a construct via the functor U : Cat→ Set, defined

by U(A F−−→ B) = Mor(A) FM−−−→ Mor(B)] are cartesian closed well-fibred non-
topological constructs that have finite concrete products, but don’t have function
spaces.

27.24 PROPOSITION
For cartesian closed, well-fibred topological constructs the following hold:
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(1) products with discrete factors A are coproducts:

A×B ∼= |A|B =
∐

x∈|A|

B,

(2) power objects with discrete exponents A are powers:

BA ∼= B|A| =
∏

x∈|A|

B.

Proof: This follows immediately from A ∼=
∐

x∈X T , where T is a terminal object, and
from Proposition 27.8(3) and (4). �
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EXERCISES

27A. Cartesian Closed Categories With Zero-Objects

Let A be cartesian closed. Show that

(a) If I is an initial object, then A× I ∼= I for each A-object A.

(b) The following are equivalent:

(1) A is pointed,

(2) A has a zero-object,

(3) A is equivalent to 1.

27B. ∆Pos is Cartesian Closed
Show that the category ∆Pos is cartesian closed. [Analogously to the situation in Pos,
BA is the pointwise-ordered set of all ∆-continuous functions from A to B.]

27C. Coreflective Hulls and Cartesian Closedness
Let (A, U) be a cartesian closed topological construct and let B be a full subcategory
of A that is closed under the formation of finite products. Show that the bicoreflective
hull of B in A is cartesian closed.

27D. Cartesian Closed Constructs
Let T be a terminal object in a cartesian closed topological construct (A, U), and for
each A-object A let A∗ denote the discrete object with UA∗ = UA. Show that

(a) Power objects BA and evaluation morphisms A×BA ev−−→ B can be chosen such that

U(BA) = {UA
f−→ UB

∣∣ A× T ∗ πA−−→ A
f−→ B is an A-morphism}

ev(a, f) = f(a).

(b) (A, U) has function spaces if and only if A× T ∗ πA−−→ A is an isomorphism for each
A-object A.

(c) (A, U) is concretely cartesian closed if and only if A × T ∗ = (A × T )∗ for each
A-object A.

(d) (A, U) is concretely cartesian closed and has function spaces if and only if U is an
isomorphism.
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27E. Composition as a Morphism

In cartesian closed constructs describe explicitly the unique morphism
comp : BA × CB → CA that makes the diagram

A× (BA × CB)
ev×id

CB
//

idA×comp

��

B × CB

ev

��

A× CA
ev

// C

commute.

* 27F. (Concretely) Cartesian Closed Topological Categories
as Injective Objects

Let X be a cartesian closed category and let CATp(X) be the quasicategory whose
objects are the amnestic concrete categories over X with finite concrete products, and
whose morphisms are the concrete functors over X that preserve finite products.

(a) Show that the injective objects in CATp(X) (with respect to full embeddings) are
precisely the concretely cartesian closed topological categories over X.

Let CONSTp be the quasicategory whose objects are the amnestic well-fibred con-
structs with finite concrete products, and whose morphisms are the concrete functors
that preserve finite products.

(b) Show that the injective objects in CONSTp (with respect to full embeddings) are
precisely the well-fibred topological constructs that have function spaces.

* 27G. (Concretely) Cartesian Closed Topological Hulls

Let X be a cartesian closed category. A morphism (A, U) E−−→ (B, V ) in CATp(X) is
called a concretely cartesian closed topological hull (shortly: a CCCT hull) of
(A, U) provided that the following conditions are satisfied:

(1) E is a full embedding,

(2) E[A] is finally dense in (B, V ),

(3) {EAEA
∣∣ A,A ∈ Ob(A) } is initially dense in (B, V ),

(4) (B, V ) is a concretely cartesian closed topological category.

(a) Show that the injective hulls in CATp(X) are precisely the CCCT hulls.

A morphism (A, U) E−−→ (B, V ) in CONSTp is called a cartesian closed topo-
logical hull (shortly: a CCT hull) of (A, U) provided the above conditions (1),
(2), (3), and the following (4∗) hold:

(4∗) (B, V ) is a cartesian closed topological category.

Show that

(b) The injective hulls in CONSTp are precisely the CCT hulls.
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(c) The concrete embedding PrTop ↪→ PsTop is a cartesian closed topological hull of
PrTop.

27H. Well-Fibred Topological Constructs

Show that

(a) In well-fibred topological constructs extremal subobjects of discrete objects are dis-
crete. [Cf. Exercise 8M(a).]

(b) A functor-structured construct Spa(T ) is well-fibred only if T is the constant functor,

defined by T (X
f−→ Y ) = ∅ id∅−−→ ∅, i.e., only if Spa(T ) is concretely isomorphic to

the construct Set.

27I. Cartesian Closed Functor-Structured Categories

(a) Prove that if Spa(T ) is cartesian closed, then it is concretely cartesian closed.

(b) Prove that Spa(T ) is (concretely) cartesian closed whenever X is cartesian closed

and T weakly preserves pullbacks, i.e., for each 2-sink • f−→ • g←− • the fac-
torizing morphism of the T -image of the pullback of (f,g) through the pullback of
(Tf, Tg) is a retraction.

(c) Verify that the Set-functors Sn and P weakly preserve pullbacks.

27J. Re: Theorem 27.15
Prove that the equivalence of 27.15(1) and 27.15(3) follows from the dual of the Galois
Correspondence Theorem (21.24).
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28 Partial morphisms, quasitopoi, and
topological universes

A partial morphism from A to B is a morphism from a subobject of A to B. Sometimes it
is possible to “represent” partial morphisms into B by ordinary morphisms into a suitable
extension B∗ of B in such a way that partial morphisms from A into B are precisely
the pullbacks of ordinary morphisms from A to B∗ along a distinguished embedding
B

mB−−−→ B∗. Since there is no satisfactory categorical concept of subobject or of em-
bedding, partial morphisms will be defined with respect to an arbitrary class M of
morphisms, acting as “embeddings of subobjects”. The most interesting cases will be
those where M consists of all extremal monomorphisms resp. of all monomorphisms. As
in §27 we first will consider abstract categories, then topological categories, and, finally,
topological constructs.

REPRESENTATIONS OF PARTIAL MORPHISMS

28.1 DEFINITION
Let M be a class of morphisms in A.

(1) A 2-source (A m←−− • f−→ B) with m ∈ M is called an M-partial morphism
from A into B. (Extremal) Mono-partial morphisms are called (extremal) partial
morphisms.

(2) An M -morphism B
mB−−−→ B∗ is said to represent M -partial morphisms into B

provided that the following two conditions are satisfied:

(a) for every morphism • f−→ B∗ there exists a pullback

◦ m //

f
��

•
f
��

B mB

// B∗

and every such m belongs to M ,

(b) for every M -partial morphism (• m←−− ◦ f−→ B) there exists a unique morphism

• f∗−−→ B∗ such that
◦ m //

f
��

•
f∗

��

B mB

// B∗

is a pullback.
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(3) A is said to have representable M-partial morphisms provided that for each
A-object B there exists some B

mB−−−→ B∗ that represents M -partial morphisms into
B.

28.2 EXAMPLES
(1) Set has representable (extremal) partial morphisms. For each set B the one-point

extension B ↪→ B ] {∞} represents both types of partial morphisms into B: given

A0 ⊆ A and A0
f−→ B, define f∗ : A→ B ] {∞} by

f∗(x) =

{
f(x), for x ∈ A0

∞, otherwise.

(2) The category Alg(1) of algebras with one unary operation has representable (ex-
tremal) partial morphisms. For each object (B, β) the extension
(B, β) m−−→ ((B ×N) ∪ {∞} , β∗), defined by m(b) = (b, 0) and

β∗(x) =


∞, if x =∞
(b, n), if x = (b, n + 1)
(β(b), 0), if x = (b, 0),

represents (extremal) partial morphisms into (B, β).

(3) Rel has representable extremal partial morphisms. For each object (X, ρ) the one-
point extension

(X, ρ) ↪→ (X ] {∞} , ρ ∪ (X × {∞}) ∪ ({∞} ×X) ∪ {(∞,∞)})

represents extremal partial morphisms into (X, ρ). However, Rel does not have
representable partial morphisms.

(4) Top has neither representable extremal partial morphisms nor representable partial
morphisms. However, for the class M of all closed [resp. open] embeddings, it does
have representable M -partial morphisms. The one-point extension

(X, τ) ↪→ (X ] {∞} , {∅} ∪ {A ] {∞}
∣∣ A ∈ τ })

[resp. (X, τ) ↪→ (X ] {∞} , τ ∪ {X ] {∞}})]

represents M -partial morphisms into (X, τ).

(5) Every category has representable Iso-partial morphisms, since these are essentially
just morphisms. In particular, every partially ordered set, considered as a cate-
gory, has representable extremal partial morphisms. However, such a category has
representable partial morphisms only if the order relation is equality.

28.3 PROPOSITION
If A has representable M -partial morphisms, then the following hold:
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(1) Iso(A) ⊆M ⊆ RegMono(A).

(2) Pullbacks of M -morphisms exist and belong to M .

Proof:
(1). Let A

f−→ B be a morphism and let B
mB−−−→ B∗ represent M -partial morphisms

into B. If f belongs to M , then there exists a morphism B
g−→ B∗ such that

A
f
//

f

��

B

g

��

B mB

// B∗

is a pullback. This implies that f is an equalizer of g and mB, and hence is a regular
monomorphism.
If f is an isomorphism, then the square

A
f
//

f

��

B

mB

��

B mB

// B∗

is a pullback since mB, by the above, is a monomorphism. Thus f ∈M .

(2). Let (A m−−→ B
f←− C) be a 2-sink with m ∈ M , and let A

mA−−−→ A∗ represent
M -partial morphisms into A. Then there exist pullbacks

A
m //

idA

��

B

g

��

A mA

// A∗

and

• m //

f
��

C

g◦f
��

A mA

// A∗

with m ∈M . Thus there exists a unique morphism • k−→ A such that

• m //

k

��
>>

>>
>>

>>

∗

f

��
//

//
//

//
//

//
//

/ C

f
��

A

idA

��

m
// B

g

��

A mA

// A∗

commutes. By Proposition 11.10(2) the square designated by ∗ is a pullback. �

28.4 REMARK
If A has representable M -partial morphisms, then M need not be closed under compo-
sition, as the following example shows: A is the category of sets and injective maps, and
M consists of all injective maps f : A→ B such that B \ f [A] has at most one element.
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28.5 PROPOSITION
If A has finite products and representable M -partial morphisms, where M is a family
that contains all sections, then the following hold:

(1) A is finitely complete.

(2) M = RegMono(A).

Proof:
(1). In view of Theorem 12.4 it suffices to show that any pair of A-morphisms A

f
//

g
// B

has an equalizer. Since 〈idA, f〉 : A → A × B is a section, it belongs to M . Hence
by Proposition 28.3 there exists a pullback

• m //

��

A

〈idA,g〉
��

A 〈idA,f〉
// A×B

with m ∈M . By Proposition 11.14, m is an equalizer of f and g.

(2). By Proposition 28.3(1) it suffices to show that every regular monomorphism belongs

to M . Let A
e−→ B be an equalizer of B

f
//

g
// C . Then

A
e //

e

��

B

〈idB ,g〉
��

B 〈idB ,f〉
// B × C

is a pullback. Since 〈idB, f〉 is a section, and so belongs to M , by Proposition
28.3(2), e belongs to M . �

28.6 COROLLARY
If A has finite products and representable (extremal) partial morphisms, then the follow-
ing hold:

(1) A is finitely complete.

(2) (Extr)Mono(A) = RegMono(A).

(3) In A regular monomorphisms are closed under composition.

Proof: (1) and (2) follow from Proposition 28.5, and (3) follows from (2) and Proposition
7.62(1). �

9th July 2006



446 Cartesian Closedness and Partial Morphisms [Chap. VII

QUASITOPOI

28.7 DEFINITION
Let M be a class of morphisms in a category A. Then A is called an M -topos provided
that it:

(1) has representable M -partial morphisms,

(2) is cartesian closed, and

(3) is finitely cocomplete.

Mono-topoi are called topoi, and ExtrMono-topoi are called quasitopoi.

28.8 PROPOSITION
Topoi are precisely the balanced quasitopoi.

Proof: Immediate from Proposition 28.5(2) and Proposition 7.67. �

28.9 EXAMPLES
(1) Set, Alg(1), the category of finite sets, and all functor categories of the form

[A,Set], where A is small, are topoi.

(2) Rel, Conv, and PsTop are quasitopoi, but are not topoi.

(3) A linearly ordered set, considered as a category, is

(a) cartesian closed if and only if it has a largest element,

(b) a quasitopos if and only if it has a largest element and a smallest element,

(c) a topos if and only if it has precisely one element.

(4) Cat and kTop are cartesian closed and cocomplete, hence Iso-topoi; but they are
not quasitopoi.

(5) pSet, and PrTop (equivalently: Clos, see 5N) are complete and cocomplete and
their extremal partial morphisms are representable, but they fail to be cartesian
closed.

28.10 PROPOSITION
Each quasitopos is (Epi, RegMono)-structured.

Proof: Immediate from Proposition 28.6(3) and the dual of Proposition 14.22. �

28.11 REMARKS
Quasitopoi have a rich inner structure:
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(1) There is an “extremal-subobject classifier”, i.e., a morphism T → Ω that represents
extremal partial morphisms into a terminal object T .

Cartesian closed categories with subobject classifiers are automatically topoi. But
cartesian closed categories with extremal-subobject classifiers may fail badly to be
quasitopoi. For example,

(a) Prost, Cat, and kTop are cartesian closed, cocomplete, and have extremal-
sub-object classifiers, but fail to be quasitopoi,

(b) the ordered sets

•

•

•

•

...

...

1

2

3

n

and

•

•

•

•

...

...

1

2

3

n

��@@
• •

•

considered as categories, are cartesian closed and have representable extremal
partial morphisms, but fail to be finitely cocomplete.

(2) For each object A there is an “elementhood-morphism” εA, defined by the pullback

•

��

εA // A× ΩA

ev

��

T // Ω

(3) For each object A there is a “singleton-morphism” σA : A → ΩA, defined by the
diagram

A
〈idA,idA〉

//

pullback

��

A×A
idA×σA //

��

A× ΩA

ev
vvnnnnnnnnnnnnnn

T // Ω

(4) For each morphism A
f−→ B there is a “preimage-morphism” f∗ : B → ΩA, defined

by the diagram

A
〈idA,f〉

//

pullback

��

A×B
idA×f∗

//

��

A× ΩA

ev
vvnnnnnnnnnnnnnn

T // Ω
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(5) For each morphism A
f−→ B there is a “power-set-morphism” ΩB Ωf−−→ ΩA, defined

by the diagram

A× ΩB
f×id

//

idA×Ωf
��

B × ΩB

ev

��

A× ΩA
ev

// Ω

(6) For each morphism A
f−→ B there is a “pullback along f” functor

(A ↓ B)→ (A ↓ A) between the corresponding comma categories that is simultane-
ously an adjoint and a co-adjoint functor.

CONCRETE QUASITOPOI

If a topological category (A, U) has representable partial morphisms, then, by Propo-
sition 28.3(1), A is balanced, so that U is an isomorphism (cf. Exercise 21N). Thus
for topological categories the concepts of representability of partial morphisms, and in
particular of topoi, are not interesting. However, the concepts of representability of
extremal partial morphisms (and in particular of quasitopoi) are fruitful.

28.12 PROPOSITION
Let (A, U) be a topological category over X, let M be a class of morphisms in X, and let
Minit be the class of all initial A-morphisms m with Um ∈ M . If A has representable
Minit-partial morphisms, then X has representable M -partial morphisms. U preserves
these representations if and only if Minit-subobjects of discrete objects are discrete.

Proof:
(1). To show that X has representable M -partial morphisms, consider the full sub-

category B of A that consists of all indiscrete objects. Since U restricts to an
isomorphism from B to X, and since B is closed under the formation of pullbacks
in A, it suffices to show that B is closed under representations B

mB−−−→ B∗ of Minit-
partial morphisms in A, i.e., that B ∈ B implies that B∗ ∈ B. For this purpose
let UA

f−→ UB∗ be an X-morphism. Let D be the discrete object with UD = UA,
and let

P
m̂ //

f̂
��

D

f
��

B mB

// B∗

be a pullback in A. Then m̂ ∈ Minit. Since B
mB−−−→ B∗ represents Minit-partial

morphisms into B and since D is discrete, UD
f−→ UB∗ is the only X-morphism g
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that makes
UP

m̂ //

f̂
��

UD

g

��

UB mB

// UB∗

(∗)

a pullback in X. Let C
m̂−−→ A be an initial lift of UP

m̂−−→ UA. Then C
m̂−−→ A

belongs to Minit. Moreover, UC
f̂−→ UB is an A-morphism, since B is indiscrete.

Hence A
m̂←−− C

f̂−→ B is an Minit-partial morphism from A to B. Thus there exists
an A-morphism A

g−→ B∗ that makes

C
m̂ //

f̂
��

A

g

��

B mB

// B∗

a pullback in A. Hence

UC
m̂ //

f̂
��

UA

g

��

UB mB

// UB∗

a pullback in X. By (∗) this implies that g = f . Hence UA
f−→ UB∗ is an A-

morphism.

(2). That U preserves representations if and only if Minit-subobjects of discrete objects
are discrete follows by a straightforward calculation. �

28.13 DEFINITION
(1) Let B

m−−→ A be a morphism and let S = (Ai
fi−−→ A) be a sink. If for each i ∈ I the

diagram

Bi
mi //

f̂i

��

Ai

fi

��

B m
// A

is a pullback, then the sink (Bi
f̂i−−→ B)I is called a pullback of S along m.

(2) Let M be a class of morphisms and let C be a conglomerate of sinks in a category
A. C is called stable under pullbacks along M provided that every pullback of
a sink in C along a M -morphism is a member of C.
In particular, C is called pullback-stable provided that C is stable under pullbacks
along Mor(A). In the case that M is a class of monomorphisms, C is called re-
ducible provided that it is stable under pullbacks along M . When M is the class
of all extremal monomorphisms, we say that C is extremally reducible.
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28.14 REMARK
In view of the fact that diagrams of the form

A×B
πB //

idA×f

��

B

f

��

A× C πC

// C

are pullbacks (see Exercise 11D), Theorem 27.15 can be restated as follows:

If X is cartesian closed, then for each topological category (A, U) over X the following
conditions are equivalent:

(1) (A, U) is concretely cartesian closed,

(2) final sinks in (A, U) are stable under pullbacks along projections.

28.15 THEOREM
If X has representable M -partial morphisms, then for each topological category (A, U)
over X the following conditions are equivalent:

(1) A has representable Minit-partial morphisms and U preserves these representations,

(2) final sinks in (A, U) are Minit-reducible.

Proof: (1)⇒ (2). Let S = (Ai
fi−−→ A)I be a final sink and let B

m−−→ A belong to Minit.
Then for each i ∈ I there exists a pullback

Bi
mi //

f̂i

��

Ai

fi

��

B m
// A

with mi ∈Minit. To show that the sink T = (Bi
f̂i−−→ B)I is final, let UB

g−→ UC be an

X-morphism such that all UBi
g◦f̂i−−−→ UC are A-morphisms. Let C

mC−−−→ C∗ represent
Minit-partial morphisms into C. Then, by (1), UC

mC−−−→ UC∗ represents M -partial

morphisms into UC. Hence there exists a unique X-morphism UA
ĝ−→ UC∗ such that

UB
m //

g

��

UA

ĝ
��

UC mC

// UC∗

is a pullback in X, and for each i ∈ I there is a unique A-morphism Ai
gi−−→ C∗ such

that
Bi

mi //

g◦f̂i

��

Ai

gi

��

C mC

// C∗
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is a pullback in A. Thus, for each i ∈ I,

UBi
mi //

g◦f̂i

��

UAi

gi

��

UC mC

// UC∗

and

UBi
mi //

g◦f̂i

��

UAi

ĝ◦fi

��

UC mC

// UC∗

are pullbacks in X. Hence UAi
gi−−→ UC∗ = UAi

fi−−→ UA
ĝ−→ UC∗. Since S is final,

UA
ĝ−→ UC∗ is an A-morphism. Thus UB

g−→ UC
mC−−−→ UC∗ = UB

m−−→ UA
ĝ−→ UC∗

is an A-morphism. Since C
mC−−−→ C∗ is initial, UB

g−→ UC is an A-morphism.

(2) ⇒ (1). Let B be a B-object and let UB
mB−−−→ X represent M -partial morphisms

into UB. Consider the family (Ai
mi←−− Bi

fi−−→ B)I of all Minit-partial morphisms into
B. Then for each i ∈ I there exists a unique X-morphism UAi

gi−−→ X such that

UBi
mi //

fi

��

UAi

gi

��

UB mB

// X

is a pullback in X. Let (Ai
gi−−→ B∗)I be a final lift of the structured sink (UAi

gi−−→ X)I .
In order to prove that B

mB−−−→ B∗ represents Minit-partial morphisms into B it suffices
to show that UB

mB−−−→ UB∗ belongs to Minit. Since

UB
idB //

idUB

��

UB

mB

��

UB mB

// X

is a pullback, there exists an i ∈ I with (Ai, gi) = (B,mB). Thus UB
mB−−−→ UB∗ =

UAi
gi−−→ UB∗ is an A-morphism. If A

mB−−−→ B∗ is an initial lift of UB
mB−−−→ UB∗, then

B ≤ A (cf. 5.4). So it remains to be shown that A ≤ B. For each i ∈ I the diagram

Bi
mi //

fi

��

Ai

gi

��

A mB

// B∗

is a pullback in A since it is a pullback in X and Bi
mi−−→ Ai is initial. Hence, by (2),

the sink (Bi
fi−−→ A)I is final. Thus UBi

fi−−→ UB = UBi
fi−−→ UA

idUA−−−→ UB implies

that UA
idUA−−−→ UB is an A-morphism, i.e., that A ≤ B. �

28.16 DEFINITION
A concrete category is called universally topological provided that it is topological
and final sinks are pullback-stable.
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28.17 EXAMPLES
(1) Rel is a universally topological construct.

(2) If a functor T : X→ Set weakly preserves pullbacks [cf. Exercise 27I], then Spa(T )
is universally topological over X. In particular, Spa(P) is universally topological.

(3) Frames are (cartesian closed and hence) universally topological over 1.

(4) The construct of compactly generated topological spaces is not universally topolog-
ical (although it is cartesian closed and topological). In fact, a “non-concretely”
cartesian closed construct cannot be universally topological:

28.18 THEOREM
For topological categories (A, U) over a quasitopos X the following conditions are equiv-
alent:

(1) (A, U) is universally topological,

(2) (A, U) is a concrete quasitopos, i.e., A is a quasitopos and U preserves evaluation,
power objects, and representations of extremal partial morphisms.

Proof: (1) ⇒ (2). Immediate from Remark 28.14, Theorem 28.15, and Proposition
28.12.

(2) ⇒ (1). By the above-mentioned results, (2) implies that in (A, U) final sinks are
stable under pullbacks along projections and along extremal monomorphisms. Since each

A-morphism A
f−→ B can be expressed as A

f−→ B = A
〈idA,f〉−−−−−→ A × B

πB−−→ B, since
〈idA, f〉 is a section and hence is an extremal monomorphism, and since pullbacks can be
composed [cf. Proposition 11.10(1)], this implies that (A, U) is universally topological.�

TOPOLOGICAL UNIVERSES

28.19 THEOREM
For well-fibred topological constructs, the following conditions are equivalent:

(1) extremal partial morphisms are representable,

(2) final sinks are extremally reducible,

(3) final epi-sinks are extremally reducible,

(4) coproducts and quotients are extremally reducible.

Proof: (1) ⇔ (2) is immediate from Theorem 28.15. Cf. Exercise 28B(a).

(2) ⇒ (3) is obvious.
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(3) ⇒ (2). Let O (resp. T ) be the unique object with underlying set ∅ (resp. {0}). If

S = (Ai
fi−−→ A)I is a final sink, enlarge S to a final epi-sink T = (Aj

fj−−→ A)J by adding
all morphisms from T to A. Let B

m−−→ A be an extremal monomorphism and let

Bj
m̂j
//

f̂j

��

Aj

fj

��

B m
// A

be a pullback for each j ∈ J . Then (Bj
f̂j−−→ B)J is a final epi-sink. Since for each

j ∈ J \ I the morphism f̂j has a discrete domain (namely, O or an object isomorphic to

T ), the restricted sink (Bi
f̂i−−→ B)I is final as well.

(3) ⇔ (4) as in Theorem 27.22. �

28.20 EXAMPLES
(1) Extremal partial morphisms are representable in each of the following well-fibred

topological constructs: Conv, PsTop, PrTop (= pretopological spaces = closure
spaces), Bor, Simp, and Rere.

(2) Extremal partial morphisms are not representable for any of the following well-fibred
topological constructs: Top, Unif , PMet, sTop, kTop, and Prost.

28.21 DEFINITION
A well-fibred topological construct (A, U) for which A is a quasitopos is called a topo-
logical universe.

A topological universe9th July 2006
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28.22 THEOREM
For a well-fibred topological construct (A, U) the following conditions are equivalent:

(1) (A, U) is a topological universe,

(2) (A, U) has function-spaces and representable extremal partial morphisms,

(3) in (A, U) final epi-sinks are pullback-stable.

Proof: (1) ⇔ (2) is immediate from Theorem 27.22.

(2) ⇔ (3) can be established as in the proof of Theorem 28.18. �

28.23 EXAMPLES
Conv, PsTop, Simp, Bor, and Rere are topological universes.

Suggestions for Further Reading

Lawvere, F. W. Introduction. Springer Lect. Notes Math. 274 (1972): 1–12.

Freyd, P. Aspects of topoi. Bull. Austral. Math. Soc. 7 (1972): 1–76 and 467–480.
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EXERCISES

28A. Injectivity in Topological Constructs

Let (A, U) be a well-fibred topological construct with representable extremal partial
morphisms. Show that in (A, U)

(a) An object B is injective if and only if there exists some A
m−−→ B that represents

extremal partial morphisms into A.

(b) A
m−−→ B is an injective hull if and only if either

(1) A is injective and m is an isomorphism, or

(2) A is not injective and A
m−−→ B represents extremal partial morphisms into A.

28B. Extensional Topological Constructs

A well-fibred topological construct (A, U) is called extensional provided that it has
representable extremal partial morphisms.

(a) Show that if (A, U) is extensional then U preserves representations of extremal
partial morphisms. [Cf. Proposition 28.12 and Exercise 27H(a).]

(b) For each A-object B denote by B∗ the final lift of the structured sink consisting of
all A

a−→ |B| ] ∞ whose restriction a′ to the initial subobject A′ of A on the set

a−1[|B|] is an A-morphism A′ a′−−→ B. If the inclusion map B ↪→ B∗ is an initial
(= extremal) monomorphism, we call B∗ the canonical one-point extension of
B. Prove that a well-fibred topological construct is extensional if and only if every
A-object has a canonical one-point extension.

* (c) Let CONSTs be the quasicategory, whose objects are the well-fibred constructs
in which every injective structured arrow has a unique initial lift, and whose mor-
phisms are the concrete functors that preserve embeddings. Show that the injective
objects in CONSTs (with respect to full embeddings) are precisely the extensional
topological constructs.

* 28C. Extensional Topological Hulls

A morphism (A, U) E−−→ (B, V ) in CONSTs is called an extensional topological hull
of (A, U) provided that the following conditions are satisfied:

(1) E is a full embedding,

(2) E[A] is finally dense in (B, V ),

(3) the image under E of

{BA

∣∣ A ∈ Ob(A) and A
mA−−−→ BA represents extremal partial morphisms into A }

is initially dense in (B, V ),

(4) (B, V ) is an extensional topological construct.
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Show that

(a) Injective hulls in CONSTs are precisely the extensional topological hulls.

(b) Every object in (A, U) has an injective hull.

(c) The concrete embedding Top ↪→ PrTop is an extensional topological hull of Top.

28D. Posets as Quasitopoi

Let A be a poset, considered as a category. Show that:

(a) A is a topos if and only if A contains precisely one element.

(b) If A is complete, then A is a quasitopos if and only if A is a frame.

28E. A Characterization of Topoi

(a) Show that A is a topos if and only if A is cartesian closed and has representable
partial morphisms.

(b) Show that the category A of nonempty sets has the following properties:

(1) A is cartesian closed,

(2) for each A-object B there exists a monomorphism B
mB−−−→ B∗ such that for

every partial morphism • m←−− ◦ f−→ B there exists a unique morphism • f∗−−→ B
such that

◦ m //

f
��

•
f∗

��

B mB

// B∗

is a pullback,

(3) in A partial morphisms are not representable.

28F. Regular Monomorphisms in (Quasi)Topoi

Show that:

(a) In a quasitopos pushouts of regular monomorphisms are monomorphisms.

(b) In a topos monomorphisms and regular monomorphisms are pushout-stable.

(c) In a (quasi)topos every (extremal) monomorphism is regular.

* 28G. Universally Topological Categories as Injective Objects

Let X be a quasitopos and let CATps be the quasicategory whose objects are the con-
crete categories over X with finite concrete products and unique initial lifts of regular
monomorphic structured arrows, and whose morphisms are the concrete functors that
preserve finite products and those embeddings that are carried by regular monomor-
phisms.
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(a) Show that the injective objects in CATps (with respect to full embeddings) are
precisely the universally topological categories.

(b) Describe injective hulls in CATps(X).

(c) Show that the concrete embedding Top ↪→ PsTop is an injective hull in the quasi-
category CATps(Set).

28H. Relational Categories

For every small concrete category (A, U) over X the concrete category Rel(A, U) of
(A, U)-ary relations over X is Spa(F(A,U)), where F(A,U) : X → Set is the functor,
defined by

F(A,U)(X) = { (A, a) |A ∈ Ob(A) and UA
a−→ X ∈Mor(X) }

and F(A,U)(f)(A, a) = (A, f ◦ a). A concrete category that is concretely isomorphic to
some Rel(A, U) is called relational. Show that

(a) Rel is a relational construct.

(b) Every relational category is functor-structured.

(c) If a functor-costructured construct (A, U) is relational, then U is an isomorphism.

(d) Top is not concretely isomorphic to a full subconstruct of some relational construct.

(e) Relational categories are universally topological.

28I. Functor-Costructured Constructs
Prove that for functor-costructured constructs (A, U), the following conditions are equiv-
alent:

(1) (A, U) is relational,

(2) (A, U) is functor-structured,

(3) (A, U) is universally topological,

(4) (A, U) is cartesian closed and there exists only one A-object A with UA = ∅,

(5) (A, U) is well-fibred,

(6) U is an isomorphism.

28J. Products of Final Morphisms

Prove that

(a) In relational categories, products of final morphisms are final.

(b) In universally topological categories, finite products of final morphisms are final.

(c) If T : Set→ Set is defined by T (X) is the set of all finite subsets of X, and Tf(Y ) =
f [Y ], then Spa(T ) is universally topological, but in Spa(T ) countable products of
final morphisms can fail to be final.
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(d) In concretely cartesian closed topological categories, finite products of final maps
are final.

(e) In a well-fibred topological construct (A, U), finite products of final maps are final
if and only if U is an isomorphism.

(f) In a topological construct with function spaces, finite products of quotient maps are
quotient maps.

(g) A topological full subconstruct (A, U) of Top has function spaces if and only if in
(A, U) finite products of quotient maps are quotient maps.

28K. Functor-Structured Categories

Prove that Spa(T ) is universally topological if and only if the base category is a qua-
sitopos and T weakly preserves pullbacks (cf. Exercise 27I).

28L. Re: Theorems 27.22 and 28.19
Let A (resp. B) be the full subconstruct of Rel (resp. Rere) that consists of all objects
(X, ρ) that have no proper cycles; i.e., x1ρx2, x2ρx3, · · · , xn−1ρxn and x1 = xn imply
that x1 = x2 = · · · = xn. Show that the following hold:

(a) A (resp. B) is closed under the formation of mono-sources in Rel (resp. Rere),

(b) A and B are monotopological constructs,

(c) A and B are wellpowered and co-wellpowered (epimorphisms are surjective),

(d) A and B are locally presentable,

(e) B is well-fibred; A is not,

(f) in A final sinks are pullback stable; in B final epi-sinks are pullback stable,

(g) in B all functors of the form (B × −) preserve colimits; in A some functors of the
form (A×−) don’t preserve coequalizers,

(h) B is cartesian closed; A is not,

(i) neither A nor B has representable extremal partial morphisms; neither even has an
extremal-subobject classifier,

(j) neither A nor B is a quasitopos.

28M. Re: Theorem 28.19
Show that for a topological construct A the following are equivalent:

(1) in A final sinks are extremally reducible,

(2) in A

(i) final epi-sinks are extremally reducible, and

(ii) subobjects of discrete objects are discrete.

Observe that condition (2)(ii) is automatically satisfied whenever the fibre of the empty
set has exactly one element.
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TABLES

FUNCTORS AND MORPHISMS: PRESERVATION PROPERTIES

monos extr. monos reg. monos epis extr. epis reg. epis
topological + + + + + +
monadic + ? + − − −
reg. monadic + + + − + +
reg. algebraic + + + − + +
algebraic + + + − + −
ess. algebraic + + + − − −
solid + + + − − −
full refl. emb. + + + − − −
adjoint + − + − − −
faithful − − − − − −

FUNCTORS AND MORPHISMS: REFLECTION PROPERTIES

monos extr. monos reg. monos epis extr. epis reg. epis isos
topological + − − + − − −
monadic + − − + + − +
reg. monadic + − − + + + +
reg. algebraic + − − + + + +
algebraic + − − + + + +
ess. algebraic + − − + + − +
solid + − − + − − −
full refl. emb. + − − + + + +
adjoint − − − − − − −
faithful + − − + − − −
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FUNCTORS AND LIMITS

creates lifts uniquely preserves reflects
topological − + + −
monadic + + + +
ess. algebraic + + + +
solid, uniquely transp. − + + −
adjoint − − + −

FUNCTORS AND COLIMITS

lifts uniquely preserves detects
topological + + +
monadic − − −
solid − − +

STABILITY PROPERTIES OF SPECIAL EPIMORPHISMS

composition pushouts cointersections
isomorphisms + + +
retractions + − −
reg. epis − + −
strict epis − + +
swell epis + + +
strong epis + + +
extr. epis − − −
epis + + +
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A×B, 3.3(4) (product of categories)

Aop, 3.5 (dual category)

(end of proof)

D , 3.7 (proof by duality)

A , 8.25 (footnote) (proof by analogy)

f−1, 3.12 (inverse of f)

P, 3.20(8) (covariant power-set functor)

Q, 3.20(9) (contravariant power-set functor)

Sn, 3.20(10) (nth power functor)

Fn, 3.23 (nth composite of F )

F op, 3.41 (dual functor)

(F ↓ G), 3K (comma category F over G)

(A ↓ K), 3K (category of objects over K)

(K ↓ A), 3K (category of objects under K)

A2 3K (arrow category of A)

| |, 5.3 (underlying functor)

A ≤ B, 5.4 (order in a fibre)

F ≤ G, 5.18 (order of concrete functors)

τop, 6.3 (dual natural transformation)

[A,B], 6.15 (functor quasicategory)

(F̂ , Ĝ) ◦ (F,G), 6.27 (composition of Galois correspondences)

(A,m) ≤ (A′,m′), 7.79 (order of subobjects)

(e,B) ≥ (e′, B′), 7.85 (order of quotient objects)

X
f−→ |A| = (f,A), 8.15 (structured arrow)

(A
fi−−→ Ai)I = (A, fi)I = (A, fi) = (A, (fi)i∈I), 10.1, 10.2 (source)

(
∏

Ai, πj)j∈I , 10.23 (product of objects)

〈fi〉, 10.23 (morphism induced by product)

A×B, 10.23 (binary product)

Πfi, f × g 10.34 (product of morphisms)
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AI , 10.37 (I-th power of A)

(µj ,
∐

Ai)j∈I , 10.63 (coproduct of objects)

[fi], 10.63 (morphism induced by coproduct)

qfi, 10.63 (coproduct of morphisms)

A + B, f + g, 10.63 (binary coproduct)
IA, 10.63 (I-th copower of A)

∆A, 10V (diagonal morphism of A)

(X
fi−−→ GAi)i∈I , 17.2 (structured source)

ev : A×BA → B, 18.2, 27.2 (evaluation)

(η, ε) : F � G : A→ B, 19.3 (adjoint situation)

T = (T, η, µ), 20.1 (monad)

(XT, UT), 20.4 (category of T-algebras)

ConGen = ConGen(A) = the class of concretely generating structured arrows (in A)

Emb = Emb(A) = the class of embeddings (in A)

Epi = Epi(A) = the class of epimorphisms (in A)

ExtrEpi = ExtrEpi(A) = the class of extremal epimorphisms (in A)

ExtrGen = ExtrGen(A) = the class of extremally generating structured arrows (in A)

ExtrMono = ExtrMono(A) = the class of extremal monomorphisms (in A)

ExtrMono-Source = ExtrMono-Source(A) = the conglomerate of extremal

mono-sources (in A)

Final = Final(A) = the class of final morphisms (in A)

Gen = Gen(A) = the class of generating structured arrows (in A)

Init = Init(A) = the class of initial morphisms (in A)

Iso = Iso(A) = the class of isomorphisms (in A)

Mono = Mono(A) = the class of monomorphisms (in A)

Mono-Source = Mono-Source(A) = the conglomerate of mono-sources (in A)

Mor = Mor(A) = the class of morphisms (in A)

NormalEpi = NormalEpi(A) = the class of normal epimorphisms (in A)

NormalMono = NormalMono(A) = the class of normal monomorphisms (in A)

Quot = Quot(A) = the class of quotient morphisms (in A)
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RegEpi = RegEpi(A) = the class of regular epimorphisms (in A)

RegMono = RegMono(A) = the class of regular monomorphisms (in A)

Retr = Retr(A) = the class of retractions (in A)

Sect = Sect(A) = the class of sections (in A)

Source = Source(A) = the conglomerate of sources (in A)

StableEpi = StableEpi(A) = the class of stable epimorphisms (in A)

StrictMono = StrictMono(A) = the class of strict monomorphisms (in A)

StrongMono = StrongMono(A) = the class of strong monomorphisms (in A)

Surj = Surj(A) = the class of surjective morphisms (in A)

SwellEpi = SwellEpi(A) = the class of swell morphisms (in A)
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Absolute coequalizer, 20.14
Absolute colimit, 20.14
Absolute retract, 9.6

vs. enough injectives, 9.10
Adjoint, for a functor,19.10
Adjoint functor, 18.1 ff

characterizations, 18.3
characterization theorems, 18.12,

18.14, 18.17, 18.19
comparison functor for, 20.38, 20.42
composition of, 18.5
monadic functor is, 20.12
between posets, 18H
preserves mono-sources and limits,

18.6, 18.9
smallness conditions for, 18B
theorem, concrete, 18.19
theorem, first, 18.12
theorem, special, 18.17
vs. adjoint situation, 19.1, 19.4, 19.8
vs. algebraic category, 23.31
vs. co-adjoint functor, 18A, 19.1
vs. colimit, 18D
vs. co-wellpoweredness, 18.11, 18.14,

18.19
vs. completeness, 18.12, 18.14, 18.17,

18.19
vs. essentially algebraic functor, 23.8
vs. exponential functor, 27.7
vs. extremal monomorphism, 18J
vs. free object, 18.19
vs. full, faithful functor, 19I
vs. (Generating, M)-functor, 18.4
vs. monadic category, 20.46
vs. monadic functor, 20.12, 20.17
vs. reflection of epimorphisms, 18I,

19B
vs. regularly algebraic category, 23.38
vs. representable functor, 18C
vs. solid functor, 25.12, 25.19

vs. topologically algebraic functor,
25.3, 25.6, 25.19

vs. wellpoweredness, 18.19
Adjoint sequence, 19F
Adjoint situation, 19.3 ff

alternative description, 19A
associated with a monad, 20.7
composition of, 19.13
consequences of, 19.14
duality for, 19.6
gives rise to a monad, 20.3
induced by (co-)adjoint functor, 19.7
lifting of, 21.26, 21.28
uniqueness, 19.9
vs. adjoint functor, 19.1, 19.4, 19.8
vs. equivalence functor, 19.8, 19H
vs. free object, 19.4
vs. Galois correspondence, 19.8
vs. indiscrete structure, 21A
vs. monad, 20A
vs. reflective subcategory, 19.4
vs. universal arrow, 19.7

Algebra, partial binary, 3.52
Algebraic category, 23.19 ff, 23D

characterization theorem for, 23.30,
23.31

concrete functor between, 23.22
implies extremal epimorphisms are

final, 23.23
vs. adjoint functor, 23.31
vs. (Epi, Mono-Source)-factorizable

category, 23.30, 23.31
vs. extremal co-wellpoweredness,

23.27
vs. extremal epimorphism, 23.30
vs. unique lift of (ExtrEpi,

Mono-Source)-factorizations, 23.31
Algebraic construct, = regular

epireflective subconstruct of monadic
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construct, 24.3
bounded, vs. bounded quasivariety,

24.11
vs. monadic construct, 23.41

Algebraic functor, 23.19 ff
closed under composition, 23.21
need not preserve regular

epimorphisms, 23.25, 23J
reflects regular epimorphisms, 23.24
restrictions of, 23L
vs. composite of regular monadic

functors, 24.2
vs. regular epimorphism, 23J
vs. regular factorization, 24.2
vs. uniquely transportable functor,

23.30
Algebraic hull of a concrete category, 23K
Algebraic subcategory, conditions for,

23.32, 23.33
vs. extremally epireflective

subcategory, 23.33
Algebraic theory, 20C
Algebraic-topological decompositions,

26C
Algebraic-type functors, relationships

among, 23.42
Amnesticity, vs. lifting of limits, 13.21
Amnestic concrete category, 5.4 ff

vs. Galois correspondence, 6.29–6.36
vs. topological functor, 21.5
vs. transportable concrete category,

5.29, 5.30
Amnestic functor, 3.27, 5.6, 13.21, 13.25,

13.28
Amnestic modification, of a concrete

category, 5.6, 5.33, 5.34, 5F
Arrow,

costructured, = costructured arrow,
8.40

co-universal, = co-universal
costructured arrow, 8.40

reflection, = reflection arrow, 4.16

structured, = structured arrow, 8.15
universal, = universal structured

arrow, 8.22
Arrow category, 3K, 6.17
Associativity, composition of morphisms

has, 3.1, 3.53, 3C
Axiom, topological, 22.6
Axiom of choice, 2.3, 9A
Axiom of replacement, 2.2

Balanced category, 7.49 ff
topological, scarcity of, 21N
vs. extremal monomorphism, 7.67
vs. mono-source, 10.12

Base category, 5.1 ff
Bicoreflective subcategory,

vs. coreflective subcategory, 16.4
vs. separator, 16.4

Bimorphism, 7.49
vs. topological functor, 21M

Bireflective subcategory, 16.1
monoreflective subcategory is, 16.3

Birkhoff-theorem, 16G
Boolean ring, 3.26, footnote

Cartesian closed category, 27.1 ff
characterization theorem, 27.4
vs. coreflective hull, 27C
vs. products of epimorphisms, 27.8
vs. zero object, 27A

Cartesian closed construct, 27.16 ff, 27D
vs. well-fibred topological construct,

27.22
Cartesian closed subcategory, 27.9

vs. (co)reflective subcategory, 27.9
Cartesian closed topological category,

implies base category is cartesian
closed, 27.14

as injective object, 27F
Cartesian closed topological construct,

vs. powers with discrete exponents
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(resp. factors), 27.24
Cartesian closed topological hull, 27G
Cartesian product of sets, 2.1
Categorical statement involving functors,

dual of, 3.40, 3.42
Category, 3.1 ff

algebraic, = algebraic category,
23.19 ff

of all categories, can’t be formed
because of set-theoretical
restrictions, 3.48

with all products must be thin, 10.32
alternative definition, 3C
arrow, 3K
base, = base category, 5.1 ff
cartesian closed, = cartesian closed

category, 27.1
(co)complete, = (co)complete

category, 12.2
comma, 3K, 5.38, 21F
compact, 18K
of concrete categories, 5.15, 5C
concretely cartesian closed, =

concretely cartesian closed category,
27.11

concretizable, 5J
co-wellpowered, = co-wellpowered

category, 7.87
discrete, 3.26
dual, = opposite category, 3.5
Eilenberg-Moore, 20.4
(E,M), = (E,M)-category, 15.1 ff
empty, 3.3(4)
essentially algebraic, = essentially

algebraic category, 23.5 ff
(E,−)-structured, 14H
exact, 14F
extremally co-wellpowered, =

extremally co-wellpowered category,
7.87

extremally wellpowered, = extremally
wellpowered category, 7.82

finitary, 24.4, 24.7

finitely (co)complete, 12.2
free, 3A
functor-costructured, 5.43
functor-structured, =

functor-structured category, 5.40
graph of, 3A
isomorphic, 3.24
Kleisli, 20.39, 20B
large, 3.44
locally presentable, 20H
monadic, = monadic category, 20.8 ff
non-co-wellpowered, 7L
object-free, = object-free category,

3.53
of objects over (resp. under) an

object, 3K
opposite, = opposite category, 3.5
pointed, 3B, 7B
product, 3.3(4)
is a quasicategory, 3.51
regular co-wellpowered, 7.87–7.89
regular wellpowered, 7.82, 7.88, 7.89
regularly algebraic, = regularly

algebraic category, 23.35 ff
skeleton of a, 4.12–4.15, 4I
small, 3.44–3.45
of small categories, 3.47
— is a large category, 3.48
— vs. concrete category, 5I

solid, = solid category, 25.10 ff
strongly (co)complete, = strongly

(co)com- plete category, 12.2
sub-, see Subcategory
terminal, 3.3(4)
thin, 3.26, 3.29, 3G
topological, = topological category,

21.7 ff
topologically algebraic, =

topologically algebraic category,
25.1 ff

total, 6I
of type 2, 3C
universal, 4J
universally topological, 28.16, 28.18,
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28G
wellpowered, = wellpowered category,

7.82
Category theory, “object-free version”,

3.55
Choice, axiom of, 2.3, 9A
Class, 2.2

of all sets, = universe, 2.2
as a category, (is not a construct),

3.3(4)
large, = proper class, 2.2
preordered, 3.3(4)
proper, 2.2
small, = set, 2.2

Closed under the formation of
intersections, 11.26

Closed under the formation of M-sources,
16.7
and E-quotients, vs. E-equational

subcategory, 16.17
vs. E-reflective, 16.8

Closed under the formation of products,
and extremal subobjects, vs.
(epi)reflective subcategory, 16.9, 16.10
vs. E-equational subcategory, 16.17

Closed under the formation of pullbacks,
11.17

Closure space, 5N
Co-, see Dual concept
Co-adjoint, for a functor, 19.10
Co-adjoint functor, 18.1 ff

vs. adjoint functor, 18A, 19.1, 19.2,
19.11

vs. colimit, 18D
vs. contravariant exponential functor,

27.7
Coarser than, (preorder) relation on

concrete functors, 5.18
Co-axiom, topological, 22.6
Cocomplete category, 12.2 ff

almost implies complete, 12.7 ff

with a small colimit-dense
subcategory is complete, 12.12

vs. cartesian closed category, 27.4
vs. colimit-dense subcategory, 12.12
vs. complete category, 12.13, 25K
vs. copower, 12H
vs. essentially algebraic category,

23.12, 23.13
vs. solid category, 25.15, 25.16
vs. topological category, 21.16, 21.17

Cocomplete subcategory, vs. reflective
subcategory, 12K

Cocone, = natural sink, 11.27
Codomain,

of a function, 2.1
of a morphism, 3.2
of a source, 10.1
of a sink, 10.62
of a structured source, 17.1

Coequalizer, 7.68 ff
absolute, 20.14
as a colimit, 11.28
existence, 12.1, 15F
preservation, 13.1
split, 20.14
uniqueness, 7.70
vs. completeness, 12J
vs. epimorphism, 7M
vs. forgetful functor, 7.73
vs. isomorphism, 7.70
vs. monomorphism, 7.70
vs. pushout square, 11.33

Coessential morphism, w.r.t. a class of
morphisms, 9.27

Coessential quotient map, 9.27
Cointersection, 11.28

existence, 12.1
vs. (E,M)-category, 15.14, 15.15,

15.16
Colimit, 11.27 ff

absolute, 20.14
concrete, 13.12
creation, 13.17

9th July 2006



478 INDEX

detected by regularly monadic
functor, 20.33

detection, = detection of colimit,
13.22

directed, = directed colimit, 11.28
domain of, 11.27
lifting of, 13.17
— vs. topological functor, 21.15

preservation, 13.1
— vs. topological functor, 21.15

reflection, 13.22
uniqueness, 11.29
vs. (co-)adjoint functor, 18D
vs. coproduct, 11.28
vs. monadic functor, 20.13
vs. reflection arrow, 13.30

Colimit-closed subcategory, vs. reflective
subcategory, 13.29

Colimit-dense full embedding, preserves
limits, 13L

Colimit-dense subcategory, 12.10
embedding of preserves limits, 13.11
vs. (co)completeness, 12.12

Comma category, 5.38, 3K, 21F
Commuting triangle and square, 3.4
Compact category, 18K
Comparison functor, 20.37 ff

vs. adjoint functor, 20.42
vs. faithful functor, 20.43
vs. full functor, 20.43, 20.44

Complete category, 12.2 ff
characterization, 12.3
and wellpowered category, is strongly

complete, 12.5
vs. adjoint functor, 18.12, 18.14,

18.17, 18.19
vs. cocomplete category, 12.13, 25K
vs. coequalizer, 12J
vs. colimit-dense subcategory, 12.12
vs. essentially algebraic category,

23.12, 23.13
vs. solid category, 25.15
vs. strongly complete category, 12.5,

12I
vs. topological category, 21.16, 21.17

Complete lattice, vs. has products, 10.32
Completion,

of abstract categories, 12L
regarded as reflection, 4.17
universal, 12M

Complex numbers, 2.1
Composite,

of (concrete) functors, 3.23, 5.14
— vs. natural transformation, 6.3

of epimorphisms, is epimorphism, 7.41
of essential embeddings, 9.14
of functions, 2.1
of isomorphisms, is isomorphism, 3.14
of monomorphisms, is

monomorphism, 7.34
of morphisms, 3.1
of natural transformations, 6.13
of sources, 10.3
— vs. (E,M)-category, 15.5

Composition, as a morphism, 27E
Composition of morphisms, 3.1 ff

is associative, 3.1
in a quasicategory, 3.49
vs. (E,M)-category, 15.14, 15.15
vs. (E,M)-structured category, 14.6

Concept, (self-)dual, 3.7
Concrete adjoint functor, vs. concrete co-

adjoint functor, 21.24
Concrete category, 5.1 ff

amnestic, = amnestic concrete
category, 5.4 ff

amnestic modification, 5.6, 5.33, 5.34
(A, U) has property P means A (or

U) has property P , 5.3
“concretely isomorphic” is stronger

than “isomorphic”, 5.12
duality principle for, 5.20
fibre-complete, 5.7, 5.42
fibre-discrete, 5.7, 5.8, 5.39
monadic, 20.8 ff
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over 1, vs. concrete functors, 5.11
over Set, = construct, 3.3(2), 5.1 ff
solid, = solid concrete category,

25.10 ff
strongly fibre-small, 26.5
topological, = topological concrete

category, 21.7 ff
(uniquely) transportable, 5.28, 5.35,

5.36
vs. Cat, 5I

Concrete co-adjoint functor,
vs. concrete adjoint functor, 21.24
vs. Galois correspondence, 21E

Concrete colimit, 13.12
Concrete coproduct, 13.12
Concrete coreflector, i.e., coreflector

induced by identity-carried
coreflection arrows, 5.22

Concrete co-wellpoweredness, 8.19
vs. extremal co-wellpoweredness, 8E

Concrete embedding, essential, 21J
Concrete equivalence, 5.13
Concrete functor, 5.9 ff

between algebraic categories is
algebraic, 23.22

composite, 5.14
between constructs, 5D
between essentially algebraic

categories is essentially algebraic,
23.17

existence of a concrete natural
transformation between, 6.24

between regularly algebraic categories
is regularly algebraic, 23.40

specified by its values on objects,
5.10, 5.11

vs. embedding functor and equivalent
objects, 5.10

vs. monadic category, 20E
Concrete generation of an object, 8.15

vs. extremal epimorphism, 8.18
vs. (extremal) generation, 8.16

vs. universal arrow, 8.24
Concrete isomorphism, 5.12, 5N
Concrete limit, 13.12

characterized, 13.15
reflection of, 13C
two step construction, 13.16
vs. concrete colimit, 13.10

Concrete limit dense, 12M
Concretely cartesian closed category,

27.11
vs. discrete objects, 27.15
vs. topological category, 27.15

Concretely cartesian closed construct, vs.
subconstruct of Set, 27.16

Concretely complete, 12M
Concretely coreflective subcategory, 5.22

vs. topological subcategory, 21.33
Concretely co-wellpowered concrete

category, 8.19
Concretely co-wellpowered functor, 8.37

vs. (ConGen, Initial Mono-Source)
functor, 17.11

Concretely equivalent, is not symmetric,
5.13

Concretely generating structured arrow,
see Concrete generation of an object

Concretely reflective concrete
subcategory, 5.22
of amnestic category is full, 5.24
of non-amnestic concrete category

need not be full, 5.25, 4.21
vs. finally dense subcategory, 21.32
vs. initial source, 10.50
vs. initially closed subcategory, 21.31
vs. reflector, 5.26, 5.27, 5.31, 5.32
vs. topological (sub)category, 21.32,

21.33
Concrete natural transformation, 6.23

vs. concrete functors, 6.24
Concrete product, 10.52

as a concrete limit, 13.12
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preserved by composition, 10.56
vs. has M-initial subobjects, 21.42
vs. initial source, 10.53
vs. monotopological construct, 21.42

Concrete quasitopos, vs. universally
topological category, 28.18

Concrete reflector, = reflector induced by
identity-carried reflection arrows,
5.22, 5E
vs. concrete functors that are

reflectors, 5.22
Concrete subcategory, 5.21 ff

concretely (co)reflective, = concretely
(co)reflective subcategory, 5.22

Concretizable category, 5J, 10L
vs. separating set, 7Q

Cone, = natural source, 11.3
(ConGen, Initial

Mono-Source)-factorizable category,
17J

(ConGen, Initial Mono-Source)-functor,
vs. concretely co-wellpowered, 17.11

Conglomerate, 2.3
of all classes, 2.3
codability by, 2.3
(il)legitimate, 2.3
of morphisms between two objects in

a quasicategory, 3.49
of objects in a quasicategory, 3.49
small, 2.3

Congruence fork, 20.14
Congruence relation, 11.20

coequalizer of, vs. monadic construct,
20.35

vs. equalizer, 11.20
vs. monomorphism, 11.20, 11R
vs. pulation square, 11.33

Constant functions are morphisms, vs.
has function spaces, 27.18

Constant functor, 3.20(2)
Constant morphism, 7A, 10W

Construct, 3.3(2), 5.1 ff
bounded, 24.11
concretely co-wellpowered, 8D
monadic, = monadic construct,

20.34 ff
must be regular wellpowered and

regular co-wellpowered, 7.88
not determinated by object class,

3.3(2)
Contraction, 3.3(3)
Contravariant exponential functor, 27.5

vs. (co-)adjoint functor, 27.7
Contravariant hom-functor, 3.20(5)
Contravariant power-set functor, 3.20(9)
Copower, of an object, 10.63

non-existence, 10S
vs. cocompleteness, 12H
vs. free object, 10R

Coproduct, 10.63 ff
concrete, 13.12
existence, 10I, 12.1, 12G
of functors, 10U
preservation of, 13.1
vs. colimit, 11.28

Coreflection, Galois, 6.26
Coreflection arrow, 4.25 ff
Coreflective hull, vs. cartesian-closed

category, 27C
Coreflective modification, of a concrete

category, 5.22, 5K
Coreflective subcategory, 4.27, 16.1 ff

vs. bicoreflective subcategory, 16.4
vs. cartesian closed subcategory, 27.9

Coreflector for a coreflective subcategory,
4.27

Coreflector, concrete, 5.22
Coseparating set, 18L
Coseparator, 7.16

category with, is regular wellpowered
and regular co-wellpowered, 7.89

extremal, 10.17
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is extremal in balanced category,
10.18

vs. faithful hom-functor, 7.17
vs. power of an object, 10.38
vs. topological category, 21.16, 21.17

Costructured arrow, 8.40
Costructured sink, 17.4
Co-unit of an adjunction, 19.3, 19J
Co-universal arrow, 8.40

vs. universal arrow, 19.1, 19.2
Covariant exponential functor, 27.5
Covariant hom-functor, 3.20(4)
Covariant power-set functor, 3.20(8)
Cover, projective, 9.27
Co-wellpowered category, 7.87 ff

concrete, 8.19
vs. adjoint functor, 18.11, 18.14, 18.19
vs. cartesian closed category, 27.4
vs. (E,M)-category, 15.25, 15.26
vs. epireflective hulls, 16C
vs. essentially algebraic category,

23.14
vs. extensions of factorization

structures, 15.20, 15.21
vs. monadic category, 20.29
vs. topological category, 21.16, 21.17
vs. wellpoweredness, 12.13

Co-wellpowered functor, 8.37
concrete, 8.37
extremal, 8.37
implies domain is co-wellpowered, 8.38
vs. adjoint functor, 18.11, 18.14
vs. essentially algebraic category,

23.14
Creation of absolute coequalizers, vs.

monadic functor, 20.17
Creation of absolute colimits, 20.14

monadic functor does, 20.16
Creation of colimits, 13.17
Creation of (Extremal Epi,

Mono-Source)- factorizations, 23.31

Creation of finite limits, vs. monadic
construct, 20.35

Creation of isomorphisms, 13.35, 13M
vs. creation of limits, 13.36
vs. essentially algebraic functor, 23.8
vs. monadic functor, 20.12
vs. reflection of identities &

isomorphisms, 13.36
Creation of limits, 13.17, 13N

monadic functor does, 20.12
vs. creation of isomorphisms, 13.36
vs. essentially algebraic functor, 23.15
vs. lifts limits uniquely and reflects

limits, 13.20, 13.25
vs. reflection of isomorphisms, 13.25

Creation of split coequalizers, vs.
monadic functor, 20.17

Decomposition of functors, 3N
vs. factorization structure, 26A

Decomposition of Galois correspondence,
6.35

Decomposition theorems for solid
functors, 26.3, 26.4

Dense subcategory, 12D
Detection of colimits, 13.22

vs. reflective subcategory, 13.32
vs. solid functor, 25.14

Detection of limits, 13.22
vs. lifting of limits, 13.34
vs. solid functor, 25.14

Detection and preservation of limits,
vs. solid functor, 25.18, 25.19
vs. topologically algebraic functor,

25.18, 25.19
Detection of wellpoweredness, vs.

monadic functor, 20.12
Diagonal, 14.1, 14B, 15.1, 15K, 17.3, 17D
Diagonal morphism, 10V, 10W
Diagonalization property,

causes E and M to determine each
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other, 15.5
(E,M), = (E,M)-diagonalization

property, 15.1
w.r.t. a functor, 17.3

Diagram, = functor, 11.1 ff
limit of, 11.3

Directed colimit, 11.28, 11O
vs. finitary quasivariety, 24A

Discrete category, 3.26
Discrete functor, vs. topological functor,

21.12
Discrete object, 8.1, 8M

must be smallest element in the fibre,
8.4

vs. concretely cartesian closed
subcategory, 27.15

vs. topological category, 21.11
Discrete quasicategory, 3.51
Discrete space functor, is a full

embedding, 3.29
Discrete terminal object, vs. has function

spaces, 27.18
Disjoint union, of a family of sets, 2.1
Dispersed factorization structure, 15L
Distributive law for cartesian closed

category, 27.8
Domain,

of a diagram, = scheme, 11.1
of a function, 2.1
of a morphism, 3.2
of a sink, 10.62
of a source, 10.1
of a structured source, 17.1

Dominion, 14J
Down-directed poset, 11.4
Dual of a categorical statement involving

functors, 3.40, 3.42
Dual category, = opposite category, 3.5
Dual concept, of a “categorical concept”,

3.7
Dual functor, = opposite functor, 3.41

Duality principle,
for categories, 3.7, 3E
for concrete categories, 5.20
for topological category, 21.10

Duality theories, vs. representability, 10N
Dually equivalent categories, 3.37, 3.38
Dual property, 3.7
Dual statement, of a “categorical

statement”, 3.7

(E,−)-category, 15B, 15D
E-equation, 16.16
E-equational subcategory, 16.16

vs. closed under the formation of M-
sources and E-quotients, 16.17

vs. closed under the formation of
products, 16.17

(E,−)-functor, 17.4
Eilenberg-Moore category, 20.4
E-implicational subcategory, 16.12

vs. E-reflective subcategory, 16.14
Elementhood-morphism, 28.11
Embeddable, fully, 4.6
Embedding functor, 3.27

closed under composition and first
factor, 3.30

finally dense, 10.72
is (up to isomorphism) inclusion of

subcategory, 4.5
vs. faithful functor, 3.28, 4.5
vs. full functor, 3.29
vs. preservation of limit, 13.11

Embedding morphism, 8.6 ff
in Cat, 8C
composition, 8.9
essential, 9.12
first factor of, 8.9
vs. monomorphism, 8.7
vs. regular monomorphism, 8.7, 8A
vs. section, 8.7

Embedding, Yoneda, 6.19, 6J
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(E,M)-category, 15.1
conditions on E, 15.14, 15.15
consequences of, 15.5
implies E ⊆ Epi, 15.4
values for E and M, 15.8
vs. co-wellpowered category, 15.25,

15.26
vs. (E,M)-factorization, 15.10
vs. (E,M)-functor, 17.4
vs. extremally co-wellpowered

category, 15.25, 15.26
vs. mono-source, 15.6–15.9
vs. regular epimorphism, 15.7
vs. strongly complete category, 15.25,

15.26
vs. topological category, 21.14

(E,M)-diagonalization property, 14.1
(E,M)-diagonalization property, 15.1
(E,M)-factorization, 14.1

vs. (E,M)-structured category, 14.7
(E,M)-factorization, 15.1

uniqueness, 15.5
vs. (E,M)-category, 15.10
vs. faithful functor, 17.15, 17.16
vs. topological category, 21.16, 21.17

(E,M)-functor, = adjoint functor, 17.3,
18.3, 18.4
implies E ⊆ Gen, 17.6
implies factorizations are essentially

unique, 17.7
implies M determines E, 17.7
M need not be closed under

composition nor determined by E,
17.8

not every functor is, 17.4
properties of, 17E
vs. (E,M)-category, 17.4
vs. has (E,M)-factorizations, 17.10
vs. topologically algebraic functor,

25.6
E-monad, 20.21 ff
E-monadic functor, 20.21 ff

lifts (E,M)-factorizations uniquely,

20.24
vs. reflective subcategory, 20.25

(E, Mono-Source)-category, vs. (Epi,
M)-category, 15.11

(E, Mono-Source)-functor, implies E ⊆
ExtrGen, 17.9

(E, Mono)-structured category, vs.
regular epimorphism, 14.14

Empty category, 3.3(4)
Empty source, 10.2

vs. product, 10.20
(E,M)-structured category, 14.1 ff

consequences of, 14.6, 14.9, 14.11
duality for, 14.3
relationship to limits, 14.15 ff
relationship to special morphisms,

14.10 ff
uniqueness of factorizations, 14.4
vs. composition of morphisms, 14.6
vs. (E,M)-factorization property, 14.7
vs. (extremal) epimorphisms,

14.10–14.14
vs. extremal monomorphisms, 14.10
vs. isomorphisms, 14.5

Enough injectives, 9.9
vs. absolute retract, 9.10
vs. injective hull, 9D

(Epi, ExtrMono-Source)-category, vs.
(ExtrEpi, Mono-Source)-category,
15C
characterization, 15.16
strongly complete category is, 15.17

(Epi, ExtrMono)-structured category,
vs. equalizer, 14.19
vs. intersection, 14.19

(Epi, Initial Source)-factorizable category,
vs. topologically algebraic category,
25.6

(Epi, M)-category, characterization, 15.16
vs. (E, Mono-Source)-category, 15.11

(Epi, Mono-Source)-factorizations, vs.
monadic category, 20.49
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(Epi, Mono-Source)-factorizable category,

vs. algebraic category, 23.30, 23.31
vs. essentially algebraic category, 23.8,

23.9
(Epi, Mono-Source)-factorizations, imply

(ExtrEpi, Mono-Source)-category,
15.10

Epimorphism, 7.38 ff
closed under composition, 7.41
equals implication, 16.12
extremal, = extremal epimorphism,

7.74
as extremal monomorphism is

isomorphism, 7.66
for groups, 7H
preserved and reflected by equivalence

functor, 7.47
products of, 10D
reflected by faithful functor, 7.44
regular, = regular epimorphism, 7.71
as section is isomorphism, 7.43
split, = retraction, 7.24
stable, 11J
swell, 7.76, 15A
types, 7.76
vs. coequalizer, 7M
vs. (E,M)-category, 15.8, 15.14, 15.15
vs. (E,M)-structured category, 14.10
vs. equalizer, 7.54
vs. generating structured arrows, 8.16,

8.18, 8.36
vs. hom-functor, 19C
vs. quotient morphism, 8.12
vs. regular epimorphism, 7O
vs. retraction, 7.42

Epireflective hulls, vs.
co-wellpoweredness, 16C

Epireflective subcategory, 16.1 ff
with bad behavior, 16A
regular, 16I
vs. closure under the formation of

products and extremal subobjects,

16.9, 16.10
vs. extremal mono-source, 16H
vs. strongly limit-closed subcategory,

16L
Epi-sink, 10.63

vs. pullback, 11I
Epi-transformation, 6.5, 7R

vs. adjoint situation, 19.14
Equalizer, 7.51 ff

existence, 12.1
preservation of, 13.1, 13.3
and product, vs. pullback square,

11.11, 11.14
reflection of, 17.13
uniqueness, 7.53
vs. congruence relation, 11.20
vs. (Epi, ExtrMono)-structured

category, 14.19
vs. epimorphism and isomorphism,

7.54
vs. product and pullback square,

10.36, 11.14, 11S
vs. regular monomorphism, 13.6

Equation, = regular implication with free
domain, 16.16

Equational subcategory, 16.16
of Alg(Ω), char. 16.19

Equational subconstruct, vs. epireflective
subconstruct, 16.18

Equivalence,
natural, = natural isomorphism, 6.5
of quasicategories, 3.51
of “standard” and “object-free”

versions of category theory, 3.55
Equivalence functor, = full, faithful, and

iso-morphism-dense functor, 3.33, 3H
concrete, 5.13
is topologically algebraic, 25.2
preserves and reflects special

morphisms, 7.47
properties of, 3.36
vs. adjoint situation, 19.8, 19H
vs. natural isomorphism, 6.8
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Equivalence relation on a conglomerate,
2.3

Equivalent categories, 3.33
dually, 3.37, 3.38
vs. isomorphic categories, 3.35

Equivalent objects, in a concrete
category, 5.4

E-reflective hull, = smallest E-reflective
subcategory, 16.21
characterization of members, 16.22

E-reflective subcategory, 16.1
intersection of, 16.20
vs. closure under the formation of

M-sources, 16.8
vs. E-implicational subcategory, 16.14
vs. E-monadic functor, 20.25

Essential embedding, 9.12
properties of, 9.14

Essential extension, 9.11, 9H
types of, 9.20
vs. injective object, 9.15

Essentially algebraic category, 23.5 ff
characterization, 23.8
concrete functor between, 23.17
has coequalizers, 23.10
implies embeddings =

monomorphisms, 23.7
vs. completeness & cocompleteness,

23.12, 23.13
vs. co-wellpoweredness, 23.14
vs. monadic category, 23.16
vs. wellpoweredness, 23.12, 23.13

Essentially algebraic embedding, 23B
Essentially algebraic functor, 23.1 ff

closed under composition, 23.4
detects colimits, 23.11
equivalent conditions, 23.2
is faithful adjoint functor, 23.3
preserves and creates limits, 23.11
is topologically algebraic, 25.2
vs. creates limits, 23.15
vs. monadic functor, 23C

vs. solid functor, 26.3
Essential morphism, w.r.t. a class of mor-

phisms, 9.22
Essential uniqueness, of universal arrow,

8.25, 8.35
(E,−)-structured category, 14H
Evaluation morphism, 27.2
Exact category, 14F
Exponential functors, 27.5
Exponential law for cartesian closed

category, 27.8
Exponential morphism, 27.2
Extension, injective, 9.11
Extensional topological construct & hull,

28B, 28C
Extension of a factorization structure,

15.19 ff
equivalent conditions for, 15.20
vs. has products, 15.19, 15.21

Extension of an object, 8.6
Extremal coseparator, 10.17

characterization, 10B, 10C
Extremal co-wellpoweredness, 7.87 ff, 23I

detected by regularly monadic
functor, 20.31

vs. concrete co-wellpoweredness, 8E
vs. monadic category, 20.48

Extremal epimorphism, 7.74 ff
is final morphism in algebraic

category, 23.23
preservation & reflection of, vs.

regularly monadic category, 20.30
preservation & reflection of, vs.

regularly algebraic category, 23.38
reflection of, 17.13
vs. concrete generation, 8.18
vs. (E,M)-category, 15.8
vs. (E,M)-structured category, 14.12,

14.13, 14.14
vs. extremally generating structured

arrows, 8.16, 8.18, 8.36
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vs. final morphism, 8.11(5)
vs. pullbacks and products, 23.28,

23.29
vs. quotient morphism in algebraic

category, 23.26, 23G
vs. regular epimorphism, 7.75, 21.13
vs. topological category, 21.13

Extremal epi-sink, 10.63
Extremal generation of an object, 8.15

vs. concrete generation, 8.16
vs. extremal epimorphism, 8.16, 8.18

Extremally co-wellpowered category, 7.87
vs. algebraic category, 23.27
vs. (E,M)-category, 15.25, 15.26

Extremally co-wellpowered functor, 8.37
Extremally epireflective subcategory,

16.1 ff
characterization, 16M
vs. algebraic subcategory, 23.33

Extremally generating structured arrow,
8.15
with respect to a functor, 8.30

Extremally monadic construct, is
topologically algebraic, 25.2

Extremally monadic functor, 20M, 23N
Extremally projective object, 23H
Extremally reducible conglomerate of

sinks, 28.13
Extremally wellpowered category, 7.82 ff

vs. wellpowered category, 7.83
Extremal monomorphism, 7.61 ff

closure under composition and
intersections, 14.18

composite need not be extremal, 7N
as epimorphism is isomorphism, 7.66
preserved by solid functors, 25.21
products of, 10D
vs. adjoint functor, 18J
vs. balanced category, 7.67
vs. (E,M)-diagonalization property,

14.18
vs. (E,M)-structured category, 14.10

vs. extremal mono-source, 10.26
vs. monadic functor, 20O
vs. regular monomorphism, 7.62, 7.63,

12B, 14.20, 14I, 21.13
vs. topological category, 21.13

Extremal mono-source, 10.11 ff
characterization, 10A
not preserved by composition, 10.14,

7N
preserved by first factor, 10.13
vs. (E,M)-category, 15.8
vs. epireflective subcategory, 16H
vs. extremal monomorphism, 10.26
vs. product, 10.21
vs. pullback square, 11.9
vs. subsource, 10.15

Extremal partial morphism, 28.1
Extremal quotient object, 7.84
Extremal reducibility of final sinks, 28.19
Extremal separator, 10.63

characterization, 10B, 10C
Extremal subobject, 7.77
Extremal-subobject classifier, 28.11
(ExtrEpi, Mono-Source)-category, vs.

(Epi, ExtrMono-Source)-category,
15C

(ExtrGen, Mono)-factorization, 17I
(ExtrGen, Mono-Source)-functor, 17K

vs. preservation of strong limits,
17.11, 17H

Factorization lemma, 14.16
Factorization structure for morphisms,

14.1 ff, 14A
extension of, to a factorization

structure for sources, 15.24
Factorization structure, 15.1 ff

dispersed, 15J
for empty sources, 15.2, 15G
extensions of, 15.19 ff
w.r.t. a functor, 17.3
— existence, 17C
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— two methods, 17.5
inheritance, 16B
for sinks, 15.2
for small sources, 15J
for 2-sources, 15I
vs. decomposition of functors, 26A
vs. monadic category, 20.28

Faithful functor, 3.27 ff, 7G
characterization, 8N
closed under composition, 3.30
is isomorphism iff full and bijective on

objects, 3.28
means epimorphisms are generating,

8.32
monadic functor is, 20.12
reflects epimorphisms, 7.44
reflects monomorphisms, 7.37
reflects mono-sources, 10.7
topological functor is, 21.3
vs. adjoint situation, 19.14
vs. comparison functor, 20.43
vs. concrete functor, 5.10
vs. embedding functor, 3.28, 3.29, 4.5
vs. (E,M)-factorization, 17.15, 17.16
vs. essentially algebraic functor, 23.2
vs. inclusions of subcategories, 4.5
vs. initial source, 10.59
vs. reflection of equalizers, 13.24,

17.13, 17.14
vs. reflection of (extremal)

epimorphisms, 19.14
vs. reflection of products, 10.60
vs. reflection of special morphisms,

17G
vs. solid functor, 25.12
vs. thin category, 3.29, 3G
vs. topologically algebraic functor,

25.3
Fibre of a base object, 5.4, 5A

largest element need not be discrete,
8.5

order on, 5.4
Fibre-complete concrete category, 5.7

functor-structured categories are, 5.42

Fibre-discrete concrete category, means
fibres are ordered by equality, 5.7
categories of T -algebras are, 5.39
concrete category is, iff forgetful

functor reflects identities, 5.8
Fibre-small concrete category, 5.4, 5.6

monadic category is, 20.12
Fibre-small topological category, 21.34 ff,

21B
Final lift, vs. topological category, 21.34
Finally closed subcategory, 21.29

vs. concretely coreflective
subcategory, 22.8

Finally dense embedding, 10.72
Finally dense subcategory, 10.69

vs. concretely reflective subcategory,
21.32

vs. preserves initial sources, 10.71
vs. topological category, 21.32

Final morphism, 8.10 ff
composition of, 8.13
is extremal epimorphism in algebraic

category, 23.23
first factor of, 8.13
products of, 28J
vs. extremal epimorphism, 8.11(5)
vs. isomorphism, 8.14
vs. monadic category, 20.28
vs. regular epimorphism, 8.11(4), 8O,

20.51
Final quotient object, 8.10
Final sink, 10.63 ff

reducibility of, vs. representable
partial morphisms, 28.15

Finer than, (preorder) relation on
concrete functors, 5.18

Finitary category, 24.4
= finitary variety, if monadic, 24.7

Finitary functor, 24.4
Finitary monad, 24.4
Finitary quasivariety, 16.12
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axiomatic descriptions, 23.30, 23.31,
23.38, 24.9, 24.10,

characterization theorem, 24.9
= finitary and algebraic category, 24.9
= regular epireflective subconstruct of

some finitary monadic construct,
24.9

vs. directed colimit, 24A
vs. finitary variety, 16K, 16N, 24.9

Finitary variety, 16.16
axiomatic descriptions, 20.35, 23.40,

24.7, 24.8
characterization theorem for, 24.7
is monadic, 20.20
vs. finitary quasivariety, 16K, 16N,

24.9
vs. monadic category, 24.7

Finitely (co)complete category, 12.2
characterization, 12.4

Finitely complete category, vs. has finite
products and representable M -partial
morphisms, 28.5, 28.6

Finite product, 10.29
vs. product and projective limit, 11B

Forgetful functor, 3.20(3), 5.1 ff
vs. coequalizer, 7.73
vs. regular epimorphism, 7.73
vs. topological construct, 21L

Fork, congruence, 20.14
split, 20.14

Frame, 5L, 8G
Free automata, 8P
Free category, 3A
Free functor, 19.4
Free monad, 20.55

vs. varietor, 20.56, 20.57, 20.58
Free object, 8.22, 8F–8L

existence, 18.15
retract of, 9.29
vs. adjoint functor, 18.19
vs. adjoint situation, 19.4
vs. copower, 10R

vs. initial object, 8.23
vs. monomorphism, 8.28, 8.29
vs. preservation and reflection of

mono-sources, 18.10
vs. projective object, 9.29, 9.30
vs. representable forgetful functor,

8.23
vs. wellpoweredness, 18.10

Full embeddability of familiar constructs,
4.7, 4K

Full embedding functor, 4.6
vs. comparison functor, 20.44
vs. inclusion of a full subcategory, 4.5,

4.6
Full faithful functor,

is isomorphism iff bijective on objects,
3.28

properties of, 3.31
reflects isomorphisms, 3.32
vs. adjoint situation, 19.14

Full functor, 3.27 ff
closed under composition, 3.30
second factor of is not always full, 3.30
vs. comparison functor, 20.43

Full reflective embedding,
is topologically algebraic, 25.2
vs. solid functor, 26.1

Full reflective subcategory,
characterization, 4.20

Full subcategory, 4.1 ff, 4C
isomorphism-closed, 4.9, 4B
isomorphism-dense, 4.9
vs. concretely reflective subcategory

of amnestic category, 5.24
Function,

between classes, 2.2
between conglomerates, 2.3
between sets, 2.1

Functor, 3.17 ff
adjoint, = adjoint functor, 18.1 ff
algebraic, = algebraic functor, 23.19 ff
co-adjoint, = co-adjoint functor,
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18.1 ff
comparison, = comparison functor,

20.37 ff
composite of, 3.23
concretely co-wellpowered, 8.37
constant functor, 3.20(2)
contravariant hom-functor, 3.20(5)
contravariant power-set functor,

3.20(9)
coproduct of, 10U
coreflector for a coreflective

subcategory, 4.27
covariant hom-functor, 3.20(4)
covariant power-set functor, 3.20(8)
co-wellpowered, implies domain

co-well- powered, 8.37, 8.38
decomposition of, 3N
discrete space, 3.29
dual, = opposite functor, 3.41
duality functor for vector spaces,

3.20(12)
(E,−), = (E,−)-functor, 17.4
embedding, = embedding functor,

3.27
is embedding iff faithful and injective

on objects, 3.28
(E,M), = (E,M)-functor, 17.3 ff
E-monadic, = E-monadic functor,

20.21 ff
equivalence, = equivalence functor,

3.33
essentially algebraic, = essentially

algebraic functor, 23.1 ff
exponential, 27.5
extremally co-wellpowered, 8.37
faithful, = faithful functor, 3.27
as family of functions between

morphism classes, 3.19
finitary, 24.4
forgetful functor, = underlying or

forgetful functor, 3.20(3), 5.1
free, 19.4
full, = full functor, 3.27
fundamental group, 3.22

identity, 3.20(1)
inclusion, 4.4
indiscrete space, 3.29, 21.12
inverse, 3.25
isomorphism, 3.24
is isomorphism iff full, faithful, and

bijective on objects, 3.28
isomorphism-dense, 3.33
monadic, = monadic functor, 20.8 ff
M-topological, 21K
naturally isomorphic to idA, 6D
need not reflect isomorphisms, 3.22
notation, 3.18
nth power functor, 3.20(10)
object-free, 3.55
object-part determined by the

morphism-parts, 3.19
opposite, = opposite functor, 3.41
preserves isomorphisms, 3.21
between quasicategories, 3.51
regularly algebraic, = regularly

algebraic functor, 23.35 ff
regularly monadic, = regularly

monadic functor, 20.21 ff
representable, = representable

functor, 6.9
solid, = solid functor, 25.10 ff
Stone-functor, 3.20(11)
topologically algebraic, =

topologically algebraic functor,
25.1 ff

topological, = topological functor,
21.1 ff

underlying, = forgetful functor,
3.20(3), 5.1

vs. reflection of identities, 3D
Functor-costructured category, 5.43
Functor quasicategory, 6.15, 6H

full embedding of any category into,
6.20

Functors, relationships among, 25.22
Functor-structured category, 5.40, 6C,

28K
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cartesian closed, 27I
characterization, 22A
reflective subcategory of, vs. solid

strongly fibre-small category, 26.7

Galois adjoint, = residual functor, 6.25
Galois adjunction, 19D
Galois co-adjoint, = residuated functor,

6.25
Galois connection, 6.26, 6G

composition of, 6.27(1)
dual of, 6.27(2)

Galois coreflection, 6.26, 6.35
Galois correspondence, 6.25, 19E

between amnestic concrete categories,
6.29–6.36

decomposition of, 6.35
equivalently described, 6.28
for constructs, 6.26
theorem, 21.24
vs. adjoint situation, 19.8
vs. concrete co-adjoint, 21E
vs. initial source preservation, 10.49,

21.24
Galois isomorphism, 6.26, 6.35
Galois reflection, 6.26

characterization, 6.34
vs. decomposition of Galois

correspondence, 6.35
(Generating, −)-factorizable functor,

composites of, 17B
(Generating, −)-factorization, for

2-sources implies preservation of
mono-sources, 17.12

(Generating, M)-functor, vs. adjoint
functor, 18.4

(Generating, Mono-Source)-factorizations
of 2-sources, vs. reflection of
isomorphisms, 17.13

Generating structured arrow, 8.15 ff
characterization, 17A
concretely, 8.15

extremally, 8.15
strongly generating structured arrow

is, 25.5
w.r.t. a functor, 8.30

Generation,
vs. concrete generation, 8.16
vs. epimorphism, 8.16, 8.18

Graph of a category, 3A

Has a separator, vs. cartesian closed
category, 27.4

Has coequalizers, 12.1
vs. regularly algebraic category, 23.38

Has concrete (co)limits, 13.12
Has concrete products, 10.54
Has (E,M)-factorizations, vs.

(E,M)-functor, 17.10
w.r.t. a functor, 17.3
vs. adjoint functor, 18.3

Has enough injectives, 9.9, 9.22
Has equalizers, 12.1

and (finite) products, means (finitely)
complete, 12.3, 12.4

Has (finite) (co)intersections, 12.1
Has (finite) (co)products, 10.29, 12.1
Has finite intersections,

and finite products, means finitely
complete, 12.4

and products, means complete, 12.3
Has finite products, and representable

M -partial morphisms, vs. finitely
complete, 28.5, 28.6

Has free objects, 8.26
Has function spaces, 27.17

vs. constant functions are morphisms,
27.18

vs. discrete terminal objects, 27.18
vs. topological category, 27.22

Has limits, vs. (E,M)-structured, 14.17
Has M-initial subobjects, vs. concrete

products, 21.42
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Has products, 10.29
of all sizes, implies thin category,

10.32
and equalizers (resp. intersections),

means complete, 12.3
vs. extension of factorization

structure, 15.19, 15.21
Has pullbacks, 12.1

and a terminal object, means finitely
complete, 12.4

Has pushouts, 12.1
Has regular factorizations, 15.12

vs. regularly monadic functor, 20.32
Has representable M -partial morphisms,

28.1
consequences of, 28.3

Has small concrete colimits,
characterized, 13.14

Hewitt, E. see Duality principle
Hom-functor, 3.20(4), 3.20(5)

preserves limits, 13.7
vs. (co)separator, 7.12, 7.17
vs. epimorphism, 19C
vs. limit, 13H
vs. product, 10E, 10F
vs. quasicategory, 3.51
vs. set-valued functor, 6.18

Hull,
algebraic, 23K
E-reflective, = E-reflective hull, 16.21
injective, 9.16

Idempotent monad, 20F
Identity-carried A-morphism, 5.3
Identity-carried reflection arrow, see

Concretely reflective concrete
subcategory

Identity functor, 3.20(1), 5.14
Identity morphism, 3.1 ff

in a category, as unit in the
corresponding object-free category,
3.54

reflection, 3D
vs. isomorphism, 3.13
vs. object, 3.19
vs. subcategory, 4A

Identity natural transformation, 6.6
Illegitimate conglomerate, 2.3
Illegitimate quasicategory, 6.16
Image of the indexing function, 2.1
Image, inverse 11.19
Implication, = epimorphism, 16.12

satisfaction of, 16.12
Implicational subcategory, 16.12
Inclusion functor, 4.4
Indiscrete object, 8.3

must be largest element in the fibre,
8.4

preservation, 21.23
vs. initial source, 10.42
vs. initial subobjects, 21.35
vs. topological category, 21.11, 21.35

Indiscrete space functor,
is a full embedding, 3.29
vs. topological functor, 21.12

Indiscrete structure, vs. adjoint situation,
21A
vs. topological functor, 21.18, 21.19,

21.20
Inductive limit, 11.28
Initial completion, 21G
Initiality-preserving concrete functor,

preserves indiscrete objects, 21.23
Initial lift, vs. topological category, 21.34
Initially closed subcategory, 21.29

of a topological category is
topological, 21.30

vs. concretely reflective subcategory,
21.31, 22.3, 22.4

Initially dense subcategory, 10.69
Initial morphism, 8.6

composition of, 8.9
first factor of, 8.9
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universally, 10P
vs. injective morphism, 8B
vs. isomorphism, 8.14

Initial object, 7.1
uniqueness, 7.3
vs. free object, 8.23
vs. limit, 11A

Initial source, 10.41
composition of, 10O
domain of, 10.43
preservation, 10.47
— vs. Galois correspondence, 21.24

preserved by composition, 10.45
preserved by first factor, 10.45
vs. concrete product, 10.53
vs. concretely reflective subcategory,

10.50
vs. faithful functor, 10.59
vs. finally dense subcategory, 10.69
vs. indiscrete object, 10.42
vs. initial subsource, in a fibre-small

topological category, 21.36
vs. mono-source, 17.13
vs. subsource, 10.46
w.r.t. a functor, 10.57

Initial subobject, 8.6
vs. indiscrete object, 21.35
vs. monotopological construct, 21.42
vs. topological category, 21.35

Initial T -algebra, 20I
Injection morphism, 10.63
Injective, enough, 9.9, 15H
Injective automata, 9I
Injective extension, 9.11

types of, 9.20
Injective hull, 9.16

w.r.t. a class of morphisms, 9.22
existence, 9C
for finitary varieties, 16J
uniqueness, 9.19
vs. enough injectives, 9D

Injective morphism, vs. initial morphism,

8B
Injective object, 9.1

is an absolute retract, 9.7
in CAT, vs. topological category,

21.21
characterization, 9B
w.r.t. a class of morphisms, 9.22
preserved by product, 10.40
terminal object is, 9.4
in topological construct, 28A
vs. essential extension, 9.15
vs. maximal essential extension, 9F
vs. reflective subcategory, 9.25
vs. retract, 9.5

Injectivity class, 9.26
Insertion of generators, 19.4
Intersection, of a family of sets, 2.1
Intersection of subobjects, 11.23

closure under the formation of, 11.26
existence, 12.1
as pullback, 11F
vs. (E,M)-structured category, 14.15
vs. (Epi, ExtrMono)-structured

category, 14.19
vs. isomorphism, 11.25
vs. limit, 11.25
vs. regular subobject & section, 11K

Inverse functor, unique determination,
3.25

Inverse image, of a subject, 11.19
Inverse of an isomorphism, notation, 3.12
Inverse limit, 11.4
Inverse of a morphism, 3.8

uniqueness, 3.11
“is equivalent to”, is equivalence relation

on categories, 3.34
“is isomorphic to” is an equivalence

relation on categories, 3.25
Isomorphic, “is isomorphic to” is an

equivalence relation on categories,
3.25
concretely, 5.12
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naturally, 6.5
Isomorphic categories, 3.24, 3.25

vs. equivalent categories, 3.35
Isomorphic objects, 3.15

yields equivalence relation on the
object class, 3.16

Isomorphic structured arrows, 8.19, 8.34
Isomorphism, 3.8 ff, 3F

in a category, vs. isomorphic objects,
3.15

composite of, is an isomorphism, 3.14
concrete, 5N
creation, 13.35, 13M
functor is isomorphism iff full,

faithful, and bijective on objects,
3.28

functors need not reflect, 3.22
Galois, 6.26
inverse is an isomorphism, 3.14
natural, 6.5
non-concrete, 5B
is 1-product, 10.20
preserved and reflected by equivalence

functor, 7.47
preserved by functors, 3.21
preserved by products, 10.35
reflection of, 13.35, 13F
vs. coequalizer, 7.70
vs. (E,M)-category, 15.5
vs. epimorphism, 7.43, 7.66
vs. equalizer, 7.54
vs. extremal monomorphism, 7.66
vs. final morphism, 8.14
vs. identity morphism, 3.13
vs. initial morphism, 8.14
vs. intersection, 11.25
vs. monomorphism, 7.36
vs. product source, 10.26
vs. retraction, 7.36
vs. section, 7.43

Isomorphism-closed (full) subcategory,
4.9, 4B

Isomorphism-closed full subcategory, vs.

limit-closed, 13.27
Isomorphism-dense full subcategory, 4.9,

4.10, 4.12
Isomorphism-dense functor, 3.33
Isomorphism functor, 3.24

closed under composition, 3.30
is isomorphism in CAT, 3.51

Iso-transformation, 6.5

Kernel, 7C
vs. pullback, 11E

Kleisli category, 20.39, 20B

Large category, 3.44
Large class, 2.2
Largest essential extension, 9.20
Left adjoint, = co-adjoint, 19.11
Left inverse of a morphism, vs. right

inverse, 3.10
Legitimate conglomerate, 2.3
Legitimate quasicategory, 6.16
Lifting of an adjoint situation, 21.26

vs. topological category, 21.28
Lifting of colimits, 13.17
Lifting of (E,M)-factorizations, uniquely,

20.23
vs. E-monadic functor, 20.24

Lifting of (Extremal Epi,
Mono-Source)-factorizations uniquely,
vs. algebraic category, 23.31

Lifting of limits, 13.17
uniquely, and reflect limits, vs. create

limits, 13.25
vs. amnesticity, 13.21
vs. create limits, 13.20
vs. detect limits, 13.34
vs. preserve small limits, 13.19
vs. reflect limits, 13.23
vs. transportability, 13E

Limit-closed subcategory, 13.26, 13I, 13J
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vs. isomorphism-closed subcategory,
13.27

Limit-dense subcategory, rarity, 12E
Limit (of a diagram), 11.3 ff

concrete, = concrete limit, 13.12
construction via large colimits, 12.7
creation, 13.17
detection, = detection of limit, 13.22
is extremal mono-source, 11.6
inductive, 11.28
inverse, 11.4
lifting of, 13.17, 13D, 13E
— vs. topological functor, 21.15

preservation of, = preservation of
limit, 13.1 ff, 13B

— vs. preservation of monos, 13.5
— vs. preservation of strong limits,
13.1

— vs. topological functor, 21.15
projective, 11.4, 11B
reflection of, 13.22, 13G, 17.13
uniqueness, 11.7
vs. factorization, 14.16
vs. hom-functors, 13H
vs. initial object, 11A
vs. intersection, 11.25
vs. pullback square, 11.9
vs. reflective subcategory, 13.28

Locally presentable category, 20H

Mac Neille completion, 21H
vs. solid category, 25G

M -action, category of all M -actions and
action homomorphisms, 3.26

Map, quotient, = quotient map, 9.27
Matching condition, see Object-free

category
Maximal essential extension, 9.20

vs. injective object, 9F
Minimal injective extension, 9.20

vs. smallest injective extension, 9G
M-initially closed subcategory, vs.

concretely E-reflective subcategory,
22.9

Modification, amnestic, = amnestic
modification, 5.6, 5.33, 5.34, 5F

Modifications of structure, vs.
(co)reflective subcategory, 4.17, 4.26

Monad, 20.1 ff
associated with an adjoint situation,

20.3, 20A
finitary, 24.4
gives rise to an adjoint situation, 20.7
idempotent, 20F
on Set, is finitary if and only if the

associated construct is finitary, 24.6
— is regular, 20.22

regular, 20.21
trivial, 20.2
with rank, 20G

Monadic concrete category, 20.8 ff
cocompleteness of, 20D
∼= its associated category of algebras,

20.40
properties of, 20.12
vs. adjoint functor, 20.46
vs. concrete functor, 20E
vs. co-wellpoweredness, 20.29
vs. (Epi,Mono-Source)-factorization,

20.49
vs. essentially algebraic category,

23.16
vs. extremal co-wellpoweredness,

20.48
vs. factorization structure, 20.28
vs. final morphism, 20.28
vs. finitary variety, 24.7
vs. monadic subcategory, 20.19
vs. reflective subcategory, 20.18
vs. varietor, 20.56, 20.57, 20.58

Monadic construct, 20.34 ff
bounded, vs. bounded variety, 24.11
characterization theorem for, 20.35
is complete, cocomplete, wellpowered,

co-wellpowered, and has regular
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factorizations, 20.34
is regularly algebraic, 23.37
vs. algebraic construct, 23.41
vs. coequalizer of congruence relation,

20.35
vs. creation of finite limits, 20.35

Monadic functor, 20.8 ff
characterization theorem for, 20.17
composition of, need not be monadic,

20.45
creates absolute colimits, 20.16
deficiencies of, 20.45 ff
need not detect colimits, 20.47
need not reflect regular epimorphisms,

20.52
properties of, 20.12
regularly, = regularly monadic

functor, 20.21 ff
vs. colimit, 20.13
vs. essentially algebraic functor, 23C
vs. extremal monomorphism, 20O
vs. order preserving map, 20N
vs. preservation of extremal

epimorphisms, 20.50
vs. preservation of regular

epimorphisms, 20.50
vs. regularly monadic functor, 20.32,

20.35
vs. solid functor, 25F

Monadic subcategory, vs. monadic
category, 20.18

Monadic towers, 20J
Monad morphism, 20.55
Monoid (as a category), 3.3(4)

M -actions as functors from a monoid
M to Set, 3.20(13)

Monomorphism, 7.32 ff
closed under composition, 7.34
extremal, = extremal monomorphism,

7.61 ff
normal, 7C
preserved by products, 10.35
preserved and reflected by equivalence

functor, 7.47
preserved by representable functor,

7.37
is pullback stable, 11.18
reflected by faithful functor, 7.37
regular, = regular monomorphism,

7.56 ff
as retraction means isomorphism, 7.36
split, = section, 7.19 ff
strict, = strict monomorphism, 7.76,

7D
types of, 7.76
vs. coequalizer, 7.70
vs. congruence relation, 11.20, 11R
vs. embedding, 8.7
vs. (E,M)-structured category, 14.9
vs. free object, 8.28, 8.29
vs. mono-source, 10.26
vs. preservation of limits, 13.5
vs. pullback square, 11.15, 11.16
vs. regular monomorphism, 7O
vs. section, 7.35, 7P

Monoreflective subcategory, 16.1
is bireflective, 16.3

Mono-source, 10.5 ff
characterization, 10A
extremal, = extremal mono-source,

10.11
is extremal in balanced category,

10.12
is initial, vs. essentially algebraic

functor, 23.2
— vs. monadic category, 20.12
— vs. reflection of limits, 17.13, 17.14
preservation, by representable

functors, 10.7
— implied by (Generating,
−)-factoriza- tion for 2-sources,
17.12

preserved by composition, 10.9
preserved by first factor, 10.9
reflection, by faithful functors, 10.7
vs. balanced category, 10.12
vs. (E,M)-category, 15.6–15.9
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vs. initial source, 17.13
vs. monomorphism, 10.26
vs. point-separating source, 10.8, 10T
vs. preservation of limits, 13.5
vs. pushout, 11P
vs. subsource, 10.10

Monotopological category, 21.38 ff
Monotopological construct,

characterization of fibre-small, 22.10
vs. concrete products, 21.42
vs. initial subobjects, 21.42
vs. subconstruct of a

functor-structured construct, 22.10
Mono-transformation, 6.5, 7R
Morphism, 3.1 ff

(co)domain of, 3.2
coessential, 9.27
composite of, see Composition of

morphisms
constant, 7A, 10W
diagonal, 10V, 10W
epi-, see Epimorphism
evaluation, 27.2
exponential, 27.2
final, = final morphism, 8.10 ff
initial, = initial morphism, 8.6 ff
isomorphism, 3.8
mono-, see Monomorphism
in an object-free category, 3.53
partial, 28.1
product of, 10.34
quotient, = quotient morphism, 8.10
retraction, 7.24 ff
section, 7.19 ff
zero, 7A

Morphism class of a category, 3.2
as corresponding object-free category,

3.54
of small category is a set, 3.45

M -reducible, 28.13
M-sources, closed under the formation of,

16.7
M-subobject, = singleton M-source, 16.8

M-topological category, 21.38 ff
characterization theorem, 21.40
is E-reflective in some topological

category, 21.40
fibre-small, characterization, 22.9
vs. subcategory of a

functor-structured category, 22.9
M-topological functor, 21K
M-topological structure theorem, 22.9
M -topos, 28.7
M -transformation, 6.5
Multiple equalizer, 11.4
Multiple pullback, 11L–11N, 12C

preservation, 13A

Natural equivalence, = natural
isomorphism, 6.5

Natural isomorphism, 6.5
Natural numbers, 2.1
Naturality condition, 6.1
Naturally isomorphic, 6.5
Natural sink, 11.27
Natural source, 11.3

is natural transformation, 11.5
Natural transformation, 6.1 ff

cardinality of, 6B
composition, 6.13, 6A
concrete, 6.23, 6.24
identity-carried, = concrete natural

transformation, 6.23
M -transformation, 6.5

vs. composition of functors, 6.3
vs. opposite functor, 6.3
vs. Set-valued functor, 6.18

Neighborhood space, 5N
Normal monomorphism, 7C
nth power functor, 3.20(10)
n-tuple of sets or classes, 2.1, 2.2

Object, 3.1 ff
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copower of, 10.63
discrete, = discrete object, 8.1
equivalent to another, in a concrete

category, 5.4
free, = free object, 8.22
indiscrete, = indiscrete object, 8.3
initial, = initial object, 7.1
injective, = injective object, 9.1
isomorphic, 3.15, 3.16
power, 27.2
power of, 10.37
projective, = projective object, 9.27
quotient, = quotient object, 7.84 ff
terminal, = terminal object, 7.4
zero, 7.7, 27A

Object class of a category, 3.1, 3.2
vs. identity morphisms, 3.19

Object-free category, 3.53
corresponding to a category, 3.54, 3.55

Object-free functor, 3.55
Opposite category, 3.5

dually equivalent means opposite
category is equivalent, 3.38

vs. contravariant hom-functor, 3.20(5)
vs. contravariant power-set functor,

3.20(9)
vs. dual functor for vector spaces,

3.20(12)
vs. Stone-functor, 3.20(11)

Opposite functor, 3.41
vs. Galois connection, 6.27 (2)
vs. natural transformation, 6.3

Ordered pair of sets, 2.1
Order on concrete functors, 5.18

vs. concretely reflective subcategory,
5.26

Order on objects, in a concrete category,
5.4, 5.5

Order preserving map, = morphism in
Pos, 4.3
vs. monadic functor, 20N

Partial binary algebra, 3.52
Partial binary operation, 3.52
Partial morphism, 28.1
Pointed category, 3B, 7B
Point-separating source, 10.5

vs. mono-source, 10.8, 10T
Posets, category of, 4.3

down-directed & up-directed, 11.4
Power object, 27.2
Power-set, = set of all subsets, 2.1
Power-set functor, 3.20(8), 3.20(9)

representability of, 6F
vs. adjoint functor, 18E

Power-set monad, 20.2
Power-set-morphism, 28.11
Power (of an object), 10.37

with discrete exponent is product, vs.
cartesian closed topological
construct, 27.24

comparison of, 10K
vs. coseparator, 10.38

Preimage-morphism, 28.11
Preordered class, as a category, 3.3(4)
Preorder relation on the fibres, in a

concrete category, 5.5
Preservation of coequalizers, 13.1
Preservation of colimits, 13.1
Preservation of coproducts, 13.1
Preservation of equalizers, 13.1, 13.3
Preservation of extremal epimorphisms,

vs. monadic functor, 20.50
Preservation of initial sources, 10.47

vs. finally dense subcategory, 10.71
Preservation of limits & colimits, §13
Preservation of limits,

adjoint functor does, 18.9
vs. adjoint functor, 18.12, 18.14,

18.17, 18.19
vs. embedding, 13.11
vs. hom-functor, 13.7
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vs. monomorphism & mono-source,
13.5

vs. representable functor, 13.9
vs. solid functor, 25.14

Preservation of mono-sources, implied by
(Generating, −)-factorization for
2-sources, 17.12

Preservation of products, 13.1, 13.3
Preservation of pullbacks, 13.3
Preservation and reflection of

mono-sources, vs. free object, 18.10
vs. monadic functor, 20.12

Preservation of regular epimorphisms, vs.
(regularly) monadic functor, 20.32,
20.50

Preservation of small limits, vs. lift
limits, 13.19

Preservation of strong limits, vs.
(ExtrGen, Mono-Source) functor,
17.11, 17H

Preservation of terminal object, 13.3
Pretopological space, 5N
Product (of morphisms), 10.34

of epimorphisms, vs. cartesian closed
category, 27.8

Product (of objects), 10.19 ff
in abelian groups, 10G
for Banach spaces, 10J
characterization, 10Q
composition of, 10.25
concrete, = concrete product, 10.52,

13.12
with discrete factors are coproducts,

vs. cartesian closed topological
construct, 27.24

existence, 10.29, 10I, 12.1
is extremal mono-source, 10.21
notation for, 10.23
of pairs, 10.30
preservation of, 13.1
preserved by first mono-factor, 10.56
and pullback square, vs. equalizer,

11.11, 11.14
uniqueness, 10.22
vs. empty source, 10.20
vs. (E,M)-structured category, 14.15
vs. equalizer, 10.36
vs. finite product, 11B
vs. first factor, 10.25
vs. hom-functor, 10E, 10F
vs. isomorphism, 10.20
vs. projective limit, 11B
vs. pullback square, 11.13, 11C, 11D
vs. retraction, 10.28
vs. terminal object, 10.20, 10.30, 10H

Product category, 3.3(4)
Product source, vs. isomorphism, 10.26
Projection morphism, 10.23

vs. retraction, 10.27
Projective cover, 9.27
Projective hull, w.r.t. a class of

morphisms, 9.27
Projective limit, 11.4

vs. (finite) product, 11B
Projective object, 9.27

w.r.t. a class of morphisms, 9.27
extremal, in algebraic category, 23.28,

23.29
regular, 9E
vs. free object, 9.29, 9.30

Proper class, 2.2 See also Large category
Proper quasicategory, 3.50, 3.51

quasicategory of all categories is, 3.51
Property, dual, 3.7

universal, 4.16, 4.25
Property of objects, as

(isomorphism-closed) full subcategory,
4.8

Pulation square, 11.32, 11Q
vs. congruence relation, 11.33

Pullback, 11.8 ff. See also Pullback
square
closure under the formation of, 11.17
existence, 12.1
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of a morphism, 11.8
multiple, 11L–11N
of a sink along a morphism, 28.13
of a 2-sink, 11.8
vs. (E,M)-structured category, 14.15
vs. epi-sink, 11I
vs. equalizer, 11S
vs. kernel, 11E
vs. product, 11C, 11D
vs. section, 11H
vs. strict monomorphism, 11H

Pullback square, 11.8 ff. See also
Pullback
cancellation of, 11.10, 11.15
composition of, 11.10
and product, vs. equalizer, 11.14
vs. equalizer and product, 11.11
vs. extremal mono-source, 11.9
vs. limit, 11.9
vs. monomorphism, 11.15, 11.16
vs. product, 11.13
vs. terminal object, 11.13

Pullback stable, 11.17, 28.13
Pushout, 11.30 ff

existence, 12.1
of a 2-source, 11.30
vs. (E,M)-category, 15.14, 15.15,

15.16
vs. mono-source, 11P

Pushout square, 11.30 ff
vs. coequalizer, 11.33

Quasicategory, 3.49 ff
of all categories, is not a category, 3.5,

3.51
of all concrete categories over a given

base category, 5.14, 5.15
of all object-free categories, 3.55
of all quasicategories, yields

Russell-like paradox, 3.51, 3L
category is, 3.51
functor quasicategory, 6.15, 6H
(il)legitimate, 6.16

proper, 3.50, 3.51
vs. hom-functor, 3.51

Quasiconstruct of quasitopological
spaces, 5.6

Quasitopos, 28.7
is (Epi, RegMono)-structured, 28.10

Quasivariety, = algebraic construct, 24.12
finitary, = finitary quasivariety, 16.12

Quotient map, 9.27
coessential, 9.27

Quotient morphism, 8.10
composition & first factor of, 8.13
vs. extremal epimorphism, 23G
vs. (regular) epimorphism &

retraction, 8.12
Quotient object, 7.84 ff

extremal, = extremal quotient object,
7.84

order on, 7.85
regular, = regular quotient object,

7.84

Rational & real numbers, 2.1
Realization = full, concrete embedding,

5O
Reflection arrow, 4.16 ff

uniqueness, 4.19
vs. colimit, 13.30

Reflection, See also Reflector
concrete, 5.22, 5E
Galois, 6.26

Reflection of colimits, 13.22
Reflection of equalizers, 17.13

vs. essentially algebraic functor, 23.2
vs. faithful functor, 13.24, 17.13, 17.14
vs. reflection of limits, 17.13, 17.14

Reflection of (extremal) epimorphisms,
17.13
vs. adjoint situation, 19.14
vs. essentially algebraic functor, 23.2
vs. faithful functor, 19.14
vs. monadic functor, 20.12
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Reflection of identities, vs. creation of
isomorphisms, 13.36

Reflection of isomorphisms, 13.35
functors need not, 3.22
vs. creation of isomorphisms, 13.36
vs. creation of limits, 13.25
vs. essentially algebraic functor, 23.2
vs. (Generating,

Mono-Source)-factoriza- tions of
2-sources, 17.13

vs. reflection of limits, 17.13, 17.14
Reflection of limits, 13.22, 13G, 17.13

vs. essentially algebraic functor, 23.2
vs. lifting of limits, 13.23
vs. mono-sources are initial, 17.13,

17.14
vs. reflection of equalizers, 17.13,

17.14
vs. reflection of isomorphisms, 17.13,

17.14
Reflection of products, vs. faithful

functor, 10.60
Reflection of regular epimorphisms, vs.

initiality of mono-sources, 19.14
Reflective embedding, misbehaved, 13K
Reflective modification, of a concrete

category, 5.22, 5K
Reflective subcategory, 4.16, 16D, 16E

characterization of fullness, 4.20
embedding of, preserves and reflects

mono-sources, 18.7
full, 4.20, 7F
of a functor-structured category, vs.

cocomplete category that has free
objects, 26.8

intersections, 4F
nonfull, with reflection arrows

isomorphisms, example, 4.21, 13K
reflectors are naturally isomorphic, 6.7
of special categories, 4D
vs. adjoint situation, 19.4
vs. cartesian closed subcategory, 27.9
vs. cocomplete subcategory, 12K

vs. colimit-closed subcategory, 13.29
vs. detection of colimits, 13.32
vs. E-monadic subcategory, 20.25
vs. injective objects, 9.25
vs. limits, 13.28
vs. monadic category, 20.18

Reflector (for a reflective subcategory),
4.23, 4H
as composite of epireflectors, 16.24
concrete, 5.22, 5E
existence, 4.22
naturally isomorphic to others, 6.7
uniqueness 4.24, 6.7
vs. concretely reflective subcategory,

5.26, 5.27, 5.31, 5.32
(RegEpi, Mono-Source)-category,

characterization, 15.25
vs. regular factorization, 15.13

(RegEpi, Mono)-structured category,
14.22, 14D

Regular category, 14E
Regular co-wellpowered category, 7.87

vs. category with separator or
coseparator, 7.89

vs. construct, 7.88
Regular epimorphism, 7.71 ff

closed under composition, vs.
(RegEpi, Mono-Source)-category,
15.25

composition of, 14.22
is extremal epimorphism, 7.75
preservation and reflection, vs.

regularly algebraic category, 23.39
vs. (E,M)-category, 15.7, 15.8
vs. (E, Mono)-structured category,

14.14
vs. (extremal) epimorphism, 7O, 21.13
vs. final morphism, 8.11(4), 8O, 20.51
vs. forgetful functor, 7.72(5), 7.73
vs. monadic functor, 20.51, 20.52
vs. quotient morphism, 8.12
vs. retraction, 7.75

Regular epireflective subcategory, 16.1
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Regular epireflective subconstruct, vs.
(regular) equational subconstruct,
16.18

Regular equation, 16.16
Regular equational subconstruct, vs.

regular epireflective subconstruct,
16.18

Regular factorization, 15.12, 20.32
vs. algebraic functor, 24.2
vs. (RegEpi,Mono-Source)-category,

15.13
vs. regularly algebraic category, 23.38,

23.39
vs. regularly monadic category, 20.30

Regular monomorphism, 7.56 ff
composition of, 7J, 10M, 14I, 28.6
is (extremal) monomorphism, 7.59,

7.63
first factor, 14I
in functionally Hausdorff spaces, 7J
preserved by products, 10.35
is pullback stable, 11.18
in semigroups, 14I
vs. embedding, 8.7, 8A
vs. equalizer, 13.6
vs. extremal monomorphism, 7.62,

7.63, 7.65, 7J, 12B, 14.20, 14I, 21.13
vs. monomorphism, 7O
vs. section, 7.59
vs. strict monomorphism, 12A
vs. topos, 28F

Regular projective object, 9E
Regular quotient object, 7.84
Regular subobject, 7.77

vs. intersection, 11K
Regular wellpowered category, 7.82

vs. category with separator or
co-separator, 7.89

vs. construct, 7.88
vs. wellpowered category, 7.83

Regularly algebraic category, 23.35 ff
characterization theorem for, 23.38

vs. adjoint functor, 23.38
vs. regular factorization, 23.39
vs. uniquely transportable functor,

23.38
Regularly algebraic functor, 23.35 ff, 23E,

23M
decomposition theorem for, 24.2
implies associated monad is regular,

24.1
implies comparison functor is a

regular epireflective embedding, 24.1
Regularly monadic category, vs. regular

factorization, 20.30
Regularly monadic functor, 20.21 ff, 20L

characterization theorem for, 20.32
composition of, 24.2
detects colimits, 20.33
detects extremal co-wellpoweredness,

20.31
is regularly algebraic, 23.36
vs. monadic functor, 20.35
vs. solid functor, 26.4

Relation, congruence, = congruence
relation, 11.20

Relational category, 28H
Representable extremal partial

morphisms, 28.19
Representable functor, 6.9, 6K

preserves limits, 13.9
preserves monomorphisms, 7.37
preserves mono-sources, 10.7
vs. adjoint functor, 18C
vs. duality, 10N
vs. free object, 8.23

Representable M -partial morphisms, vs.
topological category, 28.12

Representable partial morphisms,
vs. final sinks are reducible, 28.15
vs. topological category, 28.15

Represent M -partial morphisms, 28.1
Retract, 7.24

absolute, 9.6

9th July 2006



502 INDEX

in an isomorphism-closed full
reflective subcategory, 7.31

vs. injective object, 9.5
Retraction, 7.24 ff

is epimorphism, 7.42
as monomorphism means

isomorphism, 7.36
preserved by all functors, 7.28
preserved by products, 10.35
preserved and reflected by equivalence

functor, 7.47
is pullback stable, 11.18
reflected by full, faithful functor, 7.29
is regular epimorphism, 7.75
vs. (E,M)-structured category, 14.9
vs. product, 10.28
vs. projection morphism, 10.27
vs. quotient morphism, 8.12

Right adjoint, = adjoint, 19.11
Right inverse of a morphism, vs. left

inverse, 3.10
Russell’s paradox, 2.2, 2.3, 3.51, 3L

Satisfaction of an implication, =
e-injective, 16.11, 16.12

Satisfaction of topological (co-)axiom,
22.1, 22.6

Scheme, = domain of a diagram, 11.1
Section, 7.19 ff, 7E

as epimorphism is isomorphism, 7.43
preserved by all functors, 7.22
preserved by products, 10.35
reflected by full, faithful functor, 7.23
is (regular) monomorphism, 7.35, 7.59
vs. embedding, 8.7
vs. equivalence functor, 7.47
vs. intersection, 11K
vs. monomorphism, 7P
vs. pullback, 11H

Self-adjoint endofunctor, 19G
Self-dual concept, 3.7 See also Pulation

square

Self-dual properties for functors, 3.43
Semifinal arrow, for a structured sink,

25.8, 25C
Semifinal solution, for a structured sink,

25.7, 25C
Separating set, 7.14

vs. concretizable category, 7Q
Separator, 7.10 ff

category with, is regular
(co-)wellpowered, 7.89

extremal, 10.63
vs. bicoreflective subcategory, 16.4
vs. (co)wellpoweredness and

(co)complete- ness, 12.13
vs. faithful hom-functor, 7.12
vs. topological category, 21.16, 21.17

Set,
constructions that can be performed

with sets, 2.1
morphism class of small category is a

set, 3.45
separating, = separating set, 7.14
is a (small) class, 2.2
underlying, = underlying set, see

Forgetful functor
Set-indexed family of sets, 2.2
Set-indexed source, 10.2
Set-valued functor, vs. hom-functor, 6.18

vs. natural transformation, 6.18
Singleton-morphism, 28.11
Sink, 10.62 ff

costructured, 17.4
final, 10.63, 28.15
natural, 11.27

Situation, adjoint, = adjoint situation,
19.3 ff

Skeleton of a category, 4.12–4.15, 4I
Small category, 3.44. See also

Fibre-small
is a set, 3.45

Small class, 2.2
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Small conglomerate, 2.3
Smallest containing E-reflective

subcategory, = E-reflective hull,
16.20, 16.21

Smallest injective extension, 9.20
vs. minimal injective extension, 9G

Smallness of hom-class condition, see
Object-free category

Small object-free category, 3.55
Small source, 10.2
Solid concrete category, 25.10 ff

is almost topologically algebraic,
25.18, 25.19

characterization theorems, 25.19, 25I
structure theorem, 26.7
vs. (co)complete category, 25.15, 25.16
vs. Mac Neille completion, 25G
vs. subcategory of topological

category, 26.2
vs. topological category, 25J

Solid construct, need not be topologically
algebraic nor strongly cocomplete,
25.17

Solid functor, 25.10 ff
is almost topologically algebraic,

25.18, 25.19
composite of topological and

essentially algebraic functors, 26.3
composite of topologically algebraic

functors, 26.1
composite of topological and regularly

monadic functors, 26.3
composition of, 25.13
detects colimits and preserves and

detects limits, 25.14
is faithful and adjoint, 25.12
preserves extremal monomorphisms,

25.21
topologically algebraic functor is,

25.11
vs. adjoint functor, 25.12, 25.19
vs. detection and preservation of

limits, 25.18, 25.19

vs. essentially algebraic functor, 26.3
vs. faithful functor, 25.12
vs. full reflective embedding, 26.1
vs. monadic functor, 25F
vs. regularly monadic functor, 26.4
vs. topologically algebraic functor,

25D, 25E, 26.1
vs. topological functor, 26.1, 26.3, 26.4

Solution set condition, 18.12
Source, 10.1 ff

codomain of, 10.1
composite of, 10.3
domain of, 10.1
empty, 10.2
initial, = initial source, 10.41, 10.57
natural, 11.3
notation for, 10.2, 10.4
set-indexed, 10.2
small, 10.2
structured, w.r.t. a functor, 17.1

Split coequalizer, 20.14
Split epimorphism, = retraction, 7.24 ff
Split fork, 20.14
Split monomorphism, = section, 7.19 ff
Square,

commutes, 3.4
pulation, 11.32, 11.33, 11Q
pullback, = pullback square, 11.8 ff

Stability under pullbacks, 11.17, 28.13
Stable epimorphism, 11J

vs. adjoint functor, 18I
Statement, dual, = dual statement, 3.7
Stone-functor, 3.20(11)
Strict monomorphism, 7D

vs. other types of monomorphisms,
7.76

vs. pullback, 11H
vs. regular monomorphism, 12A

Strong fibre-smallness, 26D
Strongly cocomplete category, 12.2

is (Epi,ExtrMono-Source)-category,
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15.17
vs. (co)complete category, 12.5, 12I,

12N, 12O
Strongly complete category, 12.2

is (E,M)-structured, 14.21
vs. (co)complete category, 12.5, 12I,

12N, 12O
vs. (E,M)-category, 15.25, 15.26
vs. free monad & varietor, 20.59

Strongly fibre-small concrete category,
26.5

(Strongly Generating, Initial
Source)-functor, is topologically
algebraic functor, 25.6

Strongly generating structured arrow,
25.4
is generating, 25.5

Strongly n-generating object, 20H
Strongly limit-closed subcategory, vs.

epireflective subcategory, 16L
Strong monomorphism, 7.76, 14C
Structure, factorization:

— for morphisms, 14.1 ff
— for sources, 15.1 ff
— w.r.t. a functor, 17.3 ff

Structured arrow, 8.15
equivalence for, 26.5
(extremally) generating, vs.

(extremal) epimorphism, 8.36
generating, = generating structured

arrow, 8.15
isomorphic, 8.19, 8.34
strongly generating, 25.4, 25.5
universal, 8.30
w.r.t. a functor, 8.30

Structured source,
w.r.t. a functor, 17.1
notation for, 17.2
self-indexed, 17.2

Structured 2-source, factorizations of, 17F
Subcategory, 4.1 ff

algebraic, = algebraic subcategory,

23.32
bireflective, 16.1, 16.3
colimit-closed, 13I
colimit-dense, = colimit-dense

subcategory, 12.10
concrete, 5.21 ff
coreflective, = coreflective

subcategory, 4.25, 16.1 ff
definable by topological (co-)axioms,

22.1, 22.3, 22.4, 22.6
dense, 12D
E-equational, 16.16
epireflective, 16.1
E-reflective, 16.1
extremally epireflective, 16.1
finally closed, 21.29
finally dense, 10.69, 10.69
full, 4.1(2) ff
of a functor-costructured category, vs.

topological category, 22.8
of a functor-structured category, vs.

(M-) topological category, 22.3,
22.4, 22.9

implicational, 16.12
initially closed, 21.29
initially dense, 10.69
isomorphism-dense, 4.9
limit-closed, 13.26, 13.27, 13I, 13J
limit-dense, 12E
M-initially closed, vs. concretely

E-reflec- tive subcategory, 22.9
monadic, conditions for, 20.19
monoreflective, 16.1
nonfull, 4.3(3)
reflective, = reflective subcategory,

4.16, 16.1 ff
regular epireflective, 16.1
simultaneously reflective and

coreflective, 4E
of subcategories, 4G
topological, = topological

subcategory, 21.29 ff
vs. identities, 4A

Subconstruct, 5.21
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of a functor-structured construct, vs.
monotopological construct, 22.10

of Set vs. concretely cartesian closed
construct, 27.16

Subobject, 7.77 ff
extremal, = extremal subobject, 7.77
initial, = initial subobject, 8.6
intersection of, 11.23
non-isomorphic, 7K
order on, 7.79
regular, = regular subobject, 7.77
vs. M-subobject, 16.8

Subset, 2.1. See also Power set
Swell epimorphism, 7.76, 15A
Swell separator, 19K

T -algebra, 5.37
T-algebra, category of, 20.4, 5G

— closed under the formation of
mono-sources, 20.11

— three-step construction, 20.6
Taut lift theorem, 21.28
Terminal, weakly terminal set of objects,

12F
Terminal category, 3.3(4)
Terminal object, 7.4

uniqueness, 7.6
vs. product, 10.20, 10.30, 10H
vs. pullback square, 11.13
vs. weak terminal object, 12.9

Thin category, 3.26
vs. faithful functor, 3.29, 3G

Thin quasicategory, 3.51
T -homomorphism, 5.37
Topological axiom, 22.1
Topological characterization theorems,

external, 21.21
internal, 21.18

Topological (co-)axiom, 22.6
Topological concrete category, 21.7 ff

characterization, 21C

duality for, 21.9
is fibre-complete, 21.11
fibre-small, 21.34 ff
— characterization of, 22.3, 22.4, 22.8
— vs. closure under the formation of
indiscrete objects, initial subobjects,
and products, 21.37

fibre-small reflective subcategory, vs.
solid strongly fibre-small category,
26.7

subcategory of, vs. solid category, 26.2
vs. (co)completeness, 21.16, 21.17
vs. concretely cartesian closed

subcategory, 27.15
vs. concretely reflective subcategory,

21.32
vs. coseparator, 21.16, 21.17
vs. co-wellpoweredness, 21.16, 21.17
vs. discrete object, 21.11
vs. (E,M)-category, 21.14
vs. (E,M)-factorization, 21.16, 21.17
vs. extremal morphism, 21.13
vs. final lift, 21.34
vs. finally dense subcategory, 21.32
vs. has function spaces, 27.22
vs. indiscrete object, 21.11, 21.35
vs. initial lift, 21.34
vs. initially closed subcategory, 21.30,

21.31
vs. initial subobjects, 21.35
vs. injective object, 21.21
vs. lift of an adjoint situation, 21.28
vs. representable (M -)partial

morphisms, 28.12, 28.15
vs. separator, 21.16, 21.17
vs. solid category, 25J
vs. subcategory of a

functor-(co)structured category,
22.3, 22.4, 22.8

vs. wellpoweredness, 21.16, 21.17
Topological construct, fibre-small,

characterization of, 22.4
vs. forgetful functor, 21L

Topological functor, 21.1 ff
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is (co-)adjoint, 21.12
composition of, 21.6
is faithful, 21.3
lifts limits and colimits, 21.15
preserves limits and colimits, 21.15
preserves and reflects mono-sources

and epi-sinks, 21.13
is topologically algebraic, 25.2
vs. amnestic concrete category, 21.5
vs. bimorphism, 21M
vs. discrete and indiscrete functors,

21.12
vs. indiscrete structures, 21.18, 21.19,

21.20
vs. solid functor, 26.1, 26.3, 26.4
vs. topologically algebraic functor,

25B
vs. unique lifting of limits, 21.18,

21.20
vs. uniquely transportable concrete

category, 21.5
Topologically algebraic category, 25.1 ff

characterization theorem, 25.6
vs. universal initial completion, 25H

Topologically algebraic functor, 25.1 ff
almost is solid, 25.18, 25.19
is composite of other types, 26B
composites yield solid functor, 26.1
is faithful and adjoint, 25.3
is solid, 25.11
vs. adjoint functor, 25.3, 25.6, 25.19
vs. detection and preservation of

limits, 25.18, 25.19
vs. solid functor, 25D, 25E
vs. topological functor, 25B

Topological structure theorem, 22.3
Topological subcategory, 21.29 ff

vs. concretely (co)reflective
subcategory, 21.33

Topological theory, 22B
Topological universe, 28.21

equivalent conditions, 28.22
Topology, three approaches, 5N

Topos, 28.7
is balanced quasitopos, 28.8
characterization, 28E
vs. regular monomorphism, 28F

Total category, 6I
Transformation, natural, = natural

transformation, 6.1 ff
Transportable concrete category, 5.28

vs. amnestic concrete category, 5.29,
5.30

vs. concrete category, 5.35, 5.36
Transportable functor, monadic functor

is, 20.12
vs. lifting of limits, 13E

Triangle, commutes, 3.4
Trivial factorization structure, 15.3
Trivial monad, 20.2
T -space, 5.40, 5H

Underlying function, see Forgetful
functor

Underlying functor, = forgetful functor,
3.20(3), 5.1 ff

Union, of a family of sets, 2.1
Unique diagonalization property, 14.1,

15.1
Unique lifting of limits, vs. topological

functor, 21.18, 21.20
Uniquely transportable concrete category,

5.28
vs. topological functor, 21.5

Uniquely transportable functor,
vs. algebraic functor, 23.30
vs. regularly algebraic category, 23.38

Unit of an adjunction, 19.3
Unit ball functor, 5.2
Unit existence condition, see Object-free

category
Unit of a partial binary algebra, 3.52, 19J
Universal arrow, 8.22
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must be extremally generating, 8.33
uniqueness, 8.25, 8.35
vs. concrete generation, 8.24
vs. co-universal arrow, 19.1, 19.2

Universal category, 4J
Universal completion, 12M
Universal initial completion, 21I

vs. topologically algebraic category,
25H

Universally initial morphism, 10P
Universally topological category, 28.16

as injective object, 28G
vs. concrete quasitopos, 28.18

Universal property, 4.16, 4.25, 8.22, 8.30
Universal structured arrow, 8.30
Universe, 2.2
Up-directed poset, 11.4
Upper semicontinuity, as adjointness, 18F

Varietal category & functor, 23F
Varietor, 20.53

vs. colimits of ω-chains, 20P
vs. free monad & monadic category,

20.56–20.58
Variety, = monadic construct, 24.12

bounded, vs. bounded monadic
construct, 24.11

finitary, = finitary variety, 16.16,
20.20

vs. equational subquasiconstruct of
some Alg(Ω), 24.11

Weakly algebraic functor, 23A
Weakly terminal set of objects, 12F
Weak terminal object, vs. terminal

object, 12.9
Well-fibred construct, 27.20
Well-fibred topological construct, vs.

cartesian closed construct, 27.22
Wellpowered category, 7.82 ff

and complete category, is strongly
complete, 12.5

is regular wellpowered and extremally
wellpowered, 7.83

vs. adjoint functor, 18.19
vs. co-wellpoweredness, 12.13
vs. essentially algebraic category,

23.12, 23.13
vs. free object, 18.10
vs. topological category, 21.16, 21.17

Word-monad, 20.2

Yoneda embedding, 6J
Yoneda Lemma, 6.19

Zero morphism, 7A
Zero object, 7.7

vs. Cartesian closed category, 27A
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