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Preface to the original publication

During the academic year 1966 /67 a seminar on various aspects of category theory and its
applications was held at the Forschungsinstitut fiir Mathemtik, ETH, Ziirich. This volume
is a report on those lectures and discussions which concentrated on two closely related
topics of special interest: namely a) on the concept of “triple” or standard construction
with special reference to the associated “algebras”, and b) on homology theories in general
categories, based upon triples and simplicial methods. In some respects this report is
unfinished and to be continued in later volumes; thus in particular the interpretation of
the general homology concept on the functor level (as satellites of Kan extensions), is only
sketched in a short survey.

I wish to thank all those who have contributed to the seminar; the authors for their
lectures and papers, and the many participants for their active part in the discussions.
Special thanks are due to Myles Tierney and Jon Beck for their efforts in collecting the
material for this volume.

B. Eckmann



Preface to the reprint

This volume was the culmination of a very exciting year at the Forsch (as we called it)
and it was to be just the beginning of a long excursion on the use of categorical methods
in homological algebra. For better or worse, the interests of the categorical community
soon turned to toposes and the papers in this volume have become more an end than a
beginning. Other things, for example, categorical methods in computer science, have also
intervened. I myself have not forgotten the subject, see [Barr (1995), (1996), and (2002)]
for some recent contributions. In the meantime, this volume passed out of print and has
largely been forgotten. Thus I conceived of reprinting it in order to make it available to
the next generation.

This would not have been possible without the generous and unrewarded help of a
small army of volunteers who typed parts of it. They are William Boshuk, Robert J.
MacG. Dawson, Adam Eppendahl, Brett Giles, Julia Goedecke, Bjorn Gohla, Mamuka
Jibladze, Mikael Johansson, Tom Leinster, Gabor Lukacs, Francisco Marmolejo, Samuel
Mimram, Juan Martinez Moreno, Robert A.G. Seely, Sam Staton, and Tim Van der
Linden and I thank each of them warmly. I would like to especially thank Donovan Van
Osdol who proofread every page of the manuscript. He not only caught many minor
typing errors, but made a few mathematical corrections!

Michael Barr
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Introduction

The papers in this volume were presented to the seminar on category theory held during
the academic year 1966-67 at the Forschungsinstitut fiir Mathematik of the Eidgenossische
Technische Hochschule, Ziirich. The material ranges from structural descriptions of cate-
gories to homology theory, and all of the papers use the method of standard constructions
or “triples.”

It will be useful to collect the basic definitions and background in the subject here,
and indicate how the various papers fit in. References are to the bibliography at the end
of the volume.

Before beginning, one must waste a word on terminological confusion. The expression
“standard construction” is the one originally introduced by Godement [Godement (1958)].
Eilenberg—Moore substituted “triple” for brevity [Eilenberg & Moore (1965a)|. The term
“monad” has also come into use. As for the authors of this volume, they all write of:

1. TripLES. T = (T,n,pn) is a triple in a category A if T: A —— A is a functor, and
n:idy, —=T, p: TT — T are natural transformations such that the diagrams

Tn nT T

T T T T TTT T
_ 12 _ w© uT 12
TT o

commute. 7 is known as the unit of the triple, p as the multiplication, and the diagrams
state that 7, p obey right and left unitary and associative laws.

Notation: In the Introduction morphisms will be composed in the order of follow-
ing arrows. In particular, functors are evaluated by being written to the right of their
arguments.

As for the natural transformations, if ¢:S ——= T is a natural transformation of
functors S, T A —— B, and ¢: U ——V where U,V: B —— C, then oU: SU —TU,
Sy: SU —— SV are natural transformations whose values on an object A € A are

ApU = (Ap)U: (AS)U — (AT)U,
ASY = (AS)Y: (AS)U —— (AS)V

Other common notations are (U),, (p*U), as in [Godement (1958)], as well as
(Up) 4, - .. . This should make clear what is meant by writing 7'y, nT:T —TT, trans-
formations which are in general distinct.

The original examples which were of interest to Godement were:

(a) the triple in the category of sheaves over a space X whose unit is .# —=%°(X,.%),
the canonical flasque embedding, and
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(b) the triple ( ) ® R generated in the category of abelian groups A by tensoring with
a fixed ring R; the unit and multiplication in this triple are derived from the ring
structure:

a®rgry

A A9 R AQR®R A®R

It was Godement’s idea that by iterating the triple simplicial “resolutions” could be

built up and homology theories obtained. For example, the complex of sheaves
0—=F —CX, 7)) —=¢"(X,¢°(X, 7)) ——= ---

gives rise to sheaf cohomology. Although restricted to abelian categories, this was the
prototype of the general homology theories to which triples lead.

Note that the situation dualizes. A cotriple in a category B is a triple G = (G, ¢, 6)
where G: B —— B, ¢:G ——1idg, 0: G — GG and counitary and coassociative axioms
are satisfied.

2. ALGEBRAS OVER A TRIPLE. A T-algebra |[Eilenberg & Moore (1965a)] is a pair (X, &)
where X € A and &: AT —— A is a unitary, associative map called the T-structure of the
algebra:

Xn Xu

X XT XTT XT
- £ T 3
X XT X

f(X, &) — (Y, ¥) is a map of T-algebras if f: X —Y in A and is compatible with
T-structures: fT.0 = ¢f.

The category of T-algebras is denoted by AT.

For example, if A is the category of abelian groups and T is the triple ( ) ® R, then a
T-structure on an abelian group A is a unitary, associative operation A ® R—— A. Thus
AT is the category of R-modules.

Many other intuitive examples will soon appear. An example of a dual, less obvious
kind arises when a functor M —— C is given. By taking the direct limit of all maps
M —— X where M € M, one obtains a value of a so-called singular cotriple, XG. The
corresponding coalgebras, that is, objects equipped with costructures X —— X G, have
interesting local (neighborhood) structures. Appelgate-Tierney study this construction in
this volume (“Categories with models”) taking for M —— C such model subcategories as
standard simplices, open sets in euclidian space, spectra of commutative rings, ... .

3. RELATIONSHIP BETWEEN ADJOINT FUNCTORS AND TRIPLES. Recall that an adjoint
pair of functors [Kan (1958a)| consists of functors F: A —— B, U:B —— A, together
with a natural isomorphism

Hom (A, BU) — Homg(AF, B)



for all objects A € A, B € B.

Putting B = AF we get a natural transformation 7:id, —— F'U called the unit or
front adjunction. Putting A = BU, we get ¢: UF ——idg, the counit or back adjunction.
These natural transformations satisfy

nk Un

F FUF U UFU
_ Fe _ nU
F U
P. Huber [Huber (1961)| observed that
T=FU:A—A G=UF:B——B
T = n:idAHT G= EZGHidB
pw=FeU:TT —T 0=UnF:G—GG

are then triple and cotriple in A and B, respectively. This remark simplifies the task of
constructing triples. For example, Godement’s example () above is induced by the adjoint
pair of functors

f*
Sheaves(X) <T7> Sheaves(X),

where X, is X with the discrete topology and f: X, —— X is the identity on points.

Conversely, Eilenberg-Moore showed [Eilenberg & Moore (1965a)] that via the AT
construction triples give rise to adjoint functors. There is an obvious forgetful or underlying
A-object functor UT: AT ——= A, and left adjoint to UT is the free T-algebra functor
FT:A —— AT given by AFT = (AT, Ap). The natural equivalence

Hom, (A, (X, 6UT) iHOmAT(AFTv (X,9)

is easily established.

Thus, granted an adjoint pair A ——= B —— A, we get a triple T = (7,7, ) in A,
and we use the AT construction to form another adjoint pair A —— AT. To relate these
adjoint pairs we resort to a canonical functor

with the properties F® = FT, U = ®UT. ® is defined by B® = (BU, BeU). Its values
are easily verified to be T-algebras. Intuitively, Be: BUF ——= B is the canonical map
of the free object generated by the B “onto” B, and the T-structure of B® is just the
A-map underlying that.
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4. TRIPLEABILITY. The adjoint pair (F,U) is tripleable [Beck (1967)] if ®: B——= AT is
an equivalence of categories.

Sometimes ¢ is actually required to be an isomorphism of categories. This is particu-
larly the case when the base category A is the category of sets.

Readers who replace “triple” with “monad” will replace “tripleable” with “monadic”.

Intuitively, tripleableness of (F,U) means that the category B is definable in terms of
data in A, and that U: B —— A is equivalent to a particularly simple sort of forgetful
functor.

EXAMPLES.

(a)

Let ¥ be an equational category of universal algebras (variety), that is, the objects of
¥ are sets with the algebraic operations subject to equational conditions (groups,
rings, Lie algebras, ..., but not fields, whose definition requires mention of the
inequality x # 0). The adjoint pair A——9 —— A is tripleable, where ¥ ——A is
the underlying set functor and A——=7is the free ¥ -algebra functor (|Beck (1967)],
and see [Lawvere (1963)] for the introduction of universal algebra into category
theory). In fact, if the base category A is that of sets, F. E. J. Linton shows that
triples and equational theories (admitting a just amount of infinitary operations) are
entirely equivalent concepts ([Linton (1966a)|, and “Outline of functorial semantics”,
this volume). From the practical standpoint, formulations in term of triples tend to
be concise, those in terms of theories more explicit. The components T, 7, i of the
triple absorb all of the operational and equational complications in the variety, and
the structure map XT —— X of an algebra never obeys any axiom more involved
than associativity.

In general, tripleableness implies a measure of algebraicity. The adjoint pair Sets
— Topological spaces — Sets (obvious functors) is not tripleable. But the paper
“A triple theoretic construction of compact algebras” by E. Manes (this volume)
shows that compactness is in this sense an “algebraic” concept.

Let A be the category of modules over a commutative ring. Linear algebras are
often viewed as objects A € A equipped with multiplicative structure. But here the
universal-algebra description of structure is inappropriate, a binary multiplication,
for example, not being a K-linear map A x A——= A, but rather a K-bilinear map.
It was precisely this example which motivated the intervention of triples. Let < be
any known category of linear algebras (associative, commutative, Lie, ...). Then if
the free algebra functor exists, the adjoint pair A —— .o/ —— A is tripleable.

In view of the applicability of the tripleableness concept in algebra and in geometry
(descent theory), it is useful to have manageable tests for tripleableness. Such tests are
discussed and applied by F. E. J. Linton in his paper “Applied functorial semantics, I1”
(this volume).
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5. Homoroay. Let A—2~B—Y+ A be an adjoint pair, e: U F'——1idg the counit, and
let X € B. Iterating the composition UF and using € to construct face operators, we
construct a simplicial “resolution” of X:

X<~—XUF=—=X(UF)?

If appropriate coefficient functors are applied to this resolution, very general homology
and cohomology theories arise. These theories are available whenever underlying pairs of
adjoint functors exist. When the adjoint pairs are tripleable these theories enjoy desirable
properties, notably classification of extensions and principal homogeneous objects [Beck
(1967)].

A lengthy study of such homology theories is given in this volume by Barr-Beck,
“Homology and standard constructions”. Cotriple homology is well known to encompass
many classical algebraic homology theories, and agrees with general theories recently set
forth in these Lecture Notes by M. André |André (1967)] and D. G. Quillen |Quillen
(1967a)).

In “Composite cotriples and derived functors”, Barr studies the influence on homology
of so-called “distributive laws” between cotriples. Such distributive laws are discussed
elsewhere in this volume by Beck, in a paper which is more in the spirit of universal
algebra.

The classical “obstruction” theory for algebra extensions has not yet been carried
over to triple cohomology. In his paper “Cohomology and obstructions: Commutative
algebras”, Barr works out an important special case, obtaining the expected role for H>
(the dimension indices in triple cohomology being naturally one less than usual).

Finally, one has to wonder what the relationship between this adjoint-functor “simpli-
cial” homology and classical derived-functor theories is. In the final paper in this volume,
“On cotriple and André (co)homology, their relationship with classical algebra”, F. Ul-
mer shows that on an appropriate functor category level, triple cohomology appears as the
satellite theory—in the abelian category sense—of the not-so-classical “Kan extension”
of functors. Incidentally, as triple cohomology, that is to say, general algebra cohomology,
must not vanish on injective coefficients, it cannot be referred to categories of modules
after the fashion of Cartan-Eilenberg-Mac Lane.

This then summarizes the volume—apart from mention of F. W. Lawere’s paper “Or-
dinal sums and equational doctrines”, which treats in a speculative vein of triples in
the category of categories itself—the hope is that these papers will supply a needed and
somewhat coherent exposition of the theory of triples. All of the participants in the
seminar must express their gratitude to the E. T. H., Ziirich, and the Director of the
Forschungsinstitut, Professor B. Eckmann, for the hospitality and convenient facilities of
the Forschungsinstitut in which this work was done.



An Outline of Functorial Semantics

F. E. J. Linton [{

This paper is devoted to the elucidation of a very general structure-semantics adjoint-
ness theorem (Theorem 4.1), out of which follow all other structure-semantics adjointness
theorems currently known to the author. Its reduction, in Section 10, to the classical the-
orem in the context of triples requires a representation theorem (see Section 9) asserting
that the categories of algebras, in a category o7, tentatively described in Section 1 (and
used in [Linton (1969)| in the special case &/ = ), “coincide” with the categories of
algebras over suitably related triples, if such exist.

Sections 7 and 8 pave the way for this representation theorem. A detailed outline of
the contents of Sections 3-11 is sketched in Section 2. Portions of this paper fulfill the
promises made in [Linton (1966)] and at the close of Section 6 of [Linton (1966a)].

1. Introduction to algebras in general categories.

Functorial semantics generalizes to arbitrary categories the classical notion [Birkhoff
(1935)] of an abstract algebra. This notion is usually [Cohn (1965), Stominski (1959)]
defined, in terms of a set {2 of “operations”, a set-valued “arity” functionE] n defined on
(), and a collection E of “lawsﬂ governing the operations of 2", as a system (&7, 2l) con-
sisting of a set A so equipped with an Q-indexed family 2 = {2((9) | ¥ € Q} of n(d)-ary
operations
A(W): A" —~ A (Ve Q)

that the body of laws is upheld. An algebra homomorphism from (A,2l) to (B,*B) is
then, of course, a function g: A——= B commuting with all the operations, i.e., rendering
commutative all the diagrams

gn('ﬂ)

An®) B
A(9) B(9) (¥ eQ)
A ; B

Among the algebras of greatest interest in functorial semantics are those arising by a
very similar procedure from a functor

U X ——o

!The research here incorporated, carried out largely during the author’s tenure of an N.A.S.-N.R.C.
Postdoctoral Research Fellowship at the Research Institute for Mathematics, E.T.H., Zurich, while on
leave from Wesleyan University, Middletown, Connecticut, was supported in its early stages by a Faculty
Research Grant from the latter institution.

2Tts values are often constrained to be ordinals, or cardinals, or positive integers.

3E.g., associativity laws, unit laws, commutativity laws, Jacobi identities, idempotence laws, etc.
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To spotlight the analogy, we first introduce some suggestive notation and terminology,
writing . for a category of sets (in the sense either of universes |Sonner (1962)] or of
Lawvere’s axiomatic foundations [Lawvere (1964), [Lawvere (1966)]) in which </’s hom
functor takes values.

Given the functor U: 2 —— &/, we define, for each &/-morphism f: k ——=n, a
natural transformation

vl ot —u*
from the functor
U= (nU(-)): & —
to the functor
U= (k,U(=)): X —F
by posing
(UNy = (f,UX): U"X —=U*X

(X € |Z|). Moreover, whenever, A, B, n, k are objects in </ and f: k—n, g: A—=DB
are .o/-morphisms, we set

A" = o/ (n, A) € |.7],
Al = o7 (f, A): A" ——= A* and
g" = (n,g): A" — B".

The class
n.t.(U",U*) (resp. .7 (A", A%))
is to be thought of as consisting of all natural k-tuples of (or all k-tuple-valued) n-ary
operations on U (resp. on A).
A U-algebra is then defined to be a system (A, ) consisting of an object A € |.<7| and

a family
A=A, |neldl|kel}

of functions

2

n,

oo 0t (U™ UR) —— .7 (A" AF)
satisfying the identities

A, (UT) = A (f € o(k,n)) (1.1)
Ay (V0 0) = A, () oA, (9) W: U —=U* 9 UF —=U™) (1.2)
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Writing (compare [Eilenberg & Wright (1967)[F)
{2, ()} (a) =9 xa (=1 %y a, when one must remember ) (1.3)
whenever ¥: U" —U* and a € A", the identities (1.1) and (1.2) become

U'xa=a-f (f € & (k,n), a € A™) (ALG 1)
(9 o) oa =1 % (9 *a) (W: U ——=U* 9 UF —U™ ac A") (ALG 2)

As U-algebra homomorphisms from (A, 2() to (B, B) we admit all &7-morphisms g: A—B
making the diagrams

An 9 B"
(1.4) Ay, o (9) B, 1, (9)
k k
A = B

commute, for each natural operation ¥ on U; in the notation of (1.3), this boils down to
the requirement

go(I*a)=1Ux(gea) (W: Ut —=U* a € A™) (ALG 3)

We write U-Alg for the resulting category of U-algebras. The prime examples of
U-algebras are the U-algebras ®(X), available for each object X € |27|, given by the
data

Oy (X) = (UX, 2A,(X)), (1.5)
where, in the notation of (1.3), 2 (X) is specified by
Uxa=10y(a).

It is a trivial consequence of the defining property of a natural transformation that each
o/-morphism U (§) (£: X — X') is a U-algebra homomorphism

U(€): @y(X) — (I)U(X/)
and that these passages provide a functor

X = o, (X),

oy X —U-Alg: { ¢ U(¢)

%Editor’s footnote: Although this paper has a different title from the original reference, this is the
only paper by Eilenberg and Wright found in MathSciNet.
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called the semantical comparison functor for U.
We must not ignore the underlying < -object functor

(A, ) = A,

U-Alg —— o7
o+ U-ATg et

For one thing, the triangle

)
Z v U-Alg
\ /
o
commutes. For another, awareness of | |;; is the first prerequisite for a much more con-
cise description of U-Alg as a certain pullback. The only other prerequisite for this is
the recognition that the system 2 in a U-algebra (A,%2() is nothing but the effects on
morphisms of a certain set-valued functor, again denoted by 2, defined on the following

category ¥;, the (full) clone of operations on U: the objects and maps of T, are given
by

Tyl =141,
Ty(n, k) =n.t.(U™, U");

the composition in ¥;; is the usual composition of natural transformations. We point out

the functor
n = n,

f=U7,
and remark that the functions 2, , are obviously the effects on morphisms of a functor
(necessarily unique)

expy: A —F ;¢ {

Ql: EU —— y
whose effect on objects is simply
A(n) = A".
(Proof: (1.1) and (1.2).) Likewise, given a U-algebra homomorphism g: (A, A)——(B,B),
the commutativity of (1.4) makes the system {¢": A" ——=B" | n € |&/|} a natural trans-
formation from 2 to 28. In this way, the functor

U-Alg —> (T, %)
making the square

U-Alg — (%,.%)
(1.6) o (expy )

pr— o)
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commute; here functor categories and induced functors between them are denoted by
parentheses, and Y is the Yoneda embedding A — 7(—, A). In Section 5 we shall see
(it can be proved right away, with virtually no effort)

OBSERVATION 1.1. Diagram (1.6) is a pullback diagram.

With this introduction to algebras in general categories behind us, we turn to a de-
scription of what lies ahead.

2. General plan of the paper.

Motivated both by Observation 1.1 and the desire to recapture the structure-semantics
adjointness of |Lawvere (1963)], we spend the next two sections, with a fixed functor

j: % Hd)
studying the passage from
V:dy —F

to the o7-valued functor 9t (V) defined on the pullback of the pullback diagram

pullback (€,7)
m) (V) (V)

(G
the passage from
U X —o
to the composition

SYU): o ol * (ot ,.7)

J* Y

(27,7,

(U,2)

the adjointness relation between ) and &), and the modification of this adjoint-
ness that results from consideration of the full image cotriple on the (comma) category
(o5, Cat). In Section 5 we present some remarks on the constructions of Sections 3-
4, including a proof of Observation 1.1 and an indication of the manner in which the
structure-semantics adjointnesses of |[Bénabou (1966), [Lawvere (1963), Linton (1966a)]
are recaptured by specializing the functor j.

The next three sections digress from the main line of thought, to present tangential
results, without which, however, the main line of thought cannot easily continue. In
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Section 6, the least important of these digressions, we present two completeness properties
of the categories of algebras arising in Section 4 (slightly less satisfying results along the
same line can be achieved also from those arising in Section 3—we forego them here).
The material of Sections 7-8 is necessitated by the frequent possibility of associating a
triple [Beck (1967)] T = (T, n, 1) to an o/-valued functor U: 2" —— &/, in the manner
of [Appelgate (1965), Kock (1966), [Tierney (1969)]. This can be done, for example, when
U has a left adjoint F': & — 2, with front and back adjunctions 7: id,, — UF,
B: FU ——=id,, by setting

T'=UFn=nup=UBE.

It will be seen in Section 9 that if T is a triple suitably associated with U: 2 ——.47, the
category of U-algebras and the category /T (constructed in [Eilenberg & Moore (1965a),
Th. 2.2|, for example) of T-algebras are canonically isomorphic. To this end, Section 7
reviews the definition of triples, of the categories @7, and of the construction [Kleisli
(1965)] of the Kleisli category of a triple, while Section 8 is devoted to a full elucidation
of the manner in which a triple ./ can be associated to an .@7-valued functor.

The above mentioned isomorphism theorem in Section 9 is proved there in two ways:
once by appeal to a general criterion, which depends on a result of Section 6 and on the
availability of a left adjoint to | |: U-Alg —— &7, and once (sketchily) by a somewhat
more involved argument that constructs the isomorphism explicitly, still using, of course,
the left adjoint just mentioned.

In section 10, the result of Section 9 is used to recover the structure-semantics ad-
jointness for the context of triples from that of Section 4. Finally, in Section 11, we give a
proof of the isomorphism theorem of Section 9 that is entirely elementary—in particular,
that is quite independent of the knowledge that | |, has a left adjoint, and from which
that fact follows. The exposition of this last section is so arranged that it can be read
immediately after Section 1, without bothering about Sections 3-10.

3. Preliminary structure-semantics adjointness relation.

The granddaddy of all the structure-semantics adjointness theorems is the humble canon-
ical isomorphism

(2,(¢,7)=(¢,(2,7))

expressing the symmetry [Eilenberg & Kelly (1966)] of the closed category Cat of cate-
gories. Here we are using (27, %) to denote the category of all functors from 2" to ¥/,
with natural transformations as morphisms.

Until further notice, fix a functor j: of, — 7.

The first prototype of structure and semantics (rel. j)) will be functors passing from
the category (Cat,.o) of o/-valued functors U: 2" —— &/, with domain 2~ € |Cat],
to the category (&7, Cat) of all functors V': &/ —— % with codomain ¥ € |Cat|, and
back again, as outlined in Section 2. Of course, we think of (Cat, o) and (<7}, Cat) as
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comma categories [Lawvere (1963)], so that the (Cat, <7 )-morphisms from U’": 2"/'——of
toU: & —— are those functors x: 27— 2" satisfying U’ = U -z, while (&7, Cat)-
morphisms from V: @] ——% to V': o/ ——=%" are those functors c: € ——%" satisfying
Vi=coV.

The proof of the basic lemma below is so completely elementary that it will be omitted.
To find it, just follow your nose.

LEMMA 3.1. For each pair of functors U: & —— o, V: @ — €, the canonical
isomorphism

(2,(¢,5)) = (¢.(Z,.7))
(where .7 is a category of sets reeciving </ ’s hom functor) mediates an isomorphism
M(j;U, V) = 5(5;U,V) (3.1)

between the full subcategory M (j;U, V) C (2, (€,.7)) whose objects are those functors
F: 2 ——(¢,.7) making the diagram

X a (¢,.7)
(3.2) U l(m)
A ——— (I, ) = (A, S)

")

commute, and the full subcategory S(j;U,V) C (€,(Z,.)) whose objects are those
functors G: € — (Z",.) making the diagram

€ o (%, )
(3.3) v ](U,Y)

commute. Moreover, the isomorphisms (3.1) are natural in the variables U € (Cat, .of)

and V € (g, Cat).

The crudest structure and semantics functors (rel. j), to be denoted &V and MY,

respectively, are defined as follows.
Given U: & —— ./ in (Cat, /), Y (U) is the composition

S = (U,.) oY o j*: ol — > * — (o, ) — (X,.S).

It is clear that (z,.7): (Z,.7)—=(2",.7) is an (&, Cat)-morphism &V (U)——=&) (U")
whenever x: 27— 2" is a (Cat, & )-morphism from U": 2" —— o toU: 2" —— .
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In the other direction, given V: &y — € in (&5, Cat), define MY (V) to be the
o/ -valued functor from the pullback 2%, in the pullback diagram

P, (€,%)
(3.4) M (v) (V)
o

It is clear, whenever ¢: ¥ —= %" is an (<}, Cat)-morphism from V: & —— € to
V' o — ¢, that
(¢, #): (¢, ) — (¢,
induces a functor 2, — 27}, between the pullbacks that is actually a (Cat,.)-
morphism MW (V') ——= MU (V).
With these observations, it is virtually automatic that &U) and 9Y) are functors

GY: (Cat, o) — (o, Cat)*,

MY (@7, Cat)* — (Cat, o).
THEOREM 3.1. (Preliminary structure-semantics adjointness.) The functor &) s
(right) adjoint to M),

ProOF. By the definition of pullbacks, a functor from . to 1@‘3/ “is”
a pair of functors from 2" making the diagram

X (¢,5)

of

commute. Hence a morphism from U: 2 —=¢/ to MU (V) “is” a functor F: 2 —=(%,.%)
making diagram (3.2) commute, i.e., “is” an object of M (j; U, V), as defined in Lemma 3.1.

It is even easier to see that the (.27, Cat)*-morphisms from &) (U) to V coincide with
the objects of the category S(j;U, V') of Lemma 3.1. Consequently, the desired natural
equivalence

(Cat, o) (UMY (V)) = (o, Cat)* (G (U),V)
(= (7, Cat)(V,69(U)))

is delivered by the isomorphism (3.1) of Lemma 3.1. =
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REMARK. In fact, (Cat,«) and (<, Cat) are hypercategories |[Eilenberg & Kelly
(1966)], both &) and 9 are hyperfunctors, and the adjointness relation is a hyperad-
jointness. The same remark will apply to the adjointness of Theorem 4.1; however, we
know of no use for the stronger information.

4. Full images and the operational structure-semantics adjointness
theorem.

It is time to introduce the full image cotriple in (<77, Cat). We recall that the full image
of a functor V': o/ —— € is the category .7, whose objects and maps are given by the
formulas
| Fv| = |
Ty (n, k) =€(Vn,Vk),

and whose composition rule is that of 4. Then V' admits a factorization
V=V V.df—T —F

where V and V are functors

n—n,
f—=V},
n—Vn,
g—=g.

V. df—— v:{
V: ﬂvﬁ%:{

Moreover, if ¢: € — %" is an (&7, Cat)-morphism from V to V' (i.e., if ceV = V'),
then

n—=n
gr=cg

Z;%H%,;{

(is the only functor that) makes the diagrams

v

% 7, @
%* / C
s Z, [

commute. Thus V=V, ¢—=.7, is an endofunctor on (e, Cat), and the maps V: V—=V

are (@7, Cat)-natural in V. Since clearly V =V, we are in the presence of an idempotent
cotriple on (&7, Cat).



F. E. J. Linton 20

We use this cotriple first to define a clone over o as a functor V € |(4, Cat)| for
which V' = V-—the full subcategory of (47, Cat) consisting of clones will be denoted
Cl(«7)). Next, the formulas

Gj(U) =6W(U): %**)y@ﬂw)a
Gj(l’) = %(:‘)(x)a
0’ = Em(j)|a(%)7
serve to define functors

&’: (Cat, o) — (Cl(A,))*,

M- (Cl())" — (Cat, &),

called operational structure and operation semantics (rel. j), respectively; they will be
said to assign an «7-valued functor U (resp., a clone over 7)) its structure clone (resp.,
its category of algebras in @) (rel. j).
Given V =V € |Cl(<)| and U € |(Cat, /)|, Theorem 3.1 and the idempotence of
the full image cotriple immediately yield
(Cat, o) (U, M (V)) = (o, Cat)(V, 6V (U)) = (o, Cat)(V, &6V (U))
= Cl(a)(V, 80 (V)) = Cl(a)(V, & (U)),

identifications whose obvious naturality in U and V' completes the proof of

THEOREM 4.1. (Operational structure semantics adjointness.) Operational structure
(rel. j), &7, is (right) adjoint to operational semantics (rel. j), 9.

5. Remarks on Section 4.

The first two remarks establish a generalization of Observation 1.1 to the (rel. j) case.
They involve a fixed clone V': o/ — % and a fixed functor j: of) — .

1. A one-one correspondence is set up between V-algebras in o7 (rel. j), i.e., objects
(A, L) of the pullback e@‘j/, and systems (A, x) consisting of

i) an object A of &7,
ii) pairing (9, a) =9« a: €(n, k) x AW — AIF)

satisfying the identities

(Vo) xa=19*(V*a) (9,9 €-morphisms), (5.1)
V(f)*a=a-j(f) (f an o7,-morphism),
by the equations
{2, (D)} (a) =V *a, (5.3)
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Proor. If (A,2) € |e@€/|, formula (5.3) gives rise to a system ii) of pairings. That
identities (5.1) and (5.2) are valid for the resulting (A, %) is a consequence of functoriality
of 2 and the relation

AoV = o7 (j(—), A). (5.5)

Conversely, if (A, *) is a system i), ii) satisfying (5.1) and (5.2), the attempt to define a
functor 2 satisfying (5.5) by means of (5.3) and (5.4) is successful precisely because of
i), (5.1) and (5.2), while (5.5) guarantees that (A, %) is in 2, The biunivocity of these
correspondences is clear. n

2. With the functor j: &/ —— .o/ and the clone V: &/ —— € still fixed, let (A,2A)
and (B,B) be objects of &7,. Then, given g € &/ (A, B), there is never more than one
natural transformation ¢: A ——= B with

(9.¢) € PL((A, ), (B,B)), (5.6)
and there is one if and only if, in the notation of (5.3),
go(Wxa) =1*(ga) (5.7)

for all @ € A", all ¥ € €(n,k), and all n,k € |&|. Conversely, given the natural
transformation ¢: A —— B, there is a g € &7 (A, B) satisfying (5.6) if the composition

,Qf?(,,@f*,y) (%*,Y) (58)

(j*,&ﬁ)

is full, and there is at most one g if (5.8) is faithful. Hence if j is dense (this means that
(5.8) is full and faithful cf. [Lawvere (1963)] or [Ulmer (1968a)]—|Isbell (1960)] uses the
term adequate), the functor

(A, 20) = 2,

(9,9) = o, (5.9)

Pl ——(€¢,S): {
arising in the pullback diagram (3.4) is full and faithful (indeed, the density of j is a
necessary and sufficient condition for (5.9) to be full and faithful for every clone V' on

).

PrROOF. Given g: A—— B, the requirement that (5.6) hold forces the components of ¢
to be '
o= (7)., g): AT —— BT,

and that takes care of uniqueness. That this system {¢,}, ¢ is a natural transforma-
tion A —— B iff ¢ satisfies the identities (5.7) is elementary definition juggling. The
converse assertions are evident; the next assertion follows from them; and the statement
in parentheses is seen to be true by taking V' =id: o/ —— &/ when j is not dense. m
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The next remark points out some dense functors j: &) — 7.

3. For any category &7, id,: &/ —— </ is dense (this is just part of the Yoneda
Lemma). Moreover, if I is any set and .#, is the full subcategory of the category . of
sets and functions consisting of the cardinals (or sets of cardinality) < N (X > 2), then
the inclusion .%, — .7 and the induced inclusion (#,)! —=.#1 are both dense.

The following remarks interpret the results of Section 4 in the settings indicated in
Remark 3, using Remarks 1 and 2 when necessary.

4. When j: o) — & is the inclusion in . of the full subcategory ., of finite
cardinals, Theorem 4.1 is Lawvere’s structure-semantics adjointness theorem [Lawvere
(1963)].

5. If I is a set and j: o, — . is the full inclusion (#)! ——= %%, Theorem 4.1 is
Bénabou’s structure-semantics adjointness theorem [Bénabou (1966)].

6. When j = id,, Theorem 4.1 is the structure semantics adjointness theorem [Lin-
ton (1966a), Section 2]. 7. When j = id,, then, for any U: 2" — &/, &/(U) =
expy: A ——=Tyy, Pl = U-Alg, M S (U) = | |;, Observation 1.1 is the content of
Remarks 1 and 2, and &, : 2" —— U-Alg is just the functor corresponding, under the
adjointness of Theorem 4.1, to

idgs () € CI(A) (S (U), & (U)) = (Cat, o) (U, &S (U)),

i.e., is the front adjunction for the operational structure-semantics adjointness.
8. When j is the inclusion ./, — .7, Theorem 4.1 is the adjointness implicit in the
first paragraph of [Linton (1966a), Section 6].

6. Two constructions in algebras over a clone.

PROPOSITION 6.1. (9% (V) creates (inverse) limits.) Let V: & —=€ be a clone over
<y, and let j: oy —of be a functor. Given a functor X : A — i@‘j/, whose values at
objects and morphisms of A are written X; = (As,As) and X (1) = (g;,;), respectively,
and given an object A € || and o/ -morphisms ps: A——= A; (0 € |A|) making

A= lim M (V) X: A P, o

there are an object QQ of t@{/ and maps q5: Q —= X (6 € |A|), uniquely determined by
the requirements

W (V)(g5) = ps; (6.1)
moreover, via the projections g5, () = lim X.

Proor. If Q = (B,B) and g5 = (g5, @s) satisfy (6.1), we must have B = A and g5 = p,.
Remark 5.2 then identifies ;. This it need only be seen that there is precisely one functor
B: € — . such that, in the notation of (5.3),

pso(U*a) =10« (psoa) (0 € €(n,k),a € AM), (6.2)
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But that’s an obvious consequence of the limit property of A. That (A,B) is then
an object of 27/ is, again using the limit property of A and Remark 5.1, an auto-
matic verification, and (6.2), using Remark 5.2, bespeaks the fact that p; “is” a @‘j/—
morphism from (A4, B) to (Ag, A;). Finally, given a compatible system of Z7J-morphisms
(K, R) —— (A;,Us), the o/-morphism components determine a unique .7-morphism
K —— A, which, using (6.2) and Remark 5.2, it is not hard to see “is” a cgz‘j}—morphism
(K,R) —(A,B). This completes the proof. n

PROPOSITION 6.2. 9 (V) creates MY (V)-split coequalizers.) Let V: @ —= € be a
clone over o, let j: oy — o/ be a functor, let (A,A) and (B,B) be two V -algebras,
let K € ||, and let

(f)

(A,20) (B,*B)

(9:¢)

and

1 dy

be two Qz{}—morphisms and three o/ -morphisms satisfying

pf = pg,
pd, = id,

6.3
dop = gd, (63)
idy = fd,.

Then there is a @{}—morphz’sm (q,p): (B,B) — (C,R) uniquely determined by the
requirement that M (V)(q,p) = p; moreover, (q,p) is then a coequalizer of the pair
((f,9). (g:))-

Proor. Clearly C' = K and g = p, so p will be forced; we must see there is a unique
functor R: € —— . making (K, ) a V-algebra and p a ﬁé—morphism. Now, since
p: B—— K is a split epimorphism, each function p?™: Bi(") — Ki(™ is onto. This
fact ensures the uniqueness of any function R(J) (¢ € € (n, k)) making the diagram

Bi) P i)

B(Y) A(9)

Bik)

Cik)

pi (k)
commute. Their existence is ensured, using the section d,,, by the formula

R0)=p W B)-d" (e, Dxa=pe(dx(dyea))),
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as the following calculations relying on (6.3) show:
8(0) g/ = p W e BW) ey e p ) = PP e B(0) 0/ o ]
=p/ e g® AW o d]™ = e PO AD) oy
— pj(k) B (1) ij(n) od{(") _ pj(k) o B().

That the resulting (K, ) is in 27, easy to see, using only the fact that each p/(™ is
surjective. Finally, to see that p: (B,B) —— (K, R) is the coequalizer of (f,) and
(g, ), note that the .o7-morphism component of any Z2-morphism from (B, 9B) having
equal compositions with f and g factors uniquely through K (via its composition with
dy); but this factorization is a Z7}-morphism from (K, £) (in the sense of Remark 5.2)
by virtue simply of the surjectivity of each p?™. This completes the description of the
proof. [

7. Constructions involving triples.

We recall [Eilenberg & Moore (1965a)| that a triple T on a category & is a system
T = (T, n, ) consisting of a functor

T: of —> A
and natural transformations
n:id, —7T, p:TT—T

satisfying the relations

poTn =idy, (7.1)
ey = idp,
prepip = o Tp. (7.3)

It is often possible to associate a triple on &/ to an /-valued functor U: 2" ——.<7. For
example, whenever U has a left adjoint F': &/ —— 2 with front and back adjunctions
n:id, —=UF, B: FU —1id,, it is well known (cf. [Eilenberg & Moore (1965a),
Prop. 2.1] or [Huber (1961), Th. 4.2*]) that

(UF,n,UBF) (7.4)

is a triple on /. More general situations in which a triple can be associated to U are
discussed in Section 8. In any event, it will turn out (in Section 9) that, when T is a triple
on &/ suitably associated to an -valued functor U: 2" ——= &7, the category U-Alg of
Section 1 is canonically isomorphic with the category @7 (constructed in [Eilenberg &
Moore (1965a), Th. 2.2], for example) of T-algebras and T-homomorphisms. For the
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reader’s convenience, the definition of &/ T will be reviewed. Since Kleisli’s construction
[Linton (1966)] of (what we shall call) the Kleisli category associated to a triple is needed in
Section 8, enters into one proof of the isomorphism theorem of Section 9, and is relatively
unfamiliar, we shall review it, here, too. Thereafter, we pave the way for Section 10 with
some trivial observations.

Given the triple T = (T, n, 1) on the category <7, a T-algebra in o is a pair (A, «),
where

a: TA——=A (7.5)
is an .@7-morphism satisfying the relations
aeny =1idy,
oty =aTa.
For example, equations (7.2) and (7.3) bespeak the fact that
FT(A) = (TA, ny)

is a T-algebra, whatever A € |.<7|.
The category /7 of T-algebras has as objects all T-algebras in &/ and as morphisms
from (A, «) to (B, ) all &/-morphisms g: A——= B satisfying

gea=p-Tg; (7.8)

the composition rule is that induced by composition of .@7-morphisms. It follows that the
passages

(A, )= A,
g—=g
define a functor UT: &/T —— 7, the underlying .«7-object functor for T-algebras.

On the other hand, it is easy to see that Tf: TA ——=TB is an ./ T-morphism from
FT(A) to FT(B) (f € (A, B)), and it readily follows that the passages

Ar=FT(A) = (TA ),
fr-Tf

define a functor F'T: .&/——a/7. Finally, it can be shown that FT is left adjoint to U with
front adjunction id , —=UTFT = T given by 7 and back adjunction 3: FTUT ——id
given by

Biaa = a: (T4, py) =FTUT(A o) — (4, q).

Consequently, the triple (7.4) arising from this adjunction is precisely the original triple
T = (T, n, p) itself.
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The Kleisli category associated to the triple T = (T, 7, u) is the category .# 7 whose
objects and maps are given by

T = |,
H T (k,n) = o (k,Tn);
the composition rule sends the pair
(s,t) € AT (m, k) x #T(k,n) = (m,Tk) x o (k, Tn)

to the element
tos=p,oTtos € .o/ (m,Tn) = H T (m,n),

the composition symbol on the right denoting composition in 7.
Functors f7: &/ —= T, u': X7 —— & are defined by

fT(n) =mn, R =n.ef (ne o, fedkn)),
u'(n) =Tn, u'(t) = p, Tt (ne o te " (kn)),

where, again, the composition symbols on the right denote the composition in /. One
observes that the equalities

HT(fTk,n) =T (k,n) = o (k,Tn) = o (k,u"n)

are o/-natural in k and ¥ T-natural in n, hence bespeak the adjointness of u' to fT.

Moreover, the triple (7.4) arising from this adjointness turns out, once again, to be just
T.
Linking /T with .#T is the observation that the passages

n=(Tn, ) (n € |e]),
t>p, Tt (t € #T(k,n) = (k,Tn))

set up a full and faithful functor .# 7 —— /T making the diagram

WT

%T
commute. This observation is based on the identifications
HV(k,n)=o (k,Tn) = AT (Fk, Fn),

and results in an isomorphism (in (&, Cat)) between fT and the full image of F'T.
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8. Codensity triples.

Given a functor U: 2 —— .47, there may be a triple T on &7 whose Kleisli category J#7
is isomorphic to (%;;)* in such a way—say by an isomorphism y: €, — (£ T)*—that
the triangle

Ty

o

of* Y|

commutes. In that event, the diagram

U-Alg — (Ty,,.%) LD (7))

Ty 8.0
| ly M l((f ) ) (8.0)

o (o, 7)

Y

commutes, and its vertices form a pullback diagram

U-Alg (), )
|l ‘((ﬂ)*ﬂ) (8.1)
o (e, )

Since this pullback representation of U-Alg is more convenient, for the purposes of Section
9, than that (established in Section 5) of Observation 1.1, the present section is devoted
to the establishment of necessary and sufficient conditions for, and the interpretation of,
the availability, given U, of such a triple and such an isomorphism.

In the ensuing discussion, we therefore fix an @/-valued functor U: & —— /. We
will need the comma categories (n,U) = ({pt.},U™) constructed (see |[Lawvere (1963)]
for related generalities) as follows for each n € |</|. The objects of (n,U) are all pairs
(f,X) with X € |Z] and f € U"X = &/(n,UX). As morphisms from (f, X) to (f", X’)
are admitted all 2 -morphisms &: X —— X’ satisfying U(§) - f = f’. They are composed
using the composition rule in 2", so that the passages

(f, X) =X
§—=&
constitute a functor from (n,U) to 2, to be denoted

C,: (nU)—%Z

n-
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Now assume, for this paragraph only, that the functor U has a left adjoint. Then
it is known (cf., e.g., [Bénabou (1965)] for details, including the converse) that U must
preserve inverse limits and that the values of the left adjoint F' serve as inverse limits for
the functors C,,. (Indeed, the (f, X)™ projection from Fn (to X) can be chosen to be the
Z -morphism F'n——s X corresponding by the adjointness to f: n——=UX.) It follows
that UF'n serves as inverse limit of the composite

U)X —>o (8.2)
DEFINITION [CF. [APPELGATE (1965), KOCK (1966), [TIERNEY (1969)]]. U admits
a codensity triple if lim UC,, exists for each n € |&/|. A functor T: |o/| — |.<7| will be

said to be a codensity triple for U if each Tn (n € |</|) is accompanied with a system of
maps

{(/,X)p: Tn—=UX [ (f,X) € |(n,U)[} (8.3)
by virtue of which Tn = lim UC,,.

The reader who is disturbed by the fact that a codensity triple for U seems not to
be a triple may use the maps (f, X), (which we shall often abbreviate to (f), or even
(f)) to define o/-morphisms T'g: Tk —=Tn (g € </ (k,n)), n,: n—=Tn (n € ||),
and p,,: TTn —Tn (n € |&/|) by requiring their compositions with the projections

(f) = {f), to be

(f)eTg={(f-9),
(f)em,=f, and
(f)om, =) = {Fudra)

respectively. He may then verify that 7" becomes a functor, that n and p are natural
transformations, and that (7',n, u) is thus a triple (the same triple as (7.4) if U has a left
adjoint F' and T is obtained by the prescription in the discussion preceding (8.2)). Finally,
he can prove that T, is isomorphic with the dual (#™)* of the Kleisli category #™ of
T in the manner described at the head of this section. Since we are after somewhat more
information, including a converse to the emphasized statement above, we prefer what may
seem a more roundabout approach.

A functor U: &' ——¢f and a functor T': |&/|——|</| may be related in five apparently
different ways, if certain additional information is specified; that T" be a codensity triple
for U is one of these ways. The five kinds of information we have in mind are:

I. maps (f): Tn——=UX (one for each f: n——=UX and X € |Z|), making T a
codensity triple for U,

I1. functions y (= y,4): Ty(n, k) — &/(k,Tn) making Tn represent the functor
T (n, expy (—));
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III. a left adjoint to expy : &/ ——T;;, with specified front and back adjunctions, such
that 7' is the object function of the composition &* — %, — &,

IV. a triple T whose functor component has object function 7', and an isomorphism
y: Ty — (HT)* satisfying yoexpy, = (fT)*;

V. a triple T whose functor component has object function 7" and functions y =
Ynit Ty(n, k) —— o/ (k, Tn) fulfilling the four conditions:

0) each yn k is a one-one Correspondence

)
) Yy (0 00) = i, o T (Y (D)) © Yo 1 (V')
ii) U"noynTn(ldTn) Uldn,

1)

iif) g, 5 (U7) =10 f-

The theorem coming up asserts that if U and T are related in any one of these five
ways, they are related in all of them. Section 11 exploits the computational accessibility
of the fifth way; the other ways are more satisfactory from a conceptual point of view.

THEOREM 8.1. There are canonical one-one correspondences, given T |of |—|</| and
U: & —— o/, among the five specified classes of information relating U and T. In
particular, each codensity triple for U “is”, in one and only one way, a triple T the dual
() of whose Kleisli category is isomorphic to Ty in a manner compatible with the
injections (f*)* and expy of &*. Moreover, this triple structure on T is the one described

above in the formulas (8.4), (8.5) and (8.6)

Proor. What is completely obvious is the one-one correspondence between information
of type [l and of type [[I} all that is being used is the fact (cf. [MacLane (1965), Prop.
8.3]) that left adjoints are defined pointwise. To go from information of type|IV|to that of
type , observe simply that (y*)~'o fT serves as left adjoint to exp;; in the desired way;
that this sets up a one-one correspondence between these kinds of information is due to
the universal property (described in in [Maranda (1966), Th. 1]) of the Kleisli category.
The major portion of the proof therefore consists in showing that information of types [
and [I1] (resp., of type and are in one-one correspondence with each other.
For types [[| and [[I, we have to recourse to the

LEMMA 8.1. Let U: & —— o/ be a functor, let n and k be objects of </ and let
k: (n,U) ——= < be the constant functor with value k. Then there are canonical one-
one correspondences, </ -natural in k, among n.t.(k,UC,), n.t.(U",U*), and the class of
all functors ¥: (n,U) — (k,U) satisfying C,, -9 = C,. Indeed, the information needed
to specify a member of any of these classes is the same.
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PROOF. An element 9 of any of these classes involves a function assigning to each object
X €| 2| and each map f: n——=UX a new map J(f, X) =y (f): k—=UX, subject
to side conditions. In the first instance, the side conditions are

UEI(f, X)=0(UEf,X) (f:n—UX,&: X —=X')
In the second instance, the side conditions are the commutativity of all the squares

Ix

UrX UkXx
ure vke (& X —X).
urXx’ UkXx'
x/

In the third instance, the side conditions, in view of the requirement C}\ -9 = C, and
the faithfulness of C) and C,, are the same as in the first instance. It now takes but a
moment’s reflection to see that the side conditions in the first two instances are also the
same. The naturality in k& will be left to the reader.

Continuing with the proof of Theorem 8.1, information of type [[| results in one-

one correspondences & (k,Tn) = n.t.(k,UC,), natural in k, obtained by composing
with the (f)’s. Information of type || results in one-one correspondences, natural in k,
n.t.(U", U*) = o/ (k, Tn). n

The free passage, natural in k, allowed by Lemma 8.1, between n.t.(k,UC,) and
n.t.(U", U*) thus takes ample care of the (:> relation.
[For later use, we remark that the resulting functions

Yt @ (k,Tn) —=nt.(U",U")
send t: k——=Tn to the natural transformation y,, +(t) given by
b x(@) = fidyy) - Taot (X €2 e UmX)] 57)

At this point, the reader can easily verify for himself that, in the passage (via |lI| and
from |I| to , the codensity triple

TN el )} [ ne ]}

inherits the triple structure described in (8.4), (8.5) and (8.6): he need only use the
fact that the triple T appearing in is the interpretation in 2/ of the co-triple in @/*
arising (by [Eilenberg & Moore (1965a), Prop. 2.1.*] or [Huber (1961), Th.4.2]) from the
adjoint pair exp;: &* — T;;, T, — &/* resulting in [[T]] from the reinterpretation of
the codensity triple as information of type [[Il

The relation between information of types[[V]and [V]is taken care of by another lemma.
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LEMMA 8.2. Let U: & —— < be a functor, and let T = (T,n, ) be a triple on of. A
one-one correspondence between the class of all systems of functions

Ypi: n.t. (U™, U") —= o/ (k,Tn) (n,k € ||

fulfilling the four requirements mm above, and the class of all functors y: T, — (A1)
satisfying the two conditions

) yeexpy = (f*)*
v) y is an isomorphism of categories

is induced by the passage from the functor y to the system {y,, ,} in whichy,, , is the effect
of the functor y on the T;;-morphisms from n to k.

PROOF. Given an isomorphism y: T, — (' 1)* satisfying iv), and given n and k in
.o/, define y,, .- n.t.(U", U*) — o/ (k, Tn) to be the composition of the sequence

~

n.t. (U™, U = T, (n, k) — (A D) (n, k) = # T (k,n) = o (k,Tn)

Condition [V]o) follows from condition v). Condition [V]i) follows immediately from the
functoriality of y, once composition in T;; and in #T are recalled. Condltlonﬁ iii) follows
from iv). To establish |V .11 ), apply the isomorphism y to both sides. The right side is
y(Udn) = y(expy(id,)) = (fT)*(idn), which, viewed as an &/-morphism, is just 7,. In
view of the validity of [V]i), [V]iii) and a triple identity, the left side is

y(U™ oy~ (idp,)) = p, o Tyy~lidg, e y(U™) =
= Yy, Ty, Ny © My = My © Ny © My = Ty

Since this is what the right side of .ii) is, after applying y, half the lemma is proved.
For the converse, take a system of functions as envisioned in the lemma, and attempt
to define a functor y: T,;; — (#'T)* by setting y(n) = n and, for ¥: U" ——= U*,

y(¥) =y 1 (V) € (k. Tn) = A (k,n) = (A7) (n, k)

This attempt is successful because [Vli) and the deﬁnition of composition in T show
that y preserves composition, while|[V]iii) (with f = id, ) and the functoriality of fT show
that y preserves identity maps. Flnally, l111 yields 1v) using nothing but the definitions
of expy and fT, and |V . ) yields v), which completes the proof of the lemma, and hence
of the theorem, too. L]
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One last comment. If T is a codensity triple for U (made into a triple T = (7,7, i)
by the procedure of (8.4), (8.5) and (8.6), say), define @, ,: 2" —— /" by

cI)U,T<‘Xv) - (UX7 <idUX>)7 (88)
q)U,T('g) = Uf?
where (id;y): TUX — UX is the idUXth projection. There is no trouble in checking
that ®,; is well defined, is a functor, and satisfies U™ o ®;, , = U. This functor will turn
out to be the front adjunction for the structure-semantics adjointness in the context of
triples. If T arises as the adjunction triple (UF,n,USF') resulting from a left adjoint F’
for U, with front and back adjunctions 7, 3, then the effect of ®;;, on objects is given

equivalently by
CI)U,T(X) = (UX,UBy).

9. The isomorphism theorem

In this and the following section, we shall write 90t = 99w and 22, = 210

THEOREM 9.1. If T is a codensity triple for the o7 -valued functor U: & —— o, there
is a canonical isomorphism V: U-Alg —— /T making the triangle

U-Alg

o

commute.

PROOF. Step 1. ||, : U-Alg——/ is isomorphic to the &7-valued functor in the pullback
diagram

y(fT)* — ((%T)*,y)

l l((fT)*f)

o (%, )

because of the isomorphism ¥, % (£ T)* provided in Section 8.

Step 2. Z(yry. — &/ has a left adjoint. Indeed, the commutativity of the diagram
Y *
HT——— (A7), )
ul l((fT)*,Y)

of

(o, )
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provides a functor I': T —— & iry..

LEMMA 9.1. T': %T*x@(]q)* is full and faithful, T'o fT: A ——= P pry. serves as left
adjoint to M((fT)*), and the resulting adjunction triple is T.

N

fT)*

PROOF. Since the diagram

commutes, and both the Yoneda functor and

are full and faithful (see Remarks 5.2 and 5.3), I' is full and faithful, too. For the adjoint-
ness statement, the Yoneda Lemma and the fullness and faithfulness of (9.1) deliver

Py (Do fTh, (A,0) 2t (Y Tk A) = A(fT (k) =
= o (k, A) = o (k. M((f7)")(4,20)),

whose naturality in & € || and (A, ) left to the reader’s verification.
To compute the adjunction triple, note that 9M((fT)*)oTe fT = T fT = T, and that,
when (A,Q) = I'e fTk, the front adjunction, which is whatever .&/-morphism k —— Tk
arises from the identity on I'fTk, is the &7/-morphism serving as the identity, in J#'T, on
k, namely n,. It follows that, whatever n, k € |.<7|, the diagram

HT(fTk, fTn) = P - (CfTk, T fTn)
\ %
= o (Tk,Tn) ~

|

A (k,u” fTn) —= & (k, Tn) = o/ (k, (f7)") fTn)

commutes, since uT = MM((fT)*) I and the front adjunctions are the same. But then it
follows that those back adJlHlCtIOIlS that are obtained when k = u™ fTn (by reversing the
vertical arrows and chasing the identity maps in &/ upwards) correspond to each other
under I'. This completes the proof of the lemma. n
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Step 3. Apply the most precise tripleableness theorem (e.g., [Manes (1967), Th.
1.2.9])—it asserts that if the functor U: & —— & has a left adjoint and creates U-
split coequalizers, the canonical functor ®;; 1 2 —— /T (defined in (8.8), where T is
the adjunction triple) is an isomorphism—using Lemma 9.1 and Proposition 6.2, to the

functor M((fT)*): P vy —= & to get an isomorphism M((fT)*) —=>U7T. Finally,

combine this isomorphism with the isomorphism | |, —= 9((fT)*) of Step 1, to obtain
the desired isomorphism V. [

Because this proof is (relatively) short and conceptual, it is somewhat uninformative.
We collect the missing information in

THEOREM 9.2. If T is a codensity triple for U: Z ——=f, with associated isomorphism
y: Ty——=(HT)*, the isomorphism ¥ : U-Alg——=</T provided by the proof of Theorem
9.1 has the following properties.

1. U((A,A) = (A, a)), where a(A) =y~ (idg4) *g id 4.
2 By =Uedy: 2 —>U-Alg—> /T,
3. U((A ) = (A 2A(a)), where ¥ *9l(a) O = aoTaoy(¥);

furthermore, W=t is the functor portion ®: o/T ——= U-Alg of the (Cat, & )-morphism
UT ——= M(expy;) corresponding by structure-semantics adjointness to the isomorphism
expy — expyr arising from the identifications

Ty(n.k) = o (k,Tn) = (U (F(n)) = nt.(UT)", (UT)") = Tyr(n, k)

PRrOOF. For the first assertion, we calculate the back adjunction for the adjointness of
M((fT)*) to T'e fT, and then modify the result appropriately by y. Given the Z;r).-
object (A,2l), we chase id, € @7 (A, A) through the adjunction identification to the natural
transformation

HT(—, fTA) —=2 (9.2)
sending t € # T (k, fTA) to {2(t)}(a) € A(k) = A*. To find the .&/-morphism component
of the & ;r).-morphism having (9.2) as its natural transformation component, we must
apply the Yoneda Lemma to its value under ((fT)*,.#). The resulting functors are

'%/T(fT(_)vaA) = 52{<_7TA)
and
22[ofT = 'Q{<_7A);

the natural transformation still has the same components; so the Yoneda Lemma produces
RU(idp,)(id,). Hence @1 ((A,21)) = (A, A(id74)(id4)), and the effect of W is therefore as
asserted.
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For point 2, it suffices to observe that a(2(; (X)) = (idy ) (see (1.5) and (8.8)). But,
in fact, using (8.7),

(A (X)) = y_l(idTUX) *Ar (X) dyx = {y_l(idTUX)}X(idUX)
= (idyy) o T(idyx) e idpyx = (idyx)-
To settle point 3, it is enough to show, where ®: &/T —— U-Alg is obtained by the
indicated adjointness, that ®(A, «) = (A,2(«)) and that Vo ® = id_r. Now P is the

composition
o7

T UT-Alg ——~ U-Alg, (9.3)
O,r((A ) = (A, Ay (A, ), and, since a: (T'A, uy ) — (A, «) is the back adjunction
FTUT(A a) — (A, ), it follows from (1.5) that

Vs p(ae) 0= e Taed)

Applying the isomorphism, therefore, ®(A,a) = (A,A(a)). That V-P = id_r now
follows immediately from the computation

a((a)) =y tidyy o) 1y = e Tidy cy(y lidpy) (9.4)
:OéoidTAoidTA:Oé ]

Theorems 9.1 and 9.2 conspire jointly to prove Theorem 9.3 below, a more elementary,
though less conceptual, proof of which appears in Section 11. To set up Theorem 9.3, we
place ourselves (at first) in a more general setting, letting U: 2" ——</ and T = (T, n, u)

be an arbitrary .o/-valued functor and a possibly unrelated triple on <. Then, given
functions

Ypi: n.t.(U", U*) ——a/(k,Tn) (n,k € ||

and an «/-morphism a: TA—— A, define a system 2, (a) = {(™,()), 41,k € ||} of
functions
(2, ()5 (07, U%) — (A7, A

by setting
{(&, (@), x (D)} (a)(= T *a) = a-Taey, (V) (9.5)

whenever ¥: U" — U* and a € A". Conversely, given functions
2ot A (k,Tn) —=nt.(U",U*) (n,k €|
and a U-algebra (A, ), define an &-morphism
a,(A): TA—A

by posing
o, () = zA,TA(idTA) kg 1dy = {QLA,TA(ZA,TA(idTA))}(idA)' (9.6)
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Before stating Theorem 9.3, which closes the section, we use the formalism above to
suggest another proof, not using the tripleableness argument we have employed, of the
core of Theorems 9.1 and 9.2. Where T is a codensity triple for U, functions y as above are
provided in Section 8. Let z, , = (y,,) " The left adjoint T'e f* to | |, provided by steps
1 and 2 in the proof of Theorem 9.1 permits construction of ¥ = @ | : U-Alg——> /T
and one can prove V(A,2A) = (A, (2)). Explicit analysis shows the back adjunction
Do fTe] |y —idy-a1g at (A,20) is just o, (2A), mapping (T'A, A, (14)) to (A,2). With
this, one proves

A, (o, (™)) =2 (9.7)

just as in Lemma 11.6. Since there is a functor ®: &7 —— U-Alg (defined as in the
proof of assertion 3 of Theorem 9.2) sending (A, a) to (4,2, (a)), it follows from (9.4),
(9.7), and the fact that ® and ¥ are compatible with the underlying o/-object functors
that ® = ¥~ 1.

THEOREM 9.3. If T is a codensity triple for U: & ——= 4, if y: Ty — ()" is the
resulting isomorphism, and if z = y~*, then

(A, )= (4,2, (), (A A)=(4 a, ()
are the (bijective) object functions of a mutually inverse pair
¢: T —=U-Alg, V:U-Alg—— T

of isomorphisms making commutative the diagram

beT
Sy
s
A o v |®
| v
Py
U-Alg

10. Structure and semantics in the presence of a triple.

In this section, we use the isomorphism of Section 9 to compare the structure-semantics
adjointness of Section 4, when j = id_, with that of Appelgate-Barr-Beck-Eilenberg-
Huber-Kleisli-Maranda-Moore-Tierney in the context of triples. For notational conve-
nience, we shall write ¥ = T4 and, as earlier, M = Ml P, = @{f < It will be used
to take terminological and notational account of the canonical isomorphism

(o7*, Cat) = (7, Cat)

obtained by reinterpreting V': &/* ——=% as V*: of ——=%*, by speaking of V* as a theory
over o/ if V is a clone over «7; by referring to

TU) = (2(U))" = (expy)”
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as the theory of U: & —— &/; and by speaking of
M (p) =M(¢"): P —

as (the underlying «7-object functor on) the category of ¢-algebras in o7, where ¢ is a
theory over 7. It is clear that a clone has a left adjoint iff the corresponding theory has
a right adjoint. By the same argument as was used in Section 8, one can prove the first
part of

LEMMA 10.1. To give a right adjoint u, with front and back adjunctions n, 3 for a theory
© on o is the same as to give an isomorphism ¢ = fT where T is the triple (up,n, uBy)
on <. Moreover, given a triple T, © = #T, o = fT, u = uT provide the only theory
©: o —= O with left adjoint u satisfying

1) the adjunction equivalences

o (k, un) —= O(pk,n)

are identity maps, and
2) the adjunction triple is T.

PRrROOF. We skip the proof of the first assertion, it being just like the proof of [Ilj<=[IV]
in Theorem 8.1. For the second assertion, it is clear that the objects of © must be those of
/. Then ©-morphisms k—=n must be &/-morphisms k——=Tn, the identity in ©(n,n)
must be 1, € &/ (n,Tn), and, finally, for the identity functions to be natural, as required
by 1), it is forced that the composition rule of © is that of .#T. [

We introduce the categories Ad(Cat, <) (resp. Tr(Cat, o)) of o/-valued functors
having specified left adjoints (resp. specified codensity triples), and AdTheo(<?) (resp.
AdCl(«)) of theories (resp. clones) over &7 having specified right (resp. left) adjoints.
These are so constructed, per definitionem, as to make the obvious forgetful functors to
the similarly named categories, with the prefix Ad or Tr omitted, full and faithful. We
shall also need the category Trip(./) whose objects are triples on &7: a triple morphism
from T = (T, n,pn) to TV = (T", 7, 1) will be any natural transformation 7: T'——=T" for
which

Ten =1, and (10.1)
Tou=p oTT (10.2)

(where 77 denotes either of the compositions

/\

Tr=- - - - - - -7 ___ =T

\/

which are equal because 7 is natural).
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LEMMA 10.2. The attempts to define functors

AdTheo(s/) ——Trip(#): @, u, 1, B+ (up, n, ube),
Trip(#) —> AdTheo(): T+ Kleisli cat. w/fT, uT,
are successful and represent Trip(ef') isomorphically as the full subcategory of AdTheo(<7),

equivalent to AdTheo(e7), consisting of those adjointed theories for which condition 1) of
Lemma 10.1 is valid.

PROOF. Elementary. For related information, see [Barr (1965)] or [Maranda (1966)]. m
Theorem 8.1 shows that Tr(Cat, o) is the pullback of the pullback diagram

Tr(Cat, o) — - (AdTheo(e7))*
(Cat, &) - (Theo(?))*

and arguments like those for Lemma 9.1 provide a lifting 9,

m,

(AdTheo(«))* Ad(Cat, &)
(Theo(«))* o (Cat, o)

of ™.

THEOREM 10.1. Let I: Ad(Cat, /) —— Tr(Cat, o7) be the obvious functor (sending
(U; Fyn,B) to (U; (UF,n,UBF))), and let M (Trip(«/))*—=Ad(Cat, o7) be the functor
sending T to (UT; FT . n,8) (where Biaa) = ). Then:

1. &,°1 (resp. G,) is adjoint to M, (resp. 1-M,),
2. Mot (resp. M, o k) is equivalent to M, (resp. M),
3. te S, I (resp. toS,) is adjoint to M’ (resp. 1M’ ).

The proof, which is easy, uses Theorem 4.1, the above lemmas, and the isomorphisms
produced in Section 9. t-&, -1 and M’ are the most familiar structure and semantics
functors in the context of triples and adjoint pairs; ¢t &, and 9 are those needed in the
work of Appelgate and Tierney |Appelgate (1965)], [Tierney (1969)].

Motivating the presentation of [Eilenberg & Wright (1967)| is the realization that the
Kleisli category arising from the adjunction triple of an adjoint pair U, F' is isomorphic
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with the full image of F. This makes “free algebras” more amenable, and encourages
yet another (equivalent) structure functor in the setting of adjointed theories and adjoint
o7 -valued functors.

A pleasant exercise (for private execution) is to tabulate all the isomorphisms and
equivalences that have arisen in this work and will arise from them by composition with

an G or an M.

11. Another proof of the isomorphism theorem

This section is devoted to a straightforward computational proof of Theorem 9.3. The
proof itself follows a sequence of lemmas; these lemmas depend only on the “information
of type V” arising from the assumption that T is a codensity triple for U (see Section 8).
For convenience of reference, we recall the equations

y( < 9) = p, o T(yd) - y?', (V.i)
U oy~ t(idy, ) = U, (V.ii)
y(U) =, f, (Vi)

imposed on the one-one correspondences

Y=Ypp: 0t.(UU*)—=(k,Tn) (n,k € |o]),

TA
/ \ (76)
A . A

TTA—*" . TA

the diagrams

Ta a (7.7)

TA A

whose commutativity betokens the assertion that a: TA—— A is a T-algebra, and the
diagram

«

Tg

TA TB
a B (7.8)
A B

g

on the basis of whose commutativity g: A —— B is an «/T-morphism from (A,a) to

(B, B).
We begin to chip away at Theorem 9.3 by proving
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LEMMA 11.1. Suppose (A, «) is a T-algebra. Then (A, A(«)) is a U-algebra (here A(a) =
A («) is defined by (9.5)).

Y

PrROOF. The definition of 2(«), (V.iii), naturality of n, and (7.6) allow us to verify ALG
1:
U'f = aoTaoy(Uf) = aoTaonnof = aonAoaof = a,of_

Similarly, (9.5), (V.i), naturality of u, (7.7), functoriality of T', and (twice more) (9.5)
again, deliver ALG 2:

(o) xa=a-Taoy(¥9) =a-Taou, T (yd)oyd
=acp, TTa-T(yd) -y = aeTa-TTa-T(yv)yd
=acT(acTaoyd)oyd = aoT(V*a) -y
=19 % (9% a) n
As a start in going the other way, we offer
LEMMA 11.2. Suppose (A, 1) is a U-algebra. Then
a(A)on, =idy.
Proor. Using ALG 1, (9.6), (V.ii), and ALG 1 again, we see
a(@) ey = U s (@) = UM * (y~ ' (idpy) *id )
= (UM oy~ (idpy)) *idy = U4 xid,
—id,eid, = id, .

To know that «(2l) is a T-algebra, there remains the identity a(2) e puy = () - Ta(2A).
This identity, as well as the fact that each U-homomorphism (A,2() — (B,B) is also
a T-homomorphism (A, a(2A)) — (B, «a(B)), will result from the fact (Lemma 11.8)
that each such U-homomorphism ¢ makes diagram (7.8) (with a = a(2A), 5 = a(B))
commute, and the fact (Lemma 11.5) that a(): TA—— A is a U-homomorphism. The
next two lemmas pave the way for a proof of Lemma 11.5.

LEMMA 11.3. For any U-algebra (A,2A) and any </ -morphism f:k ——sn, the diagram
with solid arrows
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commutes. Moreover, starting with n = T A, the effect of the top row onid, € <7 (n, T A)
is a(A) € A (TA, A) = A". Hence the diagram

.t (UA, UMY — A" p(AA AP

Y CVid 4

o (n, TA) o (n,A) = A"

o (n,a(A))
commutes, for each n € |4|.

PROOF. For the dotted arrows use “composition with Uf” and “composition with A7,
respectively. That the right hand square then commutes follows from the naturality of
evyq,. The central square commutes because

(Wxa)e f=U"%(xa)= (U V) xa,

using ALG 1 and ALG 2. The left hand square commutes because (V.i), (V.iii), naturality
of n, and one of the triple identities deliver the chain of equalities

y(U7 e 9) = pig e T(y9) ey(UT) = pug o T(y0) om,, = f =
= figonpacyde f=ydef;
setting ¥ = y~!(¢) and applying 3! to both ends of this chain provides the identity
expressing commutativity of the left hand square. The assertion regarding «(%2l) is just

the definition of (). The Yoneda Lemma then applies: the given natural transformation
o (—,TA)—— o/ (—, A) is of the form &7 (—, a(2)). This proves the last assertion. =

LEMMA 11.4. For any U-algebra (A,21) and any natural transformation 9: U" —= U*,
the diagram

evid 4

(0, TA) s .t (UA, U™) 20 (A4 Am) A
|
| COMPOSE

A A,k (V) L with O A, 5 (9)

y

o (k, TA) — n.t.(UA, U’“) — y(AA, Ak) — Ak

y A4k idy
commautes.

PROOF. The commutativity of the large right hand square is guaranteed by ALG 2. To
deal with the small left hand square, note that (9.5) and (V.i) yield

{A(p0)p s () }Ha) = ppoTaoyd = y(doy ' (a)).

Apply y~! to this equation to obtain the equation expressing the commutativity of the
left hand square. n
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We can now prove that a(2l) is a U-homomorphism.

LEMMA 11.5. For every U-algebra (A,2A), the o -morphism a(A): TA—— A is a U-
algebra morphism from (T'A,A(p,)) to (A, ).

PRrROOF. Given a: n——=TA and 9: U"—=U¥, the clockwise composition in the diagram
of Lemma 11.4 sends a, according to the last assertion of Lemma 11.3, to ¥ % (a(2() - a).
The counterclockwise composition, for the same reason, sends a to a(2l) (¢ * a). Hence
a(A) (I xa) =10 * (a(A)-a), and the lemma is proved. "

The only thing standing in the way of Lemma 11.8 is

LEMMA 11.6. Whenever (A,2A) is a U-algebra, a: n — A is an </ -morphism, and
0: U ——U" is a natural transformation, then {2, ,.(0)}(a) = a(A) > Ta-y0.

PrRoOOF. Lemmas 11.2 and 11.5 allow us to write
Vxa=0%(aA)enoa) =aA)(d* (nyea)).
But, by (9.5), the definition of A(u,), we have

V*(nyea) = pyeT(nyea)eyd.

Combining these equations, using the functoriality of T, and applying one of the triple
identities, we obtain

Vxa=a)opuyeTnyeTa-yd =aA)-Ta-yv,
which proves the lemma. [
Because it has to be proved sometime, we postpone the dénoument by means of
LEMMA 11.7. Whenever (A, «) is a T-algebra and A = A(«), then a = a ().
PROOF. Repeat the computation (9.4). ]

LEMMA 11.8. Let (A,Q) and (B,B) be U-algebras. For each U-algebra morphism
f: A——= B between them, the diagram

TA—" . TB
a(2) a(B)
A—B

commautes.

PROOF. Using (9.6), the hypothesis, and Lemma 11.6, we see
foa(@) = feo(y™(idpy) xidy) =y~ (idgps) * f
=a(B)Tfoyy ' (idpy) = a(B) - Tf n

It is time to reap our corollaries.
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COROLLARY 1. If (A, ) is a U-algebra, (A, a(20)) is a T-algebra.
PROOF. One of the necessary identities was proved as Lemma 11.2. The other is given by

Lemma 11.8, applied (by virtue of Lemma 11.5) to f = a(A): (T'A,A(u,)) — (4, 2),
and modified by taking into account Lemma 11.7:

a(@) - Ta(@) = a(@) e a(@(pny)) = a(A) ey =

COROLLARY 2. If f: A—— B is a U-algebra homomorphism from (A,21) to (B,B), it
is also a T-morphism from (A, a(2l)) to (B, a(B)).

PRrROOF. This follows immediately from the diagram of Lemma 11.8 and from Corollary
1. [

COROLLARY 3. If f: A——= B is a T-algebra homomorphism from (A, «) to (B, ), it is
also a U-algebra map from (A, A(«)) to (B,A(S)).

PROOF. Let a: n——=A, ¥: U"——=U*. By (9.5), the hypothesis, functoriality of T, and
(9.5) again, we have

fe(Wxa)= foacTacyd =pFTfTa-yd
=0T(fea)eyd =0 (f-a) [

PrROOF OF THEOREM 9.3. Lemma 11.1, Corollary 1, and Lemmas 11.6 and 11.7 set up
the desired isomorphism |U-Alg| <= |&/T|. Corollaries 2 and 3, taken together with
Lemmas 11.6 and 11.7, extend this to an isomorphism of categories U-Alg <= .2/T. It is
clear from the constructions and from Corollaries 2 and 3 that the underlying .o7-object
functors are respected. The relation with the ®’s is settled by the proof of point 2) of
Theorem 9.2. [
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Introduction.

In this note, we derive from Jon Beck’s precise triple-ableness theorem (stated as Theorem
1—for proof see [Beck (1967)]) a variant (appearing as Theorem 3) which resembles the
characterization theorem for varietal categories (see |Linton (1966a), Prop. 3]—in the
light of [Linton (1969)|, varietal categories are just categories tripleable over .%). It turns
out that this variant not only specializes to the theorem it resembles, but lies at the heart
of a short proof of M. Bunge’s theorem |[Bunge (1966)] (known also to P. Gabriel [Gabriel
(unpublished)|) characterizing functor categories .#¢ = (€,.%) of all set-valued functors
on a small category €.

1. The precise tripleableness theorem.

Our starting point is the assumption of familiarity with the precise tripleableness theorem
[Beck (1967), Theorem 1] and its proof. This is summarized below as Theorem 1. The
basic situation is a functor U: € —— 2 having a left adjoint F': A —— € with front and
back adjunctions 7n:idy —— UF', B: FU ——id,. In this situation, one obtains a triple
T = (UF,n,UBF) on A and a functor ®: € —=AT (satisfying UT - ® = U), defined by

¢ = U¢

The concern of all tripleableness theorems is whether ® is an equivalence.
We will have repeated occasion to consider so-called U-split coequalizer systems. These
consist of a pair

f
(1.1) X?Y

of €-morphisms and three 2A-morphisms

p
(1.2) UX<~—UY =—=Z

1 dy

!The research embodied here was supported by an N.A.S.-N.R.C. Postdoctoral Research Fellowship;
carried out at the Forschungsinstitut fiir Mathematik, E.T.H., Ziirich, while the author was on leave
from Wesleyan University, Middletown, Conn.; presented to the E.T.H. triples seminar; and improved,
in Section 5, by gratefully received remarks of Jon Beck.
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for which the four identities

pUf = pUg
pdy = idy
1.3
(1.3) dyp = Ugd,

are valid. An idy-split coequalizer system will be called simply a split coequalizer system.

LEmmA 1. If

f P
g dy

is a split coequalizer system in 2, then p = coeq(f,g). Conversely, if B 25 C s a split
f

epimorphism, with section d,: C——B, and A?B is its kernel pair, defining d,: B——=A

by the requirements fd, = idg, gd, = dyp provides a split coequalizer diagram (1.4).

PROOF. Let x: B —— 7 be any map. Then if 2f = xg, v = xfd, = vgd, = xd,p.
Conversely, if x = xdp, then

xf = xdypf = zdypg = zg.

Consequently, xf = xg iff  factors through p by zd,. That settles the first statement.
The second is even more trivial. [

The class of all pairs of €-morphisms arising as (1.1) in a U-split coequalizer system
(1.1), (1.2) will be denoted B. P, will denote those pairs in P whose domain and
codomain are values of F'. Since we shall have to deal with yet other subclasses of 3,
we formulate the next three definitions in terms of an arbitrary class & of pairs (1.1) of
¢-morphisms.

DEFINITION. € has &-coequalizers if each pair (f,g) € & has a coequalizer in €; U
reflects B-coequalizers if, given a diagram

f
(1.5) X$Y—I’>Z

in €, with (f,g) € & and Up = coeq(U f,Ug), it follows that p = coeq(f,g); U preserves
®-coequalizers if, given a diagram (1.5) with (f,g) € & and p = coeq(f,g), it follows
that Up = coeq(U f,Ug).

THEOREM 1. [Beck (1967), Theorem 1]. If U, F, T and ®: € ——=A" are as in the basic
situation above, then ® is an equivalence if and only if € has and U preserves and reflects

B-coequalizers. More precisely, we have the following implications, some accompanied by
their reasons.
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coeq(FUF A

for each T-algebra (A, «a) € AT,

Br

Fa

- FA) exists

N

D(A, ) is that coequal-
izer and ®o FT = F

¢ has P p-coequalizers

o F=FT

T

® has a left adjoint

| ¢ has PB-coequalizers |

¢ has and U reflects
P p-coequalizers

_——>

™~

® has a left adjoint ® and the back
adjunction @ — id, is =

¢ has and U reflects B-
coequalizers

¢ has and U preserves
P -coequalizers

¢ has and U preserves and
reflects 3 -coequalizers

~

® has a left adjoint VCID and the front
adjunction idy —— ®P is =

>

® and its left adjoint ® set up
an equivalence of categories

~

¢ has and U preserves and
reflects P-coequalizers

46

REMARK. & will be an isomorphism if and only if it is an equivalence and U creates
isomorphisms, in the sense: given X in € and an isomorphism

fA—>UX
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in 2, there is one and only one €-morphism ¢: X' ——= X satisfying the single requirement
Ug=f

(which, of course, entails UX' = A), and that €-morphism is an isomorphism. For details
on this fact, which will enter tangentially in Section 5, consult [Manes (1967), Section 0.8
and (1.2.9)].

2. When 2 has enough kernel pairs.

For the first variation on the theme of Theorem 1, we introduce the class B, of all pairs
of €-morphisms

f
(2.1) FE:g;X

arising as follows:

i) there is a split epimorphism p: UX — B in 2;

J
i) F 470> UX is its kernel pair;
0

iii) f=pBx°Ffy g=_0Bx°Fgy

iv) pUf =pUyg.
It follows that p = coeq(U f,Ug) and that

us
EFE——UFFE—=UX
e Ug

is p’s kernel pair (for iv) == 3le:UFE —— E with fye = Uf, g, = Ug, whence
foceeng =Ufeng = fy

Yooeong =Ugeng =gy
whence € o1 = idg; hence qU f = qUg iff ¢ f = qg,, and p = coeq( fy, go) = coeq(U f,Ug);
the second assertion is obvious).
Conversely, if (2.1) is a pair of €-morphisms for which (U f,Ug) has a coequalizer p,
if p is a split epimorphism, and if

us
(2.2) E———>UFE—=UX
E Ug

is a kernel pair for p, then where f, = Ufong, gy = UG<ng, (2.1) arises from p and f,
go through steps i) ... iv).
We use these remarks to prove
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LEMMA 2. B, CB. Moreover, if (2.1)e P, and &: X —= X', then £f =Eg iff U(ESf) =
U(€g) (fo=Uf°ng, 90 =Ugeng).

PRroOOF. If (2.1) depicts a pair in B, (Uf,Ug) has as coequalizer a split epimorphism
p:UX — B in A, with section d,: B—— UX, whose kernel pair is (2.2). By Lemma 1,
there is a map d;: UX —— E making

Uf°77E p
F =4 UX—B

UgonE dy

a split coequalizer diagram. Then so is

Uf »
UFE<nE°d—UX _—B
Ug dy

whence B, C B. For the second assertion, the adjointness results in the equivalence of
Ef = &g with UEf, = Ug,. But the relation coeq(U f,Ug) = p = coeq(f,, g,) shows that
Ulf, =U&g, it USUf = UEUg, which completes the proof. n

Write ch - (‘]30 N (‘BF

f
LEMMA 3. Assume 2 has kernel pairs of split epimorphisms. Whenever FX:g;FY 18

f/
a pair in P, there is a pair FE —= FY in By, satisfying qf = qq iff ¢f' = q4’, for
g/

every €-morphism q: FY ——7.

PRrROOF. Since (f,g) € By, there are A-morphisms

UFX ~— UFY —= B

1 dy

which, with (Uf,Ug), make a split coequalizer diagram in 2l. Since Uf = UT®f, Ug =
UTdg, wesee that @ f, &g: PFX—=PFY and d,, p, d, make a UT-split coequalizer system
in AT. Hence there is a T-algebra structure TB — B on B making p: UFY —— B a
T-homomorphism; letting (E, €) be its kernel pair (possible because the kernel pair exists
in 21 by hypothesis and lifts to AT by a property (c¢f. |[Eilenberg & Moore (1965a), Prop.
5.1], [Linton (1969), Section 6], or [Manes (1967), (1.2.1)]) of UT), we obtain an 2(-object
E, a pair of maps
E f:;? UFY

90

serving as a kernel pair of p, and a map e: UFE —— E satisfying (at least)

(2.3) cony = idy
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and making the squares

UFf}
UFE UFUFY
UFy
€ UBry
fo
FE UFY
90

serially commute. Let f' = Bpy o F'fS, ¢’ = Bpy ° Fgi. Then Uf ong = fj, Ug' - ng = g
(by adjointness) and, since p = coeq(f{, g,), (2.3) shows p = coeq(U f',Ug’), and

E—UFFE—=<UFY

is its kernel pair. Thus (f’,¢") € Bp.; finally, {f = &g ift UESf, = Ufyg, iff UE factors
through p iff USf) = Uy iff £f' = &g’ (by adjointness, constructions, and Lemma 2.) =

COROLLARY. Assume A has kernel pairs of split epimorphisms. Then € has Pp-
coequalizers iff it has Pp.-coequalizers, U preserves P p-coequalizers iff it preserves
P p.-coequalizers, and U reflects P p-coequalizers iff it reflects P p.-coequalizers.

PRrRoOOF. The inclusion ‘B,. C B guarantees three of the implications. For the other
three, we rely on Lemma 3: given a pair (f,g9) € PBp, let (f',¢) be a pair in By,
having the property {f = {g <= £f' = £g¢’. Then any coequalizer for (f’, ¢') must be
a coequalizer for (f,g), and conversely. Hence, if € has B .-coequalizers, (f’,¢’), and
consequently (f,g), has a coequalizer. Similarly, if p is a coequalizer for (f,g) and U
preserves B n.-coequalizers, Up is a coequalizer for (U f',Ug’), hence a coequalizer for the
kernel pair of the coequalizer of (Uf,Ug), hence a coequalizer of (U f,Ug). Finally, if p
is a map with Up a coequalizer of (Uf,Ug), Up is also a coequalizer for the kernel pair
of p, hence p is a coequalizer of (f’, ¢'), hence of (f,g). [

From this corollary and Theorem 1 follows

THEOREM 2. Let A be a category having kernel pairs of split epimorphisms, and let
U F,T,®:€——=AT be as in the basic situation. Then the following statements are equiv-
alent:

1) ® is an equivalence

2) € has and U preserves and reflects B -coequalizers

3) € has and U preserves and reflects B p..-coequalizers
Indeed, the statements

4) ® has a left adjoint

5) € has P p-coequalizers
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6) € has B p.-coequalizers
are mutually equivalent, as are
7) ® has a left adjoint and d® —id, is an equivalence
8) € has and U reflects B_-coequalizers
9) € has and U reflects P p.-coequalizers

Proor. Apply the Corollary to Lemma 3, and the inclusions

/\
\/

to Theorem 1, to prove 3n —2—=3n—-1=—3n—7=3n—2 (n = 1,2,3). m

3. When 2 is very like {sets}.

The second variation on Theorem 1 will eventually require more stringent restrictions on
20. As in Section 2, we do the hypothesis juggling first, imposing the restrictions on 2l as
required. We stay in the basic situation of an 2A-valued functor U: & ——%2l having a left
adjoint F:——=¢. T is the resulting triple, and ®: ¢ ——=2AT the semantical comparison
functor for U, as before.

LEMMA 4. Assume A has kernel pairs of split epimorphisms and that U reflects 8-

C

coequalizers. Let p: X ——=Y be a €-morphism with Up a split epimorphism. Then p is a
coequalizer.

I
PROOF. Let E:;O UX be a kernel pair of Up. Then there is a map e:UFE — FE

9
making

f
(B,e) —= ®X

90

a kernel pair of ®p. As in the proof of Lemma 3
f
FE—=X
g

(where f = By Ff,, g = Bx°Fg,), is in B, and so, since Up = coeq(Uf,Ug), p =
coeq(f, g)- n
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LEMMA 5. Assume nothing about 2, but only that Up epi —=> p is a coequalizer. Then
U s faithful, reflects monomorphisms, and reflects isomorphisms, and By: FUX ——X
18 a coequalizer.

Proor. For a functor U with left adjoint, the implication Up epi =—= p epi guarantees
(see |Eilenberg & Moore (1965), Prop. I1.1.5]) U to be faithful. A faithful functor obvi-
ously reflects monomorphisms. Finally, if U(p) is an isomorphism, p is a coequalizer and
a monomorphism, hence an isomorphism. [

LEMMA 6. Assume € has kernel pairs, 2 has coequalizers, and every epimorphism in A
splits. Suppose U is faithful and preserves B -coequalizers. Then, if the €-morphism p is
a coequalizer, Up is (split) epi.

S
PrROOF. Let p: X ——=Y be a coequalizer, let E*%)X be its kernel pair. Then p is a
90

coequalizer of (f,, g,). Now (U f,,Ug,) is a kernel pair of Up (since U has a left adjoint)
and hence fits in a split coequalizer diagram

UE UX—B

Let f,g9: FUE —— X correspond by adjointness to U f,, Ug,. Then (f,g) € B, (roughly
because UE —= UFUFE — UFE = idyy) and, for any map ¢: E —=7, qf, = qg, iff
UqU fy = UqUyg, iff qf = qg (using faithfulness of U and the adjointness naturality). So p
is a coequalizer of (f, g) € B,, and since U preserves P -coequalizers, Up is a coequalizer,
too (of U f,Ug), hence is (split) epi.

(Remark: need only suppose 2 has coeq of kernel pairs, not of everything.) [

LEMMA 7. Assume € has kernel pairs and B .-coequalizers, 2 has coequalizers, and every
epimorphism in A splits. Suppose U is faithful, reflects isomorphisms, and preserves
P.-coequalizers. Then a pair of €-morphisms
f
EFE—=X
g
is a kernel pair if (and, in view of U’s left adjoint, only if)

uf
UE—=UX
Ug

18 a kernel pair.

PROOF. Assume (Uf,Ug) is a kernel pair. Let p:UX ——= Z be its coequalizer: then,
since p is split epi and (U f, Ug) is a kernel pair for p, we obtain a split coequalizer diagram

UE—=UX -2~ 7

/
Now FUEHE?X is therefore a B -pair (since UE ——UFUE—UEFE = id; ),

has a coequalizer ¢: X ——Y in €, which, because of the faithfulness of U, is a coequalizer
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! /

for (f, g) too. Let E'"——=X be a kernel pair for g. We shall prove E'—= X is isomorphic
g g

f
to E:Q;X by using the hypothesis that U reflects isomorphisms. We have, in any case,

a €-morphism F —— E’ with f'e = f, ¢'e = g, and the knowledge that (Uf’,Ug’) =
ker pair (Uq), (Uf,Ug) = ker pair (p). Since U preserves P -coequalizers, however,
Uq = coeq(Uf,Ug). Thus p is isomorphic with Uq, whence Ue:UE — UE' is an
isomorphism, whence e is an isomorphism, and (f, g) is a kernel pair. ]

We can now prove one half of

THEOREM 3. Let 2 be a category in which every epimorphism splits, and in which kernel
pairs and difference cokernels are available. Let U: € ——=A, F, T, ®: € ——=2AT be as in
the basic situation. Then ® is an equivalence of categories if and only if

1) € has kernel pairs and B,-coequalizers
2) Up epi <= p is a coequalizer
3) (f,9) is a kernel pair if (and only if) (Uf,Ug) is a kernel pair.

ProOF. If ® is an equivalence, Theorem 2 guarantees the B _.-coequalizers, and general
principles guarantee the kernel pairs. Theorem 2 and Lemma 4 guarantee the implication
Up epi == p a coequalizer. Lemma 5 applied to this implication, Theorem 2, and
Lemma 6 then provide the converse implication. Statement 3 follows from Lemma 7. The
converse argument is outlined in statement 1 and the parenthetical remarks in statements
2 and 3 of the following theorem, whose proof, outlined below, is entirely contained in the
three lemmas in Section 4. [

THEOREM 4. With the situation as in Theorem 3, suppose throughout that € has -
coequalizers and kernel pairs. Then

1) ® has a left adjoint.

2) If condition 2 of Theorem 3 holds, then U reflects P,-coequalizers (whence the back
adjunction ®® — id, is an equivalence) and any T-algebra (A, ) admitting a
jointly monomorphic family of maps to values of ® is itself (isomorphic to) a value
of ®, namely ®D(A, o).

3) If conditions 2 and 3 of Theorem 3 hold, then U preserves (and reflects) B.-
coequalizers (whence the front adjunction idgr — PP is an equivalence too, and @
and ® set up an equivalence of categories).

OUTLINE OF PROOF. Theorem 2 proves 1). Lemma 8, Theorem 2, and Lemma 9
prove 2). 2), Lemma 9, Lemma 10, and Theorem 2 prove 3). Theorem 3 obviously
follows. Lemmas 8, 9, 10 are proved in Section 4. [
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4. Proof of Theorem 4.

LEMMA 8. With the situation as in Theorem 3, conditions 1 and 2 of Theorem 3 imply
that U reflects B .-coequalizers.

f
PROOF. Let FE?X be in B, and suppose &: X — X’ is a €-morphism for which

(4.1) Ug = coeq(U f,Ug)

From condition 2 of Theorem 3, it follows that £ is itself a coequalizer of something.
Next, the equality USU f = U&Ug (consequence of (4.1)), taken with the faithfulness of
U (consequence of Lemma 5), shows

(4.2) §&f =89

Condition 1 of Theorem 3 permits us to take a coequalizer p: X —— Z of the pair (f, g).
Equation (4.2) then entails a unique €-morphism z: Z — X’ satisfying

(4.3) zop =¢.

Since pf = pg, (4.1) affords a unique A-morphism z": UX’' —— U Z satisfying
(4.4) 2 UE = Up.

Combining (4.3) and (4.4), we obtain the equations

(4.5) Up=2 U =2Uz-Up

(4.6) UE=UzoUp=Uz2' U

But Up is epi, since p is a coequalizer (using condition 2 of Theorem 3) and U¢ is epi,
being itself a coequalizer, so from (4.5) and (4.6) it follows that

ZoUz=1id, Uz-Z =id

whence Uz is an isomorphism. Another appeal to Lemma 5 demonstrates that z is an
isomorphism, from p = coeq(f, g) to &, whence £ is a coequalizer of (f,g), as needed to
be shown. [

LEMMA 9. With the situation as in Theorem 3, conditions 1 and 2 of Theorem 3 imply
any object X € AT admitting a jointly monomorphic family of maps to values of ® is
itself (isomorphic to) a value of ®, namely PPX.
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PRrOOF. Condition 1 of Theorem 3 and Theorem 2 guarantee a left adjoint ® for ®. Now,
given a family of AT-morphisms

fi X —=Y, (Y,elel.X = (Aa)icl)

for which the implication f;ca = f, b, Vi ==>a = b holds for all AT-morphisms a, b with
codomain X, form the maps )

fbx —,
resulting by adjointness, and, applying ® to them, consider the diagrams

X

X

x (I)Y;

PPX
where 7y is the front adjunction for the adjointness of ® to ®. If nea = 7eb, then
fiea = ®f,onea = Pf,on-b = f,ob, whence 7 is a monomorphism. It is a matter
of indifference whether this statement is understood in 2 or in A7, for, being faithful
and having a left adjoint, UT preserves and reflects monomorphisms. To show 7 is an
isomorphism, as required, it thus suffices to prove UTp is (split) epi, since UT certainly
reflects isomorphisms.

To do this, we must recall the construction of ®X. ®X is the coequalizer, via some
projection p: FA——=®X | of the 9B,-pair F E—=F A arising by adjointness from the kernel
pair of a: UFA—— A. Now the coequalizer of ?FE—=®F A (which is FTE—=FTA)
is just a: FTA—— X = (A, a) itself, hence there is a unique map X = (A4, a) — ®dX
making the diagram

/ 1
FTA
I
PPX
commute: that map is 7y. Since p is a coequalizer, Up = UT®p is epi; hence Uy is
(split) epi. This completes the proof. n

LEMMA 10. With the situation as in Theorem 3, U preserves B .-coequalizers if

i) € has B,-coequalizers (all that’s really needed is a left adjoint ® for )
it) Up is epi if p is a coequalizer
iii) (f,q) is a kernel pair if (Uf,Ug) is a kernel pair, and

iv) the conclusion of Lemma 9 holds.
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/
PRrROOF. Given a pair FFE—= X in ‘3, and a map p: X —— Z, coequalizer of f, g, we
g

must show

Up = coeq(U f,Ug).

uf
Since ET;) UFEU:;X is the kernel pair of (U f,Ug)’s coequalizer in 2, there is a
g

unique 2A-morphism e: UFEF —— FE making the diagrams

UFE—Y . ux UFE—Y% . Ux
€ Uf € Ug
E UFE E UFE

e e

commute. It is left as an easy exercise to prove that (E,¢) is then a T-algebra and that

Ufeng

(4.7) (E,e) dX

Ugeng

is a jointly monomorphic pair of T-homomorphisms. By iv), (E,¢) = ®®(E, ¢); and there
are maps

(4.8) &(B, ) £ X

g

corresponding, by the adjointness of ® to ®, to (4.7). Using the adjointness relations
and the definition of @, a €-morphism ¢: X —— Z satisfies ¢f = qg iff UqUfeng) =
Uq(Ugeng) it @qo(Ufonp) = ®qo(Ugeng)iff go f = qog. Consequently, p = coeq(f, g) =
coeq(f, g). Next, since

(4.9) UF,U§) = (UTQf,UT®G) = (Ufong, Ugeng)

and the latter is a kernel pair (since f,g € B,), (Uf,U§) is a kernel pair, too, whence,
by iii), (4.8) is a kernel pair. Since p is its coequalizer, (4.8) is a kernel pair for p. It
follows, since U has a left adjoint, that (Uf, Ug) is a kernel pair for Up. Then (4.9) shows
(4.7) is a kernel pair for Up, too. On the other hand, Up is (split) epi, by ii), since p
is a coequalizer. Consequently, Up is the coequalizer of its kernel pair, namely of (4.7).
Finally, since (4.7) has the same coequalizer as (U f,Ug), Up = coeq(U f,Ug), as had to
be shown. [
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Schematically, the proof of Theorem 4 and the rest of Theorem 3 follows the following
pattern: if 2l has kernel pairs and coequalizers and every 2l-epimorphism splits, and if &€
has kernel pairs and B _-coequalizers, then ® has a left adjoint ¢ (by Theorem 2) and:

p coeq =>Up epi
Up epi = p coeq
(Uf,Ug)kp. = (f,9)kp. Uf,Ug)kp. = (f,9)kp

trivial Up epi = p coeq

trivial
ﬂ A T-algebra having a jointly
P coeq. = Up epi monomorphic fa'ml.ly of m'aps
Up epi = p coeq| Lemma 9 |to values of & is itself (iso-| Lemma 10

morhic to) a value of ®
Lemma 8
U reflects Po-coeq | | U preserves PBo-coeq |
Theorem 2 Theorem 2
PP —— idg is idyr — ®d is =

5. Applications.

For the first application of Theorem 3, we take 2 = . = {sets}. Then, modulo the
easily supplied information that any category tripleable over sets has all small limits
and colimits, this instance of Theorem 3 is just the characterization theorem of [Linton
(1966a)| for varietal categories, since, by [Linton (1969)], varietal and tripleable over .#
mean the same thing. For the second application of Theorem 3, which will also be the
last to be presented here, we prove the theorem of Bunge-Gabriel.

THEOREM 5. [Bunge (1966), Gabriel (unpublished)|. A category B is equivalent to the
functor category /¢ = (€,.%) of all set valued functors on a small category € if and only

if

1. B has kernel pairs and coequalizers

2. there is a set X and a function ¢: X — |*B|:

a. B contains all small coproducts of images of i

b. p: B——= B’ is a coequalizer if and only if B(Yz,p): B(Yx, B) —=B(Yz, B’)
15 onto, Vxr € X

B (Y, f)

B(Yz,g)

B(Yzx,B) is a

f
c. B ? B is a kernel pair if and only if B(¢z, E)

kernel pair, Vx € X
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d. © € X =="B(¢x, —) preserves coproducts.
Indeed, if B ~ .7, 1: X—|B| may be taken as the object function of ¢*——.7*— "B,
while if 1: X ——|B| is given, € may be taken as the full image of X —— |B| —B*.

Proor. We dispense with the easy part of the proof first. To begin with, suppose
B = % Then surely condition 1. is valid. To check condition 2. where X = |€| and
¥(z) = €(z, —), note that

S(x), =) =ev,: S —=.F

and so conditions 2b, 2c, 2d are automatic. So far as condition 2a is concerned, .#¢ has
all small coproducts. These, however, are all properties preserved under equivalence of
categories, and that finishes the “only if” part of the proof.

For the converse, view the set X as a discrete category and let

XZo¢ o
be the full image factorization of the composition

¥

of the function ¢ given by condition 2. with the inclusion of (the discrete category) |B|
as the class of objects of B*. Here is an outline of the argument that

S B—s ) g
is an equivalence.
Step 1. The .#*-valued functors
U=.9%Y:B—> %) - X
U =5%79%) — g%
U,=9%.9%—= 7%
all have left adjoints.
Step 2. If T, T,, T, are the triples on .#* and
®: B —— ()7
DB —— ()N
Py B —— ()T

are the semantical comparison functors arising from U, U, and U, respectively, then
® and P, are equivalences (in fact, ®, is an isomorphism!)
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Step 3. The commutativity of the lower triangles in the diagram

()7

vy Uy

(#X)T L (X

wt

1%

P |~ D, ~| P,

B BT e

gives triple maps T, LT, T, SELE T,, whose semantical interpretations ¥, U,
on the categories of algebras make the upper squares commute; both 7, and 7, will
be shown to be isomorphisms.

It follows that ¥, and W, are isomorphisms and that
S =07 oW, oW, o P B — S

is an equivalence (indeed, an isomorphism if (and only if) ®: B —— ()T is an
isomorphism, a condition which can be expressed as an additional requirement on

(K

2. Givenb € B, sets A, (¢ € X) and one-one correspondences f,: A.—>B(z, b),
there is a B-morphism f: b —— b uniquely determined by the single require-
ment

Bz, f) =1,

moreover, this f is an isomorphism.
The details regarding this refinement will be omitted, bring easy, and of little inter-
est. See the remark following Theorem 1.)

Step 1. Using condition 2a, we produce a left adjoint F' to U = .#%Y:B —— 7%
F(G)=EHGa - ya (G e 7%
zeX

The identifications

B(F(G),b) = B (@Gx-m, b)
reX
= CE>E<X%(Gx -z, b)

12

X (B(ir, )%
= X .#(Gz,Ub)(z))

zeX

= SHG,U(b))
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show that this works. In the same way, the fact that .#(®") and .#¢ have all small
coproducts allows us to define

F(G) = PGz Y(yz))

zeX

Fy(G) = P G - (72Y (a))

zeX

and to prove, by much the same calculations, that F, and F), serve as left adjoints
to U, and U,.

Step 2. Conditions 1), 2), and 3) of Theorem 3 are provided precisely by conditions 1,
2b, and 2c of Theorem 5. Since 2 = . obviously has the properties envisioned of
it in Theorem 3, the functor

d: B —— (ST

is an equivalence. In the same way, it is obvious that U,: ¢ ——= .7% fulfills the
hypotheses of Theorems 1 and 3 (whichever the reader prefers to think of), and so
P, .S —— (S*)T2 is an equivalence (in fact, an isomorphism, since U, creates
isomorphisms).

Step 3. To see that 7,: T, —— T, is an isomorphism, refer back to step 1, and observe
that F, = 2F). Indeed,

SR(G) = 2@ Gr - Y (vr) = @ G- 72Y () = F(G)

zeX zeX

since ./¢ preserves coproducts. Thus
U,F, =U,?F, = U, F,

and this identity is the triple map 7,.

To see that 7,: T; ——T is an isomorphism, we need to invoke condition 2d, which
bespeaks the fact that U = .#¥ <Y preserves coproducts. Now

U F(G) = Ul@G:c~Y(z/1x)

zeX

= ¥ (@ Gz - Y(¢x)>

zeX

= @ Gzx - S?Y (Yx)

zeX
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and

UF(G) = U(@Gx.w)

= PGz Uy

zeX

= PGz 7Y ()

zeX

and it is clear that 7: U F} —— UF' is this isomorphism.

This completes the proof.

60



Coequalizers in Categories of Algebras

F. E. J. Linton [{

Introduction

It is well known |[Linton (1969), Section 6] that (inverse) limits in a category of algebras
over .&/—in particular, in the category /T of algebras over a triple T = (7,7, ) on
@/—can be calculated in .«7. Despite the fact that such a statement is, in general, false
for colimits (direct limits), a number of colimit constructions can be carried out in 277
provided they can be carried out in &/ and /T has enough coequalizers.

The coequalizers /T should have, at a minimum, are, as we shall see in Section 1,
those of reflerive pairs: a pair

f
X—=VY
g
of maps f, g in a category 2 is reflexive if there is an 2 -morphism

AY — X

satisfying the identities
feA=idy =g-A.

(This terminology arises form the fact that, when 2" = . = {sets}, (f,g) is reflexive if
and only if the image of the induced function

X?YXY

y g

contains the diagonal of Y x Y.)

In Section 2 we give two criteria for 27T to have coequalizers of reflexive pairs, neither
of them necessary, of course. In Section 1, it will turn out, so long as /7 has such
coequalizers, that each functor

AT AT oS,

induced by a map of triples 7: S — T, has a left adjoint, that .2/ T has coproducts if .o/
does, indeed, has all small colimits if &7 has coproducts, and that .27 T has tensor products
if o/ does. These are, of course, known facts when &/ = . = {sets}; however, at the
time of this writing, it is unknown, for example, whether the category of contramodules
over an associative coalgebra, presented (in |Eilenberg & Moore (1965a)]) as &7 with
o/ = {ab. groups}, has coequalizers of reflexive pairs.

1Research supported by an N.A.S.-N.R.C. Postdoctoral Research Grant while the author was at E. T.
H. Ziirich, on leave from Wesleyan University.
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1. Constructions using coequalizers of reflexive pairs.

We begin with a lemma that will have repeated use. It concerns the following definition,
which clarifies what would otherwise be a recurrent conceptual obscurity in the proofs of
this section.

Let U: 2" —— &/ be a functor, let X € |2, and let (f,g) = {(f;.9;)] € I} be a
family of .&7-morphisms

i
(1.1) Ai?;UX (i el).

An 2 -morphism p: X —— P is a coequalizer (rel. U) of the family of pairs (1.1) if
1) Vie I,Up- f, =Up-g,, and
2) if ¢: X —=Y satisfies Uqe f; = Uqeog; (Vi € I), then 3la: P——Y with ¢ = - p.

U =idy: & ——2Z, a coequalizer (rel. U) of the family (1.1) will be called simply
a coequalizer of (1.1).

LEMMA 1. If U has a left adjoint F: o/ — Z and f,,g;: FA, — X are the Z -
morphisms corresponding to f;, g; by adjointness, then p: X — P is a coequalizer (rel.
U) of (f,q) if and only if it is a coequalizer of (f,g). If U is faithful and f;, §;: X;— X
are 2 -morphisms with Uf; = f;, Ug, = g;, then p: X — P is a coequalizer (rel. U) of
(f,q) if and only if it is a coequalizer of (f,q).

PROOF. In the first case, the naturality of the adjunction isomorphisms yields

¢-fi=q-9,Uq-f;=Uq-gy
for every 2 -morphism ¢ defined on X. In the second case, that relation follows from the
faithfulness of U. Clearly, that relation is all the proof required. ]

PROPOSITION 1. Let S = (S,7',1/) and T = (T,n,p) be triples on <, suppose the
natural transformation 7: S —=T is a map of triples from S to T, and let (A, a) be an
S-algebra, (B, B) a T-algebra, p: TA——s B a T-homomorphism from (T'A, u,) to (B, ),
and v =pony: A—— B. Then the following statements are equivalent.

1) pis a coequalizer of the pair

T(ra)
(T'SA, pga) . (TTA, pra) - (TA; py)
T(a)
2) p is a coequalizer (rel. UT) of the pair
SA i TA

T A—



Coequalizers in Categories of Algebras 63
3) v is an S-homomorphism (A, o) — (B, - ) making the composition

A7((B,B),X)

o/5("(B,B), 47X)

A5((B, B 75), 47X)

L

A3((A,a), d7X)

a one-one correspondence, VX € |/7|.

PROOF. The equivalence of statements 1) and 2) follows from Lemma 1, since pu, - T'(74)
is the @ T-morphism corresponding to 7, by adjointness and 7, - a = T(a) - ng4 is the
o/-morphism corresponding to T'(«) by adjointness.

Next, if g:TA—— X is a T-homomorphism from (T'A,u,) to a T-algebra (X&),
having equal compositions with 7, and n, - a, we show that g -n,:A—— X is an S-
morphism from (A4, a) to &7 (X,€) = (X, - 7y), i.e., that

g mara=8-7x-S(g-1n4)
Clearly this requires only the proof of
g-Ta =& Tx 5950y,
for which, consider the diagram

SA-SM_gra_5 . gx

TA TTA TX

TA———TTA——TX

Tny ‘ Tg
Ha
|

N TA /e
|
X

The upper squares commute because 7 is natural, the left hand triangle, because p 411, =
id; 4, the right hand triangle, because g is a T-homomorphism.
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Finally, given an S-homomorphism f: A——=X from (A, a) to &7 (X,¢) = (X, & 7y), it
turns out that £-7'f is a T-homomorphism (T'A, p ,)— (X, €) having equal compositions
with 7, and 1 - a. For, the diagram

« A A TA

SA
/5

TA SX X Tf
Nx
Tx /X id \
TX : X : TX

commutes, since 7 is natural, f is an S-homomorphism, 7 is natural, and £ - ny =id.
These arguments form the core of a proof of Proposition 1. ]

COROLLARY 1. If &7 has coequalizers of reflexive pairs, then each functor o/ 7: of T——=af/S,
induced by a triple map 7:S——T, has a left adjoint 7.

PROOF. For each (A,«) € |«75], the pair

FTsa T prrg M pTy
\W/
FT(a)
whose coequalizer, if any, is (by Proposition 1) the value 7(A, ) of 7 at (A, «), is reflexive

by virtue of
A = FT(1y). .

PROPOSITION 2. Let (A;, ;) (i € I) be a family of T-algebras, and assume the coproduct
®,c1A; exists in of , say with injections j;: A; — ®A,;. Let p:T(®A;) —= P be a T-
homomorphism. Then the following statements are equivalent.

1) p is a coequalizer (rel. UT) of the family of pairs

T(5;)
TA, T(@4,) .

(2 7 J
7

2) each map h; = p-ng,. - j;: A;—= P is a T-homomorphism and the family (h;);c;
serves to make P the coproduct in o7 of (A,)c;-

Moreover, if ®T A, is available in <f , statements 1) and 2) are equivalent to each of
the following statements about p:



Coequalizers in Categories of Algebras 65

3) p is a coequalizer (rel. UT) of the pair

DT A, CTW) (A,

4) p is a coequalizer of the pair

(T(@TA,), n) — L (TT(@A,), p) — L (T(S4,), 1)
N A L ——

T(De;)

PROOF. The equivalence of statements 1) and 3) is obvious. The equivalence of 3) with 4)
is due to Lemma 1, since the top (bottom) maps correspond to each other by adjointness.

Next, let g: T(PA,) —= X be a T-homomorphism from FT(®A,) to (X, &), having
equal compositions with both components of all the pairs in 1). Then g-n, A, Jit A—X

is a T-homomorphism (4,, ;) — (X, &), for all i, as is shown by the commutativity of
the diagrams

T(5;) Tg

TA, T(®A,) — 1~ TT(®A,) TX
T I
o T(®A,) ¢ (el
\
A, P DA, v T(®A,) J X

Finally, if f;: A, —— X is a family of T-homomorphisms (4,, a;) — (X, &), then the
map

g=E-T(-f,- ):T(®A,) — TX —= X

is a T-homomorphism (the only one) having g - 1, A, " Ji = [, and, as the diagram below
shows, has equal compositions with both members of all of the pairs in 1).

zx (1el)

@ TAz E
id
nA4;
T(szx

This essentially concludes the proof of Proposition 2. [
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COROLLARY 2. If &7 has coequalizers of reflexive pairs, and if </ has all small coprod-
ucts, then /7 has all small colimits (direct limits).

PROOF. In the first place, &7 has small coproducts, because, given (A4;,«;) € |7
(1 € I), the pair

FT(T(j;)+)

FT(@TA)) FTT(®A4)) - FT(®A4;)
FT(®a;)

whose coequalizer, according to Proposition 2, serves as coproduct in 277 of the family
{(A;, ;)i € I}, is reflexive by virtue of

A= FT(®ny,).

But then, having coproducts and coequalizers of reflexive pairs, &7 has all small
colimits. Indeed, the pair

@ Ddom5

5€|22|

("'jcod(s'D(S"' )5E|@2\

DD

("']dom&“') 74€|@|

whose coequalizer is well known to serve as colimit of the functor D: ¥ ——7, is reflexive
by virtue of
A= "G, iea

REMARK. If &7 is a monoidal category |Eilenberg & Kelly (1966)] and T = (T, n, u) is
a suitable triple (meaning at least that 7": &/ —— &7 is a monoidal functor [Eilenberg &
Kelly (1966)], so that there are maps T: TA®T B—=T(A® B) subject to conditions, and
7 is a monoidal natural transformation, as should probably be ), then, given T-algebras
(A, ), (B, B), a coequalizer (rel. UT) of the pair

T(TA® TB)— "~ TT(A® B) —"~T(A® B)
\_/

T(a®8)

which is reflexive by virtue of
A=T(ny®ng)

serves equally well as a coequalizer (rel. UT) of the pair

TA®TB T T(A® B)
e A®B—

and, if o is closed monoidal [Eilenberg & Kelly (1966)], can be interpreted (in terms of
“bilinear maps”) as a tensor product, in .7, of (A, a) and (B, 3). Such phenomena hope
to be treated in detail elsewhere.
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2. Criteria for the existence of such coequalizers.

In view of Section 1, it behooves us to find workable sufficient conditions, on <7, on T, or
on both, that /T have coequalizers of reflexive pairs. The first such condition, though
rather special, depends on knowing when coequalizers in .77 can be calculated in 7.

PROPOSITION 3. Let T = (T,n, ) be a triple in <7, and let
f
(A7 OZ) T> (Bv 6)
be a pair of </ T-morphisms. Assume
f
1) There is an o -morphism p: B—— C which is a coequalizer (in <) ofA:g;B;

2) Tp is a coequalizer of (T'f,Tg);
3) TTp is epic.

Then: there is a map v: TC ——C, uniquely determined by the single requirement that

TB— ™" .10
B v
B C

P
commute; (C,v) is a T-algebra; and p: (B, ) — (C,7) is a coequalizer in &7 of (f,g).
PrROOF. The equations pe BT f = poefoa = pogeax = pof-Tg, occurring because of
assumption 1, force, because of assumption 2, a unique v:TC —— C with vTp = pg.
Then yengep = vyeTpeng = pefBeong = p, but p is epic (by 1) and so yon, = ide.
Similarly, using assumption 3, the equation 77Ty = ve p~ follows from the calculation
VoTyTTp = ~noTp-TS=pep-Tf
—= po/Bolu/B:"}/oTpolLLB
= Yolgo TTp .
Finally, if ¢: B— X is an /T morphism from (B, ) to (X, ) factoring through C,
the factorization must be an .7 T-morphism, because the diagram

TB TX

P
TC

B

X
\/

C

commutes everywhere else, and T'p is epic, by assumption 2. [



F. E. J. Linton 68

COROLLARY 3. If &/ has and T preserves coequalizers of reflexive pairs, then </7 has
coequalizers of reflexive pairs, and Corollaries 1 and 2 apply.

EXAMPLES.

1. If T is an adjoint triple, then T" preserves all coequalizers (and all colimits, in fact).
Samples of such triples:

a)

T =(-®A,id ® u,id ® m) where the ground category .« is {k-modules} (k
comm.) and A is an associative k-algebra with unit u: k —— A and multipli-
cation m:A@ A ——=A (® = ®,). &7 = A-modules.

T = (-x2,idx (1—252), id x (2 x 2—2%-2))  where the ground category 7 is
Cat and 2 is the p.o. set 0——=1. Cat' = {categories with idempotent triples}.
Where S is constructed like T, replacing 2 by the category A given by

Al = {0,1,2,...,n,...}
A(n,k) = order preserving maps {0...n—1}——={0...k — 1}

with the obvious composition, 0: 1 ——A the inclusion of the object 0, m: A x
A —— A the functor given by

n, ' ——s=n-+n

Cat® is {categories equipped with a triple}. Define 7:S ——= T by cross-
ing with the only functor A ——= 2 sending n # 0 to 1 and 0 to 0. Then
Cat™: Cat" —— Cat® is the functor interpreting an idempotent triple as a
triple on the same category. These constructions and observations are all due
to Lawvere. Since Cat has coequalizers and T is an adjoint triple, Cat” has
a left adjoint, by Corollary 1; roughly speaking, it assigns to a triple in a
category, a best idempotent triple on an as closely related other category as
possible.

2. Let & be an additive category, let m: G x G ——= G be an &/-morphism satisfying
m(m x G) = m(G x m), m(id,0) = id = m(0,id). Define a triple T = (- X
G, (id,0), (id xm)) on 7. Then T preserves all coequalizers because Ax G = ADG.
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3. Any functor preserves split coequalizer systems [Linton (1969a)|. In particular every
triple does, and so Proposition 3 guarantees that coequalizers of UT-split pairs of
2/ T-morphisms can be computed in &7, as was stated in greater generality in [Linton
(1969), Section 6].

The other criterion involves images. We treat images axiomatically, in a manner
suggestive of (and perhaps equivalent to) bicategories. Recall that 1, 2 and 3 are the
categories depicted as the partially ordered sets

1 = {0},
2 = {0—=1},

3 — {Oa/’l\bAQ}

c=boa

We will need the functors 2 —>3 and 1 —— 3 (whose values serve as their names).
These induce functors &7¢: &3 —— &7? and &': &/3 —— /1 = o/ for any category <.
By an image factorization functor for the category &7, we mean a functor

I al? —— a®,
having the property

1) o L A3 g2 = identity on 272, and three more properties which we state
using the notations

NI = I

I = OL]fLo;

2) f €|«/? == f, is an epimorphism,
3) f€|o? == f,is an monomorphism,

4) fel|d? = (f,), and (f,), are isomorphisms.

A functor T' preserves & -images if there is a natural equivalence, whose composition
with &7¢ is the identity, between T3 .# and .# - T2. This entails, for each f € &/ (A, B),
an isomorphism ¢;: T'(I;) — I, making the triangle

I

TF
), o
TA TB
m %ﬁ)
T(I)

commute.
A triple T = (T, n, ) on &7 preserves .#-images if the functor 7' does.
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LEMMA 2. If #: % ——= /3 is an image factorization functor for o/ and T is a triple
that preserves . -images, then there is one and only one image factorization functor Z7
for /T with the property

(UTBesT =7,
PROOF. Given f: A—— B, an @ T-morphism from (A, a) to (B, 3), the commutativity
of the square

TA— - TB
a g
A ; B
yields a commutative diagram
TA (Tf)a ITf (Tf)b TB
o f(j,m h
A fa, If fb B

Combining this with the commutative diagram arising from the definition of “I" preserves
f-images”, we obtain a map v = & («a, ) o 1;: T(I;) — I, making the diagram

TA T(fa) T(If) T(fb) TB
a 5 ]
A fa If fb B

commute. There is only one such map v because T'(f,) is epic and f, is monic. We
show that (I;,7) is a T-algebra. Write simply I = I;. ven; = id; follows from the
commutativity of

1 B

To
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and the fact that f, is monic. o7y = 7o pu,; follows from the commutativity of

Ty — < ppp
TI TI
vy \ / v

I I

and the fact that f, is monic. Since (UT)3e.#T = .#  the axioms .#T must satisfy,
to be an image factorization functor, are easily verified. The uniqueness is taken care
of, essentially, by the obvious uniqueness of v: T —— I, subject to the commutativity
relations expressed in the diagram

TA TI TB

A 1 B =

PROPOSITION 4. Let & be an image factorization functor for <, and let T be a triple
on o preserving & -images. Assume </ has small products and is co-well-powered (or
even just that the isomorphism classes of each class

J-epi(A) = {f|f:A*>B,fb:Ifi>B,B € ||}

constitute a set (isomorphisms that are the identity on <, of course)). Then /7 has all
coequalizers.

f
PROOF. Given a pair (F,e) —= D (A, a) of & T-morphisms, let

&, = {hlh € ||, h: (A, ) — (X, €),hf = hg,h = h,}.

Observe that an isomorphism class of &, in the sense of & T or in the sense of & is
the same thing, because T preserves .#-images, and the maps h, Th are epic. Pick
representatives of the isomorphism classes of &} , say

hi(A,a) —= (X, ) (iel)
and form the induced map (an ./ T-morphism by [Linton (1969), Section 6])
k={(-h ) (A o) — (ILX;, ILE).
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Then k, is a coequalizer of (f, g) in & T. Indeed, given h: (A, o) —(Z, () with hf = hg,
we have h, € &; , and so Ji; € I with h, ~ h,; . Then the composition

k pr; o h
([T)k — (ILX;, ILE) — (Xi07 51()) (IT)h : (Z,¢)
makes the triangle
ka
(4, @) (")
(Z,¢)
commute, and since k, is epic, it is the only such map. That k, € &, is obvious, and
completes the proof of the existence of coequalizers. [

REMARK. Much the same arguments prove, under the same hypotheses, that 277 has
coequalizers of families of pairs of maps.

EXAMPLE. & = ., .# = usual epic-monic factorization. Then any triple preserves .#-
images (proof below), and consequently .#7 has coequalizers, and, by virtue of Corollary
2, all colimits. That /7 has all limits if .27 has is well known, and this then takes care of
the completeness properties of varietal categories.

To see that every triple in . preserves images, it suffices to see that every triple in
. preserves monomorphisms since the usual epic-monic factorization is determined to
within isomorphism by the requirement that it be an epic-monic factorization, and every
functor preserves epimorphisms, since they split. So let T = (T, n, 1) be a triple in ..
The only monomorphisms f that 7" has a chance of not preserving are those that are not
split, i.e., those with empty domain. Now if T'(()) is (), T'f is surely monic. But if T}
has at least one element, T f, which may be thought of as a T-morphism from FT(() to
FT(n), admits a retraction, namely the extension to a T-homomorphismof any function

n—s=UTEFT) =T0.

That the composition on F'T() is the identity is due to the fact that F'7(0) is a left zero
(is initial, is a copoint) in #T.



A Triple Theoretic Construction of Compact Algebras

Ernest Manes [

Let T be a triple in the category of sets. Using the Yoneda Lemma, it is possible to
reinterpret T-algebras in the classical way as sets with (not necessarily finitary) opera-
tions; (the “equations” are built into T and need not be mentioned). The objects in the
category of compact T-algebras are defined to be sets provided with T-algebra structure
and compact T2 topology in such a way that T-operations are continuous, whereas the
morphisms are defined to be continuous T-homomorphisms. The end result of this paper
is the proof that “compact T-algebras” is itself the category of algebras over a triple in the
category of sets; that is, a compact T-algebra—a compact T2 space in particular—is an
example of a set with algebraic structure. When T-algebras = G-sets, compact T-algebras
= compact topological dynamics with discrete phase group G. The general case of com-
pact topological dynamics, when G is a (not necessarily compact) topological group, is
also algebraic, indeed is a Birkhoff subcategory (= variety) of the discrete case. (For more
on the interplay between compact topological dynamics and universal algebra see [Manes
(1967)|, Sections 2.4, 2.5]). This motivates our general study of Birkhoff subcategories in
Section 3. Otherwise, the paper pursues a suitably geodesic course to our main result 7.1,
so long as “suitable” means “intended to convince the reader with little background in
triple theoretic methods”.

1. Preliminaries.

We assume the reader is conversant with elementary category theory at the level of, say,
the first five chapters of [Mitchell (1965)]. Most of the main prerequisites are listed in
this section.

1.1 MISCELLANEOUS PRELIMINARIES. If f, ¢ are morphisms in a category we compose

13

first on the left so that fg (which we also write f - g) = I We use =g4¢ for

7

“is defined to be” and “=,,” for “is denoted to be”. We write “nd, (resp. “—f»”) to
assert that the morphism f is mono (resp., epi); “mono” and “epi” are defined below in
1.2. A function f is bijective =4 f is 1-to-1 and onto. If f is a function and if x is an
element of the domain of f, we write “zf” or “(z, f)” for the element of Y that f assigns
to . “End of proof” =, m.

Let 2 be a category. |#'| or obj.# =, the class of J#-objects. For X € objZ", 1

or X =X =4, the identity morphism of X. .7 =, the category of sets and functions.
s legitimate =y for all X,Y € obj# the class (X,Y).# of J-morphisms from X
to Y is a set. A class . of J# -morphisms has a representative set =4 there exists a set

WVirtually all of this paper appears in the author’s thesis [Manes (1967)]. Many of the ideas were
developed in conversations with Jon Beck and F. E. J. Linton to whom the author is grateful.
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Z of J -morphisms such that for every X I X € F there exists A—"~ B € & and
J -isomorphisms X —%= A, Y ’ . B such that fB=ar.
1.2 MONOS AND EPIS.

DEFINITION 1.2.1. Let Al.pew. f 1s a split epi if there exists B JoAex
with ff =1g. f is a coequalizer if there exist g,h € # with f = coeq(g,h). Define

reg(f) =4 {A—2=Y € X : for every (a,b): X —= A, af = bf implies ag = by}
Then f is a regular epi if for every g € reg(f) there exists a unique g € & with fg=g.
f is epi if for every (a,b): B——=X in &', fa = fbimplies a = bﬂ Dually, we have split
mono, equalizer, regular mono, mono.

PROPOSITION 1.2.2. Let A—'~ B € & . Then f split epi implies f coequalizer implies
f regular epi implies f epi.

PROOF. If ff = lg, [ = Coeq(lA,ff). If f = coeq(a,b) then for every g € reg(f) we
have ag = bg so that the coequalizer property induces unique g with fg = g. Finally,
suppose f is regular epi and that fa = fb. Defining g =4 fa, g € reg(f) so there exists
unique g with fg =g, and a =g = b. ]

PROPOSITION 1.2.3. In .7 the following notions are equivalent: split epi, coequalizer,
reqular epi, epi, onto function.

PROOF. To see that epis are onto, consider functions to a two-element set. The axiom of
choice implies that onto functions are split epi (and conversely, by the way). [

PROPOSITION 1.2.4. Let A—1= B2~ C € #. Then f (split) epi and g (split) epi
implies fg (split) epi. fg (split) epi implies g (split) epi.

PROPOSITION 1.2.5. Let A—'~B € #. Then f iso iff f reqular epi and mono.
PROOF. [iso] implies [split epi and mono] implies [regular epi and mono|. Conversely, if
f is regular epi and mono, 1, € reg(f) and so induces f with ff =1,. As fff = f and
fisepi, ff =15 [
DEFINITION 1.2.6. Let A—'>~B e #. A regular coimage factorization of f is a fac-
torization f = A—2>Q —'~ B with p reqular epi and i mono. £ has regular coimage
factorizations if every £ -morphism admits a reqular coimage factorization.
PROPOSITION 1.2.7. Regular coimage factorizations are unique within isomorphism.
PROOF. Suppose p,p’ are regular epis and i, are monos with pi = p'i’. p’ is in reg(p) as
i’ is mono, so h is uniquely induced with ph = p’. hi’ =i because p is epi. h~! is induced
similarly. n

2Editor’s footnote: Note that reg(f) is a proper class in general. This definition—which could be
reworded to avoid the proper class—defines “regular epi” without requiring that it be a coequalizer of
any single map.
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PROPOSITION 1.2.8. Assume that £ has reqular coimage factorizations. Let

A-l.B 9 cex

Then f,qg reqular epi implies fg reqular epi. fg reqular epit implies g reqular epi. The
hypothesis on & is necessary in both cases.

PROOF. Suppose fg is regular epi. Consider the diagram

f B g C

: I

j
where pi is the regular coimage factorization of g and then J is the regular coimage
factorization of fp. By 1.2.7, ji is an isomorphism. But then ¢ is mono and split epic,
hence an isomorphism, by 1.2.5; and then g is regular epi because p is.

Now suppose that f, g are regular epi and let fg = pi be a regular coimage factorization
of fg. As i is mono, p is in reg(f) inducing p such that fp = p. As just proved, i is
regular epi (noting that pi = g because f is epi). As i is also mono, i is iso and hence fg
is regular epi because p is.

The third assertion is left to the reader with the hint to look at some simple finite
categories. -

A

J

1.3 Livrts. If D is a J# -valued functor, the inverse limit of D (determined only within
isomorphism if it exists at all) is denoted “lim D”, or more precisely “lim D ——= D”;
- -

similarly, we use “D —— lim D” for direct limits. The i*® projection of a product

— a0 11X, —> X,. The coequalizer of (f,g): X —=Y =, coeq(f,g). If (A, . Xiae
I) is a family of monomorphisms, their inverse limit =, (A, =—— X (¢ is, in fact, a
monomorphism). The class of monomorphisms into X is partially ordered by A= X <

B~1-X =4 there exists A—"~ B such that kj =i (in which case k is unique and is a
monomorphism); NA, = infA, with respect to this ordering.

1.4 GODEMONT’S CINQ REGLES; SEE [GODEMENT (1958)]. Suppose that W, X, Y, Z
are functors and that a is a natural transformation from X to Y. Natural transformations
WX Y WY and XZ —2>Y Z are induced by defining K(Wa) =4 (KW)a and
K(aZ) =4 (Ka)Z for every object K. The five rules concerning these operations are as
follows.

(WX)a=W(Xa): WXY —WXZ,
W(YZ) = (@) Z:WYZ —= XY Z;
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WaZ =4 Wa)Z =W(aZ) WXZ —WY Z,
V(a-b)Z =VaZ -VbZ.VWZ —=VYZ,
ab =4 aY - Xo=Wb-aZ:WY — XZ.

1.5 THE YONEDA LEMMA. Let # —~ .7 be a set-valued functor, and let X be a
J -object such that (X,-).# is set-valued. Then the passages

(X,-).#¢,Hnt. —> XH, XH ——> ((X,-)¢,H)n.t.
a +— (14,Xa) z—(X,-) ¥ = H
(X,Y) ¥ X vH
x1oyv o (xfH)

(where “n.t.” means natural transformations) are mutually inverse. In particular,

((X,-)%, H)n.t. is a set. For a proof see |Mitchell (1965), pp. 97-99].
1.6 ADJOINT FUNCTORS. Let . —-> % be a (not necessarily full) subcategory of JZ°,

and let X be a J-object. A reflection of X in .Z =, a J-morphism X X & such
that X, € obj.Z and such that whenever X oL e # with L e obj.Z there exists

a unique X o, I € & such that X n- ]7 = f. If every JZ-object has a reflection in
Z then Z is a reflective sub category of # and there is a reflector functor & L

defined so as to make 1 —-= Ri natural. R is determined within natural equivalence. %
is full iff R may be chosen with iR = 1,; (however, the definition of reflectors requires a
suitable axiom of choice).

A left adjointness consists of functors £ . &, o —Ys # and natural transfor-

mations UF ——1, 1 — FU (called adjunctions) subject to the adjointness axioms
F-" o FUF o F = 1,, U2~ UFU —Y~U = 1,,. We donote this by F - U,
read “F is left adjoint to U” and let 1, be understood. U has a left adjoint =, there
exists F' 4 U. If & and J# are legitimate, then a left adjointness may be expressed in
terms of a natural equivalence ((-)F,-)o —= (-, (-)U)# where (f, (X, A)a) = Xn - fU,
(f, (X, A)a™!) = gF- Ae and conversely Xn = (15, (X, XF)a), Ae = (1,4, (AU, A)a™t).
If f 4U and F U then F and F are naturally equivalent. A subcategory is reflective
iff its inclusion functor has a left adjoint. Notice that a subcategory inclusion i is a full
reflective subcategory iff there exists R - ¢ with iR —==1 a natural equivalence.

Finally, we state the adjoint functor theorem first proved by Freyd. Let of U
be a functor. U satisfies the solusion set condition =4 for every K € obj.# there exists

a set, Ry, of @/-objects such that whenever A € &/ and K—1s AU e J, there exist
R € Ry, K—=RU € ¥, R—"+ A € & with f =a-bU; (such a set is called a solution
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set for K'). Let o/, & be legitimate and assume further that </ has lims. The adjoint
o
functor theorem says: there exists /' - U iff U preserves lims and satisfies the solution
-
set condition.

1.7 REGULAR CATEGORIES. The category % is regular if it satisfies the following four
axioms.

REG 1. JZ has regular coimage factorizations.

REG 2. # has lims.

REG 3. % is legitimate.

REG 4. For every X in obj.# the class of regular epimorphisms with domain X has a
representative set.

CONTRACTIBLE PAIRS (JON BECK).

DEFINITION 1.8.1. Let (f,g): X —=Y be & -morphisms. (f,g) is contractible =4 there

exists Y —%= X such that df =1y and fdg = gdg.

PROPOSITION 1.8.2. A coequalizer of a contractible pair is a split epi.

PROOF. If (f,g) is contractible and ¢ = coeq(f, g) then as fdg = gdg there exists Qq—"=Y
with gh = dg. As q is epi and ghq = dgq = dfq = q, hq = 1. [

For more on the theory of contractible pairs see [Manes (1967), Section 0.7]

CREATION OF CONSTRUCTIONS. Let & —%= % be a functor. U creates lims = for
-
cach functor A —2= &7 and for each model X —%= HU for lim HU there exists a unique

natural transformation A —%> H with codomain H such that aU = «; and moreover
a= lim H.
U creates regular coimage factorizations =4 for each @/-morphism A . B and for

each regular coimage factorization AU *>] —'> BU of f U there exists unique p, 1 icd
with pU = p and iU = i; and moreover, p, 1 is a regular coimage factorization of f.
U creates coequalizers of U-contractible pairs =gy for each pair of .&Z-morphisms

(f,9): A— B such that (fU,gU) is contractible and for each model BU —~ @ of

coeq(fU, gU) in | there exists unique B —E]V>Q with domain B such that qU = ¢; and
moreover, ¢ = coeq(f, 7).

2. Algebras over a triple.

In this section we study just enough about the category of algebras over a triple to suit
our later needs. See [Manes (1967), Chapter 1] for more results in a similar vein.
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DEFINITION 2.1. Let J# be a category. T = (T,n,u) is a triple in £ with unit 7

and multiplication pu if%/LJi/ is a functor and if 1 —=T, TT —= T are natural
transformations subject to the three axioms:

T TT<"T TTT "~ TT
T IT—7—T
T-unitary axioms T-associativity axiom

Let T = (T,n,p) be a triple in & . A T-algebra =4 a pair (X,§) with X € || and

XT X a K -morphism subject to the two axioms

X1 XT XTT —L - XT

1 f Xp 3

X XT X
E-unitary axiom &-associativity axiom

X is the underlying J¢ -object of (X,€) and £ is the structure map of (X,§). If (X,¢)
and (Y,9) are T-algebras, a T-homomorphism f: (X, &) — (Y, ¥) from (X, ¢) to (Y, )
is a J -morphism f: X ——=Y subject to the

T

XT——YT
3 9
X Y

T-homomorphism axiom
HT =g, the resulting category of T-algebras. UT =, the faithful underlying # -object
functor.

A functor U: of —— % is tripleable if there exists a triple T in J# and an isomorphism
of categories .o/ —2_ #T such that ®UT = U. H

bEditor’s footnote: This definition is non-standard. What is usually required is categorical equivalence,
not isomorphism. Moreover, from the use the author makes of tripleability, it seems likely that the
standard definition is what he really wants.



A Triple Theoretic Construction of Compact Algebras 79

2.2 HEURISTICS IN # 7. Categories of algebras in the classical sense are tripleable (see
[Linton (1969), Section 9]; also [Manes (1967), 1.1.7]). We observe now that there are
always free T-algebras for T = (T',n, 1) a triple in JZ". If X is a £ -object, then (XT, X )
is a T-algebra (as is immediate from the triple axioms). Observe that if (X&) is a T-
algebra, then &: (XT, X ) — (X, §) is a T-homomorphism by the {-associativity axiom.
Since p is natural,for each & -morphism f: X —Y, fT:(XT, Xpu)—YT,Ypn)isa T-
homomorphism. We wish to think of (XT, X ) as the “free T-algebra on X generators”
with Xn: X ——= XT as “inclusion of the generators”. Indeed, if (Y,4) is a T-algebra
and if f: X ——Y is a J-morphism, then it is easy to check that there exists a unique
T-homomorphism f: (XT, Xu)——=(Y,9) such that Xn.f = f, namely f =4 fT.9. Note
that a T-algebra is characterized by the unique extension of the identity map on generators
to (XT, X ).

2.3 EXAMPLE: THE TRIPLE ASSOCIATED WITH A MONOID. Let G be a monoid. “Carte-

sian product with the underlying set of G” is a functor

-xG

S ——

Define Xn =4 (1,e): X — X x G and Xpp =4 1 xm: X X G x G—=X x C, where e
is the monoid unit and m is the monoid multiplication. Then G = (- x G, 7, u) is a triple
in .. G-algebras are right G-sets. G is called the triple associated with G.

PROPOSITION 2.4. UT creates lims.
-

PROOF. Suppose D: A ——= %" is a functor and I';: L — X, is a model for lim DUT.

For every d:1——j € A, we have

LT IsT Is

X.

& J

X,T

which induces a unique J#-morphism & such that I';/7.¢, = £.I'; for all <. It is routine to
check that I';: (L, &) — (X, &;) is the created lim of D. =

2.5 SUBALGEBRAS. Let (X&) be a T-algebra and let i: A——X be a £ -monomorphism.
Say that i (or by abuse of language A) is a subalgebra of (X, ¢) if there exists a -
morphism &;: AT —— A such that {,.i = iT.€. It is easy to check that, indeed, (A,¢&,) is
a T-algebra. To denote that (A4, ¢,) is a subalgebra of (X, ), we write “(A4,¢&,) < (X, €)”.

PROPOSITION 2.6. Let T preserve reqular coimage factorizations. Then UV creates reg-
ular coimage factorizations.
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ProOOF. Let f:(X,£)——=(Y,9) be a T-homomorphism and suppose f has regular coim-

age factorization f = XLl >XinX. By hypothesis, fT'= XT Ty
is a regular coimage factorization in J#. Since &.f = fT.W and ¢ is mono, £p €
reg(pT’) which induces unique ¥, with pT.9, = J.p. Vy.i = iT.9 as pT is epi. We

have (X, &) —(I,9,) —— (Y,¥) and that ¥, is unique with this property. To complete
the proof, we have only to show that p: (X, &) — (I,9,) is regular epi in #7. Let
a: (X,§)——(A, k) € regy(p). Suppose ¢, x: B——=X are £ -morphisms with (.p = x.p.
Let E , X be the induced homomorphic extensions. Since Z .p, X-p are homomorphisms
agreeing on generators, (.p = x.p. This proves that a € reg ,(p). As p: X —=1 is
a regular epi in J#, there exists a unique .#-morphism a with p.a = a. Since a is a
T-homomorphism and pT is epi, a is forced to be a T-homomorphism. 