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Preface

This book is a textbook in basic category theory, written specifically to be
read by researchers and students in computing science. We expound the con-
structions we feel are basic to category theory in the context of examples and
applications to computing science. Some categorical ideas and constructions
are already used heavily in computing science and we describe many of these
uses. Other ideas, in particular the concept of adjoint, have not appeared as
widely in the computing science literature. We give here an elementary ex-
position of those ideas we believe to be basic categorical tools, with pointers
to possible applications when we are aware of them.

In addition, this text advocates a specific idea: the use of sketches as a
systematic way to turn finite descriptions into mathematical objects. This
aspect of the book gives it a particular point of view. We have, however,
taken pains to keep most of the material on sketches in separate sections. It
is not necessary to read to learn most of the topics covered by the book.

As a way of showing how you can use categorical constructions in the
context of computing science, we describe several examples of modeling lin-
guistic or computational phenomena categorically. These are not intended
as the final word on how categories should be used in computing science;
indeed, they hardly constitute the initial word on how to do that! We are
mathematicians, and it is for those in computing science, not us, to deter-
mine which is the best model for a given application.

The emphasis in this book is on understanding the concepts we have
introduced, rather than on giving formal proofs of the theorems. We in-
clude proofs of theorems only if they are enlightening in their own right. We
have attempted to point the reader to the literature for proofs and further
development for each topic.

In line with our emphasis on understanding, we frequently recommend
one or another way of thinking about a concept. It is typical of most of the
useful concepts in mathematics that there is more than one way of perceiv-
ing or understanding them. It is simply not true that everything about a
mathematical concept is contained in its definition. Of course it is true that
in some sense all the theorems are inherent in its definition, but not what
makes it useful to mathematicians or to scientists who use mathematics. We
believe that the more ways you have of perceiving an idea, the more likely
you are to recognize situations in your own work where the idea is useful.

xi



xii Preface

We have acted on the belief just outlined with many sentences beginning
with phrases such as ‘This concept may be thought of as .... We have been
warned that doing this may present difficulties for a nonmathematician who
has only just mastered one way of thinking about something, but we feel it
is part of learning about a mathematical topic to understand the contextual
associations it has for those who use it.

About categories

Categories originally arose in mathematics out of the need of a formalism to
describe the passage from one type of mathematical structure to another. A
category in this way represents a kind of mathematics, and may be described
as category as mathematical workspace.

A category is also a mathematical structure. As such, it is a common
generalization of both ordered sets and monoids (the latter are a simple
type of algebraic structure that include transition systems as examples),
and questions motivated by those topics often have interesting answers for
categories. This is category as mathematical structure.

A third point of view is emphasized in this book. A category can be seen
as a structure that formalizes a mathematician’s description of a type of
structure. This is the role of category as theory. Formal descriptions in
mathematical logic are traditionally given as formal languages with rules for
forming terms, axioms and equations. Algebraists long ago invented a for-
malism based on tuples, the method of signatures and equations, to describe
algebraic structures. In this book, we advocate categories in their role as for-
mal theories as being in many ways superior to the others just mentioned.
Continuing along the same path, we advocate sketches as finite specifications
for the theories.

Changes in the second and third editions

The second edition contained new examples and exercises, many new items
in the bibliography, and new sections or chapters on 2-categories, distribu-
tive categories, monoidal categories and *-autonomous categories. The third
edition contains some new examples and exercises as well as new material
on factorization, final algebras and Chu objects. In contrast to the second
edition, this third edition contains in the printed text all the chapters as well
as answers to all the exercises.



Preface xiii
Topics

Chapter [I] contains preliminary material on graphs, sets and functions. The
reader who has taken a discrete mathematics course may wish to skip this
chapter. However, some fine points concerning sets and functions are dis-
cussed that may be worth looking at.

Chapter [2] introduces categories and gives many examples. We also give
certain simple constructions on categories and describe elementary properties
of objects and arrows.

Chapter 3| introduces functors, which are the mappings that preserve
the structure of categories. We make certain constructions here that will be
needed in later chapters.

Chapter [4] deals with three related topics: diagrams, natural transfor-
mations and sketches. Probably the first thing noncategorists notice about
category theory is the proliferation of diagrams: here we begin the heavy
use of diagrams in this book. We discuss representable functors, universal
objects and the Yoneda embedding, which are fundamental tools for the cat-
egorist. We also introduce 2-categories in this chapter, as well as a very weak
version of sketch called a linear sketch.

Chapter [9] introduces products and sums. This allows one to use cate-
gories, in their role as theories, to specify functions of several variables and
to specify alternatives. In programming languages these appear as record
structures and variant records.

Chapter [6] is an introduction to cartesian closed categories, which have
been a major source of interest to computer scientists because they are
equivalent in theoretical power to typed lambda calculus. In this chapter,
we outline briefly the process of translating between typed lambda calcu-
lus and cartesian closed categories. Normally, in learning a new language,
one should plunge right in speaking it instead of translating. However, it
may be helpful for the suspicious reader to see that translation is possible.
We outline two translation processes in this book: the one mentioned here
and another in Chapter [/} Except for those two places, category theory is
everywhere presented in its own terms.

Chapter [7] introduces finite product sketches, which have the expressive
power of multisorted universal algebra. These sketches provide a formalism
for universal algebra that provide a natural definition of models in cate-
gories other than the category of sets, and being based on graphs, they also
incorporated multisortedness into the definition in an intrinsic way. In this
chapter, a method is given for translating between finite product sketches
and the formalism of signatures and equations used in traditional universal
algebra. More expressive types of sketches are described in Chapters
and [111
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Chapter [§|introduces finite discrete sketches, which have more expressive
power than universal algebra, in that they allow one to express alternatives.

Chapter [9] introduces the general concepts of limit and colimit of which
the constructions in Chapter [5| were a special case. These are basic construc-
tions in category theory that allow the formation of equationally defined
subtypes and quotients. We describe unification in terms of coequalizers of
free models of a certain kind of theory (free theory).

Chapter [10] describes finite limite sketches, which are more powerful than
universal algebra in a different way from the finite discrete sketches of Chap-
ter 8 allowing partial operations, but only those whose domain can be de-
scribed equationally. These sketches have somewhat more expressive power
than universal Horn theories. We also describe briefly the most general types
of sketches.

Chapter [11]introduces mappings between sketches, which are applied to
the description of parametrized data types. In this chapter, sketches are also
shown to be institutions in the sense of Goguen and Burstall.

Chapter[12]describes fibrations and the Grothendieck construction, which
have applications to programming language semantics. We also consider
wreath products, a type of fibration which has been used in the study of
automata.

Chapter[13]discusses the concept of adjointness, which is one of the grand
unifying ideas of category theory. It is closely related to two other ideas:
representable functors and the Yoneda Lemma. Many of the constructions
in preceding chapters are examples of adjoints.

We discuss representable functors, universal objects and the Yoneda
Lemma in Chapter but we have deliberately postponed adjoints until
we have several examples of them in applications. The concept of adjoint
appears difficult and unmotivated if introduced too early. Nevertheless, with
some exceptions, Chapter [13| can be read after having finished Section
(This is discussed in more detail in the introduction to Chapter [L3])

Chapter contains a miscellany of topics centered around the idea of
the algebra for a functor. We use this to define fixed points for a functor, to
introduce the notion of a triple (monad), and to develop the Smyth-Plotkin
technique for constructing Scott domains.

Chapter [15] introduces toposes. A topos is a kind of generalized set the-
ory in which the logic is intuitionistic instead of classical. Toposes (or com-
putable subcategories thereof) have often been thought the correct arena for
programming language semantics. Categories of fuzzy sets are recognized as
almost toposes, and modest sets, which are thought by many to be the best
semantic model of polymorphic lambda calculus, live in a specific topos.

Chapter [16]introduces monoidal categories, *-autonomous categories and
the Chu construction. The latter form a model of linear logic.
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Most sections have exercises which provide additional examples of the
concepts and pursue certain topics further. Many exercises can be solved
by carefully keeping track of the definitions of the terms involved. A few
exercises are harder and are marked with a dagger. Some of those so marked
require a certain amount of ingenuity (although we do not expect the reader
to agree in every case with our judgment on this!). Others require familiarity
with some particular type of mathematical structure. For example, although
we define monoids in the text, a problem asking for an example of a monoid
with certain behavior can be difficult for someone who has never thought
about them before reading this book.

This third edition contains solutions to all the exercises. The solutions
to the easy exercises, especially in the early chapters, go into considerable
detail. The solutions to the harder exercises often omit routine verifications.

Other categorical literature

Nearly all of the topics in category theory in this book are developed further
in the authors’ monograph [Barr and Wells, 1985]. Indeed, the present text
could be used as an introduction to that monograph. Most of the topics,
except sketches, are also developed further in [Mac Lane, 1971, McLarty,|
, ?] and . Other texts specifically concerning applica-
tions to computing science include [Asperti and Longo, 1991], [Crole, 1994],
Gunter, 1992], [Manes and Arbib, 1986|, |[Pierce, 1991], [Rydeheard and|
Burstall, 1988 and [Walters, 1991]. Various aspects of the close relationship
between logic and categories (in their role as theories) are treated in [Makkai
and Reyes, 1977|, [Lambek and Scott, 1986], |[Bell, 1988] and [Adamek and
Rosicky, 1994]. Recent collections of papers in computer science which have
many applications of category theory are [Pitt et al., 1986], [Pitt, Poigné and
Rydeheard, 1987|, [Ehrig et al., 1988], [Main et al., 198§|, [Gray and Sce-
drov, 1989, |Pitt et al., 1989, |Pitt et al., 1991], [Fourman, Johnstone and
Pitts, 1992], [Seely, 1992], [Pitt, Rydeheard and Johnstone, 1995] and [Moggi
and Rosolini, 1997]. The reader may find useful the discussions of the uses
of category theory in computing science in |Goguen, 1991], [Fokkinga, 1992]
and in the tutorials in [Pitt et al., 1986].

Since this is an expository text, we make no effort to describe the history
of the concepts we introduce or to discover the earliest references to theorems
we state. In no case does our statement of a theorem constitute a claim that
the theorem is original with us. In the few cases where it is original, we have
announced the theorem in a separate research article.

We do give an extensive bibliography; however, the main criteria for
inclusion of a work in the bibliography are its utility and availability, not
the creation of a historical record.
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Prerequisites

This text assumes some familiarity with abstract mathematical thinking, and
some specific knowledge of the basic language of mathematics and computing
science of the sort taught in an introductory discrete mathematics course.

Terminology

In most scientific disciplines, notation and terminology are standardized, of-
ten by an international nomenclature committee. (Would you recognize Ein-
stein’s equation if it said p = HU??) We must warn the nonmathematician
reader that such is not the case in mathematics. There is no standardization
body and terminology and notation are individual and often idiosyncratic.
We will introduce and stick to a fixed notation in this book, but any reader
who looks in another source must expect to find different notation and even
different names for the same concept — or what is worse, the same name used
for a different concept. We have tried to give warnings when this happens,
with the terminology at least.

Acknowledgments for the first edition

In the preparation of this book, the first author was assisted by a grant
from the NSERC of Canada and the second by NSF grant CCR-8702425.
The authors would also like to thank McGill University and Case Western
Reserve University, respectively, for sabbatical leaves, and the University of
Pennsylvania for a very congenial setting in which to spend those leaves.

We learned much from discussions with Adam Barr, Robin Cockett,
George Ernst, Tony Hoare, Colin McLarty, Pribhakar Mateti, William F.
Ogden, Robert Paré and John Power. Bob Harper, Tony Hoare and an anony-
mous referee made many helpful corrections and suggestions. We would espe-
cially like to thank Benjamin Pierce, who has read the book from beginning
to end and found scores of errors, typographical and otherwise.

Acknowledgments for the second edition

We are grateful to the many readers who reported errors and obscurities in
the first edition. They include Nils Andersen, David Benson, Anthony Bucci,
Anders Gammelgaard, Stephen J. Bevan, Andrew Malton, Jean-Pierre Mar-
quis, Frank Piessens, Richard Rarick, Paul Taylor, Todd Turnidge, Nico
Verwer, Al Vilcius, Jodelle Wuertzer, and Han Yan. We are also grateful to
Barbara Beeton for help with fonts.
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1

Preliminaries

This chapter is concerned with some preliminary ideas needed for the intro-
duction to categories that begins in Chapter [2l The main topics are (i) an
introduction to our notation and terminology for sets and functions and a
discussion of some fine points that can cause trouble if not addressed early,
and (ii) a discussion of graphs, by which we mean a specific type of directed
graph. Graphs are a basis for the definition of category and an essential part
of the definition of both commutative diagrams and sketches.

1.1 Sets

The concept of set is usually taken as known in mathematics. Instead of
attempting a definition, we will give a specification for sets and another one
for functions that is adequate for our purposes.

1.1.1 Specification A set is a mathematical entity that is distinct from,
but completely determined by, its elements (if any). For every entity = and
set S, the statement x € 5, read ‘x is an element of S’, is a sentence that is
either true or false.

A finite set can be defined by listing its elements within braces; for exam-
ple, {1, 3,5} is a set completely determined by the fact that its only elements
are the numbers 1, 3 and 5. In particular, the set { } with no elements is
called the empty set and is denoted (.

The setbuilder notation defines a set as the collection of entities that
satisfy a predicate; if x is a variable ranging over a specific type of data and
P(x) is a predicate about that type of data, then the notation {x | P(z)}
denotes the set of all things that have the same type as x about which P(z)
is true. Thus, if z is a variable of type real, {z | x > 7} is the set of real
numbers greater than 7. The set {z | P(x)} is called the extension of the
predicate P.

1.1.2 Notation We denote the set of natural numbers (nonnegative inte-
gers) by N, the set of all integers by Z, the set of all rational numbers by Q,
and the set of all real numbers by R.
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1.1.3 Russell’s paradox The setbuilder notation (which implicitly sup-
poses that every predicate determines a set) has a bug occasioned by Rus-
sell’s paradox, which uses setbuilder notation to define something that
cannot be a set:

{S|Sisasetand S ¢ S}

This purports to be the set of all those sets that are not elements of them-
selves. If this were indeed a set T', then T € T implies by definition that
T ¢ T, whereas T' ¢ T implies by definition that 7" € T'. This contradiction
shows that there is no such set T

A simple way to avoid this paradox is to restrict z to range over a
particular type of data (such as one of the various number systems — real,
integers, etc.) that already forms a set. This prophylaxis guarantees safe sets.

If you find it difficult to comprehend how a set could be an element of itself,
rest assured that most approaches to set theory rule that out. (But see [Devlin,
1993].) Following those approaches, the (impossible) set T consists of all sets,
so that we now know that there is no set whose elements are all the sets that
exist — there is no ‘set of all sets’.

1.1.4 Definition If S and T are sets, the cartesian product of S and T’
is the set S x T of ordered pairs (s,t) with s € S and ¢ € T. Thus in setbuilder
notation, S x T'= {(s,t) | s € S and t € T'}. Observe that T" x S = {(¢,s) |
s € S and t e T}, and so is not the same set as S x T unless S = T.

The ordered pair (s, t) is determined uniquely by the fact that its first co-
ordinate is s and its second coordinate is t. That is essentially a specification
of ordered pairs. The formal categorical definition of product in Section [5.1
is based on this.

More generally, an ordered n-tuple is a sequence (aq,...,a,) deter-
mined uniquely by the fact that for ¢ = 1,...,n, the ith coordinate of
(a1,...,ay) is a;. Then the cartesian product S; x So X - -+ X S, is the set of
all n-tuples (ay,...,a,) with a; € S; for i =1,... n.

1.1.5 Definition A relation « from a set S to a set T is a subset of
S x T. Any such subset is a relation from S to 7.

Extreme examples of relations from S to 1" are the empty set and the set
S x T. Another useful example is the diagonal relation Ag (often written
simply A) from S to S for any set S; by definition,

Ag ={(z,z) |z €S}

The usual order relations such as ‘<’ and ‘<’ on R (and other sets of num-
bers) are examples of relations; thus ‘<’ in this sense is the set

{(r,s) | There is a positive number ¢ such that r +t = s}
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As this last example illustrates, if « is a relation from S to T, then we write
s at to mean that (s,t) € a. However, the usual symbol for A is of course

Observe that if S # T, then a relation from S to T is not the same thing
as a relation from 7 to S (because then S x T'# T x S).

1.2 Functions

1.2.1 Specification A function f is a mathematical entity with the fol-
lowing properties:

F-1 f has a domain and a codomain, each of which must be a set.

F-2 For every element x of the domain, f has a value at x, which is an
element of the codomain and is denoted f(z).

F-3 The domain, the codomain, and the value f(z) for each = in the domain
are all determined completely by the function.

F-4 Conversely, the data consisting of the domain, the codomain, and the
value f(x) for each element = of the domain completely determine the
function f.

The domain and codomain are often called the source and target of f,
respectively.

The notation f : S — T is a succinct way of saying that the function f
has domain S and codomain 7. It is used both as a verb, as in ‘Let f: S
— 1", which would be read as ‘Let f be a function from S to 77, and as a
noun, as in ‘Any function f:S — T satisfies ...”, in which the expression
would be read as ‘f from S to T”. One also says that f is of type ‘S arrow
1.

We will use the barred arrow notation to provide an anonymous no-
tation for functions. For example, the function from R to R that squares its
input can be denoted x — 22 : R — R. The barred arrow goes from input
datum to output datum and the straight arrow goes from domain to codo-
main. The barred arrow notation serves the same purpose as the logicians’
lambda notation, Az.z2, which we do not use except in the discussion of \-
calculus in Chapter [6] The barred arrow notation, like the lambda notation,
is used mainly for functions defined by a formula.

1.2.2 The significance of F-3 is that a function is not merely a rule, but
a rule together with its domain and codomain. This is the point of view
taken by category theorists concerning functions, but is not shared by all
mathematicians. Thus category theorists insist on a very strong form of
typing. For example, these functions
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(i) z+ 2?:R — R*
(i) z+—2?:R—R

(iii) z+ 2%:RT — Rt
(iv) 2 — 22 :RT — R

(where RT is the set of nonnegative reals) are four different functions. This
distinction is not normally made in college mathematics courses, and indeed
there is no reason to make the distinction there, but it turns out to be
necessary to make it in category theory and some other branches of abstract
mathematics.

It can be useful to make the distinction even at an elementary level.
For example, every set S has an identity function idg : § — S for which
idg(z) = x for all x € S. If S is a subset of a set T', then there is an inclusion
function i : S — T for which i(z) = z for all z € S. The functions idg and
1 are different functions because they have different codomains, even though
their value at each element of their (common) domain is the same.

1.2.3 Definition The graph of a function f : S — T is the set of or-
dered pairs: {(z, f(x)) | x € S}.

Thus the graph of a function from S to T is a relation from S to T as
defined in Definition However, not any relation will do; it must have
the functional property that for all s € S, there is one and only one t € T
such that (s,t) is in the graph.

Many texts, but not this one, define a function to be a relation with the
functional property. That definition is not equivalent to Definition [1.2.3} a
relation from S to T with the functional property determines S (it is the set
of all first coordinates of ordered pairs of the relation) but not 7', so that a
function defined in that way does not determine its codomain. Some writers
who define a function to be a relation with the functional property use the
word mapping for what we call a function (where the domain and codomain
are part of the definition). In this book (as in most books) we use the word
“mapping” or “map” synonymously with “function”.

1.2.4 Definition The image of a function (also called its range) is its
set of values; that is, the image of f: S — T is {t € T' | s € S for which
f(s) =t}. The image of each of the squaring functions mentioned in is
of course the set of nonnegative reals.

The metaphor behind the names “map” and “image” reveals a way of thinking
that is basic in modern mathematics: A function f : S — T is thought of as
a map in the space T (in the sense of cartography) of its domain S. Thus a
map of New York City (= S) is a collection of symbols on a piece T of paper
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together with the (partially implicit) information about which points on the
paper T correspond to actual locations in the city S; this is the function that
takes a point in the city to a point on the sheet of paper. The image is the set
of symbols and their arrangement on the page, forgetting what in the city they
correspond to.

The fact that the locations on the paper correspond to the locations in the city
comes from the fact that the map is (approximately) shape-preserving. Most
functions actually used in mathematics preserve some kind of structure.

1.2.5 Definition A function f: S — T is injective if whenever s # s
in S, then f(s) # f(s') in T.

Another name for injective is one to one. The identity and inclusion
functions described previously are injective. The function z — z? : R — R
is not injective since it takes 2 and —2 to the same value, namely 4. On the
other hand, = — 23 is injective.

There is a unique function e : ) — T for any set T'. It has no values. It
is vacuously injective.

Do not confuse the definition of injective with the property that all functions
have that if s = s’ then f(s) = f(s'). Another way of saying that a function is
injective is via the contrapositive of the definition of injective: if f(s) = f(s),
then s = §'.

1.2.6 Definition A function f: S — T is surjective if its image is 7.

The identity function on a set is surjective, but no other inclusion func-
tion is surjective.

Observe that the definition of surjective depends on the specified codo-
main; for example, of the four squaring functions listed in only (i) and
(iii) are surjective. A surjective function is often said to be onto.

A function is bijective if it is injective and surjective. A bijective func-
tion is also called a one to one correspondence.

1.2.7 Functions and cartesian products If S and T are sets, the carte-
sian product S x T is equipped with two coordinate or projection func-
tions proj; : S xT — S and projy : S T — T'. The coordinate functions are
surjective if S and T" are both nonempty. Coordinate functions for products
of more than two sets are defined analogously.

There are two additional notational devices connected with the cartesian
product.

1.2.8 Definition If X, S and T aresetsand f: X —- Sandg: X — T
are functions, then the function (f,g) : X — S x T is defined by (f, g)(z) =
(f(x),g(x)) for all z € X.
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1.2.9 Definition If X,Y, Sand T aresetsand f: X — S5, g:Y — T
are functions, then f x g: X xY — S x T is the function defined by (f x
9)(xz,y) = (f(x),9(y)). It is called the cartesian product of the functions
f and g.

These functions are discussed further in Chapter

1.2.10 Definition If f: S — T and g : T — U, then the composite
function g - f : S — U is defined to be the unique function with domain
S and codomain U for which (g o f)(z) = g(f(x)) for all x € S. In the
computing science literature, f; g is often used for g o f.

Category theory is based on composition as a fundamental operation in
much the same way that classical set theory is based on the ‘element of’ or
membership relation.

In categorical treatments, it is necessary to insist, as we have here, that
the codomain of f be the domain of g for the composite g o f to be defined.
Many texts in some other branches of mathematics require only that the
image of f be included in the domain of g.

1.2.11 Definition If f:S — T and A C S, then the restriction of f to
A is the composite f o i, where i : A — S is the inclusion function. Thus
the squaring function in miii) is the restriction to R™ of the squaring
function in [1.2.2[i).

Similarly, if T C B, f is called the corestriction of the function j o f : S
— B to T, where j is the inclusion of T' in B. Thus, in the function
in (i) is the corestriction to R™ of the function in (ii).

1.2.12 Functions in theory and practice The concept of function can
be explicitly defined in terms of its domain, codomain and graph. Precisely,
a function f : S — T could be defined as an ordered triple (S,I',T") with the
property that I' is a subset of the cartesian product S x 1" with the functional
property (I is the graph of f). Then for x € S, f(x) is the unique element y €
T for which (x,y) € T'. Such a definition clearly satisfies specification m

The description of functions in is closer to the way a mathemati-
cian thinks of a function than the definition in For a mathematician,
a function has a domain and a codomain, and if x is in the domain, then
there is a well defined value f(z) in the codomain. It is wrong to think that a
function is actually an ordered triple as described in the preceding paragraph
in the same sense that it is wrong for a programmer writing in a high level
language to think of the numbers he deals with as being expressed in binary
notation. The possible definition of function in the preceding paragraph is an
implementation of the specification for function, and just as with program
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specifications the expectation is that one normally works with the specifi-
cation, not the implementation, in mind. We make a similar point in [5.1.1
when we discuss ordered pairs in the context of categorical products.

In understanding the difference between a specification of something and an
implementation of it, it may be instructive to read the discussion of this point
in [Halmos, 1960|, Section 6, who gives the definition of an ordered pair. The
usual definition is rather unnatural and serves only to demonstrate that a
construction with the required property exists. Specifications are also discussed
in [Wells, 1995].

1.2.13 Definition Let S and T be sets, and let Hom(.S,T") denote the set
of all functions with domain S and codomain 7'. (This fits with the standard
notation we introduce in Chapter [2]) Let f : T — V be a function. The
function

Hom(S, f) : Hom(S,T') — Hom(S,V)

is defined by
Hom(S, f)(g9) = f - g

Hom(S, f) is an example of a hom function. Note that Hom(S, z) is over-
loaded notation: when x is a set, Hom(S, z) is a set of functions, but when
x is a function, so is Hom(S, x).

As an example of how one works with Hom functions, we show that if .S
is not the empty set, then f is injective if and only if Hom(S, f) is injective.

Suppose f is injective and that Hom(S, f)(¢g) = Hom(S, f)(h). Then f o
g = f o h. Let  be any element of S. Then f(g(z)) = f(h(x)) and f is
injective, so g(x) = h(z). Since z is arbitrary, g = h. Conversely, suppose
f is not injective. Then for some t,u € T with t # u, f(t) = f(u). Define
functions g : S — T and h : S — T to be the constant functions with values
t and u respectively. Because S is nonempty, g # h. For any = € S, f(g(x)) =

f(t) = f(u) = f(h(x)), so
Hom(S, f)(g9) = f > g = f o h=Hom(S, f)(h)
Hence Hom(S, f) is not injective.

1.2.14 Exercises
Most introductory texts in discrete mathematics provide dozens of exercises
concerning sets, functions and their properties, and operations such as union,
intersection, and so on. We regard our discussion as establishing notation, not
as providing a detailed introduction to these concepts, and so do not give such
exercises here. The exercises we do provide here allow a preliminary look at
some categorical constructions that will appear in detail later in the book.
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1. In the notation of let h : W — S be a function and define a
function Hom(h,T') : Hom(S,T) — Hom(W,T) by Hom(h,T)(g) = g ° h.
Show that if T" has at least two elements, then h is surjective if and only if
Hom(h,T) is injective.

2. a. Using the notation of show that the mapping that takes a pair
(f: X — S,g: X —1T) of functions to the function (f,g) : X — S x T
defined in Definition is a bijection from Hom(X,S) x Hom(X,T) to
Hom(X,S x T).

b. If you set X = S x T in (a), what does idgx7 correspond to under the
bijection?

3. Let S and T be two disjoint sets, and let V' be a set.
a. Let ¢ : Hom(S,V) x Hom(7T,V) — Hom(S UT,V) be the mapping
that takes a pair (f: S — V, g: T — V) to the function (f|g) : SUT — V

defined b
Y [ flx) itzes
o) = {10 L2 S7

Show that ¢ is a bijection.
b. If youset V.= SUT in (a), what is ¢(idsur)?

4. If Z(C) denotes the power set (set of all subsets) of C, then Rel(A, B) =
P (A x B) denotes the set of relations from A to B. Let ¢ : Rel(4, B) —
Hom(A, #B) be defined by

¢(a)(a) = {b € B (a;b) € a}

a. Show that ¢ is a bijection.
b. Let A = B. What corresponds to A 4 under this bijection?
c. If we let A= 2B then ¢! : Hom(#B, #B) — Rel(#B, B). What

is ¢~ (idwp)?

1.3 Graphs

The type of graph that we discuss in this section is a specific version of
directed graph, one that is well adapted to category theory, namely what
is often called a directed multigraph with loops. A graph is a constituent
of a sketch, which we introduce in Chapter [4 and is an essential ingredient
in the definition of commutative diagram, which is the categorist’s way of
expressing equations. The concept of graph is also a precursor to the concept
of category itself: a category is, roughly speaking, a graph in which paths
can be composed.
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1.3.1 Definition and notation Formally, to specify a graph, you must
specify its nodes (or objects) and its arrows. Each arrow must have a
specific source (or domain) node and target (or codomain) node. The
notation ‘f : @ — b’ means that f is an arrow and a and b are its source and
target, respectively. If the graph is small enough, it may be drawn with its
nodes indicated by dots or labels and each arrow by an actual arrow drawn
from its source to its target.

There may be one or more arrows — or none at all — with given nodes as
source and target. Moreover, the source and target of a given arrow need not
be distinct. An arrow with the same source and target node will be called
an endoarrow or endomorphism of that node.

We will systematically denote the collection of nodes of a graph ¢ by G
and the collection of arrows by G1, and similarly with other letters (J# has
nodes Hy, € has nodes Cp, and so on). The nodes form the zero-dimensional
part of the graph and the arrows the one-dimensional part.

1.3.2 Example Let Gy ={1,2}, G; ={a,b,c},
source(a) = target(a) = source(b) = target(c) = 1
and
target(b) = source(c) = 2
Then we can represent ¢ as
ma

1 - (1.1)

1.3.3 Example The graph of sets and functions has all sets as nodes
and all functions between sets as arrows. The source of a function is its
domain, and its target is its codomain.

In this example, unlike the previous ones, the nodes do not form a set.
(See [1.1.3]) This fact will not cause trouble in reading this book, and will
not usually cause trouble in applications. We use some standard terminology
for this distinction.

1.3.4 Definition A graph that has a set of nodes and arrows is a small
graph; otherwise, it is a large graph.

Thus the graph of sets and functions is a large graph. More generally we
refer to any kind of mathematical structure as ‘small’ if the collection(s) it
is built on form sets, and ‘large’ otherwise.

Note that if 4 is a small graph, source : G; — G and target : Gi — Gy
are functions.
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1.3.5 Definition A graph is called discrete if it has no arrows.

In particular, the empty graph, with no nodes and no arrows, is discrete.
A small discrete graph is essentially a set; small discrete graphs and sets are
usefully regarded as the same thing for most purposes.

1.3.6 Definition A graph is finite if the number of nodes and arrows is
finite.

1.3.7 Example It is often convenient to picture a relation on a set as a
graph. For example, let A = {1,2,3}, B = {2,3,4} and

o= {(17 2),(2,2),(2,3), (174)}

Then « can be pictured as

O
-2

Of course, graphs that arise this way never have more than one arrow
with the same source and target. Such graphs are called simple graphs.

Note that the graph of a function, as defined in is a relation
(see , and so corresponds to a graph in the sense just described. The
resulting picture has an arrow from each element x of the domain to f(x)
so it is not the graph of the function in the sense used in calculus.

1.3.8 Example Sometimes one can represent a data structure by a graph.
This graph represents the set N of natural numbers in terms of zero and the
successor function (adding 1):
ucc
e (1.3)

l———n

The name ‘1’ for the left node is the conventional notation to require that
the node denote a singleton set, that is, a set with exactly one element.
In we provide a formal mathematical meaning to the idea that this
graph generates the natural numbers. Right now, this is just a graph with
nodes named ‘1’ and ‘n’.

This informal idea of a graph representing a data type will become the
basis of the formal theory of sketches in Chapter [4]
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1.3.9 Example In the same spirit as Example [I.3.8] let us see what data
type is represented by the graph

a ? n (1.4)

The data type has a signature consisting of two objects, call them a and
n, and two arrows, let us call them (temporarily) s,t : a — n. But if we
interpret a as arrows, n as nodes and s and t as source and target, this is
exactly what we have defined a small graph to be: two sets and two functions
from one of the sets to the other. For this reason, this graph is called the
graph of graphs. (See |Lawvere, 1989].)

1.3.10 Exercises

1. The graphs in this section have labeled nodes; for example, the two nodes
in (L.3) are labeled ‘1’ and ‘n’. Produce a graph analogous to (1.4) that
expresses the concept of ‘graph with nodes labeled from a set L’.

2. Let ¢4 be a graph with set of nodes N and set of arrows A. Show that ¥ is
simple if and only if the function (source, target) : A — N x N is injective.
(This uses the pair notation for functions to products as described in M)

1.4 Homomorphisms of graphs

A homomorphism of graphs should preserve the abstract shape of the graph.
A reasonable translation of this vague requirement into a precise mathemat-
ical definition is as follows.

1.4.1 Definition A homomorphism ¢ from a graph ¢ to a graph 7,
denoted ¢ : 4 — I, is a pair of functions ¢y : Go — Hg and ¢1 : G1 — H;
with the property that if w: m — n is an arrow of ¢, then ¢1(u) : ¢o(m)
— ¢0(TL) in J2.

It is instructive to restate this definition using the source and target
mappings from [[.3.9} let sourcey : G; — Gy be the source map that takes
an arrow (element of G1) to its source, and similarly define targety, source ;»
and target ;. Then the pair of maps ¢g : Go — Hp and ¢1 : G; — H; is a
graph homomorphism if and only if

Source y o ¢1 = g ° SOUrcey

and
target ,» o @1 = ¢g ° targety
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1.4.2 Notation of the form a : B — C' is overloaded in several ways. It
can denote a set-theoretic function, a graph homomorphism or an arrow in
a graph. In fact, all three are instances of the third since there is a large
graph whose nodes are sets and arrows are functions (see and another
whose nodes are (small) graphs and arrows are graph homomorphisms.

Another form of overloading is that if ¢ : 4 — S is a graph homo-
morphism, ¢ actually stands for a pair of functions we here call ¢g : G
— Hp and ¢1 : G; — H;. In fact, it is customary to omit the subscripts
and use ¢ for all three (the graph homomorphism as well as its components
¢o and ¢1).

This does not lead to ambiguity in practice; in reading about graphs you
are nearly always aware of whether the author is talking about nodes or
arrows. We will keep the subscripts in this section and drop them thereafter.

1.4.3 Example If¥ isany graph, the identity homomorphism idy : ¢
— ¥ is defined by (idg)o = idg, (the identity function on the set of nodes
of 4) and (idy)1 = idg, .

1.4.4 Example If ¢ is the graph

(1.5)

and 7 is this graph,

O

F
O

Q

then there is a homomorphism ¢ : 4 — S for which ¢o(1) = S, ¢o(2) =
¢0(3) = F and ¢p(4) = Q, and ¢; takes the loop on 2 and the arrow from
2 to 3 both to the upper loop on F'; what ¢; does to the other two arrows
is forced by the definition of homomorphism. Because there are two loops
on F there are actually four possibilities for ¢; on arrows (while keeping ¢

fixed).
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1.4.5 Example If JZ is any graph with a node n and a loop u : n — n,
then there is a homomorphism from any graph ¢ to 7 that takes every
node of ¢ to n and every arrow to u. This construction gives two other
homomorphisms from ¢ to . in Example besides the four mentioned
there. (There are still others.)

1.4.6 Example There is a homomorphism o from Example to the
graph of sets that takes the node called 1 to a one-element set, which in
contexts like this we will denote {}, and that takes the node n to the set N
of natural numbers. (Following the practice in computing science rather
than mathematics, we start our natural numbers at 0.) The homomorphism
o takes the arrow 1 — n to the function * +— 0 that picks out the natural
number 0, and o(succ), naturally, is the function that adds 1. This is an ex-
ample of a model of a sketch, which we discuss in This homomorphism
gives a semantics for the sketch constituted by the abstract graph of

1.4.7 Example The homomorphism in Example[I.4.6]is not the only homo-
morphism from Example[1.3.§ to sets. One can let n go to the set of integers
(mod k) for a fixed k and let succ be the function that adds one (mod k) (it
wraps around). You can also get other homomorphisms by taking this ex-
ample (or and adjoining some extra elements to the set corresponding
to n which are their own successors.

1.4.8 Example Example[I.3.9]can be given a semantics in the same way
as Example If ¢ is any small graph, there is a graph homomorphism
¢ from the diagram in to the graph of sets for which ¢o(n) is the set
of nodes of ¢4, ¢g(a) is the set of arrows, and ¢; takes the arrows labeled
source and target to the corresponding functions from the set of arrows of
¢ to the set of nodes of ¢.

Moreover, the converse is true: any homomorphism from to the
graph of sets gives a graph. The nodes of the graph are the elements of ¢g(n)
and the arrows are the elements of ¢g(a). If f € ¢o(a), then the source of f
is ¢1(source)(f) and the target is ¢;(target)(f). Thus the graph of Exam-
ple corresponds to the homomorphism ¢ where ¢o(n) = {1,2}, ¢o(a) =
{a,b,c}, ¢1(source) is the function a — 1,b — 1,¢ — 2 and ¢ (target) is the
function a — 1,b— 2,c+— 1.

In short, graph homomorphisms from to the graph of sets corre-
spond to what we normally call graphs.

1.4.9 Notation In an expression like ‘¢;(source)(f)’, ¢1 is a function whose
value at ‘source’ is a function that applies to an arrow f. As this illustrates,
the application operation associates to the left.
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1.4.10 Exercises

1. Show that if the codomain 57 of a graph homomorphism ¢ is a simple
graph, then ¢; is determined uniquely by ¢q.

2. Show that the composite of graph homomorphisms is a graph homo-
morphism. Precisely: if ¢ : 4 — 5 and ¢ : /7 — & are graph homo-
morphisms, then define the composite ¥ o ¢ by requiring that (¢ o ¢)g =
Yo ° ¢p and (¥ o @)1 = 1 o ¢1. Then prove that ¢ o ¢ is a graph homo-
morphism.

3. Let ¢ be a homomorphism & — 7 for which both ¢ and ¢ are bijective.
Define ¢ : A — & by o = (¢o) ' and ¢ = (¢1)".

a. Show that v is a graph homomorphism from 7 to ¢.

b. Using the definition of composite in the preceding exercise, show that
both Lb ° d) = idgg and ¢ ° w = id(yf.
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Categories

A category is a graph with a rule for composing arrows head to tail to give
another arrow. This rule is subject to certain conditions, which we will give
precisely in Section [2.1] The connection between functional programming
languages and categories is described in Section Some special types of
categories are given in Section Sections and are devoted to a
class of examples of the kind that originally motivated category theory. The
reader may wish to read through these examples rapidly rather than trying
to understand every detail.

Constructions that can be made with categories are described in Sec-
tion Sections and describe certain properties that an arrow
of a category may have. Section describes factorization systems, which
are useful structures in many categories. This section is used only in Chap-

ters [ and [16]

2.1 Basic definitions

Before we define categories, we need a preliminary definition.

2.1.1 Definition Let k£ > 0. In a graph ¢, a path from a node z to a
node y of length k is a sequence (f1, f2,..., fr) of (not necessarily distinct)
arrows for which

(i) source(f) = =z,
(ii) target(f;) = source(fi—1) for i =2,...,k, and
(iii) target(f1) =v.

By convention, for each node « there is a unique path of length 0 from z to
x that is denoted (). It is called the empty path at x.

Observe that if you draw a path as follows:

fo . fer o o N

with the arrows going from left to right, fi will be on the left and the
subscripts will go down from left to right. We do it this way for consistency

with composition (compare C-1).
15
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For any arrow f, (f) is a path of length 1. As an example, in Dia-
gram (1.3]) on page there is just one path of each length k from n to n,
namely (), (succ), (succ,succ), and so on.

2.1.2 Definition The set of paths of length k in a graph ¢ is denoted Gy.

In particular, G5, which will be used in the definition of category, is the
set of pairs of arrows (g, f) for which the target of f is the source of g. These
are called composable pairs of arrows.

We have now assigned two meanings to GGy and G1. This will cause no conflict as
G refers indifferently either to the collection of arrows of ¢ or to the collection
of paths of length 1, which is essentially the same thing. Similarly, we use Gq
to represent either the collection of nodes of 4 or the collection of empty
paths, of which there is one for each node. In each case we are using the same
name for two collections that are not the same but are in a natural one to one
correspondence. Compare the use of ‘2’ to denote either the integer or the real
number. As this last remark suggests, one might want to keep the two meanings
of G separate for purposes of implementing a graph as a data structure.

The one to one correspondences mentioned in the preceding paragraph were
called ‘natural’. The word is used informally here, but in fact these correspon-
dences are natural in the technical sense (Exercise [L0| of Section |4.3)).

2.1.3 Categories A category is a graph % together with two functions
c:Cy — C1 and u : Cy — Cy with properties C—1 through C—4 below.
(Recall that C9 is the set of paths of length 2.) The elements of Cy are
called objects and those of C are called arrows. The function c¢ is called
composition, and if (g, f) is a composable pair, ¢(g, f) is written g o f and
is called the composite of g and f. If A is an object of €, u(A) is denoted
id 4, which is called the identity of the object A.

C—1 The source of g o f is the source of f and the target of g o f is the
target of g.

C-2 (heog)o f=heo(g° f) whenever either side is defined.
C—3 The source and target of id4 are both A.
C41Iff:A— B,then foidg=idge f = f.

The significance of the fact that the composite ¢ is defined on G is that
g o f is defined if and only if the source of g is the target of f. This means that
composition is a function whose domain is an equationally defined subset of
(G1 x G1: the equation requires that the source of g equal the target of f. It
follows from this and C—1 that in C—2, one side of the equation is defined if
and only if the other side is defined.

In the category theory literature, id4 is often written just A.
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2.1.4 Terminology In much of the categorical literature, ‘morphism’, ‘do-
main’ and ‘codomain’ are more common than ‘arrow’, ‘source’ and ‘target’.
In this book we usually use the language we have just introduced of ‘arrow’,
‘source’ and ‘target’. We will normally denote objects of categories by capital
letters but nodes of graphs (except when we think of a category as a graph)
by lower case letters. Arrows are always lower case.

In the computing science literature, the composite g o f is sometimes
written f;g, a notation suggested by the perception of a typed functional
programming language as a category (see [2.2.1)).

We have presented the concept of category as a two-sorted data structure;
the sorts are the objects and the arrows. Categories are sometimes presented
as one-sorted — arrows only. The objects can be recovered from the fact that
C-3 and C—4 together characterize id4 (Exercise 4)), so that there is a one
to one correspondence between the objects and the identity arrows id 4.

2.1.5 Definition A category is small if its objects and arrows constitute
sets; otherwise it is large (see the discussion of Russell’s paradox, [1.1.3)).

The category of sets and functions defined in below is an example
of a large category. Although one must in principle be wary in dealing with
large classes, it is not in practice a problem; category theorists have rarely,
if ever, run into set-theoretic difficulties.

2.1.6 Definition If A and B are two objects of a category %, then the set
of all arrows of ¢ that have source A and target B is denoted Homg (A, B),

or just Hom(A, B) if the category is clear from context. This generalizes the
notation of Definition [.2.13

Thus for each triple A, B, C' of objects, composition induces a function
Hom(B,C) x Hom(A, B) — Hom(A4, C)

A set of the form Hom(A, B) is called a hom set. Other common notations
for Hom(A, B) are ¢ (A, B) and € (AB).

2.1.7 The reference to the set of all arrows from A to B constitutes an
assumption that they do indeed form a set. A category with the property
that Hom(A, B) is a set for all objects A and B is called locally small. All
categories in this book are locally small.

2.1.8 Definition For any path (f1, fo,..., fn) in a category ¢, define f; o
fo o+ o f, recursively by

f1°f2°'”°fn:(f1°f2°"'°fn—1)°fn7 n > 2
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2.1.9 Proposition The general associative law. For any path

(fr: S, fn)

in a category € and any integer k with 1 < k < n,

(freorofrw)o (fogro-ofu)=froofn

In other words, you can unambiguously drop the parentheses.

In this proposition, the notation fy4q1 o --- o f, when K =n — 1 means
simply f.

This is a standard fact for associative binary operations (see [Jacobson,
1974], Section 1.4) and can be proved in exactly the same way for categories.

2.1.10 Little categories The smallest category has no objects and (of
course) no arrows. The next smallest category has one object and one arrow,
which must be the identity arrow. This category may be denoted 1. Other
categories that will be occasionally referred to are the categories 1 + 1 and
2 illustrated below (the loops are identities). In both cases the choice of the
composites is forced.

O O ) D)

1+1 2

2.1.11 Categories of sets The category of sets is the category whose
objects are sets and whose arrows are functions (see with composi-
tion of functions for ¢ and the identity function from S to S for idg. The
statement that this is a category amounts to the statements that composi-
tion of functions is associative and that each identity function idg : S — S
satisfies f o idg = f and idg o ¢ = g for all f with source S and all g with
target S. The fact that composition of functions is associative follows by
using Definition [1.2.10| repeatedly:

((heg)of)(x) = (heg)(f(x)) = h(g(f(x))) = h((g°f)(x)) = (he(g-f))(x)

The properties of the identity function follow from the definition of the

identity function (1.2.2)).

In this text, the category of sets is denoted Set. There are other cate-
gories whose objects are sets, as follows.
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2.1.12 Definition The category of finite sets, denoted Fin, is the cat-
egory whose objects are finite sets and whose arrows are all the functions
between finite sets.

2.1.13 Definition A partial function from a set S to a set T is a func-
tion with domain Sy and codomain T', where Sy is some subset of S. The
category Pfn of sets and partial functions has all sets as objects and
all partial functions as arrows. If f : S — T and g : T — V are partial
functions with f defined on Sy C S and g defined on Ty C T', the composite
geo f: S8 — V is the partial function from S to V defined on the subset
{z €Sy | f(z) € Tv} of S by the requirement (g - f)(z) = g(f(x)).

It is worth checking that composition so defined is associative. Let f : S
— T, g: T —V and h: V — W be partial functions with domains of
definition Sy C S, Ty € T and V) C V respectively. We must show

(i) (heg) e f has the same domain of definition as h o (g - f), and

(ii) For x in that common domain of definition,

((heg)e f)x)=(he(g°f))(x)

For (i), the domain of definition of (h e g) o f is the set of z € S such
that f(x) is in the domain of definition of h o g. The latter is the set of
t € T such that g(¢) is in V. Thus, the domain of definition of (h < g) o f
is {x € So | g(f(z)) € Vo}. Since g(f(z)) = (g ° f)(x), that is precisely the
domain of definition of h o (g o f). As for (ii), the proof is the same as for

ordinary functions (Section [2.1.11]).

2.1.14 Definition Let a be a relation from a set S to a set T and £ a
relation from 7" to U (see . The composite § - « is the relation from
S to U defined as follows: If z € S and z € U, (z,2) €  ° « if and only
if there is an element y € T for which (z,y) € a and (y,z) € 5. With this
definition of composition, the category Rel of sets and relations has sets
as objects and relations as arrows. The identity for a set S is the diagonal
relation Ag = {(z,z) | x € A}.

Other examples of categories whose objects are sets are the category of
sets and injective functions and the category of sets and surjective functions
(Exercises [1] and [2)).

Categories also arise in computing science in an intrinsic way. Three ex-
amples of this concern functional programming languages , automata
with typed states (3.2.6) and deductive systems (Section. In Sections
and we discuss some of the ways in which categories arise in mathe-
matics.
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2.1.15 Exercises

1. Prove that sets (as objects) and injective functions (as arrows) form a
category with functional composition as the composition operation c.

2. Do the same as Exercise [I] for sets and surjective functions.
3. Show that composition of relations ([2.1.14)) is associative.

4. Prove the following for any arrow u : A — A of a category €. It follows
from these facts that C—3 and C—4 of characterize the identity arrows
of a category.
a. If g o u = g for every object B of ¥ and arrow g : A — B, then u = id 4.
b. If u o h = h for every object C' of € and arrow h : C — A, then
u = id A-

2.2 Functional programming languages
as categories

The intense interest in category theory among researchers in computing sci-
ence in recent years is due in part to the recognition that the constructions
in functional programming languages make a functional programming lan-
guage look very much like a category. The fact that deduction systems are
essentially categories has also been useful in computing science.

In this section we describe the similarities between functional program-
ming languages and categories informally, and discuss some of the technical
issues involved in making them precise. Deduction systems are discussed in

Section B.6l

2.2.1 Functional programming languages A functional programming
language may be described roughly as one that gives the user some primitive
types and operations and some constructors from which one can produce
more complicated types and operations.

What a pure functional programming language in this sense does not
have is variables or assignment statements. One writes a program by applying
constructors to the types, constants and functions. ‘Running’ a program
consists of applying such an operator to constants of the input type to obtain
a value.

This is what was called ‘function-level programming’ in Backus [1981a]
and [1981b]. (See also [Williams, 1982|.) Another widely held point of view
is that functional programming means no assignment statements: variables
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may appear but are not assigned to. Most languages called functional pro-
gramming languages (for example Haskell and Miranda) are functional in
this sense.

We will discuss Backus-style functional programming languages here.
The lambda calculus, with variables, is discussed in Chapter [6} see particu-

larly [6.5.3]

2.2.2 The category corresponding to a functional programming
language A functional programming language has:

FPL-1 Primitive data types, given in the language.
FPL-2 Constants of each type.
FPL-3 Operations, which are functions between the types.

FPL—4 Constructors, which can be applied to data types and operations to
produce derived data types and operations of the language.

The language consists of the set of all operations and types derivable
from the primitive data types and primitive operations. The word ‘primitive’
means given in the definition of the language rather than constructed by
a constructor. Some authors use the word ‘constructor’ for the primitive
operations.

2.2.3 If we make two assumptions about a functional programming lan-
guage and one innocuous change, we can see directly that a functional pro-
gramming language L corresponds in a canonical way to a category C(L).

A-1 We must assume that there is a do-nothing operation id 4 for each type
A (primitive and constructed). When applied, it does nothing to the
data.

A-2 We add to the language an additional type called 1, which has the
property that from every type A there is a unique operation to 1.
We interpret each constant ¢ of type A as an arrow ¢ : 1 — A. This
incorporates the constants into the set of operations; they no longer
appear as separate data.

A-3 We assume the language has a composition constructor: take an opera-
tion f that takes something of type A as input and produces something
of type B, and another operation g that has input of type B and out-
put of type C; then doing one after the other is a derived operation (or
program) typically denoted f;g, which has input of type A and output
of type C.

Functional programming languages generally have do-nothing operations
and composition constructors, so A—1 and A-3 fit the concept as it appears in
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the literature. The language resulting from the change in A-2 is operationally
equivalent to the original language.

Composition must be associative in the sense that, if either of (f;g);h or
f;(g; h) is defined, then so is the other and they are the same operation. We
must also require, for f : A — B, that f;idp and idy4; f are defined and are
the same operation as f. That is, we impose the equations f;idg = f and
id4; f = f on the language. Both these requirements are reasonable in that
in any implementation, the two operations required to be the same would
surely do the same thing.

2.2.4 Under those conditions, a functional programming language L has a
category structure C'(L) for which:

FPC-1 The types of L are the objects of C(L).
FPC-2 The operations (primitive and derived) of L are the arrows of C'(L).

FPC-3 The source and target of an arrow are the input and output types
of the corresponding operation.

FPC-4 Composition is given by the composition constructor, written in the
reverse order.

FPC-5 The identity arrows are the do-nothing operations.

The reader may wish to compare the discussion in [Pitt, 1986].

Observe that C(L) is a model of the language, not the language itself.
For example, in the category f;idg = f, but in the language f and f;idp are
different source programs. This is in contrast to the treatment of languages
using context free grammars: a context free grammar generates the actual
language.

2.2.5 Example As a concrete example, we will suppose we have a simple
such language with three data types, NAT (natural numbers), BOOLEAN (true
or false) and CHAR (characters). We give a description of its operations in
categorical style.

(i) NAT should have a constant 0 : 1 — NAT and an operation succ : NAT
— NAT.

(ii) There should be two constants true, false : 1 — BOOLEAN and an op-
eration — subject to the equations — o true = false and — o false =
true.

(iii) CHAR should have one constant ¢ : 1 — CHAR for each desired character
c.
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(iv) There should be two type conversion operations ord : CHAR — NAT
and chr : NAT — CHAR. These are subject to the equation chr o ord =
idcaar. (You can think of chr as operating modulo the number of char-
acters, so that it is defined on all natural numbers.)

An example program is the arrow ‘next’ defined to be the composite
chr o succ o ord : CHAR — CHAR. It calculates the next character in order.
This arrow ‘next’ is an arrow in the category representing the language, and
so is any other composite of a sequence of operations.

2.2.6 The objects of the category C'(L) of this language are the types NAT,
BOOLEAN, CHAR and 1. Observe that typing is a natural part of the syntax in
this approach.

The arrows of C'(L) consist of all programs, with two programs being
identified if they must be the same because of the equations. For example,
the arrow

chr o succ o ord : CHAR — CHAR

just mentioned and the arrow
chr o succ o ord o chr o ord : CHAR — CHAR

must be the same because of the equation in (iv).

Observe that NAT has constants succ o succ o ... o succ o 0 where succ
occurs zero or more times. In the exercises, n is the constant defined by
induction by 1 = succ - 0 and n 4+ 1 = succ ° n.

Composition in the category is composition of programs. Note that for
composition to be well defined, if two composites of primitive operations are
equal, then their composites with any other program must be equal. For
example, we must have

ord o (chr o succ e ord) = ord o (chr o succ ° ord o chr ¢ ord)

as arrows from CHAR to NAT. This is handled systematically in [3.5.8| using
the quotient construction.

This discussion is incomplete, since at this point we have no way to
introduce n-ary operations for n > 1, nor do we have a way of specifying the
flow of control. The first will be remedied in Section[5.3.14] Approaches to the
second question are given in Section and Section See also [Wagner,
1986a]. Other aspects of functional programming languages are considered

in[5.3.14 and £.4.8
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2.2.7 Exercise

1. Describe how to add a predicate ‘nonzero’ to the language of this section.
When applied to a constant of NAT it should give true if and only if the
constant is not zero.

2.3 Mathematical structures as categories

Certain common mathematical structures can be perceived as special types
of categories.

2.3.1 Preordered and ordered sets If S is a set, a subset « C S x S
is called a binary relation on S. It is often convenient to write zay as
shorthand for (z,y) € a. We say that « is reflexive if zax for all x € S and
transitive if ray and yaz implies xaz for all z, y, z € S.

A set S with a reflexive, transitive relation « on it is a structure (5, @)
called a preordered set. This structure determines a category C(S,a) de-
fined as follows.

CO-1 The objects of C(S,«) are the elements of S.

CO-2 If z,y € S and zay, then C(S,a) has exactly one arrow from z to
y, denoted (y,x). (The reader might have expected (z,y) here. This
choice of notation fits better with the right-to-left composition that
we use. Note that the domain of (y,x) is = and the codomain is y.)

CO-3 If x is not related by a to y there is no arrow from z to y.

The identity arrows of C(S, a) are those of the form (z,z); they belong to «
because it is reflexive. The transitive property of « is needed to ensure the
existence of the composite described in [2.1.3] so that (z,y) ° (y,z) = (2, ).

2.3.2 Example The category C(S,«) for S = {C, D} and
= {<Cv C>, <CvD>7 <D7D>}
is the category 2 exhibited in , page

2.3.3 Ordered sets A preordered set (S, «) for which « is antisymmetric
(that is zay and yax imply = = y) is called an ordered set or poset (for
‘partially ordered set’). Two examples of posets are (R, <), the real numbers
with the usual ordering, and for any set S, the poset (Z(S), C), the set of
subsets of S with inclusion as ordering.

It is often quite useful and suggestive to think of a category as a general-
ized ordered set, and we will refer to this perception to illuminate construc-
tions we make later.
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2.3.4 Semigroups A semigroup is a set S together with an associative
binary operation m : S xS — S. The set S is called the underlying set of
the semigroup.

Normally for s and ¢ in S, m(s,t) is written ‘st’ and called ‘multiplica-
tion’, but note that it does not have to satisfy the commutative law; that is,
we may have st # ts. A commutative semigroup is a semigroup whose
multiplication is commutative.

It is standard practice to talk about ‘the semigroup S’, naming the semi-
group by naming its underlying set. This will be done for other mathematical
structures such as posets as well. Mathematicians call this practice ‘abuse
of notation’. It is occasionally necessary to be more precise; that happens in
this text in Section [3.11
2.3.5 Powers We set s = s and, for any positive integer k, s¥ = ssF1.
Such powers of an element obey the laws s¥s” = s**™ and (s*)" = s*" (for
positive k and n). On the other hand, the law (st)*¥ = s*t* requires commu-
tativity.

2.3.6 Empty semigroup We specifically allow the empty semigroup,
which consists of the empty set and the empty function from the empty set
to itself. (Note that the cartesian product of the empty set with itself is the
empty set.) This is not done in most of the non-category theory literature;
it will become evident later (Section why we should include the empty
semigroup.

2.3.7 Definition An identity element e for a semigroup S is an element
of S that satisfies the equation se = es = s for all s € S. There can be at
most one identity element in a semigroup (Exercise (3)).

2.3.8 Definition A monoid is a semigroup with an identity element. It
is commutative if its binary operation is commutative.

It follows from the definition that a monoid is not allowed to be empty:
it must contain an identity element. It also follows that we can extend the
notation in @to 0 by defining z° to be the identity element of the monoid.
The laws s¥s™ = s**" and (s¥)" = s* then hold for all nonnegative k and
n.

2.3.9 Examples One example of a semigroup is the set of positive inte-
gers with addition as the operation; this is a semigroup but not a monoid.
If you include 0 you get a monoid.

The Kleene closure A* of a set A is the set of strings (or lists) of
finite length of elements of A. We write the lists in parentheses; for example
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(a,b,d,a) is an element of {a,b,c,d}*. Some parts of the computer science
literature call these strings instead of lists and write them this way: ‘abda’.
A* includes the empty list () and for each element a € A the list (a) of length
one.

The operation of concatenation makes the Kleene closure a monoid F'(A),
called the free monoid determined by A. The empty list is the identity
element. We write concatenation as juxtaposition; thus

(a,b,d,a)(c,a,b) = (a,b,d,a,c,a,b)

Note that the underlying set of the free monoid is A*, not A. In the
literature, A is usually assumed finite, but the Kleene closure is defined for
any set A. The elements of A* are lists of finite length in any case. When A
is nonempty, A* is an infinite set.

The concept of freeness is a general concept applied to many kinds of
structures. It is treated systematically in Chapter

2.3.10 Definition A submonoid of a monoid M is a subset S of M with
the properties:

SM-1 The identity element of M is in S.

SM-2 If m,n € S then mn € S. (One says that S is closed under the
operation.)

2.3.11 Examples The natural numbers with addition form a submonoid
of the integers with addition. For another example, consider the integers with
multiplication as the operation, so that 1 is the identity element. Again the
natural numbers form a submonoid, and so does the set of positive natural
numbers, since the product of two positive numbers is another one. Finally,
the singleton set {0} is a subset of the integers that is closed under multi-
plication, and it is a monoid, but it is not a submonoid of the integers on
multiplication because it does not contain the identity element 1.

2.3.12 Monoid as category A monoid M determines a category C'(M).

CM-1 C(M) has one object, which we will denote *; * can be chosen arbi-
trarily. A simple uniform choice is to take x = M.

CM-2 The arrows of C(M) are the elements of M with % as source and
target.
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CM-3 Composition is the binary operation on M.

(This construction is revisited in Section )

Thus a category can be regarded as a generalized monoid, or a ‘monoid
with many objects’. This point of view has not been as fruitful in mathe-
matics as the perception of a category as a generalized poset. However, for
computing science, we believe that the monoid metaphor is worth consider-
ing. It is explored in this book primarily in Chapter

2.3.13 Remark Many categorists define a monoid to be a category with
one object (compare and a preordered set to be a category in which
every hom set is either empty or a singleton (compare . This can be
justified by the fact that the category of monoids and the category of one-
object categories are ‘equivalent’ as defined in Section

2.3.14 Exercises
1. For which sets A is F(A) a commutative monoid?

2. Prove that for each object A in a category ¢, Hom(A, A) is a monoid
with composition of arrows as the operation.

3. Prove that a semigroup has at most one identity element. (Compare Ex-

ercise [4] of Section [2.1])

2.4 Categories of sets with structure

The typical use of categories has been to consider categories whose objects
are sets with mathematical structure and whose arrows are functions that
preserve that structure. The definition of category is an abstraction of ba-
sic properties of such systems. Typical examples have included categories
whose objects are spaces of some type and whose arrows are continuous (or
differentiable) functions between the spaces, and categories whose objects
are algebraic structures of some specific type and whose arrows are homo-
morphisms between them.

In this section we describe various categories of sets with structure. The
following section considers categories of semigroups and monoids.

Note the contrast with Section where we discussed certain mathe-
matical structures as categories. Here, we discuss categories whose objects
are mathematical structures.
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2.4.1 Definition The category of graphs has graphs as objects and
homomorphisms of graphs (see as arrows. It is denoted GRF. The
category of small graphs (see and homomorphisms between them is
denoted Grf.

Let us check that the composite of graph homomorphisms is a graph
homomorphism (identities are easy). Suppose ¢ : 4 — J and ¢ : H — H
are graph homomorphisms, and suppose that u : m — n in ¢. Then by
definition ¢1(u) : ¢o(m) — ¢o(n) in H#, and so by definition

Y1(¢1(w)) : Yo(po(m)) — o(do(n)) in AH

Hence 9 - ¢ is a graph homomorphism.
The identity homomorphism ide is the identity function for both nodes
and arrows.

2.4.2 The category of posets If (S, a) and (T, 5) are posets, a function
f:S — T is monotone if whenever zay in S, f(x)8f(y) in T.

The identity function on a poset is clearly monotone, and the composite
of two monotone functions is easily seen to be monotone, so that posets with
monotone functions form a category. A variation on this is to consider only
strictly monotone functions, which are functions f with the property that
if zay and x # y then f(2)f(y) and f(z) # f(y).

In[2:3.1] we saw how a single poset is a category. Now we are considering
the category of posets.

We must give a few words of warning on terminology. The usual word
in mathematical texts for what we have called ‘monotone’ is ‘increasing’ or
‘monotonically increasing’. The word ‘monotone’ is used for a function that
either preserves or reverses the order relation. That is, in mathematical texts
a function f : (X,a) — (T, B) is also called monotone if whenever zay in S,

fy)Bf(x) in T.

2.4.3 w-complete partial orders We now describe a special type of poset
that has been a candidate for programming language semantics. Actually,
these days more interest has been shown in various special cases of this kind
of poset, but the discussion here shows the approach taken.

Let (S5, <) be a poset. An w-chain, or simply a chain in S is an infinite
sequence sg, S1, $2, ... of elements of S for which s; < s;41 for all natural
numbers 7. Note that repetitions are allowed. In particular, for any two
elements s and t, if s <, thereis a chain s <t <t <t < ...

A supremum or least upper bound of a subset 7" of a poset (5, <) is
an element v € S with the following two properties:

SUP-1 Foreveryte T, t <w.
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SUP-2 If w € S has the property that ¢t < w for every t € T, then v < w.

The supremum of a subset T' is unique: if v and v’ are suprema of T,
then v < v/ because v’ satisfies SUP-1 and v satisfies SUP-2, whereas v/ < v
because v satisfies SUP-1 and v’ satisfies SUP-2. Then v = ¢’ by antisym-
metry.

If v satisfies SUP—1, it is called an upper bound of 7.

2.4.4 Definition A poset (S, <) is an w-complete partial order, or w-
CPO, if every chain has a supremum. If the poset also has a minimum
element, it is called a strict w-CPO. In this context, the minimum element
is usually denoted L and called ‘bottom’.

Note: This usage of the word ‘complete’ follows the customary usage in
computing science. However, you should be warned that this use of ‘complete’
conflicts with standard usage in category theory, where ‘complete’ refers to
limits, not colimits, so that w-complete means closed under infimums of all
descending chains. This concept is discussed in Definitions and

For example, every powerset of a set is a strict w-CPO with respect to
inclusion (Exercise {4)).

2.4.5 Example A more interesting example from the point of view of
computing science is the set &2 of partial functions from some set S to
itself as defined in A partial function on S can be described as a set
f of ordered pairs of elements of S with the property that if (s,¢) € f and
(s,t') € f, then t = ¢/. (Compare [1.2.3])

We give the set & a poset structure by defining f < g to mean f C g as
a set of ordered pairs. It follows that if f and g are partial functions on S,
then f < g if and only if the domain of f is included in the domain of g and
for every x in the domain of f, f(x) = g(x).

2.4.6 Proposition & is a strict w-CPO.

Proof. Let .7 be a chain in &. The supremum ¢ of .7 is simply the union of
all the sets of ordered pairs in 7. This set ¢ is clearly the supremum if indeed
it defines a partial function. So suppose (z,y) and (z,z) are elements of ¢.
Then there are partial functions u and v in & with (x,y) € u and (z, 2) € v.
Since .7 is a chain and the ordering of & is inclusion, there is a partial
function w in .7 containing both (z,y) and (z,z), for example whichever
of w and v is higher in the chain. Since w is a partial function, y = z as
required.

The bottom element of & is the empty function. O
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2.4.7 Definition A function f: S — T between w-CPOs is continuous
if whenever s is the supremum of a chain € = (cp, c1,c2,...) in S, then f(s)
is the supremum of the image f(%) = {f(c;) | ¢ € N} in T. A continuous
function between strict w-CPOs is strict if it preserves the bottom element.

A continuous function is monotone, as can be seen by applying it to a
chain (s,t,t,t,...) with s <¢. Thus it follows that the image f(%¢’) of the
chain % in the definition is itself a chain. See [Barendregt, 1984], pp.10ff, for
a more detailed discussion of continuous functions.

The w-complete partial orders and the continuous maps between them
form a category. Strict w-complete partial orders and strict continuous func-
tions also form a category. In fact the latter is a subcategory in the sense to
be defined in 2.6.11

2.4.8 Functions as fixed points Let f: S — S be a set function. An
element z € S is a fixed point of f if f(z) = z. Fixed points of functions
are of interest in computing science because they provide a way of solving
recursion equations. Complete partial orders provide a natural setting for
expressing this idea.

2.4.9 Example Consider the w-CPO & of partial functions from the set
N of natural numbers to itself. There is a function ¢ : & — & that takes a
partial function h: N — N in & to a partial function k defined this way:

(i) k(0) =1;
(ii) for n > 0, k(n) is defined if and only if h(n — 1) is defined, and k(n) =
nh(n —1).

For example, if h(n) = n? for n € N, then

1 ifn=0
ot ={ 101 en s

¢ is a continuous function from & to itself. To see this, suppose 7 =
(ho, h1,...) is a chain with supremum h. Then h is the union of all the partial
functions h; as sets of ordered pairs. To show that ¢(h) is the supremum of
d(H) = (¢p(ho), p(h1),...), we must show that for any n, ¢(h)(n) is defined
if and only if ¢(h;)(n) is defined for some i and then ¢(h)(n) = ¢(h;)(n).
That says that ¢(h) is the union of all the partial functions ¢(h;) and so is
the supremum of ¢(.77).

Suppose ¢(h;)(n) is defined. If n = 0 then ¢(h;)(0) = ¢(h)(0) =1 by
definition of ¢. Otherwise, h;j(n — 1) is defined and ¢(h;)(n) = nhi(n — 1).
Then h(n — 1) = h;j(n — 1) since h is the union of the h;, so ¢(h)(n) =
nh(n — 1) = nhi(n — 1) = ¢(h;)(n).
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Suppose ¢(h)(n) is defined. Then h(n — 1) is defined and ¢(h)(n) =
nh(n — 1). Since h is the union of the h; there must be some ¢ for which
hi(n — 1) is defined and h(n — 1) = h;j(n — 1). But then by definition of ¢,
d(hi)(n) =nhi(n —1) =nh(n —1) = ¢(h)(n) as required.

The unique fixed point of ¢ is the factorial function f(n) = n!. In the first
place, f(0) =1 = ¢(f)(0). Also, f is a total function and f(n) =nf(n—1),
so that ¢(f) is defined and by definition of ¢, ¢(f)(n) =nf(n—1) = f(n),
50 6(f) = f. I also ¢(g) = g, then g(0) = 1 and g(n) = ¢(g)(n) = ng(n— 1)
so by induction g is the factorial function.

The following proposition, applied to the poset &2 of partial functions,
warrants the general recursive construction of functions.

2.4.10 Proposition Let (S,<) be a strict w-CPO and f: S — S a con-
tinuous function. Then f has a least fixed point, that is an element p € S
with the property that f(p) = p and for any q € S, if f(q) = q then p < q.

Proof. Form the chain

Note that indeed f¥(L) < f*1(L) for k =0,1,... by induction: L < f(L),
and if fF71(L) < fF(L), then fF(L) < f**1(L) because f is continuous.

Let p be the supremum of the chain %. Since f is continuous, f(p) is the
supremum of the chain f(%) = (f(L), f2(L),...). But p is an upper bound
of f(%) so f(p) < p. On the other hand, the only element in ¢ not in f(%)
is L, which is less than anything, so f(p) is an upper bound of %. Thus
p < f(p)- Hence p = f(p).

If f(q) = ¢ then L <gq, f(L) < flg)=q, ..., f"(L) < f"(q) = ¢, and
so on, so that ¢ is an upper bound of €. Hence p < q. O

This construction will be made in a wider context in Sections[6.6]and [[4.11

2.4.11 Exercises

1. Let (S, ) and (T, B) be sets with relations on them. A homomorphism
from (S,«) to (T,p) is a function f : S — T with the property that if zay
in S then f(x)B8f(y) in T.

a. Show that sets with relations and homomorphisms between them form
a category.

b. Show that if (S,«) and (7, 3) are both posets, then f:S — T is a
homomorphism of relations if and only if it is a monotone map.

2. Show that (strict) w-complete partial orders and (strict) continuous func-
tions form a category.
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3. Let RT be the set of nonnegative real numbers. Show that the poset
(R*, <) is not an w-CPO.

4. Show that for every set S, the poset (£(S), C) is a strict w-CPO.

5T Give an example of w-CPOs with a monotone map between them that is
not continuous. (Hint: Adjoin two elements to (Z,<) that are greater than
any integer.)

6. Let g : N — N be the function such that f(n) = 2". Exhibit g as the
least fixed point of a continuous function ¢ : & — & (analogous to the

function ¢ of Example [2.4.9)).

7. The Fibonacci function F' is defined by F(0) =0, F(1) =1 and F(n) =
F(n—1)+ F(n — 2) for n > 1. Exhibit the Fibonacci function as the least
fixed point of a continuous function from an w-CPO to itself.

2.5 Categories of algebraic structures

In this section, we discuss the categories whose objects are semigroups or
monoids. These are typical of categories of algebraic structures; we have con-
centrated on semigroups and monoids because transition systems naturally
form monoids. The material in this section will come up primarily in exam-
ples later, and need not be thoroughly understood in order to read the rest
of the book.

2.5.1 Homomorphisms of semigroups and monoids If S and T are
semigroups, a function h : S — T is a homomorphism if for all s,s’ € S,
h(ss") = h(s)h(s).

A homomorphism of monoids is a semigroup homomorphism between
monoids that preserves the identity elements: if e is the identity element of
the domain, h(e) must be the identity element of the codomain.

2.5.2 Examples The identity function on any monoid is a monoid homo-
morphism. If M is a monoid and S is a submonoid (see , the inclusion
function from S to M is a monoid homomorphism. Another example is the
function that takes an even integer to 0 and an odd integer to 1. This is a
monoid homomorphism from the monoid of integers on multiplication to the
set {0,1} on multiplication.

Since identity functions are homomorphisms and homomorphisms com-
pose to give homomorphisms (see Exercise [1)), we have two categories: Sem
is the category of semigroups and semigroup homomorphisms, and Mon is
the category of monoids and monoid homomorphisms.



2.5 Categories of algebraic structures 33

2.5.3 Example Let S be a semigroup with element s. Let N denote the
semigroup of positive integers with addition as operation. There is a semi-
group homomorphism p : N* — S for which p(k) = s*. That this is a homo-
morphism is just the statement s**" = s¥s" (see .

2.5.4 A semigroup homomorphism between monoids need not preserve the
identities. An example of this involves the trivial monoid £ with only one
element e (which is perforce the identity element) and the monoid of all
integers with multiplication as the operation, which is a monoid with iden-
tity 1. The function that takes the one element of E to 0 is a semigroup
homomorphism that is not a monoid homomorphism. And, by the way, even
though {0} is a subsemigroup of the integers with multiplication and even
though it is actually a monoid, it is not a submonoid.

2.5.5 Inverses of homomorphisms As an example of how to use the
definition of homomorphism, we show that the inverse of a bijective semi-
group homomorphism is also a semigroup homomorphism. Let f : .S — T be
a bijective semigroup homomorphism with inverse g. Let t,t’ € T. We have
to show that ¢(t)g(¢') = g(tt'). Since f is injective, it is sufficient to show
that

Flg(g(t) = Flg(tt))

The right hand side is ¢’ because g is the inverse of f, and the left hand side
is

flg()g(t) = f(g(t)f(g(t))

because f is a homomorphism, but that is also ¢’ since g is the inverse of f.
This sort of theorem is true of other algebraic structures, such as mon-
oids. It is not true for posets (see [2.7.12 below).

2.5.6 Isomorphisms of semigroups If a homomorphism of semigroups
has an inverse that is a homomorphism (equivalently, as we just saw, if it
is bijective), we say that the homomorphism is an isomorphism. In this
case, the two semigroups in question have the same abstract structure and
are said to be isomorphic. As we will see later, the property of possessing
an inverse is taken to define the categorical notion of isomorphism .

It is important to understand that there may in general be many different
isomorphisms between isomorphic semigroups (Exercise [4)).

We now discuss two important types of examples of monoid homomorph-
isms that will reappear later in the book. The first example is a basic property
of free monoids.
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2.5.7 Kleene closure induces homomorphisms Let A and B denote
sets, thought of as alphabets. Let f: A — B be any set function. We define
f* 1 A" — B* by f*((a1,a2,...,ax)) = (f(a1), f(a2),..., f(ag)). In particu-
lar, f*() = () and for any a € A, f*(a) = f(a).

Then f* is a homomorphism of monoids, a requirement that, in this
case, means it preserves identity elements (by definition) and concatenation,

which can be seen from the following calculation: Let a = (a1,a2,...,an)

and a’ = (af,d),...,al) be lists in A*. Concatenating them gives the list
ad' = (ay,a9,...,am,ay,ab, ... al)

Then

fla)f*@) = f°
=
=
= f*
= f*
Thus any set function between sets induces a monoid homomorphism be-
tween the corresponding free monoids.

The function f* is called af in |[Backus, 1981a] and in modern functional
languages is usually called map f or maplist f.

The other important example is a basic construction of number theory.

2.5.8 The remainder function The set Z of all integers forms a mon-
oid with respect to either addition or multiplication. If k£ is any positive
integer, the set Z, = {0,1,...,k — 1} of remainders of k is also a monoid
with respect to addition or multiplication (mod k). Here are more precise
definitions.

2.5.9 Definition Let k be a positive integer and n any integer. Then
n mod k is the unique integer r € Z; for which there is an integer ¢ such
that n =gk +rand 0 <r < k.

It is not difficult to see that there is indeed a unique integer r with these
properties.
Define an operation ‘4’ of addition (mod k) by requiring that

r+rs=(r+s)modk

The operation of addition of the contents of two registers in a microprocessor
may be addition (mod k) for k& some power of 2 (often complicated by the
presence of sign bits).
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2.5.10 Proposition (Zg,+x) is a monoid with identity 0.
We also have the following.

2.5.11 Proposition The function n — (n mod k) is a monoid homomorph-
ism from (Z,4) to (Zg,+r)-

A similar definition and proposition can be given for multiplication.

2.5.12 Exercises

1. Show that the composite of semigroup (respectively monoid) homomorph-
isms is a semigroup (respectively monoid) homomorphism.

2. Prove Proposition [2.5.10
3. Prove Proposition [2.5.11

4]L Exhibit two distinct isomorphisms between the monoid with underly-
ing set {0,1,2,3} and addition (mod4) as operation and the monoid with
underlying set {1,2,3,4} and multiplication (mod5) as operation.

5. Using the terminology of show that if f is an isomorphism then so
is f*.

2.6 Constructions on categories

If you are familiar with some branch of abstract algebra (for example the the-
ory of semigroups, groups or rings) then you know that given two structures
of a given type (e.g., two semigroups), you can construct a ‘direct product’
structure, defining the operations coordinatewise. Also, a structure may have
substructures, which are subsets closed under the operations, and quotient
structures, formed from equivalence classes modulo a congruence relation.
Another construction that is possible in many cases is the formation of a
‘free’ structure of the given type for a given set.

All these constructions can be performed for categories. We will outline
the constructions here, except for quotients, which will be described in Sec-
tion We will also describe the construction of the slice category, which
does not quite correspond to anything in abstract algebra (although it is
akin to the adjunction of a constant to a logical theory). You do not need
to be familiar with the constructions in other branches of abstract algebra,
since they are all defined from scratch here.
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2.6.1 Definition A subcategory % of a category ¥ is a category for
which:

S—1 All the objects of Z are objects of ¥ and all the arrows of Z are arrows
of € (in other words, %y C 6y and 21 C %1).

S—2 The source and target of an arrow of & are the same as its source and
target in ¢ (in other words, the source and target maps for 2 are the
restrictions of those for %). It follows that for any objects A and B of
2, Homgy (A, B) C Homg (A, B).

S-3 If A is an object of & then its identity arrow id4 in € is in Z.

S4Iff:A— Bandg:B — Cin 2, then the composite (in €) g - f is
in 2 and is the composite in Z.

2.6.2 Examples As an example, the category Fin of finite sets and all
functions between them is a subcategory of Set, and in turn Set is a sub-
category of the category of sets and partial functions between sets (see
and . These examples illustrate two phenomena:

(i) If A and B are finite sets, then Hompin(A, B) = Homget(A, B). In
other words, every arrow of Set between objects of Fin is an arrow of
Fin.

(ii) The category of sets and the category of sets and partial functions, on
the other hand, have exactly the same objects. The phenomenon of (i)
does not occur here: there are generally many more partial functions
between two sets than there are full functions.

Example (i) motivates the following definition.

2.6.3 Definition If Z is a subcategory of € and for every pair of objects
A, B of 2, Homgy(A, B) = Homy (A, B), then 2 is a full subcategory of
C.

Thus Fin is a full subcategory of Set but Set is not a full subcategory
of the category of sets and partial functions.
Example [2.6.2((ii) also motivates a (less useful) definition, as follows.

2.6.4 Definition If 2 is a subcategory of % with the same objects, then
2 is a wide subcategory of €.

Thus in the case of a wide subcategory, only the arrows are different
from those of the larger category. In we provide an improvement on
this concept.

As an example, Set is a wide subcategory of the category Pfn of sets
and partial functions.
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2.6.5 Example Among all the objects of the category of semigroups are
the monoids, and among all the semigroup homomorphisms between two
monoids are those that preserve the identity. Thus the category of monoids
is a subcategory of the category of semigroups that is neither wide nor full
(for the latter, see [2.5.4)).

As it stands, being a subcategory requires the objects and arrows of
the subcategory to be identical with some of the objects and arrows of the
category containing it. This requires an uncategorical emphasis on what
something is instead of on the specification it satisfies. We will return to

this example in and again in [3.1.7]

2.6.6 The product of categories If ¥ and & are categories, the prod-
uct € x Z is the category whose objects are all ordered pairs (C, D) with C
an object of ¢ and D an object of Z, and in which an arrow (f,g) : (C, D)
— (C', D) is a pair of arrows f: C — C'in € and g: D — D" in 9. The
identity of (C,D) is (id¢,idp). If (f',¢’) : (C', D) — (C”, D") is another
arrow, then the composite is defined by

(f'.9") e (f,9) =(f"= f,9 > 9): (C,D) — (C",D")

2.6.7 The dual of a category Given any category %, you can construct
another category denoted €°P by reversing all the arrows. The dual or
opposite ¢°P of a category ¥ is defined by:

D—-1 The objects and arrows of ¥°P are the objects and arrows of %.
D2Iff:A— Bin %, then f: B— A in ¢°P.
D3 Ifh=go fin %, then h = f o g in €°P.

The meaning of D—2 is that source and target have been reversed. It is
easy to see that the identity arrows have to be the same in the two categories

% and €°P and that C—1 through C—4 of Section 2.1 hold, so that °P is a
category.

2.6.8 Example If M is a monoid, then the opposite of the category C (M)
is the category determined by a monoid M°P; if zy = z in M, then yzr = z
in M°P. (Hence if M is commutative then C'(M) is its own dual. Compare
Exercise |§| of ) Similar remarks may be made about the opposite of the
category C(P) determined by a poset P. The opposite of the poset (Z, <),
for example, is (Z, >).

2.6.9 Both the construction of the product of two categories and the con-
struction of the dual of a category are purely formal constructions. Even
though the original categories may have, for example, structure-preserving
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functions of some kind as arrows, the arrows in the product category are
simply pairs of arrows of the original categories.

Consider Set, for example. Let A be the set of letters of the English
alphabet. The function v : A — {0, 1} that takes consonants to 0 and vowels
to 1 is an arrow of Set. Then the arrow (id4,v) : (A, A) — (4,{0,1}) of
Set x Set is not a function, not even a function of two variables; it is merely
the arrow of a product category and as such is an ordered pair of functions.

A similar remark applies to duals. In Set°P, v is an arrow from {0, 1} to
A. And that is all it is. It is in particular not a function from {0,1} to A.

Nevertheless, it is possible in some cases to prove that the dual of a
familiar category is essentially the same as some other familiar category.
One such category is Fin, see [3.4.6

The product of categories is a formal way to make constructions depen-
dent on more than one variable. The major use we make of the concept of
dual is that many of the definitions we make have another meaning when
applied to the dual of a category that is often of independent interest. The
phrase dual concept or dual notion is often used to refer to a concept or
notion applied in the dual category.

2.6.10 Slice categories If ¥ is a category and A any object of &, the
slice category % /A is described this way:

SC—1 An object of /A is an arrow f: C — A of € for some object C.

SC-2 An arrow of /A from f:C — Ato f': C" — A is an arrow h: C
— " with the property that f = f o h.
SC-3 The composite of h: f — f'and h': f' — f" is b/ o h.

It is necessary to show that h’ o h, as defined in SC-2, satisfies the re-
quirements of being an arrow from f to f”. Let h: f — f'and b/ : f' — f".
This means f’ o h = f and f” o h' = f'. To show that b/ o h: f — f” is an
arrow of €' /A, we must show that f” o (b’ o h) = f. That follows from this
calculation:

Jre (W)= (" Wy oh=foh=f

The usual notation for arrows in %’/A is deficient: the same arrow h can
satisfy f = f'oh and g = ¢’ o h with f # g or ' # ¢’ (or both). Then h : f
— f'and h: g — ¢ are different arrows of € /A.

2.6.11 The importance of slice categories comes in part with their connec-
tion with indexing. An S-indexed set is a set X together with a function
7:X — 8. If x € X and 7(x) = s then we say x is of type s, and we also
refer to X as a typed set.

The terminology ‘S-indexed set’ is that used by category theorists. Many
mathematicians would cast the discussion in terms of the collection {771(s) |
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s € S} of subsets of X, which would be called a family of sets indexed
by S.

2.6.12 Example The set G = Gy U G of objects and arrows of a graph
% is an example of a typed set, typed by the function 7: G — {0,1} that
takes a node to 0 and an arrow to 1. Note that this depends on the fact that
a node is not an arrow: Go and G are disjoint.

2.6.13 Indexed functions A function from a set X typed by S to a set
X' typed by the same set S that preserves the typing (takes an element of
type s to an element of type s) is exactly an arrow of the slice category
Set/S. Such a function is called an indexed function or typed function.
It has been fruitful for category theorists to pursue this analogy by thinking
of objects of any slice category /A as objects of ¢ indexed by A.

2.6.14 Example A graph homomorphism f : ¥ — JZ corresponds to
a typed function according to the construction in Example How-
ever, there are typed functions between graphs that are not graph homo-
morphisms, for example the function from the graph , page @ to the

graph (1.3)), page defined by

1—1,2—n,a— 0,b— 0,c+> succ

This is not a graph homomorphism because it does not preserve source and
target.

2.6.15 Example Let (P, «) be a poset and let C'(P) be the corresponding
category as in For an element x € P, the slice category C'(P)/x is the
category corresponding to the set of elements greater than or equal to x.
The dual notion of coslice gives the set of elements less than or equal to a
given element.

2.6.16 The free category generated by a graph For any given graph
¢ there is a category F(%) whose objects are the nodes of ¢4 and whose
arrows are the paths in 4. Composition is defined by the formula

(fl)f?a"'vfk) ° (fk—i—l?"'afn) = (flaf?a"'vfn)

This composition is associative, and for each object A, id 4 is the empty path
from A to A. The category F(¥) is called the free category generated
by the graph ¢. It is also called the path category of ¢.
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2.6.17 Examples The free category generated by the graph with one node
and no arrows is the category with one object and only the identity arrow,
which is the empty path. The free category generated by the graph with one
node and one loop on the node is the free monoid with one generator (Kleene
closure of a one-letter alphabet); this is isomorphic with the nonnegative in-
tegers with + as operation.

The free category generated by the graph in Example has the fol-
lowing arrows

(a) An arrow id; : 1 — 1.

(b) For each nonnegative integer k, the arrow succ’ : n — n. This is the
path (succ,succ,...,succ) (k occurrences of succ). This includes & = 0
which gives id,,.

(c) For each nonnegative integer k, the arrow succ® o 0 : 1 — n. Here
k=0gives0:1 — n.

k k+m

Composition obeys the rule succ” o succ™ = succ

2.6.18 It is useful to regard the free category generated by any graph as
analogous to Kleene closure (free monoid) generated by a set (as in .
The paths in the free category correspond to the strings in the Kleene closure.
The difference is that you can concatenate any symbols together to get a
string, but arrows can be strung together only head to tail, thus taking into
account the typing.

In we give a precise technical meaning to the word ‘free’.

2.6.19 Exercises

1. Let M be a monoid. Show that the opposite of the category C (M) deter-
mined by M is also the category determined by a monoid, called M°P.

2. Do the same as the preceding exercise for posets.

3. Give examples of posets P, @ and R for which C(P) (the category deter-
mined by the poset) is a wide but not full subcategory of C(Q) and C(P) is
a full but not wide subcategory of C(R).

4T Show by example that the requirement S—-3 in does not follow from
the other requirements.
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2.7 Properties of objects and
arrows in a category

The data in the definition of category can be used to define properties that
the objects and arrows of the category may have. A property that is defined
strictly in terms of the role the object or arrow has in the category, rather
than in terms of what it really is in any sense, is called a categorical defi-
nition. Such definitions are abstract in the sense that a property a thing can
have is defined entirely in terms of the external interactions of that thing
with other entities.

The examples of categorical definitions in this section and the next are
of several simple concepts that can be expressed directly in terms of the data
used in the definition of category. Other concepts, such as limit, naturality
and adjunction, require deeper ideas that will be the subject of succeeding
chapters.

2.7.1 Isomorphisms In general, the word ‘isomorphic’ is used in a math-
ematical context to mean indistinguishable in form. We have already used
it in this way in It turns out that it is possible to translate this into
categorical language in a completely satisfactory way. To do this, we first
need the concept of inverse.

2.7.2 Definition Suppose f: A — B and g : B — A are arrows in a
category for which f o g is the identity arrow of B and g o f is the identity
arrow of A. Then ¢ is an inverse to f, and, of course, f is an inverse to g.
We write g = f~! in this case.

2.7.3 As an example of how to use the definition of inverse, we show that
if f: A — B has an inverse, it has only one. Suppose g: B — A and h: B
— A have the properties that go f = ho f =idg and fog= f° h =idpg.
Then

g=geidg=geo(feh)=(gef)ech=idach=nh

Note that this does not use the full power of the hypothesis.

From this uniqueness, we can conclude that if f : A — A has an inverse,
then (f~1)~! = f. Proof: All four of the following equations are true by
definition of inverse:

(i) fle f=ida
(i) fof~!=ida.
(ili) f~te (f7H) 7t =ida.
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(iv) (f7H e f =ida.

It follows that both f and (f~!)~! are arrows g such that f~! o g =id4 and
go f~1=ida. Thus f = (f~!)~! by uniqueness of the inverse of f~!.

2.7.4 Definition Suppose that € is a category and that A and B are two
objects of €. An arrow f: A — B is said to be an isomorphism if it has
an inverse. In that case, we say that A is isomorphic to B, written A = B.

In a monoid, an element which is an isomorphism in the corresponding
category is usually called invertible.

2.7.5 Definition An arrow f: A — A in a category (with the source and
target the same) is called an endomorphism. If it is invertible, it is called
an automorphism.

2.7.6 Examples Any identity arrow in any category is an isomorphism
(hence an automorphism). In the category determined by a partially or-
dered set, the only isomorphisms are the identity arrows. If, in the category
determined by a monoid, every arrow is an isomorphism the monoid is called
a group. Because of this, a category in which every arrow is an isomorphism
is called a groupoid.

2.7.7 Definition A property that objects of a category may have is pre-
served by isomorphisms if for any object A with the property, any object
isomorphic to A must also have the property.

2.7.8 To show that two objects are isomorphic, it is sufficient to exhibit an
isomorphism between them. To show they are not isomorphic is often more
difficult, since the definition requires checking every arrow between the two
objects. In practice it is almost always done by finding some property that
is preserved by isomorphisms and is possessed by one of the objects and not

possessed by the other. See [2.7.11}

2.7.9 Proposition A function in Set is an isomorphism if and only if it
s a bijection.

Proof. Suppose first that f : .S — T is an isomorphism; it therefore has
an inverse g : T'— S. Then (i) f is injective, for if f(x) = f(y), then x =
g(f(z)) = g(f(y)) =y. Also (ii) f is surjective, for if ¢t € T, then f(g(t)) = t.

Conversely, suppose that f : S — T is bijective. Define g : T' — S by
saying that g¢(t) is the unique element x € S for which f(x) = t. There
is such an element x because f is surjective, and x is unique because f
is injective. The definition itself says that f(g(t)) =t for any t € T, so in
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particular f(g(f(x))) = f(x); since f is known to be injective, it follows that
g(f(x)) = z, as required. o

It follows that two finite sets are isomorphic (in the category of sets) if
and only if they have the same number of elements.

2.7.10 Example A graph homomorphism ¢ : ¢ — J# is an isomorphism
if and only if both ¢g and ¢; are bijections. This follows immediately from
Exercise B of Section L4

2.7.11 Example For ordered sets, the situation is different. For example,
the following partially ordered sets A and B containing three elements each
are not isomorphic in the category of partially ordered sets and monotone
functions: A consists of three elements a < b < ¢ and B consists of three
elements x < y, x < z, but no relation holds between y and z.

It seems clear that A and B are not isomorphic, but it might seem hard
to say why. One way is simply to observe that A is totally ordered (for any
two elements u and v, either u < v or v < u) and B is not totally ordered.
Since being totally ordered is preserved by isomorphisms, the two posets
cannot be isomorphic.

An alternative proof is possible in the case of the preceding example: exhaus-
tively consider all 6 bijections between the two posets and show that none
of those that are monotone have inverses that are monotone. This approach
clearly is unacceptably time-consuming for any interesting problem.

It is often quite hard to show that two structures are not isomorphic. One often
approaches this problem by trying to find numerical invariants. In the case at
hand, a simple invariant is the depth, that is the length of the longest totally
ordered subset: the depth of A is 3 and the depth of B is 2. A set of invariants
is called complete if it is sufficient to decide the isomorphism class. Complete
sets of invariants rarely exist. Depth is sufficient in the case of 2.7.11] but is
certainly not in general.

2.7.12 It is often the case that in a category of sets with structure and
structure-preserving functions, a structure-preserving function that is a bi-
jection is automatically an isomorphism. This is not always the case, as is
illustrated by the poset example in [2.7.11] In fact, the bijection from A to B
that takes z to a, y to b and z to ¢ preserves the order relation. Of course,
it also takes a pair of incomparable elements to comparable ones, but the
point is it preserves the order, insofar as it exists.
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2.7.13 From the categorist’s point of view there is no reason to distinguish
between two isomorphic objects in a category, since the interesting fact about
a mathematical object is the way it relates to other mathematical objects
and two isomorphic objects relate to other objects in the same way. For this
reason, the concept of wide category (Definition is not in the spirit of
category theory. What really should matter is whether the subcategory con-
tains an isomorphic copy of every object in the big category. This motivates
the following definition.

2.7.14 Definition A subcategory Z of a category % is said to be a rep-
resentative subcategory if every object of € is isomorphic to some object

of 9.

2.7.15 Example Let 2 be the category whose objects are the empty set
and all sets of the form {1,2,...,n} for some positive integer n and whose
arrows are all the functions between them. Then & is a representative subcat-
egory of Fin (Deﬁnition, since there is a bijection from any nonempty
finite set to some set of the form {1,2,...,n}. Note that Z is also full in
Fin.

2.7.16 Terminal and initial objects An object T of a category ¥ is
called terminal if there is exactly one arrow A — T for each object A of
% . We usually denote the terminal object by 1 and the unique arrow A — 1
by ().

The dual notion (see , an object of a category that has a unique
arrow to each object (including itself), is called an initial object and is
often denoted 0.

2.7.17 Examples In the category of sets, the empty set is initial and any
one-element set is terminal. Thus the category of sets has a unique initial
object but many terminal objects. The one-element monoid is both initial
and terminal in the category of monoids. In the category determined by a
poset, an object is initial if and only if it is an absolute minimum for the
poset, and it is terminal if and only if it is an absolute maximum. Since there
is no largest or smallest whole number, the category determined by the set
of integers with its natural order (there is an arrow from m to n if and only
if m < n) gives an example of a category without initial or terminal object.

In the category of semigroups, the empty semigroup (see is the
initial object and any one-element semigroup is a terminal object. On the
other hand, the category of nonempty semigroups does not have an initial
object. Warning: To prove this, it is not enough to say that the initial object
in the category of semigroups is the empty semigroup and that semigroup is
missing here! You have to show that no other object can be the initial object
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in the smaller category. One way to do this is to let U be the semigroup with
two elements 1 and e with 1-e=e-1=e¢,1-1=1 and e-e = e. Then any
nonempty semigroup S has two homomorphisms to U: the constant function
taking everything to 1 and the one taking everything to e. Thus no nonempty
semigroup S can be the initial object.

2.7.18 Proposition Any two terminal (respectively initial) objects in a
category are isomorphic.

Proof. Suppose T and T’ are terminal objects. Since T is terminal, there is
an arrow f : T’ — T. Similarly, there is an arrow g : T — T’. The arrow
feg:T — T is an arrow with target T'. Since T is a terminal object of the
category, there can be only one arrow from 7" to T'. Thus it must be that
f o g is the identity of T'. An analogous proof shows that g o f is the identity
of T". O

2.7.19 Constants In Set, an element x of a set A is the image of a func-
tion from a singleton set to A that takes the unique element of the singleton
to . Thus if we pick a specific singleton {*} and call it 1, the elements of
the set A are in one to one correspondence with Hom(1, A), which is the set
of functions from the terminal object to A. Moreover, if f: A — B is a set
function and z is an element of A determining the function x : 1 — A, then
the element f(x) of B is essentially the same thing as the composite f oz : 1
— B. Because of this, the categorist typically thinks of an element x € A
as being the constant = : 1 — A.

An arrow 1 — A in a category, where 1 is the terminal object, is called a
constant of type A. Thus each element of a set is a constant in Set. On the
other hand, each monoid M has just one constant 1 — M in the category
of monoids, since monoid homomorphisms must preserve the identity. The
name ‘constant’ is explained by Exercise [7]

The more common name in the categorical literature for a constant
is global element of A, a name that comes from sheaf theory (see Sec-

tion .

A terminal object is an object with exactly one arrow () : A — 1 to it from each
object A. So the arrows to 1 are not interesting. Global elements are arrows
from the terminal object. There may be none or many, so they are interesting.

2.7.20 If 1 and 1’ are two terminal objects in a category and z:1 — A
and 2’ : 1’ — A are two constants with the property that 2’ o () = x (where
() is the unique isomorphism from 1 to 1’), then we regard = and z’ as the
same constant. Think about this comment as it applies to elements in the
category of sets, with two different choices of terminal object, and you will
see why.
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2.7.21 Exercises

1. Show that if f: A — B and g : B — C are isomorphisms in a category
with inverses f~': B — A and ¢~ : C — B, then g - f is an isomorphism
with inverse f~! o g~!. (This is sometimes called the ‘Shoe-Sock Theorem’:
to undo the act of putting on your socks, then your shoes, you have to take
off your shoes, then your socks.)

2. Give examples of posets P, P, and P3 with the following properties:
(a) P, = P,°P.
(b) Py # P5°P but P, is isomorphic to P,°P.
(c) Ps is not isomorphic to P3°P.

(See Exercise [2] of Section [2.6])

3T Give examples of a monoid M for which M # MP°P (meaning the binary
operations are different) but M and M°P are isomorphic (compare [2.6.8]) and
one for which M and M°P are not isomorphic. (See Exerciseof Section)

4. Show that a poset isomorphic to a totally ordered set must be totally
ordered.

5. Let (P, <) be a poset. Show that in the corresponding category C(P, <)
(see [2.3.1)), no two distinct objects are isomorphic.

6. Show that in the category of semigroups (respectively monoids), the iso-
morphisms are exactly the bijective homomorphisms. (This is not true for
ordered sets, as we saw in It is true in any variety of universal alge-
bras, and it is not true in most interesting categories of topological spaces.)

7. Show that the following two statements about a set function f: A — B
are equivalent.

(a) f=ke(),wherek:1— B (hence is a constant in the sense of 2.7.19)
and () : A — 1 is the unique function given by definition of terminal
object.

(b) For all z and y in A, f(z) = f(y).

8. Show that in the category of graphs and graph homomorphisms, the graph
with one node and one arrow is the terminal object.

9. An arrow f: A — A in a category is idempotent if f o f = f. Show
that in Set a function is idempotent if and only if its image is the same as
its set of fixed points. (For example, applying a specific sorting method to a
set of files is idempotent, since if you sort an already sorted file you leave it
the same.)
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10. An idempotent (see the preceding problem) f: A — A in a category is
split if there is an object B and functions g: A — B and h: B — A for
which hog= f and g - h = idp.

a. Show that every idempotent in Set is split.

bjf Give an example of a category with a non-split idempotent.

11. A category in which every arrow is an isomorphism is a groupoid. A
category in which every arrow is an identity arrow is called discrete. Prove
or disprove:

(i) Any two objects in a groupoid are isomorphic.
(ii) A groupoid in which no two distinct objects are isomorphic is discrete.

(iii) A poset P for which C(P) is a groupoid is discrete.

2.8 Monomorphisms and subobjects

2.8.1 Monomorphisms A function f: A — B in Set is injective if for
any z,y € A, if z # y, then f(z) # f(y). A monomorphism is a particular
type of arrow in a category which generalizes the concept of injective func-
tion; in particular, a monomorphism in the category of sets is exactly an
injective function. If f is an arrow in an arbitrary category, we use the same
definition, except for one change required because the concept of ‘element’
no longer makes sense.

2.8.2 Definition f: A — B is a monomorphism if for any object T of
the category and any arrows x, y : T — A, if x #y, then fox £ foy.

We often write f : A >~ B to indicate that f is a monomorphism and
say that f is monic or that f is mono.

In Definition [2.8.2] and many like it, what replaces the concept of element
of A is an arbitrary arrow into A. In this context, an arbitrary arrow a : T
— A is called a variable element of A, parametrized by T. When a is
treated as a variable element and f has source A, one may write f(a) for
f = a. Using this notation, f is a monomorphism if for any variable elements
z,y: T — A, if x #y, then f(x) # f(y).

The following theorem validates the claim that ‘monomorphism’ is the
categorical version of ‘injective’.

2.8.3 Theorem In the category of sets, a function is injective if and only
if it is a monomorphism.
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Proof. Suppose f : A — B is injective, and let a,a’ : T — A be variable
elements of A. If a # o’ then there is an (ordinary) element ¢ € T' for which
a(t) # d'(t). Then f(a(t)) # f(d'(t)),so foa+# foa'. Hence f is monic.
Conversely, suppose f is monic. Since global elements (see are
elements, this says that for any global elements z,y : 1 — A with = # v,
fex# foy, ie., f(x)# f(y), which means that f is injective. O

2.8.4 Examples In most familiar categories of sets with structure and
functions that preserve structure, the monomorphisms are exactly the injec-
tive functions. In particular, the monomorphisms in Mon are the injective
homomorphisms (proved in below). Some other examples are in the
exercises. This is evidence that Definition [2.8.2] is the correct categorical
definition generalizing the set-theoretic concept of injectivity.

In the category determined by a poset, every arrow is monic. A monic
element of the category determined by a monoid is generally called left
cancellable.

An isomorphism in any category is a monomorphism. For suppose f is
an isomorphism and f o x = f o y. This calculation shows that z = y:

z=flefea=fTofoy=y

2.8.5 We now show that a monomorphism in the category of monoids is
an injective homomorphism, and conversely.

Let f: M — M’ be a monoid homomorphism. Suppose it is injective.
Let g, h : V — M be homomorphisms for which f o g = f o h. For any
veV, flglw)) = f(h(v)), so g(v) = h(v) since f is injective. Hence g = h.
It follows that f is a monomorphism. Essentially the same proof works in
other categories of structures and structure-preserving maps — if the map is
injective it is a monomorphism for the same reason as in Set.

However, the converse definitely does not work that way. The proof for
Set in Theorem above uses distinct global elements = and y, but a
monoid need not have distinct global elements. For example, let N denote
the monoid of nonnegative integers with addition as operation. Then the
only global element of N on addition is 0. So we have to work harder to get
a proof.

Suppose f is a monomorphism. Let z, y € M be distinct elements. Let
pe : N — M take k to ¥ and similarly define Dy; Pr and p, are homo-
morphisms since for all z, zFT" = 2%z (see and the discussion after
Definition . Since x # y, p, and p, are distinct homomorphisms. If
f(x) = f(y) then for all positive integers k,

fpa(k)) = f(a¥) = f(@)" = fF()" = f(&F) = Fpy(R))
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so that f o p; = f o p, which would mean that f is not a monomorphism.
Thus we must have f(z) # f(y) so that f is injective.

The trick in the preceding paragraph was to find an object (N here) that
allows one to distinguish elements of the arbitrary monoid M. In Set, the
corresponding object was the terminal object, but that does not work for
Mon: each monoid has exactly one global element because a map from the
one-element monoid must have the identity element as value. An object that
allows one to (uniquely) distinguish elements in a category of sets with struc-
ture is said to ‘represent the underlying functor’. This concept is presented

in £.3.101 and A.5.11

We now state two propositions that give some elementary properties of
monomorphisms.

2.8.6 Proposition Suppose f: A — B and g: B — C in a category € .
Then

(a) If f and g are monomorphisms, so is g o f.

(b) If g o f is a monomorphism, so is f.

Proof. We prove the second statement and leave the first to you (Exercise[2).
Suppose ¢ ° f is a monomorphism. To show that f is a monomorphism,
assume f o x = f oy for some arrows x,y : C — A. Then

(geflex=ge(fea)=go(fey)=(9°f)°y
S0, since g o f is a monomorphism, x = y. 0

2.8.7 Proposition Let m : C' — 0 be a monomorphism into an initial
object. Then m is an isomorphism.

Proof. Let ¢ : 0 — C be the unique arrow given by definition of initial object.
Then m o ¢ and idy are both arrows from 0 to 0 and so must be the same.
It remains to show that i e m = id¢. This follows from the fact that m oo
m = m o id¢ and that m is a monomorphism. O

2.8.8 Subobjects The concept of subobject is intended to generalize the
concept of subset of a set, submonoid of a monoid, subcategory of a category,
and so on. This idea cannot be translated exactly into categorical terms, since
the usual concept of subset violates the strict typing rules of category theory:
to go from a subset to a set requires a change of type, so there is no feasible
way to say that the same element z is in both a set and a subset of the set.

Because of this, any categorical definition of subobject will not give ex-
actly the concept of subset when applied to the category of sets. However,
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the usual definition of subobject (which we give here in Definition
produces, in Set, a concept that is naturally equivalent to the concept of
subset in a strong sense that we will describe in The definition, when
applied to sets, defines subset in terms of the inclusion function.

2.8.9 We need a preliminary idea. If f : A — B is an arrow in a category,
and for some arrow g : C' — B there is an arrow h : A — C for which f =
g o h, we say f factors through g. This is because the equation g o h = f
can be solved for h.

The use of the word ‘factor’ shows the explicit intention of categorists to work
with functions in an algebraic manner: a category is an algebra of functions.

Suppose fy: Cop — C and f1 : C7 — C are monomorphisms in a cate-
gory. Let us say that fy ~ fi if each factors through the other.

2.8.10 Proposition Let fo ~ fi. Then the factors implied by the defini-
tion of ~ are unique and are inverse isomorphisms. Moreover, the relation
~ s an equivalence relation on the collection of arrows with target C.

Proof. The definition implies the existence of arrows g : Co — Cy and h : C
— Cp such that f; - g = fo and fg o h = fi1. The arrows g and h are unique
because fy and f; are monomorphisms. Moreover, fi cge h = fyo h= f1 =
fi1 ¢ id; since f; is a monomorphism, we conclude that g - h = id. Similarly,
hog=id.

That ~ is reflexive follows by taking the factor to be the identity arrow,
and it is symmetric by definition. For transitivity, you get the required factor
by composing the given factors; we leave the details to you. O

2.8.11 Definition In a category ¥, a subobject of an object C' is an
equivalence class of monomorphisms under ~. The subobject is a proper
subobject if it does not contain id¢.

Observe that it follows immediately from Proposition that an initial
object in a category has no proper subobjects.

2.8.12 Subobjects in the category of sets In Set, a monomorphism
is an injection, so a subobject is an equivalence class of injections. The
following sequence of statements are each easy to prove and together form a
precise description of the connection between subobjects and subsets in the
category of sets. Similar remarks can be made about other categories of sets
with structure, such as semigroups, monoids or posets.

In these statements, S is a set.

(a) Let @ be a subobject of S.
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(i) Any two injections m : A — S and n: B — S in & have the
same image; call the image 1.
(ii) The inclusion ¢ : I — S is equivalent to any injection in &,
hence is an element of &.
(iii) If j : J — S is an inclusion of a subset J into S that is in &,
then I = J and ¢ = j.
(iv) Hence every subobject of S contains exactly one inclusion of a

subset of S into S, and that subset is the image of any element
of 0.

(b) Let i : T"— S be the inclusion of a subset T of S into S.

(i) Since 7 is injective, it is an element of a subobject of S.

(ii) Since the subobjects are equivalence classes of an equivalence
relation, they are disjoint, so ¢ is not in two subobjects.

(iii) Hence the subsets of S with their inclusion maps form a complete
set of class representatives for the subobjects of S.

Thus subobjects, given by a categorical definition, are not the same as
subsets, but each subset determines and is determined by a unique subobject.

Because of this close relationship, one frequently says, of objects A and
B in a category, ‘Let A be a subobject of B’, meaning that one has in mind
a certain equivalence class of monomorphisms that in particular contains a
monomorphism A > B. You should be aware that there may be many other
monomorphisms from A to B that are not in the equivalence class, just as
from any subset A of a set B there are generally many injective functions
from A to B other than the inclusion.

2.8.13 As a consequence of the properties of the subobject construction,
categorists take a different attitude toward substructures such as subsets and
submonoids, as compared to many other mathematicians. For them, A is a
subobject or substructure of B if there is a monomorphism from A to B, and
the subobject is the equivalence class determined by that monomorphism.
For example, let Z denote the set of integers and R the set of real numbers.
In calculus classes, Z is a subset of R; an integer actually is a real number.
For the categorist, it suffices that there be a monic (injective) map from Z
to R.

That monic map is a kind of type conversion. (See [Reynolds, 1980] for
a more general view.) An integer need not actually be thought of as a real
number, but there is a standard or canonical way (translate this statement
as ‘a monic map’) to regard an integer as a real number. This mapping is
regarded by the categorist as an inclusion, even though in fact it may change
what the integer really is.
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In a computer language, converting an integer to a real may increase
the storage allotted to it and change its representation. Something similar
happens in many approaches to the foundations of mathematics, where real
numbers are constructed from integers by a complicated process (Dedekind
cuts or Cauchy sequences), which results in an embedding of the integers in
the real numbers. Just as for computer languages, this embedding changes
the form of an integer: instead of whatever it was before, it is now a Dedekind
cut (or Cauchy sequence).

In traditional texts on foundations, this construction had to be modified
to replace the image of each integer by the actual integer, so that the in-
tegers were actually inside the real numbers. From the categorical point of
view, this is an unnecessary complication. This change results in replacing
a monomorphism Z — R by an equivalent monomorphism (one that deter-
mines the same subobject). From an operational point of view, the integers
behave the same way whether this change is made or not.

2.8.14 Categories and typing In category theory, the inclusion map is
usually made explicit. From the computing science point of view, category
theory is a very strongly typed language, more strongly typed than any com-
puter language. For example, the strict categorist will refer explicitly to the
inclusion map from the nonzero real numbers to the set of all real numbers
when talking of division. In a computer language this would correspond to
having two different types, REAL and NONZERO _REAL, set up in such a way
that you can divide a REAL only by a NONZERO _REAL. To multiply a REAL by
a NONZERO _REAL, the strong typing would require you to convert the latter
to a REAL first.

To be sure, categorists themselves are not always so strict; but when they
are not strict they are aware of it. (Compare the comments in Nor is
this discussion meant to imply that computer languages should have such
strict typing: rather, the intention is to illustrate the way category theory
handles types.)

2.8.15 Exercises

1. a. Show that if an arrow is a monomorphism in a category, it is a mono-
morphism in any subcategory it happens to be in.

b. Give an example showing that a monomorphism in a subcategory need
not be a monomorphism in the category containing the subcategory. (Hint:
Look at small finite categories.)

2. Show that if f: A — B and g : B — C are monomorphisms, so is g ° f.

3. Show that there are categories in which for some arrows f and g, g o f is
a monomorphism but ¢ is not. (Compare Proposition m)
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4. Prove the statements in 2.8.12]
5. Show that if A : C — D is an isomorphism, then h ~ idp (as defined

in259).

6. Show that an initial object has no proper subobjects.

7. Show that if A is a subobject of a terminal object and B is any object
then there is at most one arrow from B to A. Conclude that any arrow from
A is monic.

8. Find all the subobjects of the terminal object in each category:
a. Set.
b. The category of graphs and graph homomorphisms.
c. The category of monoids and monoid homomorphisms.

9T Give an explicit description of the monomorphisms in Rel.

2.9 Other types of arrow

2.9.1 Epimorphisms Epimorphisms in a category are the same as mono-
morphisms in the dual category. So f : S — T is an epimorphism if for any
arrows g, h: T — X, go f = h o f implies g = h. An epimorphism is said to
be epic or an epi, and may be denoted with a double-headed arrow, as in
f:8—T.

2.9.2 Proposition A set function is an epimorphism in Set if and only
if it is surjective.

Proof. Suppose f : S — T is surjective, and g, h : T'— X are two functions.
If g # h, then there is some particular element ¢ € T for which g(t) # h(t).
Since f is surjective, there is an element s € S for which f(s) = ¢. Then

9(f(s)) # h(f(s)), so that g o f # ho f.

Conversely, suppose f is not surjective. Then there is some ¢t € T for
which there is no s € S such that f(s) = ¢. Now define two functions g : T
— {0,1} and h : T — {0, 1} as follows:

(i) g(z) = ()zOforall:vinTexceptt.

(i) g(t) =
(iif) A(t) =

Then g # hbut go f = ho f, so f is not an epimorphism. O
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2.9.3 In contrast to the situation with monomorphisms, epimorphisms in
categories of sets with structure are commonly not surjective. For example
the nonnegative integers and the integers are both monoids under addition,
and the inclusion function ¢ is a homomorphism which is certainly not sur-
jective. However, it is an epimorphism.

Here is the proof: any homomorphism h whose domain is the integers is
determined completely by its value h(1). For positive m, m =1+14---+1,
SO

him)=h(1+1+4+---+1)=h(1)h(1)---h(1)

where we write the operation in the codomain as juxtaposition. Also, h(—1)
is the inverse of h(1), since

h(1)h(-1) = h(=1)h(1) = h(=1 + 1) = h(0)

which must be the identity of the codomain. Since an element of a monoid
can have only one inverse, this means h(—1) is uniquely determined by A(1).
Then since every negative integer is a sum of —1’s, the value of h at every
negative integer is also determined by its value at 1.

Now suppose that g and h are two homomorphisms from the monoid of
integers into the same codomain. Then g and h are both determined by their
value at 1. Since 1 is a positive integer, this means that if g o ¢ = h - ¢, then
g = h. Thus 7 is an epimorphism.

2.9.4 Proposition Let f: A— B andg: B — C. Then
(a) If f and g are epimorphisms, so is g o f.
(b) If g f is an epimorphism, so is g.

Proof. This is the dual of Proposition [2.8.6

2.9.5 In Set an arrow that is both monic and epic is bijective (Theo-
rems [2.8.3 and [2.9.2)), and hence an isomorphism. In general, this need not
happen. One example is the inclusion of N in Z in Mon described in [2.9.3]
(an inverse would also have to be an inverse in Set, but there isn’t one since
the inclusion is not bijective). An easier example is the arrow from C to D
in the category 2 in . It is both monic and epic (vacuously) but there is
no arrow from D to C so it is not an isomorphism because there is no arrow
in the category that could be its inverse.

2.9.6 An arrow f: A — B in a category is an isomorphism if it has an
inverse g : B — A which must satisfy both the equations g o f = id4 and
f o g=1idp. If it only satisfies the second equation, f o g =idp, then f is a
left inverse of g and (as you might expect) g is a right inverse of f.
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2.9.7 Definition Suppose f has a right inverse g. Then f is called a split
epimorphism (f is “split by ¢”) and ¢ is called a split monomorphism.

A split epimorphism is indeed an epimorphism: if ho f = k- f and f has
a right inverse g, then h = h o f o g =k o f o g = k, which is what is required
for f to be an epimorphism. A dual proof shows that a split monomorphism
is a monomorphism.

Using the usual axioms of set theory, every surjection in Set is a split
epimorphism. For if f: A — B, then choose, for each b € B, some element
a € A such that f(a) = b. The existence of such an a is guaranteed by
surjectivity. Define g(b) to be a. Then f(g(b)) = f(a) = b for any b € B, so
Jeg=idp.

The so-called axiom of choice is exactly what is required to make all those
generally infinitely many choices. And in fact, one possible formulation of the
axiom of choice is that every epimorphism split.

Epimorphisms in other categories may not be split. The function that
includes the monoid of nonnegative integers on addition in the monoid of
all the integers on addition, which we mentioned in [2.9.3] certainly does not
have a right inverse in the category of monoids, since it does not have a right
inverse in the category of sets. There are plenty of examples of epimorphisms
of monoids which are surjective which have no right inverse in the category
of monoids, although of course they do in the category of sets (Exercise [2)).

Unlike epis, which always split in the category of sets, monics in Set do
not always split. Every arrow out of the empty set is monic and, save for
the identity of () to itself, is not split. On the other hand, every monic with
nonempty source does split. We leave the details to you.

2.9.8 Hom sets The elementary categorical definitions given in the last
section and this one can all be phrased in terms of hom set. In any category,
Hom(A, B) is the set of arrows with source A and target B.

Thus a terminal object 1 satisfies the requirement that Hom(A,1) is a
singleton set for every object A, and an initial object 0 satisfies the dual
requirement that Hom(0, A) is always a singleton. And Hom(1, A) is the set
of constants (global elements) of A.

2.9.9 If f: B — C, f induces a set function
Hom(A, f) : Hom(A, B) — Hom(A, C)
defined by composing by f on the left: for any g € Hom(A, B), that is, for

any g : A — B, Hom(A, f)(g) = f ° g, which does indeed go from A to C.
(Compare Exercise [1] of Section [1.2])
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Similarly, for any object D, f: B — (' induces a set function
Hom(f, D) : Hom(C, D) — Hom(B, D)

(note the reversal) by defining Hom(f, D)(h) = h o f for h € Hom(C, D).
In terms of these functions, we can state this proposition, which we leave
to you to prove.

2.9.10 Proposition An arrow f: B — C in a category
(i) s a monomorphism if and only if Hom(A, f) is injective for every
object A;
(ii) s an epimorphism if and only if Hom(f, D) is injective (!) for every
object D;
(iii) s a split monomorphism if and only if Hom(f, D) is surjective for
every object D;

(iv) is a split epimorphism if and only if Hom(A, f) is surjective for every
object A;

(v) is an isomorphism if and only if any one of the following equivalent
conditions holds:
(a) it is both a split epi and a mono;
(b)
(c) Hom(A, f) is bijective for every object A;
(d) Hom(f, A) is bijective for every object A.

it 1s both an epi and a split mono;

Although many categorical definitions can be given in terms of hom sets, no
categorical definition must be; in fact, some mathematicians consider category
theory to be a serious alternative to set theory as a foundation for mathematics
(see many works of Lawvere, including [1963] and [1966] as well as [McLarty,
1989]) and for that purpose (which is not our purpose, of course), definition in
terms of hom sets or any other sets must be avoided.

2.9.11 Discussion Categorical definitions, as illustrated in the simple ideas
of Sections and provide a method of abstract specification which
has proved very useful in mathematics. They have, in particular, clarified
concepts in many disparate branches of mathematics and provided as well a
powerful unification of concepts across these branches.

The method of categorical definition is close in spirit to the modern atti-
tude of computing science that programs and data types should be specified
abstractly before being implemented and that the specification should be
kept conceptually distinct from the implementation. We believe that the
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method of categorical definition is a type of abstract specification which is
suitable for use in many areas of theoretical computing science. This is one
of the major themes of this book.

When a category € is a category of sets with structure, with the arrows
being functions which preserve the structure, a categorical definition of a
particular property does not involve the elements (in the standard sense of
set theory) of the structure. Such definitions are said to be element-free,
and that has been regarded as a great advantage of category theory.

Nevertheless, as we have seen, some definitions can be phrased in terms
of variable elements. This allows us the option of using familiar modes of
thinking about things in terms of elements even in general categories. In
the case of the definition of monomorphism the definition phrased in
terms of variable elements is identical with the definition in Set. On the
other hand, an epimorphism f (see is a variable element with the
property that any two different arrows out of its target must have different
values at f. In some sense it is a variable element with a lot of variation.
This is an example of a situation where the variable element point of view
is not very familiar.

The idea of variable element has much in common with the way mathe-
maticians and physicists once thought of variable quantities. Perhaps thirty
years from now the variable element idea will be much more pervasive and
the idea that an epimorphism is an element with a lot of variation will be
the natural way to describe it.

2.9.12 Exercises
1. Show that a surjective monoid homomorphism is an epimorphism.

2. Let Z,, denote the monoid of integers (modn) with addition (modn) as
operation. Show that the map ¢ : Z, — Z5 that takes 0 and 2 to 0 and 1
and 3 to 1 is a surjective monoid epimorphism and is not split.

3. Let M be a monoid.

a. Show that if M is finite then an element is a monomorphism in C'(M)
if and only if it is an epimorphism in C'(M) if and only if it is an isomorphism
in C(M).

b. Give an example showing that the assumption of finiteness in (a)
cannot be relaxed.

4. Show that in the category C(P) determined by a poset P, the only split
epis or split monos are the identity arrows.

5. Show that if h has a left inverse g, then h o g is a split idempotent (see
Exercise |10| of Section .
6. Prove Proposition [2.9.10} (For (iii), set D = B.)
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7T Show that in the category of graphs and graph homomorphism, a homo-
morphism f : ¢4 — € has any of the following properties if and only if both
fo: Gy — Hp and f1 : G1 — Hj (which are set functions) have the property
in Set:

(i) epic;
(ii) monic;

(iii) an isomorphism.

8. An epimorphism f: A — B in a category is extremal if whenever f =
m o g where m is monic implies m is an isomorphism.

a. Show that a split epi is extremal.

b. Let % be a category in which every arrow that is both monic and epic
is an isomorphism. Show that every epimorphism in % is extremal.

2.10 Factorization systems

It is a familiar fact that every function in the category of sets can be fac-
tored as an epimorphism (surjection) followed by a monomorphism (injec-
tion). Similarly, every homomorphism in the category of abelian groups can
be factored as an epimorphism followed by a monomorphism. The prop-
erties of these factorizations were abstracted early in the days of category
theory, where they were known as bicategory structures. Under the name
factorization system, they have a number of uses in category theory.

2.10.1 Definition A factorization system in a category % consists of
two subclasses & and . of the arrows of € subject to the conditions

FS—-1 If .7 is the class of isomorphisms, then # o ¢ C . # and ¥ - & C &.
FS—-2 Every arrow f in ¥ factors as f = m e with m € .# and e € &.

FS—-3 In any commutative square

A—E B

C

m D

with e € & and m € ., there is a unique h : B — C such that
hoe= fand moh =g.
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The last condition is referred to as the “diagonal fill-in”. If (as is the case
in many examples) either every arrow in .# is monic or every arrow in &
is epic, then the uniqueness requirement in this condition may be omitted
(Exercise [2)).

In discussing categories with factorization systems the usual convention
is to denote an element of .Z with a tailed arrow and an element of & with a
double-headed arrow. This may conflict with the conventions described after

Definitions [2.8.2] and 2.9.1]

2.10.2 Example In Set, the class & of epimorphisms and the class .# of
monomorphisms constitute a factorization system. In many categories of al-
gebraic structures (including monoids), the class & of regular epimorphisms
(defined in Section and the class .# of monomorphisms constitute a
factorization system. In the category of monoids and monoid homomorph-
isms, the class of all epis and all monos is not a factorization system.

In the rest of this section, we assume & and .# constitute a factorization
system.

2.10.3 Proposition The classes & and .# are each closed under compo-
sition.

Proof. Suppose my : A >~ D and mo : D >~ C with my and my in #.
Factor mg o m; = m o e with m € .# and e € &. The diagonal fill-in in the
square

A—E B
mi m
D——m(C

ma

is an arrow f : B — D such that f e e = mj and mq o f = m. The diagonal
fill-in in the square
A——B

id /

A D

mq

is a map g : B — A such that g o e =1id and m; o g = f. Since m o e o
g=moomiecg=moocf=m=mcoid and ec goe =e =1id o e both the
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identity and e o g supply a diagonal fill-in in the square

A—E—B
e m
B m C
and hence, by uniqueness, are equal. This shows that e is an isomorphism
and hence that mg o m; = m e € 4. The argument for & is dual. |

2.10.4 Prop051t10n If f: A — B factors as A % > B and also

as A —» c’ >—> B then there is a unique arrow g : C' — C' such that
gee=¢ and m' « g = m; moreover g is an isomorphism.

Proof. The arrow g is the diagonal fill-in in the square

A—E

'’ - B

To see that g is an isomorphism, we transpose the square to get a map
g : C" — C such that ¢’ o ¢/ = e and m o ¢ = m’. Then we note that these
equations imply that both the identity and ¢’ o g fill in the square

A—E

C—— B

and the unigeness of the diagonal fill-in forces ¢’ - ¢ = id and similarly g o
/ .
g =id. O

2.10.5 Proposition Suppose f: C — D satisfies the condition that for
alle: A —» B in &, any commutative square

A—E B
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has a unique diagonal fill-in. Then f € .#. Dually, if g : A — B satisfies
the condition that for all m : C' »>— D in ./, any commutative square

i

B

C m D

has a unique diagonal fill-in. Then g € &.

Proof. Factor f as C —% A>" D. From the diagonal fill-in in the square
C—5—4A

id m

C D

f

we get a map g : A — C such that g o e =id and f o ¢ = m. Then from
ecgee=cand moeog= fog=m we see that both the identity and
e o g fill in the diagonal of

C—5—4
e m
A m C
The uniqueness of the diagonal fill-in then implies that e is an isomorphism,
whence f =m e € .4 by FSHI] o
2.10.6 Corollary FEvery isomorphism is in & N A . ]

2.10.7 Proposition Suppose every arrow in & is an epimorphism. Then
go f € M implies that f € M .

f

Proof. Suppose the composite C' — D I Bisin .. Suppose we have a
commutative square
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The diagonal fill-in in the square

A—E B

h geok

C E

gef

provides a map [ : B — C such that [ - e = h. Then e can be cancelled on
the right of foloe= foh=Fkoe to conclude that f ol = k. If I’ were
another choice, e can be cancelled from [ c e = [ o e.

2.10.8 Proposition Suppose & /.4 is a factorization system on the cat-

egory €. Suppose f : A — B is an arrow of € such that for allm : C — D
in A, and any commutative square

A

C—7—D

there is a diagonal fill-in (not even assumed unique) | : B — C making both
triangles commute. Then f € &.

Proof. Factor f as A ¢ Bwithm € .# and e € &. In the diagram

P

B

e id

C——B

the diagonal fill-in property of f implies the existence of an arrow [ : B — C
such that [ o f = e and m o [ = id. The diagram




2.10 Factorization systems 63

has the identity as diagonal fill-in. But also lcmoce=10o f =eand m ol
m = m. Thus the unigeness of the diagonal fill-in (which is assumed to hold
the top arrow is in & and the bottom arrow is in .#') forces [ = m = id which
implies that m is an isomorphism and then f =meoe € &. 0

Of course, the dual property characterizes the arrows of .Z .
More properties of factorization systems will be explored in Chapter [9}

2.10.9 Exercises

1. Show that every category has a factorization system in which & consists
of all arrows and .# of all isomorphisms. (Switching the roles of & and
A gives another one. Thus every category in which not every arrow is an
isomorphism has at least two distinct factorization systems.)

2. Let (&,.#) be a factorization system. Show that if either every arrow
in . is monic or every arrow in & is epic then the requirement that h be
unique in FS-3 of Definition 2.10.1] may be omitted.

3. Show that the class & of epimorphisms and .# of monomorphisms con-
stitute an epi-mono factorization system in Set.

4. Let Z be the monoid of all integers on addition, and N the monoid of all
nonnegative integers on addition. Let i : N — Z be inclusion (which is both
monic and epic, see Section [2.9.3)). Show that the diagram

N {

y4

id id

N

- V4

i
commutes but has no diagonal fill-in. Hence the set & of all epimorphisms
and the set . of all monomorphisms do not constitute a factorization system
in the category of monoids.
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Functors

A functor F from a category ¥ to a category ¥ is a graph homomorphism
which preserves identities and composition. It plays the same role as monoid
homomorphisms for monoids and monotone maps for posets: it preserves
the structure that a category has. Functors have another significance, how-
ever: since one sort of thing a category can be is a mathematical workspace
(see Preface), many of the most useful functors used by mathematicians are
transformations from one type of mathematics to another.

Less obvious, but perhaps more important, is the fact that many cate-
gories that are mathematically interesting appear as categories whose objects
are a natural class of functors into the category of sets. This point of view
will be explored in the chapters on sketches.

The first three sections define functors, give examples and describe some
properties functors may have. Section defines the concept of equivalence
of categories, which captures the idea that two categories are the same from
the categorical point of view. The last section concerns quotients of cate-
gories, which have quotients of monoids as special cases. This concept is
used only in the chapters on sketches (and in which itself is used only
for sketches).

3.1 Functors

A functor is a structure-preserving map between categories, in the same
way that a homomorphism is a structure-preserving map between graphs or
monoids. Here is the formal definition.

3.1.1 Definition A functor F : ¥ — & is a pair of functions Fy : %)

— 9 and Fy : €1 — 2, for which

F1If f: A— Bin €, then Fi(f) : Fo(A) — Fy(B) in 2.

F-2 For any object A of €, Fi(ida) = idp,4)-

F-3 If g o f is defined in €, then Fi(g)  Fi(f) is defined in & and Fi(g °
f)=Fi(g) » Fi(f).

65
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By F-1, a functor is in particular a homomorphism of graphs. Following
the practice for graph homomorphisms, the notation is customarily over-
loaded (see [1.4.2): if A is an object, F(A) = Fy(A) is an object, and if f
is an arrow, F'(f) = Fi(f) is an arrow. The notation for the constituents
Fy: 6 — Yy and Fy : 61 — 2, is not standard, and we will use it only for
emphasis.

3.1.2 Example It is easy to see that a monoid homomorphism f : M
— N determines a functor from C(M) to C(N) as defined in On
objects, a homomorphism f must take the single object of C(M) to the
single object of C'(N), and F-1 is trivially verified since all arrows in C'(M)
have the same domain and codomain and similarly for C(N). Then F-2
and F-3 say precisely that f is a monoid homomorphism. Conversely, every
functor is determined in this way by a monoid homomorphism.

3.1.3 Example Let us see what a functor from C(S,«a) to C(T, 5) must
be when (S, a) and (T, 3) are posets as in[2.3.1] It is suggestive to write both
relations a and § as ‘<’ and the posets simply as S and 7. Then there is
exactly one arrow from x to y in S (or in T') if and only if x < y; otherwise
there are no arrows from x to y.

Let f: S — T be the functor. F-1 says if there is an arrow from « to y,
then there is an arrow from f(z) to f(y); in other words,

if x <y then f(z) < f(y)

Thus f is a monotone map (see . F-2 and F-3 impose no additional
conditions on f because they each assert the equality of two specified arrows
between two specified objects and in a poset as category all arrows between
two objects are equal.

3.1.4 Example If ¥ is a category, the functor

P CXxXC —C
(see [2.6.6)) which takes an object (C, D) to C and an arrow (f,g) : (C,D)
— (C',D’) to f is called the first projection. There is an analogous second
projection functor P, taking an object or arrow to its second coordinate.

3.1.5 Example Let 2+ 2 be the category that can be pictured as

0—1 1 —2
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with no other nonidentity arrows, and the category 3 the one that looks like

0 1

NV

2

Define the functor F': 2 +2 — 3 to take 0 to 0, 1 and 1’ to 1, and 2 to 2.
Then what it does on arrows is forced.

Note that the image of F' includes all of & except the composite arrow
from 0 — 2. This example shows that the image of a functor need not be a
subcategory of the codomain category.

3.1.6 The category of categories The category Cat has all small cat-
egories as objects and all functors between such categories as arrows. The
composite of functors is their composite as graph homomorphisms: if F': 4
— P and G: 2 — &, then G- F : € — & satisfies G - F(C) = G(F(C))
for any object C of ¢, and G » F(f) = G(F(f)) for any arrow f of . Thus
(GoF);=G;° F; fori=0,1.

We note that the composition circle is usually omitted when composing
functors so that we write GF(C) = G(F(C)).

It is sometimes convenient to refer to a category CAT which has all small
categories and ordinary large categories as objects, and functors between
them. Since trying to have CAT be an object of itself would raise delicate
foundational questions, we do not attempt here a formal definition of CAT.

3.1.7 Example The inclusion map of a subcategory is a functor. As we
pointed out in the categorical point of view does not require that the
object and arrows of a subcategory actually be objects and arrows of the
bigger category, only that there be a monomorphism from the subcategory
to the category. For example, Set is a subcategory of Rel: the monomorphic
functor takes every set to itself and each function f : S — T to its graph
{(s,t) | t = f(s)}, which is indeed a relation from S to 7'

This approach has the strange result that two different categories can
each be regarded as subcategories of the other one (Exercises [§] and @

3.1.8 Underlying functors Forgetting some of the structure in a cate-
gory of structures and structure-preserving functions gives a functor called an
underlying functor or forgetful functor. The functor U : Mon — Sem
which embeds the category of monoids into the category of semigroups by
forgetting that a monoid has an identity is an example of an underlying
functor.
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Another example is the functor which forgets all the structure of a semi-
group. This is a functor U : Sem — Set. There are lots of semigroups with
the same set of elements; for example, the set {0,1,2} is a semigroup on
addition (mod 3) and also a different semigroup on multiplication (mod 3).
The functor U applied to these two different semigroups gives the same set,
so U is not injective on objects, in contrast to the forgetful functor from
monoids to semigroups.

We will not give a formal definition of underlying functor. It is reasonable
to expect any underlying functor U to be faithful (see below) and that
if f is an isomorphism and U(f) is an identity arrow then f is an identity
arrow.

3.1.9 Example A small graph has two underlying sets: its set of nodes
and its set of arrows. Thus there is an underlying functor U : Grf — Set x
Set for which for a graph ¢, U(¥) = (Go, G1); an arrowset functor A : Grf
— Set which takes a graph to its set of arrows and a graph homomorphism
to the corresponding function from arrows to arrows; and a similarly defined
nodeset functor NV : Grf — Set which takes a graph to its set of nodes.

3.1.10 Example If you forget you can compose arrows in a category and
you forget which arrows are the identities, then you have remembered only
that the category is a graph. This gives an underlying functor U : Cat —
Grf, since every functor is a graph homomorphism although not vice versa.

As for graphs, there are also set-of-objects and set-of-arrows functors
O : Cat — Set and A : Cat — Set which take a category to its set of
objects and set of arrows respectively, and a functor to the appropriate set
map.

3.1.11 Example In [2.6.10] we described the notion of a slice category
% /A based on a category ¢ and an object A. An object is an arrow B — A
and an arrow from f: B — Ato g:C — Ais an arrow h : B — C for
which

geh=1f

There is a functor U : /A — % that takes the object f: B — A to B
and the arrow h from B — A to C — A to h: B — C. This is called the
underlying functor of the slice. In the case that 4 = Set, an object T — S of
Set /S for some set S is an S-indexed object, and the effect of the underlying
functor is to forget the indexing.

3.1.12 Free functors The free monoid functor from Set to the cate-
gory of monoids takes a set A to the free monoid F'(A), which is the Kleene
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closure A* with concatenation as operation (see [2.3.9)), and a function f: A
— B to the function F(f) = f*: F(A) — F(B) defined in [2.5.7,

To see that the free monoid functor is indeed a functor it is necessary to
show that if f: A — B and g: B — C, then F(g- f): F(A) — F(C) is
the same as F'(g) o F(f), which is immediate from the definition, and that
it preserves identity arrows, which is also immediate.

The Kleene closure is itself a functor from Set to Set, taking A to A*
and f to f*. It is the composite U o F' of the underlying functor U : Mon
— Set and the free functor F' : Set — Mon, but of course it can be defined
independently of U and F'.

3.1.13 Example The free category on a graph is also the object part of
a functor F' : Grf — Cat. What it does to a graph is described in
Suppose ¢ : 4 — S is a graph homomorphism. The objects of the free
category on a graph are the nodes of the graph, so it is reasonable to
define F(¢)g = ¢o9. Now suppose (fn, fn-1,---,f1) is a path, that is, an
arrow, in F'(%¢). Since functors preserve domain and codomain, we can de-

fine F(¢)1(fn7 fn—17 R fl) to be (¢l(fn)a ¢l(fn—1)) s 7¢l(fl)) and know we
get a path in F'(s#). That F preserves composition of paths is also clear.

3.1.14 The map-lifting property The free category functor F' : Grf
— Cat and also other free functors, such as the free monoid functor ,
have a map lifting property called its universal mapping property which
will be seen in Section as the defining property of freeness. We will
describe the property for free categories since we use it later. The free monoid
case is done in detail in Proposition

Let ¢4 be a graph and F(¥) the free category generated by ¢. There is
a graph homomorphism with the special name n¥ : ¢ — U(F(¥)) which
includes a graph ¢ into U(F(¥)), the underlying graph of the free category
F(%). The map (n9)o is the identity, since the objects of F'(¢) are the nodes
of 4. For an arrow f of 4, (n¥4)1(f) is the path (f) of length one. This is
an inclusion arrow in the generalized categorical sense of since f and
(f) are really two distinct entities.

3.1.15 Proposition Let & be a graph and ¢ a category. Then for every
graph homomorphism h : 4 — U(%), there is a unique functor h : F(¥)

— € with the property that U(?L) °on9 = h.

Proof. If () is the empty path at an object a, we set h() = id,. For an
object a of F(¥) (that is, node of ¢), define h(a) = h(a). And for a path

~

(an,an-1,...,a1), h is ‘map h’:

h(an, an—1,...,a1) = (h(an), h(an—1),...,h(ar))
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As noted in there is a unique empty path for each node a of ¥4.
Composing the empty path at a with any path p from a to b gives p again,
and similarly on the other side. That is why the program returns id, for the
empty path at a.

3.1.16 Powerset functors Any set S has a powerset &S, the set of all
subsets of S. There are three different functors F' for which F{ takes a set
to its powerset; they differ on what they do to arrows. One of them is fun-
damental in topos theory; that one we single out to be called the powerset
functor.

If f : A — B is any set function and C is a subset of B, then the inverse
image of C, denoted f~!(C), is the set of elements of A which f takes into
C: f~4C)={a€ A| f(a) € C}. Thus f~! is a function from B to ZA.

Note that for a bijection f, the symbol f~! is also used to denote the
inverse function. Context makes it clear which is meant, since the input to
the inverse image function must be a subset of the codomain of f, whereas
the input to the actual inverse of a bijection must be an element of the
codomain.

3.1.17 Definition The powerset functor & : Set°® — Set takes a set
S to the powerset &S, and a set function f : A — B (that is, an arrow from
B to A in Set°P) to the inverse image function f~!: B — ZA.

Although we will continue to use the notation f~!, it is denoted f* in
much of the categorical literature.

To check that & is a functor requires showing that id;ll = idg4 and
that if g : B — C, then (g o f)~' = f~! o g~!, where both compositions
take place in Set.

3.1.18 A functor F : €°°P — 2 is also called a contravariant functor
from % to 2. As illustrated in the preceding definition, the functor is of-
ten defined in terms of arrows of & rather than of arrows of ¥°P. Opposite
categories are most commonly used to provide a way of talking about con-
travariant functors as ordinary (covariant) functors: the opposite category
in this situation is a purely formal construction of no independent interest
(see [2.6.9).

3.1.19 The other two functors which take a set to its powerset are both
covariant. The direct or existential image functor takes f : A — B to the
function f, : A — ZB, where f.(Ay) = {f(z) | © € Ap}, the set of values
of f on Ap. The universal image functor takes Ag to those values of f
which come only from Ay: formally, it takes f: A — B to fi: A — B,
with
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fi(Ado) ={y € B| f(z) = y implies z € A} = {y € B| f'({y}) C Ao}

3.1.20 Hom functors Let % be a category with an object C' and an
arrow f: A — B.In we defined the function Hom(C, f) : Hom(C, A)
— Hom(C, B) by setting Hom(C, f)(g) = f o g for every g € Hom(C, A),
that is for g : C' — A. We use this function to define the covariant hom
functor Hom(C, —) : ¥ — Set as follows:

HF-1 Hom(C, —)(A) = Hom(C, A) for each object A of ¢’;

HF-2 Hom(C, —)(f) = Hom(C, f) : Hom(C,A) — Hom(C, B) for f: A —

B.

The following calculations show that Hom(C,—) is a functor. For an
object A, Hom(C,id4) : Hom(C, A) — Hom(C, A) takes an arrow f : C
— A toida o f = f; hence Hom(C,ida) = idgom(c,4)- Now suppose f : A
— B and g: B — D. Then for any arrow k: C — A,

(Hom(C.g) - Hom(C, 1)) (1) = Hom(C.g)(Hom(C, 1)(k) )
— Hom(C,g)(f - k)
= g9°(f°k)

(gef)eok
= Hom(C,g - f)(k)

In terms of variable elements, Hom(C), f) takes the variable elements of
A with parameter set C' to the variable elements of B with parameter set C.

There is a distinct covariant hom functor Hom(C, —) for each object C. In this
expression, C' is a parameter for a family of functors. The argument of each
of these functors is indicated by the dash. An analogous definition in calculus
would be to define the function which raises a real number to the nth power as
f(=) = (=)™ (here n is the parameter). One difference in the hom functor case
is that the hom functor is overloaded and so has to be defined on two different
kinds of things: objects and arrows.

3.1.21 Definition For a given object D, the contravariant hom func-
tor
Hom(—, D) : €°° — Set
is defined for each object A by
Hom(—, D)(A) = Hom(A, D)
and for each arrow f: A — B,
Hom(—, D)(f) = Hom(f, D) : Hom(B, D) — Hom(A, D)
Thus if g : B — D, Hom(f,D)(g) =g - f.
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3.1.22 Definition The two-variable hom functor
Hom(—,—) : P x € — Set

takes a pair (C, D) of objects of C to Hom(C, D), and a pair (f, g) of arrows
with f:C — Aand g: B — D to

Hom(f,g) : Hom(A, B) — Hom(C, D)
where for h : A — B,

Hom(f,g)(h) =g-h-o f

which is indeed an arrow from C to D.

In this case we also use the product of categories as a formal construction
to express functors of more than one argument. From the categorical point
of view, a functor always has one argument, which as in the present case
might well be an object in a product category (an ordered pair).

3.1.23 Exercises

1. Show that in the definition of functor, the clause ‘Fi(g) o F1(f) is defined
in 2’ can be omitted.

2. Describe the initial and terminal objects in the category of categories and
functors.

3. Prove that the existential and universal image functors of are func-
tors.

4. a. Prove that a functor is a monomorphism in the category of categories if
and only if it is injective on both objects and arrows. (Compare Exercise [7](ii)
of Section [2.9] The corresponding statement for epimorphisms is not true
(Section [3.3)).)

b. Prove that the functor U : Mlon — Sem described in [3.1.8]is a mono-
morphism.

5. Given a semigroup S, construct a monoid M = S U {e}, using a new
element e not in S and different for each semigroup S. For example, you
could take e = {S}. The multiplication in M is defined this way:

(i) zy is the product in S if both = and y are in S.
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(ii) ze =ex =x for all x € M.

M is denoted S! in the semigroup literature. Show that

a. S! is a monoid (note that if S is already a monoid, S* is too but with
a new identity element);

b. there is a functor F' : Sem — Mon which takes each semigroup S to
S and each semigroup homomorphism f : S — T to a monoid homomorph-
ism f!:S' — T which is the same as f on S and which takes the added
element to the added element;

c. F' is a monomorphism in Cat.

6. Let U : Mon — Set be the underlying set functor, and F : Set — Mon
the free monoid functor. For every set A and monoid M, construct a function

3 : Homget (A, U(M)) — Homyon (F(A), M)

by defining

B(f)(araz---an) = f(a1)f(az) - f(an)
(the right side is the product in M) for f: A — U(M). Show that 5 is a
bijection.

7. Let U : Mon — Sem be the functor of B.1.7 and F : Sem — Mon the
functor of Exercise Bl Define a function

v : Homgem (S, U(M)) — Hompmjon (F(S), M)

by v(h)(s) = h(s) if s € S and ~y(h)(es) = 1 if eg is the new element added
to S to construct F(S), where 1 is the identity element of M. Show that -
has the claimed codomain and is a bijection. (Compare Exercise [6] )

8. Show that each of Mon and Sem is a subcategory of the other.

9. Show that Set and Pfn are each subcategories of the other. (Hint: To
construct a monic functor from Pfn to Set, take each set A to the set
AU{A}, and a partial function f : A — B to the full function f’ for which
f'(x) = f(z) if f(z) is defined, and f’(z) = B otherwise.)

103r Let o/ be a category. Show that o/ is discrete (see Exercise [11| of Sec-
tion [2.7)) if and only if every set function F' : &4 — By, where £ is any
category, is the object part of a unique functor from o/ to 4.

11T A category & is indiscrete if every set function F': o) — %y, where
&/ is any category, is the object part of a unique functor from &7 to #. Give
a definition of ‘indiscrete’ in terms of the objects and arrows of Z.
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3.2 Actions

In this section, we discuss set-valued functors as a natural generalization of
finite state machines. This section is referred to only in Chapter [12|and in a
few scattered examples. Set-valued functors also have theoretical importance
in category theory because of the Yoneda Lemma (Section [4.5).

3.2.1 Monoid actions Let M be a monoid with identity 1 and let .S be
a set. An action of M on S is a function o : M x S — S for which

A-1 a(l,s) =sforall s € S.
A-2 a(mn,s) = a(m,a(n,s)) for all m,n € M and s € S.

It is customary in mathematics to write ms for a(m,s); then the pre-
ceding requirements become

A-1 1s=sforall s € S.
A2 (mn)s = m(ns) for all m,n € M and s € S.

When actions are written this way, S is also called an M-set. The same
syntax ms for m € M and s € S is used even when different actions are
involved. This notation is analogous to (and presumably suggested by) the
notation c¢v for scalar multiplication, where ¢ is a scalar and v is a vector.

It is useful to think of the set S as a state space and the elements of
M as acting to induce transitions from one state to another.

3.2.2 Definition Let M be a monoid with actions on sets S and 1. An
equivariant map from S to T is a function ¢ : S — T with the property
that m¢(s) = ¢(ms) for all m € M and s € S. The identity function is an
equivariant map and the composite of two equivariant maps is equivariant.
This means that for each monoid M, monoid actions and equivariant maps
form a category M—Act.

3.2.3 Actions as functors Let a be an action of a monoid M on a set
S. Let C'(M) denote the category determined by M as in[2.3.12, The action
a determines a functor Fy, : C(M) — Set defined by:

AF-1 F,(x)=S.
AF-2 F,(m)=s a(m,s) form e M and s € S.

This observation will allow us to generalize actions to categories in |3.2.6
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3.2.4 Example One major type of action by a monoid is the case when
the state space is a vector space and M is a collection of linear transforma-
tions closed under multiplication. However, in that case the linear structure
(the fact that states can be added and multiplied by scalars) is extra struc-
ture which the definition above does not require. Our definition also does not
require that there be any concept of continuity of transitions. Thus, the def-
inition is very general and can be regarded as a nonlinear, discrete approach
to state transition systems.

Less structure means, as always, that fewer theorems are true and fewer
useful tools are available. On the other hand, less structure means that more
situations fit the axioms, so that the theorems that are true and the tools
that do exist work for more applications.

3.2.5 Example A particularly important example of a monoid action oc-
curs in the study of finite state machines. Let A be a finite set, the alphabet
of the machine, whose elements may be thought of as characters or tokens,
and let S be another finite set whose elements are to be thought of as states.
We assume there is a distinguished state sg € S called the start state, and
a function ¢ : A x S — S defining a transition to a state for each token in
A and each state in S. Such a system .# = (A, S, so,¢) is a finite state
machine. Note that there is no question of imposing axioms such as A—1
and A—-2 because A is not a monoid.

Any string w in A* induces a sequence of transitions in the machine .#
starting at the state sg and ending in some state s. Precisely, we define a
function ¢* : A* x S — S by:

FA-1 ¢*((),s) = s for s € S.
FA-2 ¢*((a)w,s) = ¢(a,¢*(w,s)) for any s € S, w € A* and a € A.

Recall that the free monoid F'(A) is the set A* with concatenation as
multiplication. The function ¢* as just defined is thus an action of F'(A)
on S. The identity of A* is the empty word () and by FA-1, ¢*((),a) = a
for all a € A, so A1 follows. As for A-2, if we assume that

¢ (wv,m) = ¢*(w, ¢*(v,m))
for words w of length k, then

¢*((a)wv,m) = ¢(a, ¢*(wv,m))
= ¢(a, 9" (w, ¢*(v,m))) = ¢*((a)w, ¢ (v, m))

The first and third equality are from the definition of ¢, while the second is
from the inductive hypothesis.
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Finite state machines in the literature often have added structure. The state
space may have a subset F' of acceptor states (or final states). The subset
L of A* of strings which drive the machine from the start state to an acceptor
state is then the set of strings, or language, which is recognized by the machine
A . This is the machine as recognizer. A compiler typically uses a finite state
machine to recognize identifiers in the input file.

Another approach is to assume that the machine outputs a string of symbols
(not necessarily in the same alphabet) for each state it enters or each transition
it undergoes. This is the machine as transducer.

An elementary introduction to finite state machines may be found in |[Lewis and
Papadimitriou, 1981]. Two more advanced texts which use algebraic methods
to study finite state machines (primarily as recognizers) are those by Eilen-
berg [1976] and Lallement [1979]. The latter book has many other applications
of semigroup theory as well.

3.2.6 Set-valued functors as actions Suppose we wanted to extend the
idea of an action by introducing typing. What would the result be?

To begin with, we would suppose that in addition to the state space S,
there was a type set T" and a function type : S — T that assigned to each
element s € S an element type(s) € T

In describing the elements of M, one must say, for an m € M and s € S,
what is type(ms). Moreover, it seems that one might well want to restrict
the types of the inputs on which a given m acts. In fact, although it might
not be strictly necessary in every case, it seems clear that we can, without
loss of generality, suppose that each m € M acts on only one kind of input
and produces only one kind of output. For if m acted on two types of output,
we could replace m by two elements, one for each type. Thus we can imagine
that there are two functions we will call input and output from M to T for
which input(m) is the type of element that m acts on and output(m) is the
type of m(s) for an element s of type input(m).

In the untyped case, we had that M was a monoid, but here it is clearly
appropriate to suppose that mj x mg is defined only when output(ms) =
input(myq). It is reasonable to suppose that for each type ¢, there is an op-
eration 1; € M whose input and output types are ¢t and such that for any
m € M of input type t, we have m x 1, = m and for any m € M of output
type t, we have 1; *x m = m.

As for the action, we will evidently wish to suppose that when s € S has
type t and m,m’ € M have input types t,t’, respectively, and output types
t',t", respectively, then m/(m(s)) = (m' * m)(s) and 14(s) = s.

Now it will not have escaped the reader at this point that M and T
together constitute a category ¥ whose objects are the elements of 7" and
arrows are the elements of M. The input and output functions are just the
source and target arrows and the 1; are the identities.
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M and S make up exactly the data of a set-valued functor on %. Define
a functor F': € — Set by letting F'(t) = {s € S | type(s) = t}. If m is an
arrow of @, that is an element of M, let its input and output types be t and
t', respectively. Then for F' to be a functor, we require a function F'(m) : F(t)
— F(t'). Naturally, we define F'(m)(s) = ms, which indeed has type t’. The
facts that F' preserves composition and identities are an easy consequence
of the properties listed above.

This construction can be reversed. Let & be a small category and suppose
we have a functor F' : ¥ — Set for which F(C) and F(D) are disjoint
whenever C' and D are distinct objects of € (this disjointness requirement
is necessary to have a category, but can be forced by a simple modification
of F' — see Exercise |§| of Section . Then we can let T" be the set of objects
of €, M the set of arrows and S = ;e F(t). The rest of the definitions are
evident and we leave them to the reader.

Thus if € is a small category, a functor F': € — Set is an action which
generalizes the concept of monoid acting on a set.

3.2.7 Example For any given object C of a category %, the hom functor
Hom(C, —) (see[3.1.20)) is a particular example of a set-valued functor. When
the category € is a monoid, it is the action by left multiplication familiar in
semigroup theory. A theorem generalizing the Cayley theorem for groups is

true, too (see [4.5.2]).

3.2.8 Variable sets It may be useful to think of a set-valued functor F' :
% — Set as an action, not on a typed set, but on a single variable set.
The objects of € form a parameter space for the variation of the set being
acted upon. Another way of saying this is that each object of % is a point of
view, that the set being acted upon looks different from different points of
view, and the arrows of € are changes in point of view (as well as inducing
transitions). See [Barr, McLarty and Wells, 1985].

3.2.9 Machines with typed actions The concept generalizing finite state
machines is based on the perception that words in a typed alphabet are paths
in a graph whose nodes are the types.

Formally, a typed finite state machine consists of a graph ¢ and a
graph homomorphism ¢ from ¢ to the category of finite sets. Thus for each
node n of ¢ there is a set ¢(n), and for each arrow f: m — n of ¥ there is
a function ¢(f) : ¢(m) — o(n).

What corresponds to the action of the free monoid on the states in the
case of ordinary finite state machines is the action of the free category F(¥¢)
generated by ¢. The words in the free monoid are now paths in the free
category. The action ¢ generates an action ¢* : F(¢4) — Set according to
this recursive definition, which is a precise generalization of Section [3.2.5
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FA'-1 ¢*(()¢)(z) = x for x € F(C), where ()¢ denotes the empty path from
Cto C.

FA’-2 For z € dom(f1),

¢ (frs fut,- -5 [1) (@) = @ (fn, - -, f2)[0(f1) ()]

This in other notation is a special case of the functor F(¢) defined

in 3113

3.2.10 Remark If you wanted to model nondeterminism, ¢( f) for an arrow
f :m — n could not be a set function because the result of applying ¢(f) to
¢(m) might take a state of ¢(m) to several states, or no state, of ¢(n). One
way to solve this would be to take the meaning of the action in Rel instead
of in Set. Specifically, ¢(m) would consist of the ordered pairs (z,y) with
the property that the action of m could take x to y. If the machine stalls on
x, then there would be no pair in ¢(m) beginning with z.

This example is the tip of an iceberg. Probably the commonest type
of research article that applies category theory to computing science is one
that proposes some specific category other than Set to be the semantics of
a certain kind of program or programming language.

3.2.11 Example We can illustrate typed states by modeling an applica-
tion program with modes. Let’s suppose we have a program that can do two
different things. It has three modes, one in which you choose what to do and
the other two which perform the two tasks. For simplicity, we suppose that
the two tasks are to recognize two languages L1 and Lo using finite state
machines my and me respectively. This configuration can be exhibited as a

graph ¢:
O° , OF
Z”L)l‘ R ZL)? (3.2)
Y )

This assumes the two languages are subsets of {x,y}*. The two arrows
labeled = are two different arrows with the same label. The same remark
applies to y and ¢ (which can be interpreted as ‘quit’).

To make an actual typed finite state machine using this schema, let us
suppose that Lq is the language of all those strings ending with = and Lo is
the language of all those strings that start with . These are recognized by
the following machines, in which s is the start state, s accepts in M; and
o accepts in Ms. The states labeled b can be thought of as ‘bad’ and o as
‘OK’.
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O° o e
b= s -0
) ) O (3.3)
Yy Yy Y
(My) (M)

Let € be the free category generated by ¢. We define a functor F' : ¢
— Set that implements the machine described in the previous paragraph.
To avoid confusion, we put subscripts 1 or 2 on the start states and the
states labeled b of the two machines to distinguish them. Then F' is defined
on objects by

(i) F(c) = {s,a,r}. sis ‘start’, a is ‘accept’ and r is ‘reject’.
(ii) F(m1) = {s1,b1}.
(iii) F(mg) = {8270, bg}.
The values of F' on arrows are exhibited in this table. The occurrence of r
in the row marked b; and the column marked ¢ means that F(q)(by) =r. A
blank means the function is not defined at that symbol. This table is more

compact than it might be because it takes advantage of the fact that two
arrows each are labeled z, y and gq.

1 2 qg x y

S S1 S92

a S1 S2

r S1 S92

S1 a Si b1
bl T 851 bl
S9 r o by
o a o o

b2 r bg bQ

You can check, for example, that feeding this machine the string lyzxq
causes it to wind up in state a, and feeding it lyyq2xyyq causes it to wind
up in state a after passing through state r at the first g. One could attach
an output function to node ¢ causing it to report acceptance or rejection.
Note that many strings (for example any string not starting with 1 or 2) are
not allowed as input because they violate the typing rules. One could add a
node e (for error) to ¢ with appropriate transitions to account for this. F'(e)
might then have several states corresponding to different kinds of errors.
We have made some choices in saying that F'(1) and F(2) can be applied
to a and r. For example, we could have reconfigured the graph ¥ to split
the nodes ¢ into two nodes, one for starting and one for reporting a result.
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3.2.12 Exercise

1. Let S be a set. The full transformation monoid on S, denoted FT'(5),
is the set of all functions from S to S with composition as the operation.
Show that the following is equivalent to the definition in of monoid
action: an action by a monoid M on S is a monoid homomorphism from M

to FT(S).

3.3 Types of functors

Since Cat is a category, we already know about some types of functors.
Thus a functor F' : € — & is an isomorphism if there is a functor G : ¥
— % which is inverse to F'. This implies that F' is bijective on objects and
arrows and conversely a functor which is bijective on objects and arrows is
an isomorphism.

We have already pointed out (Exercise [4] of Section that a functor
is a monomorphism in Cat if and only if it is injective on both objects
and arrows. Epimorphisms in Cat need not be surjective, since the example
in[2.9.3)is actually an epimorphism in Cat between the categories determined
by the monoids (Exercise [§).

3.3.1 Full and faithful We will now consider properties of functors which
are more intrinsic to Cat than the examples just given.
Any functor F' : ¥ — 2 induces a set mapping

Home (A, B) — Homg (F(A), F(B))

for each pair of objects A and B of €. This mapping takes an arrow f : A
— Bto F(f): F(A) — F(B).

3.3.2 Definition A functor F : ¥ — 2 is faithful if the induced map-
ping is injective on every hom set.

Thus if f: A — B and g : A — B are different arrows, then F(f) #
F(g). However, it is allowed that f : A — B and g : C — D may be different
arrows, with F'(A) = F(C), F(B) = F(D) and F(f) = F(g), provided that
either A # C or B # D.

3.3.3 Example Underlying functors are typically faithful. Two different
monoid homomorphisms between the same two monoids must be different
as set functions.

On the other hand, consider the set {0, 1,2}. It has two different monoid
structures via addition and multiplication (mod3) (and many other monoid
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structures, too), but the two corresponding identity homomorphisms are the
same as set functions (have the same underlying function). Thus underlying
functors need not be injective.

3.3.4 Definition A functor F': ¢ — % is full if the induced mapping is
surjective for every hom set.

A full functor need not be surjective on either objects or arrows. A full
subcategory is exactly one whose embedding is a full and faithful
functor.

That the underlying functor from the category of semigroups to the cat-
egory of sets is not full says exactly that not every set function between
semigroups is a semigroup homomorphism. Note that this functor is sur-
jective on objects, since every set can be made into a semigroup by letting
xy = x for every pair x and y of elements.

3.3.5 Example The functor F': ¢ — & which takes A and B to C' and
X and Y to Z (and so is forced on arrows) in the picture below (which
omits identity arrows) is not full. That is because Hom(A, B) is empty, but
Hom(F(A), F(B)) = Hom(C,C) has an arrow in it — the identity arrow. This
functor is faithful even though not injective, since two arrows between the
same two objects do not get identified.

A B C
(3.4)
X Y A
% 9

3.3.6 Preservation of properties A functor F': ¥ — & preserves a
property P of arrows if whenever f has property P, so does F'(f).

3.3.7 Examples The fact that a monomorphism in the category of mon-
oids must be injective can be worded as saying that the underlying functor
preserves monomorphisms (since an injective function in Set is a mono-
morphism). The statement that an epimorphism in Mon need not be sur-
jective is the same as saying that the underlying functor does not preserve
epimorphisms.

As another example, consider the functor F' : 2 — Set (2 is shown
in (2.1), page defined by C — {1,2}, D — {3,4} and the arrow from
C to D going to the constant function 1 — 3, 2 +— 3 from F(C) to F (D).
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The arrow from C' to D is monic and epic (vacuously) but its value in Set
takes 1 and 2 both to 3, so is not injective and hence not a monomorphism.
It is also not an epimorphism. Thus F preserves neither monomorphisms nor
epimorphisms.

The story is different for isomorphisms. (Note that the arrow from C' to
D in 2 is not an isomorphism!)

3.3.8 Proposition Fvery functor preserves isomorphisms.

Proof. This is because the concept of isomorphism is defined in terms of
equations involving composition and identity. If f : A — B is an isomorph-
ism with inverse g, then F'(g) is the inverse of F'(f). One of the two calcu-
lations necessary to prove this is that F'(g) c FI(f) = F(g -~ f) = F(ida) =
idp(4); the other calculation is analogous. O

3.3.9 Definition A functor F : ¥ — & reflects a property P of arrows
if whenever F'(f) has property P then so does f (for any arrow that F' takes

to F(f)).

It follows from and the definition of isomorphism that a
bijective semigroup homomorphism must be an isomorphism. That is the
same as saying that the underlying functor from Sem to Set reflects iso-
morphisms. The same remark applies to Mon. The underlying functor from
the category of posets and monotone maps does not reflect isomorphisms
(see 2.7.11)).

A full and faithful functor reflects isomorphisms, but in fact it does a bit
more than that, as described by the following proposition.

3.3.10 Proposition Let F : % — 2 be full and faithful, and suppose A
and B are objects of € and u : F(A) — F(B) is an isomorphism in 9.
Then there is a unique isomorphism f : A — B for which F(f) = u.

Proof. By fullness, there are arrows f: A — B and ¢ : B — A for which
F(f) =wuand F(g) =u~!. Then

F(gef)="F(g)e F(f) =u" cu=idpa) = F(ida)

But F is faithful, so g o f = id4. A similar argument shows that f - g = idp,
so that g is the inverse of f. O

3.3.11 Corollary A full and faithful functor reflects isomorphisms.
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3.3.12 Corollary Let F : € — 2 be a full and faithful functor. If F(A) =
F(B) for objects A and B of €, then A and B are isomorphic.

Proof. Apply Proposition 3.3.10[to the identity arrow from F'(A) to F(A) =
F(B). O

3.3.13 You can also talk about a functor preserving or reflecting a property
of objects. For example, since a terminal object in Mon is a one-element
monoid and a one-element set is a terminal object, the underlying functor
from Mon to Set preserves terminal objects. It also reflects terminal objects.
It does not preserve initial objects, but it does reflect initial objects although
vacuously: the empty set is the only initial object in Set and the underlying
set of a monoid cannot be empty since it must have an identity element. We
leave the details to you.

3.3.14 Exercises

1. What does it mean for a functor to be faithful if
a. it is between the categories determined by monoids?
b. it is between the categories determined by posets?

. Same question as 1 for ‘full’.

. Is the forgetful functor from Mon to Sem full?

. Is the free monoid functor faithful? Full?

. Show that the powerset functor is faithful but not full.
. Show that Rel is isomorphic to its own dual.

. Show that a groupoid (see Exercise is isomorphic to its own dual.

e B A

. Show that the example in [2 is an epimorphism in Cat when the mon-
01d5 involved are regarded as categomes hence epimorphisms in Cat need
not be surjective.

9. Prove that every functor preserves split monos and split epis.

10. a. Does the underlying functor from Sem to Set preserve or reflect
initial objects? What about terminal objects?
b. Same questions for the underlying functor from Cat to Grf (3.1.10]).

11. Show that for any category ¥ and object A of ¥, the hom functor
Hom(A, —) (see|3.1.20) preserves terminal objects.

12. Let % be a category and f: B — A an arrow of %. Show that the slice
category (¢ /A)/f is isomorphic to the slice category ¢ /B. (‘A slice of a
slice of € is a slice of ¢.”) Hint: The functor from (¢ /A)/f to € /B takes an
object w: (¢g: C — B) — f to g: C — B, and its inverse takes an object
u:C —Btou: fou— f.
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3.4 Equivalences

In this section we define what it means for two categories to be equivalent.
The correct concept turns out to be weaker than requiring that they be
isomorphic — that is, that there is a functor from one to the other which has
an inverse in Cat. In order to understand the issues involved, we first take
a close look at the construction of the category corresponding to a monoid
in Section 2.3.12] It turns out to be a functor.

3.4.1 Monoids and one-object categories For each monoid M we con-
structed a small category C'(M) in We make the choice mentioned
there that the one object of C'(M) is M. Note that although an element of
C(M) is now an arrow from M to M, it is not a set function.

For each monoid homomorphism h : M — N, construct a functor C'(h) :
C(M) — C(N) as follows:

CF-1 On objects, C(h)(M) = N.
CF-2 C(h) must be exactly the same as h on arrows (elements of M).

It is straightforward to see that C(h) is a functor and that this con-
struction makes C' a functor from Mon to the full subcategory of Cat of
categories with exactly one object. We will denote this full subcategory as
Ooc.

There is also a functor U : Ooc — Mon going the other way.

UO-1 For a category € with one object, U(%) is the monoid whose elements
are the arrows of ¥ and whose binary operation is the composition

of ©.

UO-2 If F': ¥ — Z is a functor between one-object categories, U(F) = Fi,
that is, the functor F' on arrows.

The functors U and C' are not inverse to each other, and it is worthwhile
to see in detail why.

The construction of C is in part arbitrary. We needed to regard each
monoid as a category with one object. The choice of the elements of M to
be the arrows of the category is obvious, but what should be the one object?
We chose M itself, but we could have chosen some other thing, such as the
set {e}, where e is the identity of M. The only real requirement is that it
not be an element of M (such as its identity) in order to avoid set-theoretic
problems caused by the category being an element of itself. The consequence
is that we have given a functor C' : Mon — QOoc in a way which required
arbitrary choices.

The arbitrary choice of one object for C'(M) means that if we begin with
a one-object category %, construct M = U(%), and then construct C(M),
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the result will not be the same as % unless it happens that the one object
of € is M. Thus C o U # idgoc, so that U is not the inverse of C. (In this
case U o C is indeed idpon.)

C' is not surjective on objects, since not every small category with one
object is in the image of C; in fact a category 2 is C' (M) for some monoid
M only if the single object of Z is actually a monoid and the arrows of
2 are actually the arrows of that monoid. This is entirely contrary to the
spirit of category theory: we are talking about specific elements rather than
specifying behavior. Indeed, in terms of specifying behavior, the category of
monoids and the category of small categories with one object ought to be
essentially the same thing.

The fact that C' is not an isomorphism of categories is a signal that
isomorphism is the wrong idea for capturing the concept that two categories
are essentially the same. However, every small category with one object is
isomorphic to one of those constructed as C'(M) for some monoid M. This
is the starting point for the definition of equivalence.

3.4.2 Definition A functor F': ¥ — Z is an equivalence of categories
if there are:

E-1 A functor G: 9 — ¥.

E-2 A family uc : C — G(F(C)) of isomorphisms of ¢ indexed by the
objects of € with the property that for every arrow f:C — C’ of €,
G(F(f)) = ucr o foug.

E-3 A family vp : D — F(G(D)) of isomorphisms of Z indexed by the
objects of 2, with the property that for every arrow g : D — D’ of 9,
F(G(g)) = vpr > g vp'

If F is an equivalence of categories, the functor G of E—1 is called a
pseudo-inverse of F'. That the functor C of is an equivalence (with
pseudo-inverse U) is left as an exercise. The families v and v are natural
isomorphisms, and the arrows up and vp are components of the natural
isomorphism. These concepts are defined in general in [4.2.18]

The idea behind the definition is that not only is every object of Z iso-
morphic to an object in the image of F', but the isomorphisms are compatible
with the arrows of Z; and similarly for . (See Exercise [6] of Section [4.2] )

3.4.3 Example Let % be the category with two objects A and B, their
identities, and two other arrows i : A — B and j : B — A that are inverse
isomorphisms between the objects:

A

B (3.5)
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Let 2 =1 be the category with one object E and its identity arrow. Then
% and 2 are equivalent. The unique functor from % to 2 has two pseudo-
inverses, each taking the unique object of & to one of the two isomorphic
objects of €.

We give the details for one of these. Let F': € — 2 be the functor that
takes A and B to E and G : Z — € the functor that takes E to A. The
family required by E-2 consists of ug = id4 and up = j. That required by
E-3 consists of idg. We have for example

G(F(i)) = G(idg) =idg = joioida =ugeious !
The other equations required by E-2 and E-3 are similar or easier.

3.4.4 Theorem Let F:% — 2 be an equivalence of categories and G :
9 — € a pseudo-inverse to F'. Then F and G are full and faithful.

Proof. Actually, something more is true: if F' and G are functors for which
E-2 is true, then F is faithful. For suppose f, f': C — C’ in ¢ and F(f) =
F(f") in 2. Then G(F(f)) = G(F(f’)) in €, so that

f=ugr e G(E(f)) e uc = ugi » GF(f")) e uc = '

Thus F is faithful. A symmetric argument shows that if E-3 is true then G
is faithful.

Now suppose F' : € — Z is an equivalence of categoriesand G : 4 — €
is a pseudo-inverse to F'. We now know that F' and G are faithful. To show
that F is full, suppose that g : F(C) — F(C’) in 2. We must find f : C
— C” in € for which F(f) = g. Let f = ug © G(g) ° uc. Then a calculation
using E-2 shows that G(F(f)) = G(g). Since G is faithful, F(f) = g. O

Proposition [3.3.10] implies that an equivalence of categories does not take
nonisomorphic objects to isomorphic ones.

An alternative definition of equivalence sometimes given in the literature
uses the concept of representative functor. A functor F': € — & is repre-
sentative if every object of & is isomorphic to an object in the image of
F. (Thus a subcategory is representative in the sense of Definition if
the inclusion functor is representative.) Then a functor F' : € — Z is an
equivalence if it is full, faithful, and representative. This definition can be
proved equivalent to ours. The proof requires the axiom of choice.

3.4.5 Inequivalence For any property P of a category that can be de-
fined in terms of composition and identities, if ¥ and & are equivalent cate-
gories, then either they both have property P or neither of them does. This
is an imprecise statement; in particular, a property preserved by equiva-
lence can require that two arrows be the same but it cannot require that
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two objects be the same. A formal language that expresses the properties
preserved by equivalence is given by Freyd and Scedrov [1990], sections 1.39—
1.3(10). See also [Bergman and Berman, 1998].

This observation provides a way to show that two categories are not
equivalent. For example, Set and Mon are not equivalent because there is
no arrow in Set from the terminal object to the initial object, but in Mon the
initial and terminal objects are isomorphic. Similarly Set and the category
of posets and monotone functions are not equivalent because there are only
two nonisomorphic sets that have only one automorphism (the empty set
and a singleton set), but there are many nonisomorphic posets that have
only one automorphism, for example any two totally ordered finite posets of
different cardinality.

3.4.6 Example The category Fin, of finite sets and functions between
them, is equivalent to the opposite of the category of finite Boolean algebras
and homomorphisms between them. We sketch the construction here, omit-
ting the many necessary verifications. (Boolean algebras are defined in m)
A homomorphism h : B — B’ is a monotone function which preserves meets,
joins, T, 1 and complements (these requirements are redundant).

Let FBool denote the category of finite Boolean algebras and homo-
morphisms. Let F': Fin°® — FBool take a finite set to its powerset, which
is a Boolean algebra with inclusion for the ordering. If f : S — T is a func-
tion, F(f) : T — S takes a subset of T to its inverse image under f;
this function F'(f) is a homomorphism of Boolean algebras.

To construct the pseudo-inverse, we need a definition. An atom in a
finite Boolean algebra B is an element a for which there are no elements
b € B such that L < b < a. It is a fact that any element b € B is the join of
the set of atoms beneath it (this may be false in infinite Boolean algebras).
It is also true that if h : B — B’ is a homomorphism of Boolean algebras
and A is the set of atoms of B, then the join of all the elements h(a) for
a€ Ais T in B, and for any two atoms aj, ag of B, h(ai) A h(az) = L. It
follows from this that if b’ is an atom of B’, then there is a unique atom a
of B for which & < h(a).

Now define a functor G : FBool°® — Fin as follows. Let B be a finite
Boolean algebra. Then G(B) is the set of atoms of B. If h: B — B’ is a
homomorphism, then G(h) : G(B") — G(B) takes an atom o’ of B’ to the
unique atom a of B for which a’ < h(a). This makes G a functor.

3.4.7 Proposition The functor F is an equivalence with pseudo-inverse

G.

The component of the required natural isomorphism from a finite set S
to G(F(S5)) takes an element x € S to the singleton {x}. The component of
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the natural isomorphism from a finite Boolean algebra B to F'(G(B)) (the
latter is the set of all subsets of all the atoms of B) takes an element b € B
to the set of atoms under b. We omit the details.

3.4.8 Exercises

1. Prove that a functor which is an isomorphism in Cat is an equivalence.

2]L Let Pfn denote the category of sets and partial functions defined in
Let Pts denote the category whose objects are sets with a distinguished ele-
ment (called pointed sets) and whose arrows are functions which preserve
the distinguished element. In other words, if S is a set with distinguished
element s and T is a set with distinguished element ¢, then an arrow of Pts
is a function f:S — T for which f(s) = ¢. Show that Pfn and Pts are
equivalent categories. (Hint: The functor from Pfn adds a new element to
each set and completes each partial function to a total function by assigning
the new element to each element where it was formerly undefined. The func-
tor in the other direction takes a pointed set to the set without the point
and if a function has the distinguished point as a value for some input, it
becomes undefined at that input.)

3. Show that the category of preordered sets and increasing maps is equiva-
lent to the full category of those small categories with the property that
Hom(A, B) never has more than one element.

af (For the reader conversant with vector spaces and linear mappings.) Let
Z denote the category of finite dimensional vector spaces and linear maps.
Let .# be the category whose objects are the natural numbers, and for which
an arrow M : m — n is an n X m matrix. When n =0 or m = 0 or both,
there is just one arrow called 0. Composition is matrix multiplication. Any
composite involving 0 gives the 0 arrow. Show that .Z and .# are equivalent
categories.

5. a. Prove that the functor C' : Mon — Ooc constructed in [3.4.1] is an
equivalence of categories.
b. Prove directly, without using Theorem that it is full and faithful.

3.5 Quotient categories

A quotient of a category by a congruence relation on the arrows is very
similar to the concept of the quotient of a monoid by a congruence relation.
We will describe the construction from scratch; you need not know about
congruence relations to understand it. The construction we describe is not
the most general possible: it merges arrows, but not objects.
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The constructions of this section are used in and in the chapters
on sketches.

3.5.1 Definition An equivalence relation ~ on the arrows of a category
% is a congruence relation if:

CR-1 Whenever f ~ g, then f and g have the same domain and the same
codomain.
CR-2 In this setting,
f
Alyp=c*p
g

if f~g, then foh~gohandkof~kog.

We denote the congruence class containing the arrow f by [f].

3.5.2 Definition Let ~ be a congruence relation on the arrows of @. De-
fine the quotient category %/~ as follows.

QC-1 The objects of €/~ are the objects of €.

QC—-2 The arrows of ¢/~ are the congruence classes of arrows of ¢

QC3 If f:A— Bin %, then [f]: A— Bin ¢/~.

QCA4 If f:A— Bandg: B— Cin %, then [g][f]=[g°f]: A—C
in ¢/~.

It follows from Exercise [1| that QC—4 is well defined and that the result
is indeed a category.

3.5.3 Definition Let %/~ be the quotient of a category € by a congru-
ence relation ~. Define Q : € — €/~ by QA = A for an object A and
Qf = [f] for an arrow f of €.

It is immediate from QC—4 that @ is a functor.

3.5.4 Proposition Let ~ be a congruence relation on a category €. Let
F : € — 2 be any functor with the property that if f ~ g then F(f) = F(g).
Then there is a unique functor Fy : €/~ — P for which Fy-Q = F.

The proposition says that every way of passing from % to some other
category which merges congruent arrows factors through ¢ uniquely. This
can be perceived in another way: ¢/~ is the category constructed from %
by making the fewest identifications consistent with forcing two congruent
arrows in 4 to be the same arrow.
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3.5.5 Factorization of functors Every functor factors through a faith-
ful one in the following precise sense. Let F' : € — 2 be a functor. The
relation ~ induced by F on arrows of % is defined by requiring that
f ~ g if and only if f and ¢ have the same domain and codomain and

E(f) = F(g)-

3.5.6 Proposition The relation ~ induced by F' is a congruence relation
on €, and the functor Fy : €/~ — 2 induced by Proposition is faith-
ful.

The proof is contained in Exercise [4] below.

A faithful set-valued functor (see [3.3.2) is one for which two different
arrows act differently on at least one state. In the special case of monoid
actions this is precisely the definition of ‘faithful’ used in the literature (not
a coincidence), and the preceding proposition is a well-known fact about
monoid actions.

3.5.7 The intersection of any set of congruence relations on a category is
also a congruence relation (Exercise [2)). This means that if « is any relation
on % with the property that if fag then f and g have the same domain
and the same codomain, then there is a unique smallest congruence relation
generated by .

Thus in particular given two arrows f: A — B and g: A — B in a
category €, there is a quotient category by the congruence relation generated
by requiring that f = g. This is called imposing the relation f = g. Two
arrows in % are merged in the quotient category if requiring that f = g
forces them to be merged.

3.5.8 The category of a programming language We described in[2.2.6]
the category C(L) corresponding to a simple functional programming lan-
guage L defined there. We can now say precisely what C'(L) is.

The definition of L in gives the primitive types and operations of
the language. The types are the nodes and the operations are the arrows of
a graph. This graph generates a free category F(L), and the equations im-
posed in[2.2.5(ii) and (iv) (each of which says that two arrows of C'(L) must
be equal) generate a congruence relation as just described. The resulting
quotient category is precisely C'(L).

When one adds constructors such as record types to the language, the
quotient construction is no longer enough. Then it must be done using

sketches. The construction just given is in fact a special case of a model
of a sketch (see Section [4.6)).
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3.5.9 Functorial semantics Functors provide a way to give a meaning
to the constructs of the language L just mentioned. This is done by giving
a functor from C(L) to some category suitable for programming language
semantics, such as those discussed in

We illustrate this idea here using a functor to Set as the semantics for
the language described in [2:2.5] Set is for many reasons unsuitable for pro-
gramming language semantics, but it is the natural category for expressing
our intuitive understanding of what programming language constructs mean.

Following the discussion in[2.2.5] we define a semantics functor X : C(L)
— Set. To do this, first we define a function F' on the primitive types and
operations of the language.

(i) F(NAT) is the set of natural numbers. The constant 0 is the number 0
and F(succ) is the function which adds 1.

(ii) F(BOOLEAN) is the set {true,false}. The constants true and false
are the elements of the same name, and F(—) is the function which
switches true and false.

(iii) F(CHAR) is the set of 128 ASCII symbols, and each symbol is a con-
stant.

(iv) F(ord) takes a character to its ASCII value, and F'(chr) takes a num-
ber n to the character with ASCII code n modulo 128.

Let F'(L) be the free category generated by the graph of types and opera-
tions, as in By Proposition there is a functor F' : F(L) — Set
which has the effect of ' on the primitive types and operations.

This functor F has the property required by Proposition that if ~
is the congruence relation on F(L) generated by the equations of [2.2.5((ii)
and (iv), then f ~ g implies that F(f) = F(g) (Exercise. This means that
there is a functor ¥ : C(L) — Set (called Fy in Proposition with the
property that if = is any primitive type or operation, then Y (z) = F(z).

The fact that ¥ is a functor means that it preserves the meaning of
programs; for example the program (path of arrows) chr » succ  ord ought
to produce the next character in order, and in fact

Y(chr ° succ °© ord)

does just that, as you can check. Thus it is reasonable to refer to ¥ as a
possible semantics of the language L.

We will return to this example in Section The construction of
C(L) and ¥ are instances of the construction of the theory of a sketch in
Section
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3.5.10 Exercises

1. Show that an equivalence relation ~ satisfying CR-1 is a congruence
relation if and only if, for all arrows fi, f2, g1, g2 as in this diagram,

PR
f2 g2

if fi ~ f2 and g1 ~ g2, then g1 ° f1 ~ g2 © fa.

2. Show that the intersection of congruence relations is a congruence rela-
tion.

3. Show that the quotient functor in is full. (Warning: This exercise
would be incorrect if we allowed the more general definition of quotient,
which allows merging objects as well as arrows.)

4. Let F': € — 2 be a functor.

a. Show that the relation ~ induced by F' (defined in is a congruence
relation.

b. Show that the induced functor Fy : €/~ — & is faithful.

c. Conclude from this and the preceding exercise that every functor F' : €
— 9 factors as a full functor followed by a faithful functor.

5. Let F and ~ be defined as inm Prove that f ~ g implies that ﬁ(f) =
F(g).

6. Let M be a monoid. A congruence on M is an equivalence relation ~
with the property that it is a congruence relation for the category C(M)
determined by M.

a. Show that an equivalence relation ~ on M is a congruence relation if
and only if for all elements m, n, n’ of M, if n ~ n’ then mn ~ mn’ and
nm ~ n'm.

b. Let K be the subset {(m,n) | m ~ n} of the monoid M x M. Show
that K is a submonoid of M x M if and only if ~ is a congruence relation.
(M x M is the monoid whose elements are all ordered pairs of elements of
M with multiplication (m,n)(m/,n") = (mm’,nn’).)
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Diagrams, naturality
and sketches

Commutative diagrams are the categorist’s way of expressing equations. Nat-
ural transformations are maps between functors; one way to think of them is
as a deformation of one construction (construed as a functor) into another.
A sketch is a graph with imposed commutativity and other conditions; it is
a way of expressing structure. Models of the structure are given by functors,
and homomorphisms between them by natural transformations.

All this will become clearer as the chapter is read. It turns out that the
concepts just mentioned are all very closely related to each other. Indeed,
there is a sense in which diagrams, functors and models of sketches are all
different aspects of the same idea: they are all types of graph homomorphisms
in which some or all of the graphs are categories.

The first three sections introduce diagrams, commutative diagrams and
natural transformations, three basic ideas in category theory. These concepts
are used heavily in the rest of the book. Section [4.4] gives the Godement rules.
These form the basis of the algebra of functors and natural transformations,
which is studied in more abstract form in Section [4.8l

Section introduces the concepts of representable functor, the Yoneda
embedding and universal elements. Working through the details of this pre-
sentation is an excellent way of learning to work with natural transforma-
tions.

We also recommend studying the introduction to linear sketches and lin-
ear sketches with constants in Sections and as an excellent way to
familiarize yourself with both commutative diagrams and natural transfor-
mations. However, these two sections may be skipped unless you are going
to read Chapters[7] or

Section [4.§]introduces 2-categories, a notion of category that allows map-
pings between arrows (called 2-cells) that has been found useful to model
program refinement, among other things. This section is not used in the rest
of the book.

93
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4.1 Diagrams
We begin with diagrams in a graph and discuss commutativity later.

4.1.1 Definition Let .# and ¢ be graphs. A diagram in ¢4 of shape .#
is & homomorphism D : . — ¢ of graphs. .7 is called the shape graph of
the diagram D.

We have thus given a new name to a concept which was already defined
(not uncommon in mathematics). A diagram is a graph homomorphism from
a different point of view.

4.1.2 Example At first glance, Definition may seem to have little
to do with what are informally called diagrams, for example
/ B

N, (4.1)
c

The connection is this: a diagram in the sense of Definition is pic-
tured on the page with a drawing of nodes and arrows as for example in
Diagram (4.1]), which could be the picture of a diagram D with shape graph

A

4 j
w\ /v (4.2)
k

2eﬁned by D(i) = A, D(j) = B, D(k) =C, D(u) = f, D(v) = g and D(w) =

?

4.1.3 Example Here is an example illustrating some subtleties involving
the concept of diagram. Let ¢ be a graph with objects A, B and C' (and
maybe others) and arrows f: A — B, g: B — C and h: B — B. Consider
these two diagrams, where here we use the word ‘diagram’ informally:

I g9 ¢ A

(a) (b)

These are clearly of different shapes (again using the word ‘shape’ infor-
mally). But the diagram

A / h (4.4)

A B (4.3)
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is the same shape as (4.3))(a) even though as a graph it is the same as (4.3))(b).
To capture the difference thus illustrated between a graph and a diagram,
we introduce two shape graphs

w O

2 (4.5)

4 I

(where, as will be customary, we use numbers for the nodes of shape graphs).
Now diagram ([(4.3) (a) is seen to be the diagram D : .¢ — & with D(1) = 4,
D(2) = B, D(3) = C, D(u) = f and D(v) = g; whereas diagram (4.3))(b) is
E: J — 9 with E(1) = A, E(2) = B, E(u) = f and E(w) = h. Moreover,
Diagram is just like D (has the same shape), except that v goes to h
and 3 goes to B.

4.1.4 Our definition in of a diagram as a graph homomorphism, with
the domain graph being the shape, captures both the following ideas:

(i) A diagram can have repeated labels on its nodes and (although the
examples did not show it) on its arrows, and

(i) Two diagrams can have the same labels on their nodes and arrows
but be of different shapes: Diagrams (4.3)(b) and (4.4) are different
diagrams because they have different shapes.

4.1.5 Commutative diagrams When the target graph of a diagram is
the underlying graph of a category some new possibilities arise, in partic-
ular the concept of commutative diagram, which is the categorist’s way of
expressing equations.

In this situation, we will not distinguish in notation between the category
and its underlying graph: if .# is a graph and % is a category we will refer
to a diagram D : .4 — F.

We say that D is commutative (or commutes) provided for any nodes
i and j of £ and any two paths

S9 Sn—1

ki ———ky—> o ——>kpo ——— kn1
81/ \sn
i J (4.6)
11\ St
h———lp— o — o ——— 1

to

tm—l
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from ¢ to j in Z, the two paths

Ds,,_
Dklﬂpkza...al)kmz Sn—1

Dsl/ \Dsn
Ds Dy (4.7)

1
Dty 7\ /Dty

Diy Dty Dly — -+ — Dlp,—2 Dl

compose to the same arrow in ¢. This means that
DSnODSn,1 ° ... DDSl :DtmODtm,1 0...0Dt1

4.1.6 Much ado about nothing There is one subtlety to the definition
of commutative diagram: what happens if one of the numbers m or n in
Diagram should happen to be 07 If, say, m = 0, then we interpret the
above equation to be meaningful only if the nodes i and j are the same (you
go nowhere on an empty path) and the meaning in this case is that

Dsn ° DSn_l °...0° D81 = idDi

(you do nothing on an empty path). In particular, a diagram D based on
the graph
O°

7

commutes if and only if D(e) is the identity arrow from D(i) to D(7).
Note, and note well, that both shape graphs

have models that one might think to represent by the diagram
Of
A

but the diagram based on (a) commutes if and only if f = id4, while the
diagram based on (b) commutes automatically (no two nodes have more
than one path between them so the commutativity condition is vacuous).
We will always picture diagrams so that distinct nodes of the shape
graph are represented by distinct (but possibly identically labeled) nodes in
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the picture. Thus a diagram based on (b) in which d goes to f and ¢ and j
both go to A will be pictured as

RNy

In consequence, one can always deduce the shape graph of a diagram from
the way it is pictured, except of course for the actual names of the nodes
and arrows of the shape graph.

4.1.7 Examples of commutative diagrams — and others The proto-
typical commutative diagram is the triangle

A

L
h\ /g (4.8)
C

that commutes if and only if A is the composite g o f. The reason this is
prototypical is that any commutative diagram — unless it involves an empty
path — can be replaced by a set of commutative triangles. This fact is easy to
show and not particularly enlightening, so we are content to give an example.
The diagram

A—" .p
f g (4.9)
C 3 D
commutes if and only if the two diagrams
A A—"l .p
f geh kof g (4.10)
C D D

k
commute (in fact if and only if either one does).

4.1.8 Example An arrow f: A — B is an isomorphism with inverse g :
B — A if and only if
f

g

A B (4.11)
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commutes. The reason for this is that for this diagram to commute, the two
paths () and (g, f) from A to A must compose to the same value in the
diagram, which means that g o f = id4. A similar observation shows that
f o g must be idpg.

4.1.9 Graph homomorphisms by commutative diagrams The defi-
nition of graph homomorphism in [1.4.1] can be expressed by a commutative
diagram. Let ¢ = (¢, ¢1) be a graph homomorphism from ¥ to . For
any arrow u :m — n in ¢, requires that ¢i(u) : ¢o(m) — ¢o(n) in
. This says that ¢g(source(u)) = source(¢1(u)), and a similar statement
about targets. In other words, these diagrams must commute:

a ¢ H, e P1 o
source source target target
Go %o Hy Go %o Hy

(4.12)

In these two diagrams the two arrows labeled ‘source’ are of course different
functions; one is the source function for ¢ and the other for J#. A similar
remark is true of ‘target’.

4.1.10 This point of view provides a pictorial proof that the composite of
two graph homomorphisms is a graph homomorphism (see . Ifo:9
— ¢ and ¢ : I — # are graph homomorphisms, then to see that 1 o ¢
is a graph homomorphism requires checking that the outside rectangle below
commutes, and similarly with target in place of source:

e $1 H Y1 K
source source source (4.13)

G ~ H > K

" go 0" 4o 0

The outside rectangle commutes because the two squares commute. This can
be checked by tracing (mentally or with a finger or pointer) the paths from
G1 to Ky to verify that

source o 91 o g1 = g ° source o ¢ (4.14)
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because the right square commutes, and that
o ° source o g1 = Py ° Pg ° source (4.15)

because the left square commutes. The verification process just described
is called ‘chasing the diagram’. Of course, one can verify the required fact
by writing the equations (4.14) and down, but those equations hide
the source and target information given in Diagram and thus provide
a possibility of writing an impossible composite down. For many people,
Diagram is much easier to remember than equations (4.14)) and (4.15]).
However, diagrams are more than informal aids; they are formally-defined
mathematical objects just like automata and categories.

The proof in[2.6.10| that the composition of arrows in a slice gives another
arrow in the category can be represented by a similar diagram:

ol or Mo

|
N
y
A

These examples are instances of pasting commutative diagrams together to

get bigger ones. (See [4.8.16})

4.1.11 Associativity by commutative diagrams The fact that the mul-
tiplication in a monoid or semigroup is associative can be expressed as the
assertion that a certain diagram in Set commutes.

Let S be a semigroup. Define the following functions, using the cartesian
product notation for functions of

(i) mult: S x S — S satisfies mult(z,y) = zy.
(ii) S xmult: S x S xS — S xS satisfies

(S x mult)(z,y,2) = (x,yz)
(iii) mult xS : S x S xS — S xS satisfies
(mult xS)(z,y, 2) = (zy, )
That the following diagram commutes is exactly the associative law.

Sx§x g Sxmult o o

mult x.S mult (4.16)

S xS — S
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4.1.12 Normally, associativity is expressed by the equation z(yz) = (zy)z
for all x,y, z in the semigroup. The commutative diagram expresses this same
fact without the use of variables. Of course, we did use variables in defining
the functions involved, but we remedy that deficiency in Chapter [5] when we
give a categorical definition of products.

Another advantage of using diagrams to express equations is that dia-
grams show the source and target of the functions involved. This is not par-
ticularly compelling here but in other situations the two-dimensional picture
of the compositions involved makes it much easier to follow the discussion.

4.1.13 In[3.5.7] we described how to force two arrows in a category % to
be the same by going to a quotient category. More generally, you can make
any set 2 of diagrams in ¥ commute, by imposing all the relations of the
form

DSnODSn_l oL, 0D81 NDtmODtm_l 0...0Dt1

where
Ds,,_
Dky 2520 Dy — -+ Dl 22 D,
DSl/ \Dsn
D1 Dj (4.17)

1
D1\ /Dty

— oo — Dlippy Dl —
Dl1 DtQ Dlz lm 2 Dtm—l lm 1

are two paths in any diagram D € 2. As before, if one of these paths is the
empty path the other must be an identity arrow in order for the diagram to
commute.

4.1.14 Diagrams as functors In much of the categorical literature, a
diagram in a category % is a functor D : & — % where & is a category. Be-
cause of Proposition [3.1.15] a graph homomorphism into a category extends
uniquely to a functor based on the free category generated by the graph, so
that diagrams in our sense generate diagrams in the functorial sense. On the
other hand, any functor is a graph homomorphism on the underlying graph
of its domain (although not conversely!), so that every diagram in the sense
of functor is a diagram in the sense of graph homomorphism.
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4.1.15 Exercises

1. Draw a commutative diagram expressing the fact that an arrow f: A
— B factors through an arrow g : C' — B. (See )

2. Draw a commutative diagram to express the fact that addition of real
numbers is commutative.

3. Draw commutative diagrams expressing the equations occurring in the
definition of the sample functional programming language in [2.2.5

4. Express the definition of functor using commutative diagrams.

roj TOj
%, comp @ % Proj; % Projo %
Fy Fy Fy Iy Fy
72 —comp A g 2 gy,

all commute.

4.2 Natural transformations

4.2.1 Unary operations In Section we saw that diagrams in a cat-
egory are graph homomorphisms to the category from a different point of
view. Now we introduce a third way to look at graph homomorphisms to a
category, namely as models. To give an example, we need a definition.

4.2.2 Definition A unary operation on a set S is a functionu : § — S.

This definition is by analogy with the concept of binary operation on a
set. A set with a unary operation is a (very simple) algebraic structure, which
we call a u-structure. If the set is S and the operation is f: 5 — S, we
say that (S, f) is a u-structure, meaning (5, f) denotes a u-structure whose
underlying set is S, and whose unary operation is f. This uses positional
notation in much the same way as procedures in many computer languages:
the first entry in the expression ‘(S, f)’ is the name of the underlying set of
the u-structure and the second entry is the name of its operation.
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4.2.3 A homomorphism of u-structures should be a function which pre-
serves the structure. There is really only one definition that is reasonable for
this idea: if (S,u) and (7, v) are u-structures, f : S — T is a homomorph-
ism of u-structures if f(u(s)) = v(f(s)) for all s € S. Thus this diagram
must commute:

u v (4.18)

It is not difficult to show that the composite of two homomorphisms of u-
structures is another one, and that the identity map is a homomorphism, so
that u-structures and homomorphisms form a category.

4.2.4 Models of graphs We now use the concept of u-structure to mo-
tivate the third way of looking at graph homomorphisms to a category.

4.2.5 Let % be the graph with one node up and one arrow e:

me
Uuo

Let us define a graph homomorphism D : % — Set as follows: D(ug) = R
and D(e) = z +— 2. Now (R,z + x?) is a u-structure, and the notation we
have introduced in tells us that we have chosen R to be its underlying
set and = — 2 to be its unary operation. Except for the arbitrary names ‘“ug’
and ‘e’, the graph homomorphism D communicates the same information:
‘R is the particular set chosen to be the value of ug, and = — 22 is the
particular function chosen to be the value of e.’

In this sense, a u-structure is essentially the same thing as a diagram
in Set of shape %: a u-structure ‘models’ the graph %/. This suggests the
following definition.

4.2.6 Definition A model M of a graph ¢ is a graph homomorphism
M : 9 — Set.

We will see how to define a monoid as a model involving a graph homo-
morphism (and other ingredients) in Chapter 71 We had to introduce u-
structures here to have an example for which we had the requisite techniques.
The technique we are missing is the concept of product in a category, which
allows the definition of operations of arity (see Definition greater than
one.
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Both category theory and mathematical logic have concepts of ‘model’. Both are
formalisms attempting to make precise the relationship between the (formal)
description of a mathematical structure and the structure itself. In logic, the
precise description (the syntax) is given by a logical theory; in category theory
by sketches or by categories regarded as theories. Good introductions to various
aspects of categorical logic and model theory are given by [Makkai and Reyes,
1977|, [Lambek and Scott, 1986, [Makkai and Paré, 1990] and [Addmek and
Rosicky, 1994].

4.2.7 Example As another example, consider this graph (see [1.3.9):

source
a———=n (4.19)
target

A model M of this graph consists of sets Go = M (n) and G; = M (a) together
with functions source = M (source) : G1 — Gy and target = M (target) : G,
— Gy. To understand what this structure is, imagine a picture in which there
is a dot corresponding to each element of Gy and an arrow corresponding
to each element a € G; which goes from the dot corresponding to source(a)
to the one corresponding to target(a). It should be clear that the picture so
described is a graph and thus the graph is a graph whose models are
graphs!

This definition makes the semantics of [L3.9 into a mathematical con-
struction.

4.2.8 Models in arbitrary categories The concept of model can be
generalized to arbitrary categories: if € is any category, a model of ¢ in ¥
is a graph homomorphism from ¥ to %. For example, a model of the graph
for u-structures in the category of posets and monotone maps is a poset and
a monotone map from the poset to itself.

In this book, the bare word ‘model” always means a model in Set.

4.2.9 Natural transformations between models of a graph In a cat-
egory, there is a natural notion of an arrow from one model of a graph to
another. This usually turns out to coincide with the standard definition of
homomorphism for that kind of structure.

4.2.10 Definition Let D, F : ¥ — % be two models of the same graph
in a category. A natural transformation « : D — FE is given by a family
of arrows aa of ¥ indexed by the nodes of ¢4 such that:

NT-1 aa: Da — FEa for each node a of 4.
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NT-2 For any arrow s :a — b in ¢, the diagram

Da —2%+ Eq
Ds Es (4.20)
Db " Eb

commutes.

The commutativity of the diagram in NT-2 is referred to as the natu-
rality condition on «. The arrow aa for an object a is the component of
the natural transformation « at a.

Note that you talk about a natural transformation from D to E only
if D and FE have the same domain (here ¢) as well as the same codomain
(here €) and if, moreover, the codomain is a category. In this situation, it
is often convenient to write « : D — E: ¥4 — F.

4.2.11 Definition Let D, F and F' be models of ¥ in ¢, and o : D — F
and 8 : F — F natural transformations. The composite o a: D — F'is
defined componentwise: (5 ° a)a = fa ° aa.

4.2.12 Proposition The composite of two natural transformations is also
a natural transformation.

Proof. The diagram that has to be shown commutative is the outer rectangle
of

Da—*%—~ Eaq ba Fa
Ds Es F's (4.21)
Db b Eb B Fb

for each arrow s :a — b in 4. The rectangle commutes because the two
squares do; the squares commute as a consequence of the naturality of «
and S. 0

It is interesting that categorists began using modes of reasoning like that in the
preceding proof because objects of categories generally lacked elements; now
one appreciates them for their own sake because they allow element-free (and
thus variable-free) arguments.
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4.2.13 It is even easier to show that there is an identity natural transfor-
mation between any model D and itself, defined by (idp)a = idp,. We then
have the following proposition, whose proof is straightforward.

4.2.14 Proposition The models of a given graph & in a given category €,
and the natural transformations between them, form a category. We denote

this category by Mod(¥,%).

4.2.15 Example The natural transformations between models in Set of
the u-structure graph % defined in [4.2.5] are exactly the homomorphisms of
u-structures defined in The graph described in has one object ug
and one arrow e, so that a natural transformation from a model D to a model
E has only one component which is a function from D(ug) to E(up). If we
set S = D(ug), u = D(e), T = E(ug), v = FE(e), and we define auy = f, this
is the single component of a natural transformation from D to E. Condition
NT-2in coincides in this case with the diagram in[4.2.3} the naturality
condition is the same as the definition of homomorphism of u-structures. It

follows that the category of u-structures and homomorphisms is essentially
Mod(% ,Set).

4.2.16 Example A homomorphism of graphs is a natural transformation
between models of the graph

source
a—”——=n
target

The two graphs in Diagram (4.12)) are the two necessary instances (one for
the source and the other for the target) of Diagram . In a similar way,
Diagram , used to show that the composite of two natural transforma-
tions is a natural transformation, reduces in this case to the commutativity
of Diagram : specifically, the only possibilities (other than those in
which s is an identity arrow) for a and b in Diagram are a = a and
b = n, giving two diagrams shaped like Diagram , one for s = source
(that is Diagram (4.13)) and the other for s = target.

4.2.17 Example A model of the graph
04 (4.22)

in an arbitrary category % is essentially the same as an arrow in & (see[4.2.22
below). A natural transformation from the model represented by the arrow
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f : A — B to the one represented by g : C — D is a pair of arrows h : A
— C and k : B — D making a commutative diagram:

f g (4.23)

The component at 0 is h and the component at 1 is k. The category of models
in € is called the arrow category of € it is often denoted €.

4.2.18 Natural isomorphisms A natural transformation o : I — G :
9 — 9 is called a natural isomorphism if there is a natural transfor-
mation 8 : G — F which is an inverse to « in the category Mod(¥, 2).
Natural isomorphisms are often called natural equivalences.

4.2.19 Example The arrow (h,k) : f — g in the arrow category of a
category %, as shown in , is a natural isomorphism if and only if A and
k are both isomorphisms in %. This is a special case of an important fact
about natural isomorphisms, which we now state.

4.2.20 Theorem Suppose F': 9 — 2 and G : 9 — 2 are models of 4
in 2 and o : F — G is a natural transformation of models. Then a is a
natural isomorphism if and only if for each node a of 4, aa : F(a) — G(a)
is an isomorphism of 9.

Proof. Suppose a has an inverse 5 : G — F in Mod(¥, Z). Then for any
node a, by Definition [4.2.11] Definition [4.2.13] and the definition of inverse,

aa e fa = (a° f)a=idga =idg)

and
Bacaa=(B°a)a=idra =idp(q)

which means that the arrow Sa is the inverse of the arrow «a, so that aa is
an isomorphism in Z as required.

Conversely, suppose that for each node a of ¢, aa : F(a) — G(a) is an
isomorphism of 2. The component of the inverse 8 at a node a is defined
by letting Ba = (ca)~!. This is the only possible definition, but it must be
shown to be natural. Let f : a — b be an arrow of the domain of F' and G.
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Then we have
Ffo (owb)_1 = (ozb)_1 o (ab)o Ffo (aa)_l

(Ozb)*1 o Gf o (aa)-e (aa)*1
(ab)~! - Gf

which says that 3 is natural. The second equality uses the naturality of a. O

4.2.21 Monic natural transformations Let o : F' — G be a natural
transformation between models of 4 in Z. Suppose each component of « is
a monomorphism in Z. Then it is easy to prove that a is a monomorphism
in Mod(¥, 2).

However, in contrast to Theorem the converse need not be true.
As an example (thanks to Andrew Richardson), let & be the subcategory of
Set consisting of

(a) Objects: {1}, {1,2}, {1,2,3} and {1,2,4}.
(b) Arrows:
(i) The identity functions.
(i) ¢g:{1,2} — {1}, h:{1,2,3} — {1} and k: {1,2,4} — {1} the
only possible functions.
(iii) f:4{1,2,3} — {1,2} and w:{1,2,4} — {1,2} the constant
functions with value 1.
(iv) v:{1,2,4} — {1,2} the constant function with value 2.

(c) Composition of set functions as composition.

The category can be pictured like this:
f id{l} (4.24)

{124} == {12 ——~ {1}

The square commutes, so (h,g) : f — idyy is an arrow in 2. Moreover,
(h,g) is monic in 2 (because the only natural transformation with codo-
main f is (id 2,3y,idsq,9y)) but its component g is not monic in & because
g ou = g o V.
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4.2.22 ‘Essentially the same’ In[4.2.17] we said that a model in an ar-
bitrary category % of the graph @ is ‘essentially the same’ as an arrow
in €. This is common terminology and usually refers implicitly to an equiva-
lence of categories. We spell it out in this case.

Let us say that for a category 4, ¢ is the category whose objects are
the arrows of ¢ and for which an arrow from f to g is a pair (h, k) making
Diagram commute.

A model M of the graph in a category € specifies the objects
M(0) and M (1) and the arrow M (u). M (u) has domain M (0) and codomain
M(1). But the domain and codomain of an arrow in a category are uniquely
determined by the arrow. So that the only necessary information is which
arrow M (u) is.

Now we can define a functor F': €77 — %’. On objects it take M
to M(u). The remarks in the preceding paragraph show that this map on
objects is bijective. If M (u) = f and N(u) = g, an arrow from M to N in
%7 and an arrow from f to g in ¥’ are the same thing — a pair (h, k)
making Diagram commute. So we say F is the identity on arrows. It
is straightforward to see that F' is actually an isomorphism of categories.
Exercise [4] below gives another example of this phenomenon.

In most texts, the arrow category € is defined the way we defined %”.

When being very careful, one would say as above that a model in % of the
graph is essentially the same as an arrow in ¢, and that a u-structure is
essentially the same as a model of % (as in[4.2.15)). Frequently, one says more
bluntly that a model of in € is an arrow in € and that a u-structure
is a model of % (and ‘is an N-set’ — see Exercise . This usage is perhaps
based on the conception that the description ‘model of in ¥’ and ‘arrow
in €’ are two ways of describing the same mathematical object, which exists
independently of any particular description. Not all mathematicians share this
conception of mathematical objects.

4.2.23 Exercises

1. What is the model of (4.2.7) that is the graph (4.2.7)?

2. Let N denote the monoid of nonnegative integers with addition as oper-
ation. Give explicit isomorphisms between these categories:

(i) The category u-Struc of u-structures and homomorphisms, as defined
in[4.2.3
(i) Mod(% ,Set), defined in |4.2.5{ and 4.2.14]
(iii)) N-Act, as defined in
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3. Let € be a category with object B. Exhibit the slice category €/B as a
subcategory of the arrow category of ¢ defined in [4.2.17] (see [2.6.10)). Is it
full?

4. Let ¢ be the graph with two nodes and no arrows, and % any category.
Show that Mod (¥, %) is isomorphic to € x €.

5. Prove directly, without using Theorem [4.2.20, that in Diagram (4.23), the
arrow (h, k) is an isomorphism in the arrow category of % if and only if h
and k are both isomorphisms in %.

6. Let € and Z be categories and F' : € — & an equivalence. Show that
every arrow of & is isomorphic in the arrow category of 2 to an arrow in
the image of F. (In this sense, an equivalence of categories is ‘surjective up

to isomorphism’ on both objects and arrows. See |3.4.2})

7. Let ¢ be a graph and € a category and let €~ be the arrow category
as in Show that there is a one-one correspondence between models of
4 in ¢~ and triples (E,a, F) where E and F are models of ¢ in € and
a: FE — F is a natural transformation between them. (More about this in
Exercise |8 of Section [4.3])

8. Suppose D, E : ¢ — € are two models of a graph in a category and
o : D — FE is a natural isomorphism. Suppose we let, for a a node of ¥,
Ba = (aa)~!. Show that the collection of 3a forms a natural transformation
(a natural isomorphism in fact) from E to D.

4.3 Natural transformations
between functors

A functor is among other things a graph homomorphism, so a natural trans-
formation between two functors is a natural transformation of the corre-
sponding graph homomorphisms. The following proposition is an immediate

consequence of [£.2.12]

4.3.1 Proposition If € and 2 are categories, the functors from € to 9
form a category with natural transformations as arrows.

We denote this category by Func(%, 7). Other common notations for
it are 2% and [¢, 2]. Tennent [1986] provides an exposition of the use of
functor categories for programming language semantics.

Of course, the graph homomorphisms from % to 2, which do not neces-
sarily preserve the composition of arrows in €, also form a category Mod (%, 2)
(see [4.2.14)), of which Func(%, 2) is a full subcategory.
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A natural transformation from one functor to another is a special case of
a natural transformation from one graph homomorphism to another, so the
ideas we have presented concerning natural transformations between graph
homomorphisms apply to natural transformations between functors as well.
In particular, Theorems[4.2.12|and [4.2.20] are true of natural transformations
of functors.

If € is not a small category (see [2.1.5]), then Func(%, 2) may not be locally
small (see 2.1.7). This is a rather esoteric question that will not concern us in
this book since we will have no occasion to form functor categories of that sort.

We motivated the concept of natural transformation by considering models of
graphs, and most of the discussion in the rest of this section concerns that point
of view. Historically, the concept first arose for functors and not from the point
of view of models.

4.3.2 Examples We have already described some examples of natural trans-
formations, as summed up in the following propositions.

In we defined the graph homomorphism n¥ : ¢ — U(F(9))
which includes a graph ¢ into U(F(¥)), the underlying graph of the free
category F(¥).

4.3.3 Proposition The family of arrows n9¢ form a natural transforma-
tion from the identity functor on Grf to U o F', where U is the underlying
graph functor from Cat to Grf.

The proof is left as an exercise.
In [3.4.2] we defined the concept of equivalence of categories.

4.3.4 Proposition A functor F': € — 2 is an equivalence of categories
with pseudo-inverse G : 9 — € if and only if G o F is naturally isomorphic
to idy and F o G is naturally isomorphic to idg.

Proof. Conditions E-2 and E-3 of [3.4.2] can be recast as the statement that
G(F(f)) o uc = ucr o f and that F(G(g)) e vp = vpr © g, in other words
that the following diagrams commute:

c ¢ G(F(C)) D 2. F(G(D))
f G(F(f)) g F(G(9))
C' —— G(F(C") D' —— F(G(D"))

Vp!
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In this form, they are the statements that u is a natural transformation from
idg to G o F and that v is a natural transformation from idgg — F o G. Since
each component of u and each component of v is an isomorphism, v and v
are natural equivalences. O

4.3.5 Example Let a: M xS — Sand §: M xT — T be two actions
by a monoid M (see . Let ¢ : S — T be an equivariant map. If F' and
G are the functors corresponding to « and 3, as defined in[3.2.3] then ¢ is the
(only) component of a natural transformation from F' to G. Conversely, the
only component of any natural transformation from F' to G is an equivariant
map between the corresponding actions.

4.3.6 Example Let U: Mon — Set be the underlying functor from the
category of monoids. Define U x U : Mon — Set as follows:

(i) For a monoid M, (U x U)(M) =U(M) x U(M).
(ii) For a monoid homomorphism h : M — N,

(U x U)(h)(m,n) = (h(m), h(n))

Then monoid multiplication is a natural transformation from U x U to U.
Formally: Let p : U x U — U be the family of maps whose value at a monoid
M is the function uM : U(M) x U(M) — U(M) defined by puM (m,m’) =
mm/, the product of m and m’ in M. Then p is a natural transformation.
(The function pM is not in general a monoid homomorphism, unless M is
commutative.)

It is instructive to see why g is a natural transformation. Let h : M — N
be a monoid homomorphism. We must show that the following diagram
commutes:

uM

(U xU)(M) U(M)
(U x U)(h) h (4.25)
(U xU)(N) N U(N)

The top route takes an element (m,m’) € (U x U)(M) to h(mm'). The lower
route takes it to h(m)h(m'). The commutativity of the diagram then follows
from the fact that h is a homomorphism.

4.3.7 Example The bijection of Exercise [4f of Section [L.2| can be seen to
be a natural isomorphism, this time between contravariant functors.

Let B be a fixed set. We define a functor R : Set°® — Set such that
for a set A, R(A) = Rel(A, B) as defined in the exercise. For a set function
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F: A" — A and relation a € Rel(A4, B), define R(F)(«) to be the relation
o' € Rel(A’, B) defined by a’a/b if and only if F'(a)ab. It is easy to see that
this makes R : Set°® — Set a functor. (Note that R(A) = Rel(4, B), but
R is not Homgei(—, B).)

For each A, let ¢4 : Rel(A, B) — Hom(A, #B) be the bijection of the
exercise. If we check that the functions ¢4 are the components of a natural
transformation from R to Hom(A, #B), the transformation will automati-
cally be a natural isomorphism by Theorem [£.2.20] To show that it is natural,
let & € Rel(A4, B) and o’ € A'. Then

Hom(F, #B) (pa(a)(d)) = pa(a) (F(d')) = {b| F(a')ab}
={b|d'd'b} = g (R(F)(a"))

as required.
This natural isomorphism can be taken to be the defining property of a

topos (Section [15.2.2)).

4.3.8 Natural transformations involving lists Many of the operations
on lists available in functional programming languages can be seen as natu-
ral transformations involving the Kleene closure or list functor . For
example, one can apply the Kleene closure twice to get the list of lists functor
that takes a set A to A*™. An element of A** is a list of lists. For example, if
A = {a, b}, one of the elements of A** is w = ((a,b), (b,b,a),(),(a)). If f: A
— B is a function, f** takes w to ((f(a), f()), (f(b), f(D), f(a)), (), (f(a))).

The operation of flattening a list simply concatenates the lists in the
list; for example, flatten(w) = (a, b, b, b, a,a). Of course, flatten is a distinct
function for each set A; if we write flatteny : A*™ — A* for each set A, then
flatten is a natural transformation from ** to *, as you can see by checking
that this diagram commutes for each function f: A — B:

e flatten 4 4

o I (4.26)

kk > *
B flattenp B

Another operation in functional programming languages consists of applying
a binary operation to a list. This is called reduce, apply or fold. We shall
consider only the case when the binary operation is associative. (When it
is not associative, some choice is made about how to associate the list.)
This gives a natural transformation from F o U to idypon, where F' : Set



4.3 Natural transformations between functors 113

— Mon is the free monoid functor and U : Mon — Set is the underlying
set functor. For example, if M is a monoid with elements k, m and n, then
reduce(k, k,n,m) = k*>nm, the product of the list using the operation of M.
In this case, naturality means that for any monoid homomorphism h : M
— N, h o reduceps = reducey o F(U(h)), which is easily checked.

Note that although both reduce and flatten take lists as arguments,
reduceys is a monoid homomorphism with domain F(U(M)) (whose ele-
ments are lists), whereas flatten4 is a set function with domain A**. This is
reflected by the fact that, when implemented in a programming language,
reduce takes an operation as well as a list as argument, but flatten takes
only a list.

These and other list operations can often be generalized to sets of expres-
sions instead of sets of lists. In particular, flatten in this more general sense
is one of the fundamental constituents of triples (Section , namely pu.

More about these ideas may be found in [Bird, 1986] and [Spivey, 1989).

4.3.9 Natural transformations of graphs We now consider some nat-
ural transformations involving the category Grf of graphs and homomorph-
isms of graphs.

4.3.10 Example In[31.9] we defined the functor N : Grf — Set. It takes
a graph ¢ to its set Gy of nodes and a homomorphism ¢ to ¢9. Now pick a
graph with one node * and no arrows and call it &. Let V' = Homg,£(&, —).

A graph homomorphism from the graph & to an arbitrary graph ¢ is evi-
dently determined by the image of & and that can be any node of 4. In other
words, nodes of ¢ are ‘essentially the same thing’ as graph homomorphisms
from & to ¢, that is, as the elements of the set V(¥).

We can define a natural transformation «: V. — N by defining

a(f) = fo(*)

where ¢ is a graph and f: & — ¥ is a graph homomorphism (arrow of
Grf). There must be a naturality diagram for each arrow of the source
category, which in this case is Grf. Thus to see that « is natural, we require
that for each graph homomorphism g : 43 — %, the diagram

v, — VI v,
o a4y
N%, N%,

Ng
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commutes. Now Ng is go (the node map of g) by definition, and the value of
V' (which is a hom functor) at a homomorphism g composes g with a graph
homomorphism from the graph &. Then we have, for a homomorphism f : &
— % (i.e., an element of the upper left corner of the diagram),

(s o Vg)(f) = a%a(g > f) = (g° fo*)

while
(Ng o a@1)(f) = Ng(fo(x)) = go(fo(*))

and these are equal from the definition of composition of graph homomorph-
isms.

The natural transformation « is in fact a natural isomorphism (Ex-
ercise E[) This shows that N is naturally isomorphic to a hom functor.
Such functors are called ‘representable’, and are considered in greater de-

tail in 5.1

4.3.11 Connected components A node a can be connected to the
node b of a graph ¢ if it is possible to get from a to b following a sequence
of arrows of ¢ in either direction. In order to state this more precisely, let
us say that an arrow a ‘has’ a node n if n is the domain or the codomain
(or both) of a. Then a is connected to b means that there is a sequence
(co,c1,...,cpn) of arrows of 4 with the property that a is a node (either the
source or the target) of ¢g, b is a node of ¢,, and for i = 1,...,n, ¢;—1 and
¢; have a node in common. We call such a sequence an undirected path
between a and b.

It is a good exercise to see that ‘being connected to’ is an equivalence re-
lation. (For reflexivity: a node is connected to itself by the empty sequence.)
An equivalence class of nodes with respect to this relation is called a con-
nected component of the graph ¢, and the set of connected components
is called W¥.

Connected components can be defined for categories in the same way as
for graphs. In that case, each connected component is a full subcategory.

If f:9 — 2 is a graph homomorphism and if two nodes a and b are
in the same component of ¢, then f(a) and f(b) are in the same component
of J; this is because f takes an undirected path between a and b to an
undirected path between f(a) and f(b). Thus the arrow f induces a function
Wf: W9 — W, namely the one which takes the component of a to the
component of f(a); and this makes W a functor from Grf to Set.

For a graph ¢, let 9 : N9 — W% be the set function which takes a
node of ¢ to the component of ¢ that contains that node. (The component
is the value of ¥ at the node, not the codomain.) Then f: N — W is a
natural transformation. It is instructive to check the commutativity of the
requisite diagram.
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4.3.12 Example In we described a functor ¥ which provided a
meaning in Set for each program in the programming language L of
A person more oriented to machine language might have preferred to give
the meaning of all the data in terms of numbers, in particular the integers
between 0 and 2% for some fixed number K > 7 (the constraint is to accom-
modate the ASCII codes).

Thus one could define a functor ¥’ for which

(i) ¥'(NAT) is the set of integers between 0 and 2% — 1. Then the constant
0 would be the number 0, but ¥'(succ) would have to calculate the
successor modulo 2.

(ii) X'(BOOLEAN) is the set {0,1}, with true = 1 and false = 0.

(iii) For each character ¢, ¥'(c) is the ASCII code for ¢. Then we would
have to take Y/(CHAR) to be the set A={n e N |0 <n <127}

For each of the three types T in our language, we have a way of rewriting
each datum in X(7) to become the corresponding datum in X'(7). This
rewriting becomes a function 7 : X(T') — X/(T):

(i) B(NAT)(n) is n modulo 2%,
(ii) B(BOOLEAN)(true) = 1 and S(BOOLEAN)(false) = 0.
(iii) B(CHAR)(c) is the ASCII code of ¢ for each character c.

In order to preserve the intended meaning, Y'(succ) would have to be
the successor function modulo 2%, ¥'(ord) would have to be the inclusion
of A into ¥/(NAT) and ¥'(chr) would have to be the function from Y'(NAT)
to A which takes the remainder modulo 128.

Preserving the meaning of ord (an informal idea) means formally that
this diagram must commute, as it does with the definitions given of ¥(ord)
and X' (ord):

s(cuar) — 2R s cra)
Y (ord) Y (ord)

Similar remarks apply to the preservation of the other operations. This is a
special case of a general principle that, given two functors G and G’ which
are semantics in some sense, a natural transformation 8 : G — G’ can be
said to preserve the meaning of the operations.

The natural transformation 5 was constructed for the given data types.
The only constructor in L, namely composition, does not destroy the natural
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transformation property: if the given [ gives the naturality property for
primitive operations, it does so for all their composites, as well. This is an
instance of the following proposition.

4.3.13 Proposition Let F,G : % — 2 be functors. Let S be a (possibly
empty) set of arrows of € with the property that every arrow of € is a
composite of arrows of S and let BC : F(C) — G(C) be an arrow of 9 for
each object C' of €. Suppose for every arrow f: A — B of S this diagram
commutes:

F(A) Fi) F(B)
BA BB (4.27)
G(4) 0 G(B)

Then B is a natural transformation.

Proof. if f: A — B and g: B — C are arrows of S, then the outer rectangle
below commutes because the two squares do:

F F
BA pB pC
G(A G(B G(C
(4) o (B) G@ (@)
The naturality diagram for the case f = id (that is, the empty composite)
is automatic. The proof follows from these facts by induction. 0

4.3.14 Exercises

1. Prove Proposition

2. Show that the family 5% of arrows taking a node to its component defined
in [4.3.11]is indeed a natural transformation.

3. Let € be a category. A subfunctor of a functor F' : ¥ — Set is a functor
G : ¥ — Set with the property that for each object C of ¥, G(C) C F(C)
and such that for each arrow f : C' — C’ and each element x € GC, we have
that Gf(x) = F f(x). Show that the inclusion function ic : G(C) — F(C)

is a natural transformation.
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4. Show that the map which takes an arrow of a graph to its source is a
natural transformation from A to N. (See [3.1.9}) Do the same for targets.
(Actually, every operation in any multisorted algebraic structure gives a nat-
ural transformation. Example Was another example of this. See |Linton,
1969b], [Linton, 1969a].)

5T Show that if € is a discrete category with set of objects %y (hence essen-
tially a set), then Func(%, Set) is equivalent to the slice category Set/%.

(See 26.10)

6. For each set S, let {}S : S — £ be the function which takes an element
x of S to the singleton subset {z}.

a. Show that {} is a natural transformation from the identity functor on
Set to the direct image powerset functor 2. (See [3.1.16])

b. Show that {} is not a natural transformation from the identity functor
on Set to the universal image powerset functor. (See [3.1.19])

c. Explain why it does not even make sense to ask whether it is a natural
transformation to the inverse image powerset functor.

7. Verify the claims in

8. Show that the results of Exercise[7]of Section [£.2] are still true if we replace
the graph ¢ by a category 2.

9. Show that the natural transformation of [4.3.10|is a natural isomorphism.

10. a. Show that for any integer k, the set of paths of length k of a graph
is the object part of a functor P : Grf — Set. (See[2.1.2])

b. Show that Py is naturally isomorphic to the node functor N defined
inl3.1.9

c. Show that Pj is naturally isomorphic to the arrow functor A of

4.4 The Godement calculus of
natural transformations

We collect here, mostly without proof, some of the basic combinatorial prop-
erties of functors and natural transformations. These rules were first codi-
fied by Godement [Godement, 1958|. The notation given in Definitions
and is used throughout the book, but the remainder of this section is
used only in Section Verifying (some of) the Godement properties is an
excellent way to familiarize yourself with natural transformations.
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4.4.1 Let F: o — % and G : 8 — € be functors. There is a composite
functor G o F': &/ — % defined in the usual way by G o F(A) = G(F(A)).
Similarly, let H, K and L be functors from & — % and a: H — K and
6 : K — L be natural transformations. Recall that this means that for each
object Aof @, aA: HA — KA and fA: KA — LA. Then as in|4.2.11] we
define foav: H — L by

(Bea)A=pBA-aA

Things get more interesting when we mix functors and natural transfor-
mations. For example, suppose we have three categories </, 4 and %, four
functors, two of them, F,G : &/ — % and the other two H K : # — €,
and two natural transformations o : F' — G and 8 : H — K. We picture
this situation as follows:

/_L\‘ /L\‘ 4.28
o \UTOC/' % \#’ ¢ (428)

4.4.2 Definition The natural transformation SF : H o F' — K o F'is de-
fined by the formula (BF)A = S(FA) for an object A of <.

The notation S(F A) means the component of the natural transformation
B at the object F'A. This is indeed an arrow from H(F(A)) — K(F(A)) as
required. To show that SF' is natural requires showing that for an arrow
f:A— A of &, the diagram

H(F(4) AL k(F )
H(F()) K(F(f)) (4.20)
HP(A) —re K(P(A)

commutes, but this is just the naturality diagram of 3 applied to the arrow
F(f): F(A) — F(4).

4.4.3 Definition The natural transformation Ha : H o F' — H o G is de-
fined by letting (Ha)A = H(«A) for an object A of <7, that is the value of
H applied to the arrow oA.
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To see that Ha thus defined is natural requires showing that
H(aA)

H(F(A)) H(G(A))
H(F(f)) H(G(f))
H(F(A/)) W’ H(G(A/))

commutes. This diagram is obtained by applying the functor H to the nat-
urality diagram of a. Since functors preserve commutative diagrams, the
result follows.

Note that the proofs of naturality for SF and for Ha are quite different.
For example, the second requires that H be a functor, while the first works
if F'is merely an object function.

The definitions of SF and Ha are quite different, in fact. The first is the
natural transformation whose value at an object A of & is the component of
8 on the object F'A while the value of the second is the result of applying
the functor H to the component oA (which is an arrow of %). Nevertheless,
we use similar notations. The reason for this is that their formal properties
are indistinguishable. In fact, even categorists quite commonly (though not
universally) distinguish them by writing Sz but Ha. That notation emphasizes
the fact that they are semantically different. The notation used here is chosen to
emphasize the fact that they are syntactically indistinguishable. More precisely,
the left /right mirror image of each of Godement’s rules given below is again a
Godement rule.

In a great deal of mathematical reasoning, one forgets the semantics of the
situation except at the beginning and the end of the process, relying on the
syntactic rules in the intermediate stages. This is especially true in the kind of
‘diagram chasing’ arguments so common in category theory. For that reason,
the notation we have adopted emphasizes the syntactic similarity of the two
constructions, rather than the semantic difference.

In Exercise [2] we give another, more sophisticated definition of SF and Ha
which shows that they can be thought of as semantically parallel, as well.

4.4.4 There is a second way of composing natural transformations. The
naturality of 8 in Diagram (4.29) implies that for any object A of <, the
diagram

(o Fya—HOA o)
(BF)A (BG)A (4.30)
(K« F)A (K« G)A

(Ka)A
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commutes. We define Sxa : H - FF — K o GG by requiring that its component
at A be (Ka)A - (BF)A, which of course is the same as (5G)A o (Ha)A.

4.4.5 Proposition [ * « is a natural transformation.

Proof. We have that 8 a = Ka o SF by definition of 8 * a and Defini-
tion [4.2.11} It is therefore a natural transformation by Proposition [4.2.12] O

We usually call 5 - a the vertical composite and 3 * o the horizontal
composite. (Warning: Some authors use o for the horizontal composite.)
One must keep careful track of the difference between them. Fortunately,
the notations do not often clash, since usually only one makes sense.

There is one case in which the two notations can clash. If & = £ =
€ and G = H, then o a: F — K, while xa: G- F — K o G. This
clash is exacerbated by the habit among many categorists of omitting the
composition circle and *, except for emphasis. We will often omit the *, but
not the circle. On the other hand, no confusion can possibly arise from the
overloading of the circle notation to include composition of arrows, functors
and natural transformations since their domains uniquely define what kind
of composition is involved.

4.4.6 Proposition Horizontal composition of natural transformations is
associative.

Proof. In the situation,

7 Vo T VB ¢l Uy L2 (4.31)
e Tx T

we have that

v* (Bxa)=vKG o L(BG > Ha) =vKG - L3G - LHa
because L is a functor, while

(yxB)*xa=(yK - LB)G e LHx=~vKG - LG > LH«

by Definition [£.2.11] m

4.4.7 Godement’s five rules There are thus several kinds of composites.
There is a composite of functors, vertical and horizontal composite of natural
transformations and the composite of a functor and a natural transformation
in either order (although the latter is in fact the horizontal composite of a
natural transformation and the identity natural transformation of a functor,
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a fact we leave to an exercise). The possibilities are sufficiently numerous
that it is worth the effort to codify the rules.

Let of, #B, €, ¥ and & be categories; F : &f — %, Fy, Fy and F3 :  —
€,G1,Goand G : 6 — Z,and H : 9 — & be functors; and « : F; — Fb,
B:Fy, — F3, v: Gy — Go, and § : Gy — G35 be natural transformations.
This situation is summarized by the following diagram:

Fy Gy
,«/’/—\z e .
P 0 A e e
v —L gl 2 &2 Sg— o (432)
|- AN bo f
F3 Gs

Then
G-1 (6°7)(B ) =(88) ° (ya).
G2 (H-Gi)a=H(Ga).
G-3 y(F1° E) = (vF1)E.
G4 Gi(B - a)E = (G1BE) - (G1aE).
G5 ya = (vF2) ° (Gra) = (Gaa) © (vF1).
The expression G1(8 ° a)F in G4 is not ambiguous because of Exer-

cise [} G—1 is called the Interchange Law. It is the basis for the definition
of 2-category in Section [4.8|

4.4.8 Exercises
1. Show that, using the notation of the Godement rules, (Gia)E = G1(aE).

2. Show that in the Diagram (4.28)), the composites SF and Ha are the
horizontal composites § * idp and idg *« respectively.

3. a. Show (using Exercise [2)) that Godement’s fifth rule is an instance of
the first.

b. Show that Godement’s fourth rule follows from the first and the asso-
ciativity of horizontal composition.

4.5 The Yoneda Lemma and
universal elements

For an arbitrary category %, the functors from % to Set are special because
the hom functors Hom(C|, —) for each object C of € are set-valued functors.
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In this section, we introduce the concept of representable functor, the Yoneda
Lemma, and universal elements, all of which are based on these hom functors.
These ideas have turned out to be fundamental tools for categorists. They
are also closely connected with the concept of adjunction, to be discussed
later (note Theorem and Proposition .

If you are familiar with group theory, it may be illuminating to realize
that representable functors are a generalization of the regular representation,
and the Yoneda embedding is a generalization of Cayley’s Theorem.

We have already considered set-valued functors as actions in Section

4.5.1 Representable functors A functor from a category € to the cat-
egory of sets (a set-valued functor) is said to be representable if it is
naturally isomorphic to a hom functor; see A covariant functor is
representable if it is naturally isomorphic to Hom(C, —) for some object C'
of €’; in this case one says that C represents the functor. A contravariant
functor is representable if it is naturally isomorphic to Hom(—, C') for some
object C' (and then C represents the contravariant functor).

We have already looked at one example of representable functor in some
detail in [4:3:10] where we showed that the set-of-nodes functor for graphs is
represented by the graph with one node and no arrows. The set-of-arrows
functor is represented by the graph with two nodes and one arrow between
them (Exercise [3]).

4.5.2 The Yoneda embedding Let % be a category. There is a functor
Y : €°°P — Func(%, Set), the Yoneda functor, defined as follows. Note
that Y must take an object of 4 to a functor and an arrow of % to a natural
transformation.

Y-1 For an object C of ¢, Y(C) = Hom(C, —).

Y21If f: D — C in ¥ and A is an object of ¥, then the component
Y(f)A of Y(f) : Hom(C, —) — Hom(D, —) is Hom(f, A) : Hom(C, A)
— Hom(D, A) (see [3.1.21].

Note that Y (C) is a covariant hom functor and that Y'(f)A is a component
of a contravariant hom functor.

To see that Y (f) is a natural transformation requires checking that this
diagram commutes for every arrow k: A — B of €

Hom(D, k)

Hom(D, A) Hom(D, B)
Y(f)A Y(f)B
Hom(C, A) Hom(C, B)
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To see that it commutes, start with h : C' — A, an arbitrary element of the
lower left corner. The lower route takes this to k o h, then to (ko h) o f. The
upper route takes it to k o (h o f), so the fact that the diagram commutes
is simply a statement of the associative law. In a monoid, that this diagram
commutes is the statement that the function defined by left multiplying by
a given element commutes with the function defined by right multiplying by
another given element.

Y (f) : Hom(C,—) — Hom(D, —) is the induced natural transforma-
tion corresponding to f.

The main theorem concerning Y is the following.

4.5.3 Theorem Y :%°° — Func(¥%,Set) is a full and faithful functor.

The fact that Y is full and faithful is encapsulated in the following re-
markable corollary.

4.5.4 Corollary FEvery natural transformation
Hom(C,—) — Hom(D, —)

is given by composition with a unique arrow D — C'. The natural transfor-
mation is an isomorphism if and only if the corresponding arrow D — C' is
an isomorphism. In particular, if F' : € — Set is represented by both C' and
D, then C = D.

This means that you can construct an arrow in a category by constructing
a natural transformation between hom functors. This is one of the most
widely used techniques in category theory.

Proof. Theorem [4.5.3] is an immediate consequence of the Yoneda Lemma
. We give a direct proof here. This proof is an excellent exercise in
manipulating natural transformations and hom sets.

Let f,g: D — C in ¥. The component

Y(f)C : Hom(C,C) — Hom(D, C)

of the natural transformation Y (f) at C takes id¢ to f, and similarly Y (¢g)C
takes id¢ to g. Thus if f # g, then Y (f)C # Y (g)C, so that Y(f) # Y (g).
Thus Y is faithful.

We must show that Y is full. Given ¢ : Hom(C, —) — Hom(D, —), we
get the required f : D — C' by one of the basic tricks of category theory: we
define f = ¢C(id¢). The component of ¢ at C'is a function ¢C' : Hom(C, C)
— Hom(D, C), so this definition makes sense.
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To complete the proof, we must prove that if k£ : C' — A is any arrow
of €, then pA(k) =k o f: D — A. This follows from the fact that the
following diagram commutes by naturality of ¢:

Hom(C, k)

Hom(C,C) Hom(C, A)
oC pA
Hom(D, C) Hom(D, A)

Hom(D, k)

If you start in the northwest corner with idc, the upper route takes you to
¢A(k) in the southeast corner, whereas the lower route takes you to k o f,
as required. O

4.5.5 By replacing ¢ by ¢°P in Theorem we derive a second Yoneda
functor J : € — Func(%°P, Set) which is also full and faithful. For an object
C of ¢, J(C) = Hom(—, C), the contravariant hom functor. If f: C — D
in € and A is an object of €, then the component

J(f)A : Hom(A,C) — Hom(A, D)
of the natural transformation J(f) : Hom(—,C) — Hom(—, D) is
Hom(A, f) : Hom(A, C) — Hom(A, D)

The fact that J is full and faithful means that an arrow from A to
B of ¥ can be uniquely defined by giving a natural transformation from
Hom(—, A) to Hom(—, B). This statement is the dual of Corollary
Such a natural transformation « : Hom(—, A) — Hom(—, B) has a com-
ponent o7 : Hom(T, A) — Hom(T, B) for each object T' of €. The effect
of this is that you can define an arrow from A to B by giving a function
oT : Hom(T, A) — Hom(T, B) for each object T which prescribes a variable
element of B for each variable element of A (as described in , in such
a way that for each f: 7T’ — T, the diagram

Hom(T, A) —2L .+ Hom(T, B)
Hom(f, A) Hom(f, B)

Hom (7", A)

T Hom(T", B)
a

commutes. This can be summed up by saying, ‘An arrow is induced by
defining its value on each variable element of its domain, provided that the
definition is natural with respect to change of parameters.’
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4.5.6 Elements of a set-valued functor Corollary says that any
natural transformation from Hom(C, —) to Hom(D, —) is given by a unique
arrow from D to C, that is, by an element of Hom(D, C') = Hom(D, —)(C).
Remarkably, the result remains true when Hom(D,—) is replaced by an
arbitrary set-valued functor.

Suppose F : € — Set is a functor and C' is an object of 4. An element
¢ € F(C) induces a natural transformation from the representable functor
Hom(C, —) to F' by the formula

f= F(f)(c) (4.33)

That is, if f: C — C’ is an element of Hom(C, C"), the definition of functor
requires an induced function F(f) : F(C') — F(C") and this function can be
evaluated at ¢ € F(C).

4.5.7 Proposition Formula defines a natural transformation

Hom(C,—) — F

Proof. Let aC’ : Hom(C,C") — F(C") take f to F(f)(c) for ¢ € F(C). We
must show that for any g : ¢’ — B,

Hom(C, ") —2C" . p(c7)
Hom(C, g) F(g) (4.34)

Hom(C, B)

aB
commutes. We have, for f € Hom(C,C"),
aB(Hom(C,g)(f)) = aB(g - f) = F(g° f)(c)
= F(g)(F(f)(c)) = F(g)(aC'(f))
as required.

4.5.8 Theorem (Yoneda Lemma) Formula defines a one to one
correspondence between elements of F(C) and natural transformations

Hom(C,—) — F
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Proof. Suppose that ¢ and ¢’ are different elements of F(C'). Then the nat-
ural transformation corresponding to c¢ takes id¢ to ¢ whereas the one cor-
responding to ¢’ takes id¢ to ¢’. Thus the mapping of the Yoneda Lemma is
injective.

Suppose 8 : Hom(C, —) — F'is a natural transformation. Then we have
BC : Hom(C,C) — F(C). Let ¢ = pC(id¢) € F(C). For any f: C — C',
the naturality of 5 gives that

BC'(Hom(C, f)(ide)) = F(f)(BC)(ide)

The left hand side is SC’(f) and the right hand side is F(f)(c). Thus 3 is
the natural transformation given by Formula (4.33)), so that the mapping of
the Yoneda Lemma is surjective. O

4.5.9 Definition Let F': ¥ — Set be a functor and let ¢ be an element of
F(C) for some object C of €. If the natural transformation from Hom(C, —)
to F' induced by c is an isomorphism, then ¢ is a universal element of F'

The existence of a universal element means that F' is representable
(see . The converse is also true because a natural isomorphism o :
Hom(C,—) — F is, from the Yoneda lemma, induced by a unique element
¢ of F(C) and by definition « is an isomorphism if and only if ¢ is universal.

The unique element ¢ can be calculated using the following fact.

4.5.10 Proposition Let o : Hom(C,—) — F be a natural isomorphism.
The unique element ¢ € F(C) inducing o is aC(idc).

Proof. For an arbitrary f: C — C’, aC'(f) = F(f)(aC(id¢)) because this
diagram must commute (chase id¢ around the square):

Hom(C, C) —2C + F(0)

Hom(C, f) E(f)

Hom(C, ") F(C)

alC’
Then, by Formula (4.33)), aC(id¢) must be the required unique element c. O

A detailed example of the use of this construction is in the proof of
Proposition

4.5.11 The definition of universal element can be reworded in elementary
terms using Formula (4.33)), as follows.
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4.5.12 Proposition Let F': ¥ — Set be a functor, C' an object of €
and ¢ an element of F(C). Then c is a universal element of F if and only if

for any object C' of € and any element x € F(C") there is a unique arrow
f:C — C" of € for which x = F(f)(c).

Proof. If ¢ is a universal element then the mapping must be an iso-
morphism, hence every component must be bijective by Theorem [4.2.20] This
immediately ensures the existence and uniqueness of the required arrow f.
Conversely, the existence and uniqueness of f for each ¢’ and z € F(C")
means that there is a bijection aC’ : Hom(C,C’) — F(C') for every C’
which takes f: C — C’ to F(f)(c). By Proposition these are the
components of a natural transformation, which is therefore a natural iso-

morphism by Theorem [£.2.20] m

In the case of a functor F' : ¥°P — Set, ¢ in F/(C) is a universal element
if for any object C’ of ¢ and any element = € F(C”) there is a unique arrow
f:C" — C for which z = F(f)(c).

4.5.13 Corollary Ifce F(C) andd € F(C") are universal elements, then
there is a unique isomorphism f : C — C" such that F(f)(c) =¢.

The proof is left as Exercise

Universal elements are considered again in Proposition The ex-
position in [Mac Lane, 1971] uses the concept of universal element (defined
in the manner of the preceding proposition) as the central idea in discussing
representable functors and adjunction.

4.5.14 Exercises

1. Show that a representable functor preserves terminal objects but not nec-
essarily initial objects.

2. Show that Homget(1, —) is naturally isomorphic to the identity functor
on Set. (‘A set is its set of global elements.” In terms of this says that
a singleton set represents the identity functor on Set.)

3. Show that the arrow functor A : Grf — Set of is represented by
the graph 2 which is pictured as

&

1l——2

(Compare Exercise [10] of Section [4.3])

4. Show that the set of objects of a small category is ‘essentially the same
thing’ as the set of global elements of the category (as an object of Cat),
and translate this into a natural isomorphism following the pattern of [£-3.10}
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5. Is the set of arrows of a small category the object part of a functor? If it
is, is it representable?

6. Prove that any set-valued functor F' : ¥ — Set is naturally isomorphic
to a functor for which if C' and D are distinct objects of &, then F'(C) and
F (D) are disjoint sets.

7. Let D : Set — Set be the functor for which for a set A, D(A) = A x A,
and for a function f: A — B, D(f) : Ax A — B x B is the function
defined by D(f)(a1,a2) = (f(a1), f(a2)). Show that D is representable and
find a universal element for D.

8. Show that the second Yoneda embedding J defined in is full and
faithful.

9]L Formulate carefully and prove that the equivalence in the Yoneda Lemma
is natural in both C and F.

10. Verify the claim made in [4.5.13| that if ¢ € F(C) and ¢ € F(C") are
both universal elements of the functor F' : ¥ — Set, then there is a unique
isomorphism f : C — C’ such that F(f)(c) = .

4.6 Linear sketches (graphs with diagrams)

Specifications in mathematics and computer science are most commonly ex-
pressed using a formal language with rules spelling out the semantics. How-
ever, there are other objects in mathematics intended as specifications that
are not based on a formal language. Many of these are tuple-based; for ex-
ample the signature of an algebraic structure or the tuple specifying a finite
state machine.

A sketch is another kind of formal abstract specification of a mathemat-
ical structure; it is based on a graph rather than on a formal language or
tuple. The semantics is often a functor; in other contexts it is a structure
generalizing Goguen’s initial algebra semantics.

Each sketch generates a (categorical) theory; this theory is a category
that in a strong sense contains all the syntax implied by the sketch.

4.6.1 Linear sketches We construct a hierarchy of types of sketches here
and in Chapters and Each new type uses additional categorical
constructions to provide more expressive power than the preceding types.

What we can do now is describe a very simple type of structure using
‘linear’ sketches. It can describe multisorted algebraic structures with only
unary operations. If you are not familiar with multisorted algebraic struc-
tures, it will not matter.
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4.6.2 Definition A linear sketch . is a pair (¢, 2) where ¢ is a graph
and 2 is a collection of diagrams in ¢. Because of the motivating example
of algebraic structures, the arrows of the graph of a sketch (not just a linear
sketch) are often called operations of the sketch.

4.6.3 Definition A model of a linear sketch . in a category ¥ is a
model (graph homomorphism) M : ¢ — % such that whenever D : .% — ¥
is a diagram in &, then M o D is a commutative diagram in . The diagrams
represent the equations which have to be true in all models.

We write M : . — & for such a model. This use of the same symbol
to denote both the sketch homomorphism and the graph homomorphism is
a bit of notational overloading that in practice is always disambiguated by
context. The collection of all models of . in € is denoted Mod (., %).

A model of a sketch . in Set is (among other things) a set indexed by
the nodes of the graph of . as discussed in If M is a model and c is
a node of the graph, an element of M(c) is an element indexed by ¢, or an
element of type c.

4.6.4 Definition A homomorphism of models of a linear sketch .#,
both models in the same category %, is a natural transformation between
the models. For given . and %, the models therefore form a category with
natural transformations as arrows; this category is a full subcategory of the
category of all graph homomorphisms from ¢ to ¢ (which in general do not
take the diagrams in & to commutative diagrams).

4.6.5 Example Any category & can be made into a linear sketch called
the underlying linear sketch of &, denoted U(&’) (concerning this nota-
tion, see below), by taking for the diagrams the collection of all com-
mutative diagrams in the category. A model of the underlying linear sketch
& in some category % is the same as a functor on the original category: on
the one hand, any functor takes any commutative diagram to a commuta-
tive diagram and so is a model. On the other hand a model M : .¥ — % of
the underlying linear sketch . of & preserves in particular all commutative
diagrams of the form
/ B

f\ /g (4.35)
C

and so preserves composition as well as every commutative diagram consist-
ing of a single node and no arrows, and so preserves identities (see {4.1.6)).

A
gO
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4.6.6 Example The linear sketch for u-structures has the graph with one
node and one arrow as its graph, and no diagrams.

4.6.7 Example The construction in [4.2.7] gives the sketch for graphs.
Its graph is

S
a—=n (4.36)
t
and it has no diagrams.

4.6.8 Example We now consider an example of a linear sketch which has
diagrams. Suppose we wanted to consider sets with permutations as struc-
tures. This would be a u-structure (S, u) with u a bijection. We can force u
to go to a bijection in Set-models by requiring that it have an inverse. Thus
the sketch &2 of sets with permutations has as graph the graph ¢ with one
node e and two arrows u and v, together with this diagram D:

U
e—e (4.37)
v
based on the shape graph
x
i ? j (4.38)

A model M of this sketch in Set must have M(e) a set, M(u) and M (v)
functions from M (e) to itself (since D(i) = D(j) = e), and because Dia-
gram (4.37) must go to a commutative diagram, it must have

M(u) o M(v) = M(v) e M(u) = idpy)

This says that M (u) and M(v) are inverses to each other, so that they are
permutations. Note that a model in any category is an object of that category
together with an isomorphism of the object with itself and the inverse of that
isomorphism.

If we had used as the only diagram the diagram with one node e and both
arrows u and v, the result would have been a sketch in which any model M
had the property that M (u) and M (v) are the identity.

4.6.9 Example Suppose we wanted to have a linear sketch for graphs
which have at least one loop at every node. We could try the following con-
struction, which contains a mild surprise. The sketch has the graph (4.19),
page[103|as its graph, with arrows s : N — A and idy : N — N added. The
diagrams are

Oy (4.39)
N
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and

idy source idy target (4.40)

N N

In a model M in sets, if n is a node, that is, n € M (), then M (s)(n) is
an arrow. The commutativity of Diagram forces M (idy) to be id s
(see , and the commutativity of the diagrams forces the source
and target of M(s)(n) to be n, so that M(s)(n) is a loop on n.

The surprise is that a homomorphism « : M — M’ of models of this
sketch must take the particular loop M(s)(n) to M'(s)(aN(n)). Of course,
any homomorphism of graphs will take the loop M(s)(n) to some loop on
aN(n), but our homomorphisms are stricter than that. So what we really
have are graphs with a distinguished loop at every node and homomorph-
isms which take distinguished loops to distinguished loops. These are called
reflexive graphs. A node in a reflexive graph may have other loops but they
are not part of the given structure.

If you want a sketch for graphs which have a loop on every node, but
not a distinguished loop (so that a homomorphism takes the loop on n to
some loop on aN(n), but it does not matter which one), you will have to
wait until we can study regular sketches in Section [10.4]

4.6.10 Homomorphisms of linear sketches A homomorphism of lin-
ear sketches from . = (¢, 2) to ' = (¢',2') is a graph homomorphism
¢ : 9 — ¢’ with the property that if D : I — ¢ is a diagram in 2, then
¢poD: I — %9 is a diagram in 2'. It is easy to check that this definition
makes linear sketches and their homomorphisms into a category.

Note that here we are defining homomorphisms between possibly differ-
ent sketches, whereas in Definition [£.6.4] we defined homomorphisms between
two models of a sketch.

If F:% — ¢ is a functor between categories, the underlying linear
sketch homomorphism U(F) : U(¥¢) — U(%’) is F regarded as a homo-
morphism of graphs. Since it takes any commutative diagram in € to a
commutative diagram in %”, it is a homomorphism of linear sketches.

We have already used the symbol U(&’) to denote the underlying graph
of a category & in[3.1.10} Here, we use it to denote the underlying linear
sketch. In this text, we disambiguate such notation by using phrases such
as ‘the underlying graph U(&’)’. In a situation where one needed frequently
to refer to several different underlying functors from the same category, one

could introduce heavy notation such as Ugf;‘ft
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4.6.11 The theory of a linear sketch You can reverse given a
linear sketch ., there is a category Th(.¥), the theory of .7, which has
a universal model Mj of .% in this sense: My : .¥ — U(Th(.¥)) is a
model, and for any other model M : .¥ — U(%), there is a unique functor
F : Th(¥) — € such that UF « My = M. Since UF is a model of the
underlying sketch of the category Th(.¥) (see , My induces a bijection
between models of . and models of its theory (functors from Th(.¥) to
Set). This bijection is in fact part of an equivalence of categories between
Mod(.#, Set) and the functor category Func(Th(.¥), Set).
Th(.7) satisfies the following requirements:

LT-1 Every arrow of Th(.¥) is a composite of arrows of the form Mjy(a) for
arrows a of ..

LT-2 M, takes every diagram of . to a commutative diagram in Th(.%).

4.6.12 Construction of the theory of a linear sketch Let . be a
linear sketch. The idea behind the construction of Th(.¥) is: ‘Freely compose
the arrows of ¢ and impose the diagrams as equations.” Formally, begin
with the free category F(¥) generated by ¢ and construct Th(.#) and a
functor @ : F(¢) — Th(.¥) which make all the diagrams in & commute as
described in The universal model My : ¢4 — U(Th(.¥)) is UQ - n¥
(see ; it takes each node to itself and each arrow to its congruence
class in Th(Y).

That My has the property claimed in follows by considering this
diagram for a given model M : ¢ — U%:

Q

", yry Fg —+ Th(.)

4

o~ o~

M UM M Fy (4.41)

Ue ¢

For a given M, it follows by Proposition [3.1.15 that there is a unique func-
tor M for which the left triangle commutes. Then by Proposition 4 (see

also [4.1.13)) there is a unique functor Fy : Th(.¥) — ¢ making the right
hand triangle commute. Apply U to the right hand triangle, put them to-
gether and let My = UQ o n¥. Then we have a commutative triangle:

» UTh(Y

RN
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This shows the existence and we leave the uniqueness to the reader.
The construction of a semantics functor for a functional programming
language illustrated in is a special case of the construction just given.

4.6.13 Examples The theory which is generated by the underlying linear
sketch of a category is isomorphic to the category itself (Exercise [3). The
sketch for u-structures (see 4.2.5| and 4.6.6)) generates a category with one
node wug, its identity arrow, and arrows e, e ce, e o e o ¢, and so on, all
different because there are no equations to make them the same. In other
words, it has one arrow e™ for each natural number n.

The theory for the sketch for graphs (its graph is and it has no
diagrams) has only two arrows besides those in the graph namely the
identity arrows in a and n. That is because the two arrows of the graph do
not compose with each other.

The sketch for permutations in[4.6.8]is more complicated. It has one node
e and arrows u' for all positive and negative integers n. This is essentially

because v must be v ™! in the theory; see [4.7.13| for more details.

The reader may wonder why the term ‘linear sketch’ is appropriate. One way
of thinking of linear sketches is that they are exactly the sketches for which the
following are true:

(i) If My and M, are models in the category of sets, then there is a model
M + My defined by setting (M7 + Ma)(a) = M;(a)+ Ma(a), a € Go(.7).
(S + T is the disjoint union of sets S and T.)

(ii) If M is a model and X is a set, there is a model X x M defined by
setting (X x M)(a) = X x M(a), a € Gy.

The linear sketches with constants that we will consider in Section below
lack these ‘linearity’ properties. They should perhaps be called affine sketches.
For the reader familiar with equational theories we observe that linear sketches
have only unary operations while linear sketches with constants have, in addi-
tion, nullary operations.

4.6.14 Exercises
1. Find a linear sketch . for which Mod(.%, Set) is isomorphic to Set.

2. Describe a linear sketch whose models in Set are sets S with two functions
from S to S which commute with each other on composition.

3. Prove that if a category ¢ is regarded as a linear sketch as in then
Th(%) is isomorphic to %.
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4. Let M and N be models of the sketch in Show that f : M(e)
— N (e) is (the only component of) a homomorphism of models if and only
if foM(u)=N(u)-f.

5. Describe the theory of the linear sketch whose graph is
0—1 (4.43)

with diagram

u v (4.44)

4.7 Linear sketches with constants:
initial term models

In this section, we describe a semantics for linear sketches which is essentially
a special case of Goguen’s initial algebra semantics. We will treat a version
equivalent to the general case in Section We construct a specific model
of the sketch in Set by using the ingredients of the sketch, in a similar spirit
to mathematical logic wherein models of a theory are constructed using the
expressions in the language.

4.7.1 Definition A model of a sketch in a category % is called initial if
it has exactly one arrow (natural transformation) to every model in €.

Thus an initial model is an initial object in the category of models, as
the name suggests. Any two initial objects of any category are isomorphic
by a unique isomorphism, so initial models in a given category are unique
up to isomorphism.

In the case of a linear sketch, to describe the initial model in the category
of sets is easy; it is the model M : . — Set for which M (a) = ) for every
node a of .. When we discuss further sketches we will see that the initial
models will be more interesting. At this point, we have to complicate things
a bit to get interesting models.
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4.7.2 Definition By a linear sketch with constants we mean a triple
S =(9,2,C) where (¢,2) is a linear sketch and C is a collection of con-
stants indexed (as in by the set of nodes of 4. We let type : C — Gy
be the indexing function, where Gy denotes the set of nodes of 4. We will
not formalize this further because we will have a more systematic way of
doing this in Chapter [7| In particular, we could discuss models on categories
other than that of sets, but there is no purpose in doing so.

The sketch (¢, 2) is called the underlying linear sketch of the linear
sketch with constants.

4.7.3 Definition A model of a linear sketch with constants in the cate-
gory of sets is a model M : (¢4,2) — Set together with a function M : C
— Uaeg, M (a) such that for z € C, M(x) € M(type(z)).

(Note that we have overloaded M, and that M need not be injective.)
Thus a model of a linear sketch with constants is a model of the underlying
linear sketch together with elements chosen in the models of various types.

The existence of the constants means that the values need no longer be
empty. In particular, the initial models may be interesting.

4.7.4 Example We give a somewhat arbitrary example which illustrates
what happens. Let us add three constants to the sketch for graphs, f of type
a and z and y of type n. A set model of this sketch with constants will be a
model M in Set of the sketch for graphs — in other words, a graph — with a
distinguished arrow M (f) and two distinguished nodes M (x) and M(y). It
may happen that M(x) = M(y) and there is no requirement that M (x) or
M (y) be the source or target of M(f).

4.7.5 Definition A homomorphism of models of a linear sketch with
constants is a natural transformation between two models of the sketch that
takes the values of the constants in the first model to the values in the second.

In other words, if M; and M are models and ¢ : My, — My is a homo-
morphism of models of the underlying linear sketch, then to be a homo-
morphism of models of the linear sketch with constants it must also sat-
isfy the requirement that for any x € C of type a, ¢pa(Mi(z)) = Ma(z).
Thus in a homomorphism « : My — My of models of that sketch
with constants has to have aA(Mi(f)) = Ma(f), aN(Mi(x)) = My(x), and
aN(My(y)) = Ma(y).

4.7.6 Term models A model M of a sketch with constants is called a
term model if for every node a of the underlying graph, every element of
M (a) is reachable by beginning with constants and applying various oper-
ations (arrows of the sketch). The constants you begin with do not have to
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be of type a, but the final operation will, of course, have to be one that
produces an element of type a. The significance of this condition from the
computational point of view is that elements that cannot be produced in
this way might as well not be there.

4.7.7 Example Let us consider the linear sketch of u-structures with one
constant which we will call zero. Let the graph have node n and call the only
arrow succ. There are no diagrams. As this nomenclature suggests, one model
of this sketch in Set is the natural numbers with the successor operation; the
constant is 0. Other models are the integers and the integers modulo a fixed
number £ (in both cases, take the successor of z to be x + 1). However, the
natural numbers are the unique (up to unique isomorphism) initial model.

To see this, suppose M is any other model. Let us use the same letter
M to denote M (n) since there are no other nodes (common practice when
the sketch has only one node). Also, let t : M — M denote the value of M
at succ and mg the value at zero. We let N, succ and 0 denote the values
of these things in the natural numbers. To show that N is the initial model
we must define a natural transformation f : N — M and show that it is the
only one.

Define f as follows: let f(0) = myg, as required if f is to be an arrow
between linear sketches with constants. Then since f must commute with
succ, we must have that f(1) = t(myg), f(2) = t(t(mop)), and so on. This
defines f inductively on the whole of N. It is clearly unique and immediate
to see that it is an arrow between models.

In Section [5.5] we base the definition of natural numbers object in an
arbitrary category on this sketch.

4.7.8 Initiality and induction Since N is the initial model for the linear
sketch of u-structures with one constant, it follows that, as a u-structure, N
has no proper substructures (Proposition . (Of course it does have
proper substructures for example as a semigroup on addition.) This can be
reworded as follows: If S is a subset of N with the property that 0 € S
and for any x € S also succ(z) € S, then S = N. This is the principle of
mathematical induction.

In general, an initial model of any sketch has no proper subobjects and
so produces a principle of structural induction appropriate to that type of

structure. (See )

4.7.9 Example The set of all integers is a model but not a term model of
the linear sketch of u-structures with one constant. For imagine you have a
computer that can store integers, but the only operation that can be carried
out on them is that of increment (successor). Suppose, further, that the
only natural number whose existence you are certain of is 0. Then you can
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certainly produce, in addition, 1, 2, ..., but no negative numbers. Therefore,
they may as well not be there. You can get them by, for example, adding a
decrement operation, but as it stands they are inaccessible. They are what
J. Goguen and J. Meseguer have called ‘junk’.

4.7.10 Example The set Z; of natural numbers (mod k) is a term model
of the sketch of [£.7.7], but not an initial model. For example, there is no arrow
from the natural numbers (mod k) to the natural numbers. In the first, the
successor of k — 1 is 0, while in the second it is nonzero. Thus no arrow could
preserve successor at that point. What has happened here is that the model
satisfies an additional equation k = 0 not required by the diagrams. This is
an example of what Goguen and Meseguer call ‘confusion’.

4.7.11 Construction of initial term models Linear sketches with con-
stants always have initial models. When the sketch is finite, an initial model
can always be constructed recursively as a term model. (‘Finite’ means finite
number of nodes and arrows.) We now give this construction.

Let . = (¥4, 2,C) be a linear sketch with constants. We define a model
I : . — Set recursively as the model constructed by the following require-
ments I-1 through I-3. (I-1 through I-3 can be see to define an operator,
with the model I as a fixed point of the operator.)

The elements of I(a) for a node a of & are congruence classes of terms
of 4 (composable strings of arrows, including constants, of ¢); [x] denotes
the congruence class of a term = by the congruence relation generated by the
relation ~ constructed recursively in the model. By ‘congruence relation’, we
mean congruence on the free category generated by ¢ as defined in In
particular, if (g, f) and (¢, f') are both composable pairs and [f] = [f'] and
l9] = [¢'], then [g o f]=[g"° f].

I-1 If a is a node of ¥ and =z is a constant of type a, then [z] € I(a).

I-2 If f:a — bis an arrow of ¢ and [z] is an element of I(a), then [fz] €
I(b) and I(f)[z] = [fz]. (Note that this constructs both an element and
a value of the function I(f) simultaneously.)

-3 If (f1,..., fm) and (g1, ..., gx) are paths in a diagram in 2, both going
from a node labeled a to a node labeled b, and [z] € I(a), then

(Ifiolfoo...olfp)z] = Tg1eo1lgye...o1gk)|x]
in I(b).

4.7.12 By ‘the model constructed by’ these requirements, we mean that

(i) no element is in I(a) except congruence classes of the terms con-
structed in I-1 and -2, and
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(ii) two terms are equivalent if and only if they are forced to be equivalent
by the congruence relation generated by 1-3.

Requirement (i) means that the models have no elements not nameable
in the theory (‘no junk’) and (ii) means that elements not provably the same
are different (‘no confusion’). Concerning (ii), see Exercise 2| It follows from
requirement (ii) that if [x] = [y] in I(a) and f : a — b is an arrow of ¢, then
2] = [fy] in T(0).

Note that the models in[4.7.10] have terms giving the same element which
are not, forced to be equivalent by I-3.

4.7.13 Example Let us work out the initial term model of the sketch
from with one constant called x added. Since the sketch has only one
node, the model has only one type. Thus in this case, there is only one set,
call it S, and the arrows of the sketch lead to functions from S to S.

Then S has elements in accordance with the following rules:

Mod-1 There is an element [z] € S.

Mod-2 If [y] € S, then there are elements [uy], [vy] € S.
Mod-3 If [y] = [#], then [uy] = [uz] and [vy] = [vz].
Mod-4 For any [y] € S, [uvy] = [vuy] = [y].

It is clear that the set of all ‘words’ [wiws . .. wiz], where each w; is either
u or v, satisfies the first two rules above. In order to satisfy all four, we have
to impose the equalities they force. In order to gain some insight into this,
let us calculate some of the elements of S.

We observe that there must be elements

[zo] = [2], [x1] = [ua], [w2] = [uua], ..., [#n] = [uu---ua]

n copies
as well as elements we will denote

[x_1] = [vz], [x_2] = [vvz], -+ | [2_p] = [vv-- v 2]

n copies

We first explain why these elements exhaust S. We will not give a formal
proof, but let us see which element is represented by an element chosen
more or less at random, [y] = [uvuvuuvuz]. Since [vuz] = [z], we have that
[y] = [uvuvuuz] = [uvuves]. Since [uvxs] = 2], it follows that [y] = [uvzs]
and then [y] = [z2], by another application of the same identity.

This kind of reasoning can be used to show that any application of u’s
and v’s to [z] gives the element [ry] where k is the number of u’s less the
number of v’s.
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In particular, [uzy| = [z+1] and [vxg] = [zr—1] so that the set {[zx] |
—00 < k < oo} is carried into itself by both u and v. It contains [x] = [z]
and so must be all of S.

There remains the question of all the [xj] being distinct; that is whether
or not there are any identities among the [rg]. There is a standard way of
resolving this question: if there is an equation among two combinations of
arrows from the sketch, that equation must hold in every model. Thus if the
equation fails in any one model, it cannot be a consequence of the identities
in the sketch. In this case, there is an easy model, namely the set Z of all
integers. In the set Z, we let u act by addition of the number 1 and v act by
subtracting 1. Then any combination of actions by u and v is just addition of
k, the difference between the number of u’s and v’s (which may be negative).

The discussion above suggests how to construct a bijection between S
and Z which is an isomorphism of models. We must choose an element to
correspond to [z]. A plausible, but by no means necessary, choice is to corre-
spond [z] to 0. If we do that then we must correspond [x;] = [uz] to [u0] =1,
[x2] = [uuzx] to [uul] = 2 and so on to correspond [zy] to k, for k > 0. For
k < 0, the argument is similar, replacing u by v, to show that we correspond
[x] to k in that case as well.

The isomorphism just constructed takes each [z] to the integer k, which
implies that if k # £/, then [xg] # [xp]. Thus S consists of precisely the
distinct classes [zy], one for each integer k € Z.

4.7.14 Example The initial term model for the sketch for graphs with
two constants x and y of type n and one constant f of type a given in
Example[d.7.4] can be constructed using the method of the preceding example
(but it is much easier). The result is a model I with

I(n) = {z,y,source(f),target(f)}

and I(a) = {f}. It is a graph with four nodes and an arrow between two of
them.

4.7.15 Given the construction in[4.7.11]and any Set model M of the same
sketch, the unique homomorphism « : I — M is constructed inductively as
follows:
M-1 If z is a constant of type a, then aalx] = M (z).
M-2 If f:a—bin ¥ and [z] € I(a), then ab([fz]) = M(f)([M(z)]).

It is a straightforward exercise to show that this is well defined and is a
homomorphism of models. It is clearly the only possible one.
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The construction in [£.7.11] can be seen as the least fixed point of an operator
on models of the sketch (without the constants) in the category of sets and
partial functions. To any such model M, the operator adjoins an element f(z)
to M (b) for any arrow f : a — b and any element « € M (a) for which M (f)(z)
is not defined. It forces f(z) to be the same as some other element of M (b)
if the diagrams force that to happen (we leave the formal description of this
to you). To get the model for a particular set of constants, you start with the
model obtained by applying only I-1 (so that the sorts have only constants in
them and all the arrows have empty functions as models). The least fixed point
of this operator is the model in up to isomorphism.

4.7.16 Properties of model categories We have seen that the cate-
gory of models of a linear sketch with constants always has an initial object.
The fact that the category of nonempty semigroups and semigroups homo-
morphisms does not have an initial object (see thus means that that
category is not the category of models of a linear sketch with constants.
This is our first example of a theorem in model theory of a very typical
sort, saying that the category of models of a certain kind of sketch or theory
has to have certain properties, so that if a category € does not have one of
those properties, it is not the category of models of a sketch of that kind.
Generally, the more expressive the sketch, the fewer restrictions are imposed
on the possible categories of models. Such theorems are covered in detail
in [Barr and Wells, 1985] and |[Adamek and Rosicky, 1994].

4.7.17 Free models Let .¥ be a fixed linear sketch with just one node.
With each set C' we can associate a linear sketch with the set C' of constants.
Let us call it .(C). Let F(C) denote an initial model of .#(C). A model
of #(C) is a model M of . together with a function C' — M. Here, as
above, we will use the name of the model to denote the value at the single
node of the sketch. To say that F(C) is an initial model of .#(C) is to say
that given any model M of . together with a function C' — M, there is a
unique arrow F'(C') — M in the category of models for which

SN

UF(C)

commutes. This property is summarized by saying that F(C) is the free
model of . generated by C. Note the similarity with Proposition [3.1.15
Freeness is given a unified treatment in Definition

4.7.18 This notion of free models can be generalized to the case of many
nodes. We indicate briefly how this can be done. Let .% be a linear sketch
and G be the nodes of its graph. By a Gg-indexed set, we mean a set C
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together with a function C' — Go (see [2.6.11)). Given any such set we can
form a sketch .#(C') which is the linear sketch with the set C' of constants
with the given function as type function. An initial model of this sketch is
called the free model generated by the Gp-indexed set C.

Example [£.7.7] can now be seen as describing the free u-structure with
one constant. Another example is the free graph on two nodes and one arrow.
As we saw in Example it has four nodes, and one arrow connecting
two of them.

We describe sketches with more expressive power in Chapters|[7}, [8|and [10}

4.7.19 Exercises

1. Find the initial term model of the linear sketch of Exercise [l of Section [4.6]
with two constants added, x of type 0 and y of type 1.

2. Show that requirement (ii) of [4.7.12| is equivalent to the following state-
ment: two terms in the model I are equivalent if and only if every model of
. takes them to the same function.

3. Show that if . is any linear sketch with constants, then Mod(.¥, Set)
has a terminal object.

4.8 2-categories

The category Cat of small categories and functors is a category, but it has
more structure than a category since between two functors with the same
domain and the same codomain there are natural transformations. A 2-
category C can be thought of as a category C? (its base category) with in
addition ‘maps from arrows to arrows’ called 2-cells that have many of the
properties of natural transformations, for example the interchange law.

We give a definition here (4.8.1} |4.8.3] 4.8.7) that in effect defines a 2-
category without assuming the existence of the base category, which is then
discovered as part of the structure; then we give a second more conceptual
definition that expresses a 2-category as a kind of ‘enriched’ category.
These definitions follow [Power and Wells, 1992].

The most accessible introduction to 2-categories is that of [Kelly and
Street, 1973]; much more is in [Gray, 1974] and [Kelly, 1982a]. [Baez, 1997]
is an exposition with many references to the literature of current work on
generalizations to n-categories and even further. Applications to computer
science are discussed in [Seely, 1987b|, [Gray, 198§|, [Ji-Feng and Hoare,
1990], [Power, 1990b], [Power and Wells, 1992 and [Corradini and Gadducci,
1997].
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4.8.1 Definition of 2-category, part I A 2-category C consists of three
sets Cg, C; and Cjy subject to certain requirements listed in TC—1 through
TCHbl below. We first establish some notation.

(a) The elements of C; for i =0, 1,2 are called i-cells.

(b) Elements of Cy are denoted by capital script letters and may also be
called objects.

(¢) Elements of C; are denoted by capital Roman letters and may also be
called arrows.

(d) Elements of Cq are denoted by lowercase Greek letters.

This definition is continued in below.

4.8.2 Example The category Cat has a 2-category structure as follows:
the O-cells are the small categories, the 1-cells are the functors, and the 2-
cells are the natural transformations. It will greatly aid your understanding
of 2-categories if you will read the following definitions with Cat in mind.

4.8.3 Definition of 2-category, part II A 2-category C has three cate-
gory structures on it, called the base category, the horizontal category
and the vertical category. The structure is defined in terms of the last two
and the base category is then derived from them.

We continue the definition of 2-categories in below.

4.8.4 Example In Cat, the base category has small categories as objects
and functors as arrows. The vertical category has functors as objects and
natural transformations as arrows (although, of course, there are no arrows
between two functors unless those functors have the same domain and the
same codomain). The horizontal category has categories as objects and natu-
ral transformations as morphisms. In the horizontal category, the domain of
a natural transformation is the domain of its domain functor (or of its codo-
main functor, for that matter; they have to be the same) and the codomain
is the codomain of its domain (or codomain) functor.
We will amplify these remarks in [4.8.8]

4.8.5 Notation We will systematically use the words ‘base’, ‘horizontal’
and ‘vertical’ before the words ‘composition’, ‘domain’, ‘codomain’, and
‘identity’ to indicate the category structure being considered. We will also
use superscript b, h and v for these purposes, except for composition. For
example, dom” « is the vertical domain of a and id".«7 is the horizontal iden-
tity of «7. If dom® o = F, cod” o = G, dom™ o« = &7 and cod” o = £, this is
summed up by writing o : F' — G : & — A.
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The base and horizontal composition are denoted * (it turns out that
this overloading cannot cause confusion) and the vertical composition is
denoted .

4.8.6 The base category We give the definition of the base category
here, even though we have not yet stated the axioms for a 2-category, be-
cause it is useful to illustrate the axioms with certain diagrams that assume
knowledge of the base category.

The base category of a 2-category C has the 0-cells of C as objects
and the 1-cells as arrows. Its structure is determined by the following rules.

BC-1 The domain and codomain are given by dom’(F) = dom”"(id?(F))
and cod’(F) = cod” (id"(F)).

BC-2 The base identity id®e7 for a 0-cell & is id°.e7 = dom"(id".«7), which
is the same as cod®(id".«7).

BC-3 The composition is denoted * and is defined by
G * F =dom"(id" G *id" F)
We write F' : o — A if dom® F = o/ and cod® F = .
4.8.7 Definition of 2-category, part III The structure of a 2-category

C is defined as follows:

TC-1 The horizontal category C" has Cy as its set of objects and C as its
set of arrows.

TC-2 The vertical category C” has C; as its set of objects and Cy as its
set of arrows.

TC-3 A 2-cell a goes between arrows whose vertical identities have the same
horizontal domains and codomains; precisely,

dom” o = dom" id? (dom" &) = dom” id"(cod” &)

and
cod” a = cod" id¥(dom® ) = cod” id"(cod” o)

We can illustrate this rule by the following diagram.

/ N

o o LB (4.45)
G
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A 2-cell that is a horizontal identity must also be a vertical identity;
precisely, for a 0-cell <7,

id"o7 = id*(dom”(id"«7))

which is necessarily also id”(cod”(id")). Thus for all 2-cells 3 : H
— Ko — B,

id’ o/ H H
g Yidla ol VB B = o U8 LR
N « « A
id°.o/ K K
(4.46)
Also for all v :id’s/ — G : o/ — o,
id® .o/ .
ldb,Q{ ll ldh,!Zf"‘ e o
o wd = A I S (447)
A 7
v e
G

For 2-cells o and S with cod” & = dom” 8 (so they are horizontally
composable)

id” dom"(8 * a) = id” dom" 3 * id” dom" «v
and
id” cod’(B * o) = id” cod? B * id” cod" «

The composites on the right of each equation exist by TC-[3] This is
illustrated this way:

F H H=+F
d RN e RN e RN
g Yo 8 VB ,C = g IBrxa ¥
~N N N N
G K K+G

(4.48)

(The interchange law) For 2-cells a, 5, v and ¢ for which the com-
posites 5 * a, d *v, v°a and § o 8 are all defined,

(Ox7)e(Bra)=(°p)*(y°q)
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The interchange law applies to a situation like this:

F G
:,/—\\‘1 P “
e e - 9 (4.49)
F: 3 Gg

It is necessary to show that the composites (§ * v) o (8 * a) and (§ o 8) = (y ©
«) in the interchange law are defined. We verify the second and leave the first
(which is a bit easier) as an exercise. Suppose the composites 3 * a, d * 7,
v o aandd o B are all defined. We must show that cod”(y o a) = dom”(d - 3).
But

cod’(yoa) = cod"id’dom’(y°a) TCH
= cod"id” dom" ~ C-1 of 1.3
= cod"~ TC-H
= dom”§ & =~ is defined (4.50)
= dom"id" dom" § TC B
= dom”id"dom®(§ - ) C-1 of 213
= dom"(6 - ) TCH

as required.

Note that you can read the information about the way the domains and
codomains match directly from Diagram : the diagram makes the fact
just verified obvious. Nevertheless, the facts must be verified in the first place
without the diagram — that is what makes it possible to draw the diagram
as shown.

We have chosen our notation so that the various entities in a 2-category look
like those in Cat. This is quite different from most of the literature, where
0-cells are usually written with uppercase Roman letters and 1-cells with low-
ercase Roman letters. Also, in much of the literature, the composite of 2-cells
a and v is denoted by «y » o (presumably because their domains compose in the
base category to give the domain of the composite) and the vertical compos-
ite of @ and 8 by Sa. In we denoted the vertical composite of natural
transformations by 8 o a because when functors are thought of as models the
vertical composite is the composite of the corresponding homomorphisms. We
follow that usage here.

4.8.8 Example We now reexamine Cat as a 2-category in more detail,
using the notation we have developed.

In the 2-category Cat, the base category is what we have called Cat all
along. Recall that for any two small categories &/ and %, Func(</, £) is
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a category with functors from o/ to 4 as objects and natural transforma-
tions between those functors as arrows. Then the vertical category for Cat is
the disjoint union of all the categories Func(«7, %#); vertical composition is
the ordinary composition of natural transformations defined in The
horizontal category for Cat has categories as objects and natural transfor-
mations as arrows (the horizontal domain of a natural transformation « : F
— G : 9 — A is &/, and the horizontal codomain is %), with horizontal
composition of natural transformations as composition.

Now we can see in more detail how Cat satisfies the definition of a 2-
category. We consider TC-[4] through TCHg| in detail. The other parts are
easier.

A horizontal identity in Cat is the identity natural transformation on
the functor id,, for some category 7. The component of this transformation
at any object A of &/ is simply id4, so it is immediate that the transfor-
mation acts as the identity for vertical composition (which is defined as
componentwise composition), so that TC is satisfied.

TC follows from the definition of horizontal composition of
natural transformations, which requires that if « : F — G and f: H —
K, then g x«a: H o F — G o K. Diagram for the identity natural
transformations on the vertical domains of these functors becomes

(Hidp)A

(H - F)A (H - F)A

(idy F)A (idy F)A (4.51)

(H - F)A (H-F)A

(Hidp)A

This diagram commutes since all the arrows in the diagram are id(gop)(a)-
In particular, by Definitions [4.2.13| and [4.4.3]

(Hidp)A = h(idp A) = H(idpa)) = idu(ra))

and by Definitions [1.2.13] and {.4.2]

(idg F)A = (idg)(F(A)) = idgra))

A similar argument works for the vertical codomain.
Finally, TCHg|is just Godement’s rule G-5, the interchange law.

4.8.9 Conceptual definition of 2-category We now give a more con-
ceptual definition of 2-category that shows that it is an example of an ‘en-
riched’ category. The primary source for enriched categories is [Kelly, 1982a].



4.8 2-categories 147

4.8.10 Definition A 2-category C consists of the data given by CTC-1
to CTC—4 below, subject to the requirement that Diagrams (4.52)) and (4.53))
commute.

CTC-1 A collection Cy of objects or 0-cells of C.

CTC-2 For every pair of O-cells 7 and %, a small category C(<7, %). The
objects of C(«7, ) for all 0-cells A and B are called the 1-cells of
C, and the arrows of C(«7, %) are called the 2-cells of C.

CTC-3 For every triple of 0-cells &/, # and ¥, a functor

comp : C(A,¢) x C(,B) — C(A,€)

called composition. (The domain of comp is the product of the
categories C(#,%) and C(«, #) as defined in [2.6.6])

CTC—4 For every object o of C, a functor unit : 7 — C(</,.o/), where F
is the terminal object in Cat, the category with one object 0 and
its identity arrow. The value unit(0) is denoted by id, .

The following diagrams must commute.

C(, 7)xC(B,6)xC(ot, ) — 22> o o\« C(er, )
id x comp comp
C(%, 2)xC( ., %) - - C(ot, D)
(4.52)
C(o, B)
|
id X unit id unit x id
}
C(#, B)xC(/, B) —gomms~ C(F , B) g~ O, B) < C( , )

(4.53)

4.8.11 Equivalence of the definitions To show that the definitions in[4.8.]
(as continued in|4.8.3|and [4.8.7)) and [4.8.10| are equivalent is mostly straight-
forward. Given [4.8.10} the composition function comp : C(#,%) x C(</, %)
— C(/, %) produces the horizontal composite, and the vertical composite
is the composition of the category C(&7,%). The fact that unit is a func-
tor means that it must take idy to the identity 2-cell on id, in C(«7, %),
which is a vertical identity, and that 2-cell is the horizontal identity because
Diagram commutes, so that TC follows. The fact that comp is a
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functor immediately implies TC (because functors preserve identities) and
the interchange law TC-{6]

Given [£.8.1] [£.8.3] and [£.8.7], comp may be defined to take two 2-cells to
their composite. The interchange law implies that comp preserves horizontal
composition, and it preserves identities by TC Define unit to take idy (the
sole arrow of 7) to id".7; then it preserves the identity because id".e/ =
idVid°«, and it trivially preserves composition. Diagrams (4.52) and (4.53)
then commute because the horizontal category is a category by definition,
so that the composition is associative and has identities.

4.8.12 2-functors If C and D are 2-categories, a 2-functor F': C — D
consists of three maps F; : ; — %; that are simultaneously functors from
¢" — 2" and from €V — 2V. (It follows that they are also functors from
€ — )

4.8.13 Example A type of category that has been considered in connec-
tion with program refinement is a poset-enriched category. This is a cate-
gory € together with a partial ordering on every hom-set Homy (A, B) with
the property that for every triple A, B and C' of objects, the composition
function comp : Hom(A, B) x Hom(B, C) — Hom(A, C) is monotone (pre-
serves order). In other words, if f < f': A— Band g <g¢' : B — C, then
gef<g-f:+A—C.

A poset-enriched category % can be given a 2-category structure by
requiring that there be exactly one 2-cell from f to g (where f,g: A — B)
if and only if f < g, and otherwise no 2-cells from f to g. Thus for each pair
of objects A and B we construct the category C'(Hom(A, B)) corresponding
to the poset Hom(A, B) as in It is straightforward to verify that this
structure satisfies the conceptual definition of 2-category .

If € and & are poset-enriched, it is a sufficient condition for a functor
F : % — 2 to be a 2-functor that, for f,g: A — B, f <g= Ff < Fg.

Three categories that we have already discussed have a natural poset-
enriched structure (Exercises and .

An order-enriched category is usually defined to be a poset-enriched
category in which each poset Hom(A, B) is a strict w-CPO (see in
which every pair of elements has a greatest lower bound. Applications of
this concept may be found in [Ji-Feng and Hoare, 1990], [Edalat and Smyth,
1993 and |Martin, Hoare and He, 1991].

4.8.14 Rewrite systems Let A be a finite alphabet. We will denote let-
ters in A by a, b, c¢... and strings in the Kleene closure A* by u, v, w....
A rewrite system G consists of a finite set of productions, which are
symbols of the form y — z where y,z € A*.



4.8 2-categories 149

Given a rewrite system G, a string x can be directly derived from w,
written w = z, if there are (possibly empty) strings v and v in A* and a
production y — z such that w = uyv and x = uzv. For example, if G has a
production ab — baa, then baba = bbaaa, abb = baab and ab = baa.

The operation = (‘derives to’) is defined to be the reflexive transitive
closure of =: for any string w, w 2 w, and w £ 7 if and only if there is a
string w’ such that w = v’ and w' = =.

A context free rewrite system is a rewrite system with the property
that in every production w — x, w is a string of length 1 (essentially a single
letter). A context free grammar G is a context free rewrite system with
additional structure. First, the alphabet A is the union of disjoint sets T,
the set of terminals, and N, the set of nonterminals. The terminals are
traditionally (in academic treatments of theoretical computer science such
as |Lewis and Papadimitriou, 1981]) denoted by lowercase letters and the
nonterminals by uppercase letters. There is a distinguished nonterminal S
called the start symbol, and every production has the form V' — w where
V is a single nonterminal and w is any string in A* (terminals, nonterminals,

or both). The language generated by G is the set {w € T* | § X w}.
An example is the grammar GG with one terminal ¢ and one nonterminal
S, the start symbol, with productions

S — 5SS
S —al (4.54)
S —a

It turns out that context free rewrite systems are easily seen to have the
structure of a 2-category. The additional structure that makes a context free
grammar plays no role in this; we mentioned them because they are the most
familiar example of context free rewrite systems.

To see how this works, consider an example of a derivation. One can
derive aa in the grammar by (at least) three different routes:

S =55= a5 = aa
S=85= Sa=aa (4.55)
S = aS = aa

We can represent each of these by a derivation tree. This is a rooted tree
with branches ordered left to right. The root is S (traditionally put at the
top), and the children of each node are the symbols of the string derived
from that node in order. For example, in the first derivation in , the
first S derives to S5, so that its two children are S and S. The second S
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derives to a, which is therefore its only child, and the third S also derives to
a. Thus its tree is drawn this way:

S/S\S
o

a a

(4.56)

The second derivation in (4.55) has the same tree as the first, whereas the
derivation tree of the third is

N
\

a

(4.57)

The idea is that the first two derivations are really ‘the same, but carried
out in a different order’.
A more general derivation, for example

SaS=-55aS=-a5aS5=aaaS=aaaaS=aaaaSS=aaaaas=aaaaaa
(4.58)
has a derivation forest consisting of one tree for each symbol in the starting
string (SaS in this case), with that symbol as its root; each tree consists
of the part of the derivation performed on its root. The derivation forest

of is
S S
/N /N
S S a S
\ \ / \ (4.59)
a a S S
| |

a a

The derivation

SaS=5SaS=aSaS=aSaaS=aaaaS=aaaaSS = aaaaaS = aaaaaa
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has the same forest, but this derivation has a different forest, as you can
check:
SaS = aaS=aaaS= aaaaS= aaaaaS = aaaaaa

Again, if two derivations have the same derivation forest, they are essentially
the same except for the order of application of the productions.
These examples suggest the following definition.

4.8.15 Definition Let # be a context free rewrite system on the alpha-
bet A. The 2-category C(#') associated with # is defined as follows:

RS-1 C(#') has one 0-cell.
RS-2 The 1-cells of C(#) are the strings in A*.

RS-3 A 2-cell a: w — x is the derivation forest of a derivation of x from w
using the productions of #'.

RS4 If a:w — x and B : w' — 2’ are 2-cells, then a * B : ww' — z2’ is
the forest corresponding to deriving ww’ to zw’ using «, then deriving
zw' to 2’ using 3. Note that deriving in the opposite order gives the
same forest.

RS5 If «: w — x and v : * — y are derivation forests, then o o v : w
— y is the forest obtained by using «, then 5. Note that in this case
the order does matter. In general, the opposite order won'’t give a
composition at all.

To prove that C(%#) is indeed a 2-category is straightforward but messy.
We illustrate the interchange law. Consider these four derivations:

S/S\S S/S\S

a

=
I

s
s S N
s s
a a ‘ ‘
a a

It is clear that the derivation shown in (4.59)) is both (v * J) o (8 * ) and
(yea)«(-P).
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4.8.16 Rewrite systems in general Rewrite systems in general have
a 2-categorical structure of the same kind as context free rewrite systems.
The problem comes in defining when two derivations should be regarded as
the same. A reasonable answer is that they are the same when they corre-
spond to the same pasting scheme, a 2-categorical notion which special-
izes to the concept of derivation forest in the case of context free rewrite
systems. A pasting scheme is essentially a complex of 0, 1 and 2-cells that
compose horizontally and vertically in a unique way to a particular 2-cell.
Diagram is an example of a pasting scheme: no matter in what or-
der you compose 2-cells in that diagram, you get the same 2-cell. Pasting
schemes are characterized in |Johnson, 1989], |[Power, 1990a] and [Power,
1991]. Definition works for that case as well, using pasting schemes
for 2-cells instead of derivation forests.

This insight that rewrite systems and grammars are instances of 2-
categories suggests that one study rewrite systems for paths in the free cat-
egory generated by a graph as a way of modeling rewriting systems in typed
functional languages as illustrated in Section

4.8.17 Exercises

1. Suppose the composites 8 * a, § =y, v o a and § o § are all defined. Show
that the composite (§ * y) o (5 * «) is defined.

2. Let f,g: (4,<) — (B, <) be monotone functions between posets. Define
f < g to mean that for every x € A, f(x) < g(z). Show that this defini-
tion makes the category of posets and monotone maps into a poset-enriched
category.

3. Show that Rel (see [2.1.14)) with inclusion of relations as the ordering is
a poset-enriched category.

4. Let f, f' : A — B be partial functions (see with f defined on Ag
and f' defined on Af. Define f < f’ to mean that Ay C A}, and that for
x € Ay, f'(z) = f(x). Show that this definition makes Pfn a poset-enriched
category.
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Products and sums

This chapter introduces products, which are constructions allowing the defi-
nition of operations of arbitrary arity, and sums, which allow the specification
of alternatives. In Set, the product is essentially the cartesian product, and
the sum is disjoint union.

Sections [5.1] through [5.3] introduce products, and Section [5.4] introduces
sums. These ideas are used to define the important concept of natural num-
bers object in Section Section describes a way to regard formal
languages and formal deductive systems as categories. Products and sums
then turn out to be familiar constructions. Thus in programming languages
products are records with fields, and in deductive systems product becomes
conjunction. Finally, Section discusses distributive categories (roughly,
categories in which products distribute over sums), which are categories with
properties that one would expect deductive systems to have.

Except for the last two sections, all the sections of this chapter are used
in many places in the rest of the book. The concepts from the last two
sections are used only in examples. The last three sections of this chapter
are independent of each other.

5.1 The product of two objects in a category

5.1.1 Definition If S and T are sets, the cartesian product S x T is
the set of all ordered pairs with first coordinate in S and second coordinate
in T in other words, S x T = {(s,t) | s € S and t € T'}. The coordinates are
functions proj; : § x T — S and proj, : S x T" — T called the coordinate
projections, or simply projections.

We give a specification of product of two objects in an arbitrary category
which will have the cartesian product in Set as a special case. This speci-
fication is given in terms of the coordinate projections, motivated by these
two facts:

(i) you know an element of S x T' by knowing what its two coordinates
are, and

153
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(ii) given any element of S and any element of 7', there is an element of
S x T with the given element of S as first coordinate and the given
element of T as second coordinate.

5.1.2 The product of two objects Let A and B be two objects in a
category €. By a (not the) product of A and B, we mean an object C
together with arrows proj; : C — A and proj, : C — B that satisfy the
following condition.

5.1.3 For any object D and arrows ¢ : D — A and ¢s : D — B, there is
a unique arrow q: D — C:

q1

Qe — 1

© proj; proj,

such that proj; - ¢ = ¢1 and proj, ° ¢ = qa.

5.1.4 Product cones The specification above gives the product as C' to-
gether with proj; and proj,. The corresponding diagram

C
pro/ \pron (5.2)
A B

is called a product diagram or product cone, and the arrows proj, are
called the projections. These projections are indexed by the set {1,2}. The
base of the cone is the diagram D : .4 — €, where .# is the discrete graph
with two nodes 1 and 2 and no arrows. This amounts to saying that the base
of the cone is the ordered pair (A, B). The diagram

C
pro/ \{ron (5.3)
B A

is regarded as a different product cone since its base is the diagram D with
D(1) = B and D(2) = A.
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By a type of synecdoche, one often says that an object (such as C' above)
‘is” a product of two other objects (here A and B), leaving the projections
implicit, but the projections are nevertheless part of the structure we call
‘product’.

Products can be based on discrete graphs with other shape graphs, hav-
ing more elements (Section or having other sets of nodes, for example
attributes of a data base such as {NAME, SALARY} (see [5.3.14). In this case
the projections would be proj,,,. and proj,,, .-

The existence of the unique arrow g with the property given in |5.1.3]is
called the universal mapping property of the product. Any object con-
struction which is defined up to a unique isomorphism (see Theorem
in terms of arrows into or out of it is often said to be defined by a universal

mapping property.

5.1.5 Products in Set If S and T are sets, then the cartesian product
S x T, together with the coordinate functions discussed in is indeed a
product of S and T in Set. For suppose we have a set V' and two functions
qg1:V — Sand g2: V — T. The function ¢ : V — S x T defined by

q(v) = (q1(v), g2(v))

for v € V is the unique function satisfying[5.1.3] Since proj;(¢(v)) = gi(v) by
definition, ¢ makes (5.1)) commute with U = S x T, and it must be the only
such function since the commutativity of determines that its value at
v must be (q1(v),g2(v)).

We discuss products in Rel and in Pfn in

5.1.6 Products in categories of sets with structure In many, but
not all, categories of sets with structure, the product can be constructed by
endowing the product set with the structure in an obvious way.

5.1.7 Example IfS and T are semigroups, then we can make S x T into
a semigroup by defining the multiplication

(s1,t1)(s2,t2) = (s152,t1t2)
We verify associativity by the calculation
[(s1,t1)(s2,t2)](s3,13) = (s152,t1t2)(s3,13)
((s182)s3, (t1t2)t3)
= (s1(s283),t1(tats)) (5.4)
(51,t1)(5283,t2t3)
(s1,t1)[(s2,2) (53, 3)]
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Furthermore, this structure together with the coordinate projections satisfies
the definition of product in the category of semigroups. To see this requires
showing two things:

(a) The arrows proj; : SxT — S and proj, : S xT — T are homomorph-
isms of semigroups.

(b) If ¢1 and ¢y are semigroup homomorphisms, then so is the arrow ¢

determined by

It is necessary to show both because the definition of product in a category
% requires that the arrows occurring in Diagram be arrows of the
category, in this case, Sem.

Requirement (a) follows from this calculation:

proji((s1,t1)(s2,t2)) = proj;(sise,tita) = s1s2
= proji (s1,t1) proj (s2, t2)

and similarly for proj,.
As for requirement (b), let R be another semigroup and ¢; : R — S and
g2 : R — T be homomorphisms. Then

(q1,q2)(r172) = (q1(r172), g2(r172)) = (q1(71)q1(72), g2(7r1)q2(72))
= (C]1(7“1)7Q2(7“1))((I1(7“2)aQZ(T2))
= (q1,92)(r1){q1,92)(72)

A construction for products similar to that for semigroups works for
most other categories of sets with structure. Also, the product of categories
as defined in is the product of the categories in Cat. One example of a
category of sets with structure which lacks products is the category of fields.
We discuss this in [8.2.3]

5.1.8 Products in posets We have already seen in that any poset
(partially ordered set) has a corresponding category structure C(P). Let P
be a poset and x and y two objects of C(P) (that is, elements of P). Let
us see what, if anything, is their product. A product must be an element z
together with a pair of arrows z — x and z — y, which is just another way
of saying that z < x and z < y. The definition of product also requires that
for any w € P, given an arrow w — x and one w — y, there is an arrow w
— Z.
This translates to

w < z and w < y implies w < 2
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which, together with the fact that z < x and z < y, characterizes z as the
infimum of z and y, often denoted x A y. Thus the existence of products in
such a category is equivalent to the existence of infimums. In particular, we
see that products generalize a well-known construction in posets. Note that
a poset that lacks infimums provides an easy example of a category without
products.
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5.1.9 Exercises

1. Show that the product of two categories, as in [2.6.6] is the product in the
category of categories and functors.

2. Describe the product of two monoids in the category of monoids and
monoid homomorphisms.

3. Describe the product of two posets in the category of posets and monotone
functions.

4. Let 4 and 57 be two graphs. Show that the product ¥ x 57 in the
category of graphs and homomorphisms is defined as follows: (¢ x )y =
Go X Hy. An arrow from (g,h) to (¢',h') is a pair (a,b) with a: g — ¢
in¥ and b: h — I/ in 7. The projections are the usual first and second
projections.

5. Show that if A is an object in a category with a terminal object 1, then
A
V \%‘
1 A

6. Give an example of a product diagram in a category in which at least one
of the projections is not an epimorphism.

is a product diagram.

5.2 Notation for and properties
of products

5.2.1 Consider sets S = {1,2,3}, T'= {1,2} and U = {1,2,3,4,5,6}. De-
fine proj; : U — S and proj, : U — T by this table:
u projy(u)  projy(u)

2

S U W N
W = N W
NN~ ==
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Since the middle and right columns give every possible combination of a
number 1, 2 or 3 followed by a number 1 or 2, it follows that U, together
with proj; and proj,, is a product of S and T'. For example, if ¢ : V — §
and gg : V. — T are given functions and ¢;(v) = 1, ¢g2(v) = 2 for some v in
V', then the unique function ¢ : V' — U satisfying must take v to 5.

In effect, proj; and proj, code the ordered pairs in S x 1" into the set U.
As you can see, any choice of a six-element set U and any choice of proj;
and proj, which gives a different element of U for each ordered pair in S x T’
gives a product of S and T

This example shows that the categorical concept of product gives a more
general construction than the cartesian product construction for sets. One
cannot talk about ‘the’ product of two objects, but only of ‘a’ product.
However, the following theorem says that two products of the same two
objects are isomorphic in a strong sense.

5.2.2 Theorem Let & be a category and let A and B be two objects of € .
Suppose

NN

are both product diagrams. Then there is an arrow, and only one, from C to
D such that o

A/N\B (5.5)
N

Y

D
commutes and this arrow is an isomorphism.

The proof we give is quite typical of the kind of reasoning common in
category theory and is worth studying, although not necessarily on first
reading.

Proof. Let the projections be p; : C — A, po : C — B, ¢1 : D — A and
q2 : D — B. In accordance with there are unique arrows p: C' — D
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and ¢ : D — C for which

br°eq = 1
p2 ° q = QZ (56)
qgr°p = D1
qQ°p = P2

Thus we already know there is exactly one arrow (namely p) making Dia-
gram (j5.5) commute; all that is left to prove is that p is an isomorphism
(with inverse q).

The arrow q o p : C — C satisfies

preqep=qi°op=p=p;e°idc

p2eqeop=qyop=p2=p2°idc

and by the uniqueness part of it follows that ¢ - p = id¢. If we exchange
the p’s and ¢’s, we similarly conclude that p - ¢ = idp and hence that p and
q are isomorphisms which are inverse to each other. O

The following proposition is a converse to Theorem Its proof is left
as an exercise.

5.2.3 Proposition Let

C
pro Jl/ &ro Jo
A B

be a product diagram, and suppose that an object D is isomorphic to C by
an isomorphism i : D — C. Then

D
proj; / \projz °i
A B

5.2.4 Categorists specify the product of two sets by saying that all they
care about an element of the product is what its first coordinate is and what
its second coordinate is. Theorem [5.2.2| says that two structures satisfying
this specification are isomorphic in a unique way.

The name ‘(s,t)’ represents the element of the product with first coor-
dinate s and second coordinate t. In a different realization of the product,

18 a product diagram.
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‘(s,t)’ represents the element of that product with first coordinate s and
second coordinate t. The isomorphism of Theorem [5.2.2] maps the repre-
sentation in the first realization of the product into a representation in the
second. Moreover, the universal property of product says that any name
‘(s,t)’ with s € S and t € T represents an element of the product: it is the
unique element x € S x T with proj,(z) = s and projy(x) = t.

In traditional approaches to foundations, the concept of ordered pair
(hence the product of two sets) is defined by giving a specific model (or
what a computer scientist might call an implementation) of the specification.
Such a definition makes the product absolutely unique instead of unique up
to an isomorphism. We recommend that the reader read the discussion of
this point in [Halmos, 1960], Section 6, who gives a beautiful discussion of
(what in present day language we call) the difference between a specification
and an implementation.

In categories other than sets there may well be no standard implemen-
tation of products, so the specification given is necessary. In Chapter we
will discuss a category known as the category of modest sets in which any
construction requires the choice of a bijection between N and N x N. There
are many such, and there is no particular reason to choose one over another.

5.2.5 Notation for products It is customary to denote a product of
objects A and B of a category as A x B. Precisely, the name A x B applied
to an object means there is a product diagram

Ax B

pro/ \{rojz (5.7)

A B

Using the name ‘A x B’ implies that there are specific, but unnamed, pro-
jections given for the product structure.

If A= B, one writes A x A = A? and calls it the cartesian square of
A.

The notations A x B and A? may be ambiguous, but because of The-
orem [5.2.2] it does not matter for categorical purposes which product the
symbol refers to.

Even in the category of sets, you do not really know which set A x B is unless
you pick a specific definition of ordered pair, and the average mathematician
does not normally need to give any thought to the definition because what really
matters is the universal property that says that an ordered pair is determined
by its values under the projections.
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5.2.6 Binary operations A binary operation on a set S is a function
from S x S to S. An example is addition on the natural numbers, which is
a function + : N x N — N. This and other familiar binary operations are
usually written in infix notation; one writes 3+5 = 8, for example, instead of
+(3,5) = 8. In mathematics texts, the value of an arbitrary binary operation
m at a pair (x,y) is commonly denoted zy, without any symbol at all.

Using the concept of categorical product, we can now define the concept
of binary operation on any object S of any category provided only that there
is a product S x S: a binary operation on S is an arrow S x S — S.

The associative law (zy)z = x(yz) can be described using a commutative
diagram as illustrated in In that section, the diagram is a diagram in
Set, but now it has a meaning in any category with products. (The meaning
of expressions such as mult xS in arbitrary categories is given in [5.2.17
below.)

The more general concept of function of two variables can now be defined
in a categorical setting: an arrow f: A x B — C can be thought of as the
categorical version of a function of two variables. This has the consequence
that a categorist thinks of a function such as f : R x R — R defined by
f(x,y) = 22 + 92 as a function of one variable, but that variable is a struc-
tured variable (an ordered pair). The notation we have been using would
suggest that one write this as f((z,y)) instead of f(x,y), but no one does.

5.2.7 Suppose we are given a product diagram (b.7)). For each pair of

arrows f : C — A and ¢ : C — B requirement produces a unique
q: C — A x B making the following diagram commute.

C
f T g (5.8)
~—F AxB— B
projy Proja
In other words, it produces a function
mC : Homg (C, A) x Homg (C, B) — Homg (C, A x B)
Thus g = 7C(f, g).

5.2.8 Proposition The function wC is a bijection.
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Proof. wC' is injective, since if (f,g) and (f’,¢’) are elements of
Hom%»(C', A) X HOm(g(C, B)

both of which produce the same arrow ¢ making Diagram (5.8) commute,
then f = proj; ¢ = f’, and similarly g = ¢'.
It is also surjective, since if r: C — A X B is any arrow of %, then it

makes
C

projy o r projy o r (5.9)

T
- AxB -
projy projo

commute, and so is the image of the pair (proj; o r,proj, o r) under 7C. 0O

5.2.9 It is customary to write (f,g) for 7C(f,g). The arrow (f,g) inter-
nally represents the pair of arrows (f, g) of the category €. Proposition
says that the representation is good in the sense that (f,g) and (f,g) each
determine the other. Proposition below says that the notation (f, g)
is compatible with composition.

We have already used the notation ‘(f, ¢)’ in the category of sets in

5.2.10 In the case of two products for the same pair of objects, the iso-
morphism of translates the arrow named (f, g) for one product into the
arrow named (f, g) for the other, in the following precise sense.

5.2.11 Proposition Suppose

C D
and
S Ne e e
A B A B

are two product diagrams and ¢ : C' — D is the unique isomorphism given
by Theorem [5.2.4 Let f : E — A and g : E — B be given and let u : E
— C, v: E — D be the unique arrows for which p1 cu =q1 v = f and
prou=¢qeov=g. Then ¢ o u=w.

Note that in the statement of the theorem, both © and v could be called
“(f,g), as described in The ambiguity occurs because the pair notation
does not name which product of A and B is being used. It is rare in practice
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to have two different products of the same two objects under consideration
at the same time.

Proof. By [5.2.2] p; = ¢; © ¢, i = 1,2. Using this, we have g1 o ¢ o u = p o
u = f and similarly ¢g ° ¢ e u = ¢g. Since v is the unique arrow which makes
q1°v=uand gs o v = g, it follows that ¢ o u = v. O

This theorem provides another point of view concerning elements (s, t)
of a product S x T'. As described in the element s may be represented
by an arrow s : 1 — S, and similarly ¢ by ¢ : 1 — T Then the arrow (s,t) : 1
— S x T represents the ordered pair (s,t) whichever realization of S x T' is
chosen.

5.2.12 The switch map Our notation A x B means that A x B is the
vertex of a product cone with base the discrete diagram D with D(1) = A
and D(2) = B. Then B x A denotes the product given by the diagram

Bx A

1/ \7;2 (5.10)

B A

where we use p; and p2 to avoid confusing them with the arrows proj; and
proj, of Diagram . (Of course, this is an ad hoc solution. If one had to
deal with this situation a lot it would be necessary to introduce notation
such as projf’B and projf’A.) Then this is a product diagram:

Bx A
]92/ \191 (5.11)
A B

It follows from Theorem that there is an isomorphism (p2,p1) : B x A
— A x B (called the switch map) that commutes with the projections. Its
inverse is (projy, proj;) : A x B — B x A.

5.2.13 To show that the notation (g1, ¢2) is compatible with composition,
we will show that the arrows 7C' defined in are the components of a nat-
ural isomorphism. To state this claim formally, we need to make Hom¢ (C, A) x
Homg (C, B) into a functor. This is analogous to the definition of the con-
travariant hom functor. A and B are fixed and the varying object is C, so
we define the functor Homg (—, A) x Homy (—, B) as follows:

(i) [Homg(—, A) x Homg(—, B)](C) = Homg(C, A) x Hom¢(C, B), the
set of pairs (g, h) of arrows g: C' — A and h: C — B.
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(ii) For f: D — C, let Homg(f, A) x Hom¢ (f, B) be the arrow

HOmcg(C, A) X Homcg(C,B) — HOmcg(D,A) X HOmcg(D,B)

that takes a pair (g,h) to (g f,h e f).

Now we can state the proposition.
5.2.14 Proposition
mC : Homy (C, A) x Homy (C, B) — Homg (C, A X B)
constitutes a natural isomorphism

7 : Hom(—, A) x Hom(—, B) — Hom(—, A x B)

Proof. We give a proof in detail of this proposition here, but you may want
to skip it on first reading, or for that matter on fifteenth reading. We will
not always give proofs of similar statements later (of which there are many).

Let P4 p denote the functor Hom(—, A) x Hom(—, B). The projections
p1: Ax B — Aand ps : Ax B — B from the product form a pair (p1,p2) €
PA, B (A x B )

5.2.15 Lemma The pair (p1,p2) is a universal element for Ps p.

Proof. The pair fits the requirements of Proposition by definition of
product: if (¢1,¢2) € Pa,g(V), in other wordsif¢; : C — Aand ¢z : C — B,
there is a unique arrow ¢ : C — A x B such that p; o ¢ = ¢; for i = 1, 2.
By [.2.13[(ii), Pa,5(q)(p1,p2) = (q1,¢2) as required.

Note that this gives an immediate proof of Theorem [5.2.2] See[13.2.3] for
another point of view concerning (p1, p2).

Continuing the proof of Proposition from Equation it fol-
lows that the natural isomorphism « from Home (—, A X B) to P4 g induced
by this universal element takes ¢ : V' — A x B to (p1 ° ¢,p2 ° q), which is
Pa 5(q)(p1,p2). Then by definition of m we have that aC' = (7C)~, so that
m is the inverse of a natural isomorphism and so is a natural isomorphism. O

It is not hard to give a direct proof of Proposition using Propo-
sition [5.2.8] and the definition of natural transformation. That definition
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requires that the following diagram commute for each arrow f:C — D:

Hom(C, A) x Hom(C, B) — 2+ Hom(C, A x B)
(5.12)

Hom(D, A) x Hom(D, B)

- Hom(D, A x B)

In this diagram, the left arrow is defined as in Section and the right
arrow is defined as in Section B.1.211 We leave the details as Exercise [3]

5.2.16 If f:C — Dand ¢ : D — A and ¢2 : D — B determine (g1, q2) :
D — A x B, then the commutativity of (5.12)) says exactly that

(e fiaze ) =(a1,a)° f (5.13)

In this sense, the (f,g) notation is compatible with composition.

Category theorists say that the single arrow (g1, g2) is the internal pair of
arrows with first coordinate ¢; and second coordinate ¢go. The idea behind the
word ‘internal’ is that the category % is the workspace; inside that workspace
the arrow (q1,¢q2) is the pair (q1,q2).

When you think of 4 as a structure and look at it from the outside, you
would say that the arrow g represents the external pair of arrows (q1,q2).

5.2.17 The cartesian product of arrows The cartesian product con-
struction for functions in sets can also be given a categorical definition.
Suppose that f: S — S and g : T — T’ are given. Then the composite
arrows f o proj; : S x T — S" and g ° proj, : S x T — T’ induce, by the
definition of product, an arrow denoted f x g : S x T'— S’ x T such that

g projy SxT Projo T
f fxg g (5.14)
! . S x T’ - !
projy Projo

commutes. Thus f x g = (f ¢ proj;, g o projs). It is characterized by the
properties

proj; o (f x g) = f e projy; projy o (f X g) = g ° proj,
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Note that we use proj; and proj, for the product projections among
different objects. This is standard and rarely causes confusion since the do-
mains and codomains of the other arrows determine them. We will later call
them pq and po, except for emphasis.

When one of the arrows f or g is an identity arrow, say f = idg, it is
customary to write S x g for idg xg.

An invariance theorem similar to Proposition [5.2.11]is true of cartesian
products of functions.

5.2.18 Proposition Suppose the top and bottom lines of each diagram be-
low are product cones, and that m and n are the unique arrows making the
diagrams commute. Let ¢y : P — @ and ¢ : C — D be the unique isomorph-

isms given by Theorem[5.2.9 Then ¢ o m =n o).

S1

S - p -T S Q -T
hl m h2 hl n h2
A —C—p =B A—qg—D—¢ B
Proof. For i =1,2,
qi°¢°m° -1 = piomof[!}_l
= h’L Orio’l/]_l
= hZ °08; o0 Qp o ’lpil (515)

The first equality is the property of ¢ given by Theorem the second by
definition of product applied to C', and the third is the defining property of
1. It follows that ¢ o m o 1! is the unique arrow determined by hq o s1 : Q
— A and hg ° s9 : Q — B and the fact that D is a product. But n is that
arrow, so that ¢ o m o ¢~ = n, whence the theorem. O

5.2.19 Products and composition Let % be a category with products,
and suppose f; : A; — Bj and g; : B; — C; for i =1, 2, so that g1 - f1 and
g2 ° fo are defined. Then

(g1of1) x (g92° f2) = (g1 X g2) o (f1 x f2) : Ay x Ay — C1 x Cy  (5.16)

This follows from the fact that (g1 ° f1) X (g2 ° f2) is the unique arrow
such that

projy o ((g1 ° f1) % (g2 ° f2)) = (g1 ° f1) ° proj;
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and
projg © (g1 ° f1) % (g2 ° f2)) = (g2 © f2) = proj,
Because Diagram (5.14) commutes, we have

proji © (g1 X g2) ° (f1 X f2) = g1 °proj; o (f1 x f2)
= glofloprojlele2—>C'1

and similarly
proj, o (g1 X g2) ° (f1 X f2) = g2 © fa o projy : Ay x Ay — C

so the result follows from the uniqueness of (g1 ° f1) x (g2 ° f2).

This fact allows us to see that the product of two objects is the value
of a functor. Define — x — : € x € — € as follows: choose, for each pair A
and B of ¢, a product object A x B, and let (— x —)(A4,B) = A x B and
(= x =)(f,9) = [ x g. Equation shows that this mapping preserves
composition and identities.

Another useful equation is the following, where we assume f: A — C,
g:B—>D,u: X —Aandv: X — B.

(f % g)e(u,v) =(f°u,g°v) (5.17)
The proof is left as an exercise.

5.2.20 Proposition Let € and Z be any categories. If & has products,
then the functor category Func(€,2) also has products.

Proof. The product is constructed by constructing the product at each value
F(C) and G(C). Precisely, given two functors F,G : € — 2, the product in
Func(%, 2) of F and G is the functor F x G defined as follows. For an object
Cof €, (FxG)(C)=F(C)xG(C), the product of the sets F(C) and G(C)
in 2. For an arrow f: C — D, (F x G)(f) = F(f) x G(f), the product of
the arrows as defined in[5.2.17} The projection 7y : F' x G — F is the natural
transformation whose component at C'is mC = p; : F(C) x G(C) — F(C),
the product projection in Z. For any f: C' — D in ¥, the diagrams

FoxGe P ko FoxGe 2 qo
F(f)xG(f) F(f) F(f)xG(f) G(f)
FD x GD -~ FD FDxGD —5> GD

(5.18)
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commute by definition of F(f) x G(f) (5.2.17)), so that m; and 79 are natural

transformations as required.

Given natural transformations o« : H — F and §: H — G, we must
define (o, ) : H — F x G. For an object C, the component (a,3)C =
(aC,BC) : H(C) — F(C) x B(C). To see that («a, () is a natural transforma-
tion, we must show that for any arrow f : C' — D, this diagram commutes:

He) 29 piovxao)
H(f) F(f)xG(f) (5.19)
H(D) — 5 F(D)<G(D)

This follows from the following calculation:

(F(f) x G(f)) (e, BYC = (F(f) x G(f)) ° (aC, BC)
F(f) e aC,G(f) - BC)

(
{
= (aD-H(f),8D > H(f))
{
(@,

aD ﬂD> H(f)

in which the first and last equalities are by definition of («, 3), the second is
by Equation (5.17)), the third because o and 3 are natural transformations,
and the fourth by Equation (5.13)). 0

Categorists say that this construction shows that Func(%, Z) has ‘pointwise
products’. This is the common terminology, but it might be better to say it has
‘objectwise products’.

5.2.21 Corollary The category of models of a linear sketch has products
constructed pointwise.

This follows from the fact that the category of models of a linear sketch
.7 is equivalent to the functor category Func(Th(.¥), Set) (see |4.6.11)).
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5.2.22 Exercises

1. Give explicitly the isomorphism claimed by Theorem between S x T
and the set {1,2,3,4,5,6} expressed as the product of {1,2,3} and {1,2}
using the projections in [5.2.1

2. Given a two-element set A and a three-element set B, in how many
ways can the set {1,2,3,4,5,6} be made into a product A x B? (This refers

tof21)

3. Prove that Diagram (5.12]) commutes.
4. Prove Proposition [5.2.3

5.Let f:A—C,g9g:B—D,u:X — A and v: X — B. Show that
(f xg) e {uv) =(feugeuv).

5.3 Finite products

Products of two objects, as discussed in the preceding sections, are called
binary products. We can define products of more than two objects by an
obvious modification of the definition.

For example, if A, B and C are three objects of a category, a product of
them is an object A x B x C together with three arrows:

Ax BxC

P1 P2 D3 (5.20)

!

A B C

for which, given any other diagram

D

q1 q2 q3

!

A B C

there exists a unique arrow ¢ = (q1,¢2,q3) : D — A x B x C such that p; o
q=q;,i=1, 2, 3. A diagram of the form is called a ternary product
diagram (or ternary product cone). The general definition of product follows
the same pattern.
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5.3.1 Definition A product of a list Ay, Ag, ..., A, of objects (not nec-
essarily distinct) of a category is an object V together with arrows p; : A
— Ay, fori =1,...,n, with the property that given any object B and arrows
fi: B — A;, i =1,...,n, there is a unique arrow (fi, fo,..., fn) : B — A
for which p; o (f1, fa,..., fo) = fi, i =1,...,n.

A product of such a list Ay, Ao,..., A, is called an n-ary product
when it is necessary to specify the number of factors. Such a product may
be denoted A; x Az x -+ x A, or [[i; A;.

The following uniqueness theorem for general finite products can be
proved in the same way as Theorem [5.2.2

5.3.2 Theorem Suppose Ay, As,..., A, are objects of a category € and
that A, with projections p; : A — A;, and B, with projections q; : B — A;,
are products of these objects. Then there is a unique arrow ¢ : A — B for
which q; o ¢ = p; fori=1,...,n. Moreover, ¢ is an isomorphism.

Propositions [5.2.3] [5.2.11] and [5.2.18] also generalize in the obvious way
to m-ary products.

5.3.3 Binary products give ternary products An important conse-
quence of the definition of ternary product is that in any category with
binary products, and any objects A, B and C, either of (A x B) x C' and
A x (B x C) can be taken as ternary products A x B x C' with appropriate
choice of projections.

We prove this for (A x B) x C. Writing p;, i = 1,2, for the projections
which make A x B a product of A and B and ¢;, i = 1,2 for the projections
which make (A x B) x C a product of A x B and C, we claim that

(Ax B)xC

o/

Ax B q2
p/ \92
A B

is a product diagram with vertex (A x B) x C and projections pj ° qp :

(AxB)xC — A, ppeqi:(AxB)xC — B,and ¢2: (Ax B) xC — C.
Suppose that f: D — A, g: D — B, and h: D — C are given. We

must construct an arrow u : D — (A x B) x C' with the property that

C

(a) pregieou=f,
(b) p2°gqieu=g,and
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(¢) g2 °ou=h.
Recall that (f,g) is the unique arrow making

D
|
f <flg> g (5.21)
A m Ax B Iz B

commute. This induces a unique arrow u = ((f, g), h) making

D
(f.9) T h (5.22)
AXBT(AXB)XC @ c

commute.

The fact that (a) through (c¢) hold can be read directly off these diagrams.
For example, for (a), pr » g1 = 4= p1 = (f,0) = /.

Finally, if u’ were another arrow making (a) through (c) hold, then we
would have p1 o q1 o v/ = f and ps © q1 v/ = g, so by uniqueness of v as
defined by , v =q o u. Since ¢ o v’ must be h, the uniqueness of u

in (5.22) means that v’ = u.
A generalization of this is stated in Proposition [5.3.10] below.

5.3.4 It follows from the discussion in that the two objects (A x B) x
C and A x (B x () are pairwise canonically isomorphic (to each other and
to any other realization of the ternary product) in a way that preserves the
ternary product structure.

In elementary mathematics texts the point is often made that ‘cartesian prod-
uct is not associative’. When you saw this you may have thought in your heart
of hearts that (A x B) x C and A x (B x () are nevertheless really the same.
Well, now you know that they are really the same in a very strong sense: they
satisfy the same specification and so carry exactly the same information. The
only difference is in implementation.

5.3.5 If all the factors in an n-ary product are the same object A, the n-
ary product A x A x --- x A is denoted A". This suggests the possibility of
defining the nullary product A° and the unary product A'.
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5.3.6 For nullary products, the definition is: given no objects of the cate-
gory €, there should be an object we will temporarily call T', with no arrows
from it, such that for any other object B and no arrows from B, there is a
unique arrow from B to T subject to no commutativity condition.

When the language is sorted out, we see that a nullary product in % is
simply an object T with the property that every other object of the category
has exactly one arrow to 7. That is, 7" must be a terminal object of the
category, normally denoted 1. Thus, for any object A of the category, we

take A? = 1. (Compare [4.1.6})

5.3.7 A unary product A® of a single object A should have an arrow p : A'
— A with the property that given any object B and arrow ¢ : B — A there
is a unique arrow (g) : B — A for which

(9)

B Al

J » (5.23)

A

commutes. The identity id : A — A satisfies this specification for p; given
the arrow ¢ : B — A, we let (¢) = ¢: B — A. The fact that id o {(q) = ¢ is
evident, as is the uniqueness of {g). It follows that A! can always be taken
to be A itself, with the identity arrow as the coordinate arrow.

It is straightforward to show that in general an object B is a unary
product of A with coordinate p: B — A if and only if p is an isomorphism
(Exercise [1]]b)).

There is therefore a conceptual distinction between A' and A. In the
category of sets, A" is often taken to be the set of strings of elements of A
of length exactly n. As you may know, in some computer languages, a string
of characters of length one is not the same as a single character, mirroring
the conceptual distinction made in category theory.

5.3.8 Definition A category has binary products if the product of any
two objects exists. It has canonical binary products if a specific product
diagram is given for each pair of objects. Thus a category with canonical
binary products is a category with extra structure given for it. Precisely,
a canonical binary products structure on a category % is a function from
%o x 6 to the collection of product diagrams in ¢ which takes a pair (A, B)
to a diagram of the form .
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The fact that A and id 4 can be taken as a product diagram for any object
A of any category means that every category can be given a canonical unary
product structure. This is why the distinction between A and A! can be and
often is ignored.

5.3.9 Definition A category has finite products or is a cartesian cat-
egory if the product of any finite number of objects exists. This includes
nullary products — in particular, a category with finite products has a ter-
minal object. The category has canonical finite products if every finite
list of objects has a specific given product.

The following proposition is proved using constructions generalizing those

of (See Exercises [1]|d and [6] )

5.3.10 Proposition If a category has a terminal object and binary prod-
ucts, then it has finite products.

5.3.11 Set, Grf and Cat all have finite products. In fact, a choice of defi-
nition for ordered pairs in Set provides canonical products not only for Set
but also for Grf and Cat, since products in those categories are built using
cartesian products of sets.

5.3.12 Products and initial objects The notation A°, A!, A% and so
on that we have introduced, plus isomorphisms such as A x B B x A
and (Ax B)x C =2 Ax (BxC) (5.3.4), suggest that other algebraic
laws may hold for products. One candidate is A x 0 = 0, where 0 denotes
the initial object. This is false in general. For example, in Mon the initial
object is the one-element monoid (which is also the terminal object), and its
product with any monoid M is M by Exercise [5| of Section [5.1

It is important in such areas as programming language semantics and
categorical logic that a category have the property A x 0 = 0. It is equivalent
to another property, as the following proposition states. We include its proof
here because it uses several ideas we have introduced.

We denote an initial object by 0 and the unique map to an object A is
denoted ! : 0 — A. As before, a terminal object is denoted 1 and the unique
map from an object A is denoted () : A — 1.

5.3.13 Proposition Let € be a category with products and an initial object.
Then the following two statements are equivalent.

(i) For every object A, if there is an arrow u : A — 0, then A is iso-
morphic to 0.
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(ii) For every object A, 0 x A is isomorphic to 0.
In any category, if the initial object has this property, it is called a strict
initial object.

Proof. If (i) is true, the map p; : 0 x A — 0 serves to force 0 x A = 0. If (ii)
holds, the following must be a product diagram.

0
@ N\
0 A

(Since 0 x A is isomorphic to 0, there has to be such a product diagram with
0 as vertex, and there is only one possible arrow for each projection.) That
means this diagram must commute:

A
\
/ u \M (5.24)
¥
0~ 0 A

The commutativity of the right triangle says that w is a split monic. Since
any arrow to an initial object is epimorphic, the result follows from Propo-
sition [2.9.10 O

5.3.14 Record types To allow operations depending on several variables
in a functional programming language L (as discussed in , it is reason-
able to assume that for any types A and B the language has a record type
P and two field selectors Po A: P — A and Po B: P — B. If we insist
that the data in P be determined completely by those two fields, it follows
that for any pair of operations f : X — A and g : X — B there ought to be
a unique operation (f,g) : X — P with the property that P~ A< (f,g) = f
and P B o (f,g) = g. This would make P the product of A and B with the
selectors as product projections.

For example, a record type PERSON with fields NAME and AGE could be
represented as a product cone whose base diagram is defined on the discrete
graph with two nodes NAME and AGE. If HUMAN is a variable of type PERSON,
then the field selector HUMAN. AGE implements the coordinate projection in-
dexed by AGE. This example is closer to the spirit of category theory than
the cone in Diagram ; there, the index graph has nodes 1 and 2, which
suggests an ordering of the nodes (and the projections) which is in fact
spurious.
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Thus to say that one can always construct record types in a functional
programming language L is to say that the corresponding category C'(L) has
finite products. (See Poigné, [1986].)

5.3.15 Functors that preserve products Let F': & — £ be a functor
between categories. Suppose that

