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THE BICATEGORY OF TOPOI AND SPECTRA

J. C. COLE

Author’s note. The present appearance of this paper is largely due to Olivia Caramello’s
tracking down a citation of Michel Coste which refers to this paper as “to appear...”.
This “reprint” is in fact the first time it has been published – after more than 35 years!
My apologies for lateness therefore go to Michel, and my thanks to Olivia! Thanks also
to Anna Carla Russo who did the typesetting, and to Tim Porter who remembered how
to contact me.

The “spectra” referred to in the title are right adjoints to forgetful functors between
categories of topoi-with-structure. Examples are the local-rings spectrum of a ringed
topos, the etale spectrum of local-ringed topos, and many others besides. The general
idea is to solve a universal problem which has no solution in the ambient set theory, but
does have a solution when we allow a change of topos. The remarkable fact is that the
general theorems may be proved abstractly from no more than the fact that Topoi is
finitely complete, in a sense appropriate to bicategories.

1 Bicategories

1.1 A 2-category is a Cat-enriched category: it has hom-categories (rather than hom-
sets) and composition is functorial, so than the composite of a diagram

A B C Dóα
f g

denoted f � α � g is unambiguously defined.

In a 2-category A, as well as the (ordinary) finite limits obtained from a terminal
object and pullbacks, we consider limits of diagrams having 2-cells.

1.2 For each A, the cotensor with 2 of A is a diagram
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2&A Aóα

B0

B1

for which B0, B1 and α induce an isomorphism of hom-categories, ApX, 2&Aq � ApX,Aq2,
natural in X, where the right-hand category is the (usual) category of morphisms. Thus

φ : f Ñ g : XÑ A induces a unique xφy : XÑ 2&A such that xφy �α � φ, and with 2-cells
xφyñ xψy being induced by commuting squares of 2-cells over A.

1.3 A comma-object rf, gs for a pair of 1-cells with common codomain is a square

rf, gs A

C B

ð
ù

g

f

with the universal property ApX, rf, gsq � ApX, gq, naturally in X, where the right-hand
category is the usual comma-category of composition functors.

In the presence of pullbacks, comma-objects may be constructed from cotensors with
2, simply by pulling back B0 and B1 along f and g respectively:

1.4

rf, gs A

C B

2&B

ð
ù

g

f
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1.5 An identifier is a diagram

E A Bóφ

f

g

i

with the universal property that h : XÑ A factors (uniquely) through EÑ A if and only
if h � φ is the identity 2-cell and with the obvious condition for 2-cells.

Notice that the identity 2-cell B Ñ B induces a “diagonal” map I : B Ñ 2&B. It is
not hard to see that I, B0 and B1 make 2&B into a category-object; furthermore, we have
adjointness B1 $ I $ B0. The identifier of φ may be constructed simply by pulling back
xφy : AÑ 2&B along I : BÑ 2&B.

1.6 We say that a 2-category A is finitely complete if it has a terminal object, pullbacks
and cotensors with 2.

1.7 A bicategory (Benabou [2]) has a composition of 1-cells which is associative and
unitary only up to coherent isomorphism (example: a monoidal category is a bicategory
with only one object): composition is pseudo-functorial.

To translate 2-category notions into the corresponding bicategory Notions, it is hence
necessary to replace equality of 1-cells by isomorphisms. In particular, limits defined
by an isomorphism of hom-categories must now be replaced by Limits, defined by the
corresponding equivalence of hom-categories. Unique existence of a 1-cell is replaced
by existence, unique to unique isomorphism, and so on. We follow Grothendieck [1] in
distinguishing bicategory Limits from 2-category limits by the use of an initial capital
letter.

1.8 A Pullback is a square

P C

B A

�ùñ
θ

p

q

f

g

X

P C

B A

�ùñ
θ

�ùñ

�ùñ

h

k

such that for each h, k, λ : h.f rñk.g, there is ` : XÑ P, unique up to unique isomorphism,
together with κ : h rñ`.q, µ : `.p rñk such that λ � pκ � fq.p` � θq.pµ � gq; further, 2-cells
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h ñ h1 and k ñ k1 commuting with λ and λ1 induce ` ñ `1; in short, there is a natural
equivalence

ApX,Pq � ApX,Bq �ApX,Aq ApX,Cq

where the right-hand category has as objects triples ph, λ, kq with λ : h.f rñk.g.

Here “natural equivalence” in X means (because of the associativity isomorphisms for
composition) that the naturality squares commute up to an isomorphism satisfying the
obvious “pasting” condition for composites XÑ YÑ Z.

1.9 Other Limits are similarly defined and we say that a bicategory is finitely Complete
if it has a Terminal object, Pullbacks and coTensors with 2, whence also Comma-objects
and Inverters (corresponding to identifier). A morphism of bicategories can only be a

pseudo-functor and, as we would expect, Limits are pseudo-functorial once they have
been chosen (they are, of course, unique up to equivalence).

1.10 A pair of pseudo-functors U : AÑ B and F : B Ñ A is Adjoint, in symbol F $ U ,
if there is an equivalence ApF pBq,Aq � BpB, UpAqq, natural in A and B in the same
sense as for 1.8. Equivalently, for each B, there is η : B ñ UpF pBqq such that for every
h : BÑ UpAq, there is h̄ : F pBq Ñ A, unique up to isomorphism, with ε : h : rñη.Uph̄q; a
2-cell hñ h1 induces h̄ñ h̄1 commuting with ε and ε1.

1.11 We define the comma-bicategory A{{A, for A P A, as follows:

- an object b P A{{A is a 1-cell b : BÑ A in A;

- a 1-cell pf, φq : bÑ c in A{{A is f : BÑ C and φ : f.cñ b in A,

- a 2-cell χ : pf, φq ñ pg, ψq in A{{A is a 2-cell χ : f Ñ g such that pχ � cq.ψ � φ in
A.

B

A

object

b

B C

A

1-cell

φ
ðùù

cb

B C

A

2-cell

ó

f

g
cb f.c χ�c

ùùñ g.c

φ ð
ùù

b
ψ

ùùñ

1.12 Example If u : BÑ A induces the obvious U : A{{BÑ A{{A, then r�, us is right
Adjoint to U and this defines Comma operation.
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1.13 We recall also that a pair of 1-cells u : B Ñ A, f : A Ñ B is adjoint, in symbol
f $ u, if there are 2-cells η : 1A ñ f.u and ε : u.f ñ 1B satisfying the usual equations:

pη � fq.pf � εq � 1f
pu � ηq.pε � uq � 1u.

Equivalently, for each X, ApX, fq $ ApX, uq, or, again, for each Y, Apu,Yq $ Apf,Yq,
the (ordinary) adjunction transformations being natural up to isomorphism in X or Y. A

1-cell f : AÑ B in A is fully-faithful if ApX, fq is a fully-faithful functor for each X; f $ u
is a reflection, and f the reflector, if u is fully-faithful. Equivalently, the end adjunction
ε is an isomorphism.

1.14 Lemma The Pullback of a reflector (coreflector) is a reflector (coreflector).

Proof Since ε : u.f ñ 1B is an isomorphism, so is its Pullback along g : C Ñ A,
ε̄ : ū.f̄ ñ 1B̄. But η : 1A ñ f.u Pulls back to η̄ : 1Ā ñ f̄ .ū, satisfying the relevant
equations.

We consider E-M factorisation system on an ordinary category A. If M is a class of
maps of A containing isomorphisms closed under composition, we say that M gives best
factorisations if every map A Ñ B in A has factorisation A Ñ C Ñ B with C Ñ B in
M, such that for any other such factorisation A Ñ C 1 Ñ B with C 1 Ñ B in M there is
a unique C Ñ C 1 in M making both triangles commute. We say that a factorisation is
functorial if a commuting square factors into commuting squares:

factors with

commuting (for E-M factorisation, this is equivalent to the usual diagonal property).

1.15 Proposition For a category A the following data are equivalent:

(a) there is a class M of maps giving functorial best factorisations;

(b) there is a class E of maps giving functorial co-best factorisations;

(c) there is a functorial E-M factorisation;
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(d) for each category X, a factorisation of type (a), (b) or (c) on CatpX,Aq such that
for each f : Y Ñ X, if α.β is a factored map in CatpX,Aq, then pf � αq.pf � βq is a
factorisation in CatpY,Aq of f � pα.βq;

(e) the diagram in Cat:

A 2&A

M

E

I1

D1
1

D1
0

i1

m

I0

D0
1

D0
0

B1

I

B0 i0

in which I1.i1 � I � I0.i0, each functor is left adjoint to the one immediately below
it, pA, I0, I1q is the Pullback of pi0, i1q and p2&A,m, eq is the Pullback of pD1

0, D
0
1q.

Proof (Sketch) Given M, define E to be the class of maps whose “best M-factor” is an
isomorphism, and conversely. This establish the equivalence of the first three. For (d),
take those natural transformations whose components lie in M or E and, conversely, take
X � 1. Finally, for (e), let M and E be the full subcategories of A2 consisting of those
maps which are in M or E . The functors m and e are “best M-factor” (resp. E-factor).

We take (d) to be the definition in an arbitrary bicategory of E-M factorisation on A

and say that it is representable if the diagram (e), above, exists.

1.16 Proposition If A is finitely Complete, then any E-M factorisation on an object
is representable.

Proof Factorise the universal 2-cell α : B0 ñ B1 : 2&A Ñ A into η : B0 ñ d and
µ : dñ B1. Define M to be the Inverter of η and E the Inverter of µ. Since a map is in M
(resp. in E) if and only if its best E-(resp. M)-factor is an isomorphism, it is clear that
φ : f ñ g : X Ñ A is in MX (resp. in EX) if and only if xφy : X Ñ 2&A factor through M

(resp. E). The rest of the diagram follows immediately.



7

Given a class M of 2-cells over A that contains isomorphisms, is closed under compo-
sition and satisfies α PM implies f �α PM, it is clear how we may modify the definition
of the comma-bicategory by allowing only 2-cells of M to appear, giving a bicategory
M-A{{A.

1.17 Proposition If A is finitely Complete, the obvious M-A{{A Ñ A{{A has right
Adjoint if and only if M forms a E-M factorisation on A.

Proof Given an E-M factorisation, it is representable by Proposition 1.16. We define
the required right Adjoint by taking Rpb : BÑ Aq to be the Pullback of D0

0 : EÑ A along

b with structure-map RpEq Ñ E
D0

1ÝÑ A. The end adjunction id the map in A{{A

RpBq B

E Aó

�
b

where the 2-cell is the universal E-map whence we see that the end adjunction is the
universal E-map with domain b. The universal property emerges immediately from the
definition (d) of factorisation.

Conversely, given the right Adjoint R, define

E ó A

by taking D0
1 : EÑ A to be RpAÑ Aq and the adjunction to be the universal E-map:

Rp1Aq A

A

ð is
E A

A

ð

The universal property of the end adjunction leads directly to the best factorisation
property of the class of maps represented by E whose orthogonal M-class is that original
given.

Notice in particular that since A is a coreflective subobject of E, the construction of
R shows that RpBq contains B as coreflective subobject by Lemma 1.14. The inclusion
“classifies” the identity-map of b as an E-map.

Finally, and not very elegantly, we combine Example 1.12, Proposition 1.17 and a
restricted class of 2-cells. Suppose M is a class of 2-cells closed under composition etc, so
that M-A{{A is defined and similarly N -A{{B. Suppose we are given u : BÑ A such that
if α P N then α � u PM. Then we obtain a pseudo-functor N -A{{BÑM-A{{A. In this
situation we say that N forms a u-M-factorisation if every 2-cell α : f ñ g.u has a best
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factorisation f ñ h.u, hñ g, with hñ g P N such that for any other such factorisation
f ñ h1.u ñ g.u, there is a unique h ñ h1, making both triangles commute and such
that the best factorisation are stable under compositions with 1-cells as for Proposition
1.15(d).

1.18 Proposition If A is finitely Complete and M is representable, then

N -A{{BÑM-A{{A

has a right Adjoint if and only if N forms a u-M-factorisation.

Proof If N forms a factorisation, define E Ñ rA, us to represent the N -extremal M-
maps (those whose best N -factor is an isomorphism) by Inverting the best N -factor of
the universal 2-cell obtained by Pulling back

M 2&A A
B1

along u : BÑ A. Pull the “domain” map EÑ A along c : CÑ A to define Rpc : CÑ Aq,
right Adjoint to the given forgetful functor. Conversely, given the right Adjoint R, define
the universal N -extremal M-map to be the end adjunction for RpAÑ Aq and proceed as
in Proposition 1.17.

Rp1Aq A

A

ð is
E A

A

ð

2 Limits in Topoi

We consider two 2-categories and a bicategory. Lex is the 2-category of finitely complete
(small) categories, left exact functors and natural transformations. LexSite is the 2-
category of finitely complete (small) categories equipped with a Grothendieck topology,
left exact cover-preserving functors and natural transformations. Topoi is the bicategory
of cocomplete topoi (i.e. Sets-topoi), geometric morphisms and natural transformations
between the inverse image functors (with composition defined whichever way you prefer).
While it is true that Topoi may be made into a 2-category, we choose not to. Each way
of defining compositions associative up to equality has its disadvantages and none seems
canonical. The real point is that Topoi has Limits, rather than limits. “Straightening
out” all the canonical isomorphisms seems an insuperable task and is probably not worth
it: it seems that the cheapest way of handing the difficulties is to put them in at the start.

Since Lex is “monadic” over Cat (in a sense we leave to the experts to make precise),
it is clear that (strict) limits may be constructed at the underlying category level. What
is a little mysterious is the fact that many of these limits in Lex turn out to be coLimits
(in the “underlying” bicategory).



9

2.1 Lemma 1 is coterminal in Lex.

Proof The canonical map A Ñ 1 has a right adjoint 1 Ñ A (the terminal object of A)
which is unique among the left-exact functors

2.2 Lemma A� B is the coProduct in Lex.

Proof The projections have right adjoints A ÞÑ pA, 1q and B ÞÑ p1, Bq which give
injections. Given h : AÑ X and k : BÑ X, define ` : A�BÑ X by `pA,Bq � hpAq�kpBq,
the product in X.

2.3 Lemma The cotensor 2&A (the category A2) is also the Tensor 2b A in Lex.

Proof Again, the projections have right adjoints δ0 : A ÞÑ pAÑ Aq and δ1 : A ÞÑ pAÑ
1q for injections with the obvious 2-cell. Given α : f ñ g : AÑ X, define xαy : A2 Ñ X by
taking xαypa : A1 Ñ A2q to be the pullback in X of gpaq along αA2 .

2.4 Lemma The comma-category pB, fq for f : A Ñ B in Lex is also the coComma
object   A, f ¡ .

Proof Just as in Lemma 2.3 but with more letters.

Thus Lex is almost finitely coComplete. [It remains to provide coInverters, for which
“monadicity” over Cat might prove useful.] Since an intersection of topologies is a topol-
ogy, we may always find the “least topology such that . . . ”. In an appropriate sense, the
forgetful LexSite Ñ Lex is an initial structure functor which we use to lift coLimits from
Lex to LexSite.

2.5 Lemma The functor LexSite Ñ Lex creates coLimits.

Proof Given a diagram D in LexSite having a coLimit in Lex, we simply provide the
coLimit with the least topology for which the injections preserves coverings: the smallest
containing the images under injection of coverings in the diagram. Then a map out of the
coLimit preserves coverings if and only if its composites with the injections all do, so we
are finished.

2.6 Remark Suppose that f : A Ñ B is a topos-map. Then the comma-category
pB, f�q � pf

�,Aq since f� % f� and it satisfies the coComma property for left-exact func-
tors. In fact, it is the coComma object in the bicategory Topoi where the inverse-image
functors being given by the comma-property and the direct-images is provided by the co-
Comma property. Thus Topoi has coComma objects of the form   f,A ¡. With an
arbitrary left-exact functor in place of f�, this construction is well-known Artin glueing,
[1], [9].

We turn now to Topoi and recall that we have pseudo functors

p̂q : Lexop Ñ Topoi
rpq : LexSiteop Ñ Topoi
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called “presheaves (resp. sheaves) on p�q”; the “op” indicates that the 1-cells are reversed
but 2-cells retain their direction. On 1-cells, the direct-image functors are induced by
composition and inverse-image functor is the left Kan extension, left exact because the
original 1-cell is.

We state without proof the classification theorem ([1],[3]).

2.7 Theorem

(a) TopoipE, Âq � LexpA,Eq

(b) TopoipE, rAq � LexSitepA,Eq, naturally in E and A.

Note the abuse of language whereby we have treated the (large) underlying category
of a topos as an object of Lex or, with its canonical topology, of LexSite.

2.8 Corollary p̂q, rpq take coLimits to Limits.

Proof The usual argument for adjoint functors also works for this partial Adjointness of
pseudo-functors: if D is a diagram in Lex having a coLimits L and D̂op is the corresponding
diagram of topoi, then

TopoipE, D̂opq � LexpD,Eq by Theorem 2.7(a)
� LexpL,Eq by the definition of coLimit
� TopoipE, L̂q by Theorem 2.7(a)

whence L̂ is the Limit in Topoi. A similar argument works for sites.

Recall that a topos is a Grothendieck topos if (it is cocomplete and) it has a (small)
set of generators. We denote by GrTopoi the full subcategory of Grothendieck topoi.
By relativising these notions to an arbitrary elementary topos playing the role of Sets,
Diaconescu arrives at the notion of a bounded topos-map E Ñ F, one for which E has
an F-object of generators and by relativising the classification theorem, obtains [3]:

2.9 The Pullback of a topos-map along a bounded topos-map exists.

It is easy to show that any map rA Ñ E is bounded and the Giraud theorem charac-
terises Grothendieck topoi as those of the form rA for some (not unique) site A.

Combining 2.9 with the results above, we obtain:

2.10 Proposition GrTopoi is finitely Complete. Topoi has a terminal object, the
Pullback A �C B exists if one of A and B is bounded over C, the Comma-topos rf, gs
exists if one of f and g has Grothendieck domain and codomain, and the Inverter of
α : f ñ g : A Ñ B exists if B is Grothendieck.

Proof Sets is Terminal, Pullbacks along maps between Grothendieck topoi exist and
coTensors with 2 are obtained from Tensor-sites. The rest are constructed from these.
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We are thus in a situation where the results of §1 apply.
Needless to say, Inverters may also be constructed as largest sheaf subtopos for which

the components α are bidense. Conversely, it is not hard to show that every sheaf embed-
ding is an Inverter by using the relativised version of 2.7(a). ShjpEq Ñ E is the Inverter
of “1”ñ“J”: E Ñ EΩop

, where “1” and “J” are induced by the flat discrete fibrations
1 Ñ Ωop and Jop Ñ Ωop (this is essentially due to Johnstone [6]).

Adjoint 1-cells in Topoi are just what one would expect.

2.11 If f : E Ñ F and g : F Ñ E are 1-cells in Topoi, then f % g if and only if f� � g�

if and only if g� % f� if and only if g� % f�.

Proof The equivalence of the last three is immediate from uniqueness of adjoints. The
equivalence with the first is shown simply by unwinding the equational definition of ad-
jointness for the 1- and 2-cells of Topoi.

2.12 A 1-cell in Topoi is fully-faithful if and only if it is equivalent to a sheaf embedding.

3 Examples

We take the view that “every Grothendieck topos classifies something” (namely, the left-
exact, cover-preserving functors - this may be given a first-order syntactic form, albeit
with possibly infinitary disjunctions).

If T is the classifying topos for the theory T , i.e. TopoipE,Tq � T -modelspEq,
naturally in E, then the inverse-image f�pMq of a model by a map of topoi is again a
model. Similarly, a map u : T2 Ñ T1 induces a “forgetful” functor T1-modelspEq Ñ T2-
modelspEq by composition. A 2-cell α : f ñ g : E Ñ T is interpreted as a T -model
homomorphism whence we see immediately that 2&T is the T -homomorphism-classifier.
Thus the model theory of topoi coextensive with the study of the bicategory-structure of
Topoi. We shall usually identify a T -model M in E with its classifying map M : E Ñ T,
hoping that this simplifies life for the reader rather than confusing him.

In this light, we examine an example of adjoint topos-maps. A left-exact functor
f : A Ñ B induces three functors, f̂ ,Σf and πf , where Σf and πf are the left and the
right Kan extensions.

SA
op

SB
op

Σf % f̂ % πf
f̂

Σf

πf

We have already identified Σf % f̂ as the topos-map f̂ : B̂ Ñ Â. But since f̂ is left

exact, f̂ % πf is also a topos-map f# : ÂÑ B̂ and from 2.11 we know that f# % f̂ .
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Now we may consider A and B to be the duals of categories of finitely presented
algebras, thus thinking of A and B themselves as algebraic theories, with f an interpre-
tation. Then Â and B̂ are the A and B-algebras classifiers, f̂ represents the “forgetful”
B-algpEq Ñ A-algpEq and f# represents its left adjoint, the relatively free-functor. For
example, if f op : Aop Ñ B

op is the abelianisation functor from finitely presented groups
to finitely presented abelian groups, we obtain the abelian-group classifier as a reflective
sub-topos of the group classifier. We mention a further point of interest for this example.
If the interpretation is finitary - involves the imposition of finitely many new axioms -
as for the example of groups and abelian groups - in the sense that if B is a finitely
presented B-algebra then UpBq is finitely-presented as an A-algebra, then the forgetful
functor restricts to B

op Ñ A
op, providing a left adjoint g to f . We obtain from this a

fourth functor, Σg % Σf between the classifying topoi, so that the “forgetful” map f̂ is
actually an essential topos-map.

A more geometric example of adjoint topos-map is furnished by the relationship (given
in [1]) between the “gros” topos of a space and its “ordinary” topos. In fact, since the map
of sites i : OpenpXq Ñ Spaces{X is cover-reflecting, it induces not only the “restriction”
map I : TOP pXq Ñ ShpXq but also the left adjoint inclusion ShpXq Ñ TOP pXq, so that
ShpXq is a coreflective sub-topos of TOP pXq. The remark that these topoi are therefore
cohomologically equivalent applies equally to other coreflective situations. For example,
the Zariski topos, Zar, sheaves on affine schemes of finite type, may (by the Lemma de
Comparaison of [1]) equally be constructed as sheaves on the category of schemes. The
Zariski topology is less fine than the canonical and so, using the Yoneda functor, we may
consider a scheme X both as a ringed space and as an object of Zar. Essentially the same
argument as for the gros topos shows that ShpXq is a coreflective subtopos of Zar{X.

Suppose D is a finite diagram-type and T a classifying topos - the object-classifier,
pour fixer les ides. We may form D&T, the D-diagram classifier (of T -models) by taking
Pullbacks and Comma-objects according to the recipe by which D is made up from nodes,
arrows and commutative relations. Thus for example the classifier for diagrams � Ñ � Ð
is obtained by Pulling back B1 : 2&T Ñ T along itself; the commuting-square-classifier
is got by Pulling B1 along B0 to obtain 3&T and then Pulling the “composition” map
3&T Ñ 2&T back along itself.

Just as 2&T is the T -morphism classifier, so, for u : T2 Ñ T1, the Comma-topos
rT1, us classifies T1-morphisms A Ñ upBq, where A is a T1-model and B is a T2-model.
Recall that Lemmas 2.4 and 2.5 construct a site of definition of rT1, us from a site-map
defining u. The sites defining the spectra of Hakim [5] are of closely related form, with a
finer topology. Given a particular model A : E Ñ T1, the Comma-topos rA,T1s classifies
“T1-maps with domain A”: given f : F Ñ E, maps F Ñ rA,T1s over E correspond to
T1-maps f�pAq Ñ p�q where p�q is any T1-model in F. Similarly ru,As classifies T1-maps
up�q Ñ A and rA, us classifies maps AÑ up�q.

Clearly various “epi-mono” factorisations of T -maps give rise to applications of 1.17. It
is easy to see that Topoi{{T is the category of T -modelled topoi defined in the same way
as the usual category of ringed topoi. For the category of local-ringed topoi, however,
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we must insist that all ring-homomorphisms be local, i.e. reflect the units (invertible
elements), whence, in our previous notation, Loc-Topoi{{Zar is the category of local-
ringed topoi. We see from §1 that the existence of a right Adjoint (the spectrum of Hakim
[5]) to the forgetful Loc-Topoi{{Zar Ñ Topoi{{R (R the ring classifier) is equivalent to
the fact that a ring-homomorphism A Ñ L with L a local ring has a best factorisation
A Ñ F Ñ L with F Ñ L a local map; the associated extremal maps A Ñ F are
the localisations, obtained by pulling back the units of L to A, and forming the ring-of-
fractions to invert this “prime co-ideal”, giving the local ring F (Tierney [8]).

It is worth unravelling the proof of the relevant version of Proposition 1.18 for this
case. There is an underlying factorisation of ring-homomorphisms (not just those with
local codomain), namely, with M � tunit-reflecting mapsu and E � tring-of-fractions
mapsu (of the form A Ñ ArS�1s for some multiplicatively closed subobject S of A). We
factorise the universal ring-homomorphism

2&R ó R

and invert its M-part to obtain the fractions-map-classifier E. Now Pull back the
“codomain” map along u : Zar Ñ R to obtain the localisation-classifier (the spectrum of
the universal ring) and finally Pull the “domain” map back along a given ring A : X Ñ R
to obtain SpecpX, Aq. Notice that these steps all commute with each other: we may
factorise and Pull back in any convenient order.

SpecpX, Aq

XrAÑ rAs

E

SpecpRq

X ùñ Zar

R

h

B0 B1

A u
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In particular XrAÑ rAs is the classifier for “fractions-maps with domain A”. It has a

map to the topos X so we may imagine XrAÑ rAs as being a topos of sheaves with values
in X, the direct-image functor h� being thought of as “global sections”, the inverse-image
h� being “constant sheaf”.

The universal fractions-map

XrAÑ rAs E ó R

then looks like a fractions-map h�pAq Ñ rA of rings in XrA Ñ rAs corresponding by
adjointness to A Ñ h�pAq. Thus A is represented in the “global sections of a sheaf”
(when X �Sets, this is literally true). But recall that since R is a coreflective subtopos

of E, by Lemma 1.14, X is a coreflection subtopos of XrAÑ rAs, whence by Proposition
2.11, we see that the functor h� is actually the inverse-image functor of the inclusion X Ñ
XrA Ñ rAs. The front adjunction isomorphism then gives immediately that A Ñ h�p rAq
is an isomorphism since the inclusion classifies A Ñ A as fractions-map. This argument
shows that for “spectra” of the kind given by Proposition 1.17, the “representation of A
in a sheaf” is always an isomorphism A rÑh�pAq. However, for most purpose, this is not

enough: we “force” the codomain rA to be a model of a richer theory (local rings in this
case), by Pulling back B1 (along Zar Ñ R) which obstructs the argument. This author
suspects that further progress will involve considering the Beck condition for Pullbacks of
coherent topoi.

Another example is furnished by the étale spectrum of a local-ringed topos (Hakim
[5]). Joyal and Wraith have determined that Hakim’s strictly local rings are those local
rings A which are “separably closed” in the following sense. If a polynomial fptq P

Arts is monic (i.e. has leading coefficient 1), consider Dpfqptq � tn �
n±
i�1

pt � f 1pαiqq,

where α1, . . . , αn are the roots of f (in some hypothetical extension of A), and f 1 is the
formal derivative of f . Since Dpfq is symmetric in the αi’s, it has coefficients lying in A
(Newton’s theorem on symmetric polynomials), whence we have a purely combinatorial
procedure for defining Dpfqptq without reference to any roots. Classically Dpfq � 0
if and only if all the roots of f are repeated roots. The axiom for a local ring to be
strictly local says: Dpfqptq has an invertible coefficient implies Da P A : fpaq � 0 and
f 1paq is invertible. Hakim considers local homomorphisms between strictly local rings and
constructs a “spectrum” to “strictify” a local ring, universally, of which the étale topos
of a scheme is an example. Wraith has (tentatively) identified the extremal maps for
the best factorisation of a local map A Ñ S into A Ñ T Ñ S, with S and T strictly
local, as being those maps ϕ : A Ñ T for which every t P T satisfies a polynomial
equation pϕpfqqptq � 0 with pϕpfqq1ptq invertible, for f a monic polynomial over A (T is
“separably integral” over A) and T is strictly local. Such a factorisation, stable under
inverse-image functors, is equivalent to Hakim’s construction of a right Adjoint to the
forgetful Loc-Topoi{{StrZar Ñ Loc-Topoi{{Zar by 1.18.
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In similar vein, it is conjectured that the crystalline topos of a scheme will be associated
with a universal extremal “extension of A by a nil-ideal with divided power structure”
I ãÑ B Ñ A (plus further structure whose details are here irrelevant).

An unfamiliar application is to ordered sets. An order-preserving map P Ñ L from an
ordered set to a linearly ordered set has a best factorisation whose second factor is order-
reflecting (fpxq   fpyq implies x   y) between linear orderings: pull back the ordering
of L to P and quotient by the antisymmetry law. Hence there is a right Adjoint to the
forgetful OrdRefl-Topoi{{L Ñ Topoi{{P, where L and P classify respectively linear
and partial orderings.

As a final example, we construct a spectrum for ordered rings, for which the “Zariski
topology” would better be called the Euclidean topology. An ordered ring in this case
means a ring with a predicate P pxq (read “x is positive”) satisfying  P p0q, P p1q, P pxq ^
P pyq implies P px� yq^P pxyq. Say that a ring A is linear if in addition P px� yq implies
P pxq _ P pyq, and P pxyq implies P pxq _ P p�xq. Call A full if P pxq implies Dypxy � 1q.
Since the positive elements are multiplicatively closed, any ordered ring may be made
full by taking fractions. Say that a linear full ordered ring is local (it is local in the
usual sense). A map of local ordered rings (a homomorphism preserving positivity) is
local if and only if it reflects positivity, i.e. it reflects the ordering. To factorise a map
A Ñ L from an ordered ring to a local ordered ring, proceed as above to linearise and
then add fullness: pull back the ordering from L to A and make A full with respect
to this finer ordering. Extremal maps are localisations in the ordinary sense, thought
of primarily as linearisations of the ordering. This leads to spectrum, right Adjoint to
Loc-Topoi{{OrdZar Ñ Topoi{{OrdR . Closer analysis (private communication with
M. P. Fourman) reveals that a base of “open sets” of this spectrum is of the form ttx :
fpxq ¡ 0u : f P Au whereas the Zariski base is of the form ttx : fpxq � 0u : f P Au, x
ranging over the “points” of the spectrum (it is indeed “spatial” over its domain), in the
sense that it is generated by its subobjects of 1; and when Zorn’s Lemma holds in the
domain topos, it has enough points, so that it is spatial in the strong sense).
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