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CLOSED BICATEGORIES AND VARIABLE CATEGORY THEORY

RENATO BETTI AND ROBERT F.C. WALTERS

Author’s note. We show that many notions relative to locally internal categories over
a topos E are standard notions of enriched category theory, provided the enrichment is
taken in the bicategory SpanE. The appropriate properties of SpanE give the formal
notion of closed bicategory. Furthermore a common setting for internal categories and
locally internal categories is obtained.

This work is an extended version of a paper in preparation with the same title.

Sunto. In questo lavoro si mostra che numerose nozioni relative a categorie localmente
interne ad un topos E diventano nozioni standard della teoria delle categorie arricchite,
pur di assumere come base la bicategoria SpanE. Le proprietà di SpanE, opportunamente
astratte, forniscono la nozione di bicategoria chiusa. Si ha in tal modo un ambiente
comune sia per le categorie interne che per quelle localmente interne.

Questo lavoro raccoglie i seminari tenuti dagli autori durante i mesi di settembre e
ottobre 1983 al Sydney Category Seminar, e costituisce una versione estesa di un lavoro
in preparazione con lo stesso titolo.

Commentary by R. Betti:

BASE BICATEGORIES

The following paper: CLOSED BICATEGORIES AND VARIABLE CATEGORY
THEORY, written with Robert F.C. Walters, was published as a report of Milan Depart-
ment of Mathematics (Quaderno 5/1985). It is based on the notion of categories enriched
in a bicategory and reports a series of talks given by the authors at the Sydney Category
Seminar during September and October 1983. Its essential aim is to show that the no-
tion is suitable to give a common setting for internal and locally internal category theory
relative to a given base topos (what we called “variable category theory”) provided the
enrichment is taken in the bicategory of the Spans of the topos, and moreover to analyze
the properties of the base bicategory which are necessary to develop further the theory
(the notion of a closed bicategory).

The idea of enriching a category in a bicategory first arose from the attempt of gen-
eralizing the categorical structure of classical automata to the case of tree automata. In
[1] Una teoria categoriale degli automi, 1979 (A categorical theory of automata) and [2]
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Automi e categorie chiuse, 1980 (Automata and closed categories) classical automata are
regarded as categories enriched in a monoidal closed category obtained by the free monoid
of inputs. A monoidal category is just a one-object bicategory while a “variable monoidal
category” was necessary for the generalization to tree automata, viewed as “many sorted”
classical automata. In this case the necessary base bicategory is described in the subse-
quent paper [8] written with S. Kasangian: Tree automata and enriched category theory.

The main motivation for all this work is to be found in the seminal paper [9] by F.W.
Lawvere, Metric spaces, generalized logic, and closed categories, more precisely in the
thesis that while “it is a banality that all the mathematical structures of a given kind
constitute the objects of a category” it is true that “fundamental structures are themselves
categories”.

The possibility of enriching in a bicategory was soon communicated (by ordinary mail)
to my Milan colleagues Aurelio Carboni, visiting at that time (1979-80) Bill Lawvere at
Buffalo, and Stefano Kasangian, visiting G. Max Kelly at Sydney, giving rise to a strong
collaboration between the category groups at Milan University in Italy and at Sydney
and Macquarie Universities in Australia.

The new enrichment first appeared, in Italian, in a series of reports of the Mathematical
Institute of Milan University, i.e. [3] Bicategorie di base, 1981 (Base bicategories), [4]
Alcune proprietà delle categorie basate su una bicategoria, 1982 (Some properties of
categories based on a bicategory) and others, which extend some results of [9] to locally
preordered bicategories.

Soon it was clear that the new enrichment was suitable to describe more situations,
relative to categories whose homs can be thought to live in a “variable” monoidal base. In
a short time, the papers by R. Betti and A. Carboni [5,6] on an intrinsic notion of topology
and by R.F.C. Walters [10, 11] on the associated sheaf regarded as a Cauchy complete
category were obtained. The general aspects of the theory were later incorporated in R.
Betti, A. Carboni, R. Street and R.F.C. Walters [7] Variation through enrichment.

I take the opportunity to recall here the warm and active collaboration with Bob
Walters and Aurelio Carboni, friends who unfortunately passed away a few years ago.
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Introduction

Our point of view is that variable categories are categories enriched over a variable base. In
this paper we are attempting two things: (i) to analyse the properties of a base bicategory
which are necessary to develop category theory enriched in that base, and (ii) to develop
the particular example of locally internal categories over a topos.

Usually, a locally internal category is thought of as a fibration over a given topos E
which provides the domain of variation (Lawvere [19], Penon [22], Bénabou [1], Paré and
Schumacher [21], Street [24]). In Penon’s formulation the fibre over u ∈ E is enriched
over E/u. Our description is two-sided (as implicitly indicated in Lawvere [19]); we
regard a locally internal category as being enriched in SpanE. In place of the category
E of parameters, we thus have a bicategory of parameters, SpanE, and the theory of
variable categories can be developed as category theory enriched in a bicategory. The
appropriate properties of the base bicategory, as abstracted by SpanE, give the general
notion of closed bicategory. We have chosen not to describe all the results at this level of
generality: in some cases we give just particular examples.

Many of the important notions of locally internal category theory are exactly standard
notions of enriched category theory. For example the universal property of cartesian
arrows and completeness (with Beck-Chevalley condition) become cases of completeness
in the sense of indexed limits. Functor categories can be defined as usual in enriched
category theory, using ends.

Furthermore our approach provides a common setting for internal categories and lo-
cally internal categories. An important feature in our development of enriched category
theory is that we do not, as is usual, use external completeness of the base. We use only
elementary properties of the base, in particular completeness with respect to internal cat-
egories. Clearly most of the results hold with the assumption of external completeness.

The theory of categories enriched in a base bicategory first arose in Betti [3], Walters
[28]. The subject has been developed by Betti, Carboni, Kasangian, Street and Walters
(see references). The important notion of a tensor product on a bicategory used in this
paper was introduced by Carboni and Walters [12].

This work is part of a collaboration which has been made possible by the Italian CNR
and Sydney and Macquarie Universities. It reports the talks given by the authors at the
Sydney Category Seminar, during September-October 1983. A joint paper with the same
title is in preparation. We thank members of the Sydney Category Seminar for helpful
discussions.

1 Locally internal categories as enriched categories

1.1 Question What should a variable category be?

We think of variable categories as having objects x, y, . . . parametrized by (variable)
sets u, v, . . . and arrows hom(x, y) parametrized by the product u × v. More formally,
the basic example of a variable category is given by FamC, the category of families of
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objects of C indexed by small sets, C being a locally small category. If x = (xi)i∈u and
y = (yj)j∈v are two objects of FamC, then hom(x, y)i,j = C(xi, yj) where (i, j) ∈ u× v.

A second way of regarding FamC is that it is a category fibered over Sets: the object
x = (xi)i∈u lies over u, and arrows from x = (xi) to y = (yj) in the total category are
pairs (f, αi), where f is a change of parameter f : u→ v and αi : xi → yfi is a family of
maps of C. Composition and identities are defined in an obvious way. It is known that
the notion of fibration contains the information needed to replace Sets in the example by
an arbitrary topos E (see Bénabou [2], Lawvere [19]).

We will develop the first point of view toward FamC; namely that it is a category
enriched over Span(Sets). The enrichment over Span(Sets) is an instance of the following
general:

1.2 Definition Let B denote a bicategory. A category based on B (or a B-category)
X consists of:
(i) objects x, y, . . .
(ii) an underlying function which assigns to any object x an object ex in B,
(iii) for each pair of objects a hom, i.e. an arrow in B

X(x, y) : ex→ ey

(iv) for each object a unit, i.e a 2-cell 1ex → X(x, x),
(v) a composition, i.e a 2-cell associated to every triple of objects

X(y, z) ·X(x, y)→ X(x, z)

All these data are required to satisfy the associativity and the identity laws.

1.3 Definition When X and Y are B-categories, a B-functor F : X −−→ Y is a
function on objects which preserves the underlying object, and a family of 2-cells (which
express the effect of the functor on arrows)

X(x, y)→ Y (Fx, Fy)

These data are required to satisfy usual axioms for functors.

In the case when B is a symmetric monoidal category considered as a bicategory with
one object, we get the usual notion of categories enriched in B. For the case of a general
bicategory B, see the references (for instance [8]). In this paper the main example of a
base bicategory is SpanE where E is an elementary topos.

1.4 Example (SpanE). Objects of SpanE are objects of E, arrows α : u −+→ v are
spans (f, g) of maps in E as in the picture:

α
f

~~

g

  
u v
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2-cells α→ β are maps h in E such that the following triangles commute

α

~~
h

��

  
u v

β

__ ??

Composition is given by pullback and ∆u = (1u, 1u) is the identity.

SpanE is a symmetric bicategory, in the sense that to each arrow φ = (f, g) is associ-
ated an opposite arrow φ◦ = (g, f) with the properties:

∆◦u
∼= ∆u

(ψ · φ)◦ ∼= φ◦ · ψ◦

(φ◦)◦ ∼= φ

Moreover any 2-cell φ→ ψ corresponds exactly to one 2-cell φ◦ → ψ◦.
A map f of E becomes the arrow (1, f) and such arrows are characterized (up to

isomorphism) by the fact that they have right adjoints (a right adjoint of f is f ◦). In a
general bicategory B we call an arrow which has a right adjoint a map.

Maps of E will be called simply maps when considered in SpanE.
A useful way of regarding SpanE is to consider arrows as matrices (αij)i∈u,j∈v of objects

of E. Then composition is matrix product

(β · α)ik =
∑
j

βjk × αij

1.5 Example (Families). It is now easy to see that FamC can be regarded as a SpanE-
category (E = Sets), by taking the same objects and by defining the hom from (xi) to
(yj) to be the matrix C(xi, yj)i∈u,j∈v.

From now on we will denote this hom by FamC(x, y). Notice that this does not mean
the set of arrows from (xi) to (yj) in FamC regarded as the total category of a fibration.

1.6 Example (Internal categories). If A is a category internal to E, then it becomes an
arrow A0 −+→ A0

A1

d0

~~

d1

  
A0 A0

with a monad structure in SpanE. Thus an internal category is exactly a SpanE-category
with only one object, whose underlying object is A0 and whose hom is (d0, d1).
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It should be noted that functors between internal categories are not the same as SpanE-
functors, but rather are mappings between monads. More precisely a functor A → D
between internal categories amounts to a map F : A0 → D0 and a 2-cell A1 → f ◦ ·D1 · f
compatible with compositions and identities in A and D.

Later we will see that there is a natural way of representing functors between internal
categories as actual SpanE-functors.

1.7 Definition A B-category with one object will be called an internal category.

Any object u of the base provides an example of an internal category with the hom
equal to 1u. Such internal categories we call discrete.

Recall that FamC is both a fibration and a Span(Sets)-category. We can now show
that the universal property of fibrations can be substituted by the notion of restriction.

1.8 Definition Let X be a B-category, x an object over u and f : v → u a map. A
restriction xf of x along f is an object over v such that the following restriction laws

X(x, y) · f ∼= X(xf , y)

f ◦ ·X(y, x) ∼= X(y, xf )

hold for each object y. We say that X has restrictions when for each x and each map f
a restriction xf exists.

1.9 Remark We will see later that, under usual conditions for B (satisfied by SpanE),
the two properties of the above definition are equivalent, i.e. each implies the other.

1.10 Example (Families). Reconsider the example of FamC as a fibration. If f : v → u
is a map, then any object (xi)i∈u can be pulled back to the object f ∗(xi)i∈u = (xfj)j∈v. Re-
garding FamC as a Span(Sets)-category, the same object satisfies the properties required
by restrictions. Indeed we have:

FamC(f ∗x, y)jk ∼=
∑
i

FamC(x, y)jk × fij

where

fij =
{ ∗ if fj = i

φ otherwise

Let us consider a fibration F
p
−−→ E, with F locally small. For any pair of objects x, y

we have a functor

SpanE(px, py)op
[x,y]

−−−−−→ Sets

which takes (f, g) into Fw(f ∗x, g∗y), where w is the common domain of f and g, and Fw
denotes the fibre over 1w in F .

In the main example this functor is represented by the matrix C(xi, yj), i, j ∈ px×py.
We are thus led to the:
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1.11 Definition A locally internal category F over E is a fibration

p : F −−→ E

such that the functor [x, y] : SpanE(px, py)op → Sets is representable, for each pair x, y.

1.12 Remark This notion is a two-sided version of notions of Bénabou [1], Penon [22]
(see Johnstone’s lemma A.2 in [18], Paré-Schumacher [21]). Notice that the definition
does not involve the choice of a cleavage for the fibration.

1.13 Proposition Locally internal categories over E are the same as SpanE-categories
with restriction.

1.14 Remark We will see later (in Section 4) that this correspondence extends to an
equivalence of bicategories. At this stage we only prove a bijection (up to obvious notions
of isomorphism).

Proof We give the basic constructions. When X ia a SpanE-category, a fibration p :
F −−→ E is obtained by taking for F the objects of X and the underlying function as the
projection p on objects. Hom in F is given by:

F (x, y) = {(f, α)|f : u→ v, α : 1u → X(y, x) · f}

Composition and identities are defined as in the classical ”Grothendieck construction”.
We obtain a projection from F to E by defining the effect of p on arrows as p(f, α) = f .
If we now assume that X has restrictions xf , then a direct calculation shows that xf
satisfies the universal property of f ∗x. Hence p is a fibration.
We can say more. Namely that p : F −−→ E is a locally internal category. The enriched
Hom, X(x, y), is a span which represents [x, y]. The calculation involves the properties
of the adjunctions f −−| f ◦ for maps.
Conversely, suppose we are given a locally internal category p : F −−→ E. A SpanE-
category X is obtained by taking the objects of F as objects of X. The Hom in X is
defined by an object which represents

Span(u, v)op
[x,y]

−−−−−→ Sets

To show that X is a SpanE category more calculations are required. It is then easy to
prove that f ∗x provides a restriction of x along f .

2 Modules

In this section we describe briefly the notion of module between B-categories, and some
properties, for a general base bicategory B. The assumption we make here about the base
bicategory is that it is locally finitely complete and cocomplete. Further we assume that
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it admits right extensions and right liftings, i.e. for each pair of arrows α and β as in the
following pictures

u

⇐

α //

β
((

v

homu(α,β)

��
w

v

⇒

α //

homu(α,β)

��

u

w
β

66

there exists a right extension homu(α, β) (right lifting homu(α, β)) characterized by the
universal property

γ → homu(α, β)

γ · α→ β
(resp.

γ → homu(α, β)

α · γ → β
)

Observe that because of the existence of right adjoints to α · − and − · α, composition
with α on both sides preserves colimits.

2.1 Example (Monoidal categories). When B is a symmetric monoidal category the
assumption of right extensions and right liftings amounts to requiring that B is closed.

2.2 Example (SpanE). If E is a topos, SpanE admits right extensions and right limits.
First observe that because SpanE is a symmetric bicategory, the existence of right

extensions implies the existence of right liftings (and conversely):

homu(α, β) ∼= (homu(α◦, β◦))◦

Next, if α = g · f ◦, extending along a composite we have

homu(g · f ◦, β) ∼= homu(g, β · f)
∼= Πg×1(β · f)

When E=Sets, the formulae for right extensions and right liftings become

homu(α, β)ik = Πjhom(αij, βkj)

homu(α, β)ik = Πjhom(αji, βjk)

2.3 Definition Suppose X and Y are B-categories. A module φ : X −+→ Y is the
assignment of an arrow φ(x, y) : ex → ey for every pair of objects, with an action of X
on the left and of Y on the right, i.e. there are given 2-cells

Y (y, y′) · φ(x, y)→ φ(x, y′)

φ(x, y) ·X(x′, x)→ φ(x′, y)

satisfying the usual axioms of associativity, unity and mixed associativity.
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When φ : X −+→ Y and ψ : Y −+→ Z are modules, their composition ψ · φ : X −+→ Z
is defined (if it exists) as follows: (ψ · φ)(x, z) is the coequalizer in the category B(ex, ez)
of the two actions∑

y′,y′′

ψ(y′′, z) · Y (y′, y′′) · φ(x, y′)
−−→
−−→

∑
y

ψ(y, z) · φ(x, y)

2.4 Remark A functor F : X → Y gives rise to two modules F∗ : X −+→ Y and
F ∗ : Y −+→ X, defined by F∗(x, y) = Y (Fx, y) and F ∗(y, x) = Y (y, Fx).

2.5 Example (Rings and modules). When B=Ab is the monoidal category of abelian
groups, an internal category is just a ring and a module φ : R −+→ S is a left-R-right-S
module. Composition of such modules always exists and is the tensor product of modules.

A morphism α→ β of modules α, β : X −+→ Y is given by a family of 2-cells

α(x, y)→ β(x, y)

which is compatible with actions.

2.6 Remark Observe that, under our assumptions on the base B, composites of the
type

X
φ
−+→ A

ψ
−+→ Y

always exists when A is an internal category.

There are other special composites which always exist. In the situation

X
F∗
−+→ Y

G∗

−+→ Z

we have (G∗ · F∗)(x, z) ∼= Y (Fx,Gz).

2.7 Remark From the fact that composition preserves local colimits we can deduce that
in the situation of the following diagram

X
α
−+→ Y

β
−+→ Z

γ
−+→ W

if β · α and γ · β exist then (γ · β) · α exists if and only if γ · (β · α) exists. In this case
(γ · β) · α ∼= γ · (β · α).

It follows that if A is an internal category and F is a functor A → X, then F∗ is
left adjoint to F ∗ (the composites required to state this adjunction exist, the unit of the
adjunction is the effect of F on arrows, the counit is composition in X).

2.8 Remark Reconsider now the restriction laws of section 1. By the previous remark
we can deduce that the module x∗ · f ∼= X(x,−) · f is left adjoint to f ◦ ·x∗ ∼= f ◦ ·X(−, x)
(because x∗ −−|x∗ and f −−|f ◦). This proves that the two isomorphisms relative to
restrictions are equivalent, because X(x∗,−)−−|X(−, x∗).
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2.9 Example Arrows u→ v in the base are modules between discrete categories.

2.10 Example Modules A −+→ u from an internal category A are just algebras for the
monad A.

2.11 Example (Internal presheaves). In the SpanE case, when A is an internal category,
then modules A −+→ I (I is the terminal object in E) correspond exactly to internal
presheaves. More precisely, the effect on objects γ : F → A0 of an internal presheaf gives
rise to an arrow γ in Span E:

F
γ

~~ ��
A0 I

The effect on arrows l : A1 ×A0 F −−→ F provides a arrow Γ · A → Γ of the monad A,
and the preservation of composition and identities proves that the action l is that of an
A-algebra Γ.

Now we describe right liftings and right extensions between modules.

2.12 Proposition If A and C are internal categories and

ψ : A −+→ X

is a module then homA(φ, ψ) exists

A

⇐

+
φ //

/
ψ

%%

C

+homA(φ,ψ)

��
X

Proof An explicit calculation of homA(φ, ψ)(x) is provided by the equalizer of the fol-
lowing parallel pair of arrows in B(w, ex) (w denotes the underlying object of C, v the
underlying object of A):

homv(φ, ψx)
−−→
−−→hom

v(φ, homv(a, ψx))

An analogous statement and an analogous formula hold for right liftings.

2.13 Example (Rings and modules). When A,C,X are rings and φ, ψ are modules,
then homA(φ, ψ) exists and it is the left-C-right-X module of A-linear maps.
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We want now to represent modules. When A is an internal category, a new category
PA can be obtained by taking as objects over u the modules A −+→ u, and as hom the
right extension:

PA(α, β) = homA(α, β)

Example (PI). When B = SpanE, PI can be thought of as E itself regarded as a SpanE-
category. Its objects over u are arrows I −+→ u, i.e. maps in E with codomain u. If
f : w → u and g : w′ → v are two objects, then

PI(f, g) = Πf×1(1× g)

When E = Sets, this formula can be written as follows:

PI(f, g)ij = hom(f−1(i), g−1(j))

2.14 Example (Internal categories). When A is an internal category, then PA will be
an example of functor category, namely PA = (PI)A

op
(see later, section 6).

2.15 Example When u is a discrete category, then the hom in Pu is directly given by
the structure of the base:

Pu(α, β) = homu(α, β)

2.16 Proposition PA represents modules.

Proof To check the natural bijection

F : X −−→ PA

F̂ : A −+→ X

it is enough to take F̂ (a, x) = (Fx)a. In particular the identity X −+→ X corresponds
to the Yoneda embedding Y on : A → PA which takes the only object of A into the
representable module.

2.17 Proposition PA is a category with restrictions.

Proof It is easy to check that, given two objects α and β in PA and a map f : w → u
then homA(α, β) · f ∼= homA(f ◦ · α, β):

A +
α //

β
/

''

u

+

��

w
foo

\
homA(f◦α,β)

wwv

So f ◦ · α is a restriction of α along f .
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We will see that restrictions are a particular type of indexed limits and we will prove
a more general result about the existence of indexed limits in PA.

2.18 Example (Again PI). When B = Span(Sets), with the calculation of the previous
proposition we get that the restriction of the object g : w → u of PI along f : v → u is
given by the pullback.

3 Completeness and cocompleteness

The limits and colimits we consider in a B-category are indexed by modules. The notion
extends the analogous one given for categories based on a monoidal category (Street [23],
Borceux-Kelly [10]). In detail

3.1 Definition The limit of G indexed by φ (when it exists) is an object {φ,G} of X
which represents the right lifting of G∗ through φ, i.e.

homA(φ,G∗) ∼= X(−, {φ,G})

A

⇑

G // X+
G∗

oo

\

ww
C

/
φ

gg

Analogously the colimit of G indexed by ψ (when it exists) is an object ψ ∗ G which
represents the right extension:

homA(ψ,G∗) ∼= X(ψ ∗G,−)

A

⇑

G //

/
ψ

''

X

C

\

77

3.2 Remark Observe that, in the above definitions, the required lifting (or extension)
might not exist. However they certainly do exist under our general assumptions on the
base when A and C are internal categories. Notice further that the existence of the limit
(or colimit) is not affected by the category structure on C. So generally we will take C
to be discrete.

3.3 Definition X is said to be internal-complete (internal-cocomplete) if it admits all
limits (colimits) where the domain category is internal.
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3.4 Example (Restrictions). Restrictions give an example of limit (in this case usually
called cotensor). It is enough to observe that when A = v is a discrete category, G = x is
an object of X over v and φ = f is a map then homA(f, x∗) ∼= f ◦ · x∗ ∼= f ◦ ·X(−, x).

Restrictions can also be calculated as colimits indexed by f ◦. We have dually:

homA(x∗, f
◦) ∼= x∗ · f ∼= X(x,−) · f

In more generality we have the following:

3.5 Proposition When ψ has a left adjoint φ, then

{φ,G} ∼= ψ ∗G (if one exists)

Proof It follows from the facts:

homA(φ,G∗) ∼= ψ ·G∗ and homA(ψ,G∗) ∼= G∗ · φ

and the uniqueness of adjoints.

3.6 Example (Cauchy sequences). Another example of indexed limit is obtained by
considering the (usual) limit of a Cauchy sequence. Recall (Lawvere [20]) that a metric
space is a category enriched over R+ (non-negative real numbers, preordered by ≥ and
monoidal with +).

Let N be the null sequence { 1
n
} of real numbers, considered as an R+-category. Then

a functor x : N → X is a Cauchy sequence in X dominated by this null sequence
(and each Cauchy sequence is equivalent to such a sequence). Consider moreover the
module φ : I −+→ N (I is the trivial R+-category with one-object) whose components are
φ( 1

n
) = 1

n
.

Then a calculation gives
lim
n→∞

xn = {φ, x}

To test Cauchy-completeness of a metric space it is thus sufficient to check the existence
of limits indexed by this particular module φ.

3.7 Example (R-modules). In the case B = Ab, consider the following diagram (where
R is a ring):

Z M // R-Mod

\
homZ(A,M

∗)
vvZ

/
A

gg

M is an R-module and A is an abelian group. It is easy to check that

R−Mod(−, [A,M ]) ∼= homZ(A,M)

where [A,M ] denotes the R-module of isomorphisms A → M . Hence [A,M ] is the limit
of M indexed by A.
In a similar way A⊗Z M is an instance of an indexed colimit:

R−Mod(A⊗Z M,−) ∼= homZ(A,M∗)
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We consider the limit of a functor with a discrete domain x : v → X, indexed by the
opposite f ◦ of a map (in the SpanE-case) and we obtain the notion of product indexed by
f .

3.8 Definition Πfx is defined to be {f ◦, x} (when it exists).

3.9 Example (Families). In the case E = Sets, X = FamC for a C with small products
we have that {f ◦, (xj)j∈v} is the u-indexed family (yi)i∈u given by

yi = Πj∈f−1ixj

v x // FamC

\
homv(f◦,x∗)vvu

/
f◦

gg

Proof By applying the formula for right liftings given in section 2 we have

homv(f
◦,C(y, x)ki) ∼= Πjhom(f ◦(i, j),C(yk, xi))

∼= Πj∈f−1iC(yk, xj) ∼= C(yk,Πj∈f−1ixj)
∼= FamC(y,Πfx)ki

When C has small products, we have more:

3.10 Proposition FamC admits limits indexed by any arrow in the base, considered as
a module. The limit {φ, x} can be computed by the formula:

{φ, x}i = Πjx
φij
j

where the exponents represents an iterated product.

Proof It follows from the formulae for restriction and for products indexed by maps,
using the following lemma.

3.11 Lemma If X is an internal-complete B-category, then

{φ · ψ, F} ∼= {ψ, {φ, F}}

Proof The proof relies entirely on universal properties of the right liftings involved:

homA(φ · ψ, F ∗) ∼= homC(ψ, homA(φ, F ∗))

A
F // X

\
{φψ,F}

xx

C
/
φ

ff

u
/
ψ

gg

and essential uniqueness of their representing objects (existing because X is internal
complete).
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3.12 Remark A statement dual to that of the previous proposition holds true for col-
imits in FamC. In this case the formula we get is:

(ψ ∗ x)j ∼=
∑
i

xi · ψij

where xi · ψij denotes an iterated coproduct, and provided C is small-cocomplete.

3.13 Remark (Beck-Chevalley condition). Internal completeness of SpanE-categories
contains the Beck-Chevalley condition in the following sense: suppose we are given a
pullback square in E

.
q //

p

��

v

g

��u
f

// .

then the arrow (p, q) = q · p◦ is isomorphic to g◦ · f in SpanE. Hence taken any x : v → X
(with X internal-complete) we have

{q · p◦, x} ∼= {g◦ · f, x}

by the previous lemma we have: f ∗ · Πg
∼= Πp · q∗.

3.14 Theorem If A in an internal B-category, then PA is internal complete and co-
complete.

Proof In the situation of the following diagram:

C F // PA

u

/
φ

hh

consider F̂ : A −+→ C which is the module associated to F . We show that {φ, F} ∼=
homC(φ, F̂ ). First observe that F̂ = F ∗ · Y on∗, so we have

PA(−, homC(φ, F̂ )) ∼= PA(−, homC(φ, F ∗ · Y on∗)) (Yon∗ has a right adjoint)
∼= PA(−, homC(φ, F ∗) · Y on∗) (Yon is fully − faithful)
∼= homC(φ, F ∗)

Analogously we can compute indexed colimits.

By means of indexed limits and colimits it is possible also to express left and right
extension of functors (when they exist). In the situation of the following diagram we have
that, when X is internal-complete, the value of the right Kan extension RanGF on the
object c is given by

RanGF (c) ∼= {G∗(c,−), F}
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A

F   

G // C

RanGF~~
X

When X is internal-cocomplete, the left Kan extension LanGF is similarly given by
LanGF (c) ∼= G∗(−, c) ∗ F .

4 More about restrictions

We are now in a position to prove the equivalence announced in section 1 between SpanE-
categories with restrictions and locally internal categories. The morphisms between
SpanE-categories are just functors; the morphisms between locally internal categories
are functors which preserve cartesian arrows and which commute with projections.
The main proposition is the following.

4.1 Proposition Functors between B-categories preserve restrictions.

Proof Let f : u → v be a map, x : v → X an object of X and G : X → Y a functor.
We know that xf = {f, x}. Because f has a right adjoint f ◦ then

homv(f, x
∗) ∼= f ◦ · x∗ ∼= f ◦ ·X(−, {f, x})

Hence

Y (−, F{f, x}) ∼= (F · {f, x})∗ ∼= {f, x}∗ · F ∗
∼= f ◦ · x∗ · F ∗ ∼= Y (−, {f, Fx})

4.2 Remark The above proposition is part of a theorem of Street [27], in which absolute
indexed limits are characterized as those whose indexing module has a right adjoint.

4.3 Proposition The category of SpanE-categories with restrictions is equivalent to the
category of locally internal categories.

Proof Starting with a functor between SpanE-categories H : X → Y we obtain a
functor between the corresponding fibrations φ : FX → FY as follows. The effect of φ on
objects is the same as that of H. Given an arrow (f, α) : 1u → X(x2, x1) · f in X, then
φ(f, α) is

1u → X(x2, x1) · f → Y (Hx2, Hx1) · f

where the second arrow is the effect of H on arrows. It is immediate to check that φ
is a functor which commutes with the projections of FX and FY . Moreover φ preserves
cartesian arrows because H preserves restrictions.

Conversely, suppose we are given a functor φ : F → G between locally internal cate-
gories. We obtain a functor H between the corresponding SpanE-categories XF → XG as
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follows. The effect on objects is obvious. For each pair of objects x1, x2 in XF let us con-
sider their hom in SpanE, i.e. the span (f, g) = XF (x1, x2). Since F is a locally internal
category, then corresponding to the identity XF (x1, x2) → XF (x1, x2) there is an arrow
f ∗x1 → g∗x2 in F . By applying the functor φ we have an arrow φ(f ∗x1)→ φ(g∗x2). Since
φ preserves cartesian arrows we get an arrow f ∗(Hx1) → g∗(Hx2). Also G is a locally
internal category hence such arrows correspond to arrows

XF (x1, x2) = (f, g)→ XG(Hx1, Hx2)

in SpanE. We have thus described the effect of the functor H on arrows.

We will now describe how to adjoin freely restrictions to a category. The construction
is as follows (see also Street [25]). Given a category X, the objects of LX over v are pairs
(x, h) where h : v → u is a map of B and x is an object of X over u. The hom is given by

LX((x, h), (y, k)) = k◦ ·X(x, y) · h

Restrictions in LX are given by (x, h)f = (x, h · f).
We have a functor ∆ : X → LX given by x|→ (x, 1). That L is a functor results by

the following proposition.

4.4 Proposition LX is the free category with restrictions generated by X.

Proof Suppose F : X → Y is any functor and Y has restrictions. Then we can define
G : LX → Y by G(x, h) = (Fx)h and check that G ·∆ ∼= F . So

B − cat(X, Y ) ∼= B − cat(LX, Y )

4.5 Example (Internal categories). Reconsider the notion of an internal functor. It is
a map f : A → C which is a monad-map, i.e. it is endowed with a 2-cell f · A → C · f .
Now f becomes a functor A→ LC: it is enough to give an object of LC, namely (∗, f),
where ∗ is the only object of C.
In fact we have:

Int Cat(A,C) ∼= B − Cat(A,LC) ∼= B − Cat(LA,LC)

4.6 Example (Internal full subcategory) When X is a B-category with restrictions and
x is an object of X, we can consider the internal full subcategory determined by x by
taking a one-object category with the same underlying of x and hom(x, x) as hom.

When B = SpanE this is Penon’s notion (Johnstone [18]). The original notion, due
to Bénabou, is concerned with X = PI: given f : v → u in E, consider it as an object of
PI. FullE(f) is the internal category determined by the object f .
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In general: it is trivial to verify that if A is an internal category and f : LA −−→ X is
any functor, the induced functor A → X determines just one object x of X, and f can
be uniquely factored as f = h · Lg

La
Lg
−−→ LC

h
−−→ X

(where C is the internal full subcategory associated to x).

5 Closed bicategories

5.1 Question What should a closed bicategory be?

Thinking of objects of B as indexing types for families, it is necessary to consider
several variables at the same time, and to interchange or separate them. The tool that
enables us to accomplish this aim is a product in the base. With this new structure the
analogy with symmetric monoidal closed categories becomes even more evident and in-
deed most of the classical theory of categories enriched over a symmetric monoidal closed
category extends in a natural way to closed bicategories as described in this section.

5.2 Definition A tensor product in B is a homomorphism of bicategories

⊗ : B ×B −−→ B

which is associative, symmetric and has an identity I.

5.3 Remark The properties of associativity, symmetry and identity asked for the ⊗
are intended up to equivalence of objects in B. In this paper we will not enter into the
necessary coherence conditions, but we will rely on experience with the example SpanE.

The following notion extends the notion of compact closed category introduced by
Kelly ([15], p. 102).

5.4 Definition A bicategory with a tensor product ⊗ : B×B → B is said to be compact
closed when for each object v there exists an object v◦ and there are given isomorphisms
of categories (natural in u and w and preserved by tensoring with an object) called inter-
change of variables:

u⊗ v → w

u→ v◦ ⊗ w
and

u→ v ⊗ w
u⊗ v◦ → w

(The above notation just indicates the bijection of the isomorphisms on objects. Either
one of these isomorphisms implies the other, see Kelly-Laplaza [17]).

5.5 Remark We usually denote arrows which correspond under the interchange of vari-
ables with the same symbol. If there is ambiguity the correspondence will be denoted by
(ˆ).



20 RENATO BETTI AND ROBERT F.C. WALTERS

5.6 Definition A closed bicategory is a bicategory B which:
(i) is locally finitely complete and cocomplete,
(ii) has right extensions and right liftings,
(iii) is endowed with a tensor product with respect to which it is compact closed.

5.7 Remark From the properties of the ⊗ we have (u◦)◦ = u and I◦ = I. In fact the
correspondence u|→ u◦ extends to an involutory homomorphism Bop → B (where Bop has
just arrows reversed). Then the isomorphisms of the interchange of variables are natural
also in v.

5.8 Example (Monoidal closed categories). As already remarked, any symmetric mon-
oidal closed category provides an example of a closed bicategory (with just one object);
in this case u◦ = u and ⊗ is composition.

5.9 Example (V -mod). When V is a symmetric monoidal closed category which admits
small limits and colimits, then the category V -mod whose objects are V -categories and
whose arrows are modules is a closed bicategory. It is known that V -mod has right
extensions and right liftings. The ⊗ is given by the ordinary tensor of V -categories:

(A⊗B)((a, b), (a′, b′)) = A(a, a′)⊗B(b, b′)

On arrows the tensor product is given by

(φ⊗ ψ)((a, c), (b, d)) = φ(a, b)⊗ ψ(c, d)

In this case A◦ is the usual opposite category and the isomorphism

A⊗B −+→ C

A −+→ B◦ ⊗ C

is verified by observing that both modules correspond to A⊗B ⊗ C◦ −+→ I.

5.10 Example (Relations). When E is a regular category, consider the category RelE
of relations of E. The tensor product is the usual product of relations, u◦ = u and the
interchange of variables is easily verified.

5.11 Example (SpanE). SpanE provides another example of a closed bicategory. We
have already remarked the existence of right extensions and right liftings. The product
in SpanE is given by the product in E for objects, and on morphisms as follows: if
α : u −+→ v and β : u′ −+→ v′ are spans, then α⊗ β is the matrix u× u′ −+→ v × v′ given
by αij × βkl (i ∈ u, j ∈ u′, k ∈ v, l ∈ v′).
In this case u◦ = u and the interchange of variables is satisfied because all the arrows
involved are equal as maps in E with codomain u× v × w.

5.12 Definition When X is a B-category, the opposite category Xop has the same
objects as X, underlying object equal to (ex)◦ and hom given by Xop(x, y) = X(y, x)◦.
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5.13 Definition If X and Y are B-categories, the tensor product category X ⊗ Y is
defined as follows: the objects are the pairs (x, y) with x in X and y in Y , the underlying
object of (x, y) is ex⊗ ey and (X ⊗ Y )((x, y), (x′, y′)) = X(x, x′)⊗ Y (y, y′).

5.14 Example (SpanE). The tensor product of internal categories is the usual cartesian
product.

5.15 Example (B-Mod). When B is, in addition, locally small complete and cocom-
plete, we can consider the bicategory B-Mod whose objects are small B-categories and
whose arrows are modules. By extending directly the example of V -Mod given in this
section, we have that B-Mod is a closed bicategory with respect to the opposite operation
( )op and to tensor product of categories.

When B is just a closed bicategory, we can still form the closed bicategory of internal
categories and modules.

5.16 Example (Families). Consider FamC and FamD, i.e. the categories of families of
given categories C and D. Then FamC ⊗ FamD is given by the families (ci, dj)(i,j)∈u⊗v
with the obvious hom.

There exists also the cartesian product FamC × FamD: the objects are families
(ci, di)i∈u. It is easy to see that the cartesian product has restrictions (given component
wise). The relationship with the tensor product is as follows:

L(FamC⊗ FamD) ∼= FamC× FamD

We describe the above equivalence on objects: from an object ((f, g) : w → u ⊗
v, (ci, dj)(i,j)∈u⊗v) we get the object (cfk, dgk)k∈w. Conversely, given (ci, di)i∈u in FamC ×
FamD, consider the diagonal ∆ : u→ u⊗ u (= u× u because B = Span(Sets)), and take
the object (∆ : u→ u⊗ u, (ci, dj)i×j∈u×v) in L(FamC⊗ FamD).

5.17 Remark We can now consider the category PI for any closed base B. In the case
B = SpanE we have interpreted PI as E itself, as a SpanE-category (see section 3). But
also when B = V is a monoidal closed category, PI is V itself considered as a V -category.
Hence we write PI = B, and we can give a Hom functor for any category X.

5.18 Definition HomX : Xop⊗X → B is the B-functor which takes (x, x′) to X(x, x′)
considered as an arrow I → ex⊗ ex′.

Further, modules can be represented as functors with codomain B.

5.19 Proposition There is an isomorphism of categories

φ : X −+→ Y

F : Xop ⊗ Y → B

Proof Arrows φ(x, y) : u→ v correspond bijectively to arrows F (x, y) : I → u◦ ⊗ v.
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6 Ends and functor categories

We now wish to investigate further the internal completeness of categories based on a
closed bicategory, with the aim of defining the functor category XA, when A is an internal
category. This can be done by suitably extending the end formula by Day-Kelly [13].
Consider the module

1̂A : I → Aop ⊗ A

corresponding to the identity
I ⊗ A ∼= A→ A

Definition. Let A be an internal category. Given a functor

T : Aop ⊗ A→ X

the end of X (if it exists) is the limit {1̂A, T}. We use the notation

{1̂A, T} =

∫
A

T

6.1 Example (Families). Consider the category FamC, where C is an ordinary small-
complete category. Let A be any category internal to Span(Sets), i.e. an ordinary small
category, and consider

T : Aop ⊗ A→ FamC

We prove that
∫
A
T exists and give a formula to compute it. Let u be the set of objects

of A. First consider the two arrows 1̂A and 1̂u in the base

I
−−+−→
−−+−→u

◦ ⊗ u

We can compute separately the limits {1̂u, T} and {1̂A, T} regarding T as a functor from
the discrete category underlying Aop ⊗ A, i.e.

T : u◦ ⊗ u→ FamC

We have

{1̂u, T} = Πi∈uT (i, i) and

{1̂A, T} = Πi,jT
Aij

ij

(see the relative formulas in section 3). Such products exist because C is small complete.
There are two arrows

{1̂A, T}
−−→
−−→{1̂u, T}
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assigned by combining the effect of T on arrows, namely T (1, f) and T (f, 1):
∫
T is their

equalizer in C ∫
T >−−→ {1̂A, T}

−−→
−−→{1̂u, T}

Remark. We can also consider ends with extra-variables, i.e. given a functor

T : D ⊗ Aop ⊗ A −−→ X

we denote by
∫
A
T : D → X the limit {1̂D ⊗ 1̂A, T}.

Consider the module φ : I −+→ A, where A is an internal category (we take I for
simplicity, the same argument works as well for a general internal D). Then, by the
naturality of the interchange of variables (section 5), φ factorizes as

I
1̂A
−+→ Aop ⊗ A

φ◦⊗1
−−→ I ⊗ A ∼= A

6.2 Proposition (End formula for limits).

{φ, F} ∼=
∫
A

{φ◦ ⊗ 1A, F}

if the right hand side exists.

Proof Using the lemma on iterated limits (section 3) we see that:

{φ, F} ∼= {(φ◦ ⊗ 1A) · 1̂A, F} ∼= {1̂A, {(φ◦ ⊗ 1A), F}} ∼=

∼=
∫
A

{φ◦ ⊗ 1A, F}

6.3 Remark Let u be the underlying object of A, and consider limits of the type {φ◦⊗
1A, F}:

I ⊗ u // I ⊗ A F // X

u◦ ⊗ u

+φ◦⊗1u

OO

Aop ⊗ A

+φ◦⊗1A

OO

To calculate {φ◦ ⊗ 1A, F} we may first calculate {φ◦ ⊗ 1u, F} : u◦ ⊗ u → X, and then
there is a canonical way to extend it to a functor Aop ⊗ A→ X.
To see this, notice that, by the interchange of variables,

homI⊗A(φ◦ ⊗ 1A, F
∗) : X −+→ Aop ⊗ A

can be calculated by means of homI(φ
◦, F ∗) : A ⊗ X → A which does not involve the

category structure of A.
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6.4 Example (Families). In FamC, by applying the second proposition of section 3 and
the above remark, we have

{φ◦ ⊗ 1, F}ij = F φi
j

Now, by the end formula for limits, we have:

6.5 Proposition (Fubini theorem). Given T : Aop ⊗ A⊗Dop ⊗D → X we have∫
A

∫
D

T ∼=
∫
A⊗D

T ∼=
∫
D

∫
A

T (if any exists)

Proof Just observe that

1̂A⊗D ∼= (1Aop⊗A ⊗ 1̂D) · 1̂A ∼= (1̂A ⊗ 1Dop⊗D) · 1̂D

and apply the lemma on iterated limits (section 3).

We now introduce functor categories. Suppose X is any B-category and A is internal.
The functor category XA has objects over u the functors F : u⊗ A −−→ X. The hom in
XA is defined by

XA(F,G) =

∫
A

HomX(F ◦, G)

u◦ ⊗ v ⊗ Aop ⊗ A F ◦⊗G // Xop ⊗X HomX // B = PI

u◦ ⊗ v ⊗ I
u◦⊗v⊗1A

OO ∫
AHomX(F ◦,G)

22

Observe that
∫
A
HomX(F ◦, G) is an object of PI over u◦ ⊗ v, i.e. it corresponds to

an arrow u −−→ v.
To check thatXA is aB-category, remembering how limits are computed in PI (section

3) and using the interchange of variables (section 5), we see that
∫
A
HomX(F ◦, G) is

obtained as a right lifting in the base:

u

⇑

HomX(F ◦,G) //

/
&&

v ⊗ A◦ ⊗ A

v ⊗ I

\
v⊗1̂A

66

The computation involves interchange of variables and standard arguments relative to
right liftings.

6.6 Example (Internal presheaves). We have:

PA ∼= BAop

The correspondence on objects is the following: given an object φ : A −+→ u over u in PA,
we get a module I −+→ u⊗Aop by the interchange of variables of one-object B-categories.
Hence an object (over u) u⊗ Aop → PI = B in BAop

.
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6.7 Example (Families). Consider a discrete category u. Then (FamC)u has objects
over v the families indexed by u× v. If x is over v and y is over w, the hom is given by:

(FamC)u(x, y)jk = ΠiC(xij, yik)

by applying the lifting formula in Span(Sets).

A calculation, long but straightforward, shows:

6.8 Theorem If A is an internal category, then we have an isomorphism of categories:

F : Y −−→ XA

F̄ : A⊗ Y −−→ X

6.9 Remark It is easy to check that XA has restriction whenever X has. More generally,
if X is internal complete then XA is internal complete and limits in XA can be computed
”pointwise”, i.e. given

D
F // XA

u

/
φ

ee

{φ,F}

88

with D internal, then {φ, F} ∼= {φ⊗ 1A, F̄} where F̄ : D ⊗ A→ X corresponds to F .

Because the universal property of L and the fact (see section 4) that L(A ⊗ D) ∼=
LA× LD for categories of families, we have:

6.10 Corollary If A is internal and X, Y are categories of families, there is an equiv-
alence of categories

Y → XA

LA× Y → X
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