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TOPOSES GENERATED BY CODISCRETE OBJECTS

IN
COMBINATORIAL TOPOLOGY AND FUNCTIONAL ANALYSIS

F. WILLIAM LAWVERE

Author’s commentary
The study of particular toposes (such as Mike Roy’s Ball Complexes [5]) gives ex-

perience that develops spatial intuitions, which are useful also for applications beyond
the purely geometric. Classical examples were G-sets and simplicial sets, as well as the
basic 2-valued representations of Boolean logic. George W. Mackey’s bornological sets
have become fundamental in functional analysis; the category of Banach spaces is fully
embedded among its vector space objects. That illustrates how the appropriate topos will
serve as the ‘cohesive’ background for algebraic and other structures. Some of these ex-
amples reveal the very special condition that occasionally holds for an abstract grounding
E −→ S, where the one category S is embedded in two ways, left and right adjoint to the
grounding; these are conveniently thought of as ‘discrete’ and ‘co-discrete’. The special
condition studied here is that the general objects of E are ‘generated’ by the co-discrete
ones (called ‘bounded’ parts in the bornological case).

I hope that these and related considerations will clarify the disputed connection be-
tween basic structures and the architecture of Mathematics. (Even Notre Dame will be
recreated by careful scientific and artistic efforts and collaboration.)

The paper below is the summary of the Notes for the Colloquium lectures at North
Ryde, NSW, Australia (1988); the subject was treated in lectures in Wisconsin (1989) and
at the Seminario Matematico e Fisico, in Milano, Italy (1992). It presents two toposes ‘of
spaces’ and outlines their application in Combinatorial Topology and Functional Analysis.
The classifier of non-trivial Boolean algebras is one of the toposes that partially motivates
work by Grandis [2] and by Rosicky-Tholen [4], whereas the ‘bornological topos’ is briefly
introduced in [3, Section 7] and has influenced work by Español-Lambán [1].

There are several hard copies of the original typewritten paper around the world but
the present latexed version was produced by F. Marmolejo. We hope that its publication
in TAC-Reprints will motivate others to work on the ideas that are still unexplored.

My profound gratitude for their tireless help to get this material published, goes to
Francisco Marmolejo and Mat́ıas Menni.
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Toposes generated by Codiscrete Objects

in

Combinatorial Topology and Functional Analysis
(20 December 1989)

For an S-based topos X p S, the adjointness

p∗S X

S p∗X

justifies calling p∗S a discrete space if we think of p∗X as the abstract set of points
of the general “space” (= cohesive set) X.1 X is called connected if p∗ is full and
faithful, essential (or locally connected) if p∗ has a further left adjoint p!, and local if
p∗ has a further right adjoint p!. A locally connected topos is connected iff p!(1) = 1,
for p! has the meaning “components” [“orbits” in the case of G-sets].

We always require that p∗ is left exact, so for a connected X the discrete spaces
form a full subcategory of X which is equivalent to S and closed under arbitrary
colimits and finite limits; it will be closed under infinite products as well iff X is
locally connected. For local X the adjointness

X p!S

p∗X S

justifies (from the “gros” perspective) calling p!S a codiscrete (indiscrete, chaotic)
space. For a connected local X , the codiscrete spaces thus form a second full sub-
category of X which is equivalent to S, closed this time under arbitrary limits but
few colimits. The “adjoint cylinder” with base S,

• •

p∗(S) p!(S)X

formed by discrete and codiscrete with each horizontal fiber consisting of all spaces
in X with a given set of points, forms a “unity and identity of opposites”.

1This terminology is appropriate for “gros” X ; in the “petit” case we would speak instead of
constant sheaves and the set of global sections of the (variable) set X.
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Now the usual petit toposes, such as S-sheaves on a locale or SG for G a group,
all have the property that they are generated by “empty” objects, that is by the U
such that p∗U = 0. Let us by contrast consider some connected local toposes which
are generated by codiscrete objects. In general (when we have a set U of generators in

mind) a map U x X from a generator to an arbitrary object may be thought of as
a singular figure in X of the form U (and the category U/X as specifying incidence
relations between these). The form of a space such as p!(3) may be imagined as a
blob with three points, totally different from the discrete space p∗(3) in that it has
total cohesiveness as opposed to total lack of cohesiveness. There are typically few
maps indeed (see the examples below for more precise statements) from a codiscrete
space to a discrete one, but by contrast there is a canonical inclusion p∗S → p!S
(which induces an isomorphism when we apply p∗ to it); this map concretizes the
contradictory property of “Kardinalen als Mengen”: the points have no distinguish-
ing properties yet are completely distinguished. The “geometrical” structure of any
space X in such a chaotically-generated connected local topos lies primarily in this:

given a family p∗(S) x X of points of X, there may or may not be blobs x in X
with these as vertices

p∗(S) p!(S)

X
x x

canon

Those X for which there is at most one blob with given vertices form a subcategory
X1 ⊂ X which is cartesian closed but not a topos.

1. Simplicial schemes in the Boolean algebra classifier

If S is the category of non-empty finite sets, then the functor category X = SSop is a
topos which is local since

p!(S)(n) = Sn for S ∈ S, n ∈ S

is right adjoint to p∗(X) = X(1), and chaotically generated since for any such functor
category the Yoneda embedding generates, but here the Yoneda embedding is just a
restriction of p!

S SSop.

S
p!

Yoneda

The maps from a codiscrete to a discrete are constant in this topos.
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This topos X = SSop has a rich mathematical content. The cartesian-closed
subcategory X1 is the classical category of simplicial schemes, and indeed we can
define a “geometric realization” (on even the “singular” objects of X ) as the left
Kan extension

S

X
top

∆

of ∆(n) = the underlying topological space (n−1-dimensional) of the free convex set
on n generators. Each p!(S) has a subobject Σ(S)(n) = {n x S | x not surjective}
for which the pushout in X

Σ(S) p!(S)

1

has (for S <∞) a sphere as realization.
Besides X1, there is in this X another cartesian-closed reflective subcategory

which is not a topos, namely the category Gp of all groupoids (small categories
in which all morphisms are isomorphisms). This is achieved by associating to any
nonempty finite set n the groupoid n with n objects and exactly one morphism i→ j
for any ordered pair 〈i, j〉 of these objects; then Gp X assigns to any groupoid
G the functor whose typical value is

G(n) = Gp(n,G)

the set of all functors from n to G. The embedding into X is full because the incidence
relations between G(2) and G(3) determine the multiplication table of any G. The
left adjoint of the embedding is the Poincaré functor π1.

The above geometric realization, with p!(2) realized as the unit interval I, is not
left exact nor does it even preserve finite cartesian products, for I has no continuous
Boolean algebra structure yet p!(2) is obviously a Boolean algebra in any local topos.
On the other hand I does have a continuous distributive lattice structure (max /min)
and hence can be embedded in a continuous Boolean algebra I∞. This construction
can be done in stages

•
0

•
1

•
0

•
1

t

•
0

•
1

¬t

•
0

•
1t∧¬s

· · ·
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where hemispheres contracting (at odd stages) previous lower-dimensional spheres
are logically negated (at even stages) to become spheres. The direct limit is the
(weak) infinite-dimensional sphere, which is contractible. Its topology can be ex-
tended to the whole ring R of step functions on I; in any commutative R-algebra, the
Boolean algebra {f | f 2 = f} is the “sphere” {f | (f − 1

2
)2 = 1

2
}. Thus the infinite-

dimensional sphere I∞ is revealed to have a Boolean algebra structure with ∧, ∨
continuous and with logical negation ¬ identified with the geometric antipodal map;
but it is also contractible, contrasting with the fact that a compact Boolean algebra
must be prodiscrete.

For most purposes of algebraic topology and functional analysis, the category
top would much better be replaced by the topos T described by Johnstone [1] where
in particular the above construction can also be carried out. For some purposes of
homotopy theory, the infinite sphere I∞ might as well replace the interval as path
parameterizer (picturing I∞ as a fattened interval with lots of back-tracking suggest
“Zitterbewegung”). Thus another geometric realization of our topos is the left Kan
extension

S

SSop
T

I∞

This one is in fact left exact, and for a general reason, which we now will make
explicit.

The topos X = SSop is characterized as the Boolean-algebra classifier among all
S-toposes, with p!(2) the generic Boolean algebra. That is, if B is any non trivial
Boolean algebra in any S-topos E , then there is a unique functor E β X with a
left-exact left adjoint β∗ for which β∗(p!2) = B. For such β∗ must be Kan extensions
of their Yoneda restrictions S→ E , but left-exact functors from S “are” just Boolean
algebras because any nonempty finite set is a retract of a power of 2.

Fractional exponents also appear in X = SSop, where the resulting “combinatorial
Lagrangians” clarify a step in the construction of Eilenberg-Mac Lane spaces. Here
by “fractional exponents” we refer to the possibility (excluded for S) that certain
objects D may have the property that ( )D (itself a right adjoint) has a further right

adjoint ( )
1
D . Such objects must be connected, i.e. (X1 + X2)D = XD

1 + XD
2 for all

X1, X2, and have even stronger properties; as a class they are closed under finite
products. Such objects D in a topos X could be called local objects for (as Freyd
showed), the canonical geometric morphism X/D Π X is local. The local objects
in the Boolean algebra classifier SSop are just the finite codiscrete ones, for if D is
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represented by p ∈ S, then for all Y , we can define

Y
1
D (n) = Y (np) n ∈ S

Usually ( )
1
D does not have a still further right adjoint, as it does in this exceptional

case.
The term “Lagrangian” above alludes to the situation in synthetic differential

geometry where there is a local object D such that for any smooth space X, XD is its
tangent bundle. Maps XD → R are often called Lagrangians on X and sometimes
thought of as an extended kind of function on X itself. The latter point of view
receives precise justification in the adjointness

XD R

X R
1
D

wherein, since ( )
1
D preserves products, R

1
D will be a ring if R is. The connection

with Eilenberg-Mac Lane spaces, on the other hand, may be sketched as follows:
Since Dn = p!(n+ 1) is a generic n-simplex, a map

XDn → R

is an n-cochain on X. In a topos such as our SSop, Dn is a local object, so these

cochains may be considered equivalently as maps from X itself to R
1

Dn ; the inclusions
Dn Dn+1 induce maps whose alternating sum has a kernel

K(R, n) R
1

Dn R
1

Dn+1

so that maps X → K(R, n) are cocycles. We only need to verify that between a pair
of cocycles the homotopy relation reduces to the cohomology relation, in order to see
that K(R, n) homotopically represents Hn(X,R).

Another virtue of SSop as an example is that we can explicitly determine all its
subtopos: they are in fact all again presheaf toposes SSpop, where Sp is the category
of non empty sets of cardinality ≤ p. The inclusion geometric morphisms are the

right Kan extensions p∗ of the inclusions Sp p S; since there are also the left Kan
extensions p!, all subtoposes are essential in this case. The “canonical” topology,
defined in general to determine the smallest subtopos whose inclusion p∗ includes
the Yoneda embedding, in our case of codiscrete generation reduces to the same
as the double negation topology, whose sheaves are just S. However, the truth-
value object Ω¬¬ of S is (though Boolean) the connected object p!(2) of SSop. The
“Aufhebung of double negation” exists in this case: the smallest essential subtopos
such that the p-skeleton p!p

∗X of any X has the same components as X itself is given
by p = 2, i.e. the topos SS2op of reversible graphs.
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2. Bornology as a topos and Abelian Categories in Functional Analysis

A functor which preserves finite limits, finite coproducts and coequalizers of equiv-
alence relations may still fail to preserve arbitrary coequalizers, (even a functor be-
tween very good categories) “because” the passage from coequalizer data to the
equivalence relation with the same coequalizer involves countable coproducts. The
minimal counterexample which illustrates this is also a basis of much of functional
analysis, and also provides example of codiscrete generation of a topos which is not
a presheaf topos.

Let C denote the category of countable sets (or quasi-equivalently, the monoid of
all endomaps of the set of natural numbers). This is a “strictly distributive” category
in the sense that pullback and coproduct provide equivalences of categories

C/(A+B) ∼ C/A× C/B
C/0 ∼ 1

for A,B in C. For any such category, the category G(C) of all product-preserving

functors Cop X S, i.e.
X(A+B) ∼ X(A)×X(B)

X(0) ∼ 1

is actually a topos, namely such X are the sheaves for the “finite disjoint cover”
topology. Swan pointed out [2] that the associated sheaf functor SCop → G(C) (left
adjoint to the inclusion) can be computed as a single colimit over covers in this
case, in contrast to the twice-iterated colimit required for more general topologies.
By construction the Yoneda embedding C → G(C) preserves finite limits and finite
coproducts; moreover, for our specific example of countable sets, it preserves co-
equalizers of equivalence relations as well since by the axiom of choice surjections in
C split. (Another important example of a strictly-distributive category is Aop

K , where
AK is the category of finitely-presented commutative algebras over a field K, as was
pointed out by Gaeta in the foundation of algebraic geometry).

Now the coequalizer in C of

N N ?
( )+1

id

is 1, yet for the corresponding codiscrete/representable objects

Nb Nb ?
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in G(C), the coequalizer is not the terminal object (though it has only one point); it
has a very rich structure reminiscent of the Frechet filter.

The topos B = G(C) for C = countable sets deserves to be called the bornological
topos, and in particular the codiscrete natural numbers Nb could also be considered
as the “bounded” natural numbers; a figure Nb

x X in an arbitrary X ∈ B may be
called a bounded sequence in X. It is still the discrete Nd which (as in any topos)
satisfies the universal property of recursion

1

Nd X

x0
t( )+1

for any object X and map t. As “identical opposites”, Nd and Nb have isomorphic
endomorphism monoids and there is a canonical inclusion Nd Nb; however, they
are very different for all maps Nb → Nd have finite image, as befits “bounded se-
quences of natural numbers”. Since Nd =

∑
1, a map Nd → X is an arbitrary

sequence of points of X; such may or may not be “bounded”, i.e. admit

Nd Nb

X
x x

Of course morphisms X → Y are automatically bornological, i.e. take bounded
sequences to such. Those X for which there is always at most one x for a given x in
the above form a full reflective cartesian closed subcategory B1 of our topos B, which
is closely related to traditional functional analysis, as explained below; however, B
as a topos has much better exactness properties (such as epi & mono ⇒ iso) as well
as permitting spatialization of many more concepts and constructions (such as ΩX).

The usual category bor has as objects sets equipped with a class of “bounded”
subsets closed under finite union and passage to smaller subsets, and as morphisms
maps which covariantly preserve bounded subsets. This last feature makes it easy
to see that bor has function spaces, i.e. is cartesian closed. Most examples arising
in analysis have the further property that a subset is bounded if every countable
subset of it is bounded; call this full subcategory borω. Then there is an obvious full
embedding borω → B, which generates.

Although simpler (in that it is covariant) than topology, bornology in itself has
at first glance the air of being too abstract to be of direct mathematical value.
However, that changes when we consider algebraic structures in the category; the
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category Ab(B) of abelian groups in bornology contains the category of Banach
spaces as a full subcategory, as is historically enshrined in the term “bounded linear
transformation”. The famous “uniform boundedness” theorems have the form: let
H(X, Y ) ⊂ Y X be a part compatible with certain algebraic structures with which
X, Y are endowed, and let |X| X be the discrete part of X. Then any sequence
bounded in H(|X|, Y ) is bounded in H(X, Y ), i.e. any commutative square (with
canonical vertical arrows) has a diagonal

Nd H(X, Y )

Nb H(|X|, Y )

The real number object RB of the topos B is a ring so there is the abelian (even
Grothendieck AB 5) category RB-Lin(B) of all RB modules in B. Similarly there
is RT -Lin(T ) where T is the Johnstone topological topos mentioned earlier. There
are two prejudices associated with the usual approach to topology which it would be
good for analysis to dispel. One is that epi-monos need not have continuous inverses
so that toposes and abelian categories could not directly reflect topology or functional
analysis. However, the actual meaning of “epimorphism” in B and RB-Lin(B) (as
well as in T and RT -Lin(T )) is (not only surjective on points but even) locally
surjective on bounded sequences (or on convergent sequences). The other (fostered
by some treatises on topological vector spaces) is that an infinite morass of counter
examples refutes any reasonable conjecture about the behavior of dual spaces or
function spaces. However, that is much ameliorated by the covariant “figure” concept
of geometrical/topological structure (with contravariant notions such as open set
or real continuous function derived rather than fundamental) and even more by
concentration on sequential convergence, as in T . Work of Kolmogorov in the 1930’s
(further developed in Mackey’s thesis) indicates a pair of adjoint functors between
the two abelian categories

RT -Lin(T ) RB-Lin(B)

which may be roughly described as Hom and ⊗ with the space c0. The fundamental
lemma of functional analysis should say that this is very nearly an equivalence of
categories (even though T and B themselves are quite different—for example, T is
not “generated by codiscrete objects”).

What is the role of B as a classifying topos? That is, for a geometric morphism
X f B, what structure does f ∗(Nb) have? It is a non-standard model of the follow-
ing sort of arithmetic: All functions Nk → N are interpreted as operations, and all
positive truths involving ∃ and only finite disjunctions are valid for the interpretation.
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The construction of B admits a generalization which may be of set-theoretic
interest. Let L be the category of sets of cardinality ≤ λ where λ is a “large”
cardinal, and let L SLop

be the subcategory of those X for which

X

(∑

i∈I
ci

)
=
∏

i∈I
X(ci)

for ci ∈ L, card(I) < λ. Then L is a topos and (for λ > ω) the Yoneda embedding
preserves all colimits (including coequalizers) of size < λ (λ should at least be regular
in order that these colimits exist in L.) Then L is quite different from S, yet the
discrete and codiscrete embeddings S L agree on sets smaller than λ. Then the
“oppositeness” in this unity L of identical opposites S is only revealed at λ and above
where no map λb → λd is surjective.
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