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THE TRIPLEABLENESS THEOREM

JONATHAN MOCK BECK

Preface by Robert Paré

The 1960’s was an exciting time for category theory, the beginning of the Lawvere Era.
The scene was dominated by a dozen or so larger-than-life personalities: Lawvere, Lambek,
and Isbell to name just three. There was much activity, the results coming quickly, often
not written up for publication. The people in the know knew.

Jon Beck was a prominent contributor to this group and was notoriously lax when it
came to publication, continually honing and refining his results. He relied on conference
talks, face to face discussions and the occasional hand-written notes, Xeroxed, passed
around and Xeroxed again.

His thesis (reproduced in TAC Reprints) set the stage for the rapid development of
monad theory, with an intense flurry of activity during the “Zurich Triples Year” (1965-
66).

Monads (then called triples) were originally designed as a tool for generating cohomol-
ogy theories and the relation to universal algebra was just beginning to emerge. In order
to understand what these cohomologies were calculating, at least in low degree, Beck
needed a condition he called “tripleability”, now monadicity. It then became desirable to
get useful conditions insuring monadicity, and this is what he did. The “crude tripleability
theorem” or “CTT” gave easy-to-check conditions insuring tripleability. PTT, the precise
tripleability theorem, was only a bit harder to check and gave necessary and sufficient
conditions. It is amazing that such simple conditions as the existence and preservation of
certain coequalizers, together with adjointness of course, are all that is needed. Especially
since this characterizes categories of universal algebras. This he wrote up in the beautiful
untitled and undated manuscript now being reproduced here in the TAC reprint series.

In the years since, monads have proven to be a central concept in category theory
and the monadicity theorems powerful and invaluable tools, and appear in most of the
standard textbooks on categories. The publication now of Beck’s original manuscript
provides an important historical document.
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Editors’ note

This reprint would not exist without the work of Nathanael Arkor, who first put in an
enormous amount of effort—ultimately successful—to track down a copy of this widely
cited but hard to find manuscript, then raised the idea of publishing it as a TAC Reprint,
then typed it up in LATEX. We are very grateful to him for this work.

The manuscript was originally distributed at a conference held at the Seattle Research
Center of the Battelle Memorial Insitute in 1968, and the copy used here was provided
by John Kennison, to whom we are also grateful. We also thank Nadine Beck for giving
permission for the publication of this reprint, and to Michael Barr for contacting her.

Some notation and terminology is now outmoded, but we have left it untouched. The
most obvious instances are ‘triples’ and ‘tripleableness’ for what we now call monads and
monadicity. Beck also used the diagrammatic order of composition that was common
among category theorists then, including Xµ to mean the X-component of a natural
transformation µ, now usually written as µX .

The only significant change is that a small number of references have been added (and
again, this is the work of Nathanael Arkor). There were none in the original manuscript.

1 Introduction

Let A B
F

U
with F ⊣ U . Write η : 1A → FU , ϵ : UF → 1B for the unit and counit

of the adjointness. Then T = (T, η, µ) is a triple in A, where T = FU , η : 1A → T ,
µ = FϵU : T 2 → T . We have the category of T-algebras AT as defined by Eilenberg–
Moore [Eilenberg and Moore (1965)], F T : A→ AT by X ⇝ (XT,Xµ), UT : AT → A by
(X, ξ)⇝ X, and F T ⊣ UT.

AT B

A
UT

ϕ

U

is defined by Y ϕ = (Y U, Y ϵU). The adjoint pair F ⊣ U is tripleable if ϕ∨ ⊣ ϕ exists
such that the unit and counit are isomorphisms 1AT

∼−→ ϕ∨ϕ, ϕϕ∨ ∼−→ 1B. Given U , this
property is independent of which left adjoint F is used, so we also say U is tripleable in
this situation. It seems to be too much to ask for ϕ∨ϕ = AT, ϕϕ∨ = B. On the other
hand, in category theory, the usual “equivalences” of categories should be replaced by
adjoint equivalences.

2 Crude tripleableness theorem

2.1 Theorem If B has coequalizers and U preserves and reflects coequalizers, then U is
tripleable. (It is assumed F ⊣ U exists.)
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Proof ϕ∨ is the coequalizer: XFUF XF (X, ξ)ϕ∨
ξF

XFϵ

k . One way of proving

this is by verifying the sequence of set isomorphisms1

maps (X, ξ)
f−→ Y ϕ

→ maps X
f−→ Y U such that ξf = fFU . Y ϵU

→ maps XF
g−→ Y such that ξF . g = XFϵ . g

→ maps (X, ξ)ϕ∨ g−→ Y .

If (X, ξ)
φ−→ (X, ξ)ϕ∨ϕ denotes the unit of ϕ∨ ⊣ ϕ, then φUT = Xη . kU .

X

XFUFU XFU X

(X, ξ)ϕ∨U

Xη

XFϵU

ξFU ξ

kU
φUT

Now, ξ = coeq(ξFU,XFϵU) for if some XFU
z−→ Z coequalizes ξFU and XFϵU , then

X
Xη.z−−−→ Z is the unique map such. . . 2 But kU = coeq(ξFU,XFϵU) since U preserves

coequalizers. Moreover,

ξ(φUT) = ξ . Xη . kU = XFUη . ξFU . kU = XFUη . XFϵU . kU = kU .

Therefore φUT is an isomorphism, and since UT reflects isomorphisms, so is φ. The counit

Y ϕϕ∨ ψ−→ Y is defined by its appearance in the diagram below.

Y UFUF Y UF Y ϕϕ∨

Y

Y ϵUF

Y UFϵ

k

Y ϵ
ψ

We proved above that the T-structure of an algebra is a coequalizer, so if U is applied
to (Y ϵUF, Y UFϵ, Y ϵ) we get a coequalizer diagram in A (Y ϵU is the T-structure of the
algebra Y ϕ). But U reflects coequalizers, so Y ϵ = coeq(Y ϵUF, Y UFϵ). Therefore ψ is an
isomorph.

1Editors’ note: in the original manuscript, the third line of the display that follows ends with ‘such
that ξF = XFϵ . g’, but this is surely an error.

2Editors’ note: here and on two later occasions, a sentence in the manuscript trails off with an ellipsis.
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3 Contractible coequalizers

A diagram Y1 Y0 Y
d0

d1

d with d0d = d1d looks like the 1-skeleton of an augmented

simplicial object. (Here degeneracies will be ignored.) A contraction of a simplicial
object is a sequence of maps hn : Yn → Yn+1 such that hndi = dihn−1 for 0 ≤ i ≤ n
and hndn+1 = Yn. (You can also use hnd0 = Yn, hndi = di−1hn.) We are led to look at
diagrams

Y1 Y0 Y
d0

d1

h0

d

h−1

such that d0d = d1d, h−1d = Y , h0d0 = dh−1, h0d1 = Y0. In this case d = coeq(d0, d1),
for if d0z = d1z for Y0

z−→ Z then h−1z : Y → Z is the unique map such. . . Thus we call
such a diagram a contractible coequalizer diagram.

If A
U←− B, we call coequalizer data Y1 Y0

d0

d1
U-contractible if there are Z, d,

h−1, h0 in A such that

Y1U Y0U Z
d0U

d1U

h0

d

h−1

is a contractible coequalizer diagram. We say: B has U-contractible coequalizers if all
U -contractible coequalizer data in B have coequalizers in B; U preserves U-contractible
coequalizers if whenever Y1 ⇒ Y0 is U -contractible and has a coequalizer Y0 → Y in B,
then the canonical map Z → Y U is an isomorphism; U reflects U-contractible coequalizers
if Y1 ⇒ Y0 → Y being mapped into a contractible coequalizer diagram by U implies that
Y1 ⇒ Y0 → Y is a coequalizer diagram in B.

[
Y1U Y0U Y U

d0U

d1U

h0

dU

h−1 ]

(Y1 ⇒ Y0 → Y will not necessarily be contractible in B.)

4 Precise tripleableness theorem

4.1 Theorem U is tripleable ⇐⇒ B has, and U preserves and reflects, U-contractible
coequalizers.

Proof ⇐ is clear. One only has to notice that all coequalizers arising in the proof of
the crude theorem were U -contractible.
⇒: We can assume B = AT and prove that AT has UT-contractible coequalizers. (The

(dual) example of comodules over a non-flat coalgebra shows that AT need not have all
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coequalizers. But it follows from a result of Linton’s alluded to below that AT has all
coequalizers if A = sets.)

Let (X1, ξ1) (X0, ξ0)
d0

d1
be UT-contractible, i.e. we have the accompanying diagram

in A.

X1 X0 X
d0

d1

h0

d

h−1

Let XT
ξ−→ X be h−1T . ξ0d. Then dT . ξ = ξ0d.

X0T XT

X0 X

dT

ξ0 ξ

d

For

dT . ξ = dT . h−1T . ξ0d = (dh−1)T . ξ0d = (h0d0)T . ξ0d = h0T . d0T . ξ0d

= h0T . ξ1d0d = h0T . ξ1d1d = h0T . d1T . ξ0d = (h0d1)T . ξ0d = ξ0d.

This shows that d : X0 → X is compatible with T-structures. Since h−1d = X, it follows
that (X, ξ) is a T-algebra. Also if a different contraction h′0, h

′
−1 were used, and ξ

′ defined
as h′−1T . ξ0d, then ξ

′ = ξ, since ξ = (h−1d)T . ξ = h−1T . dT . ξ = h−1T . ξ0d, and ξ
′ =

(h−1d)T = h−1T . dT . ξ
′ = h−1T . ξ0d also. Thus the T-structure ξ is well-defined. Finally,

d = coeq(d0, d1), for if (X0, ξ0)
y−→ (Y, θ) coequalizes d0, d1, then (X, ξ)

h−1y−−−→ (Y, θ) is the
unique. . . 3 The above construction shows that UT preserves and reflects UT-contractible
coequalizers.

5 Remarks

It should be possible to improve the above theorem (apart from streamlining the expo-
sition). Conditions implying tripleableness should be found which are easier to verify in
practice. For instance, the following is true:

U is tripleable ⇐⇒ B has and U preserves U -contractible coequalizers,

and U reflects isomorphisms.

It seems to follow without much difficulty, from this, that algebraic or varietal categories
are tripleable over sets (and Linton can prove tripleable categories are varietal [Linton
(1966), Linton (1969)]).

3Note that h−1 is not an algebra map, but h−1y is.
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Giuseppe Rosolini, Università di Genova: rosolini@unige.it
Michael Shulman, University of San Diego: shulman@sandiego.edu
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
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