
Theory and Applications of Categories, Vol. 10, No. 6, 2002, pp. 134–147.

COHERENCE FOR FACTORIZATION ALGEBRAS

ROBERT ROSEBRUGH AND R.J. WOOD

ABSTRACT. For the 2-monad ((−)2, I, C) on CAT, with unit I described by identities
and multiplication C described by composition, we show that a functor F : K2 ��K
satisfying FIK = 1K admits a unique, normal, pseudo-algebra structure for (−)2 if and

only if there is a mere natural isomorphism F ·F 2 � �� F ·CK. We show that when this
is the case the set of all natural transformations F · F 2 ��F · CK forms a commutative
monoid isomorphic to the centre of K.

1. Preliminaries

1.1. When we speak of ‘the 2-monad (−)2 on CAT’ we understand the canonical monad
that arises by exponentiation of the cocommutative comonoid structure

1 �� ! 2 ∆ �� 2 × 2

on the ordinal 2 in CAT. We write IK :K ��K2 for the K-component of the unit; it sends
an object to its identity arrow. We write CK : (K2)2 ��K2 for the K-component of the
multiplication; it sends a commutative square to its composite arrow. This monad was
very carefully described in [K&T], wherein it was shown that the normal pseudo-algebras
for (−)2 are equivalent to factorization systems. In [R&W] Coppey’s result [COP] that
strict algebras for (−)2 are strict factorization systems was rediscovered (in the context
of distributive laws). Mindful of the inflection terminology of [K&S] we call a normal
pseudo-algebra for (−)2 a factorization algebra and call a strict algebra for (−)2 a strict
factorization algebra. It is convenient in this context to call a mere functor F :K2 ��K
a factorization pre-algebra. In the event that FIK = 1K, we say that F is a normal
factorization pre-algebra (although this terminology does not entirely conform with that
of [K&S]). (We are also aware that the lax factorization algebras of [R&T] are certain of
the oplax algebras for (−)2 in the terminology of [K&S] but this presents no difficulty for
the terminology employed here.)

1.2. Remark. It was pointed out in [K&T] that the normality equation FIK = 1K
imposes no real loss of generality for a (−)2-pseudo-algebra. Given an isomorphism

ι : 1K
� �� FIK, [K&T] explains how to define a new functor F ′ :K2 ��K with F ′ � �� F
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and F ′IK = 1K. This certainly conforms with practice but it may be worth pointing
out that intuitionistically the definition of F ′ requires that the identity arrows of K be
a complemented subset of the set of all arrows of K. While we will hypothesize nor-
mality throughout, we will include methodological remarks about the general case when
appropriate.

1.3. Most of the notation here will be similar to that of [K&T] and [R&W]. In particular,
for F :K2 ��K a factorization pre-algebra and an arrow

A Bv
��

X

A

f

��

X Y
u �� Y

B

g

��

in K2 with domain f and codomain g, we write F (u, v) :F (f) ��F (g). Since it is (f ;u, v; g),
not (u, v), which is an arrow of K2, this notation requires care. Also, for any arrow
f :X ��A in K, we have the following factorization of IK(f) in K2 :

X A
f

��

X

X

1X

��

X X
1X �� X

A

f

��
A A

1A

��

X

A
��

X A
f �� A

A

1A

��

and if F : K2 ��K is a normal factorization pre-algebra, we follow [K&T] in writing

X
ef �� F (f)

mf �� A for the result of applying F to these factors of IK(f). Thus in this
context, F (1X , f) = ef and F (f, 1A) = mf (but it is not true that we always have
F (1S, f) = ef and F (f, 1T ) = mf ). When the first square of this section is regarded as an
object of (K2)2 we often write S = (f ;u, v; g) and it follows that FF 2(S) = F (F (u, v)).
If the composite uf = gv is c :X ��B then FCK(S) = F (c). For F :K2 ��K a normal
factorization pre-algebra, F is a strict factorization algebra if FF 2 = FCK, that is if, for
all S in (K2)2, F (F (u, v)) = F (c).

1.4. For a normal factorization pre-algebra F :K2 ��K, a factorization algebra structure

on F is an isomorphism γ :FF 2 � �� FCK which satisfies:

γIK2 = 1F (1)

γ(IK)2 = 1F (2)

γCK2 · γ(F 2)2 = γ(CK)2 · Fγ2 (3)

these equations being the specialization of the equations in §2 of [STR] to the case at
hand.
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1.5. Remark. In the absence of normality, a (−)2-pseudo-algebra structure further re-
quires an isomorphism ι : 1K

� �� FIK and equations (1) and (2) above must then be
replaced by:

γIK2 · ιF = (1′)1F

γ(IK)2 · Fι2 = (2′)1F

2. The main results

For a normal factorization pre-algebra F :K2 ��K, we will show that existence of a mere
isomorphism α :FF 2 � �� FCK, subject to no equations (other than naturality), is equiv-

alent to the existence of a unique factorization algebra structure γ :FF 2 � �� FCK, and
that such an α may itself fail to be an algebra structure. Of course this result shows
that it is in fact a property of a factorization pre-algebra to be a factorization algebra,
as is implicit from the conjunction of Theorems A and B in [K&T]. In general there
is no comparison arrow joining FF 2 and FCK in either direction. But there is both a
comparison span and a comparison cospan joining them. The span and cospan form a
commutative square that one might call a comparison diamond and which is the subject
of our first Lemma.

2.1. Lemma. For F :K2 ��K a normal factorization pre-algebra and S =

A Bv
��

X

A

f

��

X Y
u �� Y

B

g

��

a typical object of (K2)2 with CK(S) = X c �� B, the following diagram commutes:

F (F (u, v)) F (c)F (F (u, v)) F (c)

F (ec)

F (F (u, v))

F (ef , F (u, 1B))

����
��

��
��

��
��
F (ec)

F (c)

mec

���
��

��
��

��
��

�

F (F (u, v))

F (mc)

F (F (1X , v),mg)
���

��
��

��
��

��
�

F (F (u, v)) F (c)F (F (u, v)) F (c)F (c)

F (mc)

emc

����
��

��
��

��
��
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Proof. Observe first that the diagram of of the statement is meaningfully labelled and
that the left-most arrows of it are defined by

F (ec) F (F (u, v))��

X

F (ec)

eec
��

X F (f)
ef �� F (f)

F (F (u, v))

eF (u,v)
��

F (c) F (g)
F (u, 1B)

��

F (ec)

F (c)

mec ��

F (ec) F (F (u, v))
F (ef , F (u, 1B)) �� F (F (u, v))

F (g)
��

F (F (u, v)) F (mc)
F (F (1X , v),mg)

��

F (f)

F (F (u, v))
��

F (f) F (c)
F (1X , v)

�� F (c)

F (mc)

emc��

F (g) Bmg
��

F (F (u, v))

F (g)

mF (u,v)
��

F (F (u, v)) F (mc)�� F (mc)

B

mmc��

where, in turn, F (1X , v) and F (u, 1B) are defined by

F (f) F (c)��

X

F (f)

ef
��

X X
1X �� X

F (c)

ec
��

A Bv
��

F (f)

A

mf
��

F (f) F (c)
F (1X , v)

�� F (c)

B
��

F (c) F (g)
F (u, 1B)

��

X

F (c)
��

X Y
u �� Y

F (g)

eg
��

B B
1B

��

F (c)

B

mc
��

F (c) F (g)�� F (g)

B

mg
��

From the definition of e− and m−, we have F (1X , v) · ef = ec and mg · F (u, 1B) = mc.
Thus by functoriality of F , F (F (1X , v),mg) · F (ef , F (u, 1B)) = F (ec,mc). On the other
hand, the right-most composite is

emc ·mec = F (1F (c),mc) · F (ec, 1F (c)) = F (ec,mc)

Our second Lemma is almost a triviality and, like much of what we have to say here,
is generalizable in many ways. However, along with obvious variations, this Lemma is
quite useful for a number of coherence questions.

2.2. Lemma. For natural transformations

A B
F

��A B
G

��σ
�� B C

S
��B C

T

��τ
��

if Tσ is invertible then τF is determined by τG, in the sense that τF = (Tσ)−1 · τG ·Sσ.
Similarly, if Sσ is invertible then τG is determined by τF .

To give an example of the application of Lemma 2.2, suppose that X is a reflective
subcategory of B with defining adjunction η, ε :A � I :X ��B. Then, if T inverts η, τ is
determined by its components of the form τIX. In fact, in situations like this we can say
a little more:
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2.3. Corollary. For

B B
1B

��B B
G

��σ
�� B C

S
��B C

T

����

with Tσ invertible and G well-pointed by σ (meaning that Gσ = σG), precomposition with
G provides a bijection

CAT(B, C)(S, T ) (−)G
�� CAT(B, C)(SG, TG)

Proof. For ω :SG ��TG, consider the following squares:

T TG��
(Tσ)−1

S

T

g(ω)

��

S SG
Sσ �� SG

TG

ω

��
TG TGG

TσG
��

SG

TG

g(ω)G

��

SG SGG
SσG �� SGG

TGG

ωG

��
TG TGG

TGσ
��

SG

TG

ω

��

SG SGG
SGσ �� SGG

TGG

ωG

��

The first square defines a function g :CAT(B, C)(SG, TG) ��CAT(B, C)(S, T ) which by
Lemma 2.2 admits (−)G as a section. The second square commutes by instantiating
an evidently commutative square at G. The third commutes by naturality of ω. Since
σG = Gσ, the top arrows of the second and third squares are equal and similarly so are
the bottom arrows of the second and third squares. Since Tσ is invertible, it follows that
g(ω)G = ω which completes the proof that (−)G is a bijection.

2.4. We return now to (−)2. In addition to CK : (K2)2 ��K2 �� K : IK, it is convenient to
name four embeddings K2 ��(K2)2 and indicate natural transformations between them as
below:

RK LKRK LK

VK

RK

��
��

��
VK

LK
���

��
�

RK

HK
���

��
�RK LKRK LKLK

HK

��
��

��
: K2 (K2)2��
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These are defined on an object c :X ��B of K2 by the following commutative square in
(K2)2

B B��

X

B

c

��

X X�� X

B

c

��

X Bc ��

X

X
��

X X�� X

B

c

��
B B��

X

B

c

��

X Bc �� B

B
��

X Bc ��

X

X
��

X Bc �� B

B
��

X

X
		��������������������������X

X





��������������������������
X

B

c

		��������������������������X

X





��������������������������

B

B
		��������������������������B

X





c

�������������������������� B

B
		��������������������������B

B





��������������������������

X

X
		�������������������������� X

B

c

		��������������������������

X

X
		�������������������������� B

B
		��������������������������

X

X





��������������������������
B

B





��������������������������

B

X





c

�������������������������� B

B





��������������������������

it being understood that unlabelled arrows are identities. However, VK = IK2 , HK = (IK)2

and RK � CK � LK.

2.5. The unit for RK � CK and the counit for CK � LK are identities. For S =

A Bv
��

X

A

f

��

X Y
u �� Y

B

g

��

a typical object of (K2)2 with CK(S) = X c �� B, the S-component of the counit for
RK � CK and the S-component of the unit for CK � LK are shown below as a composable
pair in (K2)2

B B��

X

B

c

��

X Bc �� B

B
��

A Bv ��

X

A

f

��

X Yu �� Y

B

g

��

X Bc ��

X

X
��

X X�� X

B

c

��

X

X��
��������������������� X

Y

u

�����������������������

X

A
f ����������������������� B

B��
����������������������

X

X��
��������������������� Y

B

g

������������������������

A

B
v ������������������������ B

B��
����������������������
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Now for F a normal factorization pre-algebra, let α : FF 2 ��FCK : (K2)2 ��K be any
natural transformation. Application of α to the composable pair above gives

F (c) F (c)
1F (c)

��

F (ec)

F (c)

αRKc = αRKCKS
��

F (ec) F (F (u, v))
F (ef , F (u, 1B)) �� F (F (u, v))

F (c)

αS

��
F (c) F (c)

1F (c)

��

F (F (u, v))

F (c)
��

F (F (u, v)) F (mc)
F (F (1X , v),mg)�� F (mc)

F (c)

αLKCKS = αLKc
��

as is seen by consulting the definitions of ef and the like in 1.3. For an arbitrary natural
transformation β :FCK ��FF 2 we get a diagram similar to that above but with the vertical
arrows reversed. From these diagrams several observations follow almost immediately.

2.6. Lemma. For F a normal factorization pre-algebra, any natural transformation α :
FF 2 ��FCK is determined by αLK : FF 2LK ��F : K2 ��K. Any natural transformation
β :FCK ��FF 2 is determined by βRK :FF 2RK ��F :K2 ��K. If α is an isomorphism then
F (ef , F (u, 1B)) and F (F (1X , v),mg) are isomorphisms.

Proof. The right hand square immediately above the statement of the Lemma shows
that the hypotheses of Lemma 2.2 are satisfied — with τ the α under consideration and
σ the unit for CK � LK. The second statement follows from a similar consideration while
the third also follows from the diagram.

In fact, we can improve Lemma 2.6 by applying Corollary 2.3, with the role of σ :1B ��G
taken by 1(K2)2

��LKCK, and noting that CK is cofully faithful (since LK is fully faithful).

2.7. Corollary. For F a normal factorization pre-algebra, precomposition with LK
provides a bijection

CAT((K2)2,K)(FF 2, FCK)
(−)LK �� CAT(K2,K)(FF 2LK, F )

We now apply our arbitrary α :FF 2 ��FCK to the second diagram in 2.4 resulting in
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the commutativity of

F (ec) F (mc)F (ec) F (mc)

F (c)

F (ec)

��

mec

��
��

��
��

��
��
F (c)

F (mc)

emc

���
��

��
��

��
��

�

F (ec)

F (c)

F (1X ,mc)
���

��
��

��
��

��
�

F (ec) F (mc)F (ec) F (mc)F (mc)

F (c)

��

F (ec, 1B)
��

��
��

��
��

��

F (c) F (c)F (c) F (c)

F (c)

F (c)

��

��
��

��
��

��
��
F (c)

F (c)
���

��
��

��
��

��
�

F (c)

F (c)
���

��
��

��
��

��
�

F (c) F (c)F (c) F (c)F (c)

F (c)

��

��
��

��
��

��
��

F (ec)

F (c)

αRKc

��������������������������������� F (mc)

F (c)

αLKc

���������������������������������

F (c)

F (c)

αVKc

����������������������������������

F (c)

F (c)

αHKc

����������������������������������

from which further observations follow.

2.8. Lemma. For F a normal factorization pre-algebra and any natural transformation
α :FF 2 ��FCK, αRK is determined by αVK which in turn is determined by αLK and also
αRK is determined by αHK which in turn is determined by αLK. If α : FF 2 ��FCK is
an isomorphism then, for every arrow c in K, mec, emc, F (1X ,mc) and F (ec, 1B) are
isomorphisms and

mec = F (1X ,mc) and emc = F (ec, 1B)

Proof. All aspects of the first sentence follow from the fact that all four arrows in the
right-most diamond of the diagram above are identities and thereby enable four applica-
tions of Lemma 2.2. From the diagram it is clear that if α is an isomorphism then all mec ,
emc , F (1X ,mc) and F (ec, 1B) are isomorphisms. Now from [J&T], merely knowing that
the mec are epimorphisms and the emc are monomorphisms is enough to ensure that, for
each object S = (f ;u, v; g) of (K2)2, F (u, v) is the unique solution s of the equations

s · ef = eg · u
mg · s = v ·mf

Thus commutativity of

F (ec) F (c)mec
��

X

F (ec)

eec
��

X X
1X �� X

F (c)

ec
��

F (c) Bmc
��

F (ec)

F (c)

mec ��

F (ec) F (c)mec
�� F (c)

B

mc
��

shows that mec = F (1X ,mc) and a similar diagram provides emc = F (ec, 1B).
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In fact, from the diagram preceding Lemma 2.8 and the Lemma itself we have:

2.9. Corollary. For F a normal factorization pre-algebra and any natural isomor-
phism α :FF 2 ��FCK, the following are equivalent:

i) αVK = 1F ;

ii) αLK = (em−)
−1;

iii) αHK = 1F ;

iv) αRK = me−.

Recall now that VK = IK2 and HK = (IK)2.

2.10. Theorem. For a normal factorization pre-algebra F :K2 ��K, if γ :FF 2 � �� FCK
is an isomorphism satisfying any of the equivalent conditions of Corollary 2.9 then, for

S = (f ;u, v; g) in (K2)2 with CK(S) = X c �� B, γS is given equally by

γ(S) = mec · (F (ef , F (u, 1B)))
−1

and by
γ(S) = (emc)

−1 · F (F (1X , v),mg)

Moreover, γ satisfies all of (1),(2) and (3) of 1.4, thereby making (F, γ) a factorization
algebra.

Proof. Assume that γ :FF 2 � �� FCK satisfies condition i) of Corollary 2.9. This is (1)
of 1.4. The equations for γ(S) follow immediately from the diagrams preceding Lemma 2.6
and Lemma 2.8. For example, we have γ(S) = γLKc · F (F (1X , v),mg) by the righthand
rectangle preceding Lemma 2.6, which is equal to (emc)

−1 · F (F (1X , v),mg) using the
back parallelogram in the diagram preceding Lemma 2.8 with γVKc = 1F (c). Also iii) of
Corollary 2.9 is (2) of 1.4. For (3) of 1.4 observe that the relevant configuration is

FF 2(F 2)2 FCKCK2 = FCK(CK)2FF 2(F 2)2 FCKCK2 = FCK(CK)2

FCK(F 2)2 = FF 2CK2

FF 2(F 2)2

��

γ(F 2)2

��
��

��
��

��
��

FCK(F 2)2 = FF 2CK2

FCKCK2 = FCK(CK)2

γCK2

���
��

��
��

��
��

�

FF 2(F 2)2

FF 2(CK)2
Fγ2

���
��

��
��

��
��

�
FF 2(F 2)2 FCKCK2 = FCK(CK)2FF 2(F 2)2 FCKCK2 = FCK(CK)2FCKCK2 = FCK(CK)2

FF 2(CK)2

��

γ(CK)2
��

��
��

��
��

��
: ((K2)2)2 K��

To see that the two composite natural transformations are equal we begin by applying
Corollary 2.7 twice. First, the adjunction CK2 � LK2 :(K2)2 ��((K2)2)2 has its unit taken
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by CK2 to an identity because, for any K, the adjunction CK � LK has its unit taken
by CK to an identity. Thus FCKCK2 takes the unit of CK2 � LK2 to an identity and
Corollary 2.7 applies to show that any natural transformation α :FF 2(F 2)2 ��FCKCK2 is
uniquely determined by αLK2CK2 and hence by αLK2 :FF 2(F 2)2LK2 ��FCK : (K2)2 ��K
(since CK2 is cofully faithful). Next, we repeat the argument for CK � LK to show that
αLK2 is uniquely determined by αLK2LK :FF 2(F 2)2LK2LK ��F :K2 ��K. Consider now

K2 (K2)2

VK
��

K2 (K2)2

LK

σ
�� (K2)2 K

FF 2(F 2)2LK2

��
(K2)2 K

FCK

��αLK2
��

where σ is the natural transformation VK ��LK defined in 2.4. We claim FF 2(F 2)2LK2σ
is invertible. To see this, use (F 2)2LK2 = LKF 2 and compute

FF 2LKF 2σc = emmc
· emc

which is an isomorphism, since all emf
are so by Lemma 2.8. Using the second clause

of Lemma 2.2 we conclude that αLK2LK, and hence our arbitrary α, is determined by
αLK2VK. Since each γVKc is 1F (c) it follows that each (γCK2 · γ(F 2)2)LK2VKc and each
(γ(CK)2 · Fγ2)LK2VKc is also 1F (c) showing that γCK2 · γ(F 2)2 = γ(CK)2 · Fγ2.

The theorem shows that if a normal factorization pre-algebra F : K2 ��K admits a
factorization algebra structure, γ then there is no question about what it is. Said oth-
erwise, being a factorization algebra is a property for a normal factorization pre-algebra.
We summarize.

2.11. Theorem. For F :K2 ��K a normal factorization pre-algebra, the following are
equivalent:

i) F admits a necessarily unique factorization algebra structure;

ii) there is an isomorphism FF 2 � �� FCK;

iii) all mef
and all emf

are isomorphisms.

Proof. Clearly, i) implies ii) is trivial. That ii) implies iii) is contained in Lemma 2.8.
Assume iii). It is shown in [K&T] that for EF = {h|mh is invertible} and MF =
{h|eh is invertible}, (EF ,MF ) is a factorization system for K. Consider the first diagram
in the proof of Lemma 2.1. Inspection of the top left square shows that F (ef , F (u, 1B))
is in EF — since arrows of the form eh are in EF and EF is closed with respect to com-
position and the cancellation rule. Since mg · F (u, 1B) = mc and arrows of the form
mh are in MF and MF is closed with respect to cancellation, F (u, 1B) is in MF . In-
spection of the bottom left square now shows that F (ef , F (u, 1B)) is in MF . It follows
then that F (ef , F (u, 1B)), being in EF ∩MF , is an isomorphism. (Of course it then fol-
lows from Lemma 2.1 that F (F (1X , v),mg) is an isomorphism.) Now, for S = (f ;u, v; g)
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with CKS = c, define γS = mec · (F (ef , F (u, 1B)))
−1. This provides an isomorphism

γ :FF 2 � �� FCK. For c :X ��B, it follows that

γIK2c = γVKc = mec · F (ec, F (1X , 1B))
−1 = mec · F (ec, 1F (c))

−1 = mec ·m−1
ec
= 1F (c)

so that by Theorem 2.10 (F, γ) is a factorization algebra.

2.12. Remark. Without normality there is a little to change. For example, from (1′)
in 1.5 it follows that in Corollary 2.9 we should replace i) by

i′) αVK = (ιF )−1

and continue with similar adjustments — after first redefining e− and m− to absorb ι.
We leave the details of this and subsequent modifications that need to be made in the
absence of normality to the interested reader.

2.13. It should not be supposed however that in the situation hypothesised by Theo-

rem 2.11 there is at most one isomorphism FF 2 � �� FCK. From the diagram preced-
ing Lemma 2.8 we see using Lemma 2.2 that if F is a factorization algebra then any

α :FF 2 ��FCK :(K2)2 ��K is determined equally by αVK = αIK2 :F � �� F :K2 ��K, αLK,
αHK and αRK. In fact it is convenient to note:

2.14. Lemma. For a factorization algebra F :K2 ��K, precomposition with VK :K2 ��(K2)2

provides a bijection

CAT((K2)2,K)(FF 2, FCK)
(−)VK �� CAT(K2,K)(F, F )

Moreover, both (−)VK and its inverse preserve invertibility.

Proof. Let β :F ��F and define v(β) = βCK · (FF 2σCK)−1 · FF 2η, where η is the unit
for CK � LK and σ is again the natural transformation VK ��LK of 2.4. Note that for
S = (f ;u, v; g) in (K2)2 with CKS = c we have FF 2σCKS = emc . For α :FF 2 ��FCK
v(αVK) = α has been shown in earlier diagrams. To see that v(β)VK = β it suffices to
show that (FF 2σCK)−1VK ·FF 2ηVK = 1F . This follows immediately from ηVK = σ which
can be seen by inspection of η as displayed in 2.5 and σ as displayed in 2.4. It is clear
that (−)VK preserves invertibility. By Lemma 2.6 we know that FF 2η is invertible for
a factorization algebra and it then follows from the explicit description of v that v(β) is
invertible when β is so.

Now the fully faithful IK :K ��K2 has both left and right adjoints, given respectively
by ‘codomain’= ∂1 and ‘domain’= ∂0 but neither the unit for ∂1 � IK nor the counit for
IK � ∂0 are in general inverted by F so that Lemma 2.2 is not applicable. In fact it is easy
to see — and we will use — that F applied to the c-component of the unit for ∂1 � IK is
mc and F applied to the c-component of the counit for IK � ∂0 is ec. However:
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2.15. Lemma. For a factorization algebra F :K2 ��K precomposition with IK : K ��K2

provides a bijection

CAT(K2,K)(F, F ) (−)IK �� CAT(K,K)(1K, 1K)
which is an isomorphism of monoids. The inverse function is given by F (−)2.
Proof. That (−)IK provides a homomorphism of monoids is immediate from the def-
initions. Consider a β : F ��F : K2 ��K. For any object c : X ��B of K2 we have the
composable pair

IKX = IK∂0c
(1X , c)

�� c
(c, 1B) �� IK∂1c = IKB

in K2 consisting of the counit for IK � ∂0 and the unit for ∂1 � IK. Application of β :F ��F
gives

F (c) F (c)βc ��

X

F (c)

ec
��

X X
βIKX �� X

F (c)

ec
��

B B
βIKB

��

F (c)

B

mc
��

F (c) F (c)βc �� F (c)

B

mc
��

and, again using [J&T], the mere fact that each mef
is an epimorphism and each emf

is
a monomorphism ensures that βc = F (βIKX, βIKB). Clearly we have β = F (βIK)2. For
α :1K ��1K and any arrow c :X ��B in K we have

B B
αB

��

X

B

c
��

X X
αX �� X

B

c
��

which can be seen as the c-component of α2. It follows that the c-component of Fα2 is
F (αX,αB) :F (c) ��F (c). Hence theX-component of Fα2IK is F (αX,αX) :F (1X) ��F (1X)
which is αX :X ��X, showing that Fα2IK = α and completing the proof that (−)IK is a
bijection.

2.16. Recall that for any 2-category K and object K therein, the set K(K,K)(1K, 1K)
is a commutative monoid under (either) composition of transformations (2-cells). It is
the familiar centre of K when K is a monoid. We speak simply of the centre of K in
the full generality of the last sentence and write ZK for the centre of K. An early,
unpublished, but readily available reference is [WD]. The following theorem is an obvious
summary of our observations but note carefully the statement — our extension of an

isomorphism 1K
� �� 1K :K ��K to a particular isomorphism FF 2 � �� FCK : (K2)2 ��K

requires the existence of some isomorphism FF 2 � �� FCK (or the equivalent statements
of Theorem 2.11).
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2.17. Theorem. For F : K2 ��K a factorization algebra, precomposition with IK2IK :
K ��(K2)2 provides a bijection

CAT((K2)2,K)(FF 2, FCK)
(−)IK2IK �� ZK

and both (−)IK2IK and its inverse preserve invertibility.

2.18. Of course one might wonder if the existence of a factorization algebra on a category
K forces the set of invertible elements of its centre to be trivial. This is not the case.
For example, the category of abelian groups admits several factorization algebras and has
as its centre the monoid of integers under multiplication. In fact the set of invertible
elements in the centre of a category with a factorization algebra can be arbitrarily large.
For if α is an invertible element in the centre of K then α2 is an invertible element in the
centre of K2, which carries the free strict factorization algebra provided by CK. To finish
the argument it suffices to take K to be a commutative group and observe that such K
may be arbitrarily large.

We close with what is evidently the core coherence requirement for factorization alge-
bras.

2.19. Theorem. For a factorization algebra F : K2 ��K, if γ : FF 2 � �� FCK is an
isomorphism satisfying

γIK2IK = 11K

then (F, γ) is the unique factorization algebra structure on F .
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Aurelio Carboni, Università dell Insubria: aurelio.carboni@uninsubria.it
P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk
G. Max Kelly, University of Sydney: maxk@maths.usyd.edu.au
Anders Kock, University of Aarhus: kock@imf.au.dk
F. William Lawvere, State University of New York at Buffalo: wlawvere@acsu.buffalo.edu
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