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THE MONOIDAL CENTRE AS A LIMIT

To Aurelio Carboni for his sixtieth birthday

ROSS STREET

Abstract. The centre of a monoidal category is a braided monoidal category. Monoidal
categories are monoidal objects (or pseudomonoids) in the monoidal bicategory of cat-
egories. This paper provides a universal construction in a braided monoidal bicategory
that produces a braided monoidal object from any monoidal object. Some properties
and sufficient conditions for existence of the construction are examined.

1. Introduction

During question time after a talk [St2] at the Fields Institute, Peter Schauenburg asked
whether the centre construction on a monoidal category (see [JS]) would fit into the
general framework of [DMS] that I was describing. At the time I could not see how to
do it. Reinforced by Peter’s interest, the question stayed with me. During preparation of
the paper [St3] on descent theory, intended for a publication arising from the same Fields
Institute workshop, the answer began to dawn on me. Another topic at the top of my
mind recently (in work with Michael Batanin and Alexei Davydov) has been Hochschild
cohomology, and this too turns out to be relevant.

2. The centre of a monoidal object

In any monoidal bicategory M, with tensor product ⊗ and unit I, we use the terms
pseudomonoid and monoidal object for an object A equipped with a binary multiplication
m : A ⊗ A ��A and a unit j : I ��A which are associative and unital up to coherent
invertible 2-cells. A monoidal morphism f : A ��A′ is a morphism equipped with
coherent 2-cells m ◦ (f ⊗ f) �� f ◦m and j �� f ◦ j. The monoidal morphism is called
strong when the coherent 2-cells are both invertible. A monoidal 2-cell is one compatible
with these last coherent 2-cells. With the obvious compositions, this defines a bicategory
Mon M of pseudomonoids in M. For example, if M is the cartesian-monoidal 2-category
Cat of categories, functors and natural transformations then Mon M is the 2-category
MonCat of monoidal categories, monoidal functors and monoidal natural transformations
as defined in [EK]. We now suppose M is braided. In fact, by the coherence result of
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[GPS], we suppose M is a braided Gray monoid in the sense of [DS]. The braiding for M
is denoted by

cX,Y : X ⊗ Y ∼ �� Y ⊗ X

for objects X and Y , together with pseudonaturality isomorphisms cf,g for morphisms f
and g.

For any monoidal object A of M, a morphism u : U ��A is called a centre piece
when it is equipped with an invertible 2-cell

U ⊗ A A ⊗ U
cU,A ��
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A morphism σ : u �� v : U ��A of centre pieces is a 2-cell σ : u �� v such that

γ(m ◦ (σ ⊗ 1A)) = (m ◦ (1A ⊗ σ) ◦ cU,A)γ .

We write CP(U,A) for the category of centre pieces so obtained. Using the pseudo-
naturality of the braiding for M, we see that we have a pseudofunctor

CP(−, A) : Mop ��Cat
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defined on morphisms f : V ��U by composition; that is, the functor

CP(f,A) : CP(U,A) �� CP(V,A)

takes a centre piece u with γ to u ◦ f with the 2-cell obtained by pasting the square
containing the pseudonaturality isomorphism cf,1A

onto the top of the pentagon containing
γ.

The centre of A is a birepresenting object ZA (in the sense of [St0]) for the pseudo-
functor CP(−, A). This means we have a centre piece i : ZA ��A, composition with
which induces an equivalence of categories

M(U,ZA) � CP(U,A) .

It follows that the centre of A is unique up to equivalence if it exists.

2.1. Proposition. The centre ZA of a monoidal object A is a braided monoidal
object in the sense of [DS], and the morphism i : ZA ��A is strong monoidal.

Proof. The composite ZA ⊗ZA
i⊗i ��A ⊗ A m ��A equipped with the 2-cell
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is a centre piece. So, up to a unique invertible 2-cell, there is a morphism

m : ZA ⊗ZA ��ZA

and an invertible 2-cell i ◦ m ∼= m ◦ (i ⊗ i) compatible with the 2-cells of the two centre
pieces. Also j : I ��A, equipped with the obvious 2-cell, is a centre piece and so
induces a morphism j : I ��ZA, with i ◦ j ∼= j. Largish pasting diagrams prove that
ZA becomes monoidal with i : ZA ��A strong monoidal. The braiding for ZA is the
invertible 2-cell
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whose composite with i : ZA ��A is the pasting composite below.
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The braiding axioms follow from the defining property of a centre piece.

The following two propositions are routinely proved.

2.2. Proposition. If F : M ��N is a braided monoidal pseudofunctor and
u : U ��A is a centre piece for the monoidal object A in M then Fu : FU ��FA
is canonically a centre piece for the monoidal object FA in N . There is a canonical
comparison morphism FZA ��ZFA provided the centres of A and FA exist.

2.3. Proposition. The pseudofunctor CP(−, A) : Mop ��Cat preserves all
weighted bicategorical limits that exist in Mop and, that as colimits in M, are preserved
by −⊗ A and −⊗ A ⊗ A.

3. Existence

In this section we shall look at conditions on the braided monoidal bicategory M for
monoidal centres to exist. Because of Proposition 2.3, we expect CP(−, A) : Mop ��Cat
to be birepresentable when each −⊗A preserves colimits and a “special birepresentability
theorem” applies to M.

Recall from [DS] that a monoidal bicategory M is called left [right] closed when, for
each object B, the pseudofunctor − ⊗ B : M ��M [B ⊗ − : M ��M] has a right
biadjoint (and so preserves bicategorical colimits). We call M closed when it is both left
and right closed; we denote the right biadjoint of − ⊗ B by [B,−] : M ��M and we
have a family of equivalences

M(A ⊗ B,C) ∼= M(A, [B,C]) ,

pseudonatural in each variable, called the closedness equivalences. Taking A = [B,C], we
find an evaluation morphism ev : [B,C] ⊗ B ��C that, up to isomorphism, is taken to
the identity by the closedness equivalence.
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Assume M is braided and left closed. It follows that M is closed. From any monoidal
object A we shall construct a Hochschild-like truncated pseudo-cosimplicial object CA:

A
∂0 ��

∂1

�� [A,A]

∂0 ��
∂1 ��
∂2 ��

[A ⊗ A,A]

as follows. The morphism ∂0 : A �� [A,A] corresponds under the closedness equivalence
to m : A ⊗ A ��A. The morphism ∂1 : A �� [A,A] corresponds under the closedness

equivalence to the composite A ⊗ A
cA,A �� A ⊗ A

m �� A . The morphisms

∂0, ∂1, ∂2 : [A,A] �� [A ⊗ A,A]

correspond under the closedness equivalence to the morphisms

[A,A] ⊗ A ⊗ A

m◦(ev⊗1A) ��
ev◦(1⊗m) ��

m◦(1A⊗ev)◦(c[A,A],A⊗1A)
��
A .

One easily finds the coherent invertible 2-cells

∂0 ◦ ∂0
∼= ∂1 ◦ ∂0, ∂0 ◦ ∂1

∼= ∂2 ◦ ∂0, ∂2 ◦ ∂1
∼= ∂1 ◦ ∂1 .

3.1. Proposition. The bicategorical limit of the pseudo-cosimplicial diagram CA is
the centre of A.

Proof. The proof is by transport across the closedness equivalences.

It is shown in [St0] how to construct this pseudo-descent-like limit in a bicategory M
that admits finite products, iso-inserters, and cotensoring with the arrow category 2.

3.2. Corollary. In any finitely complete, closed, braided monoidal bicategory, every
monoidal object has a centre. Any braided monoidal pseudofunctor that is strong closed
and finite-limit preserving preserves centres.

Examples of such bicategories abound. Let A be any (small) braided promonoidal
2-category (in particular, A could be a braided monoidal category). Take M to be the
2-category [A,Cat] of 2-functors from A to Cat. This is a complete and cocomplete
2-category and so is also complete and cocomplete as a bicategory. It becomes closed
monoidal under the Day convolution tensor product defined by the coends

(F ⊗ G)A =

∫ B,C

P (B,C; A) × FB × GC

in Cat. The braiding is induced by that on A and the symmetry on Cat. A good example
of an appropriate A is provided by the category of automorphisms of a groupoid G as
described in Section 7, Example 9 of [DS].
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Alternatively we could take M to be the 2-category Hom(A,Cat) of pseudofunctors
from A to Cat. This is complete and cocomplete as a bicategory. It becomes a closed
monoidal bicategory under the convolution tensor product defined by the pseudocoends

(F ⊗ G)A =

∫ B,C

ps

P (B,C; A) × FB × GC

in Cat. Again, the braiding is induced by that on A and the symmetry on Cat.

3.3. Remark. After submission of this paper, Steve Lack provided some helpful
insights for which I am very grateful and will now explain. We begin with the observation
that the centre piece category CP(U,A) is precisely the descent category of the truncated
pseudocosimplicial diagram

M(U,A)
��
�� M(U ⊗ A,A)

��
��
�� M(U ⊗ A ⊗ A,A) .

Allowing U to vary, we obtain the pseudofunctor CP(−, A) : Mop ��Cat as the descent
object of a truncated pseudocosimplicial object in Hom(Mop,Cat). If M is closed, my
Hochschild description of the centre is recaptured. Returning to any braided monoidal
bicategory M, we have the convolution braided monoidal structure on Hom(Mop,Cat).
The diagram for the descent object CP(−, A) lifts to the bicategory MonHom(Mop,Cat)
of monoidal objects for the convolution; the objects of MonHom(Mop,Cat) are (weakly)
monoidal pseudofunctors and the morphisms are monoidal pseudonatural transformations.
It follows that CP(−, A) and CP(−, A) ��M(−, A) are in MonHom(Mop,Cat); more-
over, CP(−, A) : Mop ��Cat is a braided pseudofunctor between braided monoidal
bicategories. The largish diagrams proving the last sentence may even be more readily
comprehensible than those referred to in the proof of Proposition 2.1. If CP(−, A) is repre-
sentable by some object ZA then, because the Yoneda embedding M ��Hom(Mop,Cat)
is strong monoidal, we deduce that ZA is braided monoidal.
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