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BICAT IS NOT TRIEQUIVALENT TO GRAY

STEPHEN LACK

Abstract. Bicat is the tricategory of bicategories, homomorphisms, pseudonatu-
ral transformations, and modifications. Gray is the subtricategory of 2-categories, 2-
functors, pseudonatural transformations, and modifications. We show that these two
tricategories are not triequivalent.

1. Background. Weakening the notion of 2-category by replacing all equations between
1-cells by suitably coherent isomorphisms gives the notion of bicategory [1]. The analogous
weakening of a 2-functor is called a homomorphism of bicategories, and the weakening of a
2-natural transformation is a pseudonatural transformation. There are also modifications
between 2-natural or pseudonatural transformations, but this notion does not need to
be weakened. The bicategories, homomorphisms, pseudonatural transformations, and
modifications form a tricategory (a weak 3-category) called Bicat.

The subtricategory of Bicat containing only the 2-categories as objects, and only the
2-functors as 1-cells, but with all 2-cells and 3-cells between them, is called Gray. As
well as being a particular tricategory, there is another important point of view on Gray.
The category 2-Cat of 2-categories and 2-functors is cartesian closed, but it also has a
different symmetric monoidal closed structure [3], for which the internal hom [A ,B] is
the 2-category of 2-functors, pseudonatural transformations, and modifications between
A and B. A category enriched over 2-Cat with respect to this closed structure is called
a Gray-category. A Gray-category has 2-categories as hom-objects, so is a 3-dimensional
categorical structure, and it can be seen as a particular sort of tricategory. The closed
structure of 2-Cat gives it a canonical enrichment over itself and the resulting Gray-
category is just Gray. Gray is also sometimes used as a name for 2-Cat with this
monoidal structure.

A homomorphism of bicategories T : A → C is called a biequivalence if it induces
equivalences TA,B : A (A,B) → B(TA, TB) of hom-categories for all objects A,B ∈ C
(T is locally an equivalence), and every object C ∈ C is equivalent in C to one of the form
TA (T is biessentially surjective on objects). We then write A ∼ B. Every bicategory is
equivalent to a 2-category [5].

A trihomomorphism of tricategories T : A → C is called a triequivalence if it induces
biequivalences TA,B : A (A,B) → B(TA, TB) of hom-bicategories for all objects A,B ∈
A (T is locally a biequivalence), and every object C ∈ C is biequivalent in C to one
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of the form TA (T is triessentially surjective on objects). It is not the case that every
tricategory is triequivalent to a 3-category, but every tricategory is triequivalent to a
Gray-category [2].

Perhaps since a Gray-category is a category enriched in the monoidal category Gray,
and a tricategory can be seen as some sort of “weak Bicat-category”, it has been suggested
that Bicat might be triequivalent to Gray, and indeed Section 5.6 of [2] states that this
is the case. We prove that it is not. First we prove:

2. Lemma. The inclusion Gray → Bicat is not a triequivalence.

Proof. If it were then each inclusion Gray(A ,B) → Bicat(A ,B) would be a biequiva-
lence, and so each homomorphism (pseudofunctor) between 2-categories would be pseudo-
naturally equivalent to a 2-functor. This is not the case. For example (see [4, Exam-
ple 3.1]), let A be the 2-category with a single object ∗, a single non-identity morphism
f : ∗ → ∗ satisfying f 2 = 1, and no non-identity 2-cells (the group of order 2 seen as a
one-object 2-category); and let B be the 2-category with a single object ∗, a morphism
n : ∗ → ∗ for each integer n, composed via addition, and an isomorphism n ∼= m if and
only if n − m is even (the “pseudo-quotient of Z by 2Z”). There is a homomorphism
A → B sending f to 1; but the only 2-functor A → B sends f to 0, so this homomor-
phism is not pseudonaturally equivalent to a 2-functor.

3. Theorem. Gray is not triequivalent to Bicat.

Proof. Suppose there were a triequivalence Φ : Gray → Bicat. We show that Φ would
be biequivalent to the inclusion, so that the inclusion itself would be a triequivalence; but
by the lemma this is impossible.

The terminal 2-category 1 is a terminal object in Gray, so must be sent to a “triter-
minal object” Φ1 in Bicat; in other words, Bicat(B, Φ1) must be biequivalent to 1 for
any bicategory B. For any 2-category A , we have biequivalences

A ∼ Gray(1,A ) ∼ Bicat(Φ1, ΦA ) ∼ Bicat(1, ΦA ) ∼ ΦA

where the first is the isomorphism coming from the monoidal structure on Gray, the
second is the biequivalence on hom-bicategories given by Φ, the third is given by compo-
sition with the biequivalence Φ1 ∼ 1, and the last is a special case of the biequivalence
Bicat(1,B) ∼ B for any bicategory, given by evaluation at the unique object ∗ of 1. All
of these biequivalences are “natural” in a suitably weak tricategorical sense, and so Φ is
indeed biequivalent to the inclusion.

4. Remark. The most suitable weak tricategorical transformation is called a tritrans-
formation. The axioms are rather daunting, but really the coherence conditions are not
needed here. We only need the obvious fact that for any 2-functor T : A → B, the
square
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commutes up to equivalence.

The fact that every bicategory is biequivalent to a 2-category is precisely the statement
that the inclusion Gray → Bicat is triessentially surjective on objects, but as we saw in
the lemma, it is not locally a biequivalence. On the other hand Gordon, Power, and Street
construct in [2] a trihomomorphism st : Bicat → Gray which is locally a biequivalence
(it induces a biequivalence on the hom-bicategories). They do this by appeal to their
Section 3.6, but this does not imply that st is a triequivalence, as they claim, and by our
theorem it cannot be one. In fact Section 5.6 is not used in the proof of the main theorem
of [2], it is only used to construct the tricategory Bicat itself, and this does not need st
to be a triequivalence.

By the coherence result of [2], Bicat is triequivalent to some Gray-category; and by the
fact that st is locally a biequivalence, Bicat is triequivalent to a full sub-Gray-category
of Gray, but it is not triequivalent to Gray itself.
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