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AXIOMATIC COHESION

F. WILLIAM LAWVERE

Abstract. The nature of the spatial background for classical analysis and for modern
theories of continuum physics requires more than the partial invariants of locales and
cohomology rings for its description. As Maxwell emphasized, this description has vari-
ous levels of precision depending on the needs of investigation. These levels correspond
to different categories of space, all of which have intuitively the feature of cohesion.
Our aim here is to continue the axiomatic study of such categories, which involves the
following aspects:

I. Categories of space as cohesive backgrounds
II. Cohesion versus non-cohesion; quality types
III. Extensive quality; intensive quality in its rarefied and condensed aspects;

the canonical qualities form and substance
IV. Non-cohesion within cohesion via constancy on infinitesimals
V. The example of reflexive graphs and their atomic numbers
VI. Sufficient cohesion and the Grothendieck condition
VII. Weak generation of a subtopos by a quotient topos

I look forward to further work on each of these aspects, as well as development of
categories of dynamical laws, constitutive relations, and other mathematical structures
that naturally live in cohesive categories.

I. Categories of space as cohesive backgrounds for mathematical structures

An explicit science of cohesion is needed to account for the varied background models for
dynamical mathematical theories. Such a science needs to be sufficiently expressive to
explain how these backgrounds are so different from other mathematical categories, and
also different from one another and yet so united that they can be mutually transformed.
An everyday example of such mutual transformation is the weatherman’s application of
the finite element method (which can be viewed as analysis in a combinatorial topos) to
equations of continuum thermomechanics (which can be viewed as analysis in a smooth
topos, where smooth functions and distributions live).

II. Cohesion versus non-cohesion; quality types

I analyze cohesion by contrasting it with non-cohesion. In that I follow Cantor, who
approached his Mengen by negating them into Kardinalen; the latter are (not isomorphism
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classes but) spaces so devoid of internal cohesion and variation that they satisfy his general
“continuum” hypothesis. Not only have those very abstract sets served as a background
for algebraic structures, but also as a background for models of cohesion itself. Thus by
negation of the negation, the initial nebulous notion of Mengen becomes a 2-category of
mutually transforming extensive categories; reasonably closed such categories have map-
spaces and thus are distributive for two reasons, and indeed many but not all examples
are toposes. Before trying to make that 2-category precise, we must make explicit another
negation of the negation that was emphasized by Grothendieck: the contrast of cohesion
E with non-cohesion S can be expressed by geometric morphisms

p : E // S

but that contrast can be made relative, so that S itself may be an “arbitrary” topos.
More exactly, S can be one that is appropriate for negating E in this spirit. For example,
in a case E of algebraic geometry wherein spaces of all dimensions exist, S is usefully
taken as a corresponding category of zero-dimensional spaces such as the Galois topos (of
Barr-atomic sheaves on finite extensions of the ground field). As the example illustrates,
the Grothendieck relativization within the realm of toposes means that the Cantorian
negation can be applied, not only to mathematics as a whole, but (even better) to specific
branches.

A topos morphism
p : E // S

can express a contrast between cohesion and non-cohesion (as made more precise below).
Such a morphism can also express a contrast between variation and non-variation (where
E is a “generalized space” parameterizing families of S-objects). The generalized space
conception can be a useful guide even for all toposes: Top/S is an extensive category that
contains an object-classifier R so that sheaves are encoded as R-valued functions; these
functions can be integrated with respect to distributions [1]; the 2-category structure
yields a notion of weak equivalence; and so on. However, as I have argued in [4] and [5],
our elephant carries instruments that can also

(1) clarify the distinction between cohesion and variation by contrasting relevant pos-
itive properties of each;

(2) show how cohesion can serve as a background for motion and variation via dynam-
ical laws and variable quantities. In particular a double negation of the classical notion of
sheaf should give, to each space X in a topos E // S of cohesive spaces, an assignment
of its topos of “variable sets” E(X) // S (“smaller” than its “gros” topos E/X); for
example, from a “gros étalé” E there emerge the “petit etale” E(X) that are neither
localic nor groupoidal, yet quite special as toposes.

In the present work I further study positive properties of cohesion, and in particular,
the class of categories having sufficient cohesion, as well as the contrasting class whose
very special cohesion deserves the name of “quality”. These two classes still need to be
fully related with the class of categories of pure variation; all known examples of pure
variation have the positive property that there are enough objects A with no idempotent
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endomaps, i.e., two maps X // Y are equal if they are equal on all figures A // X of
those special shapes A.

Definition 1. A functor q∗ : S // F (between extensive categories) which is full and
faithful and which is both reflective and coreflective by a single functor

q! = q∗

makes F a quality type over S.

Proposition 1. A quality type has a minimal central idempotent (a central idempotent
is any natural endomorphism θ of the identity functor of F , defined over S, such that
θθ = θ). The subcategory consists of those objects Y of F for which θY is 1Y , whereas the
adjunction maps for q! = q∗ split the idempotents θY for all Y in F .

Proposition 2. If E // S over sets is either
localic
groupoidal
petit étale
an étendue in Grothendieck’s sense
locally separable (qd in Johnstone’s sense),

then it is not a quality type unless E // S is an equivalence.

Proof. For any such E there is a subcategory that is separating and has no non-trivial
idempotents at all. If θ is a central idempotent, then for every map x : A // X with A
in such a subcategory

θXx = xθA = x = 1Xx

hence θX = 1X .

Definition 2. A cartesian-closed extensive category E is a category of cohesion relative
to another such category S if it is equipped with an adjoint string of four functors

p! a p∗ a p∗ a p!

having the further properties:
(a) p! preserves finite products and p! is full and faithful. (Thus for toposes we would
say that p is “connected surjective” and “local” (see Johnstone and Moerdijk [3]), p! is a
subtopos, and p∗ is an exponential ideal.)
(b) p! preserves S-parameterized powers in the sense that

p!(X
p∗W ) = p!(X)W

is a natural isomorphism for all X in E and W in S. (This “continuity” property (b)
follows from (a) if all hom sets in S are finite; it also holds if the contrast with S is
determined as in IV below by an infinitely divisible interval in E.)
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(c) The canonical map p∗ // p! in S is epimorphic (I refer to this property as the “Null-
stellensatz”; it holds iff the other canonical map p∗ // p! in E is monomorphic).

The two downward functors express the opposition between “points” and “pieces”.
The two upward ones oppose pure cohesion (“codiscrete”) and pure anti-cohesion (“dis-
crete”); these two are identical in themselves with S but united by the points concept p∗

that uniquely places them as full subcategories in E. Steve Schanuel has pointed out that
the Nullstellensatz by itself implies that the comparison map in (a), mapping pieces of a
product to pairs of pieces, is at least epimorphic. The case W = 2 of (b) implies (a).

A cartesian-closed quality type is a category of cohesion in one extreme sense because
if (c) is an isomorphism, then (a) and (b) follow. An opposite extreme is “sufficient
cohesion”, as discussed in VI below.

Recall that in the classical, essentially localic, account of cohesion there is no left
adjoint “pieces” functor whose values have the same degree of non-cohesion as the pure
points. Many determinations of cohesion are needed for various mathematical situations.
I speak informally of connectedness, etc., referring to the behavior of objects with respect
to p!.

III. Extensive quality; intensive quality in its rarefied and condensed
aspects; the canonical qualities form and substance

Definition 3. An extensive quality on a category p : E // S of cohesion is a functor
h such that

h preserves finite coproducts
the codomain of h is a quality type q : F // S
q!h = p!

i.e., an extensive quality of X has the same number of connected pieces as X.

Theorem 1. (Hurewicz) Any category of cohesion has a canonical extensive quality h
defined by F (X, Y ) = p!(Y X) with h = identity on objects. Moreover, h preserves finite
products and exponentiation.

Proof. Using cartesian closure and clause (a), a category F is constructed; it is actually
extensive and itself cartesian closed. Taking q∗ to be hp∗, the property q∗ = q! follows
from the “continuity” clause (b) and the fact (a) that p∗ is an exponential ideal, because
both are essentially the same p!.

Gabriel and Zisman’s work [2] showed that even without the continuity clause (indeed
for the example of the topos E of simplicial sets), one could obtain an extensive quality
by forming a category of fractions of the Hurewicz F .

The canonical extensive quality could be called “form” (it seems to neglect substance).
By contrast, the canonical intensive quality defined below is called “substance” and seems
to neglect form. (This contrast is related to the contrast between “in the large” and “in
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the small” in traditional analysis. The Poincaré conjecture expresses the idea that the
two canonical qualities could jointly reflect isomorphisms.) Homology is another extensive
quality that depends on form and partially measures it; it often even preserves products
if valued in commutative coalgebras.

Definition 4. An intensive quality on a category E of cohesion is a functor s∗ from E
that

preserves finite products and finite coproducts
has a quality type q : L // S as codomain, and satisfies
q∗s∗ = p∗

i.e., an intensive quality of X has the same number of points as X.

Theorem 2. Any category of cohesion satisfying reasonable completeness conditions has
a canonical intensive quality s whose codomain is the subcategory s∗ : L // E consisting
of those X for which the map p∗X // p!X is an isomorphism. Moreover, s∗ has a left
adjoint s! and a coproduct-preserving right adjoint s∗.

Proof. Since p! exists, p∗ preserves colimits, so the subcategory (where “there is just one
point in any piece”) is closed under colimits; therefore by completeness the coreflection
s∗ exists. Because p! preserves finite products (as does p∗) s∗ is also closed under finite
products. Thus 1 belongs to the subcategory and therefore by extensivity s∗ preserves
coproducts. From the Nullstellensatz it follows that this subcategory is closed under
arbitrary subobjects and arbitrary products and is hence by completeness epi-reflective;
that is, the reflection s! exists and X // s∗s!X is epimorphic. In fact, the reflection
can be constructed as the pushout of the adjunction map along the basic epimorphism
p∗ // p!.

The canonical intensive quality defined on a topos of cohesion is valued again in a
topos L because these values are coalgebras for a lex comonad. As the construction
shows in examples, s! (unlike its underlying p!) does not preserve products, but it is
another example of extensive quality. I further distinguish the two aspects s∗ and s! of
the substance as rarefied vs. condensed. Substance s can be considered as a “function”
on E with values in a topos L, but the condensed substance s! can be viewed as a family
of distributions on E parameterized by L.

A helpful metaphor views the two aspects as the result of partial observation of the
same space (or sample of material), under extreme conditions of hot vs. cold; the canonical
“cooling” map s∗X // s!X gives further partial information about the specific nature
of the substance of X. The rarefied substance of X is more precisely the adjunction map
s∗s∗X // X and the condensed substance of X is the other adjunction X // s∗s!X,
and the cooling map is the composite of those. (Recall that s∗ is full and faithful.)
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IV. Non-cohesion within cohesion via constancy on infinitesimals

Most of the examples of Cantor-Galois-Grothendieck abstraction p : E // S actually
arise in the following concrete way. A map i : T0

// T in E gives rise to the subcategory
p∗ : S // E consisting of all those objects Y for which Y i is an isomorphism (for example
Y = Y T for a given pointed object T ). If i (or T ) has suitable properties, then not only
do the further adjoints exist, but clauses (b) and (c) hold, as well as the obvious (a).
Then some of the A for which Y = Y A for all Y in S may form a subcanonical site
of definition for E over S. The Galois connection arising from the constancy relation
“Y = Y X” expresses lack of internal cohesion and variation for Y relative to X. In the
examples studied in synthetic differential geometry (including the smooth, analytic, and
algebraic cases) it seems clear that whereas cohesion makes (connected) variation possible,
the objectification of motion (as “amazingly tiny” spaces) “generates” the model E for
cohesion over the resulting background S. Note that if T has just one point and also just
one piece, then of course T lies in the subcategory L. Objects T of nilpotent quantities,
and those satisfying the ATOM property that ( )T has a right adjoint, are fundamental,
but even without those properties the spaces in L may be considered to have a weak
infinitesimal nature and surprisingly often even generate in an “infinitesimal” sense the
whole topos E.

V. The example of reflexive graphs and their atomic numbers

For example, let M be the four-element monoid of endomaps of a two-element set and let
E be the topos of right actions of M on finite sets S. Because M has suitable idempo-
tents, there are four functors p that together have the properties required of a category of
cohesion. The spaces X are reversible reflexive graphs, whereas the corresponding canon-
ical intensive quality is valued in the subcategory L of graphs consisting entirely of loops.
(That is, the objects in L are the actions of an involution and a central idempotent.)
When X is in a rarefied condition, the interactions between its points can be neglected,
but after replacing X by its subobject of substance s∗s∗X // X, the self-interactions
at each point remain; these are measured by counting the n loops, n0 of which are their
own reverse. The non-trivial self-interactions could be considered as virtual particles, of
which n − n0 are paired off and n0 − 1 are neutral; these “atomic numbers” illustrate
the kind of qualitative information retained in passing from an object to its mere rarefied
substance. By contrast, the condensed substance of an object X consists of giant “atoms”
whose new self-interactions involve all the mutual interactions within each piece of X; in
particular, within a connected X all trivial loops are collapsed to one trivial loop upon
cooling. The cooling map from rarefied to condensed also indicates which elements of its
codomain were already self-interactions before cooling.

Another intensive quality, that depends on the canonical one of substance and partially
measures it, is obtained by “superheating” until only the n0 − 1 neutral virtual particles
remain, namely by composing s with the geometric morphism from L to the topos of
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actions of a single idempotent. There is an adjoint “supercooling”.

VI. Sufficient cohesion and the Grothendieck condition

The above locally finite example illustrates two further important features. These features
of very general notions of cohesive spatiality are also present in the smooth toposes of
synthetic differential geometry.

Definition 5. A category of cohesion (i.e. a functor satisfying conditions (a), (b) and
(c)) is sufficiently cohesive if
(d) for every X there exists a monic map X // Y with Y contractible in the sense that
p!(Y

A) = 1 for all A (i.e. with Y terminal in the Hurewicz category).

Proposition 3. If E over S is both sufficiently cohesive and a quality type, then S is
inconsistent.

Proof. Let X // Y be monic and let Y be connected. The natural map from points to
pieces is an isomorphism for both X and Y , hence p!(X) is a subobject of 1. For example,
taking X = p!(B), we have that B = p∗X is a subobject of 1 for any object B of the base
category S.

Proposition 4. A topos of cohesion is sufficiently cohesive iff the truth-value object is
connected, and also iff all injective objects are connected.

Proof. In a topos, if an injective object is embedded in a connected object, then it is a
retract of that object and hence connected itself. Conversely, assume all injective objects
are connected. Any object can be embedded in an injective, for example its partial-
map representor. The partial map representor Y is not only connected, but actually
contractible, because it has a pointed action of the connected monoid with zero formed
by the truth-value object under conjunction; hence Y A also has such an action, which
implies that Y A is also connected.

Corollary. If 2 is injective in the base S, then a cohesive p : E // S is sufficiently
cohesive iff p!(2) is connected.

Proof. Note that any connected bi-pointed object can be used to define homotopies
and that two maps homotopic in that way will induce the same map on the object of
pieces. If a connected bi-pointed object moreover satisfies Grothendieck’s condition that
the two points have empty equalizer, then the characteristic function of one will map
the other to false, permitting the construction of a homotopy between the identity map
of the truth-value object and the constantly false endomap, by using conjunction. Thus
the truth-value object is contractible if there exists such a strictly bi-pointed connected
object, and so E will be sufficiently cohesive over S. If p!(2) is connected, it is such an
object. Conversely, if 2 is injective in S, then p!(2) is injective in E, so sufficient cohesion
implies that p!(2) is connected.
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Note that the injectivity of 2 in S implies that the truth-value object of S is decom-
posable, a kind of non-cohesion. A sufficiently cohesive E // S is never an equivalence.

Proposition 5. The topos of reversible reflexive graphs is sufficiently cohesive.

Proof. The interval graph is connected and has two distinct points, so Grothendieck’s
condition applies. A simple picture shows that a graph can be augmented to make it
connected; the above argument implies that we can even make it contractible.

Many examples suggest that a Grothendieck topos should be sufficiently cohesive (i.e.
satisfy all of (a) (b) (c) (d) over sets) if any subcanonical site needs to have several
idempotents. (Note that non-subcanonical sites without idempotents can be found for
any topos as McLarty [9] points out.) In Grothendieck’s condition, two points 1 // I
with empty equalizer (yet with connected codomain I) compose with I // 1 to yield
two distinct idempotents. By contrast, a topos of pure variation has a subcanonical site
with no idempotents at all (as in proposition 2), whereas the fundamental quality type
consists of the actions of just one idempotent. The distinction between the three classes
(sufficient cohesion, quality type, pure variation) may be determined by the structure of
the idempotents in subcanonical sites; the results of [4] suggest that sufficient cohesion
and pure variation very rarely hold for the same p.

VII. Weak generation of a subtopos by a quotient topos

Euler observed that real magnitudes are ratios between infinitesimals, and I have argued in
[6] that his observation is conversely a useful definition of the one-dimensional continuum
as a retract of T T where T is an infinitesimal continuum in a cartesian-closed category.
Because sheaf subtoposes of a topos are always closed under exponentials, we are led to
broaden the usual covering-based notion of ”generating” to obtain a notion of “weakly
generated” topos.

Definition 6. Given a connected morphism s : E // L of toposes, let j in E be the
strongest localness operator for which every s∗Y (for Y in L) is a j-sheaf. If j is actually
the identity map on the truth-value space, then E is weakly generated by s. (A sufficient
condition for weak generation is that exponentials of values of s∗ are adequate in Isbell’s
sense [7].)

Proposition 6. The cohesive topos of reversible reflexive graphs is infinitesimally gen-
erated, that is, weakly generated by its substance.

Proof. L is the topos of actions on sets of a three-element commutative monoid; if A is
the one-vertex graph obtained as s∗ of the usual generator of L, then the exponential AA

contains as a retract the interval graph I. E has no subtoposes that contain I, so E is
weakly generated by L.
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