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ON FINITE INDUCED CROSSED MODULES,
AND THE HOMOTOPY 2-TYPE OF MAPPING CONES
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ABSTRACT. Results on the finiteness of induced crossed modules are proved both
algebraically and topologically. Using the Van Kampen type theorem for the fundamen-
tal crossed module, applications are given to the 2-types of mapping cones of classifying
spaces of groups. Calculations of the cohomology classes of some finite crossed modules
are given, using crossed complex methods.

Introduction

Crossed modules were introduced by J.H.C. Whitehead in [31]. They form a part of what
can be seen as his programme of testing the idea of extending to higher dimensions the
methods of combinatorial group theory of the 1930’s, and of determining some of the
extra structure that was necessary to model the geometry. Other papers of Whitehead of
this era show this extension of combinatorial group theory tested in different directions.

In this case he was concerned with the algebraic properties satisfied by the boundary
map

∂ : π2(X, A) → π1(A)

of the second relative homotopy group, together with the standard action on it of the
fundamental group π1(A). This is the fundamental crossed module Π2(X, A) of the pair
(X,A). In order to determine the second homotopy group of a CW -complex, he formu-
lated and proved the following theorem for this structure:
Theorem W Let X = A ∪ {e2

λ} be obtained from the connected space A by attaching
2-cells. Then the second relative homotopy group π2(X, A) may be described as the free
crossed π1(A)-module on the 2-cells.
The proof in [32] uses transversality and knot theory ideas from the previous papers
[30, 31]. See [5] for an exposition of this proof. Several other proofs are available. The
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survey by Brown and Huebschmann [12], and the book edited by Hog-Angeloni, Metzler
and Sieradski [20], give wider applications.

The paper of Mac Lane and Whitehead [26] uses Theorem W to show that the 2-
dimension-al homotopy theory of pointed, connected CW -complexes is completely mod-
elled by the theory of crossed modules. This is an extra argument for regarding crossed
modules as 2-dimensional versions of groups.

One of our aims is the explicit calculation of examples of the crossed module

(∂ : π2(A ∪ ΓV, A) → π1(A) ) (1)

of a mapping cone, when π1(V ), π1(A) are finite. The key to this is the 2-dimensional
Van Kampen Theorem (2-VKT) proved by Brown and Higgins in [9]. This implies a
generalisation of Theorem W, namely that the crossed module (1) is induced from the
identity crossed module (1 : π1(V ) → π1(V )) by the morphism π1(V ) → π1(A).

Presentations of induced crossed modules are given in [9], and from these we prove
a principal theorem (Theorem 2.1), that crossed modules induced from finite crossed
modules by morphisms of finite groups are finite. We also use topological methods to
prove a similar result for finite p-groups (Corollary 4.3). These results give a new range
of finite crossed modules.

Sequels to this paper discuss crossed modules induced by a normal inclusion [15], and
calculations obtained using a group theory package [16].

The origin of the 2-VKT was the idea of extending to higher dimensions the notion
of the fundamental groupoid, as suggested in 1967 in [4]. This led to the discovery of
the relationship of 2-dimensional groupoids to crossed modules, in work with Spencer
[14]. This relationship reinforces the idea of ‘higher dimensional group theory’, and was
essential for the proof of the 2-VKT for the fundamental crossed module [9]. In view
of the results of Mac Lane and Whitehead [26], and of methods of classifying spaces of
crossed modules by Loday [25] and Brown and Higgins [11] (see section 3), the 2-VKT
allows for the explicit computation of some homotopy 2-types, in the form of the crossed
modules which model them.

In some cases, the Postnikov invariant of these 2-types can be calculated, as the
following example shows.
Corollary 5.5 Let Cn denote the cyclic group of order n, and let BCn denote its
classifying space. The second homotopy module of the mapping cone X = BCn2 ∪ ΓBCn

is a particular cyclic Cn-module, An, say. The cohomology group H3(Cn, An) is a cyclic
group of order n, and the first Postnikov invariant of X is a generator of this group.

The method used for the calculation of the cohomology class here is also of interest.
It introduces a new small free crossed resolution of the cyclic group of order n in order to
construct an explicit 3-cocycle corresponding to the above crossed module. This indicates
a wider possibility of using crossed resolutions for explicit calculations. It is also related
to Whitehead’s use of what he called in [32] ‘homotopy systems’, and which are simply
free crossed complexes.

The initial motivation of this paper was a conversation with Rafael Sivera in Zaragoza,
in November, 1993, which suggested the lack of explicit calculations of induced crossed
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modules. This led to discussions at Bangor on the use of computational group theory
packages which culminated in a GAP [29] program [16], and to the development of general
theory.

1. Crossed modules and induced crossed modules

In this section, we recall the definition of induced crossed modules, and of results of [9]
on presentations of induced crossed modules. We then give some basic examples of these.

Recall that a crossed module M = (µ : M → P ) is a morphism of groups µ : M → P
together with an action (m, p) 7→ mp of P on M satisfying the two axioms

• CM1) µ(mp) = p−1µ(m)p

• CM2) mµn = n−1mn

for all m,n ∈ M and p ∈ P . We say that M is finite when M is finite.
The category XM of crossed modules has as objects all crossed modules. Morphisms

in XM are pairs (g, f) forming commutative diagrams

M //µ

²²
g

P

²²
f

N //
ν Q

in which the horizontal maps are crossed modules, and g, f preserve the action in the sense
that for all m ∈ M, p ∈ P we have g(mp) = (gm)fp. If P is a group, then the category
XM/P of crossed P -modules is the subcategory of XM whose objects are the crossed
P -modules and in which a morphism (µ : M → P ) → (ν : N → P ) of crossed P -modules
is a morphism g : M → N of groups such that g preserves the action ( g(mp) = (gm)p,
for all m ∈ M, p ∈ P ), and νg = µ.

Standard algebraic examples of crossed modules are:
(i) an inclusion of a normal subgroup, with action given by conjugation;
(ii) an inner automorphism crossed module (χ : M → Aut M) in which χm is the
automorphism n 7→ m−1nm;
(iii) a zero crossed module (0 : M → P ) where M is a P -module;
(iv) an epimorphism M → P with kernel contained in the centre of M .

Examples of finite crossed modules may be found among those above, the induced
crossed modules of this paper and its sequels [15, 16], and coproducts [6] and tensor
products [13, 19] of finite crossed P -modules.

Further important examples of crossed modules are the free crossed modules, referred
to in the Introduction, which are rarely finite. They arise algebraically in considering
identities among relations [12, 20], which are non-abelian forms of syzygies.

We next define pullback crossed modules. Let ι : P → Q be a morphism of groups
and let (ν : N → Q) be a crossed Q-module. Let ν ′ : ι∗N → P be the pullback of N by
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ι, so that ι∗N = {(p, n) ∈ P × N | ιp = νn}, and ν ′ : (p, n) 7→ p. Let P act on ι∗N by
(p1, n)p = (p−1p1p, n

ιp). The verification of the axiom CM1) is immediate, while CM2) is
proved as follows:

Let (p, n), (p1, n1) ∈ ι∗N. Then

(p, n)−1(p1, n1)(p, n) = (p−1p1p, n
−1n1n)

= (p−1p1p, n
νn
1 )

= (p−1p1p, n
ιp
1 )

= (p1, n1)
ν′(p,n).

1.1. Proposition. The functor ι∗ : XM/Q → XM/P has a right adjoint ι∗.

Proof. This follows from general considerations on Kan extensions.

The universal property of induced crossed modules is the following. Let (µ : M → P ),
(γ : C → Q) be crossed modules. In the diagram

M

§§

f

°°
°°
°°
°°
°°
°°
°°
°

//µ

²²
ῑ

P

²²
ι

ι∗M //δ

g

}}{
{

{
{

Q

C

66

γ

mmmmmmmmmmmmmmmmm

the pair (ῑ, ι) is a morphism of crossed modules such that for any crossed Q-module
(γ : C → Q) and morphism of crossed modules (f, ι), there is a unique morphism
g : ι∗M → C of crossed Q-modules such that gῑ = f.

It is a consequence of this universal property that if M = P = F (R), the free group
on a set R, and if w : R → Q is the restriction of ι to the set R, then ι∗F (R) is the free
crossed module on w, in the sense of Whitehead [32] (see also [12, 20, 28]). Constructions
of this free crossed module are given in these papers.

A presentation for induced crossed modules for a general morphism ι is given in Propo-
sition 8 of [9]. We will need two more particular results. The first is Proposition 9 of that
paper, and the second is a direct deduction from Proposition 10.

1.2. Proposition. If ι : P → Q is a surjection, and (µ : M → P ) is a crossed P-
module, then ι∗M ∼= M/[M, K], where K = Ker ι, and [M,K] denotes the subgroup of M
generated by all m−1mk for all m ∈ M, k ∈ K.

The following term and notation will be used frequently. Let P be a group and let
T be a set. We define the copower P ~∗ T to be the free product of groups Pt, t ∈ T,
each with elements (p, t), p ∈ P, and isomorphic to P under the map (p, t) 7→ p. If Q is a
group, then P ~∗ Q will denote the copower of P with the underlying set of the group Q.
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1.3. Proposition. If ι : P → Q is an injection, and (µ : M → P ) is a crossed P-
module, let T be a right transversal of ιP in Q. Let Q act on the copower M ~∗ T by
the rule (m, t)q = (mp, u), where p ∈ P, u ∈ T, and tq = (ιp)u. Let δ : M ~∗ T → Q
be defined by (m, t) 7→ t−1(ιµm)t. Let S be a set of generators of M as a group, and let
SP = {xp : x ∈ S, p ∈ P}. Then

ι∗M = (M ~∗ T )/R

where R is the normal closure in M ~∗ T of the elements

〈(r, t), (s, u)〉 = (r, t)−1(s, u)−1(r, t)(s, u)δ(r,t) (r, s ∈ SP , t, u ∈ T ).

Proof. Let N = M ~∗ T. Proposition 10 of [9] yields that ι∗M is the quotient of N by
the subgroup 〈N, N〉 generated by 〈n, n1〉 = n−1n−1

1 nnδn
1 , n, n1 ∈ N, and which is called

in [12] the Peiffer subgroup of N . Now N is generated by the set (SP , T ) = {(sp, t) : s ∈
S, p ∈ P, t ∈ T}, and this set is Q-invariant since (sp, t)q = (spp′ , u) where u ∈ T, p′ ∈ P
satisfy tq = (ιp′)u. It follows from Proposition 3 of [12] that 〈N,N〉 is the normal closure
of the set 〈(SP , T ), (SP , T )〉 of basic Peiffer commutators.

1.4. Example. The dihedral crossed module. We show how this works out in the follow-
ing case, which exhibits a number of typical features. We let Q be the dihedral group Dn

with presentation 〈x, y : xn = y2 = xyxy = 1〉, and let M = P be the cyclic subgroup
C2 of order 2 generated by y. Let Cn = {0, 1, 2, . . . , n− 1} be the cyclic group of order n.
A right transversal T of C2 in Dn is given by the elements xi, i ∈ Cn. Hence ι∗C2 has a
presentation with generators ai = (y, xi), i ∈ Cn, and relations given by a2

i = 1, i ∈ Cn,
together with the Peiffer relations. Now δai = x−iyxi = yx2i. Further the action is given
by (ai)

x = ai+1, (ai)
y = an−i. Hence (ai)

δaj = a2j−i, so that the Peiffer relations are
ajaiaj = a2j−i. It is well known that we now have a presentation of the dihedral group
Dn, from which we recover the standard presentation 〈u, v : un = v2 = uvuv = 1〉 by
setting u = a0a1, v = a0, so that ui = a0ai. Then

δu = x2, δv = y,

so that y acts on ι∗C2 by conjugation by v. However x acts by

ux = u, vx = vu.

Note that this is consistent with the crossed module axiom CM2) since

vx2

= (vu)x = vuu = u−1vu.

We call Dn = (δ : Dn → Dn) the dihedral crossed module. It follows from these formulae
that δ is an isomorphism if n is odd, and has kernel and cokernel isomorphic to C2 if n
is even. In particular, if n is even, then by results of section 3, π2(BDn ∪ ΓBC2) can be
regarded as having one non-trivial element represented by un/2.
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1.5. Corollary. Assume ι : P → Q is injective. If M has a presentation as a group
with g generators and r relations, the set of generators of M is P-invariant, and n = [Q :
ιµ(M)], then ι∗M has a presentation with gn generators and rn + g2n(n− 1) relations.

Another corollary determines induced crossed modules under some abelian conditions.
This result has useful applications. If M is an abelian group, or P -module, and T is a
set, we define the copower of M with T , written M ~⊕ T , to be the sum of copies of M ,
one for each element of T.

1.6. Corollary. Let (µ : M → P ) be a crossed P -module and ι : P → Q a monomor-
phism of groups such that M is abelian and ιµ(M) is normal in Q. Then ι∗M is abelian
and as a Q-module is just the induced Q-module in the usual sense.

Proof. We use the result and notation of Proposition 1.3. Note that if u, t ∈ T and
r ∈ S then uδ(r, t) = ut−1(ιµr)t = (ιµm)ut−1t = (ιµm)u for some m ∈ M, by the
normality condition. The Peiffer commutator given in Proposition 1.3 can therefore be
rewritten as

(r, t)−1(s, u)−1(r, t)(s, u)δ(r,t) = (r−1, t)(s, u)−1(r, t)(sm, u).

Since M is abelian, sm = s. Thus the basic Peiffer commutators reduce to ordinary
commutators. Hence ι∗M is the copower M ~⊕ T, and this, with the given action, is the
usual presentation of the induced Q-module.

1.7. Example. Let M = P = Q be the infinite cyclic group C∞, let µ be the identity,
and let ι be multiplication by 2. Then ι∗M ∼= C∞ ×C∞, and the action of a generator of
Q on ι∗M is to switch the two copies of C∞. This result could also be deduced from well
known results on free crossed modules. However, our results show that we get a similar
conclusion simply by replacing each C∞ in the above by a finite cyclic group C2n, and
this fact is new.

2. On the finiteness of induced crossed modules

In this section we give an algebraic proof that a crossed module induced from a finite
crossed module by a morphism with finite cokernel is also finite. In a later section we will
prove a slightly less general result, but by topological methods which will also yield results
on the preservation of the Serre class of a crossed module under the inducing process.

2.1. Theorem. Let (µ : M → P ) be a crossed module and let ι : P → Q be a morphism
of groups. Suppose that M and the index of ι(P ) in Q are finite. Then the induced crossed
module (δ : ι∗M → Q) is finite.

Proof. Factor the morphism ι : P → Q as τσ where τ is injective and σ is surjective.
Then ι∗M is isomorphic to τ∗σ∗M. It is immediate from Proposition 1.2 that if M is finite
then so also is σ∗M. So it is enough to assume that ι is injective, and in fact we assume
it is an inclusion.
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Let T be a right transversal of ιP in Q. Let Y = M ~∗ T be the copower of M and
T, and let δ : Y → Q and the action of Q on Y be as in Proposition 1.3. The equations
tq = (ιp)u which determine this action in fact provide a function

(ξ, η) : T ×Q → P × T, (t, q) 7→ (p, u).

A basic Peiffer relation is then of the form

(m, t)(n, v) = (n, v)(mξ(t,v−1(ιµm)v), η(t, v−1(ιµm)v)) = (n, v)(mp, u) (2)

where m,n ∈ M, t, u ∈ T and q = v−1(ιµm)v.
We now assume that the finite set T has l elements and has been given the total order

t1 < t2 < · · · < tl. An element of Y may be represented as a word

(m1, u1)(m2, u2) . . . (me, ue). (3)

Such a word is said to be reduced when ui 6= ui+1, 1 ≤ i < e, and to be ordered if
u1 < u2 < · · · < ue in the given order on T . This yeilds a partial ordering of M ~∗ T where
(mi, ui) ≤ (mj, uj) whenever ui ≤ uj.

A twist uses the Peiffer relation (2) to replace a reduced word w = w1(m, t)(n, v)w2,
with v < t, by w′ = w1(n, v)(mp, u)w2. If the resulting word is not reduced, multiplication
in Mv and Mu may be used to reduce it. In order to show that any word may be ordered
by a finite sequence of twists and reductions, we define an integer weight function on the
set Wn of non-empty words of length at most n by

Ωn : Wn → Z+, (m1, tj1)(m2, tj2) . . . (me, tje) 7→ le
e∑

i=1

ln−iji.

It is easy to see that Ωn(w′) < Ωn(w) when w → w′ is a reduction. Similarly, for a twist

w = w1(mi, tji
)(mi+1, tji+1

)w2 → w′ = w1(mi+1, tji+1
)(n, tk)w2

the weight reduction is

Ωn(w)− Ωn(w′) = ln+e−i−1( l(ji − ji+1) + ji+1 − jk ) ≥ ln+e−i−1,

so the process terminates in a finite number of moves.
This ordering process is a special case of a purely combinatorial sorting algorithm

discussed in [17].
We now specify an algorithm for converting a reduced word to an ordered word.

Various algorithms are possible, some more efficient than others, but we are not interested
in efficiency here. We call a reduced word k-ordered if the subword consisting of the first
k elements is ordered and the remaining elements are greater than these. Every reduced
word is at least 0-ordered. Given a k-ordered, reduced word, find the rightmost minimal
element to the right of the k-th position. Move this element one place to the left with
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a twist, and reduce if necessary. The resulting word may only be j-ordered, with j < k,
but its weight will be less than that of the original word. Repeat until an ordered word
is obtained.

Let Z = Mt1 ×Mt2 × . . .×Mtl be the product of the sets Mti = M × {ti}. Then the
algorithm yeilds a function φ : Y → Z such that the quotient morphism Y → ι∗M factors
through φ. Since Z is finite, it follows that ι∗M is finite.

2.2. Remark. In this last proof, it is in general not possible to give a group structure
on the set Z such that the quotient morphism Y → ι∗M factors through a morphism to
Z. For example, in the dihedral crossed module of example 1.4, with n = 3, the set Z
will have 8 elements, and so has no group structure admitting a morphism onto D3. This
explains why the above method does not give an algebraic proof of Corollary 4.3, which
gives conditions for ι∗M to be a finite p-group. However, in [15], we will give an algebraic
proof for the case P is normal in Q.

3. Topological applications

As explained in the Introduction, the fundamental crossed module functor Π2 assigns a
crossed module (∂ : π2(X,A) → π1(A)) to any base pointed pair of spaces (X,A). We will
use the following consequence of Theorem C of [9], which is a 2-dimensional Van Kampen
type theorem for this functor.

3.1. Theorem. ([9], Theorem D) Let (B, V ) be a cofibred pair of spaces, let f : V → A
be a map, and let X = A ∪f B. Suppose that A,B, V are path-connected, and the pair
(B, V ) is 1-connected. Then the pair (X,A) is 1-connected and the diagram

π2(B, V ) //δ

²²
ε

π1(V )

²²
λ

π2(X, A) //
δ′

π1(A)

presents π2(X, A) as the crossed π1(A)-module λ∗(π2(B, V )) induced from the crossed
π1(V )-module π2(B, V ) by the group morphism λ : π1(V ) → π1(A) induced by f.

As pointed out earlier, in the case P is a free group on a set R, and µ is the identity, then
the induced crossed module ι∗P is the free crossed Q-module on the function ι|R : R → Q.
Thus Theorem 3.1 implies Whitehead’s Theorem W of the Introduction. A considerable
amount of work has been done on this case, because of the connections with identities
among relations, and methods such as transversality theory and “pictures” have proved
successful ([12, 28]), particularly in the homotopy theory of 2-dimensional complexes [20].
However, the only route so far available to the wider geometric applications of induced
crossed modules is Theorem 3.1. We also note that this Theorem includes the relative
Hurewicz Theorem in this dimension, on putting A = ΓV , and f : V → ΓV the inclusion.

We will apply this Theorem 3.1 to the classifying space of a crossed module, as defined
by Loday in [25] or Brown and Higgins in [11]. This classifying space is a functor B
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assigning to a crossed module M = (µ : M → P ) a pointed CW -space BM with the
following properties:

3.2. The homotopy groups of the classifying space of the crossed module M = (µ : M →
P ) are given by

πi(BM) ∼=




Coker µ for i = 1
Ker µ for i = 2
0 for i > 2.

3.3. The classifying space B(ι : 1 → P ) is the usual classifying space BP of the group
P , and BP is a subcomplex of BM. Further, there is a natural isomorphism of crossed
modules

Π2(BM, BP ) ∼= M.

3.4. If X is a reduced CW -complex with 1-skeleton X1, then there is a map

X → B(Π2(X, X1))

inducing an isomorphism of π1 and π2.

It is in these senses that it is reasonable to say, as in the Introduction, that crossed
modules model all pointed homotopy 2-types.

We now give two direct applications of Theorem 3.1.

3.5. Corollary. Let M = (µ : M → P ) be a crossed module, and let ι : P → Q be a
morphism of groups. Let β : BP → BM be the inclusion. Consider the pushout

BP //β

²²
Bι

BM

²²
BQ //

β′ X.

(4)

Then the fundamental crossed module of the pair (X,BQ) is isomorphic to the induced
crossed module (δ : ι∗M → Q), and this crossed module determines the 2-type of X.

Proof. The first statement is immediate from Theorem 3.1. The final statement follows
from results of [11], since the morphism Q → π1(X) is surjective.

3.6. Remark. An interesting special case of the last corollary is when M is an inclusion
of a normal subgroup, since then BM is of the homotopy type of B(P/M). So we have
determined the 2-type of a homotopy pushout

BP //Bp

²²
Bι

BR

²²
BQ //

p′ X
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in which p : P → R is surjective.

We write ΓV for the cone on a space V.

3.7. Corollary. Let ι : P → Q be a morphism of groups. Then the fundamental crossed
module Π2(BQ∪Bι ΓBP, BQ) is isomorphic to the induced crossed module (δ : ι∗P → Q).

4. Finiteness theorems by topological methods

The aim of this section is to show that the property of being a finite p-group is preserved
by the process of induced crossed modules. We use topological methods.

An outline of the method is as follows. Suppose that Q is a finite p-group. To prove
that ι∗M is a finite p-group, it is enough to prove that Ker (ι∗M → Q) is a finite p-group.
But this kernel is the second homotopy group of the space X of the pushout (4), and so
is also isomorphic to the second homology group of the universal cover X̃ of X. In order
to apply the homology Mayer-Vietoris sequence to this universal cover, we need to show
that it may be represented as a pushout, and we need information on the homology of the
spaces determining this pushout. So we start with the necessary information on covering
spaces.

We work in the convenient category T OP of weakly Hausdorff k-spaces [24]. Let
α : X̃ → X be a map of spaces. In the examples we will use, α will be a covering map.
Then α induces a functor

α∗ : T OP/X → T OP/X̃.

It is known that α has a right adjoint and so preserves colimits [2, 1, 24].
For regular spaces, the pullback of a covering space in the above category is again a

covering space. These results enable us to identify a covering space of an adjunction space
as an adjunction space obtained from the induced covering spaces.

If further, α is a covering map, and X is a CW -complex, then X̃ may be given the
structure of a CW -complex [27].

We also need a special case of the basic facts on the path components and fundamental
group of induced covering maps ([7, 8, 27]). Given the following pullback

Â //

²²
α′

X̃

²²
α

A //
f

X

and points a ∈ A, x̃ ∈ X̃ such that fa = αx̃, in which α is a universal covering map and
X,A, X̃ are path connected, then there is a sequence

1 → π1(Â, (a, x̃)) → π1(A, a)
f∗→ π1(X, fa) → π0(Â) → 1. (5)

This sequence is exact in the sense of sequences arising from fibrations of groupoids [7],
which involves an operation of the fundamental group π1(X, fa) on the set π0(Â) of path
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components of Â. It follows that the fundamental group of Â is isomorphic to Ker f∗,
and that π0(Â) is bijective with the set of cosets (π1(X, fa))/(f∗π1(A, a)). It is also clear
that the covering Â → A is regular and that all the components of Â are homeomorphic.

Let M be the crossed module (µ : M → P ) and let ι : P → Q be a morphism of
groups. Let

X = BQ ∪Bι BM
as in diagram (4). Let α : X̃ → X be the universal covering map, and let B̂Q, B̂M, B̂P
be the pullbacks of X̃ under the maps BQ → X, BM → X, BP → X. Then we may
write

X̃ ∼= B̂Q ∪
B̂ι

B̂M, (6)

by the results of section 3.

From the exact sequence (5) we obtain the following exact sequences, in which π1X ∼=
Q ∗P (P/µM):

1 → π1(B̂Q) → Q → Q ∗P (P/µM) → 1,

1 → π1(B̂M) → P/µM → Q ∗P (P/µM) → π0B̂M → 1,

1 → π1(B̂P ) → P → Q ∗P (P/µM) → π0B̂P → 1.

4.1. Proposition. Under the above situation, let the groups π1(B̂P ), π1(B̂M), π1(B̂Q)
be denoted by P ′,M ′, Q′ respectively, and let BM′ denote a component of B̂M. Then
there is an exact sequence

H2(P
′) ~⊕ π0B̂P → (H2(BM′) ~⊕ π0B̂M)⊕H2(Q

′) → π2(X) →

→ H1(P
′) ~⊕ π0B̂P → (H1(M

′) ~⊕ π0B̂M)⊕H1(Q
′) → 0.

Proof. This is immediate from the Mayer-Vietoris sequence for the pushout (6) and the
fact that H2(X̃) ∼= π2(X).

4.2. Corollary. If ι : P → Q is the inclusion of a normal subgroup, and X = BQ ∪Bι

ΓBP, then π2(X) is isomorphic to H1(P )⊗I(Q/P ), where I(G) denotes the augmentation
ideal of a group G.

This result agrees with Corollary 2.5 of [15], in which the induced crossed module itself
is computed, in the case P is normal in Q, via the use of coproducts of crossed P -modules.

4.3. Corollary. Let M = (µ : M → P ) be a crossed module and let ι : P → Q be a
morphism of groups. If M , P and Q are finite p-groups, then so also is ι∗M .
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Proof. It is standard that the (reduced) homology groups of a finite p-group are finite
p-groups. The same applies to the reduced homology of the classifying space of a crossed
module of finite p-groups. The latter may be proved using the spectral sequence of a
covering, and Serre C theory, as in Chapters IX and X of [21]. In the present case, we
need information only on H2(BM), and some of its connected covering spaces, and this
may be deduced from the exact sequence due to Hopf

H3K → H3G → (π2K)⊗ZG Z→ H2K → H2G → 0

for any connected space K with fundamental group G (see for example Exercise 6 on
p.175 of [3]). Proposition 4.1 shows that Ker (ι∗(M) → Q) ∼= π2(X) is a finite p-group.
Since Q is a finite p-group, it follows that ι∗M is a finite p-group.

Note that these methods extend also to results on the Serre class of an induced crossed
module, which we leave the reader to formulate.

5. Cohomology classes

Recall [22, 3] that if G is a group and A is a G-module, then elements of H3(G,A) may
be represented by equivalence classes of crossed sequences

0 → A → M
µ−→ P → G → 1, (7)

namely exact sequences as above such that (µ : M → P ) is a crossed module. The
equivalence relation between such crossed sequences is generated by the basic equivalences,
namely the existence of a commutative diagram of morphisms of groups as follows

0 // A

²²
1

// M //µ

²²
f

P

²²
g

// G

²²
1

// 1

0 // A // M ′ //
µ′ P ′ // G // 1

such that (f, g) is a morphism of crossed modules. Such a diagram is called a morphism
of crossed sequences.

The zero cohomology class is represented by the crossed sequence

0 → A
1−→ A

0−→ G
1−→ G → 1,

which we sometimes abbreviate to

A
0−→ G.

In a similar spirit, we say that a crossed module (µ : M → P ) represents a cohomology
class, namely an element of H3(Coker µ, Ker µ).
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5.1. Example. Let Cn2 denote the cyclic group of order n2, written multiplicatively,
with generator u. Let γn : Cn2 → Cn2 be given by u 7→ un. This defines a crossed module,
with trivial operations. This crossed module represents the trivial cohomology class in
H3(Cn, Cn), in view of the morphism of crossed sequences

0 // Cn
//1

²²
1

Cn
//0

²²
λ

Cn
//1

²²
λ

Cn

²²
1

// 0

0 // Cn
// Cn2 //

γn
Cn2 // Cn

// 0

where, if t is the generator of the top Cn, then λ(t) = un.

5.2. Example. We show that the dihedral crossed module Dn of Example 1.4 represents
the trivial cohomology class. This is clear for n odd, since then δ is an isomorphism. For
n even, we simply construct a morphism of crossed sequences as in the following diagram

0 // C2
//1

²²
∼=

C2

²²
f2

//0
C2

²²
f1

//1
C2

²²
∼=

// 0

0 // C2
// Dn

//
δ

Dn
// C2

// 0

where if t denotes the non trivial element of C2 then f1(t) = x, f2(t) = un/2. Just for
interest, we leave it to the reader to prove that there is no morphism in the other direction
between these crossed sequences.

A crossed module M = (µ : M → P ) determines a cohomology class

kM ∈ H3(Coker µ, Ker µ).

If X is a connected, pointed CW -complex with 1-skeleton X1, then the class

k3
X ∈ H3(π1X, π2X)

of the crossed module Π2(X, X1) is called the first Postnikov invariant of X. This class
is also represented by Π2(X, A) for any connected subcomplex A of X such that (X, A)
is 1-connected and π2(A) = 0. It may be quite difficult to determine this Postnikov
invariant from a presentation of this last crossed module, and even the meaning of the
word “determine” in this case is not so clear. There are practical advantages in working
directly with the crossed module, since it is an algebraic object, and so it, or families
of such objects, may be manipulated in many convenient and useful ways. Thus the
advantages of crossed modules over the corresponding 3-cocycles are analogous to some
of the advantages of homology groups over Betti numbers and torsion coefficients.

However, in work with crossed modules, and in applications to homotopy theory, in-
formation on the corresponding cohomology classes, such as their non-triviality, or their
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order, is also of interest. The aim of this section is to give background to such a de-
termination, and to give two example of finite crossed modules representing non-trivial
elements of the corresponding cohomology groups.

The following general problem remains. If G,A are finite, where A is a G-module,
how can one characterise the subset of H3(G,A) of elements represented by finite crossed
modules? This subset is a subgroup, since the addition may be defined by a sum of crossed
sequences, of the Baer type. (An exposition of this is given by Danas in [18].) It might
always be the whole group.

The natural context in which to show how a crossed sequence gives rise to a 3-cocycle
is not the traditional chain complexes with operators but that of crossed complexes [22].
We explain how this works here. For more information on the relations between crossed
complexes and the traditional chain complexes with operators, see [10].

Recall that a free crossed resolution of the group G is a free aspherical crossed complex
F∗ together with an epimorphism φ : F1 → G with kernel δ2(F2).

5.3. Example. The cyclic group Cn of order n is written multiplicatively, with generator
t. We give for it a free crossed resolution F∗ as follows. Set F1 = C∞, with generator w,
and for r ≥ 2, set Fr = (C∞)n. Here for r ≥ 2, Fr is regarded as the free Cn-module on
one generator w0, and we set wi = (w0)

ti . The morphism φ : C∞ → Cn sends w to t, and
the operation of F1 on Fr for r ≥ 2 is via φ. The boundaries are given by

1. δ2(wi) = wn,

2. for r odd, δr(wi) = wiw
−1
i+1,

3. for r even and greater than 2, δr(wi) = w0w1 . . . wn−1.

Previous calculations show that δ2 is the free crossed C∞-module on the element
wn ∈ C∞. Thus F∗ is a free crossed complex. It is easily checked to be aspherical, and so
is, with φ, a crossed resolution of Cn.

Let A be a G-module. Let C(G,A, 3) denote the crossed complex C which is G in
dimension 1, A in dimension 3, with the given action of G on A, and which is 0 elsewhere,
as in the following diagram

· · · // 0 // A // 0 // G.

Let (F∗, φ) be a free crossed resolution of G. It follows from the discussions in [10, 11]
that a 3-cocycle of G with coefficients in A can be represented as a morphism of crossed
complexes f : F∗ → C(G,A, 3) over φ. This cocycle is a coboundary if there is an operator
morphism l : F2 → A over φ : F1 → G such that lδ3 = f3.

F4

²²

//δ4
F3

²²
f3

//δ3
F2

~~

l

}}
}}

}}
}}

²²

//δ2
F1

²²
φ

0 // A // 0 // G
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To construct a 3-cocycle on F∗ from the crossed sequence (7), first construct a mor-
phism of crossed complexes as in the diagram

F4
//

²²

F3
//

²²
f3

F2
//

²²
f2

F1
//φ

²²
f1

G

²²
1

0 // A // M //
µ P //

ψ
G

(8)

using the freeness of F∗ and the exactness of the bottom row. Then compose this with
the morphism of crossed sequences

0 //

²²

A

²²
1

// M //µ

²²

P //ψ

²²
ψ

G

²²
1

0 // A // 0 // G //
1

G

Hence it is reasonable to say that the morphism f3 of diagram (8) is a 3-cocycle corre-
sponding to the crossed sequence.

We now use these methods in an example.

5.4. Theorem. Let n ≥ 2, and let ι : Cn → Cn2 denote the injection sending a generator
t of Cn to un, where u denotes a generator of Cn2. Let An denote the Cn-module which
is the kernel of the induced crossed module N = (∂ : ι∗Cn → Cn2). Then H3(Cn, An) is
cyclic of order n and has as generator the class of this induced crossed module.

Proof. By Corollary 1.6 the abelian group ι∗Cn is the product V = (Cn)n. As a Cn-
module it is cyclic, with generator v, say. Write vi = vti , i = 0, 1, . . . , n − 1. Then each
vi is a generator of a Cn factor of V . The kernel An of ∂ is a cyclic Cn-module on the
generator a = v0v

−1
1 . Write ai = ati = viv

−1
i+1. As an abelian group, An has generators

a0, a1, . . . , an−1 with relations an
i = 1, a0a1 . . . an−1 = 1.

We define a morphism f∗ from F∗ to the crossed sequence containing N as in diagram
(9), where

1. f1 maps w to u,

2. f2 maps the module generator w0 of F2 to v = v0.

3. f3 maps the module generator w0 of F3 to a0.

(C∞)n

²²
0

//δ4 (C∞)n

²²
f3

//δ3 (C∞)n

zz

l

uuuuuuuuuu

²²
f2

//δ2
C∞

²²
f1

// Cn

²²
1

0 // An
// (Cn)n //

∂
Cn2 // Cn

(9)
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The operator morphisms fr over f1 are defined completely by these conditions.
The group of operator morphisms g : (C∞)n → An over f1 may be identified with

An under g 7→ g(w0). Under this identification, the boundaries δ4, δ3 are transformed
respectively to 0 and to ai 7→ ai(a

t
i)
−1. So the 3-dimensional cohomology group is the

group An with ai identified with ai+1, i = 0, . . . , n−1. This cohomology group is therefore
isomorphic to Cn, and a generator is the class of the above cocycle f3.

5.5. Corollary. The mapping cone X = BCn2 ∪Bι ΓBCn satisfies π1X = Cn, and π2X
is the Cn-module An of Theorem 5.4. The first Postnikov invariant of X is a generator
of the cohomology group H3(π1X, π2X), which is a cyclic group of order n.

The following is another example of a determination of a non-trivial cohomology class
by a crossed module. The method of proof is similar to that of Theorem 5.4, and is left
to the reader.

5.6. Example. Let n be even. Let C ′
n denote the Cn-module which is Cn as an abelian

group but in which the generator t of the group Cn acts on the generator t′ of C ′
n by sending

it to its inverse. Then H3(Cn, C
′
n) ∼= C2 and a generator of this group is represented

by the crossed module (νn : Cn × Cn → Cn2), with generators t0, t1, u say, and where
νnt0 = νnt1 = un. Here u ∈ Cn2 operates by switching t0, t1. It is not clear if this crossed
module can be an induced crossed module for n > 2. However, n = 2 gives the case n = 2
of Theorem 5.4.

5.7. Remark. The crossed module (ν2 : C2×C2 → C4) also appears as an example in [23,
pp.332-333]. The proof given there that its corresponding cohomology class is non-trivial
is obtained by relating this class to the obstruction to a certain kind of extension.
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