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KAN EXTENSIONS ALONG PROMONOIDAL FUNCTORS

BRIAN DAY AND ROSS STREET
Transmitted by R. J. Wood

ABSTRACT. Strong promonoidal functors are defined. Left Kan extension (also
called “existential quantification”) along a strong promonoidal functor is shown to be a
strong monoidal functor. A construction for the free monoidal category on a promonoidal
category is provided. A Fourier-like transform of presheaves is defined and shown to take
convolution product to cartesian product.

Let V be a complete, cocomplete, symmetric, closed, monoidal category. We intend
that all categorical concepts throughout this paper should be V-enriched unless explicitly
declared to be “ordinary”. A reference for enriched category theory is [10], however, the
reader unfamiliar with that theory can read this paper as written with V the category
of sets and ⊗ for V as cartesian product; another special case is obtained by taking all
categories and functors to be additive and V to be the category of abelian groups. The
reader will need to be familiar with the notion of promonoidal category (used in [2], [6], [3],
and [1]): such a category A is equipped with functors P : Aop⊗Aop⊗A−→V , J : A−→V,
together with appropriate associativity and unit constraints subject to some axioms. Let
C be a cocomplete monoidal category whose tensor product preserves colimits in each
variable. If A is a small promonoidal category then the functor category [A, C] has the
convolution monoidal structure given by

F∗G =
∫ A,A′

P (A,A′,−)⊗(FA⊗GA′)

(see [7], Example 2.4).
Suppose A and B are promonoidal categories. A promonoidal functor is a functor

Φ : A−→B together with natural transformations

φAA′A′′ : P (A,A′, A′′)−→P (ΦA, ΦA′, ΦA′′), φA : JA−→JΦA

satisfying two axioms; see [2], [5] for details. When A, B are small it means that the
functor

[Φ, 1] : [B,V ]−→[A,V ]

is canonically (via the natural transformations φ) a monoidal functor in the sense of [8]. In
particular, if A, B are monoidal categories, promonoidal functors Φ : A−→B are precisely
monoidal functors.
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Our purpose here is to define and discuss “existential quantification” along promon-
oidal functors. For any promonoidal functor Φ : A−→B, the natural transformations

P (A,A′, A′′)⊗B(ΦA′′, B)
φ⊗1−→ P (ΦA, ΦA′, ΦA′′)⊗B(ΦA′′, B)

µ−→ P (ΦA, ΦA′, B)

JA⊗B(ΦA,B)
φ⊗1−→ JΦA⊗B(ΦA,B)

µ−→ JB

(where the arrows µ are part of the functoriality of P , J) induce natural transformations

∫ A′′

P (A,A′, A′′)⊗B(ΦA′′, B)
ρ−→ P (ΦA, ΦA′, B)

∫ A

JA⊗B(ΦA,B)
ρ−→ JB.

We call Φ : A−→B strong when these arrows ρ are all invertible. In particular, when
A, B are monoidal, strong promonoidal amounts to strong monoidal (= tensor-and-unit-
preserving up to coherent natural isomorphism).

It may appear that, in the above definitions, we need A to be small and V or C to
be cocomplete. We have written this way for ease of reading. Sometimes the necessary
weighted (= “indexed”) colimits exist for other reasons.

1 Proposition. If Φ : A−→B is a strong promonoidal functor then “existential quan-
tification”

∃Φ : [A, C]−→[B, C],

given by

∃Φ(F )(B) =
∫ A

B(ΦA,B)⊗FA,

has the structure of a strong monoidal functor.

Proof. Starting with the definitions of ∃Φ and ∗, we have the calculation

∃Φ(F ∗G)(B) =
∫ A

B(ΦA,B)⊗
∫ A′,A′′

P (A′, A′′, A)⊗(FA′⊗GA′′)

∼=
∫ A′,A′′ ∫ A

B(ΦA,B)⊗P (A′, A′′, A)⊗(FA′⊗GA′′)

by commuting colimits,

∼=
∫ A′,A′′

P (ΦA′, ΦA′′, B)⊗(FA′⊗GA′′)

since Φ is strong,

∼=
∫ A′,A′′ ∫ B′,B′′

B(ΦA′, B′)⊗B(ΦA′′, B′′)⊗P (B′, B′′, B)⊗(FA′⊗GA′′)

by the Yoneda Lemma,
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∼=
∫ B′,B′′

P (B′, B′′, B)⊗
∫ A′

B(ΦA′, B′)⊗FA′⊗
∫ A′′

B(ΦA′′, B′′)⊗GA′′

by commuting colimits,

∼= (∃Φ(F ) ∗ ∃Φ(G)(B) by definitions.

Similarly, we have

∃Φ(J)(B) =
∫ A

B(ΦA,B)⊗J(A) ∼= J(B).

The cartesian monoidal structure on a category with finite products has binary prod-
uct as tensor product and the terminal object as unit. Dually, a category with finite
coproducts has a cocartesian monoidal structure. If A is cocartesian monoidal and C
is cartesian monoidal, then convolution on [A, C] is cartesian. Proposition 1 has the
corollary that existential quantification ∃Φ along a finite-coproduct-preserving functor Φ
preserves finite products; compare [11], Proposition 2.7.

For any promonoidal category A, the Yoneda embedding Y : A−→[A,V ]op is a pro-
monoidal functor (just use the definition and the Yoneda Lemma). The closure in [A,V ]op

of the representables Y (A) = A(A,−) under tensor products and unit (as in [4]) gives a
full monoidal subcategory A′ of [A,V ]op, and Y factors through the inclusion via a pro-
monoidal functor N : A−→A′. This construction has a universal property: to describe it
we introduce the ordinary category PMon(A,B) whose objects are promonoidal functors
Φ : A−→B and whose arrows are promonoidal natural transformations ([2] and [5]); if
A, B are both monoidal, we write Mon(A,B) for this same ordinary category. (Later we
shall use the ordinary category SPMon(A,B) of strong promonoidal functors.)

2 Proposition. For each promonoidal category A and each monoidal category B, re-
striction along N : A−→A′ provides an equivalence of ordinary categories

Mon(A′,B)
∼−→ PMon(A,B).

Proof. To see that restriction along N is essentially surjective, take a promonoidal
functor Φ : A−→B. We obtain the following diagram where regions commute up to
canonical natural isomorphisms.

A B

[A,V ]op [B,V ]op

-

-

A′ B′
NN

− − − -



Á

J
J

JJ]



Á

J
J

JJ]6 6

Φ

Φ′

∃op
Φ

Y Y
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The functor ∃op
Φ is monoidal. Thus, so is its restriction Φ′ : A′−→B′. Since B is monoidal,

the functor N : B−→B′ is an equivalence of monoidal categories. So we obtain a promon-
oidal functor Ψ : A′−→B with ΨN ∼= Φ. The remaining details are left to the reader; they
will require the reader to know the definition of promonoidal natural transformation.

SupposeA is a small promonoidal category. Observe that a strong promonoidal functor
Φ : A−→Cop satisfies the following conditions:

∫ A′′

P (A, A′, A′′)⊗C(B, ΦA′′)
∼=−→ C(B, ΦA⊗ΦA′)

∫ A

JA⊗C(B, ΦA)
∼=−→ C(B, I).

On tensoring both sides with B and using the Yoneda lemma, we obtain the conditions:

∫ A′′

P (A,A′, A′′)⊗ΦA′′ ∼=−→ ΦA⊗ΦA′

∫ A

JA⊗ΦA
∼=−→ I.

Let M = SPMon(A, Cop)op. There is a forgetful functor M−→[Aop, C]. The trans-
form of a functor F : A−→V is the functor T (F ) : M−→C given by the coend

T (F )(Φ) =
∫ A

FA⊗ΦA ∼= (∃ΦF )(I).

Notice that this is the colimit of Φ weighted (or indexed) by F . We have defined a
functor T : [A,V ]−→[M, C]. As usual, we regard [A,V ] as monoidal via convolution, but
we regard [M, C] as monoidal via pointwise tensor product in C.

3 PropositionThe transform enriches to a strong monoidal functor

T : [A,V ]−→[M, C].

That is, the transform takes convolution to pointwise tensor product.

Proof. For all F,G : A−→V , we have the calculations

T (F ∗G)(Φ) =
∫ A

(F ∗G)(A)⊗Φ(A)

∼=
∫ AA′A′′

P (A′, A′′, A)⊗F (A′)⊗G(A′′)⊗Φ(A)

∼=
∫ A′,A′′

F (A′)⊗G(A′′)⊗Φ(A′)⊗Φ(A′′)

∼= T (F )(Φ)⊗T (G)(Φ)
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∼= (T (F )⊗T (G))(Φ)

T (J)(Φ) =
∫ A

J(A)⊗Φ(A) ∼= I.

In particular, if C is cartesian closed, the transform takes convolution into cartesian
product.

Remark One can also trace through the steps in [9] and obtain a generalisation to
promonoidal structures using promonoidal functors.
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