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A FORBIDDEN-SUBORDER CHARACTERIZATION OF
BINARILY-COMPOSABLE DIAGRAMS IN DOUBLE CATEGORIES

ROBERT DAWSON
Transmitted by R. J. Wood

ABSTRACT. Tilings of rectangles with rectangles, and tileorders (the associated
double order structures) are useful as “templates” for composition in double categories.
In this context, it is particularly relevant to ask which tilings may be joined together,
two rectangles at a time, to form one large rectangle. We characterize such tilings via
forbidden suborders, in a manner analogous to Kuratowski’s characterization of planar
graphs.

1. Introduction

A double category, D, is a category object in Cat. (The concept of a double category was
first introduced by Ehresmann [3] in 1963.) As such, it can be thought of as consisting
of a collection D of objects, a collection Dh of horizontal morphisms, a collection Dv

of vertical morphisms, and a collection D2 of double morphisms (“cells”). ⟨D,Dh⟩ is a
category; so are ⟨D,Dv⟩, ⟨Dh, D2⟩, and ⟨Dv, D2⟩. Thus, the elements of D2 have two
compositions: the “horizontal” composition which D has as an object of Cat and the
“vertical” composition which D has as a category object. We will use juxtaposition to
denote the horizontal composition, and a dot to denote vertical composition. In the same
way that it is natural to visualize objects and morphisms of a category as dots and arrows
(although the “Australian” dual notation has its advantages), it is natural to think of
cells as rectangles, with an object at each corner, and an arrow on each edge.

D2 is a category under each composition operation. Moreover, these two categories
(which share the same morphisms, although not all of the same objects – the domain and
codomain functions of one are not the same in general as those of the other) are linked by
the middle four interchange axiom (αβ) · (γδ) = (α · γ)(β · δ) whenever the compositions
on both sides are defined. In fact, an “object-free” presentation of the theory of double
categories may be given in just this way: any collection of cells D with two composition
operations {·, ◦}, such that ⟨D, ·⟩ and ⟨D, ◦⟩ are categories, which obeys the middle four
interchange axiom, and in which the vertical and horizontal identity operations commute,
is a double category. This presentation makes it clear that the theory of double categories

Supported by a grant from NSERC
Received by the editors 18 August 1995 and, in revised form, 21 September 1995.
Published on 16 October 1995
1991 Mathematics Subject Classification : 18D05, 05B45 .
Key words and phrases: Double categories, tileorders, binary composition, Hasse diagrams, forbidden

suborders.
c⃝ Robert Dawson 1995. Permission to copy for private use granted.

146



Theory and Applications of Categories, Vol. 1, No. 7 147

has not only the dualities op and co, which reverse horizontal and vertical morphisms
respectively, but also the duality trans which interchanges horizontal and vertical.

Every cell in a double category has a horizontal domain and codomain (“left and right
edge”). However, we cannot consider them as structureless “objects”; rather, as they are
arrows of the category ⟨D,Dv⟩, we must consider their compositions and factorisations.
In particular, the question of when a pair of cells in a double category is compatible for
horizontal composition is much more complicated than the corresponding question in a
(single) category. In a category, either the codomain of f is the domain of g or they
are disjoint; in a double category, the right edge of α may intersect the left edge of β in
one of several different ways. Some are illustrated in Figure 1; only in the first case is
composition possible. Vertical composition, of course, is equally problematic.

α β α β α β α β

Figure 1: Some ways in which two cells can share a boundary

Moreover, performing one composition may make compositions possible which were
not previously possible, or render a previously possible composition impossible. In Figure
2, β and δ may be composed, but α cannot be composed with anything; however, if we
compose β with γ, then α may be composed with β · γ but δ cannot be composed with
anything. Such situations do not arise in ordinary categories.

α

β

γ

δ

Figure 2: Cells whose compositions are interdependent

In [1], R. Paré and I showed that if a compatible arrangement of double cells in a
double category has a composite, then that composite is unique. That is, there may be
a choice of the order in which a composition is performed; but the associativity axioms
and the middle four interchange force the final composite reached by each route to be the
same. We observed, as part of the motivation for this result, that it is not necessarily
true that a rectangular arrangement of double cells can be composed in any way at all.
The simplest example of such a diagram is the pinwheel (Figure 3).

In this paper, we will answer the question of when a rectangular diagram in a double
category is composable. It is clear, from the definition of a double category, that com-
posability is determined only by the shape of the diagram; no diagram of the form shown
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Figure 3: The pinwheel configuration

in Figure 3 can be composed directly. (Indirect composition, in which some cells are first
factorized, will not be considered here: see [1] for a treatment of this topic.) Therefore,
the appropriate structures to consider are the tilings of rectangles by rectangles.

In [2], it was shown that tilings of rectangles by rectangles may be represented by a
certain class of double orders ⟨T,≤,≼⟩ where T is the set of tiles, ≤ is the reflexive and
transitive relation generated by the pairs A ≤ B such that the right edge of A intersects
the left edge of B in more than one point, and ≼ is the reflexive and transitive relation
generated by the pairs A ≼ B such that the top edge of A intersects the bottom edge of
B in more than one point. These double orders are called tileorders; their properties are
explored in [2].

1.1. Definition. A tiling of a rectangle is binarily composable if repeatedly replacing
two tiles with a common edge by a single tile which is their union can eventually reduce
the tiling to a single tile.

An example of a tiling which is not binarily composable is the pinwheel shown in
Figure 3. By contrast, the tiling shown in Figure 4 is binarily composable. Note that if
we start in the wrong way, say by composing the tiles α1 and α2 on the top edge, we may
reach a dead end. Thus, we might also ask which tilings are randomly binarily composable;
that is, which ones do not have any “wrong moves”.

α1 α2

β

γ
δ

ϵ

Figure 4: A composable configuration

It is clear that any tiling determines a unique tileorder. Moreover, as the information
given by a tileorder allows us to determine whether two elements are immediate neigh-
bours, and how the immediate neighbours of an element are ordered, we may consider
two tilings to be equivalent if they have the same tileorder. We may therefore call a
tileorder (randomly) binarily composable without confusion, should it be determined by
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a tiling with this property. Composing two tiles in a tiling identifies the correspond-
ing elements in its tileorder; thus instances of binary compositions inside tilings induce
double-order-preserving quotient maps between their tileorders. It is traditional to in-
dicate single order relations on finite sets by Hasse diagrams, using points for elements
and downwards-pointing arrows for the generating “immediately above” relation. Tile-
orders, having two order relations, may be indicated using two styles of arrow; we will
use solid-shafted arrows a← b for a ≤ b and dotted-shafted arrows a�p p p p p p p p b for a ≼ b.

It is easy to show that any tileorder may be so represented using arrows that do
not cross: for instance, by realising it as a tiled rectangle, and joining the centers of
adjacent tiles by arrows of the appropriate type. Moreover, a diagram so generated will
always have the heads of the “vertical” arrows lower than their tails, and the heads of the
“horizontal” arrows to the left of their tails. Of course, it would be clearer to use (nearly)
vertical arrows to represent the vertical relation, and (nearly) horizontal arrows for the
horizontal relation. If, for every ϵ > 0, we may construct a diagram for a tileorder with
the orientation of the horizontal arrows within ϵ radians of the x axis, and that of the
vertical arrows within ϵ radians of the y axis, we will call that tileorder neat.

1.2. Theorem. A tileorder is neat if and only if it is binarily composable.

There is a well-known theorem of Kuratowski [4] that a graph is non-planar if and
only if it contains a subdivision of the complete graph K5 on 5 vertices or the complete
bipartite graph K3,3 on two sets of three vertices. (A graph G is a subdivision of a graph
G′ if G′ may be obtained from G by replacing paths by single edges; that is, by binary
composition of edges.) In this paper, we shall present an analogous characterization of
the binarily-composable tileorders.

1.3. Definition. A pinwheel double order is one of the two configurations
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As ≤ and ≼ are order relations, hence reflexive and transitive, the definition permits
two or more elements to be the same, and does not require them to be immediate neigh-
bours. A pinwheel is degenerate if all of its elements are the same; if all of its elements
are distinct, it is proper. (In Section 2, we shall show that every pinwheel is of one or the
other of these types.)

1.4. Theorem. A tileorder fails to be binarily composable if and only if every sequence of
binary compositions eventually yields a tileorder with a proper pinwheel as a sub-double-
order.

It is tempting to conjecture the stronger assertion that the binarily composable tile-
orders are precisely those which do not contain a pinwheel. However, this is not the case,
as shown by Figure 5. The pinwheel is present in a sense, but “some assembly is required”,
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corresponding to Kuratowski’s use of subdivisions of K5 and K3,3 rather than the graphs
themselves.

Figure 5: A noncomposable configuration with no pinwheel

2. Proof of Theorem 1.2

The following lemmas will be understood to include their various duals.

2.1. Lemma. If K is a maximal ≺-chain in a tileorder T , then TK = {t ∈ T : (∃k ∈
K)(t ≤ k)} is a tileorder under the inherited double order.

Proof. A maximal ≺-chain in a double order is a chain of elements a0 ≺ a1 ≺ · · · ≺ an
that cannot be extended to a larger such chain. Maximal <-chains are defined analo-
gously. We say that a double order has the orthogonal maximal chain property (OMCP)
if, whenever K is a maximal ≺-chain and L is a maximal <-chain, they have exactly
one element in common. If, whenever K and L are maximal ≺-chains with elements
k1 ≺ k2 ∈ K, l1 ≺ l2 ∈ L, such that k1 < l1, k2 > l2, there exists x ∈ K ∩ L with
k1 ≺ x ≺ k2, l1 ≺ x ≺ l2, we say that the double order has the ≺-parallel maximal
chain property (≺-PMCP). The <-parallel maximal chain property (<-PMCP) is defined
similarly. It is shown in Theorem 4 of [2] that a double order is a tileorder if and only if
it has the orthogonal and parallel maximal chain properties.

We must therefore show that these properties are inherited by the suborder TK . The
≺-PMCP is obviously inherited, as maximal ≺-chains of TK are also maximal ≺-chains of
T . The OMCP and <-PMCP involve maximal <-chains of TK , which may be extended
to maximal <-chains of T . In each case, the required intersection certainly occurs in T ;
it remains to show that the element x at which the intersection occurs is in TK . In the
orthogonal case, x is in a maximal ≺-chain of TK , hence in TK . In the <-parallel case,
we have x < k2 for an element k2 of one of the <-chains of TK ; thus x itself is in TK . We
conclude that TK has all the maximal chain properties, and is a tileorder.

2.2. Lemma. Let a,b be objects in a tileorder. Then at least one of the following holds:

(∃x1, x2) (a ≼ x1 ≤ b, a ≤ x2 ≼ b),

(∃x1, x2) (a ≽ x1 ≤ b, a ≤ x2 ≽ b),
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(∃x1, x2) (a ≼ x1 ≥ b, a ≥ x2 ≼ b),

(∃x1, x2) (a ≽ x1 ≥ b, a ≥ x2 ≽ b).

Proof. Construct a tiled rectangle whose tileorder is T ; and let A,B be the rectangles
represented by a,b. Let X1 be the tile which contains the intersection of a vertical line
through the center of A and a horizontal line through the center of B, while X2 is the tile
containing the intersection of a horizontal line through the center of A and a vertical line
through the center of B. These are represented by objects x1,x2 in T , which clearly have
the desired relations to a and b.

2.3. Lemma. If the objects of a tileorder T can be partitioned into two nonempty subsets
T1 and T2, each connected under the double order structure inherited from T , such that
no object of T1 is an immediate vertical neighbour of an object of T2, then the restric-
tions ⟨T1,≤,≼⟩ and ⟨T2,≤,≼⟩ are themselves tileorders; and if T1 and T2 are binarily
composable, so is T .

Proof. No object of T1 is above or below any object of T2, and T is connected, so some
object of T1 is (without loss of generality) to the left of some object of T2. Consider the
set R of objects in T1 with no right neighbour in T1.

Let r1,r2 be elements of R. By Lemma 2.2 there exist objects x1, x2 ∈ T such that
(without loss of generality) r1 ≼ x1 ≤ r2 and r1 ≤ x2 ≼ r2. As no object of T1 has any
vertical neighbours in T2, x2 ∈ T1; but as r1 has no right neighbour in T1, we must have
r1 = x2 ≼ r2. As for every two elements r1, r2 of R, we have either r1 ≼ r2 or r1 ≽ r2, R
is a ≺-chain. Moreover, as the rightmost upper and lower neighbours of any element of
R are themselves in R, R is a maximal chain in ⟨T,≺⟩ . By Lemma 2.1, ⟨T1,≤,≼⟩ is a
tileorder; by a similar argument, so is ⟨T2,≤,≼⟩ . If T1 and T2 are binarily composable,
their compositions are rectangles with a common vertical edge, and may themselves be
composed.

We are now ready to prove Theorem 1.2. Suppose that a tileorder T is the composition
of neat tileorders, without loss of generality T1 ·T2. We may construct neat Hasse diagrams
for T1 and T2, and scale them to a vertical range of (−ϵ, ϵ). If we translate the diagram of
T1 so that all of its x-coordinates of every point are less than -1, and similarly position the
diagram of T2 so that all of its x-coordinates are greater than 1, then the horizontal arrows
connecting the two subdiagrams must make an angle of less than ϵ with the horizontal
axis. Thus T is neat; and so, by induction, are all binarily composable tileorders.

To show that every neat tileorder is binarily composable, we will again use induction.
Assume as an inductive hypothesis that T is a neat tileorder with n objects, and that
every neat tileorder with fewer objects than T is binarily composable. Construct a Hasse
diagram for T in which every arrow is within an angle of 1/2n of the appropriate axis.
Without loss of generality, assume that the longest arrow of this diagram is an arrow of
the horizontal ordering, of length 1. By rotating the entire diagram through an angle of
at most 1/2n, it may be made parallel with the x-axis. After this rotation, the arrows
of the vertical ordering (which have length ≤ 1) must still make an angle of less than



Theory and Applications of Categories, Vol. 1, No. 7 152

1/n with the y-axis; so the x-coordinates of the domain and codomain of any vertical
arrow differ by at most sin(1/n) < 1/n. Thus, if there is a sequence of distinct nodes
(ai : i = 1, . . . ,m) such that for each i, ai ≺ ai+1 or ai ≻ ai+1, the x-coordinates of a1 and
am must differ by at most (m− 1)/n, which, as m ≤ n, is less than 1. We conclude that
the domain and codomain of the longest horizontal arrow are in different components
of the vertical order ⟨T,≼⟩ . However, if the objects of a tileorder can be partitioned
into two subsets, joined only by horizontal arrows, then by Lemma 2.3 those subsets are
themselves tileorders. As they are neat, and have fewer than n elements, by the inductive
hypothesis they are composable; and so again by Lemma 2.3, T is also composable.

3. Proof of Theorem 1.4

Theorem 1.4 may be subdivided into the two following propositions:

3.1. Proposition. No tileorder which contains a pinwheel is binarily composable.

3.2. Proposition. Every nontrivial tileorder contains either a binarily composable pair
or a pinwheel.

3.3. Lemma. [Strong Antisymmetry] If a ≼ b and a ≤ b in a tileorder, then a = b.

Proof. see ([2], §3).

3.4. Lemma. Every pinwheel is either degenerate or proper.

Proof. Applying antisymmetry and strong antisymmetry (Lemma 3.3), we can show
that if any two elements are the same, then all of them are. For instance, if a = b, then
b ≥ d and a ≽ d, so a = b = d; by a similar argument, c=d and d=e (see Figure 6).
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Figure 6: A pinwheel about to collapse

To prove Proposition 3.1, we will show that if a tileorder ⟨T,≤,≼⟩ contains a proper
pinwheel, and if another tileorder ⟨T ′,≤′,≼′⟩ is obtained from the first by composition,
then the second tileorder also contains a proper pinwheel. The proposition follows imme-
diately from this; and it suffices to prove this for a single composition.

As observed in the Introduction, instances of binary compositions in tilings induce
double-order-preserving quotient maps between their tileorders. Any double-order-pre-
serving map between tileorders must preserve pinwheels. Moreover, at most two of the
five elements of a proper pinwheel can be identified by a single composition; so the image
of the pinwheel cannot be degenerate. Thus, by Lemma 3.4, it is proper.
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Now we prove Proposition 3.2. Suppose that some tileorder contained neither a com-
posable pair nor a pinwheel. Then there would be a minimal such counterexample (that
is, one that contained no other properly.) Take ⟨T,≤,≼⟩ to be such, and let {Ti} be any
realisation of it as a tiling of the unit square S = [0, 1]× [0, 1] by rectangles Ti .

Define n(y) to be the number of (closed) rectangles of this tiling which contain points
(x, y) for some x ∈ [0, 1]. (If all the points with that y-coordinate in a rectangle are shared
with another rectangle, let each contribute 1/2 rather than 1 to n(y); this is not truly
important, but is convenient.) By reversing the square (and dualising the tileorder) if
necessary, we may always make n(0) ≥ n(1); without loss of generality, let us assume this
to be so. Consider the lowest rectangle touching the lowest edge of S. Let its height be h.
As no binary compositions are possible, it must be strictly lower than its neighbours to the
left and right, and have two or more upper neighbours; therefore n(h+ ϵ) > n(0) ≥ n(1).
It follows that there must be some horizontal edge at which n(y) decreases with increasing
y. At such an edge, there must be a vertex at which 3 rectangles meet in a ⊤ configuration.
Consider such a vertex, v, whose height is minimal among all such vertices. Here, two
adjacent rectangles (C and D, in Figure 7) have the space immediately above their shared
upper vertex filled by one rectangle A.

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pr r
F E

C D

A
B

v w

Figure 7: A pinwheel in a non-composable tileorder

As C and D are assumed not to be binarily composable, it follows that their lower
edges may not be collinear. One of them (without loss of generality C, and on the left)
extends lower than the other. Neither of them can have more than one lower neighbour (by
our assumption that the lowest ⊤ is at v). Let those neighbours be F and E respectively.
They must be strictly wider than C and D, as otherwise a vertical binary composition
would be possible. Extend the right edge of E upwards (dashed in Figure 7). This meets
the rightwards extension of the upper edges of C and D (dotted in Figure 7) at the point
w. The line segment from the upper right corner of D to w must intersect the interior of
a rectangle B; otherwise w and the lower right corner of D would be the corners of either
a single rectangle of the tiling (composable with D) or a proper tiled subrectangle. In
either case, our assumptions would be violated. However, this forces B to be to the right
of D and A, and above E. This completes a pinwheel, with corners A,B,C,E and center
D, and contradicts our hypotheses.
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4. Random binary composability

When an object has a property which asserts that a certain multiple-stage task can be
completed, it is often interesting to ask whether that completion requires strategy, or
whether a solution may be obtained, without backtracking, by any algorithm that avoids
breaking the obvious rules. For example, if a graph is Eulerian from a given vertex,
a properly-planned circuit starting at that vertex will visit every vertex once. If it is
randomly Eulerian from that vertex, though, the circuit need not be planned; until the
circuit is completed, there will always be an unvisited vertex accessible. Similarly, we
may ask when a tiling is randomly binarily composable. Using the results derived above,
we get the following characterization.

4.1. Definition. A factorized pinwheel is a configuration containing five (possibly triv-
ial) rectangular subtileorders, such that if each is replaced by a single tile a pinwheel
results.

4.2. Proposition. A tiling is randomly binarily composable if and only if it does not
contain a factorized pinwheel.

Proof. Clearly, if a tiling does contain five subrectangles (trivial or not) in a pinwheel,
and if all can be composed, then any sequence of compositions that begins by composing
the elements of those subrectangles will create a pinwheel. If any of the subrectangles
cannot be composed, then it contains a pinwheel itself. In either case, the pinwheel blocks
the composition of the original tiling. Conversely, if there is no such configuration, then
after any number of compositions, no pinwheel exists. Therefore, by Proposition 3.2, a
further composable pair exists (unless the tiling has been completely composed to a single
tile); so by induction the composition may be completed.
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