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ON THE SIZE OF CATEGORIES

PETER FREYD AND ROSS STREET
Transmitted by Michael Barr

ABSTRACT. The purpose is to give a simple proof that a category is equivalent to
a small category if and only if both it and its presheaf category are locally small.

In one of his lectures (University of New South Wales, 1971) on Yoneda structures
[SW], the second author conjectured that a category A is essentially small if and only
if both A and the presheaf category PA are locally small. The first author was in the
audience and at the end of the lecture suggested a proof of the conjecture using some of
his own results. This was reported on page 352 of [SW] and used to motivate a definition
of “small” in [St]; yet the proof was not published. The proof given in the present paper
evolved via correspondence between the authors in 1976-77 while the second author was
on sabbatical leave at Wesleyan University (Middletown, Connecticut) but has remained
unpublished despite our expectation at various times that it would appear as an exercise
in some textbook.

In 1979, a longer, but related, proof appeared in [F1]. We advised the author of this
history and sent him our proof. This was reported in [F2], but our proof was still not
published.

Now that there is actually an application [RW], we decided publication was in or-
der. We have expressed the construction in a form we believe begs generalization to, for
example, parametrized categories [SS]. Note throughout that “small” can mean “finite”.

For an object A of a category A, we let

Idem(A) = {e : A −→ A : ee = e}

denote the set of idempotents on A. The category A has small idempotency [SS] when
Idem(A) is a small set for all objects A. It is clear that every locally small category (that
is, category with small homsets) has small idempotency. We shall see conversely that, if
binary products exist, small idempotency implies local smallness.

We write S for the category of small sets and functions between them. We write SA

for the category of functors F : A −→ S and natural transformations between them. [We
work with SA rather than the presheaf category to avoid contravariant functors.]

A retraction pair (m, r) at an object A in a category A consists of arrows m : X −→ A,
r : A −→ X with rm = 1X . Two retraction pairs (m, r), (n, s) at A are equivalent when
there is an invertible arrow h : X −→ Y such that m = nh and hr = s. We write Ret(A)
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for the set of equivalence classes [m, r] of retraction pairs at A. There is a well-defined
injective function

Ret(A)- - Idem(A)

taking the equivalence class [m, r] to the idempotent mr : A −→ A. So Ret(A) is small
if Idem(A) is. For our purposes here we could in fact assume A to admit splittings of
all idempotents; so the above injective function would be bijective and we could avoid
introducing Ret.

As foreshadowed, we can use this to show that small idempotency is equivalent to local
smallness when A has binary products. For, we have an injective function

A(A,B)- - Ret(A×B)

taking f : A −→ B to the equivalence class [m, p] where pm = 1A, qm = f and p : A×B −→
A, q : A×B −→ B are the projections.

A split monic is an arrow m : X −→ A with a left inverse. Two split monics m : X −→
A, n : Y −→ A are equivalent when there is an invertible arrow h : X −→ Y with nh = m.
An equivalence class [m : X −→ A] of split monics into A is called a split subobject of A.
We write Ssub(A) for the set of split subobjects of A. There is a well-defined surjective
function

Ret(A) -- Ssub(A)

taking the equivalence class [m, r] to the split subobject [m : X −→ A]. So Ssub(A) is
small if Ret(A) is.

It is clear from the above that, if A has small idempotency then Ssub(A) is a small
set for all objects A of A. In this case we define a functor

T : A −→ S

on objects by
TA = Ssub(A) + {0},

and, for f : A −→ B in A, the function Tf : TA −→ TB is given by

(Tf)[m : X −→ A] =

{
[fm] when fm has a left inverse
0 otherwise

To see that T is a functor we use the fact that if gfm has a left inverse then so does fm.
We shall now introduce a function θ from the objects of A to the endomorphisms of

T . We show that θ may be viewed as a function, not from the objects but, from the
isomorphism classes of objects, and when so viewed, is an injection. The definition of the
function

θ : objA −→ SA(T, T )

is as follows. For each K ∈ objA, the natural transformation θK : T −→ T has component

(θK)A : TA −→ TA
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at A given by

(θK)A[m : X −→ A] =

{
[m] when X ∼= K
0 otherwise

Clearly K ∼= L implies θK = θL; but the converse is true too. For, if θK = θL then

(θK)L[1L : L −→ L] = (θL)L[1L : L −→ L] = [1L : L −→ L] ̸= 0;

so, from the definition of (θK)L, we have L ∼= K. It is clear that (θK)(θK) = θK, so we
have an injective function

objA /∼= −→ Idem(T, T )

induced by θ. We have proved:

Theorem. If A and SA have small idempotency then the set of isomorphism classes of
objects of A is small.

Corollary. A category A is equivalent to a small category if and only if A and SA are
locally small.

Question. Suppose A is a locally small site such that the category ShA of sheaves on
A is locally small. Does it follow that ShA is a Grothendieck topos? We do not know.
Notice that, if the Grothendieck topology on A is such that every presheaf is a sheaf, then
A is equivalent to a small category by the above Corollary; so ShA is a Grothendieck
topos in that case.

Remarks. Lest our functor T : A −→ S seem mysterious, we provide two constructions
of T which may help the reader. The first construction demands more of the ambient set
theory, but makes T more transparent. The second is choice free and invokes no large
sets.

(1) Suppose A is locally small. Each representable functor HA = A(A,−) : A −→ S
has a unique maximal subfunctor MA : A −→ S; an element f ∈ HAB = A(A,B) is in
MAB if and only if it is not split monic. Let KA denote the result of smashing MA to a
point; that is, MA is defined by the pushout

1 KA
-

MA HA
-

? ?

in SA where 1 is the terminal object (which, of course, is the functor constantly valued at
the one-point set also denoted by 1). The functor KA can be regarded as landing in the
category S∗ of pointed small sets wherein 1 is both terminal and initial (= coterminal).
Note that KA takes to 1 precisely those objects for which A is not a retract. Let Λ denote
a set of representatives of the isomorphism classes of objects of the category A. Put

S =
∑
A∈Λ

KA
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where the summation denotes the coproduct of pointed sets. In fact, S takes values in
the category S∗ of small pointed sets since, for all B ∈ A, only a small set of terms in the
coproduct are non-trivial (because KAB is non-trivial if and only if B is a retract of A).
It is clear that S has at least as many endomorphisms as the coproduct has terms; so we
have reproved the Corollary above.

Moreover, the functor T defined earlier is a quotient of S. For each object A, note
that the group Aut(A) of automorphisms of A acts on the right of KA (since it acts
by composition on HA and MA). Let JA denote the “orbit space” (that is, JAB =
KAB/Aut(A) for all B). Then there is a natural isomorphism

T ∼=
∑
A∈Λ

JA

of pointed-set-valued functors.
(2) Now we turn to the second construction of T assuming A has small idempotency.

There is a preorder on each set Idem(A) motivated by the natural order on the “images”
of the idempotents; the preorder is defined by: e ≤ e′ when e = e′e. Let e ≈ e′ be the
equivalence relation generated; so e ≈ e′ means e = e′e and ee′ = e′. Let UA be the set of
equivalence classes together with the empty set (so, as a set, UA is the free partial order
with first element on the preorder Idem(A)). For each f : A −→ B, define the function
Uf : UA −→ UB by, for all elements E ∈ UA,

(Uf)(E) = {feu : u ∈ A(B,A), uf ∈ E, e ∈ E}

It can be verified that U : A −→ S is a functor. For each object X of A, let ϕ(X) be the
endomorphism of U whose component ϕ(X)A at A takes E ∈ UA to the element

ϕ(X)A(E) = {xy : yx = 1X , xy ∈ E}

of UB. This ϕ induces an injective function

objA /∼= −→ End(U)

Our functor T is isomorphic to a subfunctor of U , namely, the smallest subfunctor
containing the images of all the natural transformations ϕ(X), X ∈ A. In other words,
T is isomorphic to the subfunctor of U obtained by discarding the idempotents which do
not split.
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