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COMPUTING CROSSED MODULES INDUCED BY AN INCLUSION
OF A NORMAL SUBGROUP, WITH APPLICATIONS TO

HOMOTOPY 2-TYPES

RONALD BROWN AND CHRISTOPHER D. WENSLEY
Transmitted by Lawrence Breen

ABSTRACT. We obtain some explicit calculations of crossedQ-modules induced from
a crossed module over a normal subgroup P of Q. By virtue of theorems of Brown and
Higgins, this enables the computation of the homotopy 2-types and second homotopy
modules of certain homotopy pushouts of maps of classifying spaces of discrete groups.

Introduction

A crossed moduleM = (µ : M → P ) has a classifying space BM (see, for example, [4])
which is of the homotopy type of B(P/M) if µ is the inclusion of the normal subgroup M
of P . Consider a homotopy pushout X of the form

BP //Bι

��
Bκ

BQ

��
BM // X

where ι : P → Q is a morphism of groups and κ is the natural inclusion from the group
P, regarded as a crossed module 1 → P, to the crossed module M. It is shown in our
previous paper [7], using results of Brown and Higgins in [3, 4], that the homotopy 2-type
of X is determined by the induced crossed Q-module ι∗M. This explains the homotopical
interest in calculating induced crossed modules. Such calculations include of course the
calculation of a weaker invariant, namely the second homotopy module of X, which is in
this case just the kernel of the boundary of ι∗M. Note also that results previous to [7]
gave information on the homotopy type of X only if ι : P → Q is also surjective (see [1]
for 2-type in this case, and [6] for 3-type).

In all these cases, the key link between the topology and the algebra is provided by a
higher dimensional Van Kampen Theorem. Proofs of these theorems require non tradi-
tional concepts, for example double groupoids, as in [3], or Loday’s catn-groups, as in [6].
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The results even on the second homotopy modules seem unobtainable by more traditional
methods, for example transversality and pictures, as described by Hog-Angeloni, Metzler,
and Sieradski in [10].

Another interest of induced crossed modules is algebraic. Consider for example the
inclusion crossed module (µ : M → P ) of a normal subgroup M of P , and suppose
ι : P → Q is an inclusion of a subgroup. Then the image of the boundary ∂ of the
induced crossed module (∂ : ι∗M → Q) is the normal closure NQ(ιM) of ιM in Q. Thus
the induced crossed module construction replaces this normal closure by a bigger group
on which Q acts, and which has a universal property not usually enjoyed by NQ(ιM).
The algebraic significance of the kernel of ∂ has yet to be exposed.

The purpose of this paper is to give some new results on crossed modules induced by
a morphism of groups ι : P → Q in the case when ι is the inclusion of a normal subgroup.
One of our main results (in section 1) determines ι∗M , and so the kernel of ι∗M → Q, in
the case P and M are normal in Q.

In section 2 we use the presentation of induced crossed modules given in [3, 7] to
describe the crossed module induced by the normal inclusion ι in terms of the coproduct
of crossed P -modules discussed in [12, 1]. This allows us to apply methods of Gilbert and
Higgins in [9] to generalise the result of section 1, and to deduce a result on the index 2
case from the results on coproducts in [1].

For crossed modules, and modules, the action is a crucial part of the structure, and
this is reflected in our Theorems and Examples.

The initial motivation of this set of papers was a conversation with Rafael Sivera in
Zaragoza, in November 1993, which suggested the lack of explicit calculations of induced
crossed modules. This led to discussions at Bangor on the use of computational group
theory packages which culminated in a GAP [11] program for computing finite induced
crossed modules. In some cases the form of the resulting calculations suggested some
general results, such as those in [7].

A separate paper [8] in preparation discusses the algorithmic aspects of the GAP
program and includes a table of explicit calculations. The work with GAP is being
extended by the second author to a general package of calculations with crossed modules.

Reports on some of the results of this and the other papers were given by the authors
at Groups in Galway in May, 1994, and by the first author at the European Category
Theory Meeting at Tours, July, 1994 (see [2]).

Induced constructions may be thought of in terms of ‘change of base’. For more
background on related contexts, see [2].

1. Inducing from a normal subgroup P of Q

This section contains the following main result, which is proved by a direct verification of
the universal property for an induced crossed module. We assume as known the definition
of induced crossed modules given in [3, 7]. If n ∈M , then the class of n in Mab is written
[n]. If R is a group, then I(R) denotes the augmentation ideal of R. The augmentation
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ideal I(Q/P ) of a quotient group Q/P has basis {t̄− 1 | t ∈ T ′} where T is a transversal
of P in Q, T ′ = T \ {1} and q̄ denotes the image of q in Q/P.

1.1. Theorem. Let M ⊆ P be normal subgroups of Q, so that Q acts on P and M by
conjugation. Let µ : M → P, ι : P → Q be the inclusions and let M denote the crossed
module (µ : M → P ) with the conjugation action. Then the induced crossed Q-module
ι∗M is isomorphic as a crossed Q-module to

(ζ : M × (Mab ⊗ I(Q/P ))→ Q)

where for m,n ∈M, x ∈ I(Q/P ) :
(i) ζ(m, [n]⊗ x) = m ∈ Q;
(ii) the action of Q is given by

(m, [n]⊗ x)q = (mq, [mq]⊗ (q̄ − 1) + [nq]⊗ xq̄).

The universal map i : M →M× (Mab⊗I(Q/P )) is given by m 7→ (m, 0), and if (β, ι)
is a morphism fromM to the crossed module C = (χ : C → Q), then the morphism

C

��

χ

��
��
��
��
��
��
��

M

��
µ

//
i

77
β

nnnnnnnnnnnnnn
Z

��
ζ

ϕ

??

P //
ι Q

(1)

ϕ : M × (Mab ⊗ I(Q/P ))→ C induced by β is, for m,n ∈M, q ∈ Q, given by

ϕ(m, [n]⊗ (q̄ − 1)) = (βm) (βn)−1
(
β
(
nq−1

))q
. (2)

The following corollary is immediate.

1.2. Corollary. The homotopy 2-type of

X = BQ ∪BP B(P/M)

is determined by the crossed Q-module (ζ : M × (Mab ⊗ I(Q/P )) → Q) above. In
particular, the second homotopy module of X is isomorphic to the Q/M-module Mab ⊗
I(Q/P ).

Proof of Theorem 1.1. Let Z = M × (Mab ⊗ I(Q/P )). The proof that Z =
(ζ : Z → Q) with the given action is indeed a crossed module is straightforward and is
omitted.

Clearly we have a morphism of crossed modules (i, ι) :M→ Z. We verify that this
morphism satisfies the universal property of the induced crossed module.

Consider diagram (1). We prove below:
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1.3. If ϕ : Z → C is a morphism Z → C of crossed Q-modules such that ϕi = β, then ϕ
is given the formula (2).

We next prove that this formula does define a morphism of crossed Q-modules.
Let q ∈ Q. We define a function

γq : M → C, m 7→ (βm)−1
(
β
(
mq−1

))q
.

We prove in turn:

1.4. γq(M) is contained in the centre of C.

1.5. γq is a morphism, which factors through Mab.

1.6. The morphisms γq depend only on the classes q̄ of q in Q/P , and so define a morphism
of groups γ : Mab ⊗ I(Q/P )→ C, [m]⊗ (q̄ − 1) 7→ γq(m).

1.7. The function ϕ defined in the theorem satisfies ϕi = β and is a well defined morphism
of crossed modules.
Proof of 1.3. Let ϕ : Z → C be a morphism of crossed Q-modules such that ϕi = β.
Let m,n ∈M, q ∈ Q. Then

ϕ(1, [n]⊗ (q̄ − 1)) = ϕ((n−1, 0)(n, [n]⊗ (q̄ − 1)))

= β
(
n−1

)
ϕ
((
nq−1

, 0
)q)

= β(n)−1
(
ϕ
(
nq−1

, 0
))q

= β(n)−1
(
β
(
nq−1

))q
= γq(n).

The result follows since (m, [n]⊗ (q̄ − 1)) = (m, 0)(1, [n]⊗ (q̄ − 1)).

Proof of 1.4 This follows from the facts that if m ∈ M, then χγq(m) = 1, and that C
is a crossed module.

Proof of 1.5. Let m,n ∈M. Then

γq(mn) = (β(mn))−1
(
β
(
(mn)q

−1
))q

= (βn)−1(βm)−1
(
β
(
mq−1

))q (
β
(
nq−1

))q
= (βn)−1(γqm)

(
β
(
nq−1

))q
= (γqm)(βn)−1

(
β
(
nq−1

))q
= γq(m)γq(n).

This proves that γq is a morphism of groups. By 1.4, γq(m)γq(n) = γq(n)γq(m), and so
γq factors through Mab.

Proof of 1.6. The first part follows from the fact that β is a P -morphism. The second
follows from the fact that the elements q̄ − 1, q̄ ∈ Q/P, form a basis of I(Q/P ).
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Proof of 1.7. The function ϕ is clearly a well-defined morphism of groups since it is of
the form ϕ(m,u) = (βm)(γu), where β, γ are morphisms of groups and γu belongs to the
centre of C. Further, ϕi = β, and χϕ = ζ since χγ is trivial.

Next we prove that ϕ preserves the action. This is the crucial part of the argument.

Recall that γ([n]⊗ (q̄ − 1)) = γq(n) = (βn)−1
(
β
(
nq−1

))q
.

Let m,n ∈M, r, q ∈ Q. Then

ϕ ((m, [n]⊗ (r̄ − 1))q)

= ϕ(mq, [mq]⊗ (q̄ − 1) + [nq]⊗ (r̄ − 1)q̄)

= (β(mq))γ([mq]⊗ (q̄ − 1) + [nq]⊗ ((r̄q̄ − 1)− (q̄ − 1)))

= (β(mq)) (β(mq))−1 (βm)q (β(nq))−1
(
β
(
nq(q−1r−1)

))rq
(γq(n

q))−1

= (βm)q(γq(n
q))−1 (β(nq))−1

(
β
(
nr−1

))rq
= (βm)q ((βn)q)−1

(
β
(
nr−1

))rq
= (ϕ(m, [n]⊗ (r̄ − 1)))q.

This completes the proof of the theorem.

An intuitive explanation of this result is that the part (βn)−1
(
β
(
nq−1

))q
measures

the deviation of β from being a Q-morphism.

1.8. Corollary. In particular, if the index [Q : P ] is finite, and P is the crossed module
1 : P → P, then ι∗P is isomorphic to the crossed module (pr1 : P × (P ab)[Q:P ]−1 → Q)
with action as above.

1.9. Remark. It might be imagined from this that the Postnikov invariant of this crossed
module is trivial, since one could argue that the projection

pr2 : P × P ab ⊗ I(Q/P )→ P ab ⊗ I(Q/P )

should give a morphism from ι∗P to the crossed module 0 : P ab ⊗ I(Q/P ) → Q/P,
which represents 0 in the cohomology group H3(Q/P, P ab ⊗ I(Q/P )) (see [7]). However,
the projection pr2 is a P -morphism, but is not in general a Q-morphism, as the above
results show. In fact, in the next Theorem we give a precise description of the Postnikov
invariant of ι∗P when Q/P is cyclic of order n. This generalises the result for the case
P = Cn, Q = Cn2 in Theorem 5.4 of [7].

1.10. Theorem. Let P be a normal subgroup of Q such that P/Q is isomorphic to Cn,
the cyclic group of order n. Let t be an element of Q which maps to the generator t̄ of
Cn under the quotient map. Then the first Postnikov invariant k3 of the mapping cone
X = BQ ∪ ΓBP of the inclusion BP → BQ lies in a third cohomology group

H3(Cn, P
ab ⊗ I(Cn))
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This group is isomorphic to
P ab ⊗ Cn,

and under this isomorphism the element k3 is taken to the element

[tn]⊗ t̄.

Proof. We have to determine the cohomology class represented by the crossed module

ξ : P × P ab ⊗ I(Cn)→ Q.

Let A = P ab ⊗ I(Cn). As in [7] for the case Q = Cn2 , P = Cn, we consider the diagram

ZZ[Cn]

��
0

//δ4 ZZ[Cn]

��
f3

//δ3 ZZ[Cn]

��
f2

//δ2
C∞

��
f1

// Cn

��
1

0 // A //
i

P × A //
νn

Q // Cn.

Here the top row is the begining of a free crossed resolution of Cn. The free Cn-
modules ZZ[Cn] have generators y4, y3, y2 respectively, C∞ has generator y1 and δ2(y2) =
yn1 , δ3(y3) = y2.(t̄ − 1) (here C∞ operates on each ZZ[Cn] via the morphism to Cn);
δ4(y4) = y3.(1+ t̄+ t̄2+· · ·+ t̄n−1). Further, we define f1(y1) = t, f2(y2) = (tn, 0), f3(y3) =
[tn] ⊗ (t̄ − 1), and i(a) = (1, a), a ∈ A. Thus the diagram gives a morphism of crossed
complexes, and the cohomology class of the cocycle f3 is the Postnikov invariant of the
crossed module.

As in [7], Theorem 5.4, since ZZ[Cn] is a free Cn-module on one generator, the coho-
mology group H3(Cn, A) is isomorphic to the homology group of the sequence

A Aoo
δ∗4

Aoo
δ∗3

where δ∗4 is multiplication by 1 + t̄ + t̄2 + · · · + t̄n−1 and δ∗3 is multiplication by t̄ − 1. It
follows that δ∗4 = 0, and it is easy to check that I(Cn)/I(Cn)(t̄ − 1) is a cyclic group of
order n generated by t̄− 1. The cocycle f3 determines the element f3(y3) = [tn]⊗ (t̄− 1)
of A, and the result follows.

1.11. Remark. The reason for the success of this last determination is that we have a
convenient small free crossed resolution of the cyclic group Cn.

2. Coproducts of crossed P -modules

We refer to [7] for further background information that we require on crossed modules.
Let XM/P be the category of crossed modules over the group P . It is well known

that arbitrary coproducts exist in this category. They may be constructed in the following
way, which is given in essence, but not with this terminology, in [12].
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Let T be an indexing set and let {Mt = (µt : Mt → P ) | t ∈ T} be a family of crossed
P -modules. Let Y be the free product of the groups Mt, t ∈ T . Let ∂′ : Y → P be
defined by the morphisms µt. The operation of P on the Mt extends to an operation of P
on Y , so that (∂′ : Y → P ) becomes a precrossed P -module. The standard functor from
precrossed modules to crossed modules, obtained by factoring out the Peiffer subgroup
[5, 10], is left adjoint to the inclusion of crossed modules into precrossed modules, and
so takes coproducts into coproducts. Applying this to (∂′ : Y → P ) gives the coproduct
(∂ : ⃝t∈T Mt → P ) in the category XM/P, determined by the canonical morphisms of
crossed P -modules

iu : Mu → Y →⃝t∈T Mt,

where the first morphism is the inclusion to the coproduct of groups, and the second is
the quotient morphism. As is standard for coproducts in any category, the coproduct in
XM/P is associative and commutative up to natural isomorphisms.

We now assume that P is a normal subgroup of Q, and show in Theorem 2.2 that the
coproduct of crossed P -modules may be used to give a presentation of induced crossed
P -modules analogous to known presentations of induced modules.

Suppose first given a crossed P -moduleM = (µ : M → P ). Let α be an automorphism
of P . The proof that the following definition does give a morphism of crossed modules is
left to the reader.

2.1. Definition. The crossed moduleMα = (µα : Mα → P ) associated to an automor-
phism α and an isomorphism (kα, α) :M→Mα,

M //kα

��
µ

Mα

��
µα

P //
α P.

are defined as follows. The group Mα is just M × {α} and kαm = (m,α), m ∈ M . The
morphism µα is given by (m,α) 7→ αµm. The action of P is given by (m,α)p = (mα−1p, α).

We shall apply this construction to the case α = αt : p 7→ t−1pt, for some t ∈ Q, and
we writeMαt asMt = (µt : Mt → P ) where µt(m, t) = t−1(µm)t.

Given a set T of elements of Q, we write

M◦⃗T = (∂ : M ◦⃗T → P )

for the coproduct crossed P -module ⃝t∈TMt, and

it :Mt →M◦⃗T, t ∈ T

for the canonical morphisms of crossed P -modules defining the coproduct.
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2.2. Theorem. Let M = (µ : M → P ) be a crossed P -module, and let ι : P → Q be
an inclusion of a normal subgroup. Let T be a right transversal of P in Q. For t ∈ T ,
let Mt = (µt : Mt → P ) be the crossed P -module in which the elements of Mt are
(m, t), m ∈M with

µt(m, t) = t−1(µm)t, (m, t)p = (mtpt−1

, t).

Then there is a unique action of Q on M ◦⃗T which satisfies

(it(m, t))q = iu(m
p, u), (3)

for q ∈ Q, p ∈ P, t, u ∈ T , such that tq = pu. This action makesM◦⃗ι T = (ι∂ : M ◦⃗T →
Q) a crossed Q-module and the morphism (i1, ι) :M→M◦⃗ι T has the universal property
of the induced crossed Q-module ι∗M = (ι∂ : ι∗M → Q) as shown in the diagram

C

��

χ





























M //
i1

��
µ

55
β

kkkkkkkkkkkkkkkkkkk
M ◦⃗T

��
ι∂

ϕ

;;

P //
ι Q

Further, given a morphism (β, ι) : M → C = (χ : C → Q), the induced morphism
ϕ :M◦⃗ι T → C is given by

ϕ(it(m, t)) = (βm)t. (4)

Proof. The construction of the induced crossed module given in [3] and used in [7] is
to form the precrossed module

∂′ : Y → Q

where Y is the free product ∗t∈TMt, where the Mt are copies of M , with elements
(m, t),m ∈ M and action as above. The new aspect of the current situation is that
the part µt : Mt → P of ∂′ is also a crossed P -module.

Now we see that both the induced crossed Q-module and the coproduct crossed P -
module are obtained by factoring Y by the Peiffer subgroup, which is the same whether
Y is considered as a precrossed P -module Y → P or as a precrossed Q-module Y → Q.
This proves the theorem.

We remark that the result of Theorem 2.2 is analogous to descriptions of induced
modules, except that here we have replaced the direct sum which is used in the module
case by the coproduct of crossed modules. Corresponding descriptions in the non-normal
case look to be considerably harder.

As a consequence of the theorem we obtain:

2.3. Proposition. If M is a finite p-group and P is normal and of finite index in Q,
then the induced crossed module ι∗M is a finite p-group.
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Proof. The coproduct of two crossed P -modules is shown in [1] to be obtained as a
quotient of their semidirect product, so that the coproduct of two, and hence of a finite
number, of finite crossed P -modules is finite.

Note that a similar result is proved in [7] by topological methods, without the normality
condition, but assuming that Q also is a finite p-group.

We can now apply a result of Gilbert and Higgins [9] to obtain a description of an
induced crossed module in more general circumstances than in section 1. We are careful
about giving when possible the Q-action for this crossed module, since this is of course a
key element of the structure.

If a group M acts on a group N , then the quotient of N by the action of M is written
NM ; it is the quotient of N by the ‘displacement subgroup’ generated by the elements
n−1nm for all n ∈ N, m ∈M.

2.4. Theorem. Suppose that M = (µ : M → P ) is a crossed module and that the
restriction µ′ : M → µM of µ has a section σ : µM → M . Let ι : P → Q be the
inclusion of a normal subgroup. Suppose that for all q ∈ Q, q−1(µM)q ⊆ µM . Let T be
a transversal of P in Q and let T ′ = T \ {1}. Then the group ι∗M of the induced crossed
module ι∗M is isomorphic to the group M ×⊕

t∈T ′(Mt)M and this yields by transference
of actions an isomorphism of ι∗M to a crossed module of the form

X = (ξ = ιµ pr1 : M ×
⊕
t∈T ′

(Mt)M → Q).

If, further, the section σ is P -equivariant, then the action of Q in X is given as follows,
where m ∈ M, r ∈ P, t, v ∈ T, q = rv ∈ Q, and [m, v] denotes the class of (m, v) in
(Mv)M :

(i)

(m, 0)q =

{
(mq, 0) if v = 1,
(σ((µm)q), [mr, v]) if v ̸= 1;

(ii) if tq = pu, t ∈ T ′, p ∈ P, u ∈ T , then

(1, [m, t])q =


(1, [mp, t]) if v = 1,

(σ(µmp)−1mp,−[σ((µmp)v
−1
), v]) if v ̸= 1, u = 1,

(1,−[σ((µmp)uv
−1
), v] + [mp, u]) if v ̸= 1, u ̸= 1.

Given a morphism (β, ι) : M → C = (χ : C → Q), the induced morphism ϕ : M ×⊕
t∈T ′(Mt)M → C is given by

ϕ(m, 0) = βm, ϕ(m, [n, v]) = (βm) β(σ((µn)v))−1 (βn)v.

Proof. We identify M and M1, so that i = i1 : (m, 1) 7→ (m, 0).
Form the crossed P -module

W = (ν : W =⃝t∈T ′Mt → P ).
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Then there is a coproduct crossed P -module

M◦W = (M ◦W → P ).

By Theorem 2.2 there is an action of Q on M ◦ W giving an isomorphism of crossed
Q-modules

ι∗M∼=M◦W .

Let WM be the quotient of W by the action of M on W via P . Then P acts on WM

and diagonally on M ×WM so that the morphism µ pr1 : M ×WM → P gives a crossed
P -module. Now ν(W ) ⊆ µ(M), and so Proposition 2.1 and Corollary 2.3 of [9] give an
isomorphism of groups

α : M ◦W ∼= M ×WM

m ◦ w 7→ (m(σνw), [w])

where [w] denotes the class in WM of w ∈ W . It is also observed in [9] that α preserves
the P -action, if σ is P -equivariant.

We next observe that since µtMt ⊆ µM for all t ∈ T ′, we have

WM
∼=

⊕
t∈T ′

(Mt)M .

The reason is that under these circumstances the Peiffer commutators

(m, t)−1(m1, t1)
−1(m, t)(m1, t1)

∂′(m,t)

which generate the Peiffer subgroup of ∗t∈T ′Mt reduce to ordinary commutators.
In order to describe the action of Q in the case σ is P -equivariant we examine carefully

the isomorphism of groups

⃝t∈TMt →M ×
⊕
t∈T ′

(Mt)M .

This is determined by

it : (m, t) 7→
{

(m, 0) if t = 1,
(σ((µm)t), [m, t]) if t ̸= 1.

The formulae (i) and (ii) for the case v = 1 follow from the description of the action of
P on Mt given by Definition 2.1. The remaining cases will be deduced from the formula
for the action of Q given in Theorem 2.2, namely if m ∈M, t ∈ T, q ∈ Q then

(it(m, t))q =

{
i1(m

p, 1) = (mp, 0), if tq = p ∈ P,
iu(m

p, u) = (σ((µmp)u), [mp, u]), if tq = pu, p ∈ P, u ∈ T ′.
(5)
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We first prove (i) for v ̸= 1. We have since q = rv, v ∈ T ′,

(m, 0)q = (i1(m, 1))rv

= iv(m
r, v)

= (σ((µmr)v), [mr, v]).

To prove (ii) with v ̸= 1, first note that

(1, [m, t]) = (σ((µm)t), 0)−1 (σ((µm)t), [m, t])

= (σ((µm)t), 0)−1 it(m, t).

But

(σ((µm)t), 0)q = (σ((µ(σ((µm)t)))q), [(σ((µm)t))r, v]) by (i)

= (σ((µm)tq), [σ((µm)tr), v]) since µσ = 1,

and, from equation (5),

(it(m, t))q =

{
(mp, 0) if u = 1,
(σ((µm)tq), [mp, u]) if u ̸= 1.

It follows that

(1, [m, t])q =

{
(σ(µmp)−1mp,− [σ((µmp)v

−1
), v]) if u = 1,

(1,− [σ((µmp)uv
−1
), v] + [mp, u]) if u ̸= 1.

Finally, the formula for ϕ is obtained as follows:

ϕ(m, [n, v]) = ϕ(m, 0)ϕ(σ((µn)v), 0)−1 ϕ(iv(n, v))

= (βm) (β(σ((µn)v))−1) (βn)v.

We now include an example for Theorem 2.4 showing the action in the case v ̸= 1, u =
1.

2.5. Example. Let n be an odd integer and let Q = D8n be the dihedral group of order
8n generated by elements {t, y} with relators {t4n, y2, (ty)2}. Let P = D4n be generated
by {x, y}, and let ι : P → Q be the monomorphism given by x 7→ t2, y 7→ y. Then let
M = C2n be generated by {m}. Define X = (µ : M → P ) where µm = x2, mx = m
and my = m−1. This crossed module is isomorphic to a sub-crossed module of (D4n →
Aut(D4n)) and has kernel {1,mn}.

The image µM is the cyclic group of order n generated by x2, and there is an equivar-
iant section σ : µM →M, x2 7→ mn+1 since (x2)(n+1) = x2 and gcd(n+ 1, 2n) = 2. Then
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Q = P ∪Pt, T = {1, t} is a transversal, Mt is generated by (m, t) and µt(m, t) = x2. The
action of P on Mt is given by

(m, t)x = (m, t), (m, t)y = (m−1, t).

Since M acts trivially on Mt,

ι∗M ∼= M ×Mt
∼= C2n × C2n.

Using the section σ given above, Q acts on ι∗M by

(m, 0)t = (mn+1, [m, t]),

(m, 0)y = (m−1, 0),

(1, [m, t])t = (mn, (n− 1)[m, t]),

(1, [m, t])y = (1,−[m, t]).

We can obtain some information on the kernel of induced crossed modules in the case
P is of index 2 in Q by using results of [1].

2.6. Proposition. Let (µ : M → P ) and (ι : P → Q) be inclusions of normal subgroups.
Suppose that P is of index 2 in Q, and t ∈ Q \ P . Then the kernel of the induced crossed
module (∂ : ι∗M → Q) is isomorphic to

(M ∩ t−1Mt) / [M, t−1Mt].

Proof. By previous results, ι∗M is isomorphic to the coproduct crossed P -moduleM◦Mt

with a further action of Q. The result now follows from Proposition 2.8 of [1].

We now give two homotopical applications of the last result.

2.7. Example. Let ι : P = D4n → Q = D8n be as in Example 2.5, and let M = D2n be
the subgroup of P generated by {x2, y}, so that ιM < ιP < Q and t−1Mt is isomorphic
to a second D2n generated by {x2, yx}. Then

M ∩ t−1Mt = [M, t−1Mt]

(since [y, yx] = x2), and both are isomorphic to Cn generated by {x2}. It follows from
Proposition 2.6 that if X is the homotopy pushout of the maps

BC2 ←− BD4n −→ BD8n,

where the lefthand map is induced by D4n → D4n/D2n
∼= C2, then π2(X) = 0.
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2.8. Example. Let M,N be normal subgroups of the group G, and let Q be the wreath
product

Q = G ≀ C2 = (G×G) o C2.

Take P = G×G, and consider the crossed module (∂ : Z → Q) induced from M×N → P
by the inclusion P → Q. If t is the generator of C2 which interchanges the two factors of
G×G, then Q = P ∪ Pt and t−1(M ×N)t = N ×M . So

(M ×N) ∩ t−1(M ×N)t = (M ∩N)× (N ∩M)

and
[M ×N,N ×M ] = [M,N ]× [N,M ].

It follows that if X is the homotopy pushout of

B(G/M)×B(G/N)← BG×BG→ B(G ≀ C2),

then
π2(X) ∼= ((M ∩N)/[M,N ])2.

If ([m], [n]) denotes the class of (m,n) ∈ (M ∩N)2 in π2(X), the action of Q is determined
by

([m], [n])(g,h) = ([mg], [nh]), (g, h) ∈ P, ([m], [n])t = ([n], [m]).
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