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A NOTE ON FREE REGULAR AND EXACT COMPLETIONS AND
THEIR INFINITARY GENERALIZATIONS

HONGDE HU AND WALTER THOLEN
Transmitted by Michael Barr

ABSTRACT. Free regular and exact completions of categories with various ranks
of weak limits are presented as subcategories of presheaf categories. Their universal
properties can then be derived with standard techniques as used in duality theory.

Introduction

A category A with finite limits is regular (cf. [2]) if every morphism factors into a regular
epimorphism followed by a monomorphism, with the regular epimorphisms being stable
under pullback; it is exact if, in addition, equivalence relations are effective, that is, if every
equivalence relation in A is a kernel pair. It was noted by Joyal that, in the definition of
regular category, one may replace “regular epimorphism” by the weaker notion of “strong
epimorphism” in the sense of Kelly [11].

In [4] Carboni and Magno presented a one-step construction of the free exact comple-
tion Cex of a category C with finite limits (=lex), in terms of so-called pseudo-equivalence
relations. Recently, Carboni and Vitale [5] have constructed the free regular completion
Creg of C with weak finite limits (= weakly lex), and the free exact completion Aex/reg

for a regular category A, so that Cex can be obtained as (Creg)ex/reg for C with weak
finite limits. The objects of Creg are given by finite sources (fi : X → Xi)i∈I of arrows
in C, and the morphisms are defined to be equivalence classes of suitably compatible C-
morphisms between the domains of the given sources. Also for Aex/reg the description of
objects is simple, as A-objects with a fixed equivalence relation, while morphisms are less
easily described: they are given by relations between the underlying A-objects satisfying
certain compatibility conditions with the structure-preserving equivalence relations.

Quite a different approach to Cex for C weakly lex and C small was given by Hu [9]
who generalized a result by Makkai [14]: the exact completion Cex is given by the category

C∗+ =
∏
Filt(C∗,Set)

of product- and filtered-colimit-preserving set-valued functors on
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C∗ = Flat(C,Set),

the category of flat functors on C; note that C∗ is a finitely accessible category since C is
small, and that it has products since C is weakly lex. We show here that for any category
C with finite limits, Creg and Cex are full subcategories of C∗+ with some additional
properties (see Remark 2.5).

In a talk in the Sydney Category Seminar in February 1995, Max Kelly proposed to
make better use of the Yoneda embedding

y : C → (Cop,Set)

when constructing Creg and Cex. Because of the correspondences

X −→ Yi

y(X) −→ y(Yi)

y(X) −→
∏
i∈I

y(Yi)

y(X)
e−→ A

m−→
∏
i∈I

y(Yi)

(with e being a regular epimorphism and m being a monomorphism) the Carboni-Vitale
construction suggests to take as objects of Creg those F ∈ (Cop,Set) which appear at
the same time as quotients of representables and as subobjects of finite products of rep-
resentables.

This paper outlines Kelly’s construction of Creg and shows that Cex may be described
conveniently within (Cop,Set) as well, as Kelly had anticipated in his talk: take those
F ∈ (Cop,Set) which admit a regular epimorphism e : y(X) → F whose kernel pair
K is again covered by a representable functor, so that there is a regular epimorphism
y(Y ) → K. The proof that Cex constructed this way is indeed finitely complete remains
a bit laborious, but we find it convenient that most proofs reduce to checking closedness
properties of Creg and Cex within the familiar presheaf environment, which allows to
present the intrinsic connection between both categories more directly.

We also stress the point that it takes no additional effort to prove all results for a
category C with weak κ-limits, rather than just weak finite limits; here κ is a regular
infinite cardinal or the symbol ∞. Recall that a (weak) κ-limit in C is a (weak) limit of
a diagram D : J → C with #J < κ, which in case κ = ∞ simply means that J must
be small. Then the notion of regularity and exactness must be “κ-fied” as follows: C
is κ-regular (κ-exact) if C is regular (exact), has κ-limits, and if κ-products of regular
epimorphisms are regular epimorphisms. Note that for κ = ℵ0, the latter property comes
for free:

f × g = (f × idD)(idA × g) : A× C → B ×D
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is the composition of a pullback of g with a pullback of f . Notice furthermore that κ-Barr-
exactness in the sense of [13] and [9] implies κ-exactness; ∞-regular is called “completely
regular” in [5].

A simple description of Cex with C co-accessible is also given at the end of the pa-
per. We show that for a co-accessible category C with weak limits, the objects of Cex

are exactly all those F ∈ (Cop,Set) which admit a regular epimorphism into F with
representable domain.

Acknowledgment: We thank Enrico Vitale for detecting a gap in an earlier version of
the proof of Theorem 3.4. We are also grateful for valuable comments by Max Kelly and
the anonymous referee.

1. Flat Functors

Let κ be an infinite regular cardinal or the symbol∞. A category C is said to be weakly κ-
complete if it has weak κ-limits, i.e., for any κ-diagram D : I → C (so that the morphism
set of I has cardinality less than κ which, in case κ = ∞, just means that I must be
small), a weak limit of D exists in C.

1.1. Definition. ([9]) Let C be a weakly κ-complete category, and B a category with
κ-limits. A functor F : C → B is called κ-flat, if for any κ-diagram G : I → C, and for
each weak limit cone (fi : D → G(i))i∈I on G, the morphism k : F (D) → limF ◦ G with
F (fi) = pi ◦ k for all i ∈ I, is a regular epi; here the morphisms pi are limit projections.

1.2. Remark. (i) For C small, and B the category Set of sets, as pointed out in [9], F
is κ-flat iff it is a κ-filtered colimit of representable functors.
(ii) For B having (regular epi, mono)-factorization, we notice that F is κ-flat iff there is
a cone (fi : D → G(i))i∈I on G with F (fi) = pi ◦ k as in 1.1, so that k is a regular epi.
(iii) ℵ0-flat functors were called left covering functors in [5].

1.3. Proposition. For any locally small category C, let y : C → (Cop,Set) be the
Yoneda embedding. If C is weakly κ-complete, then y is κ-flat.

Proof. Follows from 1.1 and the fact that a morphism a : M → N in (Cop,Set) is
regular epi iff aC : M(C) → N(C) is surjective for each C ∈ C.

1.4. Proposition. Let F : C → B be any functor. If C and B have κ-limits, then F is
κ-flat iff it preserves κ-limits.

Proof. One only needs to show that a κ-flat functor F preserves κ-limits, that is, equal-
izers and κ-products. Since similar proofs can be found in [7] and [5], we can omit the
proof here.

1.5. Proposition. For any weakly κ-complete category C, the category C∗ (= κ−
Flat(C,Set)) of set-valued κ-flat functors has products. Moreover, for κ an infinite reg-
ular cardinal, C∗ has κ-filtered colimits.
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Proof. Let (Fi)i∈I be a small family of functors of C∗. Since Fi is κ-flat, for any κ-
diagram G : J → C, the morphism ki : Fi(D) → limFi ◦ G is surjective for each i ∈ I.
Therefore, the morphism

∏
ki :

∏
Fi(D) → ∏

limFi ◦ G is surjective.
∏
limFi ◦ G is

isomorphic to lim
∏
Fi ◦ G in Set, so we have that C∗ is closed under products in (C,

Set).
Suppose that κ is an infinite regular cardinal. Let M : I → C∗ be a κ-filtered diagram.

Since M(i) is κ-flat, the morphism ki : M(i)(D) → limM(i) ◦ G is surjective for each
i ∈ I; here G : J → C is a κ-diagram. For any u ∈ colimJ limI M(i) ◦ G, there are
i ∈ I and ui ∈ limM(i) ◦ G such that u = fi(ui) with fi the colimit injection. Denote
colimI limJ M(i) ◦G by Q, and consider the following commutative diagram:

colimM(i)(D)

M(i)(D)

Q

limM(i) ◦G

-k

6

fi

6

fi(D)

-
ki

where k is a morphism induced by the family ⟨ki⟩i∈I . Each ki is surjective, so there is
x ∈ M(i)(D) such that ki(x) = ui; we let y = fi(D)(x) and we have k(y) = u. Since
κ-filtered colimits commute with κ-limits in Set, Q is isomorphic to limJ colimI M(i)◦G.
Therefore, C∗ is closed under κ-filtered colimits in (C,Set).

2. Creg and Cex

2.1. Definition. Let y : C → (Cop,Set) be the Yoneda embedding. A functor F :
Cop → Set is weakly representable if there is a regular epimorphism y(C) → F with
C in C; we also say that F is regularly covered by C or y(C) in this case. We define
extensions Cκ−reg and Cκ−ex of C as follows, for any weakly κ-complete category C:

(i) Cκ−reg is the full subcategory of (Cop,Set) whose objects are these weakly repre-
sentable functors which are subfunctors of κ-products of representable functors.

(ii) Cκ−ex is the full subcategory of (Cop,Set) of functors F such that there is a regular
epimorphism e : y(C) → F whose kernel pair (m,n : G → y(C)) has the property that G
again is weakly representable.

Since we keep κ fixed, we shall write Creg, Cex for Cκ−reg, Cκ−ex, respectively.

2.2. Remark. Given B ∈ Creg, we have a mono m : B → ∏
i∈I y(Ci) with #I < κ. Let

the pi’s be the projections of the product
∏
y(Ci), and let (u, v : A → B) be the kernel

pair of a regular epi e : y(D) → B with D ∈ C. Then A is a limit of the family of
(pi ◦m ◦ e, pi ◦m ◦ e)i∈I . By 1.3, A can be regularly covered by y(S), where S is a weak
limit of the family (pi ◦m ◦ e, pi ◦m ◦ e). Thus, Creg is a full subcategory of Cex.
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2.3. Theorem. If C is weakly κ-complete, then Creg is κ-regular, and Cex is κ-exact;
moreover, the inclusions from Creg and Cex into (Cop,Set) are κ-regular.

Proof. Step 1. Creg has κ-products.
Let (Fi)i∈I be a family of objects of Creg with #I < κ. If, in (Cop,Set), Fi is

a subobject of the product
∏

j∈Ii y(Cj), then
∏
Fi is a subobject of the product of all∏

j∈Ii y(Cj), with i ∈ I. If the morphisms pi : y(Di) → Fi are regular epis, also
∏
pi :∏

y(Di) → ∏
Fi is a regular epi. Let Q be a weak product of all Di in C; by 1.1, the

unique arrow y(Q) → ∏
y(Di) is a regular epi. Consequently, we have a regular epi from

y(Q) onto
∏
Fi. This shows that

∏
Fi is in Creg.

Step 2. Creg has equalizers.
Let (u, v : M → N) be a pair of arrows in Creg, and m : P → M be an equalizer

of u and v in (Cop,Set). P is a subobject of M , and M is a subobject of a κ-product
of representable functors, so P is a subobject of the product. To show that P can be
regularly covered by a representable functor, let s : y(C) → M and t : y(D) → N be
regular epis. Let m′ : P ′ → y(C) be an equalizer of u◦s and v ◦s. We then have a unique
arrow w : P ′ → P making the following diagram a pullback:

P ′

P

y(C)

M

-m′

?

s

?

w

-
m

where w is a regular. Also, P ′ can be regularly covered by a representable functor. Indeed,
let k : N → ∏

i∈I y(Bi) be mono, and qi :
∏
y(Bi) → y(Bi) be the product projections.

Then P ′ is a joint equalizer of the family (qi ◦ u ◦ s, qi ◦ v ◦ s : y(C) → y(Bi))i∈I . Since
C and Bi are in C and since y is full and faithful, we can write y(ui) = qi ◦ u ◦ s and
y(vi) = qi ◦v ◦s. By 1.2, P ′ is regularly covered by y(W ); here W is a weak joint equalizer
of the family (ui, vi : C → Bi)i∈I .

This completes the proof that Creg has κ-limits.
Step 3. Cex has κ-products.
Let (Fi)i∈I be in Cex, with #I < κ. There are regular epis pi : y(Di) → Fi such that

the kernel pair Mi of pi

Mi

fi
−−→−−→
gi

y(Di)
pi−−→ Fi

can be regularly covered by some y(Bi). Given the regular epis qi : y(Bi) → Mi (for all
i), then also

∏
qi :

∏
y(Bi) → ∏

Mi is a regular epi. So
∏
Mi is regularly covered by

y(W ); here W is a weak product of the family of Bi. Mi is a subobject of the product
y(Di)×y(Di), so

∏
Mi is a subobject of the product of all y(Di)×y(Di). This shows that∏

Mi is in Creg. Let s : y(Z) →
∏
y(Di) be a regular epi; here Z is a weak product of Di.
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Thus, we have the regular epi
∏
pi ◦ s : y(Z) → ∏

Fi. Forming pullbacks, we obtain the
following diagram:

y(Z)

G

H

∏
y(Di)

∏
Mi

G′

∏
Fi

∏
y(Di)

y(Z)-b′ -
g

-
b

-∏
fi

-
s

-∏
pi

?

a′

?

f

?

a

?

∏
gi

?

s

?

∏
pi

Note that y(Z),
∏
Mi and

∏
y(Di) are in Creg. Hence, also H is in Creg and can be

regularly covered by a representable functor. But H is the domain of the kernel pair of
the regular epi

∏
pi ◦ s. This shows that

∏
Fi is in Cex.

Step 4. Cex has pullbacks.
Case 1. First we deal with the case of a kernel pair

M
f

−−→−−→
g

y(D)
p−−→ G

of a regular epi p : y(C) → G with G ∈ Cex such that M is regularly covered by a
representable functor. Also, M is a subobject of the product y(C)× y(C), so M ∈ Creg.
From Remark 2.2, we have that M is in Cex.

Case 2. For arrows s : y(A) → G and t : y(B) → G with G ∈ Cex, we can write
s = p ◦ s′ and t = p ◦ t′ for the regular epimorphism p of Case 1. We form the following
diagram of pullbacks:

H - M - y(B)

? ? ?

t′

N - G′
- y(C)

? ? ?

p

y(A) s′ - y(C) p - G
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Since G′, y(A) and y(B) are in Creg, so is H. Thus, H is in Cex, i.e., the pullback of s
and t is in Cex.

Case 3. For any arrows s : F → G and t : F ′ → G of Cex, let p : y(A) → F and
q : y(B) → F ′ be regular epis. We form the following diagram of pullbacks:

H - M - y(B)

? ? ?

q

N - G′ - F ′

? ? ?

t

y(A) p - F s - G

As in Case 2, H is in Creg. Also, G
′ is regularly covered by H as p and q are regular epis.

Say that e : H → G′ is the regular epi given by the diagram, and m : G′ → F × F ′ is the
mono determined by the pullback of s and t. Note that F × F ′ is in Cex. We form the
kernel pair of m ◦ e:

H ′
u

−−→−−→
v

H m ◦ e−−−−−→ F × F ′

That H ′ can be regularly covered by a representable functor follows from the same prop-
erty for H. Also, H ′ is a subobject of H ×H, so H ′ ∈ Creg. This shows that the kernel
pair of e is in Creg. Using the same argument as in Step 3, we can show that G′ is in Cex.
This completes the proof that Cex has pullbacks.

Step 5. Every kernel pair of any morphism in Creg has a coequalizer.
In fact, let (u, v : M → N) be the kernel pair of f : N → G in Creg. Take the

coequalizer of u and v:

M
u

−−→−−→
v

N
g−−→ G′

Then G′ is a subobject of G. Thus, G′ is in Creg.
Step 6. Every equivalence relation in Cex has a coequalizer.
Let (u, v : M → N) be an equivalence relation of objects in Cex, and g : N → G be

the coequalizer of u and v in (Cop,Set); we show that G is in Cex, as follows. Given the
regular epi s : y(A) → N , we form the following diagram of pullbacks:
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H - M ′′ - y(A)

? ? ?

s

M ′ - M u - N

? ?

v

?

g

y(A) s - N
g - G

Since y(A), N and M are in Cex, so is H. Thus, the kernel pair H of the regular epi g ◦ s
is regularly covered by a representable functor. This shows that G is in Cex.

Finally, that regular epis in Creg and Cex are stable under pullback and under κ-
products follows immediately from the corresponding properties of (Cop,Set).

2.4. Corollary. Let k : C → Creg and l : C → Cex be the restricted Yoneda embed-
dings. If C is weakly κ-complete, then

(i) k and l are κ-flat;
(ii) for every C ∈ C, k(C) and l(C) are regularly projective in Creg and Cex, respec-

tively;
(iii) for each A ∈ Cex, there are C ∈ C and a regular epi l(C) → A in Cex. Moreover,

A is in Creg iff A is a subobject of a κ-product of objects in C.

Proof. By 1.3 and 2.3.

2.5. Remark. (i) In the next section we only use the properties of 2.4 to show the
universal properties of Creg and Cex. Consequently, these are necessary and sufficient
conditions describing the free regular and exact completions of C.
(ii) For any weakly κ-complete category, C∗ of 1.5 has products. Let

∏
(C∗,Set)

be the category of set-valued functors preserving products. Then
∏
(C∗,Set) is ∞-exact,

since products commute with regular epimorphisms and limits in Set. Consider the
evaluation functor

eC : C → ∏
(C∗,Set)

It is clear that eC is full and faithful. From 2.3 and (i) above, Cex is equivalent to the
full subcategory of

∏
(C∗,Set) whose objects F are covered by a regular epimorphism

eC(C) → F whose kernel pairs have the same property again. Likewise, we can describe
Creg as a full subcategory of

∏
(C∗,Set).
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(iii) For κ an infinite regular cardinal, let

C∗+ =
∏
Filtκ(C

∗,Set)

be the category of set-valued functors preserving products and κ-filtered colimits. C∗+ is
κ-exact, as κ-filtered colimits commute with regular epimorphisms and κ-limits in Set.
Therefore, Creg and Cex can be described as full subcategories of C∗+ as in (ii).

3. Universal properties of Creg and Cex

3.1. Proposition. Let C be a weakly κ-complete category. With k and l as in 2.4 one
has:

(i) If B is κ-regular, then every κ-flat functor F : C → B has a left Kan extension F !
along k, and F ! preserves regular epimorphisms.

(ii) If B is κ-exact, then every κ-flat functor F : C → B has a left Kan extension F !
along l, and F ! preserves regular epimorphisms.

Proof. We only give the proof of part (ii), as (i) can be done in the same manner. For
convenience, we assume that l is the inclusion functor.

The proof here follows the same argumentation as in 3.5 of [9]. For the existence
of F !, by the dual of Theorem X.3.1. in [12], it suffices to show that the composite
F ◦ P : l/C ′ → C → B has a colimit in B for each C ′ ∈ Cex, where P is the projection
⟨C,C → C ′⟩ 7→ C. Since C ′ ∈ Cex, we have a regular epimorphism e : A → C ′ with A in
C. Let

D
u′

−−→−−→
v′

A

be the kernel pair of e; so e is the coequalizer of (u′, v′), and there is a regular epimorphism
d : S → D with S ∈ C. Then e is a coequalizer of the morphisms (u′ ◦ d, v′ ◦ d). Denote
u′ ◦ d by u, and v′ ◦ d by v. Define a category E whose only non-trivial arrows are

e
u

−−→−−→
v

e ◦ u

Let i : E → l/C ′ be the inclusion functor. One then has:

3.2. Lemma. i is final.

Proof. Firstly, f/i is non-empty, for any f : C → C ′ with C ∈ C. Indeed, by the
projectivity of C, there is a morphism w : C → A such that f = e ◦ w.

To show that f/i is connected, let m,n be any two morphisms in f/i. Then we only
need to consider the following three cases.

Case 1: m,n : f → e, i.e., e ◦ m = e ◦ n = f . Since ⟨u′, v′⟩ is the kernel pair of e,
there is a unique morphism k′ : C → D such that m = u′ ◦ k′ and n = v′ ◦ k′. By the
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projectivity of C , we obtain a morphism k : C → S with k′ = d ◦ k. Thus, m = u ◦ k and
n = v ◦ k, i.e., u : k → m and v : k → n; here k : f → e ◦ u is in f/i.

Case 2: m,n : f → e ◦ u, i.e., e ◦ u′ ◦ d ◦m = e ◦ v′ ◦ d ◦ n = f . Since ⟨u′, v′⟩ is the
kernel pair of e, there is a unique morphism k′ : C → D such that u′ ◦ d ◦ m = u′ ◦ k′

and v′ ◦ d ◦ n = v′ ◦ k′. By the projectivity of C, we have a morphism k : C → S with
k = d◦k′. We conclude that u◦m = u◦k and v◦n = v◦k. Thus, we have four morphisms
u : m → u ◦ k, u : k → u ◦ k, v : n → v ◦ k, and v : k → v ◦ k joining m and n.

Case 3: m : f → e and n : f → e ◦ u. By the projectivity of C, there is a morphism
m′ : f → e ◦ u such that m = u ◦m′, because u is regular epi. Thus, we have morphisms
m′, n : f → e ◦ u. That f/i is connected now follows from Case 2. This completes the
proof of that f/i is connected.

We continue with the proof of 3.1. Since i is final, according to Theorem IX.3.1 in [12],
to prove that F ! exists, we only need to show that the pair of morphisms (F (u), F (v))
has a coequalizer in B.

Let (p, q) be the product projections of F (A)×F (A), and let ϵ : F (S) → F (A)×F (A)
be the unique morphism so that F (u) = p ◦ ϵ and F (v) = q ◦ ϵ. Since B is κ–exact, ϵ has
a factorization ϵ = y ◦ x with y : Q → F (A)× F (A) mono and x : F (S) → Q regular epi,
for some Q ∈ B.

3.3. Lemma. y is an equivalence relation on F (A).

Proof. (i) (Reflexivity) The diagonal ∆ : F (A) → F (A)× F (A) factors through y.
Let k′ : A → D be the morphism so that idA = u′ ◦ k′ = v′ ◦ k′. Since S is projective,

one obtains a morphism k : A → S with k′ = d ◦ k, hence idA = u ◦ k = v ◦ k. It follows
that

idF (A) = F (u) ◦ F (k) = p ◦ y ◦ x ◦ F (k) = q ◦ y ◦ x ◦ F (k).

Consequently, ∆ = y ◦ (x ◦ F (k)).
(ii)(Symmetry) There exists a morphism t : Q → Q such that p ◦ y = q ◦ y ◦ t and

q ◦ y = p ◦ y ◦ t. Let (π1, π2) be the product projections of A×A, and let m : D → A×A
be the induced morphism of (u′, v′). Since the kernel pair of a morphism always yields
an equivalence relation, there exists n : D → D such that π1 ◦ m = π2 ◦ m ◦ n and
π2 ◦m = π1 ◦m ◦ n. Since d : S → D is regular epi, by the projectivity of S, there is a
morphism n′ : S → S such that n ◦ d = d ◦ n′. Thus, we have π1 ◦m ◦ d ◦ n′ = π2 ◦m ◦ d
and π2 ◦m ◦ d ◦ n′ = π1 ◦m ◦ d, i.e., u ◦ n′ = v and v ◦ n′ = u. Applying F to the above
equalities, we obtain F (u) ◦ F (n′) = F (v) and F (v) ◦ F (n′) = F (u). Hence

p ◦ y ◦ x ◦ F (n′) = q ◦ y ◦ x, and q ◦ y ◦ x ◦ F (n′) = p ◦ y ◦ x.

Let (f, g) be the kernel pair of x. Then,

p ◦ y ◦ x ◦ F (n′) ◦ f = q ◦ y ◦ x ◦ f = q ◦ y ◦ x ◦ g = p ◦ y ◦ x ◦ F (n′) ◦ g.
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Similarly,
q ◦ y ◦ x ◦ F (n′) ◦ f = q ◦ y ◦ x ◦ F (n′) ◦ g.

Consequently, y◦x◦F (n′)◦f = y◦x◦F (n′)◦g. But y is monic, so x◦F (n′)◦f = x◦F (n′)◦g.
Since (f, g) is the coequalizer of x, there is a unique morphism t : Q → Q such that
t ◦ x = x ◦ F (n′). It is easily seen that t is the required morphism.

(iii) (Transitivity) For the pullback diagram of p ◦ y and q ◦ y

Q

P

F (A)

Q

-
p ◦ y

6

q ◦ y

6

b

-
a

the morphism δ = ⟨(p ◦ y) ◦ a, (q ◦ y) ◦ b⟩ : P → F (A)× F (A) factors through y.
Let (z, w : U → F (S)) be the pullback of F (u) and F (v). There is a unique morphism

α : U → P such that x ◦ z = b ◦ α and x ◦ w = a ◦ α. Then, α is a regular epi. In fact,
let b′ : U1 → F (S) and x1 : U1 → P be the pullback of x and b, and let x2 : U2 → P and
a′ : U2 → F (S) be the pullback of a and x. Since x is regular epi, so are x1 and x2. If x

′
2

and x′
1 is the pullback of x1 and x2, then b′ ◦ x′

2 and a′ ◦ x′
1 is the pullback of F (u) and

F (v). Therefore, α = x1 ◦ x′
2 = x2 ◦ x′

1. That α is regular epi follows from the fact that
x1 and x′

2 are regular epis.
Since F is κ-flat, there are two morphisms s, t : V → S in C with u ◦ s = v ◦ t such

that F (s) = z ◦ β and f(t) = w ◦ β for some regular epi β : F (V ) → U in B. Thus,
α ◦ β : F (V ) → P is a regular epi in B.

Note that (u′, v′) is an equivalence relation on A. Let

D

T

A

D

-u′

6

v′

6

c1

-
c2

be the pullback diagram of u′ and v′. Thus, the morphism c = ⟨u′ ◦c2, v′ ◦c1⟩ : T → A×A
factors as c = m ◦ r′ for some r′ : T → D; here m is as in the proof for symmetry. Since
u ◦ s = v ◦ t, i.e., u′ ◦ d ◦ s = v′ ◦ d ◦ t, there exists a unique morphism d′ : V → T such
that d ◦ s = c1 ◦ d′ and d ◦ t = c2 ◦ d′. By the projectivity of V , we have r : V → S with
d ◦ r = r′ ◦ d′. Since

u′ ◦ d ◦ t = u′ ◦ c2 ◦ d′ = π1 ◦ c ◦ d′ = π1 ◦m ◦ r′ ◦ d′ = u′ ◦ d ◦ r,
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one obtains u ◦ t = u ◦ r. Similarly, v ◦ s = v ◦ r. Applying F to the above equalities, one
gets F (u) ◦ F (t) = F (u) ◦ F (r) and F (v) ◦ F (s) = F (v) ◦ F (r). Since F (u) = p ◦ y ◦ x
and F (v) = q ◦ y ◦ x, it follows that

p ◦ y ◦ x ◦ F (r) = p ◦ y ◦ x ◦ F (t) = p ◦ y ◦ x ◦ w ◦ β = p ◦ y ◦ a ◦ α ◦ β

and q ◦ y ◦ x ◦ F (r) = q ◦ y ◦ b ◦ α ◦ β. Let (f ′, g′) be the kernel pair of α ◦ β. Then

p ◦ y ◦ x ◦ F (r) ◦ f ′ = p ◦ y ◦ x ◦ F (r) ◦ g′,

q ◦ y ◦ x ◦ F (r) ◦ f ′ = q ◦ y ◦ x ◦ F (r) ◦ g′,

and consequently y◦x◦F (r)◦f ′ = y◦x◦F (r)◦g′, which implies and x◦F (r)◦f ′ = x◦F (r)◦g′
as y is monic. Since α ◦ β is the coequalizer of f ′ and g′, there is a unique morphism
η : P → Q such that η ◦α ◦β = x ◦F (r). Thus, p ◦ y ◦a = p ◦ y ◦ η and q ◦ y ◦ b = q ◦ y ◦ η.
Consequently, δ = y ◦ η.

Finally we can complete the proof of 3.1. Since B is κ-exact, every equivalence relation
is effective, so (p◦y, q ◦y) has a coequalizer. Since F (u) = p◦y ◦x and F (v) = q ◦y ◦x, it
follows that (F (u), F (v)) has a coequalizer as x is regular epi. This completes the proof
of the existence of F !.

From the above proof, we see that F ! takes any regular epi with domain in C into a
regular epi. Indeed, given a regular epi e : P → Q in Cex, we take a regular epi d : C → P
with C ∈ C. Since F (e) ◦ F (d) is a regular epi, so is F (e).

For κ-regular categories A and B, recall that a functor F : A → B is κ-regular if F
preserves κ-limits and regular epimorphisms. We denote the category of κ-regular functors
from A into B by κ-Reg(A,B). For C and B as in 2.1, κ-Flat(C,B) is the category of
κ-flat functors from C into B.

3.4. Theorem. Let C be a locally small category with weak κ-limits.
(a) Creg has the following universal property which characterizes it as the free κ-regular

completion of C:
(i) For any κ-regular B, the functor

Σ : κ−Reg(Creg,B) → κ−Flat(C,B), M 7→ M ◦ k

induced by k of 2.4 is an equivalence of categories.
(ii) The quasi-inverse of the equivalence Σ of (i) takes a κ-flat functor F : C → B to

its left Kan extension F ! along k.
(b) Cex has the following universal property which characterizes it as the free κ-exact

completion of C:
(i) For any κ-exact category B, the functor

Σ : κ−Reg(Cex,B) → κ−Flat(C,B), M 7→ M ◦ l

induced by l is an equivalence of categories.
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(ii) The quasi-inverse of the equivalence Σ of (i) takes a κ-flat functor F : C → B to
its left Kan extension F ! along l.

Proof. We give a proof of part (b); the proof of (a) proceeds similarly.

The fullness and faithfulness of Σ follow from the properties of Cex described in 2.5.
For details, see the proof of Proposition 5.8 in [8]. We now prove that Σ is essentially
surjective on objects. Since Σ is full and faithful, by Corollary X.3.3 in [10], it suffices to
show that for any κ-flat functor F : C → B, F has a left Kan extension F ! of F along eC,
and F ! is κ-regular. The existence of F ! was shown in Proposition 3.1. Since F ! preserves
regular epimorphisms, it remains to be shown that F ! preserves κ-limits, and by 1.4, we
only need to show that F ! is κ-flat. We proceed in several steps.

Step 1. F ! is flat w.r.t. κ-products. Indeed, let (Bi)i∈I be a family of objects in
Cex with #I < κ, and pi : Ci → Bi be regular epis with Ci in C. By 3.1, F !(pi)
is regular epi for every i ∈ I. Since regular epis are stable under κ-products in B,∏
F !(pi) :

∏
F !(Ci) → ∏

F !(Bi) is a regular epi. Let W be a weak product of Ci in
C. The induced arrow t : F (W ) → ∏

F !(Ci) is a regular epi as F is κ-flat. There is a
canonical arrow s : F (

∏
Bi) →

∏
F !(Bi), and the weak projections ei : W → Ci of W in

C, when composed with pi induce an m : W → ∏
Bi. Since s ◦F !(m) =

∏
F !(qi) ◦ t, with∏

F !(qi) ◦ t regular epi, also s must be a regular epimorphism.

Step 2. F ! is flat w.r.t. pullbacks. We proceed as in 2.3.

Case 1. Let e : A → B be a regular epi in Cex with A ∈ C. Consider the kernel pair
of F !(e):

Q
f

−−→−−→
g

F !(A)
F !(e)−−−−−→ F !(B)

Let (u, v : D → A) be the kernel pair of e in Cex, and a : S → D be a regular epi with
S ∈ C. From the proof of 3.1, we can see that the unique arrow x : F !(S) → Q is a
regular epi in B. Let b : F !(D) → Q be the unique arrow so that F !(u) = f ◦ b and
F !(v) = g ◦ b. Then x = b ◦ F !(a), and this implies that b is a regular epi.

Case 2. Let e be the morphism of Case 1, and f : C → B be any arrow with C ∈ C.
Since C is regular projective, f = e ◦ g for some g : C → A. We form the following
diagram of pullbacks:
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Q′ c′ -F !(C)

g′

? ?

F !(g)

Q c -F !(A)

c

? ?

F !(e)

F !(C)
F !(e)-F !(B)

As before, we let D be the kernel pair of e in Cex, and b : F !(D) → Q and a : S → D be
regular epis in Case 1. We form a weak pullback S ′ of g and u◦a in Cex; here F !(u) = f ◦b.
Thus, we have the following diagram of pullbacks:

Q′′ s - Q′ c′ -F !(C)

F !(d)

? ?

g′

?

F !(g)

F !(S) a ◦ b - Q c -F !(A)

where s is a regular epi as a ◦ b is a regular epi. Let S ′ be a weak pullback of g and
u ◦ a in C. Since F is κ-flat, the unique arrow p : F !(S ′) → Q′′ is a regular epi. Thus,
we have a regular epi s ◦ p : F !(S ′) → Q′. Let D′ be the pullback of e and f in Cex,
and b′ : F !(D′) → Q′ be the unique arrow determined by the universal property of the
pullback Q′. Then s ◦ p = b′ ◦F !(s′); here s′ : S ′ → D′ is the unique arrow determined by
the universal property of the pullback D′. This shows that b′ is a regular epi.

Case 3. Now we consider arrows f : K → B and g : A → B of Cex with K,A ∈ C.
Let e : C → B be a regular epi with C ∈ C. Then f = e ◦ f ′ and g = e ◦ g′. We form the
following pullback diagrams
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Q′ m′
-F !(K)

? ?

F !(g′)

Q m -F !(C)

e′

? ?

F !(e)

F !(A)
F !(f)-F !(B)

Let (u : S → C, v : S → A) be the pullback of e and f . From the argument of Case 2, the
unique arrow b : F !(S) → Q is a regular epi. Let a : D → S be a regular epi with D ∈ C.
Then b ◦ F !(a) : F !(D) → Q is a regular epi. We form the consecutive pullback diagrams

Q′′ b′ - Q′ m′
-F !(K)

? ? ?

F !(g′)

F !(D)
b ◦ F !(a)- Q m -F !(C)

Let D′ be a weak pullback of u◦a and g′. Since F is κ-flat, the unique arrow b′ : F !(D′) →
Q′′ is a regular epi. Thus, c ◦ b′ : F !(D′) → Q′ is a regular epi. Consequently, the unique
arrow F !(S ′) → Q′ is a regular epi; here S ′ is the pullback of f and g.

Case 4. Next we consider arrows f : A → B and g : K → B with A ∈ C. Let
e : C → K be a regular epi with C ∈ C. We form the pullback diagrams

Q′ e′ - Q g′ -F !(A)

? ? ?

F !(f)

F !(C)
F !(e)-F !(K)

F !(g)-F !(B)

Let S ′ be the pullback of f and g ◦ e. From the Case 3, the unique arrow b : F !(S ′) → Q′

is a regular epi. Thus, we have a regular epi e′ ◦ b : F !(S ′) → Q as e′ is a regular epi.
Consequently, the unique arrow a : F !(S) → Q is a regular epi; here S be the pullback of
f and g.
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Case 5. Finally, for arbitrary arrows f : A → B and g : K → B of Cex, we can reduce
the proof to the case just mentioned.

Step 3. F ! is flat w.r.t. equalizers.
Given f, g : A → B in Cex, let m : Q → F !(A) be the equalizer of F !(f), F !(g) in B.

With a regular epi u : C → A in Cex with C ∈ C one forms the pullback

P n -F !(C)

k

? ?

F !(u)

Q m -F !(A)

so that n is the equalizer of F !(f ◦ u), F !(g ◦ u). The pullback

R s -F !(C)

t

? ?

F !(g ◦ u)

F !(C)
F !(f ◦ u)-F !(B)

gives an arrow q : P → R which is an equalizer of s, t. There is a weak pullback of f ◦ u,
g ◦u, with projections x, y : E → C in C, and the induced arrow p : F (E) → R is regular
epi. For the pullback diagram

R′ s′ - P

t′

? ?

q

F (E) p - R

t′ is easily recognized as the equalizer of F (x), F (y). But since F is flat, there is a weak
equalizer Z of x and y such that the induced arrow i : F (Z) → R′ is regular epi. As
pullbacks of regular epis, also s′ and k are regular epi. Consequently, k ◦s′ ◦ i : F (Z) → Q
is a regular epi.

Step 4. F ! preserves equalizers. Looking at the kernel pair of a monomorphism f in
Cex, one sees immediately that F !(f) is mono as well, since F ! is flat w.r.t. pullbacks.
But flatness w.r.t. equalizers and preservation of monos makes F ! preserve equalizers.
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Step 5. F ! is κ-flat. As usual, one presents the limit of a κ-diagram in Cex as an
equalizer of two arrows between κ-products. A routine diagram chase shows that flatness
w.r.t. κ-products and preservation of equalizers yield the desired result.

4. Simplifying the description of Cex

We have seen that the objects of Cex consist of functors regularly covered by representable
functors which satisfy the property: the kernel pair of any regular epi (see the proof of 2.3)
from a representable functor into an object of Cex is regularly covered by a representable
functor. The question is under which condition on C this latter condition can be omitted
from the definition of the objects of Cex.

First we consider a small category C and the evaluation functor

eC : C → (κ−Flat(C),Set)

It was shown in [9] that κ-Flat(C) has products and κ-filtered colimits (as a κ-accessible
category), and Cex is equivalent to the category of functors from κ-Flat(C) into Set which
preserve products and κ-filtered colimits. The new embedding eC gives that if a functor
of C → Set can be regularly covered by a representable functor, then it satisfies the
additional property mentioned above automatically.

If C is not small, this is no longer true, for the reason that κ-Flat(C) may no longer
be the κ-filtered colimit completion of Cop. Consequently, one may have a functor
F : κ-Flat(C) → Set which preserves κ-filtered colimits and products and satisfies the
solution set condition, such that F is regularly covered by a representable functor on
κ-Flat(C), but this representable fails to be of the form e(C) although it preserves κ-
filtered colimits. In what follows we give sufficient conditions on C for overcoming these
difficulties.

As a first preparatory step we consider a category A with products. Since regular epis
commute with products in Set, a weakly representable functor F : A → Set preserves
products. The following characterization of weakly representable functors is analgous to
Theorem V.6.3 of [12].

4.1. Proposition. Let A be a locally small category with products, and let F : A → Set
be a functor. The following conditions are equivalent:

(i) F is weakly representable.
(ii) F preserves products and satisfies the solution set condition on 1 ∈ Set.

Proof. If F is weakly representable, we already saw that F preserves products. To
verify that F satisfies the solution set condition on 1, it is easy to show that 1/F has a
weakly initial object: take a regular epimorphism x : A(A,−) → F in (A, Set); then
xB : A(A,B) → F (B) is surjective for any B ∈ A. This says that (A, x ∈ F (A)) is a
weakly initial object of 1/F .

Conversely, let F preserve products and satisfy the solution set condition on 1 ∈ Set, so
that there is a weakly initial family (Ai, xi ∈ F (Ai))i∈I in 1/F . Since F preserves products,
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we obtain a weakly initial object (
∏
Ai, x ∈ F (

∏
Ai)) with x = ⟨xi⟩i∈I in 1/F . By the

Yoneda Lemma, such an x corresponds to a natural transformation x : A(A,−) → F
with A =

∏
Ai, and this implies that xB : A(A,B) → F (B) is surjective for any B ∈ A.

We conclude that x is a regular epimorphism in (A, Set).

Recall that an object A of a category A is said to be κ-presentable if the representable
functor A(A,−) preserves κ-filtered colimits existing in A. A is κ-accessible if: (i) A has
κ-filtered colimits; (ii) there is a small subcategory C of A consisting of κ-presentable
objects such that every object of A is a κ-filtered colimit of a diagram of objects in C.
The full subcategory of A whose objects are the κ-presentable ones is denoted by Aκ.
A category is accessible if it is κ-accessible for some κ. A functor between accessible
categories is accessible if it preserves κ-filtered colimits for some κ ([1] and [14]).

Recall that every accessible functor F : A → B satisfies the solution set condition for
any B ∈ B (cf. Proposition 6.1.2 of [14])), with the validity of the converse proposition
being logically equivalent to the set-theroetic Vopěnka’s Principle, see [15]. It is natural
to ask whether preservation of products makes the accessibility of a functor equivalent to
the solution set condition.

4.2. Proposition. Let A be an accessible category with products (called a weakly locally
presentable category in the sense of [1]), and let F : A → Set be a functor preserving
products. Then the following conditions are equivalent:

(1) F is weakly representable.
(2) F is accesssible.
(3) F satisfies the solution set condition for any X ∈ Set.

Proof. If F is weakly representable, take a regular epimorphism A(A,−) → F with
A ∈ Aκ for some κ, then it is easy to see that F is κ-accessible. That (2) implies (3)
follows from Proposition 6.1.2 of [14]. Proposition 4.1 shows that (3) implies (1).

4.3. Corollary. For an accessible category A with products, a product-preserving func-
tor F : A → B into an accessible category B is accessible iff F satisfies the solution set
condition for any B ∈ B.

Proof. Only the “if” part still needs to be proved. For an arbitrary accessible category
B, each representable functor B(B,−) satisfies the solution set condition (since it is ac-
cessible). Hence B(B,−)◦F satisfies the solution set condition and is therefore accessible
(see Proposition 4.2), for any B ∈ B. But since the representables collectively detect
accessibility (see [14]), the proof is complete now.

For a κ-accessible category A with products, as we mentioned before, the category∏
Filtκ(A,Set) is κ-exact. Furthermore, for any accessible category A with products, let∏

Acc(A,Set)

be the category of set-valued accessible functors preserving products, i.e., of weakly rep-
resentable functors. Then

∏
Acc(A,Set) is ∞-exact. A typical example of this kind of

category is the opposite of the category of R-modules, for any commutative ring R with
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unity. It will follows Theorem 4.5 below that this category is the free ∞-exact completion
of the opposite of the category of injective R-modules (for details, see [8]).

4.4. Proposition. For any accessible category A with products, the restricted Yoneda
embedding

y : Aop → ∏
Acc(A,Set)

has the following properties:
(i) y is full and faithful;
(ii) y(A) is regularly projective in

∏
Acc(A,Set), for any A ∈ A;

(iii) for any F ∈ ∏
Acc(A,Set), there are A ∈ A and a regular epimorphism A(A,−) →

F in
∏
Acc(A,Set);

(iv) y is ∞-flat.

Proof. (i) is trivial. (ii) and (iii) follows from Proposition 4.3. (iv) follows from (i), (ii)
and (iii).

As proved in [1] and [9], an accessible category A has weak colimits iff it has products.
Considering C = Aop, we therefore obtain the following theorem:

4.5. Theorem. Let C be a co-accessible category with weak limits. Then the free ∞-exact
completion of C is equivalent to the category

∏
Acc(Cop,Set).

4.6. Corollary. Let C be a co-accessible category with weak limits, then the objects of
the free ∞-exact completion of C are exactly the weakly representable functors from Cop.
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[15] J.Rosický and W.Tholen, Accessibility and the solution set condition, J. Pure Appl.
Algebra 58 (1995), 189-208

[16] R.Street, Fibrations in bicategories, Cahiers Topologie Géom. Différentielle Catégor-
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