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FINITENESS OF A
NON-ABELIAN TENSOR PRODUCT OF GROUPS

NICK INASSARIDZE
Transmitted by Ronald Brown

ABSTRACT. Some sufficient conditions for finiteness of a generalized non-abelian
tensor product of groups are established extending Ellis’ result for compatible actions.

The non-abelian tensor product of groups was introduced by Brown and Loday [2,3]
following works of A.Lue [4] and R.K.Dennis [7]. It was defined for any groups A and B
which act on themselves by conjugation (xy = xyx−1) and each of which acts on the other
such that the following compatibility conditions hold:

(ab)a′ =a (b(a
−1

a′)), (ba)b′ =b (a(b
−1

b′)) (1)

for all a, a′ ∈ A and b, b′ ∈B. These compatibility conditions are very important in the
subsequent theory of the tensor product. In particular they play a crucial role in Ellis’s
proof [5] that the tensor product of finite groups is finite.

The definition of the non-abelian tensor product was generalized in [6] so as to deal
with the case when the compatibility conditions (1) do not hold. The present paper is
concerned solely with this generalized tensor product; we obtain conditions which are
sufficient for its finiteness.

Henceforth, let A and B be groups with a chosen action of A on B and a chosen action
of B on A. We assume that A and B act on themselves by conjugation. These actions
yield, in an obvious way, actions of the free product A ∗B on A and on B. We recall the
following definition from [6].

1. Definition. The non-abelian tensor product A ⊗ B is the group generated by the
symbols a⊗ b, (a ∈ A, b ∈ B) subject to the relations

aa′ ⊗ b = (aa′ ⊗a b)(a⊗ b)

a⊗ bb′ = (a⊗ b)(ba⊗b b′)

(a⊗ b)(a′ ⊗ b′) = ([a,b]a′ ⊗[a,b] b′)(a⊗ b)

(a′ ⊗ b′)(a⊗ b) = (a⊗ b)([b,a]a′ ⊗[b,a] b′)
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for all a, a′ ∈ A and b, b′ ∈ B, where [a, b] = aba−1b−1 ∈ A ∗B.

2. Remark. Calculations in [3] imply that A⊗B coincides with the tensor product of
Brown and Loday if conditions (1) are satisfied.

3. Definition. The Comp-subgroup of A with B, denoted by Comp A(B), is the normal
subgroup of A generated by the elements

(ab)a′
(
aba−1

a′
)−1

where a, a′ ∈ A, b, b′ ∈ B.

Note that if A and B act on each other compatibly then Comp A(B) and Comp B(A)
are trivial groups.

4. Definition. It will be said that A acts on B perfectly if the action of A on B induces
an action of A on Comp B(A), and that A, B are groups with perfect actions if under
these actions A acts on B perfectly and B acts on A perfectly.

5. Definition. Then the Comp-pairs of (A,B) are the pairs (Comp A(B), B) and
(A,Comp B(A)) of groups.

The pair (A,B) gives rise to two Comp-pairs. If (A,B) are groups with perfect actions,
then these Comp-pairs in turn give rise to four Comp-pairs. If the two “first stage” Comp-
pairs are each groups with perfect actions, then the “second stage” Comp-pairs yield eight
“third stage” Comp-pairs. And so on.

6. Definition. The family of pairs thus obtained will be called the compatibility resolu-
tion of the pair (A,B).

7. Definition. It will be said that A and B act on each other half compatibly if for
every pair of groups (C,D) of the compatibility resolution of (A,B) the actions are perfect
and the following conditions hold:

(i) hdd−1 ∈ Comp D(C), gcc−1 ∈ Comp C(D) for each c ∈ C, d ∈ D, h ∈ Comp
C(D), g ∈ Comp D(C), and (ii) on some n-th stage, n ≥ 0, of the compatibility resolution
of (A,B), every pair (An, Bn) is a pair of groups with compatible actions.

Clearly if A and B act on each other compatibly (i.e. conditions (1) hold) then they
act on each other half compatibly.

There exists an example of half compatible actions that are not compatible. Suppose
we have finite groups A and B such that [A,A] is abelian and [A,A] ̸⊂ Z(A). We shall
show that the actions of A×B on A by conjugation and of A on A×B trivially are half
compatible. (It is shown in Example 10 below that these actions are not compatible.) In
effect, since CompA×B(A) = 1, the “first stage” Comp-pair (CompA×B(A), A) of the
compatibility resolution of (A × B,A) is a pair with compatible actions. We have the
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following equality:

(a
′
, b

′
)(a3, 1)

((a1,1)(a,b))(a2, 1)(
(a1,1)(a,b)(a

−1
1 ,1)(a2, 1))

−1(a−1
3 , 1)(a

′−1, b
′−1)

= (a
′
a3a

′−1, 1)(
(a

′
a1a

′−1,1)(a
′
aa

′−1,b
′
bb

′−1))(a
′
a2a

′−1, 1)

((a
′
a1a

′−1,1)(a
′
aa

′−1,b
′
bb

′−1)(a
′
a−1
1 a

′−1,1)(a
′
a2a

′−1, 1))−1(a
′
a−1
3 a

′−1, 1),

where (a3, 1)
((a1,1)(a,b))(a2, 1)(

(a1,1)(a,b)(a
−1
1 ,1)(a2, 1))

−1(a−1
3 , 1) is a generator of CompA(A×

B) as a subgroup of the group A. Hence the action of A × B on A induces an action of
A×B on CompA(A×B).
Since

((a1,1)(a,b))(a2, 1)(
(a1,1)(a,b)(a

−1
1 ,1)(a2, 1))

−1 = (aa2a
−1a1aa

−1
1 a−1

2 a1a
−1a−1

1 , 1)
= ((aa2a

−1a−1
2 a−1)(aa2a1a

−1
2 a−1)(aa2aa

−1
2 a−1)(aa2a

−1
1 a−1

2 a−1)(aa1a
−1a−1

1 ), 1),

a generator of CompA(A×B) as a subgroup of the group A is a product of two commu-
tators of A and from the commutativity of [A,A] we have that CompA(A×B) is abelian.
Therefore the other “first stage” Comp-pair (A×B,CompA(A×B)) of the compatibility
resolution of (A × B,A) is a pair with compatible actions. The final part of the half
compatibility is easy to verify.

8. Theorem. Let A and B be finite groups acting on each other half compatibly. Then
A⊗B is finite.

Proof. Since A and B act on each other half compatibly there exists n ≥ 1 such that
every pair (An, Bn) of the n-th stage of the compatibility resolution of (A,B) is a pair
of groups with compatible actions. Consider an arbitrary pair (An−1, Bn−1) of groups on
the (n − 1)’th stage of the compatibility resolution of (A,B) and consider the following
exact sequences of groups:

1 −→ CompAn−1(Bn−1) −→ An−1 −→ An−1/CompAn−1(Bn−1) −→ 1,

1 −→ CompBn−1(An−1) −→ Bn−1 −→ Bn−1/CompBn−1(An−1) −→ 1,

where An−1/Comp An−1(Bn−1) and Bn−1/Comp Bn−1(An−1) act on each other by the
induced actions. It is clear that these homomorphisms preserve the actions.

From [6, Theorem 1(b)] we have the exact sequence of groups

(An−1 ⊗ CompBn−1(An−1))× (CompAn−1(Bn−1)⊗Bn−1) −→ (An−1 ⊗Bn−1) −→
(An−1/CompAn−1(Bn−1))⊗ (Bn−1/CompBn−1(An−1)) −→ 1, (2)

where the first map is only a map of sets. Since the following are pairs of groups with
compatible actions:

(An−1/CompAn−1(Bn−1), Bn−1/CompBn−1(An−1))
(An−1, CompBn−1(An−1)) and
(CompAn−1(Bn−1), Bn−1)
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we have from [5] that the associated tensor products

(An−1/CompAn−1(Bn−1))⊗ (Bn−1/CompBn−1(An−1))
An−1 ⊗ CompBn−1(An−1)
CompAn−1(Bn−1)⊗Bn−1

are finite groups. From the exact sequence (2), An−1 ⊗Bn−1 is also a finite group.
Since An−1⊗Bn−1 is a finite group for any pair (An−1, Bn−1) on the (n−1)-th stage of

the compatibility resolution of (A,B), using the descent method from the right exactness
of the non-abelian tensor product [6, Theorem 1] one can prove the finiteness of C ⊗ D
for any pair (C,D) of groups on i-th stage, 0 ≤ i < n− 1, of the compatibility resolution
of (A,B) and therefore A⊗B is a finite group. The proof is complete.

9. Theorem. Suppose that the action of B on A is trivial, that A and B are both finite,
and that B is soluble. Then A⊗B is finite.

Proof. Let B(0) = B, and B(k) = [B(k−1), B(k−1)] for k ≥ 1. Then B(n) is abelian for
some n ≥ 1.

Consider the short exact sequence of groups

1 −→ B(n) −→ B(n−1) −→ B(n−1)/B(n) −→ 1.

Since A acts on B(i) for any i and these homomorphisms preserve the actions, from [6,
Theorem 1(a)] we have the following exact sequence of groups

A⊗B(n) −→ A⊗B(n−1) −→ A⊗ (B(n−1)/B(n)) −→ 1. (3)

Since B(n) and B(n−1)/B(n) are abelian, the pairs A, B(n) and A, B(n−1)/B(n) are pairs with
compatible actions and so from [5] their tensor products A⊗B(n) and A⊗ (B(n−1)/B(n))
are finite groups. It follows from (3) that A⊗B(n−1) is also a finite group.

Using the descent method, from the right exactness of the non-abelian tensor product
[6, Theorem 1] one can prove the finiteness of A⊗B(i), 1 ≤ i < n− 1.

Finally consider the following short exact sequence of groups:

1 −→ [B,B] −→ B −→ Bab −→ 1.

From [6, Theorem 1(a)] we have the exact sequence of groups

A⊗ [B,B] −→ A⊗B −→ A⊗Bab −→ 1. (4)

Therefore from (4) A⊗B is finite. The proof is complete.

10. Example. Let A and B be finite groups. Let [A,A] be abelian and [A,A] ̸⊂ Z(A).
Then the actions of A×B on A by conjugation and of A on A×B trivially do not satisfy
the compatibility conditions (1).
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In fact, since [A,A] ̸⊂ Z(A), there exists a, a′, a′′ ∈ A such that

a′aa′−1a−1a′′ ̸= a′′a′aa′−1a−1.

Then we have
((a

′,1)(a−1,b))(a′′, 1) ̸= (a′,1)(a−1,b)(a′−1,1)(a′′, 1).

So these actions do not satisfy the compatibility conditions (1).
From Theorem 9 (A×B)⊗ A is finite.
Now we will show the existence of such a finite group A. Suppose M = Z+

p (additive
group) and N = Z×

p \{0} (multiplicative group) for any prime p > 2. Assume N acts on

M by multiplication of Zp i.e. [n][m] = [nm] for all [n] ̸= 0, [m] ∈ Zp. Let us consider
M ◃▹ N (semi-direct product of M and N). Then the commutant [M ◃▹ N,M ◃▹ N ] = M
and therefore is abelian. In fact

([m], [n])([m′], [n′])(−[n]−1[m], [n]−1)(−[n′]−1[m′], [n′]−1)
= ([m+ nm′], [nn′]) · (−[n]−1[m], [n]−1)(−[n′]−1[m′], [n′]−1)
= ([m+ nm′ − n′m], [n′])(−[n′]−1[m′], [n′]−1)
= ([m+ nm′ − n′m−m′], 1)

i.e. [M ◃▹ N,M ◃▹ N ] ⊂ M .
Next

[([m], [n]), ([m], [n− 1])] = ([m+ nm− nm+m−m], 1)

= ([m], 1)

for p - n, n− 1 and any [m] ∈ M . So M ⊂ [M ◃▹ N,M ◃▹ N ].
Now we have to show [M ◃▹ N,M ◃▹ N ] ̸⊂ Z(M ◃▹ N). Let x ∈ [M ◃▹ N,M ◃▹ N ],

i.e. x = ([m], 1) and suppose that p - m. Then

([m], 1)([m′], [n′]) ̸= ([m′], [n′])([m], 1)

for some m′, n′ ∈ Z where p - (n′ − 1).
Thus M ◃▹ N is an example of the above mentioned finite group A and therefore

{(M ◃▹ N)×B} ⊗ (M ◃▹ N) is finite for any finite group B.

11. Definition. Let A and B be groups and A acts on B. Then [A,B] is a normal
subgroup of B generated by the elements abb−1 for all a ∈ A, b ∈ B, and we can define

[A,B]n = [A, [A,B]n−1], n > 1,

since the action of A on B induces the action of A on [A,B].

12. Theorem. Let A and B be finite groups. Suppose B acts on A trivially. If [A,B]n

is abelian for some n ≥ 1 then A⊗B is finite.
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Proof. Consider the exact sequence of groups

1 −→ [A,B]n −→ [A,B]n−1 −→ [A,B]n−1/[A,B]n −→ 1

Clearly these homomorphisms preserve the actions and from [6, Theorem 1(a)] we have
the exact sequence of groups

A⊗ [A,B]n −→ A⊗ [A,B]n−1 −→ A⊗ [A,B]n−1/[A,B]n −→ 1 (5)

Since [A,B]n is abelian, the induced actions of A and [A,B]n satisfy the compat-
ibility conditions (1) and from [5] A ⊗ [A,B]n is a finite group. From the construc-
tion of [A,B]n the induced action of A on [A,B]n−1/[A,B]n is trivial. Since the ac-
tion of [A,B]n−1/[A,B]n on A is also trivial, from [1] we have A ⊗ [A,B]n−1/[A,B]n ≈
Aab ⊗ ([A,B]n−1/[A,B]n)ab and therefore is a finite group.

From (5), A⊗ [A,B]n−1 is also a finite group.
Using the descent method from the right exactness of the non-abelian tensor product

[6, Theorem 1] one can prove the finiteness of A⊗ [A,B]i for 1 ≤ i < n− 1.
Finally consider the following short exact sequence of groups

1 −→ [A,B] −→ B −→ B/[A,B] −→ 1.

From [6, Theorem 1(a)] we have the exact sequence of groups

A⊗ [A,B] −→ A⊗B −→ A⊗B/[A,B] −→ 1.

By the same reasons as above A⊗ [A,B] and A⊗B/[A,B] are finite groups and therefore
A⊗B is also a finite group. The proof is complete.

Note that Example 10 is available as an example for Theorem 12.

References

[1] R. Brown, D. L. Johnson and E. F. Robertson, Some computation of non-abelian
tensor products of groups, J. of Algebra 111 (1987), 177-202.

[2] R. Brown and J.-L. Loday, Excision homotopique en basse dimension, C.R. Acad. Sci.
Paris S.I Math. 298, No. 15 (1984), 353-356.

[3] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology
26 (1987), 311-335.

[4] R. K. Dennis, In search of new homology functors having a close relationship to K-
theory, Preprint, Cornell University (1976).

[5] G. J. Ellis, The non-abelian tensor product of finite groups is finite, J. of Algebra 111
(1987), 203-205.



Theory and Applications of Categories, Vol. 2, No. 5 61

[6] N. Inassaridze, Non-abelian tensor products and non-abelian homology of groups, J.
Pure Applied Algebra, 1995 (accepted for publication).

[7] A.S-T.Lue, The Ganea map for nilpotent groups, J. London Math. Soc. (2) 14 (1976),
309-312.

A.Razmadze Mathematical Institute,
Georgian Academy of Sciences,
M.Alexidze St. 1,
Tbilisi 380093. Georgia

Email: inas@imath.acnet.ge

This article may be accessed via WWW at http://www.tac.mta.ca/tac/ or by anony-
mous ftp at ftp://www.tac.mta.ca/pub/tac/html/volumes/1996/n5/n5.{dvi,ps}



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.

Articles appearing in the journal have been carefully and critically refereed under the responsibility
of members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

The method of distribution of the journal is via the Internet tools WWW/ftp. The journal is archived
electronically and in printed paper format.

Subscription information. Individual subscribers receive (by e-mail) abstracts of articles as they
are published. Full text of published articles is available in .dvi and Postscript format. Details will be
e-mailed to new subscribers and are available by WWW/ftp. To subscribe, send e-mail to tac@mta.ca

including a full name and postal address. For institutional subscription, send enquiries to the Managing
Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

Information for authors. The typesetting language of the journal is TEX, and LaTEX is the preferred
flavour. TEX source of articles for publication should be submitted by e-mail directly to an appropriate
Editor. They are listed below. Please obtain detailed information on submission format and style
files from the journal’s WWW server at URL http://www.tac.mta.ca/tac/ or by anonymous ftp from
ftp.tac.mta.ca in the directory pub/tac/info. You may also write to tac@mta.ca to receive details
by e-mail.

Editorial board.
John Baez, University of California, Riverside: baez@math.ucr.edu
Michael Barr, McGill University: barr@triples.math.mcgill.ca
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