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ON QUANTIC CONUCLEI IN ORTHOMODULAR LATTICES
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ABSTRACT. In this paper we study the lattice of conuclei for orthomodular lattices.
We show that under certain conditions we can get a complete characterization of all
quantic conuclei. The thing to note is that we use a non-commutative, non-associative
disjunction operator which can be thought of as from non-commutative, non-associative
linear logic.

Introduction

The purpose of this note is to begin the study of quantic conuclei in several lattices.
Quantic conuclei were first introduced in [NR] and later were also introduced in the book
[R] written by K. Rosenthal. The main motivation of our work is as follows. In [RR2]
the first author and Beatriz Rumbos gave a complete description of the lattice of all
quantic nuclei of an orthomodular lattice L. The first author knew the dual concept of a
quantic nucleus but there was no obvious connection between quantic nucleus and quantic
conucleus for orthomodular lattices.

Since the birth of linear logic we know that dual properties could be useful in order to
understand some lattice structures. Orthomodular lattices have a nice dual operator. If
we take the standard example, the lattice of all closed subspaces of a Hilbert space, the
dual is nothing but the complement of a subspace. Hence, a natural question is: suppose
L is an orthomodular lattice then what can we say about the lattice of quantic conuclei
(denoted by CN(L)). We shall see that under certain assumptions we can actually get a
complete dual characterization of CN(L). We say dual, since it will be the dual concept
of quantic nucleus.

In Section 1 we introduce the main definition we need in order to state the main results
of this paper.

Section 2 talks about the characterization of CN(L) and uses a new kind of “dis-
junction” operator which for our purposes is crucial. We must say that this is the first
time we found a non trivial application of this “disjunction” operator for orthomodular
lattices. We knew the existence of such operator but had never been used in a nontrivial
application.

Finally, the first author wants to express his sincere thanks to the second author for
listening carefully at the begining of this project. We plan to continue the study of quantic
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conuclei in other lattices and also take a look at the lattice structure of quantic nucleus
in the case of quantales.

1. The category of orthomodular lattices

Throughout this work L will denote an orthomodular lattice, that is, a lattice (L,∧,∨, 0, 1)
with an unary operation ⊥:L → L satisfying:

i) a ≤ b =⇒ b⊥ ≤ a⊥

ii) a⊥ ∨ a = 1

iii) a⊥ ∧ a = 0

for all a, b in L. Moreover, L satisfies the following weak modularity property:

a ≤ b ⇐⇒ b = a ∨ (a⊥ ∧ b) .

These lattices have traditionally been associated with “quantum logic”, since the
propositions for a quantum system correspond with closed subspaces of a Hilbert space
and these constitute an orthomodular lattice.

As pointed out in [RR1] a natural choice for an implication conjunction pair is to take
the Sasaki arrow defined by

a −→ b = (a ∧ b) ∨ a⊥ for all a, b ∈ L

together with the conjunction “&” given as

a& b =
(
a ∨ b⊥

)
∧ b for all a, b ∈ L .

The relation a& b ≤ c iff a ≤ b → c holds for any elements a, b, c in L. In categorical
terms, if L is seen as a category, then this is just saying that the functor −& b is a left
adjoint to b → − for any b ∈ L. An immediate result from this is that the operator &
distributes over arbitrary joins (on the left), i.e., it is “left distributive”. Moreover & can
be thought of as a noncommutative nonassociative meet operator. In fact, if & is either
associative or commutative then L will turn out to be a Boolean algebra (see [RR1] for
more details).

We define another noncommutative operator in an orthomodular lattice,and denoted
it by ∗. Here is the definition.

1.1. Definition. Let (L,∧,∨, 0, 1) be an arbitrary orthomodular lattice. If a, b are arbi-
trary elements of L define a ∗ b by the following rule:

a ∗ b =
(
a⊥ & b⊥

)⊥
Once again, the operator ∗ can be viewed as a non commutative, non associative

union. This operator, was unfortunately never studied in detail but plays a crucial role
in this paper. There are some obvious consequences of the definitions of & and ∗, that
we list for later reference.
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i) a ∧ b ≤ a& b, a ∗ b ≤ a ∨ b.

ii) a& b ≤ b, a ∗ b ≥ b.

iii) 1& a = a = a&1, 0 ∗ a = a = a ∗ 0.

iv) a& a = a, a ∗ a = a.

v) a& a⊥ = 0, a ∗ a⊥ = 1.

It is clear that for any a ∈ L the orthocomplement of a can be written as a → 0 and
satisfies the following property:

x& b = 0 iff x ≤ b⊥

As we noted in the introduction we are interested in the study of quantic conuclei.
Since our methods also use the concept of a quantic nucleus we shall introduce both
concepts. In order to do that we have to make a choice, i.e., introduce the definitions only
for orthomodular lattices or in a more general context, namely, in any quantic lattice. We
believe that the last idea is the best choice since we can in fact introduce the concept of
quantale. So, let us begin with the definition of a quantic lattice.

1.2. Definition. Let Q be a complete lattice (Q,≤), then Q is a quantic lattice iff there
exists a binary operation & :Q×Q → Q satisfying:

i) −& q:Q → Q is a poset morphism for all q in Q.

ii) −& q:Q → Q has a right adjoint q → (−) for all q in Q.

The reader can find some interesting examples of such lattices in [RR3]. Here we just
mention some of them:

1) Any locale with a& b = a ∧ b, ∀ a, b ∈ L.

2) Any complete orthomodular lattice, where & is the operation already defined.

3) Any quantale (see [NR] for details).

Quantic nuclei and conuclei were first introduced by [NR]. Our definition does not
differ from theirs.

1.3. Definition. Let Q be any quantic lattice. If j:Q → Q is an order preserving
function then j is a quantic nucleus if and only if the following is satisfied:

i) a ≤ ja.

ii) j2a = ja.

iii) j(a)& j(b) ≤ j(a& b).
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for all a, b in Q.
We shall say j:Q → Q is a quantic conucleus if and only if j satisfies:

i) ja ≤ a.

ii) j2a = ja.

iii) j(a)& j(b) ≤ j(a& b).

for all a, b in Q.
We shall say j:Q → Q is a strict quantic nucleus (conucleus) if j(a& b) = ja& jb.

Example. Quantic nuclei were characterized in [RR2] when Q is an orthomodular lattice.
All quantic nuclei j:Q → Q are of the form uz:Q → Q where

uz(a) = a ∨ z

z = j(0) and z belongs to the center of Q.
By the center of Q we mean the following subset of Q.
Suppose Q is an orthomodular lattice then the center of Q, denoted by Z(Q) is given

by the following condition:

Z(Q) = {x ∈ Q |x& a = a&x, ∀ a ∈ Q} .

Z(Q) is not only a suborthomodular lattice of Q, in fact is a Boolean algebra, as the
reader can prove easily.

For quantic conuclei, suppose Q is a Boolean algebra and a is an arbitrary element of
Q, then the function ma:Q → Q defined by

ma(x) = x ∧ a

is easily shown to be a quantic conucleus, in fact is a strict one, i.e.,

ma(x) ∧ma(y) = ma(x ∧ y)

Notice that in order for ma to be a quantic conucleus we must use that the operator ∧ is
commutative and idempotent.

Since the operator & already defined for an orthomodular lattice is not necessarily
commutative (unless Q is a Boolean algebra) the problem seems to be different from the
Boolean case. However, we shall see that this is not the case. Indeed, a similar result (as
in Boolean algebras) will hold. We have the following.

1.4. Lemma. If L is a (complete) orthomodular lattice and z is an arbitrary element of
Z(L), then the operator mz:L → L is a strict quantic conucleus.

The only thing to be noted is that as soon as you have an element the center of L, then
the distributive law holds, that is, given x, y arbitrary elements of L and z an element of
Z(L), then

(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z) .

What about the converse of Lemma 1.4? In contrast with the case of quantic nucleus
we have to made some assumptions; we shall do it in the next section.
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2. Quantic conuclei for Boolean algebras and orthomodular lattices

As we pointed out in the introduction our main target is to give a characterization of
quantic nuclei in terms of the meet operator. We must say that the condition we found
is rather surprising. For the sake of simplicity we begin first with the case of a Boolean
algebra and later we shall deal with the case of orthomodular lattices. First of all, we
introduce some notation. Denote by CN(L) the set of all quantic conuclei. We can state
now the following.

2.1. Lemma. If L is a (complete) Boolean algebra and j is an element of CN(L), the
following two conditions are equivalent:

i) For all a, b in L, j(a ∨ b) = ja ∨ jb.

ii) j = ma where a = j(1).

Proof. i) =⇒ ii) Take any element j of CN(L). We define φ:L → L as follows:
φ(a) = j(a⊥)⊥. We check φ is in fact a quantic nucleus. Clearly, φ is inflationary and
idempotent. The only thing we have to check is φ(a) ∧ φ(b) ≤ φ(a ∧ b).

The LHS of the last inequality is equal to
(
j(a⊥) ∨ j(b⊥)

)⊥
=

(
j(a⊥ ∨ b⊥)

)⊥
by the

hypothesis, and this of course is equal to the RHS of the last inequality. Therefore φ = uz

where z = φ(0) = j(1)⊥; i.e., if a is an arbitrary element of L we have φ(a) = a ∨ j(1)⊥

but φ(a) = j(a⊥)⊥ hence j(a⊥)⊥ = a ∨ j(1)⊥ and j(a) = a ∧ j(1) = mj(1).
The converse is of course trivial.

We want now to extend this result for the case of orthomodular lattices. As the reader
can imagine the conditions will be similar. However, we will use our noncommutative,
nonassociative join operator. Namely, the operator ∗, already defined in section 1. Notice
that if j:L → L is an order preserving function and L has finite joins we always have the
inequality j(a)∨j(b) ≤ j(a∨b), a and b arbitrary elements of L. If we take the operator ∗
we cannot claim for such inequality. However, we do not need any such a condition. Our
next result will tell us what we need in order to obtain a similar result to Lemma 2.1.

2.2. Theorem. If L is a (complete) orthomodular lattice and j is an element of CN(L),
the following two conditions are equivalent :

i) For all a, b in L, j(a ∗ b) ≤ j(a) ∗ j(b).

ii) j = ma where a = j(1) and is an element of the center of L.

Proof. Take any element j of CN(L) and suppose j satisfies (i), define again φ:L →
L as follows: φ(a) = j(a⊥)⊥. Clearly, φ is inflationary and idempotent. We check
φ(a)&φ(b) ≤ φ(a& b).

The LHS of the last inequality is equal to

j(a⊥)⊥ & j(b⊥)⊥ =
(
j(a⊥) ∗ j(b⊥)

)⊥
.
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Now, the RHS of the last inequality is equal to

j
(
(a& b)⊥

)⊥
= j

(
a⊥ ∗ b⊥

)⊥
.

By the assumption we know j(a⊥ ∗ b⊥) ≤ j(a⊥) ∗ j(b⊥) and the result follows. Hence
φ is a quantic nucleus and by Theorem 2.4 of [RR2], φ = uz where z is an element of the
center of L and z = φ(0). A simple calculation shows that a = j(1) is also an element of
the center of L (since Z(L) is a Boolean algebra) and j = ma.

For the converse, the only thing to be noted is that a = j(1) is an element of the
center of L and therefore for any pair of arbitrary elements b, c of L, the triple {a, b, c} is
always distributive.

Remark. Notice we used in a crucial way the result for quantic nuclei.

For some time we tried to find a straight proof of Theorem 2.2 without any success.
Perhaps, it will be nice if we can actually get some proof in a different way but until now
we do not know how to do it.

We close this paper with a comment. First of all, the lattice N(L) has a very nice
structure when L is an orthomodular lattice without any further assumption.

On the other hand, the structure of CN(L) has a complicated structure even if L is a
Boolean algebra as the reader just saw.

As is well known dualities have an important role in mathematics. We think this an
example of when the dual concept of a mathematical structure gives a different thing.

In the case of an orthomodular lattice L if we want to obtain a duality between CN(L)
and N(L), we must assume the condition of Theorem 2.2. However, we feel the condition
is quite natural and simple.
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