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ABSTRACT. We show that the homotopy category of simplicial diagrams I-SS in-
dexed by a small category I is equivalent to a homotopy category of SS ↓ NI simpli-
cial sets over the nerve NI. Then their equivalences, by means of the nerve functor
N : Cat → SS from the category Cat of small categories, with respective homotopy
categories associated to Cat are established. Consequently, an equivariant simplicial
version of the Whitehead Theorem is derived.

In his remarkable paper [14], Thomason shows the equivalence of the homotopy cat-
egories of Cat, the category of small categories, and SS, the category of simplicial sets,
by means of the nerve functor N : Cat → SS and one of its homotopy inverses (see [7, 9]
for details). By [11], the homotopy structure on Cat induces, for every small category I,
homotopy structures on the category Cat ↓ I of small categories over I and the category
I-Cat of contravariant functors from I to Cat. From [10], it follows that there is a pair
of adjoint functors D : Cat ↓ I → I-Cat and I

∫
- : I-Cat → Cat ↓ I which establishes an

equivalence of respective homotopy categories. Similarly, by [5] the homotopy category
of simplicial sets on which a fixed simplicial group G acts is equivalent to the homotopy
category of simplicial sets over the classifying complex WG. From this it follows the well-
known fact that the homotopy category of topological spaces on which a fixed discrete
group G acts is equivalent to the homotopy category of spaces over the classifying space
K(G, 1).

We were influenced by these papers to search for a link between the comma category
SS ↓ N I and the category I-SS of contravariant functors from I to SS. In Section 1
we define, by means of [3, p.327], a pair of adjoint functors A : SS ↓ N I → I-SS and
B : I-SS → SS ↓ N I, and examine in Proposition 1.4 their homotopy properties. Let
N : Cat ↓ I → SS ↓ N I and Ñ : I-Cat → I-SS be the associated functors to the nerve one
N : Cat → SS. Then by Theorem 1.5, from the diagram of functors

Cat ↓ I

��
N

��D
I-Cat��

I

∫
-

��
Ñ

SS ↓ N I
��A
I-SS��

B
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we derive equivalences of respective homotopy categories to generalize the result presented
in [8].

Let G be a discrete group, O(G) the associated category of canonical orbits (see e.g.,
[1, 2]) and G-SS the category of G-simplicial sets. Then, there is a canonical functor
Φ : G-SS → O(G)-SS which establishes (cf. [4, 6]) an equivalence of respective homotopy
categories. In Section 2, we apply our previous results to deduce an equivalence of the
homotopy categories of G-SS and SS ↓ NO(G). Furthermore, a G-simplicial version of the
Whitehead Theorem is derived (cf. [2]).

The second author acknowledges the hospitality and financial support of the Mathematisches Institut,
der Universität München during the time this work was done.

1. Main results

Let I be a small category. As mentioned in the introduction, in [10] a pair of adjoint
functors is given

Cat ↓ I
��D
I-Cat��

I

∫
-

such that the adjunction maps η : id → (I
∫
-)D and ξ : D(I

∫
-) → id are weak equiv-

alences. The functor I
∫
- is defined by the Grothendieck construction (see e.g., [13]). If

F : I → Cat is a contravariant functor then objects in I
∫
F are pairs (i,X) with i an object

in I and X an object in F (i), and with morphisms (α, x) : (i1, X1) → (i2, X2) consisting of
a morphism α : i1 → i2 in I and a morphism x : X1 → F (α)(X2). Composition is defined
by (α, x)(α′, x′) = (αα′, F (α′)(x)x′). For α : C → I (an object in Cat ↓ I) and an object
i in I, Dα(i) = i ↓ α is the comma category and the functor D is defined in an obvious
way on morphisms in I.

By [11], the simplicial closed model category structure in the sense of Quillen on the
category Cat considered in [14] determines such a structure on the categories Cat ↓ I and
I-Cat, respectively. More precisely, from [11] one deduces immediately

1.1. Proposition. The categories Cat ↓ I and I-Cat with fibrations, cofibrations and
weak equivalences of small categories as defined below, are simplicial closed model cate-
gories in the sense of Quillen (see [11]) :

1) the model category structure on Cat ↓ I is the one induced by the usual one on the
category of small categories Cat (see [14]). In particular, the weak equivalences are the
weak equivalences over I;

2) a map in I-Cat is a fibration if it is an object-wise fibration (resp. weak equivalence)
in Cat (see [14]) and is a cofibration if it has the left lifting property with respect to maps
which are simultaneously fibrations and weak equivalences.

Let now [1] denote the small category associated with the ordered set {0 < 1}. Then,
any natural transformation φ : F0 → F1 of functors F0, F1 : B → C determines a functor
Θ : B × [1] → C. Therefore, for an object α : B → I in Cat ↓ I define the functor



Theory and Applications of Categories, Vol. 4, No. 4 75

α× [1] : B× [1] → I such that α× [1] = απ, where π : B× [1] → B is the projection functor.
Furthermore, let j0, j1 : α → α × [1] denote the canonical inclusions and let α : B → I

and β : C → I be objects in Cat ↓ I. We say that maps F0, F1 : α → β are homotopic if
there is a map Θ : α× [1] → β such that Θj0 = F0 and Θj1 = F1. Similarly, for an object
G : I → Cat in the category I-Cat let G × [1] : I → Cat denote the contravariant functor
which is defined by (G× [1])(i) = G(i)× [1], for any object i in I and in the obvious way
on morphisms in I. For functors G,H : I → Cat, two maps ψ0, ψ1 : G → H are homotopic
if there is a map Ψ : G× [1] → H in the category I-Cat such that Ψj0 = ψ0 and Ψj1 = ψ1,
where j0, j1 : G → G× [1] are the canonical inclusions. Then, we may state the following
result.

1.2. Proposition. 1) The functors D : Cat ↓ I −→ I-Cat and I
∫
- : I-Cat −→ Cat ↓ I

preserve weak equivalences.

2) If α : B → I and β : C → I are objects in Cat ↓ I and maps F0, F1 : α → β are
homotopic then the induced functors DF0, DF1 : I → Cat are also homotopic. Conversely,
for G,H : I → Cat and homotopic maps ψ0, ψ1 : G → H the induced maps I

∫
ψ0 : I

∫
G →

I and I
∫
ψ1 : I

∫
H → I are also homotopic.

Proof. 1) Let F0, F1 : I → Cat be contravariant functors with a natural transformation
F0 → F1 and such that the functors F0(i) → F1(i) are weak equivalences, for any object
i in the category I and consider the induced functor I

∫
F0 → I

∫
F1. Put N for the nerve

functor from the category Cat to the category of simplicial sets SS and hocolim for the
homotopy colimit functor (see [1]) on the category of diagrams of simplicial sets. Then,
there is a commutative diagram

hocolimNF0
��

��

N(I
∫
F0)

��
hocolimNF1

�� N(I
∫
F1)

with the horizontal maps as homotopy equivalences in the light of [13]. But by [3, p.335],
the map hocolimNF0 → hocolimNF1 is a weak equivalence. Thus, the map N(I

∫
F0) →

N(I
∫
F1) is a weak equivalence as well.

Let now

C

��
α ��

��
��

��
��F
D

�� β��
��

��
��

I

be a map in the category Cat ↓ I with F as a weak equivalence. Then by [12], the comma
category d ↓ F is contractible, for any object d in D. For any object i in I, consider the
induced functor

i ↓ α
i↓F−→ i ↓ β.
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Then, for any object d̄ = (d, i → β(d)) in i ↓ β we have d̄ ↓ (i ↓ F ) = d ↓ F . Hence, the
comma category d̄ ↓ (i ↓ F ) is contractible, for any object d̄ in the category i ↓ β and
again by [12] we get that the functor i ↓ F is a weak homotopy equivalence.

2) The proof is straightforward.

Denote by SS ↓ N I the category SS over the nerve N I of the small category I and by
I-SS the category of contravariant functors from a small category I to the category SS of
simplicial sets. Then, the proposition below immediately follows from [11].

1.3. Proposition. The categories I-SS and SS ↓ N I with fibrations, cofibrations and weak
equivalences as defined below, are simplicial closed model categories in the sense of Quillen
(see [11]).

1) The model category structure on the category SS ↓ N I is the one induced by the
usual one on the category of simplicial sets (see [11]). In particular, the weak equivalences
are the weak homotopy equivalences over N I;

2) a map in I-SS is a fibration (resp. weak equivalence) if it is an object-wise fibration
(resp. weak equivalence) in SS (see [11]) and is a cofibration if it has the left lifting property
with respect to maps which are simultaneously fibrations and weak equivalences.

Similarly as in the categories Cat ↓ I and I-Cat, we define a homotopy notion in the
categories SS ↓ N I and I-SS. Then, we have the following

1.4. Proposition. There is a pair of adjoint functors A : SS ↓ N I → I-SS (the left
adjoint) and B : I-SS → SS ↓ N I (the right adjoint) such that in the terminology of the
previous proposition:

1) both functors send weak equivalences into weak equivalences and homotopic maps
into homotopic ones;

2) for every object Θ in SS ↓ N I and every object F in I-SS, the adjunction maps
Θ → BA(Θ) and AB(F ) → F are weak equivalences.

Proof. Given an object Θ : X → N I in the category SS ↓ N I, one defines the contravari-
ant functor AΘ : I → SS as follows. For an object i in I, let i ↓ I be the category over i
and i ↓ I → I the natural projection functor. Then, the simplicial set (AΘ)(i) is given by
the pull-back

(AΘ)(i)

��

�� N(i ↓ I)

��
X ��Θ

N I.

Moreover, for a map i → i′ in I, we get the induced simplicial map (AΘ)(i′) → (AΘ)(i).
Given an object F in the category I-SS, one defines BF as follows. Let hocolimF be the
homotopy colimit of F and define BF as the simplicial map hocolimF → N I given by
the natural projection.

The adjunction of a map f : AΘ → F in the category I-SS is determined as follows.
Associate, with the induced map f̄ : AΘ → F ×N(- ↓ I) by the maps f and AΘ → N(− ↓
I) given by the pull-back above, the simplicial map f̃ = colim f̄ : colimAΘ → colimF ×
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N(- ↓ I) over the nerve N I. But, colimF × N(- ↓ I) = hocolimF by [3, Chap. XII] and
colimAΘ =

∐
i(AΘ)(i)/ ∼, where i runs over all objects in I and AΘ(α)x ∼ x for α : i′ → i

and x ∈ AΘ(i). An n-simplex in X determines an simplex Θ(x) = (i0 → · · · → in) in

the nerve N I. Then, Θ̃(x) = (i0 = i0 → · · · → in) is a simplex in N(i0 ↓ I) and we get

an injection η : X → colimAΘ such that η(x) = (x, Θ̃(x)). On the other hand, for any

(x, σ) ∈ (AΘ)(i) we have (x, σ) ∼ (x, Θ̃(x)). Thus, the map η : X → colimAΘ is an
isomorphism. Finally, we have a map f̃ : X → hocolimF such that the diagram

X

��

Θ

��
��

��
��

��
��

�
��f̃
hocolimF

����
��

��
��

��
��

��
�

N I

commutes.
Given a map g : Θ → BF in the category SS ↓ N I one can also get an adjunction

g̃ : AΘ → F . For an object i in I, we define a simplicial map g̃(i) : AΘ(i) → F (i). By [1,
p.338], the simplicial set hocolimF is isomorphic to the diagonal of the double simplicial
set

∐
∗ F which in dimension n consists of the union

∐
n F =

∐
i0→···→in F (in). Thus, for

an n-simplex x in X we have g(x) = y with y ∈ F (in) and Θ(x) = (i0
α1→ · · · αn→ in). Hence,

for (x, (i
α→ i0

α1→ · · · αn→ in)) in (AΘ)(i) we may define g̃(i)(x, (i
α→ i0

α0→ · · · αn→ in)) =
F (αn · · ·α0α)(y).

1) Let now Θ : X → N I and Θ′ : X ′ → N I be two objects in the category SS ↓ I

and f : Θ → Θ′ a map such that the associated simplicial map X → X ′ is a weak
homotopy equivalence. Then, for an object i in I the induced maps AΘ(i) → X and
AΘ′(I) → X ′ have the same homotopy fibre (up to homotopy). Hence, from the long
homotopy exact sequences determined by AΘ(i) → X and AΘ′(i) → X ′, it follows that
the map Af(i) : AΘ(i) → AΘ′(i) is a weak homotopy equivalence. Thus, the induced
map Af : AΘ → AΘ′ in the category I-SS is a weak homotopy equivalence.

On the other hand, if f : F → F ′ is a map in the category I-SS such that the simplicial
maps f(i) : F (i) → F ′(i) are weak homotopy equivalences for any object i in I then by
[3, p.335], one gets that the induced map hocolim f : hocolimF → hocolimF ′ is a weak
homotopy equivalence. Thus, the map Bf : BF → BF ′ is a weak homotopy equivalence.
The proof of the preservation of homotopic maps by functors A and B is straightforward.

2) Let |–| be the geometric realization functor. For an object Θ : X → N I in the
category SS ↓ N I, the adjunction map τΘ : Θ → BAΘ is defined as follows. For n-simplex

x in X let Θ(x) = (i0 → · · · → in) be an n-simplex in the nerve N I and Θ̃(x) = (i0 =

i0 → · · · → in) an associated n-simplex in N(i0 ↓ I). Then, (x, Θ̃(x)) is an n-simplex in

AΘ and τΘ(x) = (x, Θ̃(x)). Moreover, there is a natural projection πΘ : hocolimAΘ → X

such that πΘτΘ = idΘ and it is a routine to check that the map |τΘ||πΘ| is homotopic to
the identity map id|hocolimAΘ|.
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For an object F in the category I-SS, we define the adjunction map θF : ABF → F .
Let Θ : hocolimF → N I be the natural projection and consider the simplicial map
θF (i) : AΘ(i) → F (i), for an object i in I defined as follows. If (x, (i

α→ i0
α1→ · · · αn→ in))

is an n-simplex in AΘ(i) then (x, (i0
α1→ · · · αn→ in)) is an n-simplex in hocolimF with x

in F (in). Then, θF (i)(x, (i
α→ i0

α1→ · · · αn→ in)) = F (αn · · ·α0α)(x). Moreover, there is an

injection σ(i) : F (i) → AΘ(i) given by σ(i)(x) = (x, ĩdi), for an n-simplex x in F (i) with

ĩdi the degenerated n-simplex determined by an object i in I. Of course θF (i)σ(i) = idF (i)

and it is also easy to check that the map |σ(i)||θF (i)| is homotopic to the identity map
id|AΘ(i)| for any object i in I, and the proof is completed.

The nerve functor N : Cat → SS determines functors N : Cat ↓ I → SS ↓ N I and
Ñ : I-Cat → I-SS, respectively. Then, the diagram

Cat ↓ I

��
N

��D
I-Cat

��
Ñ

SS ↓ N I ��A
I-SS

commutes and by [13], the diagram

Cat ↓ I

��
N

I-Cat��
I

∫
-

��
Ñ

SS ↓ N I I-SS��
B

commutes up to homotopy. Moreover, by [7, 9] there are homotopy inverses Γ : SS → Cat,
for the nerve functor N : Cat → SS such that for any small category I there is a weak
equivalence ΓN I → I. Thus, we get induced functors Γ : SS ↓ N I → Cat ↓ I and
Γ̃ : I-SS → I-Cat, respectively. Consequently, we may generalize the result presented in [8]
and summarize this section with the following

1.5. Theorem. For any small category I, the diagram of above functors

Cat ↓ I

��
N̄

��D
I-Cat��

I

∫
-

��
Ñ

SS ↓ N I

��

Γ̄

��A
I-SS��

B

��

Γ̃

determines equivalences of respective homotopy categories.

In particular, if I is the category associated with a discrete group G then the nerve
N I is the classifying complex WG and I-Cat (resp. I-SS) is the category of right G-small
categories (resp. right G-simplicial sets). Thus from the above, we may also deduce an
equivalence of respective homotopy categories (cf. [5]).
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2. Equivariant applications

Let G be a discrete group and O(G) the associated category of canonical orbits; its
objects are the left cosets G/H as H ranges over all subgroups of G and morphisms are
G-maps G/H → G/K with respect to left translation. If G-SS denotes the category of
G-simplicial sets then there is a canonical functor Φ : G-SS → O(G)-SS defined on objects
by Φ(X)(G/H) = XH and in the obvious way on morphisms in G-SS, where XH is the
H-fixed point simplicial subset of X. Then (cf. [1]), the category G-SS is a closed model
category; a map f : X → Y is a fibration (resp. weak equivalence) if the induced map
Φ(f) : Φ(X) → Φ(Y) is a fibration (resp. weak equivalence) in O(G)-SS. Cofibrations in
G-SS are determined by means of the left lifting property with respect to maps which are
simultaneously fibrations and weak equivalences. From [4, 6], one may derive that the
functor Φ : G-SS → O(G)-SS establishes an equivalence of respective homotopy categories.
Therefore, Proposition 1.4 yields

2.1. Corollary. If G is a discrete group then the homotopy categories of G-SS and
SS ↓ NO(G) are equivalent.

Recall that a G-simplicial set X is called fibrant (resp. cofibrant) if the unique map
X → ∗ (resp. ∅ → X) is a fibration (resp. cofibration) in the category G-SS, where ∅ is the
empty simplicial set and ∗ a single point simplicial set with the trivial action of G.

2.2. Lemma. Every G-simplicial set X is cofibrant in the category G-SS.

Proof. Let p : E → B be a fibration and a weak equivalence in the category G-SS, and
f : X → B a G-map. The n-skeleton X(n), for n ≥ 0 is a G-simplicial subset of X and
X = colimn X(n). Let f (n) denote the restriction of f to X(n); we proceed by induction to
show an existence of a G-map f̃ (n) : X(n) → E with pf̃ (n) = f (n), for n ≥ 0.

Of course, there is a G-map f̃ (0) → E such pf̃ (0) = f (0). Suppose there is a G-map
f̃ (n−1) : X(n−1) → E with pf̃ (n−1) = f (n−1) and put ∆[n] for the standard simplicial n-
simplex, and ∆̇[n] for its boundary. Then, there is a pushout diagram

∐
x G/Hx × ∆̇[n]

��

��
X(n−1)

��∐
x G/Hx ×∆[n] �� X(n),

where x runs over all non-degenerate n-simplexes in X and Hx is the isotropy subgroup
of an n-simplex x. By means of the right lifting property of the map p : E → B (see e.g.,
[11, p.2.1]) and the map f̃ (n−1) : X(n−1) → E, we get a G-map f̃ (n) : X(n) → E such that
pf̃ (n) = f (n) and its restriction to X(n−1) is equal to f̃ (n−1). Therefore, the sequence of
G-map f̃ (n) → E, for n ≥ 0 determines a G-map f̃ : X → E with pf̃ = f and the proof is
completed.
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Let now f : X → Y be a weak equivalence in the category G-SS. Then, from [11, p.3.15]
it follows that the map [f,E]G : [Y,E]G → [X,E]G of G-homotopy classes is bijective, for
any fibrant G-simplicial set E. We are now in a position to state the following G-simplicial
version of the Whitehead Theorem (cf.[2]).

2.3. Corollary. Let f : X → Y be a G-map of fibrant G-simplicial sets. Then the
following conditions are equivalent:

1) the G-map f : X → Y is a weak equivalence;
2) the G-map f : X → Y is a G-homotopy equivalence;
3) the map in the category SS ↓ NO(G), induced by the commutative diagram

hocolimΦ(X)

����
��

��
��

��
��

��
��

�
��hocolimΦ(f)
hocolimΦ(Y)

		��
��

��
��

��
��

��
��

�

NO(G)

is a homotopy equivalence.

Proof. Observe that by Proposition 1.4, we get 2) ⇒ 3) and 3) ⇒ 1). We show now the
implication 1) ⇒ 2). By Lemma 2.2 and [11, p.3.15], the induced maps [f,X]G : [Y,X]G →
[X,X]G and [f,Y]G : [Y,Y]G → [X,Y]G of G-homotopy classes are bijective. Therefore, the
G-map f : X → Y is a G-homotopy equivalence, as claimed.
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