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DOUBLES FOR MONOIDAL CATEGORIES

Dedicated to Walter Tholen on his 60th birthday

CRAIG PASTRO AND ROSS STREET

Abstract. In a recent paper, Daisuke Tambara defined two-sided actions on an en-
domodule (= endodistributor) of a monoidal V -category A . When A is autonomous
(= rigid = compact), he showed that the V -category (that we call Tamb(A )) of so-
equipped endomodules (that we call Tambara modules) is equivalent to the monoidal
centre Z[A ,V ] of the convolution monoidal V -category [A ,V ]. Our paper extends these
ideas somewhat. For general A , we construct a promonoidal V -category DA (which we
suggest should be called the double of A ) with an equivalence [DA ,V ] ' Tamb(A ).
When A is closed, we define strong (respectively, left strong) Tambara modules and
show that these constitute a V -category Tambs(A ) (respectively, Tambls(A )) which is
equivalent to the centre (respectively, lax centre) of [A ,V ]. We construct localizations
DsA and DlsA of DA such that there are equivalences Tambs(A ) ' [DsA ,V ] and
Tambls(A ) ' [DlsA ,V ]. When A is autonomous, every Tambara module is strong;
this implies an equivalence Z[A ,V ] ' [DA ,V ].

1. Introduction

For V -categories A and B, a module T : A � // B (also called “bimodule”, “profunctor”,
and “distributor”) is a V -functor T : Bop ⊗ A // V . For a monoidal V -category A ,
Tambara [Tam06] defined two-sided actions α of A on an endomodule T : A � // A .
When A is autonomous (also called “rigid” or “compact”) he showed that the V -category
Tamb(A ) of Tambara modules (T, α) is equivalent to the monoidal centre Z[A , V ] of
the convolution monoidal V -category [A , V ].

Our paper extends these ideas in four ways:

1. our base monoidal category V is quite general (as in [Kel82]) not just vector spaces;

2. our results are mainly for a closed monoidal V -category A , generalizing the au-
tonomous case;

3. we show the connection with the lax centre as well as the centre; and,

The first author gratefully acknowledges support of an international Macquarie University Research
Scholarship while the second gratefully acknowledges support of the Australian Research Council Discov-
ery Grant DP0771252.

Received by the editors 2007-09-14 and, in revised form, 2008-05-30.
Published on 2008-06-06 in the Tholen Festschrift.
2000 Mathematics Subject Classification: 18D10.
Key words and phrases: monoidal centre, Drinfeld double, monoidal category, Day convolution.
c© Craig Pastro and Ross Street, 2008. Permission to copy for private use granted.

61



62 CRAIG PASTRO AND ROSS STREET

4. we introduce the double DA of a monoidal V -category A and some localizations
of it, and relate these to Tambara modules.

Our principal goal is to give conditions under which the centre and lax centre of a
V -valued V -functor monoidal V -category is again such. Some results in this direction
can be found in [DS07].

For general monoidal A , we construct a promonoidal V -category DA with an equiva-
lence [DA , V ] ' Tamb(A ). When A is closed, we define when a Tambara module is (left)
strong and show that these constitute a V -category (Tambls(A )) Tambs(A ) which is
equivalent to the (lax) centre of [A , V ]. We construct localizations DsA and DlsA of DA
such that there are equivalences Tambs(A ) ' [DsA , V ] and Tambls(A ) ' [DlsA , V ].
When A is autonomous, every Tambara module is strong, which implies an equivalence
Z[A , V ] ' [DA , V ]. These results should be compared with those of [DS07] where the
lax centre of [A , V ] is shown generally to be a full sub-V -category of a functor V -category
[AM , V ] which also becomes an equivalence Z[A , V ] ' [AM , V ] when A is autonomous.

As we were completing this paper, Ignacio Lopez Franco sent us his preprint [LF07]
which has some results in common with ours. As an example for V -modules of his general
constructions on pseudomonoids, he is also led to what we call the double monad.

2. Centres and convolution

We work with categories enriched in a base monoidal category V as used by Kelly [Kel82].
It is symmetric, closed, complete and cocomplete.

Let A denote a closed monoidal V -category. We denote the tensor product by A⊗B
and the unit by I in the hope that this will cause no confusion with the same symbols
used for the base V itself. We have V -natural isomorphisms

A (A, BC) ∼= A (A⊗B, C) ∼= A (B, CA)

defined by evaluation and coevaluation morphisms

el : BC⊗B // C, dl : A // B(A⊗B), er : A⊗CA // C and dr : B // (A⊗B)A.

Consequently, there are canonical isomorphisms

A⊗BC ∼= A(BC), CA⊗B ∼= (CA)B, (BC)A ∼= B(CA) and IC ∼= C ∼= CI

which we write as if they were identifications just as we do with the associativity and unit
isomorphisms. We also write BCA for B(CA).

The Day convolution monoidal structure [Day70] on the V -category [A , V ] of V -
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functors from A to V consists of the tensor product F ∗G and unit J defined by

(F ∗G)A =

∫ U,V

A (U ⊗ V, A)⊗ FU ⊗GV

∼=
∫ V

F (V A)⊗GV

∼=
∫ U

FU ⊗G(AU)

and
JA = A (I, A).

In particular,

(F ∗A (A,−))B ∼= F (AB) and (A (A,−) ∗G)B ∼= G(BA).

The centre of a monoidal category was defined in [JS91] and the lax centre was defined,
for example, in [DPS07]. Since the representables are dense in [A , V ], an object of the
lax centre Zl[A , V ] of [A , V ] is a pair (F, θ) consisting of F ∈ [A , V ] and a V -natural
family θ of morphisms

θA,B : F (AB) // F (BA)

such that the diagrams

F (A⊗BC) F (CA⊗B)
θA⊗B,C //

F (A(BC))

=
��

F (BCA)

θ
A,BC ""EEEEEEEE

F ((CA)B)

θ
B,CA

<<yyyyyyyy

=

OO

and
F (IA) F (AI)

θI,A //

FA
= ��?

??
??

?

=

??������

commute. The hom object Zl[A , V ]((F, θ), (G, φ)) is defined to be the equalizer of two
obvious morphisms out of [A , V ](F, G). The centre Z[A , V ] of [A , V ] is the full sub-V -
category of Zl[A , V ] consisting of those objects (F, θ) with θ invertible.

3. Tambara modules

Let A denote a monoidal V -category. We do not need A to be closed for the definition
of Tambara module although we will require this restriction again later.

A left Tambara module on A is a V -functor T : A op ⊗ A // V together with a
family of morphisms

αl(A, X, Y ) : T (X, Y ) // T (A⊗X, A⊗ Y )
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which are V -natural in each of the objects A, X and Y , satisfying the two equations
αl(I, X, Y ) = 1T (X,Y ) and

T (X, Y )

T (A⊗ A′ ⊗X,A⊗ A′ ⊗ Y ).

αl(A⊗A′,X,Y )
$$IIIIIIIIIIII

T (A′ ⊗X, A′ ⊗ Y )
αl(A

′,X,Y ) //

αl(A,A′⊗X,A′⊗Y )
zzuuuuuuuuuuuu

Similarly, a right Tambara module on A is a V -functor T : A op ⊗A // V together
with a family of morphisms

αr(B, X, Y ) : T (X,Y ) // T (X ⊗B, Y ⊗B)

which are V -natural in each of the objects B, X and Y , satisfying the two equations
αr(I, X, Y ) = 1T (X,Y ) and

T (X, Y )

T (X ⊗B ⊗B′, Y ⊗B ⊗B′).

αr(B⊗B′,X,Y )
$$IIIIIIIIIIII

T (X ⊗B, Y ⊗B)
αr(B,X,Y ) //

αr(B′,B⊗X,B⊗Y )
zzuuuuuuuuuuuu

A Tambara module(T, α) on A is a V -functor T : A op ⊗ A // V together with
both left and right Tambara module structures satisfying the “bimodule” compatibility
condition

T (X, Y ) T (A⊗X, A⊗ Y )
αl(A,X,Y ) //

T (A⊗X ⊗B, A⊗ Y ⊗B).

αr(B,A⊗X,A⊗Y )

��
T (X ⊗B, Y ⊗B)

αr(B,X,Y )

��

αl(A,X⊗B,Y ⊗B)
//

The morphism defined to be the diagonal of the last square is denoted by

α(A, B, X, Y ) : T (X, Y ) // T (A⊗X ⊗B, A⊗ Y ⊗B)

and we can express a Tambara module structure purely in terms of this, however, we need
to refer to the left and right structures below.

3.1. Proposition. Suppose A is a monoidal V -category and T : A op ⊗A // V is a
V -functor.

(a) If A is right closed, there is a bijection between V -natural families of morphisms

αl(A, X, Y ) : T (X, Y ) // T (A⊗X,A⊗ Y )

and V -natural families of morphisms

βl(A, X, Y ) : T (X, Y A) // T (A⊗X, Y ).
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(b) Under the bijection of (a), the family αl is a left Tambara structure if and only if the
family βl satisfies the two equations βl(I, X, Y ) = 1T (X,Y ) and

T (X, Y A⊗A′
) T (A⊗ A′ ⊗X, Y )

βl(A⊗A′,X,Y ) //

T (X, (Y A)A′
)

=

��
T (A′ ⊗X, Y A).

βl(A
′,X,Y A)

//

βl(A,A′⊗X,Y )

OO

(c) If A is left closed, there is a bijection between V -natural families of morphisms

αr(B, X, Y ) : T (X, Y ) // T (X ⊗B, Y ⊗B)

and V -natural families of morphisms

βr(B, X, Y ) : T (X, BY ) // T (X ⊗B, Y ).

(d) Under the bijection of (c), the family αr is a right Tambara structure if and only if
the family βr satisfies the two equations βr(I, X, Y ) = 1T (X,Y ) and

T (X, B⊗B′
Y ) T (X ⊗B ⊗B′, Y )

βr(B⊗B′,X,Y ) //

T (X, B(B′
Y ))

=

��
T (X ⊗B, B′

Y ).
βr(B,X,B

′
Y )

//

βr(B′,X⊗B,Y )

OO

(e) If A is closed, the families αl and αr form a Tambara module structure if and only
if the families βl and βr, corresponding under (a) and (c), satisfy the condition

T (X, BY A) T (A⊗X, BY )
βl(A,X,BY ) //

T (A⊗X ⊗B, Y ).

βr(B,A⊗X,Y )

��
T (X ⊗B, Y A)

βr(B,X,Y A)

��

βl(A,X⊗B,Y )
//

Proof. The bijection of (a) is defined by the formulas

βl(A, X, Y ) =
(

T (X, Y A) T (A⊗X,A⊗ Y A)
αl(A,X,Y A) // T (A⊗X, Y )

T (A⊗X,er) //
)

and

αl(A, X, Y ) =
(

T (X, Y ) T (X, (A⊗ Y )A)
T (X,dr) // T (A⊗X, A⊗ Y )

βl(A,X,A⊗Y ) //
)
.

That the processes are mutually inverse uses the adjunction identities on the morphisms e
and d. The bijection of (c) is obtained dually by reversing the tensor product. Translation
of the conditions from the α to the β as required for (b), (d) and (e) is straightforward.
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A left (respectively, right) Tambara module T on A will be called strong when the
morphisms

βl(A, X, Y ) : T (X, Y A) // T (A⊗X,Y )

(respectively, βr(B, X, Y ) : T (X, BY ) // T (X ⊗B, Y ))

corresponding via Proposition 3.1 to the left (respectively, right) Tambara structure, are
invertible. A Tambara module is called left (respectively, right) strong when it is strong
as a left (respectively, right) module and strong when it is both left and right strong. In
particular, notice that the hom V -functor (= identity module) of A is a strong Tambara
module.

3.2. Proposition. Suppose A is a monoidal V -category and T : A op ⊗ A // V is
a V -functor. If A is right (left) autonomous then every left (right) Tambara module is
strong.

Proof. If A∗ denotes a right dual for A with unit η : I // A∗⊗A then an inverse for βl

is defined by the composite

T (A⊗X, Y ) T (A∗ ⊗ A⊗X, A∗ ⊗ Y )
αl(A

∗,A⊗X,Y ) // T (X, A∗ ⊗ Y )
T (η,1) // .

Write LTamb(A ) for the V -category whose objects are left Tambara modules T =
(T, αl) and whose hom LTamb(A )(T, T ′) in V is defined to be the intersection over all
A, X and Y of the equalizers of the pairs of morphisms:

[A op ⊗A , V ](T, T ′) V (T (X, Y ), T ′(A⊗X, A⊗ Y ))
V (αl,1)◦prA⊗X,A⊗Y //

V (1,αl)◦prX,Y

// .

Equivalently, we can define the hom as an intersection of equalizers of pairs of morphisms:

[A op ⊗A , V ](T, T ′) V (T (X, Y A), T ′(A⊗X, Y ))
V (βl,1)◦prA⊗X,Y //

V (1,βl)◦pr
X,Y A

// .

Composition is defined so that we have a V -functor ι : LTamb(A ) // [A op ⊗ A , V ]
which forgets the left module structure on T . In fact, LTamb(A ) becomes a monoidal
V -category in such a way that the forgetful V -functor ι becomes strong monoidal. For
this, the monoidal structure on [A op⊗A , V ] is the usual tensor product (= composition)
of endomodules:

(T ⊗A T ′)(X, Y ) =

∫ Z

T (X, Z)⊗ T ′(Z, Y ).

When T and T ′ are left Tambara modules, the left Tambara structure

(T ⊗A T ′)(X, Y ) // (T ⊗A T ′)(A⊗X, A⊗ Y )
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on T ⊗A T ′ is defined by taking its composite with the coprojection coprZ into the above
coend to be the composite

T (X,Z)⊗ T ′(Z, Y ) T (A⊗X, A⊗ Z)⊗ T ′(A⊗ Z,A⊗ Y )
αl⊗αl //

(T ⊗A T ′)(A⊗X,A⊗ Y )
coprA⊗Z // .

Similarly we obtain monoidal V -categories RTamb(A ) and Tamb(A ) of right Tambara
and all Tambara modules on A .

We write LTambs(A ) for the full sub-V -category of LTamb(A ) consisting of the
strong left Tambara modules. We write Tambls(A ), Tambrs(A ) and Tambs(A ) for the
full sub-V -categories of Tamb(A ) consisting of the left strong, right strong and strong
Tambara modules respectively.

If A is autonomous then Tamb(A ) = Tambls(A ) = Tambrs(A ) = Tambs(A ) by
Proposition 3.2.

4. The Cayley functor

Consider a right closed monoidal V -category A . There is a Cayley V -functor

Υ : [A , V ] // [A op ⊗A , V ]

defined as follows. To each object F ∈ [A , V ], define Υ(F ) = TF by

TF (X, Y ) = F (Y X).

The effect ΥF,G : [A , V ](F, G) // [A op ⊗ A , V ](TF , TG) of Υ on homs is defined by
taking its composite with the projection

prX,Y : [A op ⊗A , V ](TF , TG) // V (F (Y X), G(Y X))

to be the projection

prY X : [A , V ](F, G) // V (F (Y X), G(Y X)).

4.1. Proposition. The Cayley V -functor Υ is strong monoidal; it takes Day convolu-
tion to composition of endomodules.
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Proof. We have the calculation:

(Υ(F )⊗A Υ(G))(X, Y ) =

∫ Z

Υ(F )(X, Z)⊗Υ(G)(Z, Y )

=

∫ Z

F (ZX)⊗G(Y Z)

∼=
∫ Z,U,V

A (U,ZX)⊗ FU ⊗A (V, Y Z)⊗GV

∼=
∫ Z,U,V

A (X ⊗ U,Z)⊗ FU ⊗A (Z ⊗ V, Y )⊗GV

∼=
∫ U,V

A (X ⊗ U ⊗ V, Y )⊗ FU ⊗GV

∼=
∫ U,V

A (U ⊗ V, Y X)⊗ FU ⊗GV

∼= Υ(F ∗G)(X, Y ),

and of course Υ(A (I,−))(X, Y ) = A (I, Y X) ∼= A (X, Y ).

In fact, Υ lands in the left Tambara modules by defining, for each F ∈ [A , V ], the
structure

αl(A, X, Y ) =
(

F (Y X)
F ((dr)X) // F ((A⊗ Y )A⊗X)

)
on TF . It is helpful to observe that the βl corresponding to this αl (via Proposition 3.1)
is given by the identity

βl(A, X, Y ) =
(

F (Y A⊗X)
1 // F (Y A⊗X)

)
,

showing that TF becomes a strong left module. To see that there is a V -functor Υ̂ :
[A , V ] // LTambs(A ) satisfying ι ◦ Υ̂ = Υ, we merely observe that

prA⊗X,Y ◦ΥF,G = prY A⊗X = pr(Y A)X = prX,Y A ◦ΥF,G.

4.2. Proposition. If A is a right closed monoidal V -category then the V -functor
Υ̂ : [A , V ] // LTambs(A ) is an equivalence.

Proof. Define ζ : LTamb(A )(TF , TG) // [A , V ](F, G) by prY ◦ ζ = prI,Y ◦ ιTF ,TG
. Then

prY ◦ ζ ◦ Υ̂F,G = prI,Y ◦ ιTF ,TG
◦ Υ̂F,G = prI,Y ◦ΥF,G = prY

and

prX,Y ◦ ιTF ,TG
◦ Υ̂F,G ◦ ζ = prX,Y ◦ΥF,G ◦ ζ

= prY X ◦ ζ

= prI,Y X ◦ ιTF ,TG

= prX,Y ◦ ιTF ,TG
.
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It follows that ζ is the inverse of Υ̂F,G, so that Υ̂ is fully faithful. To see that Υ̂ is
essentially surjective on objects, take a strong left module T . Put FY = T (I, Y ) as a
V -functor in Y . Then the isomorphism βl(X, I, Y ) yields

TF (X, Y ) = F (Y X) = T (I, Y X) ∼= T (X, Y );

so Υ̂(F ) ∼= T .

Now suppose we have an object (F, θ) of the lax centre Zl[A , V ] of [A , V ]. Then TF

becomes a right Tambara module by defining

αr(B, X, Y ) =
(

F (Y X) F (B(Y ⊗B)X)
F ((dl)

X) // F (Y ⊗B)X⊗B
θ
B,(Y⊗B)X //

)
.

If A is left closed, the βr corresponding to this αr (via Proposition 3.1) is defined by

βr(B, X, Y ) =
(

F (BY X)
θ
B,Y X

// F (Y X⊗B)
)
.

It is easy to see that, in this way, TF = Υ̂(F ) actually becomes a (two-sided) Tambara
module which we write as Υ̂(F, θ), and we have a V -functor

Υ̂ : Zl[A , V ] // Tambls(A ).

4.3. Proposition. If A is a closed monoidal V -category then the V -functor

Υ̂ : Zl[A , V ] // Tambls(A )

is an equivalence which restricts to an equivalence

Υ̂ : Z[A , V ] // Tambs(A ).

Proof. The proof of full faithfulness proceeds along the lines of the beginning of the
proof of Proposition 4.2. For essential surjectivity on objects, take a left strong Tambara
module (T, α). Then βl(A, X, Y ) : T (X, Y A) // T (A ⊗ X, Y ) is invertible. Define the
V -functor F : A // V by FX = T (I, X) as in the proof of Proposition 4.2, and define
θA,Y : F (AY ) // F (Y A) to be the composite

T (I, AY ) T (A, Y )
βr(A,I,Y ) // T (I, Y A)

βl(A,I,Y )−1

// .

This is easily seen to yield an object (F, θ) of the lax centre Zl[A , V ] with Υ̂(F, θ) ∼= TF .
Thus we have the first equivalence. Clearly θ is invertible if and only if βr is; the second
equivalence follows.
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5. The double monad

Tambara modules are actually Eilenberg-Moore coalgebras for a fairly obvious comonad
on [A op ⊗A , V ]. We begin by looking at the case of left modules.

Let Θl : [A op ⊗A , V ] // [A op ⊗A , V ] be the V -functor defined by the end

Θl(T )(X, Y ) =

∫
A

T (A⊗X, A⊗ Y ).

There is a V -natural family εT : Θl(T ) // T defined by the projections

prI :

∫
A

T (A⊗X, A⊗ Y ) // T (X, Y ).

There is a V -natural family δT : Θl(T ) // Θl(Θl(T )) defined by taking its composite
with the projection

prB,C :

∫
B,C

T (B ⊗ C ⊗X, B ⊗ C ⊗ Y ) // T (B ⊗ C ⊗X, B ⊗ C ⊗ Y )

to be the projection

prB⊗C :

∫
A

T (A⊗X, A⊗ Y ) // T (B ⊗ C ⊗X, B ⊗ C ⊗ Y ).

It is now easily checked that Θl = (Θl, δ, ε) is a comonad on [A op ⊗A , V ].
There is also a comonad Θr on [A op ⊗A , V ], a distributive law ΘrΘl

∼= ΘlΘr, and a
comonad Θ = ΘrΘl:

Θr(T )(X, Y ) =

∫
B

T (X ⊗B, Y ⊗B)

and

Θ(T )(X, Y ) =

∫
A,B

T (A⊗X ⊗B, A⊗ Y ⊗B).

We can easily identify the V -categories of Eilenberg-Moore coalgebras for these three
comonads.

5.1. Proposition. There are isomorphisms of V -categories

• [A op ⊗A , V ]Θl ∼= LTamb(A ),

• [A op ⊗A , V ]Θr ∼= RTamb(A ), and

• [A op ⊗A , V ]Θ ∼= Tamb(A ).
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In fact, Θl, Θr and Θ are all monoidal comonads on [A op ⊗ A , V ]. For example,
the structure on Θl is provided by the V -natural transformations Θl(T )⊗A Θl(T

′) //

Θl(T ⊗A T ′) and A (−,−) // Θl(A (−,−)) with components∫ Z∫
A

T (A⊗X, A⊗Z)⊗
∫

B

T ′(B⊗X, B⊗Z) //
∫

C

∫ U

T (C⊗X,U)⊗T ′(U,C⊗Y ) (1)

and

A (X, Y ) //
∫

A

A (A⊗X, A⊗ Y ) (2)

defined as follows. The morphism (1) is determined by its precomposite with the copro-
jection coprZ and postcomposite with the projection prC ; the result is defined to be the
composite∫

A

T (A⊗X, A⊗ Z)⊗
∫

B

T ′(B ⊗X, B ⊗ Z)

prC ⊗ prC // T (C ⊗X, C ⊗ Z)⊗ T ′(C ⊗ Z,C ⊗ Y )

coprC⊗Z //
∫ U

T (C ⊗X, U)⊗ T ′(U,C ⊗ Y ) .

The morphism (2) is simply the coprojection coprI . It follows that [A op ⊗ A , V ]Θl

becomes monoidal with the underlying functor becoming strong monoidal; see [Moe02]
and [McC02]. Clearly we have:

5.2. Proposition. The isomorphisms of Proposition 5.1 are monoidal.

The next thing to observe is that Θl, Θr and Θ all have left adjoints Φl, Φr and Φ
which therefore become opmonoidal monads whose V -categories of Eilenberg-Moore al-
gebras are monoidally isomorphic to LTamb(A ), RTamb(A ) and Tamb(A ), respectively.
Straightforward applications of the Yoneda Lemma, show that the formulas for these
adjoints are

Φl(S)(U, V ) =

∫ A,X,Y

A (U,A⊗X)⊗A (A⊗ Y, V )⊗ S(X,Y ),

Φr(S)(U, V ) =

∫ B,X,Y

A (U,X ⊗B)⊗A (Y ⊗B, V )⊗ S(X, Y ), and

Φ(S)(U, V ) =

∫ A,B,X,Y

A (U,A⊗X ⊗B)⊗A (A⊗ Y ⊗B, V )⊗ S(X, Y ).

Recall that left adjoint V -functors Ψ : [X op, V ] // [Y op, V ] are equivalent to V -

functors Ψ̌ : Y op ⊗ X // V , which are also called modules Ψ̌ : X � // Y from X to
Y . The equivalence is defined by:

Ψ̌(Y, X) = Ψ(X (−, X))(Y )
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and

Ψ(M)(Y ) =

∫ X

Ψ̌(Y,X)⊗M(X).

It follows that Φl, Φr and Φ determine monads Φ̌l, Φ̌r and Φ̌ on A op ⊗ A in the
bicategory V -Mod. The formulas are:

Φ̌l(X, Y, U, V ) =

∫ A

A (U,A⊗X)⊗A (A⊗ Y, V ),

Φ̌r(X, Y, U, V ) =

∫ B

A (U,X ⊗B)⊗A (Y ⊗B, V ), and

Φ̌(X, Y, U, V ) =

∫ A,B

A (U,A⊗X ⊗B)⊗A (A⊗ Y ⊗B, V ).

6. Doubles

The bicategory V -Mod admits the Kleisli construction for monads. Write DlA , DrA
and DA for the Kleisli V -categories for the monads Φ̌l, Φ̌r and Φ̌ on A op ⊗ A in the
bicategory V -Mod. We call them the left double, right double and double of the monoidal
V -category A . They all have the same objects as A op ⊗A . The homs are defined by

DlA ((X,Y ), (U, V )) =

∫ A

A (U,A⊗X)⊗A (A⊗ Y, V ),

DrA ((X, Y ), (U, V )) =

∫ B

A (U,X ⊗B)⊗A (Y ⊗B, V ), and

DA ((X, Y ), (U, V )) =

∫ A,B

A (U,A⊗X ⊗B)⊗A (A⊗ Y ⊗B, V ).

6.1. Proposition. There are canonical equivalences of V -categories:

• Ξl : LTamb(A ) ' [DlA , V ],

• Ξr : RTamb(A ) ' [DrA , V ], and

• Ξ : Tamb(A ) ' [DA , V ].

It follows from the main result of Day [Day70] that these doubles DlA , DrA and DA
all admit promonoidal structures (Pl, Jl), (Pr, Jr) and (P, J) for which the equivalences in
Proposition 6.1 become monoidal when the right-hand sides are given the corresponding
convolution structures. For example, we calculate that Pl and Jl are as follows:

Pl((X, Y ),(U, V ); (H, K)) = (DlA ((X, Y ),−)⊗A DlA ((U, V ),−))(H, K)

=

∫ Z,A,B

A (H, A⊗X)⊗A (A⊗ Y, Z)⊗A (Z,B ⊗ U)⊗A (B ⊗ V, K)

=

∫ A,B

A (H, A⊗X)⊗A (A⊗ Y,B ⊗ U)⊗A (B ⊗ V, K)
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and
Jl(H, K) = A (H, K).

Furthermore, there are some special morphisms that exist in these doubles DlA , DrA
and DA . Let α̃l : (X, Y ) // (A ⊗ X,A ⊗ Y ) denote the morphism in DlA defined by
the composite

I A (A⊗X, A⊗X)⊗A (A⊗ Y,A⊗ Y )
jA⊗X⊗jA⊗Y //

DlA ((X, Y ), (A⊗X, A⊗ Y ))
coprA // .

The V -functor Ξl has the property that Ξl(T, αl)(X, Y ) = T (X, Y ) and Ξl(T, αl)(α̃l) = αl.
When A is right closed, we let β̃l : (X, Y A) // (A⊗X, Y ) denote the morphism in DlA
defined by the composite

I A (A⊗X, A⊗X)⊗A (A⊗ Y A, Y )
jA⊗X⊗er // DlA ((X, Y A), (A⊗X, Y ))

coprA // .

Then Ξl(T, αl)(β̃l) = βl.
Similarly, we have the morphism α̃r : (X,Y ) // (X ⊗ B, Y ⊗ B) in DrA , and also,

when A is left closed, the morphism β̃r : (X, BY ) // (X ⊗B, Y ).
There are V -functors DlA // DA oo DrA which are the identity functions on

objects and are defined on homs using projections with B = I for the left leg and the
projections A = I for the second leg. In this way, the morphisms α̃l and α̃r can be
regarded also as morphisms of DA . Under closedness assumptions, the morphisms β̃l

and β̃r can also be regarded as morphisms of DA .
Let Σl denote the set of morphisms β̃l : (X, Y A) // (A ⊗ X, Y ), let Σr denote the

set of morphisms β̃r : (X, BY ) // (X ⊗ B, Y ), and let Σ denote the set of morphisms
Σ = Σl ∪ Σr. Under appropriate closedness assumptions on A , we can form various
V -categories of fractions such as:

• LDA = DlA [Σ−1
l ] and RDA = DrA [Σ−1

r ],

• DlsA = DA [Σ−1
l ] and DrsA = DA [Σ−1

r ], and

• DsA = DA [Σ−1].

The following result is now automatic.

6.2. Theorem. For a closed monoidal V -category A , there are equivalences of V -
categories:

• [LDA , V ] ' LTambs(A ) ' [A , V ],

• [DlsA , V ] ' Tambls(A ) ' Zl[A , V ], and

• [DsA , V ] ' Tambs(A ) ' Z[A , V ].
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The first equivalence of Theorem 6.2 implies that LDA and A are Morita equivalent.
This begs the question of whether there is a V -functor relating them more directly. Indeed
there is. We have a V -functor

Π : DlA // A

defined on objects by Π(X, Y ) = Y X and by defining the effect

Π : DlA ((X,Y ), (U, V )) // A (Y X , V U)

on hom objects to have its composite with the A-coprojection equal to the composite

A (U,A⊗X)⊗A (A⊗ Y, V )

V (−)⊗(−)A⊗X

// A (V A⊗X , V U)⊗A ((A⊗ Y )A⊗X , V A⊗X)

composition // A ((A⊗ Y )A⊗X , V U)

A ((dr)X ,V U ) // A (Y X , V U) .

It is easy to see that Π takes the morphisms β̃l : (X, Y A) // (A⊗X, Y ) to isomorphisms.
So Π induces a V -functor

Π̂ : LDlA // A ;

this induces the first equivalence of Theorem 6.2.
For closed monoidal A , the second and third equivalences of Theorem 6.2 show that

both the lax centre and the centre of the convolution monoidal V -category [A , V ] are
again functor V -categories [DlsA , V ] and [DsA , V ]. Since Zl[A , V ] and Z[A , V ] are
monoidal with the tensor products colimit preserving in each variable, using the cor-
respondence in [Day70], there are lax braided and braided promonoidal structures on
DlsA and DsA which are such that [DlsA , V ] and [DsA , V ] become closed monoidal
under convolution, and the equivalences of Theorem 6.2 become lax braided and braided
monoidal equivalences.

6.3. Remark.

• We are grateful to Brian Day for pointing out that the V -category AM appearing
in [DS07] is equivalent to the full sub-V -category of DA consisting of the objects
of the form (I, Y ).

• He also pointed out that a consequence of Theorem 6.2 is that the centre of V as
a V -category is equivalent to V itself. This also can be seen directly by using the
V -naturality in X of the centre structure uX : A ⊗ X // X ⊗ A on an object A
of V , and the fact that uI = 1, to deduce that uX = cA,X (the symmetry of V ).
Generally, the centre of V as a monoidal Set-category is not equivalent to V .
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Aurelio Carboni, Università dell Insubria: aurelio.carboni@uninsubria.it
Valeria de Paiva, Xerox Palo Alto Research Center: paiva@parc.xerox.com
Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, University of Western Sydney: s.lack@uws.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@acsu.buffalo.edu
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