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ALGEBRAIC CATEGORIES WHOSE PROJECTIVES ARE
EXPLICITLY FREE

MATÍAS MENNI

Abstract.

Let M = (M,m,u) be a monad and let (MX,m) be the free M-algebra on the object
X. Consider an M-algebra (A, a), a retraction r : (MX,m) → (A, a) and a section
t : (A, a) → (MX,m) of r. The retract (A, a) is not free in general. We observe that
for many monads with a ‘combinatorial flavor’ such a retract is not only a free algebra
(MA0,m), but it is also the case that the object A0 of generators is determined in
a canonical way by the section t. We give a precise form of this property, prove a
characterization, and discuss examples from combinatorics, universal algebra, convexity
and topos theory.

1. Introduction

Let {ai ∈ N}i≥0 be a sequence obtained by counting the number of elements/figures of a
given object A. Why is it the case that, for some {bi}i≥0, we have:

1.
∑

n≥0 an
xn

n!
= eG where G =

∑
n≥0 bn

xn

n!
, or

2. an =
∑

i∈N bi
(
n
i

)
or

3. an =
∑

i∈N bi S(n, i) where S(n, i) is the Stirling number of the second kind?

The reason is that A can be given the structure of a free algebra for a monad related to
the type of series involved. (There is a monad associated to e( ), one associated to the
assignment {bi}i≥0 7→

∑
i≥0 bi

(
x
i

)
and one to the assignment {bi}i≥0 7→

∑
i≥0 bi S(x, i).)

The investigation of this observation lead us to the study of Kleisli categories which
turned out to have more limits than is usual for a category of free algebras. In particular,
idempotents split in all examples. In other words, projectives are free. The relation
between projective and free objects is well-explained in Proposition III.3.2 of [4]. Let
G : C → D have a left adjoint F and denote by CG the class of maps f in C such that
Gf is split epi. An object of C is CG-projective if and only if it is a retract of an object
in the image of F .
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510 MATÍAS MENNI

Under mild completeness hypotheses on the base categoryD, every retract t : A → FX
of a free algebra determines a subobject U → A in D. We study monads for which A is
free on U . That is, projectives are free and moreover, there is an explicit way to calculate
the object of generators.

In Section 2 we formulate the precise form of the property suggested in the previous
paragraph and call it the Explicit Basis property. For brevity, monads that satisfy this
property are called EB. For example, the category of compact convex sets is algebraic over
the category of compact Hausdorff spaces and, in Section 3, we show that the associated
monad is EB. A characterization of EB monads is proved in Section 4, and applied in
Sections 5 to 11 in order to discuss more examples. The relation with combinatorics is
informally discussed in Section 12. In Section 13, we explain why most of the monads we
use have a conservative underlying functor. It is also curious that our examples satisfy
that canonical presentations of algebras have at most one section. Section 14 explains
why this is the case, when the base category is Heyting.

The following terminology will be used throughout the paper. Let M be a monad,
(A, a) an M-algebra and f : U → A a morphism in the base category. The composition
a(Mf) : MU → A underlies a morphism (MU,m) → (A, a) of algebras. The map f is
called independent (w.r.t. the algebra (A, a)) if the induced map a(Mf) : MU → A is
mono. Similarly, f is called spanning if a(Mf) : MU → A is regular epi. Finally, f is
called a basis for the M-algebra (A, a) if it is both independent and spanning. We will
usually apply these definitions to a subobject U → A.

2. The Explicit Basis property

Let M = (M,u,m) be a monad on a category D. Every algebra (A, a) has a canonical
presentation given by a : (MA,m) → (A, a). Each section s : (A, a) → (MA,m) of the
canonical presentation induces a Unity and Identity of Opposites

A

u //

s
//
MAaoo

in the base category D, with a : MA → A as a common retraction of the subobjects u
and s. As observed in [8], “The existence of a common retraction implies a striking
property not shared by most pairs of subobject inclusions with a common codomain: the
intersection of the subobjects is given by the equalizer of the inclusions!”

In the particular coreflexive pairs we are considering, oppositeness is manifested by
the fact that one of the inclusions is an algebra morphism and the other is very much not
so. It will be useful to introduce the following terminology.

2.1. Definition. For a Unity and Identity of Opposites as above, the canonical restric-
tion of the section s : (A, a) → (MA,m) is the map s : As → A in D such that the square
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on the left below

As

s
��

s // A

u

��

As
s // A

u //

s
// MA

A s
// MA

is a pullback and, equivalently, the fork on the right is an equalizer.

(Canonical restrictions need not exist. But we will always, tacitly or explicitly, assume
that they do. Clearly, if the base D has finite limits, as in most of our examples, canonical
restrictions exist.)

A key fact in the proof of the main result in [13] is that every retract of a free
object in AlgM induces a Unity and Identity of Opposites of the restricted kind dis-
cussed above. More explicitly, let r : (MX,m) → (A, a) be a map in AlgM with a
section t : (A, a) → (MX,m). Applying the free algebra functor to the composition
ruX : X → A, and pre-composing the result with t, we obtain an algebra map

(A, a) t // (MX,m) Mu // (MMX,mM) Mr // (MA,m)

that we denote by [t; r] : (A, a) → (MA,m).

2.2. Lemma. The map [t; r] : (A, a) → (MA,m) is a section of the canonical presenta-
tion a : (MA,m) → (A, a).

Proof. The commutative diagram below, with [t; r] appearing in the top row,

A
t // MX

id %%KKKKKKKKK
Mu // MMX

m

��

Mr // MA

a

��
MX r

// A

shows that a[t; r] = rt = id.

2.3. Lemma. The following are equivalent:

1. for every morphism r : (MX,m) → (A, a) with a section t : (A, a) → (MX,m), the
canonical restriction [t; r] : A[t;r] → A is a basis for (A, a).

2. for every algebra (A, a) and section s : (A, a) → (MA,m) of a : (MA,m) → (A, a),
the canonical restriction s : As → A is a basis for (A, a).

Proof. The second item trivially implies the first. To prove the converse, notice that for
any s and a as in the second item,

[s; a] = (Ma)(Mu)s = (M(au))s = s

so the first item implies the second.
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We state the main definition in its full generality and consider, in this section, a couple
of examples and results that do not necessarily have a base with finite limits.

2.4. Definition. The monad M satisfies the Explicit Basis property if canonical re-
strictions exist and the equivalent conditions of Lemma 2.3 hold.

A section s : (A, a) → (MA,m) of the canonical presentation of (A, a) induces a ‘pu-
tative basis’ for the algebra (A, a). The Explicit Basis property requires these ‘putative
bases’ to be actual bases. For brevity, a monad satisfying the Explicit Basis property will
be called an EB monad.

The first item of Lemma 2.3 makes it clear that the Explicit Basis property is a
condition about projectives in the category of algebras. The second item is the formulation
we will use in practice.

2.5. Proposition. Assume that idempotents split in D. If M is EB then idempotents
split in the Kleisli category KlM.

Proof. Let e : (MX,m) → (MX,m) be an idempotent in KlM. As idempotents split
in the base, we can consider the splitting of e in AlgM. Let e = tr be a splitting of e
with r : (MX,m) → (A, a) and t : (A, a) → (MX,m) a section of r. By hypothesis, the
canonical restriction [t; r] : A[t;r] → A is a basis for (A, a). So the composition

M(A[t;r])
M [t;r] // MA

a // A

is an iso. That is, the splitting of e lies in the Kleisli category.

We now consider some examples and non-examples. The identity monad on any
category is EB. This trivial observation is also a particular case of the following.

2.6. Lemma. Every idempotent monad satisfies the Explicit Basis property.

Proof. If s : (A, a) → (MA,m) is a section for the canonical presentation of (A, a) then
sa = m(Ms). As m is an iso and Ms is mono, a is mono. Since it is also split epi, a is
an iso. So it has a unique section and this implies that s = u. The canonical restriction
s : As → A determined by s is id : A → A. It is a basis for (A, a) because a is an iso.

A simple example of a different type is the algebraic category of pointed sets. The
canonical functor 1/Set → Set is algebraic and the resulting monad on Set satisfies the
Explicit Basis property. It is easy to check this fact directly, but it is also worth looking
at it from a more general perspective.

Assume that D has finite coproducts and let D be an object in D. The canonical
functor D/D → D is algebraic and the resulting monad M = (M,u,m) has underlying
functor M = D + ( ) : D → D, unit uX = in1 : X → D +X given by right injection, and
multiplication given by the codiagonal mX = ∇+X : D +D +X → D +X. If D is
extensive, pullbacks along injections exist and so, canonical restrictions exist.

2.7. Proposition. If D is extensive then the monad induced by D/D → D is EB.
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Proof. We identify an algebra with a pair (A, a) where A is an object ofD and a : D → A.
The canonical presentation of such an algebra is given by the map [a, id] : D + A → A as
in the commutative diagram below

D
in0

{{ww
ww

ww
ww

w
a

��@
@@

@@
@@

D + A
[a,id]

// A

where in0 : D → D + A is the free algebra on A. Consider a section of the canonical
presentation. That is, a map s : A → D + A such that sa = in0 and [a, id]s = id : A → A.
The square on the right below

D

id
��

a // A

s

��

As
soo

s
��

D
in0

// D + A A
in1

oo

is a pullback by definition of canonical restriction. On the other hand, the left square
above commutes because s is a morphism of algebras. Moreover, the square is a pullback
because s is mono. As D is extensive, the cospan

D
a // A As

soo

is a coproduct diagram. It follows that [a, s] : D + As → A is an iso. This means that
s : As → A is a basis for (A, a).

Let us look at some non-examples. By Proposition 2.5, any monadic category over
Set with some non-free regular projective provides a non-example.

2.8. Example. Consider the category cHaus of compact Hausdorff spaces. The functor
cHaus → Set is monadic . Its left adjoint is given by the Stone-Cech compactification
(restricted to discrete spaces). The characterization of projective objects in cHaus as
extremally disconnected spaces [4], implies that there are projectives which are not free.

Another source of non-examples is the following.

2.9. Proposition. [G. Janelidze] Let R be a ring. The monad on Set determined by
the algebraic category of R-modules is EB if and only if R is trivial.

Proof. If R is trivial then so is the monad and the trivial monad is EB. Conversely,
assume that the monad is EB, consider R with its canonical module structure and take
the free module, denoted by MR, on R. Then consider the linear map s : R → MR
defined by sx = x(0 + 1) where 0 and 1 are the elements 0 and 1 seen as generators in
MR. It is easy to see that s is a section for the canonical presentation of R and that
the subset s : Rs → R is empty. Indeed, if we identify the elements of MS as functions



514 MATÍAS MENNI

f : S → R where fx ̸= 0 for only a finite number of elements of S then ux has value 1 at
exactly one point. On the other hand, s0 is 0 everywhere and for x ̸= 0, (sx)0 = x = (sx)1
so cannot be ux if 0 ̸= 1. This shows that ∅ → R is the subobject s : Rs → R determined
by s. But R is not free on 0 generators.

(The referee pointed out that Proposition 2.9 also holds for R a rig, in the sense of [14].
Notice that it follows, from this more general result, that the monad on Set determined
by the algebraic category of commutative monoids is not EB.)

When discussing Proposition 2.9 with some colleagues I found that they saw the
result as suggesting that the Explicit Basis property was probably of little interest. It is
true that the EB property is quite restrictive, but there are more examples than what
Proposition 2.9, and its generalization to rigs, may suggest. Before looking at more
examples let us make a general remark.

We can split the EB property into an ‘independent part’ and a ‘spanning part’. Propo-
sition 2.11 below shows that the independent part is ‘easier’ than the spanning one.

2.10. Lemma. If s : (A, a) → (MA,m) then sa(Ms) = Ms : MAs → MA.

Proof. The diagram below

MAs
Ms // MA

Mu
��

Ms
��

a // A

s

��
MMA m

// MA

shows that sa(Ms) = m(Mu)(Ms) = Ms.

Using this observation we obtain a useful characterization of independence.

2.11. Proposition. If s : (A, a) → (MA,m) then the canonical restriction s : As → A
is independent if and only if Ms is mono.

Proof. If a(Ms) is mono, Ms is mono. For the converse, notice that sa(Ms) = Ms by
Lemma 2.10 so, as Ms is mono, a(Ms) is also mono.

We will mostly concentrate on examples where the following is applicable.

2.12. Corollary. Let D have finite limits and M preserve monos. Then the monad
M is EB if and only if for every algebra (A, a) and section s : (A, a) → (MA,m) of
a : (MA,m) → (A, a), the canonical restriction s : As → A is spanning for (A, a).

More briefly, M is EB iff canonical restrictions are spanning.

3. Compact convex sets

The example discussed in this section was suggested by Lawvere who observed that the
idea of a canonical subobject of generators was similar to the relation between a compact
convex set and its subset of extreme points.
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By a compact convex set we mean a compact convex subset of a locally convex Haus-
dorff real vector space. The set of extreme points of a compact convex set K is denoted
by ∂eK. Let cConv be the category of compact convex sets and continuous affine func-
tions between them. The underlying space functor cConv → cHaus is monadic ([17]
and 23.7.2 in [16]). The left adjoint assigns to a compact Hausdorff space X the convex
set PX of probability measures on X. Let us denote the resulting monad by (P ,u,m).
The unit u : X → PX assigns to each x in X the Dirac measure δx on X at x. The unit
also coincides with the subset ∂e(PX) → PX equipped with the subspace topology (VII
in [15]).

3.1. Lemma. The functor P : cHaus → cHaus is conservative.

Proof. The functor is faithful because the unit u : Id → P is mono. As cHaus is bal-
anced, it follows that P reflects isos.

If K is a compact convex set then there is a continuous affine function r : PK → K
which assigns to each probability measure on K its centroid or barycenter (23.4.2 in [16]).
The map r is, of course, the canonical presentation of K as a P-algebra. We will need
the following characterization of extreme points (Corollary 23.8.3 in [16]).

3.2. Lemma. For K in cConv, x ∈ ∂eK if and only if for every µ ∈ PK, rµ = x implies
µ = δx.

The key to the proof that P is EB is the relation between canonical restrictions and
subsets of extreme elements.

3.3. Lemma. Let K be a free P-algebra and let s : K → PK in cConv be a section of
r : PK → K. Then the canonical restriction s : Ks → K coincides with ∂eK → K.

Proof. The facts recalled before Lemma 3.1 imply that ∂eK is a compact Hausdorff
space and that ∂eK → K is a basis for K. We claim that the following diagram

∂eK // K
u //

s
// PK

commutes. To prove the claim, let x ∈ ∂eK. Since r(sx) = x, Lemma 3.2 implies that
sx = δx, so sx = ux. The commutative diagram implies that ∂eK → K factors through
the canonical restriction s : Ks → K. Let j : ∂eK → Ks be the unique map making the
diagram on the left below

∂eK

j

��   B
BB

BB
BB

B P(∂eK)

Pj

��

// PK
r

  A
AA

AA
AA

AA

Ks s
// K P(Ks) Ps

// PK r
// K

commute. We then have a diagram as on the right above with top-right composition an
iso. It follows that Pj is mono. As P preserves monos (see 23.7.2 and 18.3.4 in [16]), s
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is independent by Proposition 2.11. That is, the bottom line of the diagram on the right
above is mono. It follows that Pj is also split epi and hence an iso. But P reflects isos
(Lemma 3.1). So j : ∂eK → Ks is an iso.

Idempotents split in the Kleisli category for (P ,u,m). Indeed, Theorem 6 in [15]
proves that every retract K of a simplex S is again a simplex. It also shows that if S is
regular (i. e. the subset ∂eS → S is closed) then K is also regular. Theorem 23.7.1 in [16]
proves that regular simplexes coincide with free P-algebras.

3.4. Proposition. The monad determined by cConv → cHaus is EB.

Proof. Let s : K → PK be a section of r : PK → K in cConv. As idempotents split
in the Kleisli category, K is free and so ∂eK → K is a basis. But then s : Ks → K is a
basis by Lemma 3.3.

The composition cConv → cHaus → Set is monadic. This is proved in [17] using
a variation of a ‘tripleability criterion’ due to Linton. The left adjoint is the Stone-
C̆ech compactification β : Set → cHaus followed by P . The monad determined by the
composition cConv → Set does not satisfy the Explicit Basis property, though. This
can easily be seen as follows. Let βS be the free compact Hausdorff space on the set S
and consider a retract s : X → βS in cHaus. The space X is extremally disconnected
but need not be of the form βS ′ for a set S ′. Applying P : cHaus → cConv we obtain
a retract PX of P(βS). But PX is not a free (Pβ)-algebra. So idempotents do not split
in the Kleisli category for the monad (Pβ) and hence the monad is not EB. It seems
relevant to remark, though, that Theorem 9 in [15] proves that the retracts of compact
convex sets of the form P(βS) are always of the form PX for an extremally disconnected
space X.

Proposition 23.1.7 in [16] states that for morphisms s, t : K → K ′ in cConv, if the
diagram below

∂eK
⊆ // K

s //

t
// K ′

commutes in Set then s = t. Some of this ‘denseness’ phenomenon is present at a more
general level.

3.5. Proposition. Let s, t : (A, a) → (MA,m) be sections of the canonical presentation
of (A, a). If their canonical restrictions coincide and are spanning then s = t.

Proof. Let As = B = At and s = t : B → A. Then calculate with the aid of Lemma 2.10:
sa(Ms) = Ms = Mt = ta(Mt). Since a(Ms) = a(Mt) is epi by hypothesis, s = t.

If the Explicit Basis property holds, canonical restrictions are spanning.

3.6. Corollary. Let M be an EB monad and let s, t be sections of a : (MA,m) → (A, a).
If their canonical restrictions coincide then s = t.
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4. A characterization of intersection-preserving EB monads

In this section we let the base category D have finite limits.

4.1. Lemma. For any s : A → MA in D, the morphism m(Ms) : (MA,m) → (MA,m)
is idempotent in KlM if and only if the following diagram

A
s // MA

id
**

Ms
// MMA m

// MA

commutes in D.

If the equivalent conditions of Lemma 4.1 hold then we say that s : A → MA is a
Kleisli-idempotent. Notice that commutativity of the diagram in the statement is equiv-
alent to the commutativity of the one below.

A
s // MA

Mu //

Ms
// MMA

m // MA

We will find it convenient to introduce a strengthening of this concept.

4.2. Definition. A morphism s : A → MA in D is called a strong Kleisli-idempotent
if the following diagram

A
s // MA

Mu //

Ms
// MMA

commutes.

Clearly, every strong Kleisli-idempotent is a Kleisli-idempotent.

4.3. Lemma. Let s : (A, a) → (MA,m) be a section of the canonical presentation of
(A, a). If s : As → A is spanning then s : A → MA is a strong Kleisli-idempotent.

Proof. The morphism a(Ms) : MAs → A is epi by hypothesis. So it is enough to check
that (Mu)s(a(Ms)) = (Ms)s(a(Ms)). Consider the following diagram

MAs
Ms // MA

a

��

Mu //

Ms
// MMA

m

��
A s

// MA
Mu //

Ms
// MMA

where the small square commutes because s is an algebra map. The top fork com-
mutes by definition of s and, as m(Mu) = id, the problem reduces to the equality
(Mu)(Ms) = (Ms)(Ms), which holds by definition of s.
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We say that M preserves intersections if, for every pullback diagram of monos in D
as on the left below,

U ∩ V

π0

��

π1 // V

v

��

M(U ∩ V )

Mπ0

��

Mπ1 // MV

Mv

��
U u

// X MU
Mu

// MX

the square on the right is also a pullback.

4.4. Lemma. Let s : (A, a) → (MA,m) be a section of a : (MA,m) → (A, a). If M
preserves intersections then s : As → A is spanning if and only if s : A → MA is a strong
Kleisli-idempotent.

Proof. One direction is proved in Lemma 4.3. For the converse, assume that s : A → MA
is a strong Kleisli-idempotent. As M preserves intersections, the following diagram

MAs
Ms // MA

Mu //

Ms
// MMA

is an equalizer. So, as s is a strong Kleisli idempotent, the map s : A → MA factors
through the subobject Ms : MAs → MA. But then, trivially, as = id : A → A factors
through a(Ms). So a(Ms) is split epi and hence, s : As → A is spanning.

Notice that, if M preserves intersections then it preserves monos. So, by Lemma 4.4,
we obtain the following variation of Corollary 2.12.

4.5. Proposition. If M preserves intersections then M is EB if and only if for every
algebra (A, a), and section s : (A, a) → (MA,m) of a : (MA,m) → (A, a), the Kleisli-
idempotent s : A → MA is strong.

(Incidentally, observe that the same result holds if we replace preservation of inter-
sections with the awkward hypothesis ‘preserves monos and equalizers’. Preservation of
monos implies that independence is easy and preservation of equalizers allows to prove
Lemma 4.4. But it is the explicit consideration of UIOs which suggests the much cleaner
hypothesis stated in Proposition 4.5. Again, I would like to thank Lawvere for the sugges-
tion to take advantage of the intersection/equalizer coincidence for opposites in a UIO.)

So far, we have only used finite limits in D to construct canonical restrictions. Fur-
ther exploiting the assumption of finite limits in the base, it is possible to characterize
intersection preserving EB monads without mentioning algebras.

4.6. Lemma. Let s : A → MA be a Kleisli-idempotent in the category D. If the idempo-
tent m(Ms) : (MA,m) → (MA,m) splits (in AlgM) as a retraction r : (MA,m) → (B, b)
followed by a section t : (B, b) → (MA,m) then the following hold:

1. The map s is mono if and only if the composition ru : A → B is mono.
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2. The diagram below

A

s

��

u // MA
r // B

[t;r]

��
MA

Mu
// MA

Mr
// MB

commutes.

Proof. The diagram below

A

s

��

u // MA

Ms
��

r // B

t
��

MA

id

44
uM // MMA

m // MA

shows that tru = s. Hence, s is mono if and only if ru is. To prove the second item,
recall (Lemma 2.2) that [t; r] is the composition (Mr)(Mu)t : B → MB. Then calculate
using the diagram above: [t; r]ru = (Mr)(Mu)tru = (Mr)(Mu)s.

4.7. Proposition. If M preserves intersections then the following are equivalent:

1. M satisfies the Explicit Basis property,

2. every monic Kleisli-idempotent is strong.

Proof. The second item in the statement implies the first by Proposition 4.5. So we
need only show the converse. Assume that the monad is EB and that s : A → MA is a
monic Kleisli-idempotent. We need to show that it is strong. As D has finite limits, the
idempotent m(Ms) : (MA,m) → (MA,m) splits in AlgM. Let t : (B, b) → (MA,m) to-
gether with r : (MA,m) → (B, b) be a splitting of the idempotent. So that rt = idB and
tr = m(Ms) : MA → MA. The Kleisli idempotent [t; r] : B → MB is strong by Proposi-
tion 4.5. So the bottom fork of the diagram below commutes. If we denote the composition
ru by i : A → B then the diagram below

A

i
��

s // MA

Mi
��

u
''

Ms
// MMA

MMi
��

B
[t;r]

// MB

u
''

M [t;r]
// MMB

commutes by Lemma 4.6. To prove that the top fork commutes it is enough to show that
MMi is mono. But M preserves monos and i = ru is mono by Lemma 4.6.
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In many cases it will be possible to apply the following sufficient condition.

4.8. Corollary. If M preserves pullbacks and every Kleisli-idempotent is strong then
M is EB.

5. Categories and reflexive graphs

Let ∆1 be the three-element monoid of all order-preserving endos of the two-element
linearly ordered set, and consider the presheaf topos ∆̂1 of ‘reflexive graphs’ [7]. There

is an obvious ‘underlying graph’ functor Cat → ∆̂1 where Cat denotes the category of
small categories and functors between them. Consider its left adjoint F : ∆̂1 → Cat.
Each object G in ∆̂1 has ‘identity’ edges and ‘non-identity’ edges. The category FG has,
as objects, the nodes of G. For each pair (x, x′) of nodes, the morphisms from x to x′

correspond to sequences [f1, . . . , fn] of non-identity edges appearing as in a diagram below

x
fn

// ·
fn−1

// · . . . ·
f2

// ·
f1

// x′

in G. For each node x, the empty sequence [] in (FG)(x, x) acts as the identity morphism of

the object x. Denote the resulting monad on ∆̂1 byM = (M,u,m). The unit u : G → MG
maps each node to itself, each identity edge to the corresponding empty sequence and each
non-identity f in G to the morphism (f) in FG. The multiplication MMG → MG maps
a sequence of sequences to the obvious ‘flattened’ sequence.

We show that M is EB using Proposition 4.7. This example also shows that Corol-
lary 4.8 is not always applicable. One reason is the following.

5.1. Example. [M does not preserve pullbacks.] The functor M preserves the termi-
nal object. So, to show that it does not preserve pullbacks in general, it is enough to
show that it does not preserve products. Consider the total order 2 with two elements,
seen as a reflexive graph. Since there are no composable non-identity arrows, it follows
that M2 = 2. To confirm that M does not preserve products compare M(2× 2) with
(M2)× (M2) = 2× 2.

On the other hand, it is straightforward to prove the following.

5.2. Lemma. The functor M : ∆̂1 → ∆̂1 preserves intersections.

It is clear that Corollary 4.8 is still valid if we weaken the hypothesis to an intersection-
preserving M . This stronger result is not applicable either to our present M.

5.3. Example. [A non-strong Kleisli-idempotent.] Consider the reflexive graph G with
one node and two non-identity loops, say, a and b. Let s : G → MG be the graph mor-
phism determined by sa = [a, b] and sb = []. To check that s is a Kleisli-idempotent
notice that, trivially, m(Ms)(s id) = m(Ms)[] = [] = s id where id denotes the unique
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identity in G. We also have that m(Ms)(sb) = m(Ms)[] = [] = sb. Finally, to check that
m(Ms)(sa) = sa, notice first that

(Ms)[a, b] = [sa, sb] = [sa][sb] = [[a, b]][] = [[a, b]] ∈ MMG

and so,
m((Ms)(sa)) = m((Ms)[a, b]) = m[[a, b]] = [a, b] = sa

which completes the verification that s is a Kleisli idempotent. On the other hand,
(Mu)(sa) = (Mu)[a, b] = [[a], [b]] but (Ms)(sa) = (Ms)[a, b] = [[a, b]]. So s is not strong.

So we rely on Proposition 4.7 to prove the following.

5.4. Corollary. The monad on ∆̂1 induced by the forgetful Cat → ∆̂1 is EB.

Proof. Let G be a reflexive graph and let s : G → MG be a monic Kleisli-idempotent.
We need to show that (Mu)s = (Ms)s : G → M(MG). The first thing to notice is that,
as s is monic, sf = [] implies f is an identity edge. Also, if f is an identity edge, then
(Mu)(sf) = [] = (Ms)(sf) so we can concentrate on the case when f is not an identity.
Let sf = [f1, . . . , fn] with all fi non-identities in G and n ≥ 1. Let sfi = [gi,1, . . . , gi,ki ]
with ki ≥ 1. As s is a Kleisli idempotent we have that

[f1, . . . , fn] = sf = m((Ms)[f1, . . . , fn]) = m[sf1, . . . , sfn] = [g1,1, . . . , g1,k1 , g2,1, . . . , gn,kn ]

in MG. But since, ki ≥ 1 for all i, then we must have that ki = 1 and that gi,1 = fi. So
that sfi = [fi] and it follows that (Mu)(sf) = (Ms)(sf).

Non-reflexive graphs also generate free categories. The forgetful U : Cat → Set⇒

assigns, to each small category, its underlying non-reflexive graph. Denote its left adjoint
by F : Set⇒ → Cat. For each G in Set⇒, the objects of FG are the nodes of G. For each
pair (x, x′) of nodes, the morphisms from x to x′ correspond to ‘paths’ [f1, . . . , fn] of edges
as in the previous case, but in the present case there is no distinction between ‘identity’
and ‘non-identity’ edges. Denote the resulting monad on Set⇒ by M = (M,u,m). The
unit u : G → MG maps an edge f in G to the morphism [f ]. In contrast with the previous

case, the identities of FG are not in the image of u. Despite the similarities, the toposes ∆̂1

and Set⇒ are quite different [7]. So the following qualitative distinction is not surprising.

5.5. Example. [Cat is not EB over Set⇒.] Consider the monoid (N,+, 0) as a category
and let N in Set⇒ be its underlying graph. The free category FN coincides with the free
monoid (N∗, ∗, []) seen as a category. The canonical presentation (N∗, ∗, []) → (N,+, 0) as-
signs to each sequence [n1, . . . , nk] in N∗, the sum n1 + . . .+ nk. The assignment 1 7→ [0, 1]
extends to a unique monoid morphism s : (N,+, 0) → (N∗, ∗, ()). It is clearly a section for
the canonical presentation. But its canonical restriction is the empty subobject 0 → N,
which is not spanning.
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6. Presheaves on reduced categories

Let C be a small category and let ι : C0 → C be the discrete subcategory determined by
all the objects of C. Precomposition with ι determines a monadic functor ι∗ : Ĉ → Ĉ0
between the presheaf toposes Ĉ and Ĉ0. Its left adjoint is denoted by ι! : Ĉ0 → Ĉ. Let
M = (M,u,m) be the induced monad on Ĉ0 withM = ι∗ι!. We characterize the categories

C such that M is EB. The left adjoint ι! : Ĉ0 → Ĉ can be explicitly described as follows.
For P in Ĉ0 and C in C, (ι!P )C =

∑
D∈C PD × C(C,D). This explicit description allows

a direct proof that ι! preserves pullbacks. (We discuss an alternative proof in Section 9.)
The unit u : P → MP assigns, to each x ∈ PC, the element (x, idC) ∈ (MP )C.

A category C is reduced if every idempotent in C is an identity. (See p. 294 in [7].)

6.1. Lemma. If C is reduced then every Kleisli-idempotent in Ĉ0 is strong.

Proof. Let P be a presheaf in Ĉ0 and let s : P → MP be such that m(Ms)s = s. Fix an
x ∈ PC. Let sx = (y, g) with g : C → D and sy = (z, h) with h : D → E. Now calculate:

(y, g) = sx = m((Ms)(y, g)) = m((z, h), g) = (z, hg)

and conclude that g = hg and y = z. It follows that sy = (y, h) and so, the following
calculation

(y, h) = sy = m((Ms)(y, h)) = m(sy, h) = m((y, h), h) = (y, hh)

implies that h is idempotent. As C is reduced, h = 1. So sy = (y, 1) = uy.

We have already observed that ι! preserves pullbacks. Its right adjoint obviously
preserves limits. So M = ι∗ι! preserves pullbacks. Corollary 4.8 together with Lemma 6.1
imply that M is EB. The characterization below states that the converse also holds.

6.2. Proposition. The monad M on Ĉ0 is EB if and only if C is reduced.

Proof. Denote the representable C0( , B) by y0B in Ĉ0. Notice that

(M(y0B))C =
∑
D∈C

C0(D,B)× C(C,D) ∼= C(C,B)

so each endo h : B → B in C induces a monic natural transformation h : y0B → M(y0B)

in Ĉ0 that maps idB in (y0B)B = C0(B,B) to (id, h) ∈ (M(y0B))B. If h is idempotent
then h is a (monic) Kleisli-idempotent. If the Explicit Basis property holds, h is strong
by Proposition 4.7. Using this fact in the middle of the calculation below

((id, id), h) = (Mu)(id, h) = (Mu)(h idB) = (Mh)(h idB) = (Mh)(id, h) = ((id, h), h)

we obtain that ((id, id), h) = ((id, h), h), so (id, id) = (id, h) and hence, h = id.
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As a byproduct we obtain some EB monads on Set. (We say that an algebraic category
V is EB if the monad on Set determined by the algebraic functor V → Set is EB.)

6.3. Corollary. Let N be a monoid. The category N̂ of right-N-actions is EB if and
only if N is reduced. Moreover, in this case, every Kleisli idempotent is strong.

6.4. Corollary. [Janelidze] The algebraic category of G-sets is EB for every group G.

Corollary 6.4 was one of the first sources of examples of EB monads over Set. The
referee suggested that the result could be extended from groups to a certain class of
monoids. At the same time, Lawvere pointed out that many EB monads are induced by
essential surjections between toposes. These observations naturally led to Proposition 6.2.
Essential surjections will be discussed in more generality in Section 9, where the following
description of the Kleisli category for the monad on Ĉ0 induced by C0 → C will be needed.

6.5. Lemma. The Yoneda embedding C → Ĉ = Alg factors through Kl → Alg and the
factorization C → Kl coincides with the coproduct completion of C.

Proof. Let y0C = C0( , A) ∈ Ĉ0 and yC = C( , C) ∈ Ĉ. As ι : C0 → C is the discrete sub-

category of objects of C, ι!(y0A) = yA. Since Ĉ0 is the coproduct completion of C0, the
Kleisli category for M = ι∗ι! coincides with the coproduct completion of C.

It follows that if every map in C is epi, then Kl → Alg = Ĉ factors through the sub-
category (Ĉ)d → Ĉ of decidable objects of Ĉ.

6.6. Lemma. If C is a finite ordinal then the embedding Kl → (Ĉ)d is an equivalence.

Proof. First notice that for P in Ĉ0, (ι!P )m =
∑

n≥m Pn. Now, for D in (Ĉ)d, and
x ∈ Dm, there exists a largest n such that there is y ∈ Dn with (D(m ≤ n))y = x. As
D is decidable, the pair (n, y) is unique. Define s : D → MD to be the unique morphism
that maps each x in Dm to the corresponding (n, y) ∈ (MD)m. It is easy to check that
s is a Kleisli idempotent. The explicit basis property implies that D is free.

Notice that finiteness is not really needed. The same argument works for (N,≥).

7. Free Algebraic Theories

Every algebraic theory induces a monad on Set. For brevity we say that an algebraic
theory is EB if the corresponding monad satisfies the Explicit Basis property. For ex-
ample, Proposition 2.9 shows that the theory of R-modules is not EB unless R is trivial.
Corollary 6.3 characterizes EB-theories of monoid actions. The theory of pointed sets is
EB by Proposition 2.7.

Let T be the category of algebraic theories. There is a forgetful functor T : T → SetN

which assigns, to each algebraic theory, its set of operations indexed by their arity (see
Section II.2 in [9]). In this context, an object of SetN may be thought of as a set of
‘operations’ indexed by their arity. That is, as a presentation without equations. The
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functor T has a left adjoint F : SetN → T that produces the free theory out of an indexed
set of operations.

7.1. Proposition. Free algebraic theories are EB.

Proof. We use Corollary 4.8. Let P be an object in SetN and let M = (M,u,m) be
the monad determined by the free theory generated by P . The functor M : Set → Set
can be described as assigning, to each set S, the set MS of terms built from elements
of S and using the operations in the presentation P . As there are no equations, there
is no quotienting involved in the construction of the free algebra. So two elements of
the free algebra are equal if and only if they are ‘syntactically’ equal. It is then not
difficult to prove that M preserves pullbacks. Let s : S → MS be a Kleisli-idempotent.
Let v ∈ S and sv = t(v1, . . . , vn) with t(x1, . . . , xn) a term with {x1, . . . , xn} as its set of
free variables and v1, . . . , vn ∈ A. As s is a Kleisli-idempotent, we can calculate as follows

t(v1, . . . , vn) = sv = m((Ms)t(v1, . . . , vn)) = m(t(sv1, . . . , svn)) = t(sv1, . . . , svn)

so, as equality in MA is syntactic equality, it must be the case that svi = vi for every i.
This means that s is strong as a Kleisli-idempotent.

Proposition 7.1 was motivated by an observation due to G. Janelidze, who noticed
that algebraic categories presented using only nullary operations are EB, and that the
key to the proof is that sections for canonical presentations are unique. For example, the
theory of pointed sets. A different example is the theory of ‘discrete dynamical systems’
which can be freely presented by a single unary operation.

The algebraic categories of monoid actions discussed in Corollary 6.3 show that we
can add some equations to a presentation and still get an EB theory. We leave the
characterization of EB theories as an open problem. But before leaving this section we
mention one more example.

7.2. Example. [The theory of monoids is not EB] Same argument used in Example 5.5.

In contrast with Example 7.2, the next section shows that some categories of monoids
do induce EB monads.

8. The Exponential Principle

The symmetric-monoidal completion !1 of the trivial group has, as underlying cate-
gory, the groupoid B of finite sets and bijections. The monoidal structure on !1 in-
duces, via Day’s convolution, a symmetric monoidal structure on SetB that we denote by
Joy = (SetB, ·, I). As explained in [6], every object F of Joy has an associated ‘power
series’ F (x) =

∑
n≥0 ♯(F [n])x

n

n!
and the assignment F 7→ F (x) ‘preserves multiplication’.

Define a functor E : SetB → SetB by the formula

(EF )U =
∑
π

∏
p∈π

FUp
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where the sum ranges over partitions of U . Notice that (EF )∅ = 1. The notation reflects
the fact that (EF )(x) = eF (x). There is a natural transformation u : Id → E defined,
for every F , as follows. When U is ∅, u is the unique F∅ → 1. When U is not empty,
u : FU → (EF )U maps an element x of FU to the unique partition of U with one element
together with x. There is also a transformation m : EE → E whose explicit definition relies
on the operation that takes a partition π of U together with a partition σp of p for each
p in π and builds the evident, finer, partition of U given by the union of the σp’s.

Algebras for the monad E correspond to monoids F in Joy such that F∅ = 1. Free
E-algebras can be characterized as monoids satisfying certain pullback condition [11]. But,
even without this characterization, an application of Corollary 4.8 proves the following.

8.1. Lemma. The monad (E,u,m) on Joy is EB.

The above discussion can be generalized by replacing 1 with a small groupoid G. So
that the presheaf category !̂G is equipped with a symmetric monoidal structure and a
monad E. In particular, the discrete groupoid with two elements induces a symmetric
monoidal structure Joy2 = (SetB×B, ·, I). Each object F ∈ Joy2 in Joy2 has an associ-
ated power series

F (x, y) = . . .+ ♯F ([n], [m])
xnym

n!m!
+ . . .

in two variables x and y. (See Section 5 in [6].) The functor E : SetB×B → SetB×B can
be defined using the formula for E : SetB → SetB, but adjusting the notion of partition.
A partition π of (U, V ) in B×B is a finite collection {(Ui, Vi)}i∈I with Ui or Vi non-
empty for each i and such that {Ui}i∈I is a pairwise disjoint family with union U (notice
that some components may be empty) and similarly for {Vi}i∈I in relation to V . So that
(EF )(U, V ) =

∑
π

∏
(Ui,Vi)∈π F (Ui, Vi) for F in Joy2. The generalized version of Lemma 8.1

implies that the monad E on Joy2 is EB.
Let Y be the object of Joy2 which has value 0 at each (U, V ) except for Y (0, 1) = 1.

Its associated series Y (x, y) is just y. For any G in Joy, let Gx in Joy2 be defined by
Gx(U, V ) = GU if V = 0 and empty otherwise. Its associated series is

Gx(x, y) = G0 + (G1)x+ . . .+ (Gn)
xn

n!
+ . . .

so the series associated to Y ·Gx is

(G0)y + (G1)yx+ (G2)
yx2

2
+ . . .+ (Gn)

yxn

n!
+ . . .

because (Y ·Gx)(U, 1) = GU and (Y ·Gx)(U, V ) = 0 if V ̸= 1.
For any G in Joy such that G∅ = ∅ define ΘG in Joy2 as follows:

(ΘG)(U, V ) = {{xp}p∈π ∈ (EG)U | π = {pv}v∈V }

so that, (ΘG)(U, V ) is the set of elements of (EG)U with ♯V components.
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8.2. Corollary. For any G in Joy with G∅ = ∅ there is an iso E(Y ·Gx) → ΘG in
Joy2.

Proof. Joining disjoint families induces an E-algebra a : E(ΘG) → ΘG in Joy2. Define
the morphism s : ΘG → E(ΘG) which, at stage (U, V ), takes a collection {xp}p∈π in (EG)U
such that π = {pv}v∈V , and produces the partition {(pv, {v})}v∈V of (U, V ) together with
the collection (indexed by V ) of elements in (ΘG)(pv, {v}) given by the xp ∈ GUp. It
is easy to check that s is an algebra morphism and a section, and that its canonical
restriction is Y ·Gx → ΘG. Since E : Joy2 → Joy2 is EB, the result follows.

The coefficient in the term ci,jx
iyj of the series (ΘG)(x, y) is the number of families,

with j components, of elements of G with labels in a set of size i. Corollary 8.2 implies
that (ΘG)(x, y) = eyG(x). See [11] for a different combinatorial proof.

9. Essential surjections

A geometric morphism f : F → E between toposes is a surjection if f∗ : E → F is faithful.
Equivalently, E is comonadic over F for the comonad induced by f∗ ⊣ f∗. If the surjection
is essential (with f! : F → E denoting the left adjoint to f ∗) then, a well-known result due
to Eilenberg and Moore implies that f ∗ : E → F is monadic. Lawvere observed that
many examples of EB monads appear in this guise and suggested to consider this type of
example explicitly. The characterizations proved in Section 4, lead us to pay particular
attention to essential surjections such that f! : F → E preserves pullbacks.

Every functor f : A → X between small categories induces an essential geometric mor-
phism f : Â → X̂ , between the associated presheaf toposes, such that the inverse image
f ∗ : X̂ → Â is pre-composition with f : A → X . This geometric morphism is a surjection
if and only if every object of X is a retract of an object in the image of f (A4.2.7(b)
in [5]). The functor f! preserves pullbacks if and only if for each object X in X , the
category (X ↓ f) is weakly cofiltered (Example A4.1.10 and Remark B2.6.9 in [5]). That
is, (X ↓ f) satisfies the right Ore condition and every parallel pair of maps in (X ↓ f) can
be equalized.

For example, for any small category C, the inclusion C0 → C of the discrete subcategory
of objects induces an essential surjection Ĉ0 → Ĉ with pullback preserving f!. Proposi-
tion 6.2 characterizes those C that determine an EB monad in this way. We now discuss
a different type of example.

9.1. Factorization monads. Let C be an essentially small category equipped with an
(E ,M)-factorization system. The inclusion ι : M → C is bijective on objects, so it induces

an essential surjection ι : M̂ → Ĉ between presheaf toposes. The resulting monad on M̂ is
called the factorization monad associated to (E ,M), and we denote it by M = (M,u,m).

9.2. Lemma. If every map in E is epi, the functor ι! : M̂ → Ĉ preserves pullbacks.
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Proof. We need to prove that, for each object X in C, the category (X ↓ ι) is weakly
cofiltered. Consider a parallel pair of maps in (X ↓ ι) as on the left below

X

f

��

g

  @
@@

@@
@@

X
e

~~||
||

||
||

f

��

g

  @
@@

@@
@@

Y
m //

n
// Z X ′

j
// Y

m //

n
// Z

with m,n ∈ M are considered as maps from the object f to the object g in (X ↓ ι). Let
f = je with e ∈ E and j ∈ M. We can extend the diagram in (X ↓ ι) as on the right
above. Since e is epi, the bottom fork commutes. So every parallel pair of maps can be
equalized. The right Ore condition is left for the reader.

The special type of inclusion that we are considering implies that the definition of ι!
in terms of coends can be simplified as follows. (See [3] for details.) For X in C,

(ι!P )X =

∫ M∈M
PM × C(X,M) ∼=

∫ I∈I
PI × E(X, I)

where I denotes the subgroupoid of isos of C. If f : X → Z factors as e : X → Y in
E followed by m : Y → Z in M, then z⊗f = z⊗ (me) = (z ·m)⊗e, where z ·m denotes
(Pm)z. So, an element of (ι!P )X will typically be denoted by y⊗e where e : X → Y is
a map in E and y ∈ PY . Moreover, if z⊗d with d : X → Z is also an element of (ι!P )X
with d in E , then y⊗e = z⊗d if and only if there is an iso j : Y → Z such that je = d as
below

X
e

~~~~
~~

~~
~~ d

  @
@@

@@
@@

Y
j

// Z

and z · j = y. The canonical cover MF → F maps x⊗f to x · f .

9.3. Proposition. If every map in E is epi then M is EB.

Proof. Since M preserves pullbacks by Lemma 9.2, it is enough to show that every
Kleisli-idempotent is strong (Corollary 4.8). Let s : P → MP be such that m(Ms)s = s.
To prove that (Ms)s = (Mu)s, let x ∈ PX, sx = y⊗e with e : X → Y in E and sy = z⊗d
with d : Y → Z in E . By hypothesis, sx = y⊗e = z⊗ (de). This means that there is an
iso j : Y → Z such that je = de and z · j = y. As e is epi by hypothesis, j = d. So
sy = z⊗j = (z · j)⊗ id = y⊗ id = uy. This implies that s is strong.

We have been unable to characterize the functors f : A → X , between small cate-
gories, such that the induced monad f ∗f! on Â is EB. If f! preserves pullbacks then it
is possible to give a simple description of the equivalence relation on

∑
A PA×X (X,A)

whose quotient is the coend (f!P )X =
∫ A∈A

PA×X (X,A). (Not as simple as that in the
case of factorization monads but simple enough.) It is also possible to device a restricted



528 MATÍAS MENNI

notion of functor that has C0 → C and M → C as particular cases and that, together with
a variation of the condition ‘without idempotents’, implies that the induced monad is EB.
The details are too awkward to state and do not suggest interesting further examples.
We therefore omit them.

9.4. The smallest subtopos through which f! factors. Surjections f : F → E
between toposes are orthogonal to inclusions. So there is no non-trivial subtopos of E
through which f∗ factors. On the other hand, if f is essential, the smallest subtopos of E
through which f! factors may be non-trivial. I don’t know a satisfactory explanation for
this phenomenon. But some examples appear in the context where f ∗f! is an EB monad,
so we briefly mention them here.

Let C be a small category and let ι : C0 → C be its discrete subcategory of objects.
Consider the monad on Ĉ0 induced by the essential surjection Ĉ0 → Ĉ as in Section 6. If
the embedding Kl → Alg is a topos inclusion then, trivially, this subtopos is the smallest
through which ι! : Ĉ0 → Ĉ factors. We prove that the toposes that appear as Kleisli
categories in this way are the atomic toposes in the sense of [1]. As a corollary of this
result it follows that all the monads involved are EB.

Recall that an atomic site is a category equipped with a Grothendieck topology such
that a sieve covers if and only if it is non-empty. In order for C to admit such a topology, it
is necessary and sufficient that any pair of maps with common codomain can be completed
to a commutative square. That is, that C satisfies the right Ore condition.

A morphism e : A → B is a strict epi if it is the common coequalizer of all pairs of
maps that it coequalizes. The atomic topology on C is subcanonical if and only if every
map in C is a strict epi. If C is an atomic site, we denote the associated topos of sheaves
by Shv(C). The coproduct completion of C is denoted by FamC.

9.5. Lemma. If FamC is a topos then C is a subcanonical atomic site and FamC is
equivalent to the atomic topos Shv(C).

Proof. As C is essentially small, FamC is atomic (see e.g. Corollary 1.3 in [12]). The
image of the embedding C → FamC is characterized as the indecomposables, so C is the
category of atoms of FamC. Inspection of the proof of Theorem A in [1] shows that for
every atomic topos, the full subcategory of atoms is a canonical atomic site and that the
category of sheaves on this site is equivalent to the given topos.

9.6. Proposition. For the monad on Ĉ0 determined by the inclusion C0 → C, the em-
bedding Kl → Alg = Ĉ is a subtopos inclusion if and only if FamC is a topos. In this case,
the monad is EB, C is an atomic site and Kl = Shv(C).

Proof. The Kleisli category coincides with FamC by Lemma 6.5. So one direction is
trivial. The other follows from Lemma 9.5. As every map in an atomic site is epi, its
underlying category is reduced and so, the monad is EB by Proposition 6.2.
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This result provides many examples of essential surjections such that f! factors through
a non-trivial subtopos. In contrast, consider the following.

9.7. Corollary. Let C be a finite category whose idempotents split. Then the least
subtopos of Ĉ through which ι! : Ĉ0 → Ĉ factors is Ĉ itself.

Proof. The hypotheses on C imply that subtoposes of Ĉ are in correspondence with the
full subcategories of C. By Lemma 6.5, the Kleisli category contains all the representables
in Ĉ. So the least subtopos of Ĉ containing Kl must be Ĉ → Ĉ.

Since idempotents split trivially in a reduced category, the corollary above can be
applied to the essential surjections inducing EB monads characterized in Proposition 6.2.

We end this section with two examples involving factorization monads.

9.8. Example. Let X be the category resulting from splitting the monoid with a unique
idempotent. By Proposition 9.3, the inclusion 2 → X determined by the unique non-
identity mono in X induces an essential surjection f : 2̂ → X̂ such that f ∗f! is an EB
factorization monad. For this monad, the inclusion Kl → Alg is an equivalence.

Finally, one of the main examples of the paper.

9.9. Example. [The Schanuel topos.] Let I be the category of finite sets and injections
and B → I be its subgroupoid of isos. The essential surjection SetB → SetI determines
an EB monad on SetB by Proposition 9.3. Results in [3] imply that Kl → Alg = SetI

coincides with the subcategory Sch → SetI of pullback-preserving functors.

I presented some of the results in [3] at the CT2004 conference. After the talk, Lawvere
suggested that the equivalence between Sch and a Kleisli category for a monad on SetB

had to be related with Myhill’s theory of combinatorial functions which, in fact, was
Schanuel’s original motivation. In the next section, I present some details of the relation
between Sch and Myhill’s theory. This is done both because of its historical interest and
because Myhill’s notion of combinatorial operator suggested the Explicit Basis property.

10. The Schanuel topos and Myhill’s combinatorial functions

Let M = (M,u,m) be the monad on SetB presented in Example 9.9. It is instructive to
give a more concrete description of M . If C is an object of SetB then, for each finite set
U , (MC)U =

∑
V⊆U CV . Assume for a moment that CU is finite for each U . If we let

ci denote the cardinality ♯(CV ) of the set CV for any set V with ♯V = i, then it is clear
that ♯((MC)U) =

∑n
i=0 ci

(
n
i

)
where n = ♯U . So, regardless of cardinality, we will picture

C as a sequence {ci}i∈N of coefficients and the free algebra MC as a ‘series’
∑

i≥0 ci
(
x
i

)
.

Sch is usually presented as a topos of continuous actions or as the topos of sheaves for
the atomic topology on Iop. It is curious that its role as a Kleisli category is probably the
closest to its original motivation. Schanuel’s work on the category of pullback-preserving
functors I → Set was motivated by the wish to understand some results in Tamhankar’s
thesis (involving identities about binomial coefficients) and Myhill’s conceptual account
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of such identities in terms of combinatorial functions. Schanuel’s idea was to organize
the combinatorial objects that give rise to combinatorial functions into a category. He
conjectured that the objects of this new category were uniquely sums of quotients of
representables, and Lawvere suggested that the idea sounded like an ‘atomic topos’, a
notion Barr had just sent him a preprint about. The above must have occurred during
the second part of the 70’s. (According to the UB Library Catalog, Tamhankar’s thesis
was published in 1976. The paper [1] on atomic toposes was published in 1980.) The
classifying role of the resulting topos is due to Lawvere and Schanuel. The term ‘Schanuel
topos’ probably first appeared in [7]. I am grateful to Lawvere and Schanuel who informed
me of the historical details.

10.1. Combinatorial functions. The brief summary that follows is based on [2]. In
order to introduce the class of combinatorial functions Dekker observes that, as a special
case of Newton’s approximation theorem, for every function f : N → N there exists a
unique function c : N → Z such that for every n ∈ N, fn =

∑n
i=0 ci

(
n
i

)
. Most of [2] is

then devoted to give combinatorial meaning to the subclass of functions f for which ci is
non-negative for all i.

LetQ be the set of finite sets of natural numbers and define an operator to be a function
Q → Q. An operator ϕ is called numerical if for a and b in Q of the same cardinality, ϕa
and ϕb have the same cardinality. Clearly, every numerical operator induces a function
N → N. For a numerical operator ϕ let ϕε =

∪
{ϕa | a ∈ Q}.

10.2. Definition. A numerical operator ϕ is combinatorial if there exists a ϕ−1 : ϕε → Q
such that x ∈ ϕa if and only if ϕ−1x ⊆ a.

A function f : N → N is called combinatorial if it is induced by a combinatorial oper-
ator. The fundamental result relating these ideas is the following.

10.3. Theorem. [First part of T4 in [2].] If f : N → N is a function with fn =
∑n

i=0 ci
(
n
i

)
then: f is combinatorial if and only if ci ≥ 0 for every i ≥ 0.

Proof. An important part of the proof consists of building a combinatorial operator out
of the ci’s. This is done using enumerations of N× N and of the set Q of finite subsets of
the natural numbers. We will not go into the details.

10.4. Corollary. If f and g are combinatorial functions then so are the functions
n 7→ (fn) · (gn) and n 7→ f(gn).

That is, combinatorial functions are closed under product and composition. Corol-
lary 10.4 may be shown without introducing combinatorial operators, but these enable
Dekker “to prove these closure conditions without the algebraic complications which arise
from substitution involving expressions” of the form

∑n
i=0 ci

(
n
i

)
. (See Section 7 in [2].)

10.5. Definition. A numerical operator Ψ : Q → Q is dispersive if it maps distinct sets
onto disjoint sets, i.e. if α ̸= β implies Ψα ∩Ψβ = ∅.
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For each combinatorial operator Φ : Q → Q, the operator Φ0 : Q → Q defined by

Φ0α = (Φα)− ∪{Φγ | γ ⊂ α}

is dispersive. On the other hand, for each dispersive operator Ψ : Q → Q, the operator
ΦΨ : Q → Q defined by ΦΨα = ∪{Ψγ | γ ⊆ α} is combinatorial. These constructions form
the explicit proof of the following result.

10.6. Theorem. [T3 in [2].] There is a natural one-to-one correspondence between the
family of all combinatorial operators and the family of all dispersive operators.

The connection with the coefficients ci in a combinatorial function is the following.

10.7. Corollary. [Second part of T4 in [2].] If fn =
∑n

i=0 ci
(
n
i

)
is a combinatorial

function induced by the combinatorial operator Φ then c( ) is induced by Φ0.

Before leaving this brief summary, let us note another important fact, which implies
that every combinatorial function is monotone increasing.

10.8. Theorem. [T2 in [2].] For a combinatorial operator Φ, α ⊆ β implies Φα ⊆ Φβ.

10.9. The Schanuel topos as a category of combinatorial operators. The
concrete description of free algebras for the factorization monad M = (M,u,m) discussed
in Section 10 immediately suggests the connection with combinatorial functions. Instead
of numerical operators use objects of SetB. The functor M is analogous to the con-
struction Φ( ), defined immediately before Theorem 10.6, that produces a combinatorial
operator out of a dispersive one. But notice that the explicit definition of M needs noth-
ing like a “dispersivity” condition of Definition 10.5. The new ‘elbow room’ provided
by working with objects of SetB, instead of numerical operators, allows to avoid the
obscurities that inevitably arise when working with enumerations.

Notice that when looked at from this perspective, Theorem 10.8 can be seen as a pale
reflection of the fact that combinatorial operators are M -algebras (i.e. functors I → Set).
But what is the connection with the definition of combinatorial operator? We understand
Definition 10.2 as providing a numerical operator ϕ with an M -algebra structure together
with a section for its canonical presentation. In this way, Theorem 10.6 and Corollary 10.7
are approximations to the fact that M is EB. The construction of the canonical restriction
of a section s : A → MA is analogous to the construction Φ 7→ Φ0 which produces a dis-
persive operator out of a combinatorial one. As evidence to support this analogy, consider
the following examples suggested by those treated in [2]. Example (A) in Section 6 of [2]
shows that the function n 7→ n! is combinatorial.

10.10. Example. Let G in SetB be the object that assigns to each finite set U , the
set of permutations on U . There is an algebra structure a : MG → G which, at stage U ,
takes a subset V of U together with a permutation π on V and produces the permutation
on U which is the extension of π by leaving the elements in U/V fixed. Now consider
the morphism s : G → MG which, at stage U , takes a permutation π of U and produces
the subset V of U given by the elements of U that are not fixed by π, together with the



532 MATÍAS MENNI

restriction of π to V . It is easy to check that s is a morphism of algebras and that it is a
section of a. It follows that G is a free M-algebra. The canonical restriction s : Gs → G
coincides with the object of derangements, that is, the fixpoint-free permutations. The
numerical reflection of this is that n! =

∑n
i=0 di

(
n
i

)
where di is the number of derangements

on a set of cardinality i.

Example (B) in Section 6 of [2] shows that, for any t ∈ N, the function n 7→ nt is
combinatorial.

10.11. Example. Fix a set T and consider the object ( )T in SetB such that UT is the
set of functions of T → U . There is an algebra structure a : M(( )T ) → ( )T such that for
every finite U , a :

∑
V⊆U V T → UT simply post-composes with the inclusion V ⊆ U . On

the other hand, there is a morphism s : ( )T → M(( )T ) such that sU : UT →
∑

V⊆U V T

assigns to a function f its surjection-inclusion factorization. The equalizer of s and u is
given by surjections. So ( )T is the free M-algebra generated by the object of surjections
T → ( ). At the numerical level, this says that n♯T =

∑n
i=0 su(i, ♯T )

(
n
i

)
.

Example (A) in Section 7 of [2] shows that combinatorial operators are closed under
product. The reader is invited to prove this by showing that for every X and Y in
SetB, MX ×MY is free. A section s : MX ×MY → M(MX ×MY ) for the canonical
presentation of the M-algebra MX ×MY does all the work.

Example (B) in Section 7 of [2] shows that combinatorial operators are closed under
composition. Again, the reader is invited to prove this using the Explicit Basis property.

11. Möbius inversion

We assume familiarity of [10]. Let C be a Möbius category in the sense of Leroux. If we let
C1 be the set of maps of C, we denote the incidence category of C by (Cat(C1,Setf ), ∗, δ).
The category Cat(C1,Setf ) is extensive, has a terminal object ζ and distinguished ob-
jects Φ+ and Φ−. One of the main results loc. cit. presents an explicit isomorphism
δ + ζ ∗ Φ− → ζ ∗ Φ+. This iso is the main combinatorial ingredient to prove the general
Möbius inversion principle in incidence algebras. We sketch an alternative proof.

The object Φ+ is equipped with a monoid structure which induces a monad Ev on the
functor ( ) ∗ Φ+ : Cat(C1,Setf ) → Cat(C1,Setf ).

11.1. Corollary. The monad Ev on Cat(C1,Setf ) is EB.

Proof. Use Proposition 4.7. The concrete details are very similar to those in Section 5.

To exhibit the explicit iso δ + ζ ∗ Φ− → ζ ∗ Φ+, first equip the object δ + ζ ∗ Φ−
with an Ev-algebra structure. Then find a section s : δ + ζ ∗ Φ− → Ev(δ + ζ ∗ Φ−) for
its canonical presentation. Finally, show that the canonical restriction of s is a subobject
ζ → δ + ζ ∗ Φ−. Corollary 11.1 implies that the induced map

ζ ∗ Φ+ = Evζ → Ev(δ + ζ ∗ Φ−) → δ + ζ ∗ Φ−

is an isomorphism.
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12. Combinatorics and the Explicit Basis property

Consider a ‘combinatorial’ construction given by a monad M = (M,u,m) on a category
D and an object A whose elements/figures we need to count. By a solution for this
counting problem we mean the exhibition of an object C together with an isomorphism
MC → A. This information explains the number of figures of A in terms of the ‘simpler’
C and the construction M .

Put differently, a solution to a counting problem as posed above says that A is the
underlying object of a free M-algebra. So, given such a ‘combinatorial’ monad, a good
understanding of free M-algebras (or better yet, of the whole Kleisli category KlM) would
help to solve combinatorial problems.

For example, consider the Schanuel topos and the examples in Section 10.9. Let
(A, a : MA → A) be an M-algebra and let an = A{1, . . . , n}. If we show that (A, a) is iso
to a free algebra then we can conclude that there is a sequence of coefficients {bi}i∈N such
that an =

∑n
i=0 bi

(
n
i

)
.

If M satisfies the Explicit Basis property then, to find a solution for the counting
problem for A, it is enough to find an M-algebra structure (A, a) on A and a section s
for its canonical presentation. Then s : As → A is a basis. So As, together with the iso
a(Ms) : MAs → A, solves the counting problem.

Why should an algebra structure and a section for its canonical presentation be easier
to find than an explicit isoMC → A? We do not have a precise answer to this question. In
practice, the algebra structure comes up very naturally as an ‘obvious’ way of combining
elements of A. The section A → MA then arises as an operation which, given an element x
of A, produces the ‘deconstruction’ of x in terms of its simplest components. The canonical
restriction s : As → A is the subobject of ‘simplest’ elements of A. The Exponential
principle of Corollary 8.2, the examples with combinatorial functions in Section 10.9 and
the Möbius inversion example in Section 11 are clear instances of this type of argument.
In practice, we have found that the section is more difficult to identify than the algebra
structure. But, under certain hypotheses, the section is not only just a ‘natural’ operation
but is actually unique (see Section 14).

Of course, we do not mean to suggest that the Explicit Basis property is a substitute
for a more explicit understanding of particular Kleisli categories. For example, the char-
acterization of free compact convex sets as Choquet simplexes is used in [16] regardless
of the fact that the monad determined by cConv → cHaus is EB. As another exam-
ple, the description of the Schanuel topos as the category of pullback preserving functors
I → Set allows a simple proof that combinatorial functions are closed under product and
composition. Indeed, if F,G : I → Set preserve pullbacks then so does F ×G. Also, if G
is valued on finite sets then, clearly, U 7→ F (GU) also preserves pullbacks. (The extrac-
tion of ‘generators’, though, would require some extra analysis.) Finally, see [11] for an
alternative proof of Corollary 8.2 using a more explicit description of E-algebras.
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13. Conservative EB monads

All our examples of EB monads, except E : Joy → Joy, share the property that their
underlying functors are conservative (i. e. faithful and iso-reflecting). In this section
we explain this phenomenon in terms of a condition on canonical restrictions. Let
M = (M,u,m) be a monad on a category D.

The canonical presentationm : (MMA,mM) → (MA,m) of the free algebra (MA,m)
has a distinguished section Mu : (MA,m) → (MMA,mM). Assume that its canonical
restriction Mu : (MA)(Mu) → MA exists. Naturality implies that u : A → MA factors

through Mu : (MA)(Mu) → MA as in the diagram on the left below

A

u
$$I

IIIIIIIIII // (MA)(Mu)

Mu
��

A
u // MA

uM //

Mu
// MMA

MA

This factorization is an iso (for every A) if and only if the commutative diagram on the
right above is an equalizer for every A. The so-called equalizer condition has received
considerable attention. In particular, by computer scientists following the work of Moggi.
The next result may be folklore, but I have not found it in the literature.

13.1. Lemma. If the equalizer condition holds then M is conservative.

Proof. That M is faithful follows from the fact that u is (a natural) mono. To check that
M reflects isos, assume that for f : A → B, Mf : MA → MB is an iso, say, with inverse
j : MB → MA. Since u is a natural mono, f is clearly mono. The following diagram

B
u // MB

id ##H
HH

HH
HH

HH
j // MA

Mf

��

Mu
//

uM //
MMA

MMf

��
MB

Mu
//

uM //
MMB

shows that

(MMf)uMAjuB = uMBuB = (MuB)uB = (MMf)(MuA)juB

and, as MMf is an iso, we can conclude that uMAjuB = (MuA)juB. Since the equalizer
condition holds, there exists a unique i : B → A such that the diagram on the left below

B

i
��

u // MB

j

��

B

u

��

i // A

u

��

f // B

u

��
A u

// MA
Mu

//

uM //
MMA MB

id

44
j // MA

Mf // MB

commutes. That is, uAi = juB. The diagram on the right above shows that uBfi = uB

and, as u is mono, that fi = id. So f is split epi. Since it is also mono, it is an iso.
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Lemma 13.1 can be turned into a characterization as follows.

13.2. Proposition.M satisfies the equalizer condition if and only if the following hold:

1. M reflects isos and

2. the canonical restriction (MA)(Mu) → MA exists and is independent for every A.

Moreover, in the case these hold, M is conservative.

Proof. To ease the notation we denote Mu : (MA)(Mu) → MA by α : A0 → MA. By
Proposition 2.11, the independence condition is equivalent to Mα mono. First assume
that the equalizer condition holds. Then α = u and so, Mα = Mu which is (split)mono.
Lemma 13.1 implies that M is conservative. Conversely, assume that Mα is mono and
that M reflects isos. As uMu = (Mu)u, there exists a unique map j : A → A0 such that
αj = u : A → MA. We must prove that j is an iso. As M reflects isos it is enough to
show that Mj is an iso. We immediately have that (Mα)(Mj) = Mu and then Mj is
mono. We now prove that Mj : MA → MA0 is split-epi. The following diagram

MA0
Mα // MMA

Mu
��

MMu
��

m // MA

Mu $$I
IIIIIIII

Mj // MA0

Mα
��

MMMA m
// MMA

shows that (Mα)(Mj)m(Mα) = mM(MuM)(Mα) = Mα. As Mα is a monomorphism,
(Mj)m(Mα) = id. That is, Mj is split-epi.

If M is EB, the second item of Proposition 13.2 holds.

13.3. Corollary. If M is EB then it satisfies the equalizer condition if and only if M
reflects isos. Moreover, if this is the case, M is conservative.

The same argument used in Lemma 3.1 shows that, over a balanced category, M is
conservative if and only if the unit of M is mono. This fact can be used to verify that M
is conservative in most of our examples.

14. The subobject of extreme elements

This section is analogous to the previous one. It provides an explanation of why, in most
of our examples, each canonical presentation has at most one section. Let M = (M,u,m)
be a monad on a Heyting category D.
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14.1. Definition. The subobject of extreme elements associated with an M-algebra
(A, a) is the subobject of A given by

{x ∈ A | (∀v ∈ MA)(av = x ⇒ v = ux)} → A

We denote this subobject by a⋆ : ⌊A, a⌋ → A.

(To avoid a possible confusion we stress that, although the arguments used in this
section are similar to those in Section 3, the subset of extreme points of a compact convex
set is not a particular case of Definition 14.1. For K in cConv, the subset ∂eK → K co-
incides, by Lemma 3.2, with {x ∈ UK | (∀v ∈ U(PK))(av = x ⇒ v = ux)} → UK where
U : cHaus → Set is the underlying set functor. So it is an instance of a generalization of
Definition 14.1 involving a monad M on a category D equipped with functor U : D → H
to Heyting category H.)

We say that M has extreme unit if uA : A → MA factors through ⌊MA,m⌋ → MA
for every A. Most of our examples have extreme unit.

14.2. Proposition. If M is EB and has extreme unit then every canonical presentation
has at most one section. Moreover, if s : (A, a) → (MA,m) is such a section then the
canonical restriction s : As → A coincides with a⋆ : ⌊A, a⌋ → A.

In order to prove Proposition 14.2 we need an external characterization of the maps
X → A that factor through ⌊A, a⌋ → A. The interpretation of “av = x” is the equalizer
⟨id, a⟩ : MA → MA× A of the pair of maps aπ0, π1 : MA× A → A. Similarly, the inter-
pretation of “v = ux” is the equalizer ⟨u, id⟩ : A → MA× A of π0,uπ1 : MA× A → MA.
So the subobject a⋆ : ⌊A, a⌋ → A equals ∀π1(⟨id, a⟩ ⇒ ⟨u, id⟩) where π1

∗ ⊣ ∀π1 .

14.3. Lemma. A morphism f : X → A factors through a⋆ : ⌊A, a⌋ → A if and only if
the following diagram

X

id
��

f // A
u // MA

a

��
X

f
// A

is a pullback.

Proof. The map f : X → A factors through ∀π1(⟨id, a⟩ ⇒ ⟨u, id⟩) → A if and only if
id× f : MA×X → MA× A factors through (⟨id, a⟩ ⇒ ⟨u, id⟩) → MA× A. In turn,
this holds if and only if for every diagram as on the left below

V

⟨v0,v1⟩
��

// MA

⟨id,a⟩
��

V

⟨v0,v1⟩
��

// A

⟨u,id⟩
��

MA×X
id×f

// MA× A MA× A
id×f

// MA× A
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there exists a map V → A making the diagram on the right above commute. This is
equivalent to the fact that commutativity of the diagram on the left below

V

v1
��

v0 // MA

a

��

X
f // A

u

��
X

f
// A V

v1

OO

v0
// MA

implies commutativity of the diagram on the right above. In turn, this is equivalent to
the fact that the diagram in the statement is a pullback.

The basic relation between extreme elements and canonical restrictions is the following.

14.4. Lemma. For any algebra (A, a) and any section s : (A, a) → (MA,m) of the
canonical presentation of (A, a), the subobject a⋆ : ⌊A, a⌋ → A factors through the canon-
ical restriction s : As → A.

Proof. The diagram on the left below

⌊A, a⌋

id
��

a⋆ // A
u // MA

a

��

⌊A, a⌋

id
��

a⋆ // A
s // MA

a

��
⌊A, a⌋ a⋆

// A ⌊A, a⌋ a⋆
// A

is a pullback by Lemma 14.3. The diagram on the right above commutes because s is a
section of a. The universal property of the pullback on the left implies that the fork

⌊A, a⌋ a⋆ // A
u //

s
// MA

commutes. This implies that a⋆ : ⌊A, a⌋ → A factors through s : As → A.

Alternatively, we could have argued informally in the internal logic as follows. Since
s is a section of a, x = a(sx) for every x in A. So, if x is in the subobject of extreme
elements, ux = sx. That is, x ∈ ⌊A, s⌋ implies x ∈ As.

14.5. Lemma. Assume that u : A → MA is extreme and let (A, a) be an algebra. If
s : (A, a) → (MA,m) is a section for the canonical presentation of (A, a) then the factor-
ization ⌊A, a⌋ → As of Lemma 14.4 is an isomorphism.

Proof. To show that the factorization ⌊A, a⌋ → As is an iso, it is enough to show that
s : As → A factors through a⋆ : ⌊A, a⌋ → A. That is, by Lemma 14.3, that the diagram
on the left below

As

id
��

s // A
u // MA

a

��

As

id
��

s // A
u // MA

a

��

Ms // MMA

m

��
As s

// A As s
// A s

// MA



538 MATÍAS MENNI

is a pullback. As s is a split mono, it is enough to prove that the extended diagram on the
right above is a pullback. Applying naturality of u and the equality ss = us, our present
task reduces to prove that the diagram below

As

id
��

s // A

id

��

u // MA
uM // MMA

m

��
As s

// A u
// MA

is a pullback. But the square on the left is a pullback trivially and the rectangle on the
right is a pullback because u is extreme (by hypothesis). So the pasting lemma implies
that the subobjects ⌊A, a⌋ → A and As → A coincide.

We can now prove the main result of the section.

Proof of Proposition 14.2. Let (A, a) be an algebra and let s, t : (A, a) → (MA,m)
be sections for the canonical presentation of (A, a). Lemma 14.5 implies that the subob-
jects As → A and At → A coincide with ⌊A, a⌋ → A. So s = t by Corollary 3.6.

A variation of the argument used in Proposition 3.4 can be used in the present context.

14.6. Proposition. Let M have extreme unit and M preserve monos. Then M is EB
if and only if idempotents split in KlM.

Proof. IfM is EB, idempotents split in KlM by Proposition 2.5. So consider the converse.
As M preserves monos, it is enough to show that canonical restrictions are spanning
(Corollary 2.12). Let s : (A, a) → (MA,m) be a section for the canonical presentation
of (A, a). Since idempotents split in KlM by hypothesis, (A, a) ∼= (MB,m) for some
B, and we can assume that s : (MB,m) → (MMB,mM) is a section of the canonical
presentation of (MB,m). As the unit is extreme, Lemma 14.5 implies that the canonical
restriction (MB)s → MB of s coincides with ⌊MB,m⌋ → MB. But ⌊MB,m⌋ → MB
is spanning because the unit is extreme. So (MB)s → MB is spanning.

14.7. Examples of subobjects of extreme elements. Without awareness of the
characterization of extreme points of compact convex sets (and using different terminol-
ogy), subobjects of extreme elements in the sense of Definition 14.1 were defined in [11]
for the monads E discussed in Section 8. In this context, the assignment (A, a) 7→ ⌊A, a⌋
behaves like a ‘logarithm’. (See Section 2.6 loc. cit.)

Let D be an extensive Heyting category and consider the monad induced by the
algebraic functor D/D → D where D is a fixed object of D. We use the notation in
Proposition 2.7 to state and prove the next result.

14.8. Lemma. For any algebra (A, a : D → A) the following hold:

1. a⋆ : ⌊A, a⌋ → A coincides with the subobject ¬(∃aD) → A,

2. a⋆ : ⌊A, a⌋ → A is spanning if and only if ∃aD → A is complemented and

3. a⋆ : ⌊A, a⌋ → A is independent if and only if a is mono.
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Proof. Let f : X → A be a map in D. By Lemma 14.3, f factors through a⋆ : ⌊A, a⌋ → A
if and only if the diagram on the left below

X

id
��

f // A
in1 // D + A

[a,id]
��

0

��

// D

a

��
X

f
// A X

f
// A

is a pullback. Since D is extensive this is equivalent to the square on the right above
being a pullback. In turn, this holds if and only if f factors through ¬(∃aD) → A. To
prove the second item notice that the following diagram

D + ¬(∃aD) // D + A
[a,id] // A

is a regular epi if and only if the subobject ∃aD ∨ ¬(∃aD) → A is an iso. For the third
item, observe that the same diagram is mono if and only if a is mono.

In particular, notice that the unit is extreme. But moreover, for each A in D, the
subobject of extreme elements of the free algebra (D + A, in1) coincides with the unit.

Consider now a functor f : A → X between small categories inducing an essential
surjection f : Â → X̂ as in Section 9.

14.9. Lemma. Let T be a presheaf on X . An element x ∈ (f∗T )A is extreme if and
only if for every v : V → A in A, b : V → B in X and y ∈ TB, y · b = x · v implies
y⊗b = (y · b)⊗ id.

Proof. The element x : A( , A) → f ∗T is extreme if and only if the following diagram

A( , A)

id
��

x // f∗T u // M(f∗T )

·
��

A( , A) x
// f ∗T

is a pullback. That is, for every v : V → A in A and y⊗b ∈ (M(f∗T ))V with b : V → B
in X and y ∈ TB, y · b = x · v implies y⊗b = (x · v)⊗ id.

Applying Lemma 14.9 to the essential surjection induced by an inclusion ι : C0 → C as
in Section 6, we obtain that x ∈ (ι∗T )A is extreme if and only if for every b : A → B in C
and y ∈ TB, y · b = x implies B = A and b = id.

On the other hand, for the factorization monad on M̂ induced by an inclusion M → C
as in Section 9.1, x ∈ (ι∗T )A is extreme if and only if for every m : V → A in M,
b : V → B in E and y ∈ TB, y · b = x · v implies b is an iso. So, for factorization monads,
extreme elements are closely related to the E-minimal elements used in [3] to prove that
free algebras for certain factorization monads are pullback preserving functors.
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42:1–82, 1981.

[7] F. W. Lawvere. Qualitative distinctions between some toposes of generalized graphs.
Contemporary mathematics, 92:261–299, 1989. Proceedings of the AMS Boulder 1987
Symposium on categories in computer science and logic.

[8] F. W. Lawvere. Unity and identity of opposites in calculus and physics. Applied
categorical structures, 4:167–174, 1996.

[9] F. W. Lawvere. Functorial semantics of algebraic theories and some algebraic prob-
lems in the context of functorial semantics of algebraic theories. Repr. Theory Appl.
Categ., 2004(5):1–121, 2004.

[10] F. W. Lawvere and M. Menni. The Hopf algebra of Möbius intervals. Theory and
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