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SNAKE LEMMA IN INCOMPLETE RELATIVE HOMOLOGICAL
CATEGORIES

Dedicated to Dominique Bourn on the occasion of his 60th birthday

TAMAR JANELIDZE

Abstract. The purpose of this paper is to prove a new, incomplete-relative, version
of Non-abelian Snake Lemma, where “relative” refers to a distinguished class of normal
epimorphisms in the ground category, and “incomplete” refers to omitting all complete-
ness/cocompleteness assumptions not involving that class.

1. Introduction

The classical Snake Lemma known for abelian categories (see e.g. [5]) has been extended
to homological categories by D. Bourn; see F. Borceux and D. Bourn [1], and references
there. In [3], we extended it to the context of relative homological categories : here “rel-
ative” refers to a distinguished class E of regular epimorphisms in a ground category C
satisfying certain conditions which, in particular, make (C,E) relative homological when
(a) C is a homological category and E is the class of all regular epimorphisms in C; (b) C is
a pointed finitely complete category satisfying certain cocompleteness conditions, and E is
the class of all isomorphisms in C. In this paper we drop the completeness/cocompleteness
assumption and extend Snake Lemma further to the context of what was called an in-
complete relative homological category in [4] (see, however, the correction below Definition
2.1).

Let us recall the formulation of Snake Lemma from [1] (see Theorem 4.4.2 of [1]). It
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says: “Let C be a homological category. Consider the diagram

0

��

0

��

0

��
Ku

fK //

ku

��

Kv
gK //

kv

��

Kw

kw

��

d

��

X
f //

u

��

Y g
//

v

��

Z //

w

��

0

0 // X ′
f ′ //

qu

��

Y ′
g′ //

qv

��

Z ′

qw

��
Qu

f ′Q

//

��

Qv
g′Q

//

��

Qw

��
0 0 0

where all squares of plain arrows are commutative and all sequences of plain arrows are
exact. There exists an exact sequence of dotted arrows making all squares commutative”.

The proof given in [1] contains explicit constructions of the dotted arrows, which makes
the result far more precise. This seems to suggest that these constructions should be in-
cluded in the formulation of the lemma, but there is a problem: while the constructions of
fK , gK , f ′Q, and g′Q as induced morphisms are straightforward, the several-step construc-
tion of the “connecting morphism” d : Kw → Qu is too long and technical. A natural
solution of this problem, well-known in the abelian case, involves partial composition of
internal relations in C and goes back at least to S. Mac Lane [6] (see also e.g. [2] for the
so-called calculus of relations in regular categories): one should simply define d as the
composite quf

′◦vg◦kw, where g◦ is the relation opposite to g, etc. We do not know if the
non-abelian version of d = quf

′◦vg◦kw is mentioned anywhere in the literature, but we use
its relative version in our relative Snake Lemma (Theorem 3.1), which is the main result
of this paper.

For the reader’s convenience we are mostly using the same notation as in [1].

2. Incomplete relative homological categories

Throughout the paper we assume that C is a pointed category and E is a class of mor-
phisms in C containing all isomorphisms. Let us recall from [4]:

2.1. Definition. A pair (C,E) is said to be an incomplete relative homological category
if it satisfies the following conditions:

(a) Every morphism in E is a normal epimorphism;
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(b) The class E is closed under composition;

(c) If f ∈ E and gf ∈ E then g ∈ E;

(d) If f ∈ E then ker(f) exists in C;

(e) A diagram of the form

A′

f ′

�� g′

��

A
f
//

g ..

B

B

has a limit in C provided f and g are in E, and either (i) f = g and f ′ = g′, or
(ii) f ′ and g′ are in E, (f, g) and (f ′, g′) are reflexive pairs, and f and g are jointly
monic;

(f) If

A×B A′

π1

��

π2 // A′

f ′

��
A

f
// B

is a pullback and f is in E, then π2 is also in E;

(g) If h1 : H → A and h2 : H → B are jointly monic morphisms in C and if α : A→ C
and β : B → D are morphisms in E, then there exists a morphism h : H → X in
E and jointly monic morphisms x1 : X → C and x2 : X → D in C making the
diagram

H

h

��

h1

~~~~~~~~~~~
h2

  @@@@@@@@@

A
α

��~~~~~~~~~
X

x1

ww
x2

''

B
β

  @@@@@@@@@

C D

commutative (it easily follows from the fact that every morphism in E is a normal
epimorphism, that such factorization is unique up to an isomorphism);
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(h) The E-Short Five Lemma holds in C, i.e. in every commutative diagram of the
form

K
k // A

w

��

f // B

K
k′

// A′
f ′

// B

with f and f ′ in E and with k = ker(f) and k′ = ker(f ′), the morphism w is an
isomorphism;

(i) If in a commutative diagram

K

u

��

k // A

w

��

f // B

K ′
k′

// A′
f ′

// B

f , f ′, and u are in E, k = ker(f) and k′ = ker(f ′), then there exists a morphism
e : A→M in E and a monomorphism m : M → A′ in C such that w = me.

Let us use this opportunity to make a correction to conditions 2.1(c) and 3.1(c) of [4].
They should be replaced, respectively, with:

(a) A diagram of the form

A′

f ′

�� g′

��

A
f
//

g ..

B

B

has a limit in C provided f , g, f ′, and g′ are in E, and either (i) f = g and f ′ = g′, or
(ii) (f, g) and (f ′, g′) are reflexive pairs (that is, fh = 1B = gh and f ′h′ = 1B = g′h′

for some h and h′), and f and g are jointly monic.

(b) Condition 2.1(e) of the present paper.

Note that this replacement will not affect any results/arguments of [4], except that without
it a pair (C, Iso(C)) would be an incomplete relative homological category only when C
(is pointed and) admits equalizers of isomorphisms.

2.2. Remark. As easily follows from condition 2.1(g), if a morphism f : A → B in
C factors as f = em in which e is in E and m is a monomorphism, then it also factors
(essentially uniquely) as f = m′e′ in which m′ is a monomorphism and e′ is in E.



80 TAMAR JANELIDZE

2.3. Lemma. If a pair (C,E) satisfies conditions 2.1(a)-2.1(d), then (C,E) satisfies
conditions 2.1(h) and 2.1(i) if and only if in every commutative diagram of the form

K

u

��

k // A

w

��

f // B

K ′
k′

// A′
f ′

// B

(2.1)

with k = ker(f), k′ = ker(f ′), and with f , f ′, and u in E, the morphism w is also in E.

Proof. Suppose (C,E) satisfies conditions 2.1(a)-2.1(d), 2.1(h) and 2.1(i). Consider the
commutative diagram (2.1) with k = ker(f), k′ = ker(f ′), and with f , f ′, and u in E. By
condition 2.1(i), w = me where e : A→M is in E and m : M → A′ is a monomorphism.
Consider the commutative diagram:

K

ek

��

u // K ′

m̄

~~

k′

��
M m

// A′

Since u is in E and m is a monomorphism, by condition 2.1(a) there exists a unique
morphism m̄ : K ′ → M with m̄u = ek and mm̄ = k′; m̄ is a monomorphism since so k′.
Since f ′mm̄ = 0, m̄ is a monomorphism, and k′ = ker(f ′), we conclude that m̄ = ker(f ′m).
By condition 2.1(c), f ′m is in E, therefore we can apply the E-Short Five Lemma to the
diagram

K ′
m̄ //M

m

��

f ′m // B

K ′
k′

// A′
f ′

// B

and conclude that m is an isomorphism. Hence, by condition 2.1(b) w is in E, as desired.
Conversely, suppose for every commutative diagram (2.1) with k = ker(f), k′ =

ker(f ′), and with f and f ′ in E, if u is in E then w is also in E. It is a well know
fact that under the assumptions of condition 2.1(h), ker(w) = 0; moreover, since E con-
tains all isomorphisms and f and f ′ are in E, w : A → A′ is also in E. Since every
morphism in E is a normal epimorphism, we conclude that w is an isomorphism, proving
condition 2.1(h). The proof of condition 2.1(i) is trivial.
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2.4. Lemma. Let (C,E) be a pair satisfying conditions 2.1(a)-2.1(d) and 2.1(g). Con-
sider the commutative diagram:

A
f //

α

��

B

β

��
A′

f ′
// B′

(2.2)

(i) If α : A → A′ and β : B → B′ are in E and if f : A → B factors as f = me
in which e is in E and m is a monomorphism, then f ′ : A′ → B′ also factors as
f ′ = m′e′ in which e′ is in E and m′ is monomorphism.

(ii) If α : A → A′ and β : B → B′ are monomorphisms and if f ′ : A′ → B′ factors
as f ′ = m′e′ in which e′ is in E and m′ is a monomorphism, then f : A → B also
factors as f = me in which e is in E and m is a monomorphism.

Proof. (i): Consider the commutative diagram (2.2) and suppose α and β are in E and
f = me in which e : A → C is in E and m : C → B is a monomorphism. Since β is
in E and m is a monomorphism, by Remark 2.2 there exists a morphism γ : C → C ′ in
E and a monomorphism m′ : C ′ → B′ such that βm = m′γ. Consider the commutative
diagram:

A
α //

γe

��

A′

e′

~~

f ′

��
C ′

m′
// B′

Since α is in E andm′ is a monomorphism, conditions 2.1(a) and 2.1(d) imply the existence
of a unique morphism e′ : A′ → C ′ with e′α = γe and m′e′ = f ′. Since α, e, and γ are in
E, conditions 2.1(b) and 2.1(c) imply that e′ is also in E. Hence, f ′ = m′e′ in which e′ is
in E and m′ is a monomorphism, as desired.

(ii) can be proved similarly.

Let (C,E) be an incomplete relative homological category. We will need to compose
certain relations in C:

Let R = (R, r1, r2) : A → B be a relation from A to B, i.e. a pair of jointly monic
morphisms r1 : R → A and r2 : R → B with the same domain, and let S = (S, s1, s2) :
B → C be a relation from B to C. If the pullback (R ×B S, π1, π2) of r2 and s1 exists
in C, and if there exists a morphism e : R ×B S → T in E and a jointly monic pair of
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morphisms t1 : T → A and t2 : T → C in C making the diagram

R×B S
e

��

π1

{{vvvvvvvvv
π2

##HHHHHHHHH

R
r1

��~~~~~~~

r2 $$HHHHHHHHHH T

t1vv t2 ((

S

s1zzvvvvvvvvvv
s2

��???????

A B C

(2.3)

commutative, then we will say that (T, t1, t2) : A → C is the composite of (R, r1, r2) :
A→ B and (S, s1, s2) : B → C. One can similarly define partial composition for three or
more relations satisfying a suitable associativity condition. Omitting details, let us just
mention that, say, a composite RR′R′′ might exist even if neither RR′ nor R′R′′ does.

2.5. Convention. We will say that a relation R = (R, r1, r2) : A→ B is a morphism
in C if r1 is an isomorphism.

2.6. Definition. Let (C,E) be an incomplete relative homological category. A sequence
of morphisms

. . . // Ai−1
fi−1 // Ai

fi // Ai+1
// . . .

is said to be:

(i) E-exact at Ai, if the morphism fi−1 admits a factorization fi−1 = me, in which
e ∈ E and m = ker(fi);

(ii) an E-exact sequence, if it is E-exact at Ai for each i (unless the sequence either
begins with Ai or ends with Ai).

As easily follows from Definition 2.6, the sequence

0 // A
f // B

g // C

is E-exact if and only if f = ker(g); and, if the sequence

A
f // B

g // C // 0

is E-exact then g = coker(f) and g is in E.
In the next section we will often use the following simple fact:

2.7. Lemma. (Lemma 4.2.4(1) of [1]) If in a commutative diagram

K ′
k′ //

u

��

A′
f ′ //

v

��

B′

w

��
K

k
// A

f
// B

(2.4)

in C, k = ker(f) and w is a monomorphism, then k′ = ker(f ′) if and only if the left hand
square of the diagram (2.4) is a pullback.
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3. The Snake Lemma

This section is devoted to our main result which generalizes Theorem 4.4.2 of [1] and its
relative version mentioned in [3]. Formulating it, we use the same notation as in [1].

3.1. Theorem. [Snake Lemma] Let (C,E) be an incomplete relative homological cate-
gory. Consider the commutative diagram

0

��

0

��

0

��
Ku

fK //

ku

��

Kv
gK //

kv

��

Kw

kw

��

d

��

X
f //

u

��

Y
g //

v

��

Z //

w

��

0

0 // X ′
f ′ //

qu

��

Y ′
g′ //

qv

��

Z ′

qw

��
Qu

f ′Q

//

��

Qv
g′Q

//

��

Qw

��
0 0 0

(3.1)

in which all columns, the second and the third rows are E-exact sequences. If the morphism
g′ factors as g′ = g′2g

′
1 in which g′1 is in E and g′2 is a monomorphism, then:

(i) The composite d = quf
′◦vg◦kw : Kw → Qu is a morphism in C.

(ii) The sequence

Ku
// Kv

// Kw
d // Qu

// Qv
// Qw (3.2)

where d = quf
′◦vg◦kw, is E-exact.

Proof. (i): Under the assumptions of the theorem, let (Y ×ZKw, π1, π2) be the pullback
of g and kw (by condition 2.1(e) this pullback does exist in C); since g is in E, by
condition 2.1(f) the morphism π2 is also in E, and since kw is a monomorphism so is π1.
Since f ′ = ker(g′) and g′vπ1 = 0, there exists a unique morphism ϕ : Y ×ZKw → X ′ with
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vπ1 = f ′ϕ (see diagram (3.4) below). Using the fact that (Y ×ZKw, π1, π2) is the pullback
of g and kw and that kw = ker(w), an easy diagram chase proves that (Y ×Z Kw, π1, ϕ) is
the pullback of v and f ′. Therefore, we obtain the commutative diagram

P
1P

����������
1P

��????????

P
1P

����������
1P

��>>>>>>>> P
1P

����������
1P

  AAAAAAAA

P
1P

����������
π1

��>>>>>>>> P
π1

����������
1P

��???????? P
1P

~~}}}}}}}}
ϕ

  AAAAAAAA

P
π2

~~}}}}}}}}
π1

��>>>>>>>> Y
1Y

����������
1Y

��>>>>>>>> P
π1

����������
ϕ

  AAAAAAAA X ′
1X′

~~}}}}}}}}
1X′

  AAAAAAAA

Kw
1Kw

}}{{{{{{{{
kw

  AAAAAAAA Y
g

����������
1Y

��>>>>>>>> Y
1Y

����������
v

��???????? X ′

f ′

~~}}}}}}}}
1X′

  AAAAAAAA X ′
1X′

~~}}}}}}}}
qu

  BBBBBBBB

Kw Z Y Y ′ X ′ Qu

where P = Y ×Z Kw, and all the diamond parts are pullbacks. Since π2 and qu are in E,
by condition 2.1(g) we have the factorization (unique up to an isomorphism)

Y ×Z Kw

r

��

1Y×ZKw

{{wwwwwwwww
ϕ

##GGGGGGGGG

Y ×Z Kw

π2

{{wwwwwwwww
R

r1
uu

r2
))

X ′

qu

##GGGGGGGGG

Kw Qu

(3.3)

where r : Y ×Z Kw → R is a morphism in E and r1 : R → Kw and r2 : R → Qu

are jointly monic morphisms in C. As follows from the definition of composition of
relations, (R, r1, r2) is the composite relation quf

′◦vg◦kw from Kw to Qu (Note, that since
the pullback (Y ×Z Kw, π1, π2) of kw and g, and the pullback (Y ×Z Kw, π1, ϕ) of v and
f ′ exists in C, the composite relations g◦kw : Kw → Y and f ′◦v : Y → X ′ also exist.
Moreover, since π2 and qu are in E, the composite qu(f

′◦v)(g◦kw) of the three relations
g◦kw, f ′◦v, and qu also exists and we have qu(f

′◦v)(g◦kw) = quf
′◦vg◦kw).

To prove that quf
′◦vg◦kw : Kw → Qu is a morphism in C, consider the commutative
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diagram

0

��

0

��

0

��
Ku

fK //

ku

��

Kv
gK //

kv

��

h

##

Kw

kw

��

d

vv

Y ×Z Kw

ϕ

rr

π2

;;wwwwwwwww

π1

{{wwwwwwwww

X
f //

u

��

f1 ##GGGGGGGGG Y
g //

v

��

Z

w

��

// 0

X ′′

u′

{{

f2

;;wwwwwwwwww

θ

//

0 // X ′
f ′

//

qu

��

Y ′
g′

//

qv

��

Z ′

qw

��
Qu

f ′Q

//

��

Qv
g′Q

//

��

Qw

��
0 0 0

(3.4)
in which:

- All the horizontal and vertical arrows are as in diagram (3.1).

- π1 : Y ×Z Kw → Y , π2 : Y ×Z Kw → Kw, and ϕ : Y ×Z Kw → X ′ are defined as
above, i.e. (Y ×Z Kw, π1, π2) is the pullback of g and kw, and ϕ : Y ×Z Kw → X ′ is
the unique morphism with vπ1 = f ′ϕ.

- f = f2f1 where f1 : X → X ′′ is a morphism in E and f2 : X ′′ → Y is the kernel of
g (such factorization of f does exist in C since the second row of diagram (3.1) is
E-exact).
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- Since (Y ×Z Kw, π1, π2) is the pullback of g and kw, there exists a unique morphism
θ : X ′′ → Y ×Z Kw with π1θ = f2 and π2θ = 0. Since π2 is in E and f2 = ker(g),
we conclude that π2 = coker(θ).

- Since f ′ = ker(g′) and g′vf2 = 0, there exists a unique morphism u′ : X ′′ → X ′ with
f ′u′ = vf2. It easily follows that u′f1 = u, qu = coker(u′), and ϕθ = u′.

- h : Kv → Y ×Z Kw is the canonical morphism and an easy diagram chase proves
that h = ker(ϕ) (we do not need this fact now, but we shall need it below when
proving (ii)).

Since quϕθ = quu
′ = 0 and π2 = coker(θ), there exists a unique morphism d : Kw → Qu

with quϕ = dπ2. We obtain the following factorization:

Y ×Z Kw

π2

��

1Y×ZKw

||xxxxxxxxx
ϕ

""FFFFFFFFF

Y ×Z Kw

π2

||xxxxxxxxx
Kw

1Kw
uu

d
))

X ′

qu

""FFFFFFFFF

Kw Qu

(3.5)

Comparing diagrams (3.3) and (3.5), we conclude that the relation (Kw, 1Kw , d) can be
identified with the relation (R, r1, r2). Therefore, r1 is an isomorphism, proving that
quf

′◦vg◦kw is a morphism in C.

(ii): To prove that the sequence (3.2) is E-exact, we need to prove that it is E-exact
at Kv, Kw, Qu, and Qv.

E-exactness at Kv: It follows from the fact that the first column of the diagram (3.4)
is E-exact at X ′, that the kernel of u′ exists in C. Indeed, consider the commutative
diagram

X ′′

u′1

��

u′

!!CCCCCCCC

X

u1   BBBBBBBB

f1
>>||||||||

u
// X ′ qu

// Qu

M

u2

=={{{{{{{{

(3.6)

where u = u2u1 is the factorization of u with u2 = ker(qu) and u1 ∈ E (which does
exists since the first column of the diagram (3.4) is E exact at X ′), and u′1 is the induced
morphism. Since f1 and u1 are in E, u′1 is also in E, and therefore the kernel of u′1 exists
in C. Since u2 is a monomorphism we conclude that Ker(u′) ≈ Ker(u′1).
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Consider the following part of the diagram (3.4)

0

��

0

��

0

��
Ku

fK //

ku

��

e ""

Kv

kv

��

gK // Kw

kw

��

Ku′

m

<<

ku′

��

X
f //

u

��

f1 ##FFFFFFF Y

v

��

g // Z

w

��

// 0

X ′′
f2

;;xxxxxxx

u′{{xxxxxx

0 // X ′
f ′

// Y ′
g′

// Z ′

(3.7)

in which:

- ku′ = ker(u′);

- Since kv = ker(v) and vf2ku′ = f ′u′ku′ = 0, there exists a unique morphism m :
Ku′ → Kv with kvm = f2ku′ ;

- Since ku′ = ker(u′) and u′f1ku = uku = 0, there exists a unique morphism e : Ku →
Ku′ with ku′e = f1ku; since kv is a monomorphism, we conclude that me = fK .

The E-exactness at Kv will be proved if we show that e ∈ E and m = ker(gK). The latter,
however, easily follows from Lemma 2.7. Indeed: by Lemma 2.7, the squares f1ku = ku′e
and f2ku′ = kvm are pullbacks; therefore, since f1 is in E we conclude that e also is in E,
and since kw is a monomorphism, by the same lemma m = ker(gK).

E-exactness at Kw: Consider the commutative diagram (3.4), we have: dgK = dπ2h =
quϕh = 0. To prove that the sequence (3.2) is E-exact at Kw, it suffices to prove that the
kernel of d exists in C and that the induced morphism from Kv to the kernel of d is in E.

It easily follows from Lemma 2.4 that there exists a factorization d = d2d1 where d2

is a monomorphism and d1 is in E. Indeed: since the second column of the Diagram
(3.4) is E-exact at Y ′, there exists a factorization v = v2v1, where v2 = ker(qv) is a
monomorphism and v1 is in E. Applying Lemma 2.4(ii) to the diagram

Y ×Z Kw

π1

��

ϕ // X ′

f ′

��
Y v

// Y ′
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we conclude that ϕ = ϕ2ϕ1 where ϕ2 is a monomorphism and ϕ1 is in E, and then
applying Lemma 2.4(i) to the diagram

Y ×Z Kw

π2

��

ϕ // X ′

qu

��
Kw d

// Qu

we obtain the desired factorization of d. Since d1 is in E and d2 is a monomorphism, we
conclude that the kernel of d exists in C (precisely, Ker(d) ≈ Ker(d1)). Let kd : Kd → Kw

be the kernel of d and let ed : Kv → Kd be the induced unique morphism with kded = gK ,
it remains to prove that ed is in E. For, consider the commutative diagram

Kv

h

��

ed // Kd

h′

��

kd

��
X ′′

θ //

u′1

��

Y×ZKw

ϕ

��

s %%

π2 // Kw

d

��

X ′×QuKw

π′1yyssssssss

π′2

99rrrrrrrr

Kqu u2

//

θ′
22

X ′ qu
// Qu

in which:

- π′1, π′2 are the pullback projections, and s = 〈ϕ, π2〉, θ′ = 〈u2, 0〉, and h′ = 〈0, kd〉
are the induced morphisms (the pullback (X ′×QuKw, π

′
1, π

′
2) of qu and d does exist

in C since qu is in E); since qu is in E so is π′2.

- u′1 : X ′′ → Kqu and u2 : Kqu → X ′ are as in diagram (3.6).

- Since u2 = ker(qu) and kd = ker(d), we conclude that θ′ = ker(π′2) and h′ = ker(π′1).

Since θ = ker(π2), θ′ = ker(π′2), and the morphisms π2, π′2, and u′1 are in E, by Lemma
2.3, s : Y×ZKw → X ′×QuKw is also in E. Therefore, since h = ker(ϕ) and h′ = ker(π′1),
by Lemma 2.7 and condition 2.1(f) the morphism ed : Kv → Kd is also in E, as desired.

E-exactness at Qu: Consider the commutative diagram (3.4), we have: f ′Qdπ2 = f ′Qquϕ =
qvf

′ϕ = qvvπ1 = 0, and since π2 is an epimorphism we conclude that f ′Qd = 0. To prove
that the sequence (3.2) is E-exact at Qu, it suffices to prove that the kernel of f ′Q exists
in C and that the induced morphism from Kw to the kernel of f ′Q is in E.

It easily follows from Lemma 2.4(i) that there exists a factorization f ′Q = f ′Q2
f ′Q1

where f ′Q2
is a monomorphism and f ′Q1

is in E. Indeed: since f ′ is a monomorphism and
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E contains all isomorphisms, applying Lemma 2.4(i) to the diagram

X ′
f ′ //

qu

��

Y ′

qv

��
Qu

f ′Q

// Qv

we obtain the desired factorization of f ′Q; since f ′Q1
is in E and f ′Q2

is a monomorphism,
we conclude that the kernel of f ′Q exists in C. Let kf ′Q : Kf ′Q

→ Qu be the kernel of f ′Q
and let ef ′Q : Kw → Kf ′Q

be the induced unique morphism with ef ′Qkf ′Q = d, it remains

to prove that ef ′Q is in E. Since qu is in E, the pullback (K ×Qu X
′, p1, p2) of kf ′Q and qu

exists in C and p1 is in E; therefore, we have the commutative diagram

Y ′′

v2

��
K ×Qu X

′

p
00

p1

��

p2 // X ′
f ′ //

qu

��

Y ′

qv

��
Kf ′Q kf ′

Q

// Qu
f ′Q

// Qv

in which v2 = ker(qv) (recall, that since the second column of the diagram (3.4) is E-
exact at Y ′, we have v = v2v1 where v1 ∈ E and v2 = ker(qv)) and p : K ×Qu X

′ → Y ′′

is the induced morphism. Using the fact that v2 and p2 are monomorphisms and that
kf ′Q = ker(f ′Q), an easy diagram chase proves that the square f ′p2 = v2p is the pullback

of f ′ and v2.
Next, consider the commutative diagram

Y

v1

��
v

��

Y×ZKw

ψ

��

ϕ

!!

π1oo π2 // Kw

ef ′
Q

��
d

��

Y ′′

v2

��

K ×Qu X
′

p
oo

p1
//

p2

��

Kf ′Q

kf ′
Q

��
Y ′ X ′

f ′
oo

qu
// Qu

were ψ = 〈ϕ, v1π1〉; since kf ′Q is a monomorphism and the equalities

kf ′Qp1ψ = qup2ψ = quϕ = dπ2 = kf ′Qef ′Qπ2
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hold, we conclude that p1ψ = ef ′Qπ2. Recall, that the square f ′ϕ = vπ1 is a pullback (see

the proof of (i)), therefore, (Y×ZKw, π1, ψ) is the pullback of p and v1, yielding that ψ is
in E. Since p1ψ = ef ′Qπ2, and ψ, p1, and π2 are in E, we conclude that ef ′Q is also in E,
as desired.

E-exactness at Qv: Consider the commutative diagram (3.4). According to the assump-
tions of the theorem, we have g′ = g′2g

′
1 were g′1 is a morphism in E and g′2 is a monomor-

phism. Then, by Lemma 2.4(i) there exists a factorization g′Q = g′Q2
g′Q1

were g′Q1
is a

morphism in E and g′Q2
is a monomorphism, hence, the kernel of g′Q exists in C. Since

g′Qf
′
Qqu = qwg

′f ′ = 0 and qu is an epimorphism, we conclude that g′Qf
′
Q = 0, therefore,

to prove that the sequence (3.2) is E-exact at Qv it suffices to prove that the induced
morphism from Qu to the kernel of g′Q is in E. For, consider the commutative diagram

X
f //

u

��

Y

v

��

g //
v1

  BBBBBB Z

w

��

w1

}}||||||

Ȳ

v2

������������ ȳ
// Z̄

w2

��3
333333333

z̄

��

X ′

qu

��

e1 !!

f ′ // Y ′

e2 ))

qv

��

g′ // Z ′

qw

��

Kg′Q

kg′
Q

  BBBBBBBBBBBBB f ′′
// Qv×QwZ

′

p′1

zzuuuuuuuuuuuuuuuu

p′2

55lllllllllllll

Qu

eg′
Q

DD											

f ′Q

// Qv
g′Q

// Qw

(3.8)

in which:

- kg′Q = ker(g′Q) and eg′Q : Qu → Kg′Q
is the induced unique morphism with kg′Qeg′Q =

f ′Q.

- (Qv×QwZ
′, p′1, p

′
2) is the pullback of g′Q and qw (this pullback does exist since qw

is in E), and e2 = 〈qv, g′〉 and f ′′ = 〈kg′Q , 0〉 are the canonical morphisms; since

kg′Q = ker(g′Q) we conclude that f ′′ = ker(p′2).

- Since f ′′ = ker(p′2) and p′2e2f
′ = 0 there exists a unique morphism e1 : X ′′ → Kg′Q

with f ′′e1 = e2f
′; it easily follows that eg′Qqu = e1.

- Since the second and the third columns of the diagram (3.8) are E-exact at Y ′ and
Z ′ respectively, we have the factorizations v = v2v1 and w = w2w1, where v1, w1 ∈ E
and v2 = ker(qv) and w2 = ker(qw).
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- z̄ = 〈0, w2〉, and since w2 = ker(qw) we conclude that z̄ = ker(p′1).

- Since z̄ = ker(p′1) and p′1e2v2 = 0, there exists a unique morphism ȳ : Ȳ → Z̄ with
e2v2 = z̄ȳ.

Since w1, g, and v1 are in E, we conclude that ȳ is in E; therefore, by Lemma 2.3, e2 is
also in E. Then, Lemma 2.7 implies that e1 is in E, and since eg′Qqu = e1 we conclude
that eg′Q is also in E, as desired.
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