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A UNIFIED FRAMEWORK FOR GENERALIZED
MULTICATEGORIES

G.S.H. CRUTTWELL AND MICHAEL A. SHULMAN

Abstract. Notions of generalized multicategory have been defined in numerous con-
texts throughout the literature, and include such diverse examples as symmetric multi-
categories, globular operads, Lawvere theories, and topological spaces. In each case,
generalized multicategories are defined as the “lax algebras” or “Kleisli monoids” rela-
tive to a “monad” on a bicategory. However, the meanings of these words differ from
author to author, as do the specific bicategories considered. We propose a unified frame-
work: by working with monads on double categories and related structures (rather than
bicategories), one can define generalized multicategories in a way that unifies all previous
examples, while at the same time simplifying and clarifying much of the theory.
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1. Introduction

A multicategory is a generalization of a category, in which the domain of a morphism,
rather than being a single object, can be a finite list of objects. A prototypical example
is the multicategory Vect of vector spaces, in which a morphism (V1, . . . , Vn) //W is a
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multilinear map. In fact, any monoidal category gives a multicategory in a canonical way,
where the morphisms (V1, . . . , Vn) //W are the ordinary morphisms V1⊗ . . .⊗Vn //W .
The multicategory Vect can be seen as arising in this way, but it is also natural to view
its multicategory structure as more basic, with the tensor product then characterized as
a representing object for “multimorphisms.” This is also the case for many other multi-
categories; in fact, monoidal categories can be identified with multicategories satisfying a
certain representability property (see [Her00] and §9).

In addition to providing an abstract formalization of the passage from “multilinear
map” to “tensor product,” multicategories provide a convenient way to present certain
types of finitary algebraic theories (specifically, strongly regular finitary theories, whose
axioms involve no duplication, omission, or permutation of variables). Namely, the objects
of the multicategories are the sorts of the theory, and each morphism (X1, . . . , Xn) // Y
represents an algebraic operation of the theory. When viewed in this light, multicategories
(especially those with one object, which correspond to one-sorted theories) are often
called non-symmetric operads (see [May72]). The original definition of multicategories in
[Lam69] (see also [Lam89]) was also along these lines (a framework for sequent calculus).
The two viewpoints are related by the observation that when A is a small multicategory
representing an algebraic theory, and C is a large multicategory such as Vect, a model
of the theory A in C is simply a functor of multicategories A //C. This is a version of
the functorial semantics of [Law63].

Our concern in this paper is with generalized multicategories, a well-known idea which
generalizes the basic notion in two ways. Firstly, one allows a change of “base context,”
thereby including both internal multicategories and enriched multicategories. Secondly,
and more interestingly, one allows the finite lists of objects serving as the domains of
morphisms to be replaced by “something else.” From the first point of view, this is
desirable since there are many other contexts in which one would like to analyze the
relationship between structures with coherence axioms (such as monoidal categories) and
structures with universal or “representability” properties. From the second point of view,
it is desirable since not all algebraic theories are strongly regular.

For example, generalized multicategories include symmetric multicategories, in which
the finite lists can be arbitrarily permuted. “Representable” symmetric multicategories
correspond to symmetric monoidal categories. Enriched symmetric multicategories with
one object can be identified with the operads of [May72, Kel05, KM95]. These describe
algebraic theories in whose axioms variables can be permuted (but not duplicated or
omitted). In most applications of operads (see [EM06, BM03] for some recent ones), both
symmetry and enrichment are essential.

An obvious variation of symmetric multicategories is braided multicategories. If we
allow duplication and omission in addition to permutation of inputs, we obtain (multi-
sorted) Lawvere theories [Law63]; a slight modification also produces the clubs of [Kel72b,
Kel92]. There are also important generalizations to “algebraic theories” on more compli-
cated objects; for instance, the globular operads of [Bat98, Lei04] describe a certain sort
of algebraic theory on globular sets that includes many notions of weak n-category.
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A very different route to generalized multicategories begins with the observation
of [Bar70] that topological spaces can be viewed as a type of generalized multicategory,
when finite lists of objects are replaced by ultrafilters, and morphisms are replaced by a
convergence relation. Many other sorts of topological structures, such as metric spaces,
closure spaces, uniform spaces, and approach spaces, can also be seen as generalized
multicategories; see [Law02, CT03, CHT04].

With so many different faces, it is not surprising that generalized multicategories have
been independently considered by many authors. They were first studied in generality by
[Bur71], but have also been considered by many other authors, including [Lei04], [Lei02],
[Her01], [CT03], [CHT04], [Bar70], [Web05], [BD98], [Che04], and [DS03]. While all these
authors are clearly doing “the same thing” from an intuitive standpoint, they work in
different frameworks at different levels of generality, making the formal definitions difficult
to compare. Moreover, all of these approaches share a certain ad hoc quality, which, given
the naturalness and importance of the notion, ought to be avoidable.

In each case, the authors observe that the “something else” serving as the domain
of morphisms in a generalized multicategory should be specified by some sort of monad,
invariably denoted T . For example, ordinary multicategories appear when T is the “free
monoid” monad, globular operads appear when T is the “free strict ω-category” monad,
and topological spaces appear when T is the ultrafilter monad. All the difficulties then
center around what sort of thing T is a monad on.

Leinster [Lei02, Lei04] takes it to be a cartesian monad on an ordinary category C, i.e.
C has pullbacks, T preserves them, and the naturality squares for its unit and multiplica-
tion are pullback squares. Burroni [Bur71], whose approach is basically the same, is able
to deal with any monad on a category with pullbacks. Hermida [Her01] works with a carte-
sian 2-monad on a suitable 2-category. Barr and Clementino et. al. [Bar70, CT03, CHT04]
work with a monad on Set equipped with a “lax extension” to the bicategory of matri-
ces in some monoidal category. Weber [Web05] works with a “monoidal pseudo alge-
bra” for a 2-monad on a suitable 2-category. Baez-Dolan [BD98] and Cheng [Che04] (see
also [FGHW08]) use a monad on Cat extended to the bicategory of profunctors (although
they consider only the “free symmetric strict monoidal category” monad).

Inspecting these various definitions and looking for commonalities, we observe that in
all cases, the monads involved naturally live on a bicategory, be it a bicategory of spans
(Burroni, Leinster), two-sided fibrations (Hermida), relations (Barr), matrices (Clementino
et. al., Weber), or profunctors (Baez-Dolan, Cheng). What causes problems is that the
monads of interest are frequently lax (preserving composition only up to a noninvertible
transformation), but there is no obvious general notion of lax monad on a bicategory,
since there is no good 2-category (or even tricategory) of bicategories that contains lax
or oplax functors.

Furthermore, merely knowing the bicategorical monad (however one chooses to formal-
ize this) is insufficient for the theory, and in particular for the definition of functors and
transformations between generalized multicategories. Leinster, Burroni, Weber, and Her-
mida can avoid this problem because their bicategorical monads are induced by monads
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on some underlying category or 2-category. Others resolve it by working with an extension
of a given monad on Set or Cat to the bicategory of matrices or profunctors, rather than
merely the bicategorical monad itself. However, the various definitions of such extensions
are tricky to compare and have an ad hoc flavor.

Our goal in this paper (and its sequels) is to give a common framework which in-
cludes all previous approaches to generalized multicategories, and therefore provides a
natural context in which to compare them. To do this, instead of considering monads
on bicategories, we instead consider monads on types of double categories. This essen-
tially solves both problems mentioned above: on the one hand there is a perfectly good
2-category of double categories and lax functors (allowing us to define monads on a double
category), and on the other hand the vertical arrows of the double categories (such as
morphisms in the cartesian category C, functions in Set, or functors between categories)
provide the missing data with which to define functors and transformations of generalized
multicategories.

The types of double categories we use are neither strict or pseudo double categories,
but instead an even weaker notion, for the following reason. An important intermediate
step in the definition of generalized multicategories is the horizontal Kleisli construction
of a monad T , whose (horizontal) arrows X � // Y are arrows X � // TY . Without strong
assumptions on T , such arrows cannot be composed associatively, and hence the horizontal
Kleisli construction does not give a pseudo double category or bicategory. It does, however,
give a weaker structure, which we call a virtual double category.

Intuitively, virtual double categories generalize pseudo double categories in the same
way that multicategories generalize monoidal categories. There is no longer a horizontal
composition operation, but we have cells of shapes such as the following:

Y0 Y1
�
q

//

X0

Y0

f

��

X0 XnXn

Y1

g

��

X0 X1
�p1 // X1 X2

�p2 // X2 · · ·�p3 // · · · Xn
�pn //

�� α

We will give an explicit definition in §2. Virtual double categories have been studied
by [Bur71] under the name of multicatégories and by [Lei04] under the name of fc-
multicategories, both of whom additionally described a special case of the horizontal
Kleisli construction. They are, in fact, the generalized multicategories relative to the “free
category” or “free double category” monad (depending on whether one works with spans
or profunctors). In [DPP06] virtual double categories were called lax double categories,
but we believe that name belongs properly to lax algebras for the 2-monad whose strict
algebras are double categories. (We will see in Example 9.7 that oplax double categories
in this “2-monadically correct” sense can be identified with a restricted class of virtual
double categories.)

Next, in §§3–4 we will show that for any monad T on a virtual double category X,
one can define a notion which we call a T -monoid. In fact, we will construct an entire
new virtual double category KMod(X, T ) whose objects are T -monoids, by composing
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the “horizontal Kleisli” construction mentioned above with the “monoids and bimodules”
construction Mod described in [Lei04, §5.3], which can be applied to any virtual double
category. Then in §6 we will construct from KMod(X, T ) a 2-category KMon(X, T ) of T -
monoids, T -monoid functors, and transformations, generalizing the analogous definition
in [Lei04, §5.3]. This requires a notion of when a virtual double category has units, which
we define in §5 along with the parallel notion of when it has composites. (These definitions
generalize those of [Her00] and can also be found in [DPP06]; they are also a particular
case of the “representability” of [Her01] and our §9.)

For particular X and T , the notion of T -monoid specializes to several previous defini-
tions of generalized multicategories. For example, if X consists of objects and spans in a
cartesian category C and T is induced from a monad on C, we recover the definitions of
Leinster, Kelly, and Burroni. And if X consists of sets and matrices enriched over some
monoidal category V and T is a “canonical extension” of a taut set-monad to X, then we
recover the definitions of Clementino et. al.

However, the other definitions of generalized multicategory cannot quite be identified
with T -monoids for any T , but rather with only a restricted class of them. For instance,
if X consists of categories and profunctors, and T extends the “free symmetric monoidal
category” monad on Cat (this is the situation of Baez-Dolan and Cheng), then T -monoids
are not quite the same as ordinary symmetric multicategories. Rather, a T -monoid for
this T consists of a category A, a symmetric multicategory M , and a bijective-on-objects
functor from A to the underlying ordinary category of M . There are two ways to restrict
the class of such T -monoids to obtain a notion equivalent to ordinary symmetric multi-
categories: we can require A to be a discrete category (so that it is simply the set of
objects of M), or we can require the functor to also be fully faithful (so that A is simply
the underlying ordinary category of M). We call the first type of T -monoid object-discrete
and the second type normalized.

In order to achieve a full unification, therefore, we must give general definitions of
these classes of T -monoid and account for their relationship. It turns out that this requires
additional structure on our virtual double categories: we need to assume that horizontal
arrows can be “restricted” along vertical ones, in a sense made precise in §7. Pseudo
double categories with this property were called framed bicategories in [Shu08], where
they were also shown to be equivalent to the proarrow equipments of [Woo82] (see also
[Ver92]). Accordingly, if a virtual double category X has this property, as well as all units,
we call it a virtual equipment.

Our first result in §8, then, is that if T is a well-behaved monad on a virtual equip-
ment, object-discrete and normalized T -monoids are equivalent. However, normalized
T -monoids are defined more generally than object-discrete ones, and moreover when T
which are insufficiently well-behaved, it is the normalized T -monoids which are of more
interest. Thus, we subsequently discard the notion of object-discreteness. (Hermida’s gen-
eralized multicategories also arise as normalized T -monoids, where X consists of discrete
fibrations in a suitable 2-category K and T is an extension of a suitable 2-monad on K.
Weber’s definition is a special case, since as given it really only makes sense for generalized
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operads, for which normalization is automatic; see §B.16.) In Table 1 we summarize the
meanings of T -monoids and normalized T -monoids for a number of monads T .

Now, what determines whether the “right” notion of generalized multicategory is a
plain T -monoid or a normalized one? The obvious thing distinguishing the situations of
Leinster, Burroni, and Clementino et. al. from those of Baez-Dolan, Cheng, and Hermida
is that in the former case, the objects of X are “set-like,” whereas in the latter, they are
“category-like.” However, some types of generalized multicategory can be constructed
starting from two different monads on two different virtual equipments, one of which
belongs to the first group and the other to the second.

For example, observe that an ordinary (non-symmetric) multicategory has an under-
lying ordinary category, containing the same objects but only the morphisms (V1) //W
with unary source. Thus, such a multicategory can be defined in two ways: either as
extra structure on its set of objects, or as extra structure on its underlying category. In
the second case, normalization is the requirement that in the extra added structure, the
multimorphisms with unary source do no more than reproduce the originally given cate-
gory. Thus, ordinary multicategories arise both as T -monoids the “free monoid” monad
on sets and spans, and as normalized T -monoids for the “free monoidal category” monad
on categories and profunctors.

Our second result in §8 is a generalization of this relationship. We observe that
the virtual equipment of categories and profunctors results from applying the “monoids
and modules” construction Mod to the virtual equipment of sets and spans. Thus, we
generalize this situation by showing that for any monad T on a virtual equipment, plain
T -monoids can be identified with normalized Mod(T )-monoids. That this is so in the
examples can be seen by inspection of Table 1. Moreover, it is sensible because application
of Mod takes “set-like” things to “category-like” things.

It follows that the notion of “normalized T -monoid” is actually more general than
the notion of T -monoid, since arbitrary T -monoids for some T can be identified with the
normalized S-monoids for some S (namely S = Mod(T )), whereas normalized S-monoids
cannot always be identified with the arbitrary T -monoids for any T . (For instance, this is
not the case when S is the “free symmetric monoidal category” monad on categories
and profunctors.) This motivates us to claim that the “right” notion of generalized
multicategory is a normalized T -monoid, for some monad T on a virtual equipment.

Having reached this conclusion, we also take the opportunity to propose a new naming
system for generalized multicategories which we feel is more convenient and descriptive.
Namely, if (pseudo) T -algebras are called widgets, then we propose to call normalized
T -monoids virtual widgets. The term “virtual double category” is of course a special
case of this: virtual double categories are the normalized T -monoids for the monad T on
Prof(Grph) whose algebras are double categories.

Of course, “virtual” used in this way is a “red herring” adjective1 akin to “pseudo” and
“lax”, since a virtual widget is not a widget. The converse, however, is true: every widget

1The mathematical red herring principle states that an object called a “red herring” need not, in
general, be either red or a herring.
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Monad T on T -monoid Normalized
T -Monoid

Pseudo
T -algebra

Id V-Mat V-enriched
category

Set Set

Id Span(C) Internal category
in C

Object of C Object of C

Id Rel Ordered Set Set Set

Id R+-Mat Metric Space Set Set
Powerset Rel Closure Space T1 Closure Space Complete

Semilattice
Mod(powerset) 2-Prof Modular Closure

Space
Closure Space Meet-Complete

Preorder
Ultrafilter Rel Topological Space T1 space Compact

Hausdorff space
Mod(ultrafilter) 2-Prof Modular Top.

Space
Topological Space Ordered Compact

Hausdorff space

Ultrafilter R+-Mat Approach space ? Compact
Hausdorff space

Free monoid Span(Set) Multicategory ? Monoid
Mod(free monoid) Set-Prof “Enhanced”

multicategory
Multicategory Monoidal

category
Free sym. strict
mon. cat.

Set-Prof “Enhanced” sym.
multicategory

Symmetric
multicategory

Symmetric mon.
cat.

Free category Span(Grph) Virtual double
category

? Category

Mod(free category) Prof(Grph) ? Virtual double
category

Pseudo double
category

Free cat. w/
finite products

Set-Prof ? Multi-sorted
Lawvere theory

Cat. w/ finite
products

Free cat. w/
small products

Set-Prof ls ? Monad on Set Cat. w/ small
products

Free presheaf
Sop // Set

Span
(
Setob(S)

)
Functor A // S Functor A // S

w/ discrete fibers
Functor
Sop // Set

Mod(free presheaf) Prof(Setob(S)) ? Functor A // S Pseudofunctor
Sop //Cat

Free strict
ω-category

Span(Globset) Multi-sorted
globular operad

? Strict ω-category

Mod(free ω-cat.) Prof(Globset) ? Multi-sorted
globular operad

Monoidal
globular cat.

Free M -set (M a
monoid)

Span(Set) M -graded
category

? M -set

Table 1: Examples of generalized multicategories. The boxes marked “?” do not have any
established name; in most cases they also do not seem very interesting.
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has an underlying virtual widget, so the terminology makes some sense. For example, the
observation above that every monoidal category has an underlying multicategory is an
instance of this fact. Moreover, it often happens that virtual widgets share many of the
same properties as widgets, and many theorems about widgets can easily be extended to
virtual widgets. Thus, it is advantageous to use a terminology which stresses the close
connection between the two. Another significant advantage of “virtual widget” over “T -
multicategory” is that frequently one encounters monads T for which T -algebras have
a common name, such as “double category” or “symmetric monoidal category,” but T
itself has no name less cumbersome than “the free double category monad” or “the free
symmetric monoidal category monad.” Thus, it makes more sense to name generalized
multicategories after the algebras for the monad than after the monad itself.

By the end of §8, therefore, we have unified all existing notions of generalized multi-
category under the umbrella of virtual T -algebras, where T is a monad on some virtual
equipment. Since getting to this point already takes us over 40 pages, we leave to future
work most of the development of the theory and its applications, along with more specific
comparisons between existing theories (see [CS10a, CS10b]).

However, we do spend some time in §9 on the topic of representability. This is a central
idea in the theory of generalized multicategories, which states that any pseudo T -algebra
(or, in fact, any oplax T -algebra) has an underlying virtual T -algebra. Additionally, one
can characterize the virtual T -algebras which arise in this way by a “representability”
property. This can then be interpreted as an alternate definition of pseudo T -algebra
which replaces “coherent algebraic structure” by a “universal property,” as advertised
in [Her01]. In addition to the identification of monoidal categories with “representable”
multicategories, this also includes the fact that compact Hausdorff spaces are T1 spaces
with additional properties, and that fibrations over a category S are equivalent to pseudo-
functors Sop // Cat. In [CS10b] we will extend more of the theory of representability
in [Her01] to our general context.

Finally, the appendices are devoted to showing that all existing notions of generalized
multicategory are included in our framework. In Appendix A we prepare the way by
giving sufficient conditions for our constructions on virtual double categories to preserve
composites, which is important since most existing approaches use bicategories. Then in
Appendix B we summarize how each existing theory we are aware of fits into our context.

We have chosen to postpone these comparisons to the end, so that the main body of
the paper can present a unified picture of the subject, in a way which is suitable also as
an introduction for a reader unfamiliar with any of the existing approaches. It should be
noted, though, that we claim no originality for any of the examples or applications, or
the ideas of representability in §9. Our goal is to show that all of these examples fall into
the same framework, and that this general framework allows for a cleaner development of
the theory.

1.1. Acknowledgements. The first author would like to thank Bob Paré for his sug-
gestion to consider “double triples”, as well as helpful discussions with Maria Manuel
Clementino, Dirk Hofmann, and Walter Tholen. The second author would like to thank
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David Carchedi and the patrons of the n-Category Café blog for several helpful conversa-
tions. Both authors would like to thank the editor and the referee for helpful suggestions.

2. Virtual double categories

The definition of virtual double category may be somewhat imposing, so we begin with
some motivation that will hopefully make it seem inevitable. We seek a framework which
includes all sorts of generalized multicategories. Since categories themselves are a particu-
lar sort of generalized multicategory (relative to an identity monad), our framework should
in particular include all sorts of generalized categories. In particular, it should include
both categories enriched in a monoidal category V and categories internal to a category
C with pullbacks, so let us begin by considering how to unify these two situations.

We start by recalling that both V-enriched categories and C-internal categories are
particular cases of monoids in a monoidal category. On the one hand, if V is a cocomplete
closed monoidal category and O is a fixed set, then V-enriched categories with object
set O can be identified with monoids in the monoidal category of O-graphs in V—i.e.
(O × O)-indexed families of objects of V, with monoidal structure given by “matrix
multiplication.” On the other hand, if C is a category with pullbacks and O is an object
of C, then C-internal categories with object-of-objects O can be identified with monoids
in the monoidal category of O-spans in C—i.e. diagrams of the form O ← A→ O, with
monoidal structure given by span composition.

Now, both of these examples share the same defect: they require us to fix the objects
(the set O or object O). In particular, the morphisms of monoids in these monoidal
categories are functors which are the identity on objects. It is well-known that one can
eliminate this fixing of objects by combining all the monoidal categories of graphs and
spans, respectively, into a bicategory. (In essense, this observation dates all the way back
to [Bén67].) In the first case the relevant bicategory V-Mat consists of V-matrices : its
objects are sets, its arrows from X to Y are (X × Y )-matrices of objects in V, and its
composition is by “matrix multiplication.” In the second case the relevant bicategory
Span(C) consists of C-spans : its objects are objects of C, its arrows from X to Y are
spans X ← A→ Y in C, and its composition is by pullback. It is easy to define monoids
in a bicategory to generalize monoids in a monoidal category2.

However, we still have the problem of functors. There is no way to define morphisms
between monoids in a bicategory so as to recapture the correct notions of enriched and
internal functors in V-Mat and Span(C). But we can solve this problem if instead of
bicategories we use (pseudo) double categories, which come with objects, two different

2Monoids in a bicategory are usually called monads. However, we avoid that term for these sorts of
monoids for two reasons. Firstly, the morphisms of monoids we are interested in are not the same as the
usual morphisms of monads (although they are related; see [LS02, §2.3–2.4]). Secondly, there is potential
for confusion with the monads on bicategories and related structures which play an essential role in the
theory we present.
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kinds of arrow called “horizontal” and “vertical,” and 2-cells in the form of a square:

//��

//

��

��

Both V-Mat and Span(V) naturally enlarge to pseudo double categories, interpreting
their existing arrows and composition as horizontal and adding new vertical arrows. For
V-Mat the new vertical arrows are functions between sets, while for Span(C) the new
vertical arrows are morphisms in C. We can now define monoids in a double category
(relative to the horizontal structure) and morphisms between such monoids (making use
of the vertical arrows) so as to recapture the correct notion of functor in both cases (see
Definition 2.8).

The final generalization from pseudo double categories to virtual double categories is
more difficult to motivate at the moment, but as remarked in the introduction, we will
find it essential in §4. Conceptually (and, in fact, formally), a virtual double category is
related to a pseudo double category in the same way that a multicategory is related to a
monoidal category. Thus, just as one can define monoids in any multicategory, one can
likewise do so in any virtual double category.

2.1. Definition. A virtual double category X consists of the following data.

• A category X (the objects and vertical arrows), with the arrows written vertically:

X

Y

f
��

• For any two objects X, Y ∈ X, a class of horizontal arrows, written horizontally
with a slash through the arrow:

X Y�p //

• Cells, with vertical source and target, and horizontal multi-source and target, written
as follows:

Y0 Y1
�
q

//

X0

Y0

f

��

X0 XnXn

Y1

g

��

X0 X1
�p1 // X1 X2

�p2 // X2 · · ·�p3 // · · · Xn
�pn //

�� α (2.2)

Note that this includes cells with source of length 0, in which case we must have
X0 = Xn; such cells are visually represented as follows:

X

Y0

f

��

X

Y1

g

��
Y0 Y1

�
q

//
�� α
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• For the following configuration of cells,

Z0 Z1
�
r

//

Y0

Z0

g0 ��

Y0 YmYm

Z1

g1��

Y0 Y1
�
q1

//

X0

Y0

f0 ��

X0 Xn1

p11...p1n1 // Xn1

Y1

f1��
Y1 Y2

�
q2

//

Xn1

Y1

��

Xn1 Xn2

p21...p2n1 // Xn2

Y2

f2��

Xn2 · · ···· // · · · Xnm

··· //

Y2 Ymq3···qm
//

Xnm

Ym

fm��α1�� α2�� �� α3···αm

�� β

a composite cell

Z0 Z1
�
r

//

Y0

Z0

g0 ��

Y0 YmYm

Z1

g1��

Y0

X0

Y0

f0 ��

X0 Xn1

p11...p1n1 // Xn1Xn1Xn1 Xn2

p21...p2n1 // Xn2Xn2 · · ···· // · · · Xnm

··· // Xnm

Ym

fm��
β(αm�···�α1)��

• For each horizontal arrow p, an identity cell

X Y

X Y

�p //

�
p

//
�� 1p

• Associativity and identity axioms for cell composition. The associativity axiom
states that(
γ(βm�· · ·�β1)

)
(αmkm�· · ·�α11) = γ

(
βm(αmkm�· · ·�αm1)�· · ·�β1(α1k1�· · ·�α11)

)
while the identity axioms state that

α(1p1 � · · ·� 1pn) = α and 1q(α1) = α1

whenever these equations make sense.

2.3. Remark. As mentioned in the introduction, virtual double categories have also
been called fc-multicategories by Leinster [Lei04] and multicatégories by Burroni [Bur71].
Our terminology is chosen to emphasize their close relationship with double categories,
and to fit into the general naming scheme of §9.

2.4. Remark. In much of the double-category literature, it is common for the “slashed”
arrows (spans, profunctors, etc.) to be the vertical arrows. We have chosen the opposite
convention purely for economy of space: the cells in a virtual double category fit more
conveniently on a page when their multi-source is drawn horizontally.
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2.5. Examples. As suggested by the discussion at the beginning of this section, monoidal
categories, bicategories, 2-categories, multicategories, and pseudo double categories can
each be regarded as examples of virtual double categories, by trivializing the vertical or
horizontal structure in various ways; see [Lei02, p. 4] or [Lei04, §5.1] for details.

We now present the two virtual double categories that will serve as initial inputs for
most our examples: spans and matrices. (Both are also described in [Lei04, Ch. 5].) For
consistency, we name all of our virtual double categories by their horizontal arrows, rather
than their vertical arrows or objects.

2.6. Example. Let (V,⊗, I) be a monoidal category. The virtual double category
V-Mat is defined as follows: its objects are sets, its vertical arrows are functions, its

horizontal arrows X �p // Y are families {p(y, x)}x∈X,y∈Y of objects of V (i.e. (X × Y )-
matrices), and a cell of the form (2.2) consists of a family of V-arrows

p1(x1, x0)⊗ p2(x2, x1)⊗ · · · ⊗ pn(xn, xn−1) α // q(fxn, gx0),

one for each tuple (x0, . . . , xn) ∈ X0 × · · · ×Xn. When n = 0, of course, the n-ary tensor
product on the left is to be interpreted as the unit object of V.

In particular, if V is the 2-element chain 0 ≤ 1, with ⊗ given by ∧, then the horizontal
arrows of V-Mat are relations. In this case we denote V-Mat by Rel.

It is well-known that V-matrices form a bicategory (and, in fact, a pseudo double
category) as long as V has coproducts preserved by ⊗. However, if we merely want a
virtual double category, we see that this requirement is unnecessary. (In fact, V could be
merely a multicategory itself.)

2.7. Example. For a category C with pullbacks, the virtual double category Span(C)
is defined as follows: its objects and vertical arrows are those of C, its horizontal arrows

X �p // Y are spans X oo P // Y , and a cell of the form (2.2) is a morphism of spans

P1 ×X1 P2 ×X2 · · · ×Xn−1 Pn
α //Q

lying over f and g. When n = 0, the n-ary span composite in the domain is to be
interpreted as the identity span X0

oo X0
//X0.

Note that in this case, we do need to require that C have pullbacks. If C does not
have pullbacks, a more natural setting would be to consider Span(C) as a “co-virtual
double category”, in which the horizontal target of a cell is a string of horizontal arrows.
However, co-virtual double categories do not provide the structure necessary to define
generalized multicategories.

We now recall the construction of monoids and modules in a virtual double category
from [Lei04, §5.3].
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2.8. Definition. Let X be a virtual double category. The virtual double category Mod(X)
has the following components:

• The objects (monoids) consist of four parts (X0, X, x̄, x̂): an object X0 of X, a

horizontal endo-arrow X0
�X //X0 in X, and multiplication and unit cells

X0 X0 X0

X0 X0

�X // �X //

�
X

//
�� x̄ and

X0

X0

X0

X0X0 X0
�
X

//
�� x̂

satisfying associativity and identity axioms.

• The vertical arrows (monoid homomorphisms) consist of two parts (f0, f): a

vertical arrow X0
f0 // Y0 in X and a cell in X:

X0 X0

Y0 Y0

�X //

�
Y

//
f0 �� f0���� f

which is compatible with the multiplication and units of X and Y .

• The horizontal arrows (modules) consist of three parts (p, p̄r, p̄l): a horizontal arrow

X0
�p // Y0 in X and two cells in X:

X0 X0 Y0

X0 Y0

�X // �p //

�
p

//
�� p̄r and

X0 Y0 Y0

X0 Y0

�p // �Y //

�
p

//
�� p̄l

which are compatible with the multiplication and units of X and Y .

• The cells are cells in X:

(Y 0)0 (Y 1)0

(X0)0

(Y 0)0

f0

��

(X0)0 (Xn)0(Xn)0

(Y 1)0

g0

��
(Y 0)0 (Y 1)0

�
q

//

(X0)0 (X1)0
�p1 // (X1)0 (X2)0

�p2 // (X2)0 · · ·�p3 // · · · (Xn)0
�pn //

�� α

which are compatible with the left and right actions of the horizontal cells.

Note that, as observed in [Lei04, §5.3], we can define Mod(X) without requiring any
hypotheses on the virtual double category X, in contrast to the situation for bicategories
or pseudo double categories.
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2.9. Example. We denote the virtual double category Mod(V-Mat) by V-Prof; its
objects are V-enriched categories, its vertical arrows are V-functors, its horizontal arrows
are V-profunctors, and its cells are a generalization of the “forms” of [DS97] (including,
as a special case, natural transformations between profunctors). When V is closed (hence

enriched over itself) and symmetric, V-profunctors C �H // D can be identified with V-
functors Dop × C //V.

Again, note that because we are working with virtual double categories, we do not
require that V have any colimits (in fact, V could be merely a multicategory).

2.10. Example. Let C be a category with pullbacks. We denote the virtual double cat-
egory Mod(Span(C)) by Prof(C); it consists of internal categories, functors, profunctors,
and transformations in C.

Note that Set-Mat ∼= Span(Set) and thus Set-Prof ∼= Prof(Set).

3. Monads on a virtual double category

We claimed in §1 that the “inputs” of a generalized multicategory are parametrized by
a monad. Why should this be so? Suppose that we have an operation T which, given a
set (or object) of objects X, produces a set (or object) TX intended to parametrize such
inputs. For “ordinary” multicategories, TX will be the set of finite lists of elements of X.

Now, from the perspective of the previous section, the data of a category includes

an object A0 and a horizontal arrow A0
�A // A0 in some virtual double category. For

example, if we work in Set-Mat, then A is a matrix consisting of the hom-sets A(x, y)
for every x, y ∈ A0. Now, instead, we want to have hom-sets A(x, y) whose domain x is

an element of TA0. Thus, it makes sense to consider a horizontal arrow A0
�A // TA0 as

part of the data of a T -multicategory. (We use A0
� // TA0 rather than TA0

� // A0, for
consistency with Examples 2.9 and 2.10: the codomain of the horizontal arrow datum of
a monoid specifies the domains of the arrows in that monoid.)

However, we now need to specify the units and composition of our generalized multi-
category. The unit should be a cell into A with 0-length domain, but its source and
target vertical arrows can no longer both be identities because A0 6= TA0. In an ordinary

multicategory, the identities are morphisms (x)
1x // x whose domain is a singleton list;

in terms of Set-Mat this can be described by a cell

A0 TA0A
//

A0

A0

A0

TA0

η

��
��

where A0
η // TA0 is the inclusion of singleton lists.
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Regarding composition, in an ordinary multicategory we can compose a morphism

(y1, . . . , yn)
g // z not with a single morphism, but with a list of morphisms (f1, . . . , fn)

where (xi1, . . . , xiki)
fi // yi. In terms of Set-Mat this represents the fact that we cannot

ask for a multiplication cell with domain �A // �A // , since the domain of A does not

match its codomain, but instead we can consider a cell with domain �A // �TA //, where we
extend T to act on Set-matrices in the obvious way. Now, however, the codomain of TA
is T 2A0; in order to have a cell with codomain A we need to “remove parentheses” from
the resulting domain ((x11, . . . , x1k1), . . . , (xn1, . . . , xnkn)) to obtain a single list. Thus the
composition should be a cell

A0 TA0
�
A

//

A0

A0

A0 T 2A0T 2A0

TA0

µ

��

A0 TA0
�A // TA0 T 2A0

�TA //

��

where µ is the “remove parentheses” function. Of course, these functions η and µ are the
structure maps of the “free monoid” monad on Set. Thus we see that in order to define
ordinary multicategories, what we require is an “extension” of this monad to Set-Mat.

In order to have a good notion of a monad on a virtual double category, we need at
least a 2-category of virtual double categories. Since virtual double categories are them-
selves a special case of generalized multicategories, it suffices to observe that generalized
multicategories of any sort form a 2-category. However, since we have not yet defined
generalized multicategories in our context, at this point in our exposition it is appropriate
to give an explicit description of the 2-category vDbl .

Of course, the objects of vDbl are virtual double categories, and its 1-morphisms
(called functors of virtual double categories) are the obvious structure-preserving maps:
functions from the objects, vertical and horizontal arrows, and cells of the domain to
those of the codomain, preserving all types of source, target, identities, and composition.
However, the definition of 2-morphisms in vDbl is slightly less obvious.

3.1. Definition. Given functors X
F //
G
//Y of virtual double categories, a transforma-

tion F
θ //G consists of the following data.

• For each object X in X, a vertical arrow FX
θX //GX, which form the components

of a natural transformation between the vertical parts of F and G.

• For each horizontal arrow X �p // Y in X, a cell in Y:

FX FY

GX GY

�Fp //

�
Gp

//

θX ��
θY���� θp (3.2)
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• An axiom asserting that θ is “cell-natural,” meaning that

θq(Fα) = (Gα)(θp1 � · · ·� θpn)

whenever this makes sense.

Virtual double categories, functors, and transformations form a 2-category denoted vDbl .

3.3. Example. Any lax monoidal functor V N //W induces functors V-Mat
N∗ //W-Mat

and V-Prof N∗ //W-Prof in an evident way. Moreover, any monoidal natural transfor-

mation N
ψ //M between lax monoidal functors induces transformations N∗

ψ∗ //M∗ in
both cases. In this way (−)-Mat and (−)-Prof become 2-functors from the 2-category of
monoidal categories to vDbl .

3.4. Example. Similarly, any pullback-preserving functor C N //D between categories

with pullbacks induces functors Span(C)
N∗ // Span(D) and Prof(C)

N∗ // Prof(D), and

any natural transformation N
ψ // M between such functors induces transformations

N∗
ψ∗ //M∗, thereby making Span(−) and Prof(−) into 2-functors as well.

3.5. Example. When restricted to bicategories or pseudo double categories, functors
of virtual double categories are equivalent to the usual notions of lax functor.

This is a special case of a general fact; see Theorem 9.13. When transformations of
virtual double categories are similarly restricted, they become icons in the sense of [Lac10]
(for bicategories) and vertical transformations (for pseudo double categories).

By a monad on a virtual double category X, we will mean a monad in the 2-category
vDbl . Thus, it consists of a functor T : X // X and transformations η : Id // T and
µ : TT // T satisfying the usual axioms. We now give the examples of such monads that
we will be interested in.

3.6. Example. Since 2-functors preserve monads, any pullback-preserving monad on a
category C with pullbacks induces monads on Span(C) and Prof(C). Examples of such
monads include the following.

• The “free monoid” monad on Set (or, more generally, on any countably lextensive
category).

• The “free M -set” monad (M × −) on Set, for any monoid M (or more generally,
for any monoid object in a category with finite limits).

• The monad (−) + 1 on any lextensive category.

• The “free category” monad on the category of directed graphs.

• The “free strict ω-category” monad on the category of globular sets.
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Many more examples can be found in [Lei04, pp. 103–107]; see also §B.1. By the argument
above, each of these monads extends to a monad on a virtual double category of spans.

The assignments V 7→ V-Mat and V 7→ V-Prof are also 2-functorial, but the monads
we obtain in this way from monads on monoidal categories are not usually interesting for
defining multicategories. However, there are some general ways to construct monads on
virtual double categories of matrices, at least when V is a preorder. The following is due
to [Sea05], which in turn expands on [CHT04].

3.7. Example. By a quantale we mean a closed symmetric monoidal complete lattice.
A quantale is completely distributive if for any b ∈ V we have b =

∨
{a | a ≺ b},

where a ≺ b means that whenever b ≤
∨
S then there is an s ∈ S with a ≤ s. (If in this

definition S is required to be directed, we obtain the weaker notion of a continuous lattice.)
For us, the two most important completely distributive quantales are the following.

• The two-element chain 2 = (0 ≤ 1).

• The extended nonnegative reals R+ = [0,∞] with the reverse of the usual ordering
and ⊗ = +.

A functor said to be taut if it preserves pullbacks of monomorphisms (and therefore
also preserves monomorphisms). A monad is taut if its functor part is taut, and moreover
the naturality squares of η and µ for any monomorphism are pullbacks. Some important
taut monads on Set are the identity monad, the powerset monad (whose algebras are
complete lattices), the filter monad, and the ultrafilter monad (whose algebras are compact
Hausdorff spaces).

Now let V be a completely distributive quantale and T a taut monad on Set. For a

V-matrix X �p // Y and elements F ∈ TX and G ∈ TY , define

Tp(G,F) =
∨{

v ∈ V
∣∣∣ ∀B ⊆ Y :

(
G ∈ TB ⇒ F ∈ T (pv[B])

)}
,

where
pv[B] =

{
x ∈ X

∣∣∣ ∃y ∈ B : v ≤ p(y, x)
}
.

It is proven in [Sea05] that this action on horizontal arrows extends T to a monad on
V-Mat. (Actually, Seal shows that it is a “lax extension of T to V-Mat with op-lax unit
and counit”; we will show in §B.6 that this is the same as a monad on V-Mat.)

In [Sea05] this monad on V-Mat is called the “canonical extension” of T (note, how-
ever, that it is written backwards from his definition, as our Kleisli arrows will beX � //TY ,
whereas his are TX � //Y ). Since V-Mat is isomorphic to its “horizontal opposite,” there
is also an “op-canonical extension”, which is in general distinct (although in some cases,
such as for the ultrafilter monad, the two are identical). There are also many other
extensions: for more detail, see [SS08].

Another general way of constructing monads on virtual double categories is to apply
the construction Mod from the previous section, which turns out to be a 2-functor. Its 1-
functoriality is fairly obvious and was described in [Lei04, §5.3]; its action on 2-morphisms
is given as follows.
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3.8. Definition. Let X
F //
G
//Y be functors between virtual double categories, and F θ //G

a transformation. One can define a transformation

Mod(F )
Mod(θ) //Mod(G)

whose vertical-arrow component at an object (X0, X, x̄, x̂) is the monoid homomorphism

FX0 FX0

GX0 GX0

�F (X) //

�
G(X)

//

θX0

��
θX0

��
�� θX

and whose cell component at a horizontal arrow (p, p̄r, p̄l) is given by

FX0 FY0

GX0 GY0

�Fp //

�
Gp

//

θX0

��
θY0
��

�� θp

3.9. Proposition. With action on objects, 1-cells, and 2-cells described above, Mod is
an endo-2-functor of vDbl .

Note that the 2-functors (−)-Prof and Prof(−) can now be seen as the composites of
Mod with (−)-Mat and Span(−), respectively.

3.10. Corollary. A monad T on a virtual double category X induces a monad Mod(T )
on Mod(X).

3.11. Example. Any monad T on V-Mat induces a monad on V-Prof. For instance,
this applies to the monads constructed in Example 3.7.

3.12. Example. Let V be a symmetric monoidal category with an initial object ∅
preserved by ⊗. Then the “free monoid” monad T on Set extends to a monad on V-Mat

as follows: a V-matrix X �p // Y is sent to the matrix TX �Tp // TY defined by

Tp
(

(y1, . . . , ym), (x1, . . . , xn)
)

=

{
p(y1, x1)⊗ . . .⊗ p(yn, xn) if n = m

∅ if n 6= m

Applying Mod, we obtain an extension of the “free strict monoidal V-category” monad
from V-Cat to V-Prof.
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3.13. Example. Likewise, any monad T on Span(C) extends to a monad on Prof(C).
But most interesting monads on Span(C) are induced from C, so this gains us little
beyond the observation that Prof(−) is a 2-functor.

Not every monad on V-Prof or Prof(C) is induced by one on V-Mat or Span(C),
however. The following examples are also important.

3.14. Example. Let V be a symmetric monoidal category with finite colimits preserved
by ⊗ on both sides. Then there is a “free symmetric strict monoidal V-category” monad
T on V-Cat , defined by letting the objects of TX be finite lists of objects of X, with

TX
(

(x1, . . . , xn), (y1, . . . , ym)
)

=


∑
σ∈Sn

⊗
1≤i≤n

X(xσ(i), yi) if n = m

∅ if n 6= m.

A nearly identical-looking definition for profunctors extends this T to a monad on V-Prof.
A similar definition applies for braided monoidal V-categories.

3.15. Example. For V as in Example 3.14, there is also a “free V-category with strictly
associative finite products” monad on V-Cat . The objects of this TX are again finite lists
of objects of X, but now we have

TX
(

(x1, . . . , xm), (y1, . . . , yn)
)

=
∏

1≤i≤n

∑
1≤j≤m

X(xj, yi).

If V is cartesian monoidal, then this can equivalently be written as

TX
(

(x1, . . . , xm), (y1, . . . , yn)
)

=
∑

α : n→m

∏
1≤i≤n

X(xα(i), yi).

Again, a nearly identical definition for profunctors extends this to a monad on V-Prof.

3.16. Example. Monads that freely adjoin other types of limits and colimits also extend
from V-Cat to V-Prof in a similar way. For instance, if V is a locally finitely presentable
closed monoidal category as in [Kel82], there is a “free V-category with cotensors by
finitely presentable objects” monad on V-Cat . An object of TX consists of a pair3 (v;x)
where x ∈ X and v ∈ V is finitely presentable. On homs we have

TX
(
(v;x), (w; y)

)
=
[
w,X(x, y)⊗ v

]
.

As before, a nearly identical definition extends this to V-Prof.
3To be precise, this definition only gives a pseudomonad on V-Cat . It is, however, easy to modify it

to make a strict monad.
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4. Generalized multicategories

We now lack only one final ingredient for the definition of generalized multicategories.
Since multicategories are like categories, we expect them to also be monoids in some
virtual double category. However, as we have seen in §3, their underlying data should
include a horizontal arrow A0

� //TA0 rather than A0
� //A0. Thus we need to construct,

given T and X, a virtual double category in which the horizontal arrows are horizontal
arrows of the form A0

� // TA0 in X. This is the purpose of the following definition.

4.1. Definition. Let T be a monad on a virtual double category X. Define the hori-
zontal Kleisli virtual double category of T , H-Kl(X, T ), as follows.

• Its vertical category is the same as that of X.

• A horizontal arrow X �p // Y is a horizontal arrow X �p // TY in X.

• A cell with nullary source uses the unit of the monad, so that a cell

X

Y

f

��

X

Z

g

��
Y Z�

p
//

�� α

in H-Kl(X, T ) is a cell

X

Y

f

��

X

TX

η

��
TX

TZ

Tg

��
Y TZ�

p
//

�� α

in X (note that Tg ◦ η = η ◦ g by naturality).

• A cell with non-nullary source uses the multiplication of the monad, so that a cell

Y0 Y1

X0

Y0

f ��

X0 XnXn

Y1

g
��

Y0 Y1
�
q

//

X0 X1
�p1 // X1 X2

�p2 // X2 · · ·�p3 // · · · Xn
�pn //

�� α
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in H-Kl(X, T ) is a cell

X0

Y0

f

��
Y0 TY1

�
q

//

X0 TX1
�p1 // TX1 T 2X2

�Tp2 // T 2X2 · · ·�T 2p3 // · · · T nXn
�Tn−1pn // T nXn

...

µ��
...

TXn

µ��
TXn

TY1

Tg��

�� α

in X (note that Tg ◦ µn−1 = µn−1 ◦ T ng, by naturality).

• The composite of

// · · · //

�� ��//
α1

// · · · //

�� ��//
α2

// · · · //

�� ��//
αn· · ·

�� ��//
β

is given by the composite of

//

α1

· · · //

//��

//

��
µ

· · ·

//��

//

��
µ

//��//

//��

//

��
µ

//��

//

��
µ

· · ·

· · ·

· · ·

//��

//

��
µ

//��

//

��
µ

//��

//

��
Tµ

��

Tα2

· · ·
//��

//

��
Tµ
//��

//

��
µ

//��

//

��
µ

//��

//

��
µ

//��

//

��
µ

//��

//

��
Tµ

//��

//

��
T 2µ

��//

T 2α3

· · ·· · ·

· · ·· · ·

· · ·

//��

//

��
µ

//��

//

��
µ

//��

//

��
Tµ

//��

//

��
T 2µ

��

��//

T 3α4

//��

//

��
µ

//��

//

��
µ

//��

//

��
µ

//��

//

��
µ

//��

//

��
Tµ

//��

//

��
Tµ

· · · · · ·

· · ·

· · ·

· · · · · ·

· · ·

· · ·

· · · //��

//

��
T n−2µ

//��

//

��
T n−2µ· · ·

�� //
��
��

T n−1αn

��

��

��

�� //

β

in X.

• Identity cells use those of X:

X TY

X TY

�p //

�
p

//
�� 1P
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In general, the associativity for H-Kl(X, T ) is shown by using the (cell) naturality of
µ and η, as well as the monad axioms. The general associativity is too large a diagram
to show here; instead, we will demonstrate a sample associativity calculation, which is
representative of the general situation. Consider the following cells in H-Kl(X, T ):

//��

//

��
α1

// //

//�� ��
α2

// //

//�� ��
α3

$$//
α4

//��

//

��
β1

//��

//

��
β2

//��

//

��
γ

There are two possible ways to compose these cells: either composing the bottom first:

(γ(β1 � β2))(α1 � α2 � α3 � α4)

or the top two first, followed by composition with the bottom:

γ((β1(α1 � α2)) � (β2(α3 � α4)))

The first composite is given by the following composite in X:

//��

//

��

α1

//��

//

��

��

Tα2

//��

//

��
Tµ

//��

//

��
Tµ

//��

��

��

T 2α3

��//T 3α4

//��

��

��

β1
//��

//

��
µ

//��

//

��
µ

//��
��
��

Tβ2

//��
��
��

γ

By using cell naturality of µ twice, the above becomes

//��

//

��

α1

//��

//

��

��

Tα2

//��

//

��
Tµ

//��

//

��
Tµ

//��

//

��

µ

//��

//

��

µ

//��

��

��

β1
//��

//

��
Tα3

$$//T 2α4

//��
��
��

Tβ2

//��
��
��

γ
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we then use the monad axiom Tµ ◦ µ = µ ◦ µ to get

//��

//

��

α1

//��

//

��

��

Tα2

//��

//

��
µ

//��

//

��
µ

//��

//

��

µ

//��

//

��

µ

//��

��

��

β1
//��

//

��
Tα3

$$//T 2α4

//��
��
��

Tβ2

//��
��
��

γ

which is the second composite γ((β1(α1 � α2)) � (β2(α3 � α4))).

4.2. Remark. Unfortunately, we do not know of any universal property satisfied by this
construction. In particular, H-Kl(X, T ) is not a Kleisli object for T in vDbl in the sense
of [Str72a]; the latter would instead contain vertical Kleisli arrows. In fact, for general X
there need not even be a canonical functor X //H-Kl(X, T ).

We can now give our first preliminary definition of generalized multicategories relative
to a monad T .

4.3. Definition. Let T be a monad on a virtual double category X. A T -monoid is
defined to be a monoid in H-Kl(X, T ), and likewise for a T -monoid homomorphism.
We denote the virtual double category Mod(H-Kl(X, T )), whose objects are T -monoids, by
KMod(X, T ).

As a reference, the data for a T -monoid consists of an object X0 ∈ X, a horizontal

arrow X0
�X // TX0 in X, and cells

X0 TX0

X0

X0

X0 T 2X0T 2X0

TX0

µ
��

X0 TX0
�
X

//

X0 TX0
�X // TX0 T 2X0

�TX //

�� x̄ and

X0

X0

X0

TX0

η

��
X0 TX0

�
X

//
�� x̂

Note that these cells have precisely the forms we predicted at the beginning of §3.

4.4. Remark. We have seen in §2 that Mod is a 2-functor. In fact, under suitable
hypotheses (involving the notions of restriction and composites to be introduced in §5
and §7), H-Kl is also a (pseudo) functor, and thus so is KMod. In fact, H-Kl is a pseudo
functor in two different ways, corresponding to the two different kinds of morphisms of
monads: lax and colax. This was observed by [Lei04] in his context; we will discuss the
functoriality of H-Kl and KMod in our framework in the forthcoming [CS10a].

We now consider some examples.



A UNIFIED FRAMEWORK FOR GENERALIZED MULTICATEGORIES 603

4.5. Example. Of course, if T is the identity monad on any X, then a T -monoid is just
a monoid, and KMod(X, T ) = Mod(X).

Recall from Example 3.6 that any pullback-preserving monad C T //C extends to a
monad on Span(C).

4.6. Example. If T is the “free monoid” monad extended to Span(Set) ∼= Set-Mat,
then a T -monoid consists of a set A0, a Set-matrix {A((x1, . . . , xn), y)}xi,y∈A0 , and com-
position and identity functions. It is easy to see that this reproduces the notion of an
ordinary multicategory. Likewise, T -monoid homomorphisms are functors between multi-
categories.

4.7. Example. If T is the “free category” monad on directed graphs, then a T -monoid
is a virtual double category. (This is, of course, the origin of the name “fc-multicategory,”
where fc is a name for this monad.) The vertices and edges of the directed graph A0

are the objects and horizontal arrows, respectively, while in the span A0 ← A → TA0

the vertices of A are the vertical arrows and its edges are the cells. Likewise, T -monoid
homomorphisms are functors between virtual double categories.

4.8. Example. Let M be a monoid and T = (M × −) the “free M -set” monoid on
Span(Set). A T -monoid consists of a set A0 and a family of sets {A(m;x, y)}x,y∈A0,m∈M .
The composition and identity functions make it into an M-graded category, i.e. a category
in which every arrow is labeled by an element of M in a way respecting composition and
identities. The case M = Z may be most familiar.

4.9. Example. Let C be a lextensive category and T the monad (−) + 1 on Span(C).
A T -monoid consists of an object A0 and a span A0 ← A→ A0 + 1; since S is extensive,
A decomposes into two spans A0 ← A1 → A0 and A0 ← B → 1. The composition and
identity functions then make the first span into an internal category in C and the second
into an internal diagram over this category.

4.10. Example. Let S be a small category, and let T be the monad on Setob(S) whose
algebras are functors S // Set. Thus, for a family {Ax}x∈ob(S) in Setob(S) we have

(TA)x =
∐

y∈ob(S)

Ay × S(x, y).

This T preserves pullbacks, so it induces a monad on Span
(
Setob(S)

)
. A T -monoid

A �M // TA can be identified with a category over S, i.e a functor A // S. Namely, the
elements of the set Ax are the objects of the fiber of A over x ∈ ob(S), while M can be
broken down into a collection of spans

Ax oo Mx,y
// Ay × S(x, y),

which together supply the arrows of A and their images in S. The morphisms of T -
monoids are likewise the functors over S.
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4.11. Example. If T is the “free strict ω-category” monad on Span(Globset), then
a T -monoid of the form 1 � // T1 can be identified with a globular operad in the sense
of [Bat98], as described in [Lei04]. General T -monoids are globular multicategories (or
many-sorted globular operads) as considered in [Lei04, p.273–274].

Recall from Example 3.7 that any taut monad T on Set (such as the identity monad,
the powerset monad, the filter monad, or the ultrafilter monad) extends to a monad on
V-Mat for any completely distributive quantale V (such as 2 or R+). We will show
in §B.6 that in such a case, our T -monoids are the same as the (T,V)-algebras studied
by [CT03, CHT04, Sea05], and others; thus we have the following examples.

4.12. Example. If T is the identity monad, then KMod(V-Mat, T ) = V-Prof. Thus,
for V = 2, T -monoids are preorders; and for V = R+, T -monoids are metric spaces (in
the sense of [Law02]).

4.13. Example. If T is the ultrafilter monad, and V = 2, then a T -monoid consists
of a set equipped with a binary relation between ultrafilters and points satisfying unit
and composition axioms. If we call this relation “convergence,” then the axioms precisely
characterize the convergence relation in a topological space; thus T -monoids are topolog-
ical spaces, and T -monoid homomorphisms are continuous functions. This observation is
originally due to [Bar70] (note that although his construction of an ultrafilter monad on
Rel looks quite different, it is in fact the same).

4.14. Example. If T is the powerset monad, and V = 2, then T -monoids are closure
spaces. A closure space consists of a set A equipped with an operation c(−) on subsets
which is:

• extensive: X ⊆ c(X),

• monotone: Y ⊆ X ⇒ c(Y ) ⊆ c(X), and

• idempotent: c(c(X)) ⊆ c(X).

4.15. Example. If T is the ultrafilter monad and V = R+, then T -monoids are
equivalent to approach spaces. An approach space is a set X equipped with a function
d : X × PX // [0,∞] such that

• d(x, {x}) = 0,

• d(x, ∅) =∞,

• d(x,A ∪B) = min{d(x,A), d(x,B)}, and

• ∀ε ≥ 0, d(x,A) ≤ d(x, {x : d(x,A) ≤ ε}) + ε.

Approach spaces have found applications in approximation theory, products of metric
spaces, and measures of non-compactness: for more detail, see [Low88].

Finally, we consider T -monoids relative to the additional examples of monads on
V-Prof from the end of §3.
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4.16. Example. Let T be the “free symmetric strict monoidal V-category” monad on

V-Prof from Example 3.14. If A0 is a discrete V-category, then a T -monoid A0
�A // TA0

is a symmetric V-enriched multicategory (known to some authors as simply a “multi-
category”). Likewise, from the “free braided strict monoidal V-category” monad we
obtain braided multicategories.

If A0 is not discrete, then a T -monoid (for V = Set) is a symmetric multicategory in
the sense of [BD98] and [Che04]: in addition to the multi-arrows, there is also another
type of arrow between the objects of the multicategory which forms a category, and which
acts on the multi-arrows.

4.17. Example. Let T be the “free category with strictly associative finite products”
monad on Set-Prof from Example 3.15. If A0 is a one-object discrete category, then a

T -monoid A0
�A //TA0 is a Lawvere theory, as in [Law63]. If A0 has more than one object,

but is still discrete, then a T -monoid A0
�A // TA0 is a “multi-sorted” Lawvere theory.

This is a little different from the more usual definition of Lawvere theory, but the
equivalence between the two is easy to see. A Lawvere theory is commonly defined to
be a category A with object set N such that each object n is the n-fold product 1n.
This implies that A(m,n) ∼= A(m, 1)n, so it is equivalent to give just the collection of
sets A(m, 1) with suitable additional structure. Since T1 has object set N, a T -monoid
1 � // T1 also consists of sets A(m, 1) for m ∈ N, and it is then straightforward to verify
that the additional structures in the two cases are in bijective correspondence. Note,
however, that the morphisms between such T -monoids do not correspond to all of the
morphisms between theories considered in [Law63], but only those of “degree one;” the
others are only visible from the “category with object set N” viewpoint.

The relationship between these two definitions of Lawvere theory is analogous to the
way in which an operad can also be defined as a certain sort of monoidal category with
object set N. In fact, both arise from a very general adjunction between T -algebras and
T -monoids; see Remark 9.16 and the forthcoming [CS10b].

4.18. Example. If T is the “free V-category with strictly associative finite products”
monad on V-Prof from Example 3.15 and A0 is a one-object discrete V-category, then

a T -monoid A0
�A // TA0 is a “V-enriched finite product theory.” If A0 is unchanged

but T is instead the “free V-category with finitely presentable cotensors” monad from

Example 3.16, then a T -monoid A0
�A //TA0 is a “Lawvere V-theory” as defined in [Pow99]

(with the same caveat as in the previous example). To obtain a “multi-sorted Lawvere
V-theory” we need T to adjoin both finite products and finite cotensors.

4.19. Example. If T is any of

• the “free symmetric strict monoidal category” monad,

• the “free category with strictly associative finite products” monad, or

• the “free category with strictly associative finite coproducts” monad,



606 G.S.H. CRUTTWELL AND MICHAEL A. SHULMAN

but now considered as a monad on Span(Cat), then a T -monoid with a discrete category
of objects is a club in the sense of [Kel72b] and [Kel72a] (relative to P , S, or Sop, in
Kelly’s terminology). See also §B.4.

4.20. Remark. When T is the “free symmetric strict monoidal category” monad on
Set-Prof, the horizontal arrows between discrete categories in H-Kl(Set-Prof, T ) are the
generalized species of structure of [FGHW08] (called structure types in [BD01]). The
espéces de structures of [Joy81, Joy86] are the particular case of horizontal arrows 1 � // 1
in H-Kl(Set-Prof, T ). Likewise, when T is the analogous monad on Span(Gpd), the hor-
izontal arrows in H-Kl(Span(Gpd), T ) are the (generalized) stuff types of [BD01, Mor06].

We can see from these examples that for virtual double categories whose objects are
“category-like,” it is often the T -monoids whose objects are discrete which are of particular
interest. We will make this notion precise in §8, and propose that often a better solution
is to consider “normalized” T -monoids.

First, however, we must develop some additional machinery for virtual double cate-
gories. We will describe when horizontal arrows have units and composites, as well as
when horizontal arrows can be “restricted” along vertical arrows. With this theory in
hand, we can then return to study “object discrete” and “normalized” T -monoids, as well
as when such T -monoids are “representable”.

4.21. Remark. If V is a complete and cocomplete closed symmetric monoidal category,
then the virtual double category V-Prof is itself “almost” of the form H-Kl(X, T ). We take
X to be the double category Sq(V-Cat), whose objects are V-categories, whose vertical
and horizontal arrows are both V-functors, and whose cells are V-natural transformations,
and we define TA = VAop

to be the enriched presheaf category of A. The observation is
then that a V-profunctor A � //B can be identified with an ordinary V-functor A //VBop

,
so that V-Prof is almost the same as H-Kl(Sq(V-Cat), T ). This is not quite right, since
T is not really a monad due to size issues. But these problems can be dealt with, for
instance by using “small presheaves” as in [DL07].

Assuming the functoriality of H-Kl mentioned in Remark 4.4, this observation implies
that if S is another monad on V-Cat related to T by a distributive law, or equivalently a
monad in the 2-category of monads and monad morphisms (see [Bec69, Str72b]), then S
induces a monad on V-Prof, which we can in turn use to define generalized multicategories
as S-monoids in V-Prof. For example, since a symmetric monoidal structure on A extends
to TA by Day convolution, the “free symmetric monoidal V-category” monad distributes
over T , inducing its extension to V-Prof considered in Example 3.14. This is the argument
used in [FGHW08] to construct the bicategory H(H-Kl(V-Prof, T )). Similar arguments
apply to the monad from Example 3.15.

5. Composites and units

In §2 we introduced (virtual) double categories as a framework in which one can define
monoids and monoid homomorphisms so as to include both enriched and internal cate-
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gories with the appropriate notions of functor. However, we would certainly like to be
able to recover natural transformations as well, but this requires more structure than is
present in a virtual double category.

It is not hard to see that the vertical category of any (pseudo) double category can be
enriched to a vertical 2-category, whose 2-cells f ⇒ g are the squares of the form

A �

g

��
��

A

f
��

B � B,

and that in examples such as Prof(C) and V-Prof these 2-cells recover the appropriate
notion of natural transformation. In a virtual double category this definition is impossible,
since there may not be any horizontal identity arrows. However, it turns out that we can
characterize those horizontal identities which do exist by means of a universal property.
In fact, it is not much harder to characterize arbitrary horizontal composites (viewing
identities as 0-ary composites). In this section we study such composites; in the next
section we will use them to define vertical 2-categories.

5.1. Definition. In a virtual double category, a cell

�p1 //

⇓opcart

�p2 // . . . �pn //

�
q

//

is said to be opcartesian if any cell

�r1 //

f

��

�r2 // . . . �rm // �p1 //

⇓

�p2 // . . . �pn // �s1 // �s2 // . . . �sk //

g

���
t

//

factors through it uniquely as follows:

�r1 // �r2 // . . . �rm //

···

�p1 //

⇓opcart

�p2 // . . . �pn // �s1 // �s2 // . . . �sk //

···
�
r1
//

f

��

�
r2
// . . . �

rm
// q //

⇓

�
s1
// �

s2
// . . . �

sk
//

g

���
t

// .

If a string of composable horizontal arrows is the source of some opcartesian cell, we
say that it has a composite. We refer to the target q of that cell as a composite of the
given string and write it as p1 � · · · � pn. Similarly, if n = 0 and there is an opcartesian
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cell of the form
X

⇓
X �

UX

// X.

we say that X has a unit UX .
These universal properties make it easy to show that composites and units, when

they exist, behave like composites and units in a pseudo double category. For example,
composites and units are unique up to isomorphism: given two opcartesian arrows with
the same source, factoring each through the other gives an isomorphism between their
targets. Likewise, the composite of opcartesian cells is opcartesian, so composition is
associative up to coherent isomorphism whenever all relevant composites exist. More
precisely, if p� q exists, then (p� q)� r exists if and only if p� q � r exists, and in that
case they are isomorphic. It follows that if p� q and q � r exist, then

(p� q)� r ∼= p� (q � r),

each existing if the other does. Similarly, any string in which all but one arrow is a unit:

X �UX // . . . �UX // X �p // Y �UY // . . . �UY // Y

has a composite, which is (isomorphic to) p.
The following theorem, which was also observed in [DPP06], is a straightforward gen-

eralization of the relationship between monoidal categories and ordinary multicategories
described in [Her00]. It is also a special case of the general relationship between pseudo
algebras and generalized multicategories, as in [Lei04, §6.6], [Her01], and §9 of the present
paper.

5.2. Theorem. A virtual double category is a pseudo double category if and only if every
string of composable horizontal arrows (including zero-length ones) has a composite.

Proof (sketch). “Only if” is clear, by definition of how a pseudo double category
becomes a virtual one. For “if”, we use the isomorphisms constructed above; we invoke
again the universal property of opcartesian cells to show coherence.

5.3. Example. If V has an initial object ∅ which is preserved by ⊗ on both sides, then
V-Mat has units: the unit of a set X is the matrix

UX(x, x′) =

{
I x = x′

∅ x 6= x′.

If V has all small coproducts which are preserved by ⊗ on both sides, then V-Mat has
composites given by “matrix multiplication.” For instance, the composite of matrices

X �p // Y and Y �q // Z is

(p� q)(z, x) =
∐
y∈Y

p(y, x)⊗ q(z, y).
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5.4. Example. Since Span(C) is a pseudo double category, all composites and units
always exist. Composites are given by pullback, and the unit of X is the unit span
X ← X → X.

Regarding units in V-Prof and Prof(C), we have the following.

5.5. Proposition. For any virtual double category X, all units exist in Mod(X). For
any monoid A, its unit cell

A0 A0A
//

A0

A0

A0

A0A0 A0| //
⇓â

is opcartesian in Mod(X). Therefore, UA is A itself, regarded as an A-A-bimodule.

Proof. Firstly, the unit axioms of A show that â is, in fact, a cell in Mod(X). Now we
must show that composing with â gives a bijection between cells

D E
P

//

B

D

g

��

B CC

E

f

��

B A
p1...pm // A C

q1...qn //

⇓α and

D Ep
//

B

D

g

��

B CC

E

f

��

B A
p1...pm // A A

A // A C
q1...qn //

⇓β

in Mod(X). Clearly composing any cell β of the second form with â gives a cell α of the
first form. Conversely, given α of the first form, there are two cells of the second form
defined by letting A act first on pm from the right and q1 from the left, respectively. These
are equal by one of the axioms for α to be a cell in Mod(X); we let β be their common
value. (In the case when m = 0 or n = 0, we use the action of f or g instead.) The other
axioms for α then carry over to β to show that it is a cell in Mod(X).

The unit axioms for the action of A on bimodules show that α 7→ β 7→ α is the identity,
while the equivariance axioms for β regarding the two actions of A show that β 7→ α 7→ β
is the identity. Thus we have a bijection, as desired.

Therefore, since V-Prof = Mod(V-Mat) and Prof(C) = Mod(Span(C)), they both
always have all units. By contrast, extra assumptions on X are required for composites
to exist in Mod(X); here are the two examples of greatest interest to us.

5.6. Example. If V has small colimits preserved by ⊗ on both sides, then V-Prof has

all composites; the composite of enriched profunctors A �p // B and B �q // C is given by
the coend

(p� q)(z, x) =

∫ y∈B
p(y, x)⊗ q(z, y).
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5.7. Example. If C has coequalizers preserved by pullback, then Prof(C) has all com-
posites; the composite of internal profunctors is an “internal coend.”

Together with Proposition 5.5, these examples will suffice for the moment. In appendix
A we will give general sufficient conditions for composites to exist in Mod(X), and for
composites and units to exist in H-Kl(X, T ).

5.8. Remark. If Definition 5.1 is satisfied only for m = k = 0, we say that the cell is
weakly opcartesian. We do not regard a weakly opcartesian cell as exhibiting its target
as a composite of its source, since the weak condition is insufficient to prove associativity
and unitality. However, a weakly opcartesian cell does suffice to detect its target as the
composite of its source, if we already know that that composite exists. Furthermore, if
any composable string in X is the source of a weakly opcartesian cell and moreover weakly
opcartesian cells are closed under composition, then one can show, as in [Her00], that in
fact every weakly opcartesian cell is cartesian; see also §9.

Virtual double categories having only weakly opcartesian cells seem to be fairly rare;
one example is V-Mat where V has colimits which are not preserved by its tensor product.
Note that in this case, V-Prof need not even have weakly opcartesian cells, since we
require ⊗ to preserve coequalizers simply to make the composite of two profunctors into
a profunctor.

If X and Y have units, we say that a functor (or monad) X F // Y is normal if it
preserves opcartesian cells with nullary source, which is to say it preserves units in a
coherent way. Likewise, if X and Y have all units and composites (i.e. are pseudo double

categories), we say that X F // Y is strong if it preserves all opcartesian cells.

5.9. Example. Any functor Span(C) // Span(D) induced by a pullback-preserving
functor C //D is strong, and in particular normal.

5.10. Example. It is also easy to see that Mod(F ) is normal for any functor F , by the
construction of units in Proposition 5.5.

5.11. Examples. If V is a cocomplete symmetric monoidal category in which ⊗ pre-
serves colimits on both sides, then V-Mat has all composites, and the extension of the
“free monoid” monad to V-Mat from Example 3.12 is easily seen to be strong. Since
the “free strict monoidal V-category” monad on V-Prof is obtained by applying Mod
to this, it is normal by our above observation. In fact, it is also strong, essentially be-
cause the tensor product of reflexive coequalizers is again a reflexive coequalizer (see, for
example, [Joh02, A1.2.12]).

5.12. Examples. The “free symmetric strict monoidal V-category” monad on V-Prof
from Example 3.14 is also normal, essentially by definition, as are the “free V-category
with strictly associative finite products” monad from Example 3.15 and its relatives from
Example 3.16. A more involved computation with coequalizers shows that the first is
actually strong, and the second is strong whenever V is cartesian monoidal. However, it
seems that the others are not in general strong.
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5.13. Examples. The monads on V-Mat constructed in Example 3.7 are not generally
strong or even normal. Two notable exceptions are the ultrafilter monads on Rel and
R+-Mat, of which the first is strong and the second is normal.

We write vDbln for the locally full sub-2-category of vDbl determined by the virtual
double categories with units and normal functors between them; thus Mod is a 2-functor
vDbl // vDbln. In fact, we have the following.

5.14. Proposition. Mod is right pseudo-adjoint to the forgetful 2-functor vDbln //vDbl .

Proof. “Pseudo-adjoint” means that we have a pseudonatural η and ε that satisfy the
triangle identities up to coherent isomorphism. We take εX to be the forgetful functor
Mod(X) // X which sends a monoid to its underlying object and a module to its un-
derlying horizontal arrow; this is strictly 2-natural. If X has units, we take ηX to be
the “unit assigning” functor X //Mod(X) which sends X to UX (which has a unique

monoid structure) and X �p // Y to itself considered as a (UX , UY )-bimodule; this is only
pseudonatural since normal functors preserve units only up to isomorphism. But if we
choose the units in Mod(X) according to Proposition 5.5, then the triangle identities are
satisfied on the nose.

In particular, if 1 denotes the terminal virtual double category, then the category
of normal functors 1 // X is equivalent to the vertical category of X. It then follows
from Proposition 5.14 that the category of arbitrary functors 1 //X is equivalent to the
vertical category of Mod(X). Thus, Proposition 5.14 generalizes the well-known observa-
tion (which dates back to [Bén67]) that monoids in a bicategory B are equivalent to lax
functors 1 // B.

5.15. Remark. It follows that Mod is a pseudomonad on the 2-category vDbln, and so
in particular it has a multiplication

Mod(Mod(X)) //Mod(X). (5.16)

Inspection reveals that an object of Mod(Mod(X)) consists of an object X of X, two

monoids X �A //X and X �M //X, and a monoid homomorphism A //M whose vertical
arrow components are identities. The multiplication (5.16) simply forgets the monoid A.
This idea will be further discussed in [CS10b].

5.17. Remark. If X is a virtual double category in which all units and composites exist
(equivalently, it is a pseudo double category), then it has a horizontal bicategory H(X)
consisting of its objects, horizontal arrows, and cells of the form

� //

⇓
� // .

Clearly when C and V satisfy the required conditions for all composites to exist in our
examples, we recover in this way the usual bicategories of matrices, spans, and enriched
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and internal profunctors. Any functor between pseudo double categories likewise induces
a lax functor of horizontal bicategories, but this is not true of transformations without
additional assumptions; see Remarks 7.26 and A.5.

6. 2-categories of T -monoids

As proposed in the previous section, we now use the notion of units introduced there to de-
fine 2-categories of generalized multicategories, generalizing the approach taken in [Lei04,
§5.3].

6.1. Proposition. Let X be a virtual double category in which all units exist. Then it
has a vertical 2-category VX whose objects are those of X, whose morphisms are the

vertical arrows of X, and whose 2-cells A
f
&&

g
88�� α B are the cells

A �UA //

g
��
⇓α

A

f
��

B �
UB

// B

in X.

Proof. This is straightforward; note that when composing 2-cells we must use the iso-
morphisms UA ∼= UA � UA.

In particular, for any X, Mod(X) has a vertical 2-category, which we denoteMon(X)
and call the 2-category of monoids in X. (This 2-category is closely related to various
2-categories of monads in a bicategory; see [LS02, §2.3–2.4].) It turns out that in this
case, the description of the 2-cells ofMon(X) can be rephrased in a way that looks much
more like a natural transformation.

6.2. Proposition. Giving a 2-cell A
f
&&

g
88�� α B in Mon(X) is equivalent to giving a cell

B0 B0B
//

A0

B0

g0

��

A0

B0

f0

��
B0 B0| //

⇓α0
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in X such that

B0 B0B
//

A0

B0

f0

��

A0 A0
A // A0

B0

f0

��
⇓f

A0

B0

g0

�� α0 ⇓
B0 B0B

//

⇓b̄

B0 B0B
//

B0

B0

B0 B0B0

B0

= B0 B0B
//

A0

B0

g0

��

A0 A0
A // A0

B0

g0

��
g ⇓

A0

B0

f0

��⇓α0

B0 B0B
//

⇓b̄

B0 B0.B
//

B0

B0

B0 B0B0

B0.

(6.3)

Proof. This is an instance of Proposition 5.5, where m = n = 0, f = g = 1A, and
P = UA.

6.4. Example. Recall that in V-Prof = Mod(V-Mat), the objects are V-enriched cat-
egories and the vertical morphisms are V-enriched functors; thus these are the objects
and morphisms of Mon(V-Mat). Recalling from Example 2.6 the definition of cells in

V-Mat, Proposition 6.2 implies that a 2-cell A
f
&&

g
88�� α B in Mon(V-Mat) is given by a

family of morphisms I
αx // B(fx, gx) for x an object of A, such that for every x, y the

following square commutes:

B(gx, gy)⊗B(fx, gx) B(fx, gy).//

A(x, y)

B(gx, gy)⊗B(fx, gx)

g⊗αx

��

A(x, y) B(fy, gy)⊗B(fx, fy)
αy⊗f // B(fy, gy)⊗B(fx, fy)

B(fx, gy).
��

This is precisely the usual definition of a V-enriched natural transformation; thus we have
Mon(V-Mat) ' V-Cat .

6.5. Example. Likewise, Mon(Span(C)) ' Cat(C) is the 2-category of internal cate-
gories, functors, and natural transformations in C.

6.6. Examples. On the other hand, the vertical 2-category of Span(S) is just S, re-
garded as a 2-category with only identity 2-cells. The vertical 2-category of V-Mat de-
pends on what V is, but usually it is not very interesting. Thus, in general, vertical
2-categories are only interesting for virtual double categories whose objects are “category-
like” rather than “set-like.”

Now, if T is a monad on a virtual double category X, we write KMon(X, T ) for the
2-category V(KMod(X, T )) and call it the 2-category of T -monoids in X. Its objects are
T -monoids, its morphisms are T -monoid homomorphisms, and its 2-cells may be called T -
monoid transformations. By Proposition 6.2 and the definition of H-Kl(X, T ), a T -monoid
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transformation α : f // g : A //B is specified by a cell

B0 TB0B
//

A0

B0

g0

��

A0

TB0

Tf0◦ηA0
=ηTB0

◦f0

��
B0 TB0| //

⇓α0

such that

TA0 T 2A0B
//

A0

TA0

η

��

A0 TA0
A // TA0

T 2A0

η

��
⇓ηA

TB0 T 2B0TB
//

TA0

TB0

Tf0

��

TA0 T 2A0
// T 2A0

T 2B0

T 2f0

��
⇓Tf

A0

B0

g0

��

α0⇓

B0 TB0B
//

⇓b̄

B0 TB0B
//

B0

B0

B0 T 2B0T 2B0

TB0

µB

��

= B0 TB0B
//

A0

B0

g0

��

A0 TA0
A // TA0

TB0

Tg0

��
g ⇓

TA0

T 2B0

T (ηB0
)◦Tf0

��⇓Tα0

TB0 T 2B0TB
//

⇓b̄

B0 TB0.B
//

B0

B0

B0 T 2B0T 2B0

TB0.

µB

��

Many authors have defined this 2-categoryKMon(X, T ) in seemingly ad-hoc ways, whereas
it falls quite naturally out of the framework of virtual double categories. This was also
observed in [Lei04, §5.3]; see §B.1.

6.7. Example. Let T be the “free monoid” monad on Set-Mat, so that T -monoids

are ordinary multicategories. If A
f //
g
// B are functors, then according to the above, a

transformation f α // g consists of, for each x ∈ A, a morphism αx ∈ B(η(fx), gx) (that

is to say, a morphism (fx)
αx //gx with source of length one) such that for any morphism

ξ : (x1, . . . , xn) // y in A, we have

αy ◦ f(ξ) = g(ξ) ◦ (αx1 , . . . , αxn).

This is the usual notion of transformation for functors between multicategories.

6.8. Example. When T is the “free category” monad on directed graphs, so that T -
monoids are virtual double categories, T -monoid transformations are the same as the
transformations we defined in 3.1.

6.9. Example. Let U be the ultrafilter monad on Rel, so that U -monoids are topological

spaces. If A
f //
g
// B are continuous maps (i.e. U -monoid homomorphisms), then there

exists a transformation f // g (which is necessarily unique) just when for all x ∈ A, the
principal ultrafilter ηfx converges to gx in B. This is equivalent to saying that f ≥ g in
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the pointwise ordering induced by the usual specialization order on B. The situation for
other topological examples is similar.

Any normal functor clearly induces a strict 2-functor between vertical 2-categories. In
fact, if 2-Cat denotes the 2-category of 2-categories, strict 2-functors, and strict 2-natural
transformations, then we have:

6.10. Proposition. There is a strict 2-functor V : vDbln // 2-Cat.

In particular, any normal monad T on X induces a strict 2-monad on V(X). As we saw
in §3, most monads on virtual double categories are “extensions” of a known monad on
their vertical categories (or vertical 2-categories), so this construction usually just recovers
the familiar monad we started with. In §9, we will show that V(T )-algebras are closely
related to T -monoids.

7. Virtual equipments

If we have succeeded in convincing the reader that virtual double categories are inevitable,
she may be justified in wondering why they have not been more studied. Certainly,
virtual double categories involve significant complexity above and beyond pseudo double
categories, and the latter suffice to describe the important examples Span(C), V-Mat,
V-Prof, and Prof(C) as long as V and C are suitably cocomplete. However, even pseudo
double categories have generally received less publicity than bicategories.

One possible reason for this is that in most of the (pseudo or virtual) double categories
arising in practice, the vertical arrows are more tightly coupled to the horizontal arrows
that we have heretofore accounted for; in fact they can almost be identified with certain

horizontal arrows. For example, a V-functor A
f //B is determined, up to isomorphism,

by the V-profunctor A �B(1,f) // B defined by B(1, f)(b, a) = B(b, fa). Furthermore, this
coupling is very important for many applications, such as the formal definition of weighted
limits and colimits (see [Str83, Woo82]), so a mere double category (pseudo or virtual)
would be insufficient for these purposes. Because of this, many authors have been content
to work with bicategories, or bicategories with a collection of horizontal arrows singled
out (such as the “proarrow equipments” of [Woo82]).

However, while not all pseudo double categories exhibit this type of coupling, it is
possible to characterize those that do (and they turn out to be equivalent to the “proarrow
equipments” mentioned above). The basic idea of this dates back to [BS76], but it has
recently been revived in various equivalent forms; see for instance [Ver92, GP99, GP04,
DPP10, Shu08] and the Notes at the end of [Lei04, Ch. 5]. Since this type of coupling
also plays an important role in the theory of generalized multicategories, in this section
we give the basic definitions appropriate to the virtual case.

The basic idea is the following. The profunctor B(1, f) considered above can be
constructed in two stages: first we consider the hom-profunctor B(−,−) : B � // B, and
then we precompose it with f on one side. We already know from §5 that hom-profunctors
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are the units in V-Prof, so it remains only to characterize precomposition with functors
in terms of V-Prof. This is accomplished by the following definition.

7.1. Definition. A cell
�p //

f

��
⇓cart g

���
q
//

(7.2)

in a virtual double category is cartesian if any cell

�r1 //

fh

��
⇓

�r2 // . . . �rn //

gk

���
q

//

factors through it uniquely as follows:

�r1 //

h

��
⇓

�r2 // . . . �rn //

k
��p //

f

��
⇓cart g

���
q

// .

If there exists a cartesian cell (7.2), we say that the p is the restriction q(g, f). The
notation is intended to suggest precomposition of a profunctor q(−,−) with f and g.
When f or g is an identity, we write q(g, 1) or q(1, f), respectively. It is evident from the
universal property that restrictions are unique up to isomorphism, and pseudofunctorial;
that is, we have q(1, 1) ∼= q and q(1, g)(1, f) ∼= q(1, gf) coherently.

We say that X has restrictions if q(g, f) exists for all q, f , and g, and that a functor
preserves restrictions if it takes cartesian cells to cartesian cells. We write vDbl r for
the sub-2-category of vDbl determined by the virtual double categories with restrictions
and the restriction-preserving functors.

7.3. Examples. The virtual double categories V-Mat, V-Prof, Span(C), and Prof(C)
have all restrictions. Restrictions in V-Mat are given by reindexing matrices, restrictions
in Span(C) are given by pullback, and restrictions in V-Prof and Prof(C) are given by
precomposing with functors.

Note that the restrictions in V-Prof and Prof(C) are induced by those in V-Mat and
Span(C), in the following general way.

7.4. Proposition. If X is a virtual double category with restrictions, then Mod(X) also
has restrictions.
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Proof. If B �p //D is a bimodule in X and

A0
�A //

f0
��
⇓f

A0

f0
��

B0
�
B
// B0

and

C0
�C //

g0
��
⇓g

C0

g0
��

D0
�
D
// D0

are monoid homomorphisms, then the restriction p(g0, f0) in X becomes an (A,C)-bimodule
in an obvious way, making it into the restriction p(g, f) in Mod(X).

The other ingredient in the construction of generalized multicategories also preserves
restrictions.

7.5. Proposition. If X is a virtual double category with restrictions and T is a monad
on X, then H-Kl(X, T ) also has restrictions.

Proof. Let A �p //TB be a horizontal arrow in X, regarded as a horizontal arrow A � //B

in H-Kl(X, T ). It is easy to verify that the restriction of p along C
f // A and D

g // B
in H-Kl(X, T ) is given by the restriction p(Tg, f) in X.

Therefore, if X has restrictions, so does KMod(X, T ) for any monad T on X. Moreover,
by Proposition 5.5, KMod(X, T ) always also has units. As suggested in the introduction
to this section, units and restrictions together are an especially important combination,
so we give a special name to this situation.

7.6. Definition. A virtual equipment is a virtual double category in which all units
and all restrictions exist.

We write vEquip for the locally full sub-2-category of vDbl determined by the virtual
equipments and the normal restriction-preserving functors between them (however, see
Theorem 7.24). We can now observe that Mod is a 2-functor from vDbl r to vEquip.

7.7. Examples. Span(C), V-Prof, and Prof(C) are always virtual equipments, and
V-Mat is a virtual equipment whenever V has an initial object preserved by ⊗. More
generally, Mod(X) and KMod(X, T ) are virtual equipments whenever X has restrictions.

If A
f // B is a vertical arrow in a virtual equipment, we define its base change

objects to be
B(1, f) = UB(1, f) and B(f, 1) = UB(f, 1).

These come with cartesian cells

�B(1,f)//

f

��
��
�

UB

//
and

�B(f,1)//

�� f

���
UB

//
. (7.8)
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By factoring Uf through these cartesian cells, we obtain two further cells

�UA //

f

��
��
�

B(f,1)
//

and

�UA //

�� f

���
B(1,f)

//
(7.9)

such that the following equations hold:

�UA //

�� f

��B(1,f) //

f

��
��
�

UB

//

=

�UA //

f

��
⇓Uf f

���
UB

//

�UA //

f

��
��

B(f,1) //

�� f

���
UB

//

=

�UA //

f

��
⇓Uf f

���
UB

//
(7.10)

Moreover, the following equations also hold:

�UA //

��

�B(1,f) //

f

��
��

B(1,f) // UB
//

�
B(1,f)

//
⇓opcart

=

�UA //

⇓opcart

�B(1,f)//

�
B(1,f)

//
(7.11)

�B(f,1) //

��

�UA //

f

��
��

UB
// B(f,1) //

�
B(f,1)

//
⇓opcart

=

�B(f,1)//

⇓opcart

�UA //

�
B(f,1)

//
(7.12)

We can verify these by postcomposing each side with the appropriate cartesian cell, using
the equations (7.10), and invoking the uniqueness of factorizations through cartesian
cells. In the terminology of [DPP10], equations (7.10)–(7.12) are said to make B(1, f)
and B(f, 1) into a companion and a conjoint of f , respectively.

7.13. Example. In Span(C), the base change objects B(1, f) and B(f, 1) are the spans

A

A

1A
��

A

B

f

�� and
A

B

f

��

A

A

1A
��

respectively. These are often called the graph of f .

7.14. Example. In V-Mat, for a function f : X // Y the base change object Y (1, f)
is the matrix

Y (1, f)(x, y) =

{
I if f(x) = y

∅ otherwise.
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7.15. Example. In V-Prof, the base change objects B(1, f) and B(f, 1) are the rep-
resentable distributors defined by B(1, f)(b, a) = B(b, fa) and B(f, 1)(a, b) = B(fa, b).
Base change objects in Prof(C) are analogous.

At first glance, base change objects may seem only to be a particular special case of
restrictions. However, it turns out that all restrictions can be recovered by composition
with the base change objects (hence the name).

7.16. Theorem. Let B �p //D be a horizontal arrow and f : A //B and g : C //D be
vertical arrows in a virtual equipment. Then B(1, f)�p�D(g, 1) exists and is isomorphic
to p(g, f).

Proof. Consider the composite

�B(1,f)//

f

��
��

�p //

1p

�Dg //

�� g

���
UB

// p // �
UD

//

⇓opcart
�
p

//

(7.17)

By the universal property of restriction, this factors through the cartesian cell defining
p(g, f) to give a canonical cell

�B(1,f)//

��

�p // �D(g,1) //

�
p(g,f)

// .

(7.18)

We claim that this cell is opcartesian. To show this, suppose given a cell

//

h

��

�B(1,f)//

��

�p // �D(g,1)// //

k

���
q

// .

We need to factor it uniquely through (7.18). A factorization is given by the composite

// �p(g,f) // //

// UA
//

�� f

��

�p(g,f) //

�� g

��

UC
//

��

//

h

��

// B(1,f) //

��

p // D(g,1) // //

k

���
q

// .

To verify that this is a factorization, and that it is unique, we use the equations (7.10)–
(7.12). The details are similar to the proof of [Shu08, Theorem 4.1].
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7.19. Corollary. For vertical arrows f : A // B and g : B // C, the composite
B(1, f)� C(1, g) always exists and is isomorphic to C(1, gf), and dually.

We also have the following dual result.

7.20. Theorem. For arrows f : A // B and g : C // D in a virtual equipment, we
have a bijection between cells of the form

A �p //

f
��
��

C

g
��

B �
q
// D

and

B �B(f,1)//

��

A �p // C �D(1,g)// D

B �
q

// D

Proof. The inverse bijections are given by composing with the cells (7.8) and (7.9).
(Recall that all composites with units exist in any virtual double category.) The fact that
they are inverses follows from (7.10)–(7.12).

It follows that in the situation of Theorem 7.20, if the composite B(f, 1)� p�D(1, g)
exists, then it is a “corestriction” or “extension” of p along f and g—that is, it satisfies
a universal property dual to that of a restriction.

Combining Theorems 7.16 and 7.20, we obtain the following.

7.21. Corollary. In a virtual equipment, there is a bijection between cells of the form

�p //

h

��
��

�B(1,f)//

k

���
D(1,g)

// �
q
//

and

�p //

h

��
��

f

��

g

��
k

���
q
//

Taking p and q to be units and h and k to be identities, we obtain:

7.22. Corollary. For vertical arrows f, g : A //B in a virtual equipment X, there is
a bijection between cells f // g in VX and cells

�B(1,f)//

⇓
�

B(1,g)
// ,

which respects composition. Similarly, we have a bijection between cells f // g and cells
B(g, 1) //B(f, 1).

Now suppose that X is a virtual equipment which moreover has all composites. Then
it has a horizontal bicategory HX, and Corollaries 7.19 and 7.22 imply that f 7→ B(1, f)
defines a pseudofunctor VX //HX which is locally full and faithful. Furthermore, it is
easy to verify that B(f, 1) is right adjoint to B(1, f) in HX.
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This structure—a pseudofunctor which is bijective on objects, locally full and faithful,
and which takes each 1-cell to one having a right adjoint—was defined in [Woo82] to
constitute an equipment. This is the structure we referred to in the introduction to
this section, which many authors have used where we would find double categories more
natural. In fact, it is not hard to show (see [Shu08, Appendix C]) that an equipment in
the sense of [Woo82] is equivalent to a virtual equipment which has all composites (this
was called a framed bicategory in [Shu08]). Therefore, from now on we use equipment
to mean a virtual equipment having all composites (thereby justifying the terminology
“virtual equipment”).

7.23. Remark. It was shown in [Shu08] that an equipment can equally well be defined
as a pseudo double category in which all restrictions exist, or in which all “extensions”
exist (in the sense mentioned after Theorem 7.20), or in which there exist base change
objects with cells (7.8) and (7.9) satisfying (7.10)–(7.12). In the virtual case, we have a
Goldilocks trifurcation: merely having base change objects is too weak, and having all
extensions is too strong, but having restrictions (together with units) is just right.

We now consider how functors and transformations interact with restrictions.

7.24. Theorem. Any functor F between virtual equipments preserves restriction.

Proof. The proof given for equipments in [Shu08, Theorem 6.4] applies basically verbatim
to virtual equipments.

In particular, vEquip is in fact a full sub-2-category of vDbln. Note, though, that an
arbitrary functor F between virtual equipments still may not preserve units, so that while
we have F (B(1, f)) ∼= FUB(1, Ff), neither need be the same as FB(1, Ff). Of course,
they are the same if F is normal.

Now, recall that any transformation X
F
&&

G

88�� α Y of functors between virtual equip-

ments induces a strictly 2-natural transformation V(α) of 2-functors between vertical 2-
categories. In particular, we have αB ◦F (f) = G(f)◦αA for any vertical arrow f : A //B
in X. However, we also have the cell component

�F (B(1,f))//

αA

��
⇓αB(1,f)

αB

���
G(B(1,f))

//

of α. If F and G are normal, so that F (B(1, f)) ∼= FB(1, Ff) and G(B(1, f)) ∼=
GB(1, Gf), then by Corollary 7.21, αB(1,f) induces a 2-cell αB ◦ F (f) // G(f) ◦ αA,
which seems to be trying to make V(α) into an oplax natural transformation. Fortu-
nately, however, this is an illusion.

7.25. Proposition. In the above situation, the 2-cell αB ◦ F (f) //G(f) ◦ αA induced
by αB(1,f) is an identity.
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Proof. This follows by inspection of how this 2-cell is constructed, and use of the cell
naturality of α.

7.26. Remark. Recall from Remark 5.17 that any functor X F // Y between pseudo

double categories induces a lax functor H(X)
H(F ) // H(Y) between horizontal bicate-

gories, but not every transformation F // G induces a transformation H(F ) //H(G).

It is true, however, that if X and Y are equipments, then any transformation F α // G

induces an oplax transformationH(F )
H(α) //H(G) whose component at X is GX(1, αX).

Likewise, the components (GX)(αX , 1) form a lax transformation H(G) // H(F ). See
also Remark A.5.

8. Normalization

With the notion of virtual equipment under our belt, we now return to the general theory
of generalized multicategories. We observed in §4 that for virtual double categories whose
objects are “category-like,” such as V-Prof and Prof(C) (as opposed to those such as
V-Mat and Span(C), whose objects are “set-like”), general T -monoids often contain too
much structure. For instance, if T is the “free strict monoidal category” monad on
Set-Prof, then a T -monoid consists of a category A, a multicategory M and a bijective-
on-objects functor from A to the underlying category of M . Usually, the morphisms of
A constitute superfluous data which we would like to eliminate. (This is not always true,
though: in [Che04] these extra morphisms played an important role.)

The obvious way to eliminate this extra data, which we adopted in describing examples
of this sort in §4, is to require A to be a discrete category; this way the extra morphisms
simply do not exist. However, a different way to eliminate it is to require the given functor
A //M to induce an isomorphism between A and the underlying category of M ; this way
the extra morphisms exist, but are determined uniquely by the rest of the structure. In
this section we define general analogues of both approaches, show their equivalence under
general hypotheses, and argue that when they are not equivalent it is usually the second
approach that is more useful. (This second approach was also the one taken in [Her01].)

8.1. Definition. Let X be a virtual equipment and let T be a monad on Mod(X). A

T -monoid A �M // TA is called object-discrete if A is a monoid in X of the form UX .

We write dKMod(Mod(X), T ) for the full sub-virtual-equipment of KMod(Mod(X), T )
determined by the object-discrete T -monoids, and dKMon(X, T ) for its vertical 2-category.
Note that object-discreteness is only defined for a monad on a virtual equipment of the
form Mod(X).
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8.2. Definition. Let T be a monad on a virtual equipment X. A T -monoid A �M //TA
is normalized if its unit cell

A �UA //

��

A

η
��

A �
M
// TA

is cartesian in X.

We write nKMod(X, T ) for the full sub-virtual-equipment of KMod(X, T ) determined
by the normalized T -monoids, and nKMon(X, T ) for its vertical 2-category. Unlike object-
discreteness, normalization is defined for monads on any virtual equipment.

Now, to prove an equivalence between normalization and object-discreteness, we need
to introduce the following definitions.

8.3. Definition. A monoid homomorphism

B0 B0
�
B
//

A0

B0

f0

��

A0 A0
�A // A0

B0

f0

��
�� f

in a virtual double category X is called bijective on objects (or b.o.) if f0 is an iso-
morphism. It is called fully faithful (or f.f.) if the cell f is cartesian.

8.4. Lemma. If A0
�A //A0 is a monoid in a virtual double category X with restrictions

and X
f //A0 is any vertical arrow, then X �A(f,f) //X is also a monoid, and its defining

cartesian cell is a monoid homomorphism with f as its vertical part.

Proof. To obtain a multiplication for A(f, f), we compose two copies of the defining
cartesian cell with the multiplication of A, then factor the result through the defining
cartesian cell. The unit is similar.

8.5. Lemma. If X has restrictions, then (b.o., f.f.) is a factorization system on the
category Mon(X) of monoids and monoid homomorphisms in X.

Proof. Orthogonality is supplied by the universal property of cartesian cells, together
with the fact that isomorphisms are orthogonal to anything. Factorizations are given by
restriction along the vertical arrow component of a monoid homomorphism, using the
previous lemma.
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8.6. Theorem. Let X be a virtual equipment, and let T be a monad on Mod(X) which
preserves b.o. morphisms. Then

(i) dKMod(Mod(X), T ) is coreflective in KMod(Mod(X), T ) (that is, its inclusion has
a right adjoint in vEquip),

(ii) nKMod(Mod(X), T ) is reflective in KMod(Mod(X), T ), and

(iii) the induced adjunction

dKMod(Mod(X), T ) //oo nKMod(Mod(X), T )

is an adjoint equivalence.

Proof. We first prove (i). Let A �M //TA be a T -monoid in Mod(X), where A0
�A //A0 is

a monoid in X. The unit of A is a monoid homomorphism e : UA0
//A, so by Lemma 8.4,

M(Te, e) : UA0

� // T (UA0) is an (object-discrete) T -monoid. Likewise, if B �N // TB

is another T -monoid and M �p // TN is a horizontal arrow in KMod(Mod(X), T ), then
p(TeB, eA) is a horizontal arrow from M(TeA, eA) to N(TeB, eB). It is straightforward to
extend these constructions to a functor KMod(Mod(X), T ) // dKMod(Mod(X), T ).

Note that M(Te, e) comes with a natural map to M , whose vertical arrow component
is e, and likewise for p(TeB, eA). This supplies the counit of the desired coreflection. We
obtain the unit by observing that if M were already object-discrete, then e would be the
identity, so we would have M(Te, e) ∼= M . The triangle identities are easy to check.

Note that the horizontal arrow in X underlyingM(Te, e) is the restriction ofA0
�M //(TA)0

along the identity e0 : A0 = A0 and the map (Te)0 : T (UA0)0
// (TA)0. Since e is b.o. and

T preserves b.o. morphisms, (Te)0 is an isomorphism; thus the coreflection of M leaves
its underlying horizontal arrow in X essentially unmodified.

We now prove (ii); let A and M be as before. We first observe that the T -monoid M
in Mod(X) has an underlying monoid in Mod(X), namely M(η, 1). (This is a special case
of a general functoriality result we will prove in [CS10a].) As noted in Remark 5.15, a
monoid in Mod(X) consists of two monoids in X and a monoid homomorphism between
them whose vertical arrow components are identities. In this case the first monoid is of
course A. We denote the second by A′ and the monoid homomorphism by c : A // A′.
Note that the underlying horizontal arrow of A′ in X is just M(η, 1).

Now since T preserves b.o. morphisms, TA Tc //TA′ is b.o., hence (TA)0
(Tc)0 //(TA′)0

is an isomorphism. By restricting along its inverse and using the identity (A′)0 = A0,

from A0
�M // (TA)0 we obtain a horizontal arrow (A′)0

� // (TA′)0. We abuse notation
by continuing to denote this M (since restriction along isomorphisms leaves an arrow
essentially unchanged). Now A′ is a restriction of M , so it acts on M from the left via the
multiplication of M . And since T preserves restrictions, TA′ is a restriction of TM , so it
also acts on M from the right via the multiplication of M . Thus, the horizontal arrow in
X underlying M also admits the structure of a horizontal arrow A′ � // TA′ in Mod(X),



A UNIFIED FRAMEWORK FOR GENERALIZED MULTICATEGORIES 625

which we denote M ′. Likewise, the multiplication and unit of the T -monoid M induce a
multiplication and unit on M ′, making it also into a T -monoid, and we have a canonical
T -monoid homomorphism M //M ′ which is an isomorphism in X. By definition of A′,
M ′ is normalized. There is an analogous construction on horizontal arrows, and together
they extend straightforwardly to a functor KMod(Mod(X), T ) // nKMod(Mod(X), T ).

Now recall that A′ came equipped with a b.o. monoid homomorphism A // A′. It is
straightforward to check that this homomorphism underlies a T -monoid homomorphism
M //M ′; in this way we obtain the unit of the desired reflection. We obtain its counit
by observing that if M is already normalized, then A ∼= A′ and hence M ∼= M ′. The
triangle identities are again easy to check.

Finally, to show (iii), we observe that the unit of the reflection and the counit of
the coreflection are isomorphisms on the underlying horizontal arrow in X (since they
are restrictions along an isomorphism). Moreover, the reflection and coreflection functors
both invert morphisms with this property. Statement (iii) then follows formally.

Recall that we began this section by observing that ordinary multicategories can be
recovered as either object-discrete or normalized T -monoids, when T is the “free strict
monoidal category” monad on Set-Prof. Since this T preserves b.o. morphisms, this
statement is indeed an instance of Theorem 8.6. However, ordinary multicategories can
also be obtained as arbitrary S-monoids, when S is the free monoid monad on Set-Mat =
Span(Set). Noting that in this case T = Mod(S), we generalize this statement to the
following.

8.7. Theorem. Let S be a monad on a virtual equipment X. Then the monad Mod(S)
on Mod(X) preserves b.o. morphisms, and we have a diagram

dKMod(Mod(X),Mod(S)) //
oo

++

KMod(Mod(X),Mod(S)) //
oo

��

nKMod(Mod(X),Mod(S))

ss
KMod(X, S)

which serially commutes (up to isomorphism). Moreover, the two diagonal functors

dKMod(Mod(X),Mod(S)) //KMod(X, S) (8.8)

nKMod(Mod(X),Mod(S)) //KMod(X, S) (8.9)

are equivalences.

Proof. By definition, Mod(S) takes a monoid A0
�A //A0 to SA0

�SA //SA0, so it preserves
b.o. morphisms since S preserves isomorphisms. We define the middle vertical arrow

KMod(Mod(X),Mod(S)) //KMod(X, S) (8.10)

by applying the 2-functor Mod to the functor

H-Kl(Mod(X),Mod(S)) //H-Kl(X, S)
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which takes a monoid A0
�A // A0 to its underlying object A0, and similarly for hori-

zontal arrows. (This is again a special case of the general functorial result of [CS10a].)

Thus, (8.10) takes a Mod(S)-monoid A �M //Mod(S)(A) to the S-monoid A0
�M // SA0.

We define the diagonal functors by composition with this, so that the triangles
//

�� ��

and ��

oo

�� commute by definition. The other triangles commute up to isomorphism because

the reflection and coreflection were defined to fix A0, replace A, and restrict M along an
isomorphism, whereas (8.10) simply forgets about A.

Now, by the 2-out-of-3 property for equivalences, it suffices to show that (8.8) is an
equivalence. We will construct an explicit inverse to it. By Proposition 5.14, to construct
a normal functor

KMod(X, S) //KMod(Mod(X),Mod(S)) (8.11)

it suffices to construct a not-necessarily-normal functor

KMod(X, S) //H-Kl(Mod(X),Mod(S)). (8.12)

We define (8.12) on objects by sending an S-monoid A0
�A //SA0 to UA0 , and likewise on

vertical arrows. A horizontal arrow A �p //B in KMod(X, S) has an underlying horizontal

arrow A0
�p // SB0 in X, which acquires a S(UB0)-module structure from the following

composite:

A0 SB0
�
p

//

A0

A0

A0 S2B0S2B0

SB0

µ

��

SB0 S2B0
�

SB
//

SB0

SB0

SB0 SB0
�S(UB0

)
// SB0

S2B0

Sη

��
A0 SB0

�
p
//

A0

A0

A0 SB0
�p // SB0

SB0

= �� Sb̂

��
p̄r

This defines (8.12) on horizontal arrows; its action on cells is straightforward. The in-

duced normal functor (8.11) takes an S-monoid A0
�A // SA0 to itself, regarded as an

(UA0 , S(UA0))-bimodule. Clearly (8.11) followed by the forgetful functor is the iden-
tity, while the composite in the other direction is precisely the coreflection functor into
dKMod(Mod(X),Mod(S)); this completes the proof.

8.13. Examples. As remarked above, when S is the “free monoid” monad on Span(Set),
this shows that ordinary multicategories (i.e. S-monoids) can also be identified with
object-discrete or normalized Mod(S)-monoids. Likewise, virtual double categories are
S-monoids for the “free category” monad, and thus can also be identified with object-
discrete or normalized Mod(S)-monoids.
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8.14. Example. Since topological spaces can be identified with U -monoids in Rel, they
can also be identified with object-discrete or normalized Mod(U)-monoids in 2-Prof. In the
terminology of [Tho09], a Mod(U)-monoid is a modular topological space. It is normalized
precisely when its order is the specialization order, so that it is equivalent to an ordinary
topological space—i.e. a U -monoid, as required by Theorem 8.7.

By no means are all interesting monads on Mod(X) of the form Mod(S). However,
many of them do preserve b.o. morphisms, so that Theorem 8.6 at least applies.

8.15. Example. The “free symmetric strict monoidal category” monad on Set-Prof =
Mod(Set-Mat) preserves b.o. morphisms but is not of the form Mod(S) for any monad S
on Set-Mat. We have seen in Example 4.16 that object-discrete T -monoids are symmetric
multicategories; hence so are normalized T -monoids.

8.16. Example. The “free category with strictly associative finite products” monad on
Set-Prof also preserves b.o. morphisms but is not of the form Mod(S). We have seen in
Example 4.17 that object-discrete T -monoids are multi-sorted Lawvere theories; hence so
are normalized T -monoids.

8.17. Non-Example. Recall from Example 4.19 that clubs are T -monoids in Span(Cat)
with a discrete category of objects, where T is a monad like the previous two. However,
since Span(Cat) is not of the form Mod(X), the theory of this section does not apply to
clubs. In particular, their “object-discreteness” is not an instance of our definition, and
is not the same as normalization.

When T does not preserve b.o. morphisms, however, normalized and discrete T -
monoids can be quite different, even on a virtual equipment of the form Mod(X). In-
tuitively, saying that T preserves b.o. morphisms says that the possible domains of multi-
morphisms in a T -multicategory depend only on its objects. If this fails to be true,
then how many morphisms are included in the underlying monoid can change what these
possible domains are.

8.18. Example. Let T be the “free category with equalizers” monad on Set-Prof. Then
T evidently does not preserve b.o. morphisms, but it is the identity on discrete categories.
Therefore, an object-discrete T -monoid is just a category, whereas a normalized T -monoid
can have morphisms whose domain is a “formal equalizer” of ordinary morphisms.

More interestingly, normalized T -monoids for the “free category with finite limits”
monad (which also does not preserve b.o. morphisms) can be considered a generalization
of Lawvere theories to finite-limit logics. We can also continue to generalize to more
powerful logics (or “doctrines”).

These examples suggest that when T does not preserve b.o. morphisms, it is often the
normalized, rather than the object-discrete, T -monoids that better capture the desired
notion of T -multicategory. Note also that normalization makes sense for any monad
on a virtual equipment, while object-discreteness only makes sense for monads on virtual
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equipments of the form Mod(X). Finally, we will see in the next section that normalized T -
monoids are the most natural notion to compare with pseudo T -algebras. This inspires us
to take normalized T -monoids as our preferred definition of “generalized multicategory,”
and to make the following informal definition.

8.19. Definition. If T is a monad on a virtual equipment for which (possibly pseudo)
T -algebras are called widgets, then normalized T -monoids are called virtual widgets.

The reasons for this definition were summarized in the introduction. In §9 we will prove
that any widget has an underlying virtual widget, further justifying the terminology. Of
course, we have seen that a number of types of virtual algebras already have their own
names, such as “multicategory” and “Lawvere theory.” When such common names exist,
we of course use them in preference to terms such as “virtual monoidal category” or
“category with virtual finite products.”

Note that “virtual widget” is, strictly speaking, ambiguous: knowing the notion of
widget determines at most the vertical 2-category VX and the 2-monad VT , rather than
X and T themselves. However, many 2-categories that arise in practice come with an
obvious “natural” extension to a virtual equipment, so in practice there is little ambiguity.
(In fact, there is a general construction of an equipment from a well-behaved 2-category;
see [CJSV94].) One case of ambiguity is if “widget” is the name for T -algebras in Set
or Cat, but we consider T -monoids in V-Mat or V-Prof; in this case we may speak of
V-enriched virtual widgets.

8.20. Remark. The discussion above suggests that when the objects of X are category-
like, it is the normalized T -monoids (i.e. virtual T -algebras) that are more important,
while when the objects of X are set-like, it is the non-normalized T -monoids (i.e. virtual
Mod(T )-algebras) that are more important. This does seem to usually be the case, but
there are exceptions on both sides, such as the following.

• As we have already remarked, the multicategories of [BD98] and [Che04] are non-
normalized T -monoids, when T is the “free symmetric strict monoidal category”
monad on Set-Prof (whose objects are obviously category-like).

• Let U be the ultrafilter monad on Rel, whose objects are set-like. We have seen that
a U -monoid is just a topological space, but it is easy to verify that a U -monoid is
normalized just when it is a T1-space—certainly also an important concept.

9. Representability

We now turn to a general version of the comparison between monoidal categories and
multicategories. Of course, we first need to identify the analogue of a monoidal category
in the general case. We saw in §8 that ordinary multicategories have two different faces in
our setup: they are the S-monoids where S is the “free monoid” monad on Span(Set), and
also the normalized T -monoids, where T = Mod(S) is the “free strict monoidal category”
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monad on Set-Prof. Monoidal categories, however, are more visible from the second point
of view: they are the pseudo V(T )-algebras in V(Set-Prof) = Cat.

Accordingly, in this section we will assume that T is a monad on a virtual equipment
X whose objects are “category-like,” and seek to compare (pseudo) V(T )-algebras with
(normalized) T -monoids. We will additionally have to assume that T is a normal monad
as defined in §6, since otherwise it doesn’t even induce a 2-monad on V(X). If we are
given instead a monad S on a virtual double category whose objects are “set-like,” then
in order to apply the theory of this section we simply consider Mod(S) instead; some
examples of this can be found later on. Generalizing the terminology of [Lei04, p. 165],
we may call a (pseudo) V(Mod(S))-algebra an S-structured monoid.

Actually, the most natural approach to the comparison turns out to be via oplax T -
algebras. Recall that for a 2-monad T on a 2-category, an oplax T -algebra is an object
A with a map a : TA // A and 2-cells

T 2A
µ //

Ta
��

�� a

TA

a
��

TA a
// A

and

A
η // TA

a
��

ây�

A

(9.1)

satisfying certain straightforward axioms. We call it normal if â is an isomorphism, and a
pseudo T -algebra if both â and a are isomorphisms. Finally, if T is a monad on a virtual
equipment, we will always abuse terminology by saying “T -algebra” (with appropriate
prefixes) to mean V(T )-algebra.

9.2. Theorem. Let T be a normal monad on a virtual equipment X. Then:

(i) Any oplax T -algebra TA a //A in VX gives rise to a T -monoid A �A(a,1) //TA, which
is normalized if and only if A is normal.

(ii) A T -monoid A �M // TA arises from an oplax T -algebra if and only if M ∼= A(a, 1)

for some vertical arrow TA
a // A.

Proof. If a : TA // A is an oplax T -algebra, then by definition of A(a, 1), the 2-cell â
induces a unit cell

A �UA //

��

A

η
��

A �
A(a,1)

// TA.

Likewise, by the dual of Corollary 7.21, a induces a multiplication

A �A(a,1) //

��

TA �(TA)(Ta,1)// T 2A

µ

��
A �

A(a,1)
// TA
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and using the isomorphism (TA)(Ta, 1) ∼= T (A(a, 1)) (since T is normal) we obtain a
multiplication cell. The axioms to make A(a, 1) into a T -monoid follow directly from the
axioms for an oplax T -algebra. To complete (i), we observe that â is an isomorphism if
and only if the induced cell UA //A(aη, 1) ∼= A(a, 1)(η, 1) is an isomorphism, which says

precisely that the unit defined above is cartesian. Conversely, if A �M //TA is a T -monoid
and M ∼= A(a, 1), then the same bijections supply 2-cells a and â satisfying the same
axioms making a : TA // A into an oplax T -algebra; this shows (ii).

The following example may serve to clarify the connection between normality of oplax
T -algebras and normalization of T -monoids.

9.3. Example. Let T be the “free strict monoidal category” monad on Set-Prof. Then
an oplax T -algebra is an oplax monoidal category : a category A equipped with tensor
product functors

A× · · · × A // A

(x1, . . . , xn) 7→ 〈x1 ⊗ . . .⊗ xn〉

for n ≥ 0, and transformations

〈x〉 // x

〈x11 ⊗ . . .⊗ xnkn〉 // 〈〈x11 ⊗ . . .⊗ x1k1〉 ⊗ . . .⊗ 〈xn1 ⊗ . . .⊗ xnkn〉〉

satisfying certain evident axioms. Note that the 0-ary tensor product 〈〉 is a “lax unit”
and the 1-ary tensor product 〈x〉 is not necessarily isomorphic to x, only related by the
given unit transformation 〈x〉 // x.

As mentioned previously, a T -monoid consists of a category A, a multicategory M with
the same objects, and an identity-on-objects functor from A to the underlying ordinary
category of M . Now Theorem 9.2 says that we can make an oplax monoidal category
into a T -algebra by defining the multimorphisms in M from (x1, . . . , xn) to y to be the
morphisms 〈x1 ⊗ . . .⊗ xn〉 // y in A.

Note that the morphisms from x to y in the underlying ordinary category of M are the
morphisms from 〈x〉 to y in A. The functor A //M is defined by composing with the unit
transformation 〈x〉 // x. Clearly this is fully faithful (i.e. the T -monoid is normalized)
just when 〈x〉 // x is an isomorphism (i.e. the oplax T -algebra is normal).

The following characterization of pseudo T -algebras is now obvious.

9.4. Corollary. A normalized T -monoid A �M // TA arises from a pseudo T -algebra
if and only if

(i) M ∼= A(a, 1) for some TA a // A, and

(ii) the induced 2-cell a is an isomorphism.

We say that a normalized T -monoid is weakly representable if it satisfies (i), and
representable if it satisfies both (i) and (ii) (hence is equivalent to a pseudo T -algebra).
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9.5. Example. When T is the “free strict monoidal category” monad on Set-Prof,
Corollary 9.4 specializes to the characterization of monoidal categories as representable
multicategories, as in [Her00] and [Lei04, §3.3]. We will see in §B.14 that it also includes
the general representability notion of [Her01]. The analogue of Theorem 9.2 in the lan-
guage of [Bur71] can be found in [Pen09], which uses “representable” for what we call
“weakly representable” and “lax algebra” for what we call an “oplax algebra.”

9.6. Remark. Strictly speaking, the notion of monoidal category obtained in this way
is the “unbiased” version, which is equipped with a specified n-ary tensor product for all
n ≥ 0, instead of the usual “biased” version having only a binary and nullary product
(see [Lei04, §3.1]). This is generally what happens for pseudoalgebras: if T is a monad
whose strict algebras are some strict structure, then pseudo T -algebras are an “unbiased”
sort of weak structure. Generally the unbiased version is equivalent to the biased one,
but there is real mathematical content in this statement; for instance, the equivalence of
biased and unbiased monoidal categories is essentially equivalent to Mac Lane’s coherence
theorem.

9.7. Example. Recall that virtual double categories can be identified with S-monoids
for the “free category” monad S on directed graphs, and hence also with normalized
Mod(S)-monoids. In this case it is easy to check that for a normalized Mod(S)-monoid

A �M // TA, we have M ∼= A(a, 1) iff every composable string of horizontal arrows is
the source of a weakly opcartesian arrow (see Remark 5.8). Thus, such virtual double
categories can be identified with “normal oplax double categories,” which are equipped
with n-ary composites for all n and comparison maps

〈p11 � · · · � pnkn〉 // 〈〈p11 � · · · � p1k1〉 � · · · � 〈pn1 � · · · � pnkn〉〉

and invertible comparison maps

〈p〉
∼= // p

satisfying analogous axioms to an oplax monoidal category. Condition (ii) in Corollary 9.4
is then equivalent to requiring weakly opcartesian cells to be closed under composition.
As observed in Remark 5.8, this suffices to ensure we have a pseudo double category, i.e.
a pseudo Mod(S)-algebra.

9.8. Example. Let U be the ultrafilter monad on Rel. We have seen that a U -monoid is
a topological space, and a normalized U -monoid is a T1-space. A vertical U -algebra (which
is automatically strict, since V(Rel) is locally discrete) is a compact Hausdorff space, and
in this case Theorem 9.2 tells us what we already knew: any compact Hausdorff space is,
in particular, a T1 topological space.

Now consider the induced monad Mod(U) on Mod(Rel). The objects of Mod(Rel) =
2-Prof are preorders. In the language of [Tho09], a strict Mod(U)-algebra is an ordered
compact Hausdorff space, whereas by Theorem 8.7 a normalized Mod(U)-monoid is simply
a topological space. Thus, Theorem 9.2 tells us that any ordered compact Hausdorff space
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X can be equipped with a topology in which an ultrafilter F converges to a point y if and
only if the (unique) limit of F in X is ≤ y in the given preorder.

The next three examples can all be found in [Her01] (see B.14 for more on the com-
parison between our setting and Hermida’s).

9.9. Example. Let S be a small category and T the monad on C = Setob(S) whose
algebras are functors S // Set, as in Example 4.10, and consider the monad Mod(T )
on Mod(Span(C)) = Prof(C). A strict Mod(T )-algebra is a functor S // Cat, while a
pseudo Mod(T )-algebra is a pseudofunctor S //Cat. Now by Theorem 8.7, normalized
Mod(T )-monoids can be identified with T -monoids, which as we saw can be identified with
functors A // S. It is then easy to verify that a normalized Mod(T )-monoid satisfies
9.4(i) iff the corresponding functor A // S admits all weakly opcartesian liftings, and
9.4(ii) iff weakly opcartesian arrows are closed under composition. Thus, in this case
Corollary 9.4 specializes to the classical equivalence between pseudofunctors S // Cat
and opfibrations over S.

9.10. Example. Let T be as in Example 9.9, but now consider T -monoids rather than
Mod(T )-monoids. A T -monoid is normalized just when for each x ∈ S, the induced span
A(x, 1) oo M //A(x, 1) is the identity span; i.e. when the fibers of A // S are discrete
categories. Such a normalized T -monoid satisfies 9.4(i) iff A // S admits all weakly
opcartesian liftings, which in this case are automatically opcartesian by discreteness.
Thus, Corollary 9.4 also specializes to the equivalence of functors S // Set and discrete
opfibrations over S.

9.11. Example. Let T be the “free strict ω-category” monad on Span(Globset), for
which we saw in Example 4.11 that T -monoids on 1 are globular multicategories. Pseudo
T -algebras are an “unbiased” version of the monoidal globular categories of [Bat98]. Thus
any monoidal globular category has an underlying globular multicategory, and can be
characterized among the latter by a representability property.

The requirement that T be normal in Theorem 9.2 cannot be dispensed with.

9.12. Example. Let P be the extension of the powerset monad to Rel described in
Example 3.7. Since V(Rel) = Set is locally discrete, oplax P -algebras are just P -
algebras in Set, which can be identified with complete meet-semilattices (the structure
map PA // A takes a subset X ⊆ A to its meet

∧
X).

Now, we have observed in Example 4.14 that P -monoids can be identified with closure
spaces. If we attempt to follow the prescription of Theorem 9.2, starting from a complete
join-semilattice we would define the “closure operation” c(X) = {

∧
X}; but this is neither

extensive nor monotone.
On the other hand, if we first apply Mod, we obtain a monad Mod(P ) on Mod(Rel) =

2-Prof, which is normal. By Theorem 8.7, normalized Mod(P )-monoids can be identified
with P -monoids, i.e. closure spaces. With a little effort, pseudo Mod(P )-algebras can
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be identified with meet-complete preorders (that is, preorders that are complete as cate-
gories). Theorem 9.2 then tells us that from a meet-complete preorder we can construct
a closure space with c(X) = {x |

∧
X ≤ x}, which is certainly true.

We can also make the correspondence of Theorem 9.2 functorial. Recall that for
any T we have a 2-category KMon(X, T ) of T -monoids, defined to be the vertical 2-
category of KMod(X, T ). It turns out that while T -monoids correspond to oplax T -
algebras, morphisms of T -monoids correspond to lax T -algebra morphisms. Recall that a
lax T -morphism between oplax T -algebras consists of a map f : A //B and a 2-cell

TA
Tf //

a
��

~� f

TB

b
��

A
f
// B

satisfying certain straightforward axioms. And ifA
f //
g
//B are two such, a T -transformation

is a 2-cell f α // g such that

TA
Tf //

a

��

�	 f

TB

b

��
A

f
''

g
77�� α B

=

TA

a

��

Tf
))

Tg

55�� Tα TB

b

���� f
A

f
// B.

We write Oplax -T -Alg l for the resulting 2-category.

9.13. Theorem. Let T be a normal monad on a virtual equipment X. Then there
is a strict 2-functor Oplax -T -Alg l // KMon(X, T ), whose underlying 1-functor is fully
faithful, and which becomes 2-fully-faithful (that is, an isomorphism on hom-categories)
when restricted to normal oplax T -algebras.

Proof. For oplax T -algebras (A, a) and (B, b), regarded as T -monoids A �A(a,1) //TA and

B �B(b,1) // TB, a morphism of T -monoids consists of a vertical arrow f : A // B and a
2-cell

A �A(a,1) //

f
��

��

TA

Tf
��

B �
B(b,1)

// TB
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satisfying certain axioms. But by definition of B(b, 1), and by Theorem 7.20 applied to
A(a, 1), this 2-cell is equivalent to one

TA �UTA //

a
��

��

TA

Tf
��

A

f

��

TB

b

���
UB

// .

This defines a 2-cell b◦Tf //f ◦a in V(X), which is precisely the additional data required
to make f into a lax T -algebra morphism. It is easy to verify that the axioms of a T -
monoid morphism are equivalent to the axioms of a lax T -algebra morphism under this
translation, and that composition is preserved.

Now let f, g : A // B be two such morphisms, and recall from §6 that a T -monoid
transformation β : f // g consists of a cell

B TB
B(b,1)

//

A

B

g

��

A

TB

ηTB◦f

��
B TB| //

⇓β

satisfying a certain axiom. Equivalently, β is a 2-cell bηf // g in V(X). Thus, given a
T -algebra transformation α : f // g, it is natural to define β to be the composite

bηf
b̂f // f

α // g,

where b̂ : bη //1 is the oplax unit map of B. With this definition, the axiom that must be
satisfied for β to be a T -monoid transformation becomes the following equality of pasting
diagrams in VX.

B TBoo
b

A

B

f

��

A TAoo a
TA

TB

Tf

��
f

[c

TB T 2Boo
Tb

B

TB

η

��

B TBoo
b

TB

T 2B

η

��
=

B

B

A

B

g



ck
α

b̂

[c

B TBoo
b

b

[c

B TBoo
b

B

B

B T 2BT 2B

TB

µB

��

=

B TBoo
b

A

B

g

��

A TAoo a
TA

TB

Tg

��

g

[c

TA

TB

Tf

��
TB

T 2B

TηB

��
TB

TB
ks
Tα

T b̂

[c

TB T 2Boo
Tb

b

[c

B TB.oo
b

B

B

B T 2BT 2B

TB.

µB

��

(9.14)
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The cell marked “=” is an identity by Proposition 7.25 applied to a cell component of η.
Now, two of the axioms for an oplax T -algebra say that

TB T 2Boo
Tb

B

TB

η

��

B TBoo b
TB

T 2B

η

��
=

B

B

b̂

[c

B TBoo
b

b

[c

B TBoo
b

B

B

B T 2BT 2B

TB

µB

��

= B TB
b

ii

b
uu

�� 1B =

TB

T 2B

TηB

��
TB

TB

T b̂

[c

TB T 2Boo
Tb

B TBoo b

b

[c

B TB.oo
b

B

B

B T 2BT 2B

TB.

µB

��

After removing these composites from (9.14), what is left is simply the equation for α to

be a T -algebra transformation; thus α is such precisely when β = α.̂bf is a T -monoid
transformation. And, of course, if B is normal, then b̂f is an isomorphism, and so α can
be recovered uniquely from β. We leave it to the reader to verify that this association
preserves both types of 2-cell composition.

The restriction to normal oplax algebras in the final statement of Theorem 9.13 cannot
be dispensed with either.

9.15. Example. Let A and B be oplax monoidal categories, regarded as T -monoids

for the “free strict monoidal category” monad T as in Example 9.3, and let A
f //
g
// B be

lax monoidal functors. A T -algebra transformation f // g is, in particular, a natural

transformation f //g, and therefore has components fx
αx //gx. However, if we unravel

the definition of a T -monoid transformation, we see that its components are of the form

〈fx〉 βx // gx. Thus, when B is not normal, there can be no bijection in general.

9.16. Remark. Recall from §1 that generalized multicategories can be regarded as
“algebraic theories.” For instance, ordinary multicategories correspond to strongly regular
finitary theories, while Lawvere theories correspond to arbitrary finitary theories. In
language introduced by Jon Beck, one may say that the monad T provides the “doctrine”
in which the theories are written. (Motivated by this, some authors use the word doctrine
to mean simply a 2-monad.) If X is a T -monoid, regarded as a theory in the doctrine
T , and A is a pseudo T -algebra, then it is natural to define a model of X in A to be a
T -monoid homomorphism from X to (the underlying T -monoid of) A.

Now, frequently the functor of Theorem 9.13 has a left adjoint FT when restricted
to pseudo T -algebras and morphisms. In such a case, a model of X in A can equally
be defined as a T -algebra morphism FTX // A. That is, FTX is the “free T -algebra
containing a model of X.” Following [Law63], this is sometimes called the “functorial
semantics” of T .

For example, when X is a Lawvere theory, FTX is the category with finite products
that incarnates it. (In fact, as we remarked in Example 4.17, Lawvere theories are often
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defined to be certain categories with finite products.) Likewise, when X is a Lawvere V-
theory, then FTX is the V-category with finite cotensors that incarnates it (see [Pow99])
and when X is an ordinary or non-symmetric operad, FTX is the “PROP” or “PRO”
associated to it (see [BV73]).

This adjunction can also be used to characterize representability. It turns out that the
strict (resp. pseudo) algebras for the induced 2-monad Ta on KMon(X, T ) can be identified
with strict (resp. pseudo) T -algebras. Moreover, Ta is a “lax-idempotent” 2-monad in the
sense of [KL97], so that A is a pseudo Ta-algebra precisely when the unit A //TaA has a
left adjoint. Thus the “structure” imposed by the 2-monad T has been transformed into
“property-like structure” imposed by Ta. In particular cases, these observations can be
found in [Her00, Her01, Pen09]; in [CS10b] we will study them in our general context.

A. Composites in Mod and H-Kl

In this appendix we consider the question of when Mod(X) and H-Kl(X, T ) have compos-
ites and units, which will be needed for our comparisons with existing theories in the next
appendix. The first case is easy; the following was also observed in [Shu08].

A.1. Theorem. If X is an equipment in which each category HX(A,B) has coequalizers,
which are preserved on both sides by �, then Mod(X) is also an equipment.

Proof (Sketch). We have seen already that Mod(X) always has units, and inherits
restrictions from X, so it remains only to construct composites. We define the composite

of bimodules A �p //B �q // C to be the coequalizer of the two actions of B:

p�B � q //// p� q // // p�B q

and similarly for longer composites. Given a cell

�p //

f

��
��

�q //

g

���
r

//

in Mod(X), to factor it through p �B q, we first factor it through a cartesian cell to
obtain a cell (p, q) // r(g, f) in HX(A,C), then factor this through the coequalizer in
HX(A,C), and finally compose again with the cartesian cell. Thus (p, q) // p �B q is
weakly opcartesian; to show that these cells compose we use the fact that � preserves
coequalizers.

Note that we require X to have restrictions, as well as composites, in order to show
that Mod(X) has composites. We could instead assume explicitly that the coequalizers in
HX(A,B) satisfy a universal property relative to all cells, but in practice this generally
tends to hold only because of the existence of restrictions.
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A.2. Example. If V has small colimits preserved by ⊗, then V-Mat satisfies the hy-
potheses of Theorem A.1, so (as we have seen) V-Prof is an equipment.

A.3. Example. If C has pullbacks and coequalizers preserved by pullback, then Span(C)
satisfies the hypotheses of Theorem A.1, so (as we have also seen) Prof(C) is an equipment.

We have also already seen that H-Kl(X, T ) always inherits restrictions from X. How-
ever, to show that it has composites, we require fairly strong conditions not just on X
but on T as well. Recall that a functor between pseudo double categories (and, therefore,
also between equipments) is called strong if it preserves all composites. We then make
the following definition:

A.4. Definition. A transformation F
α //G of functors X

F //
G
//Y between equipments

is horizontally strong if for every horizontal arrow X
p // Y in X, the cell induced by

αp under the bijection of Corollary 7.21:

FX �Fp //

��

FY �GY (1,αY )// GY

FX �
GX(1,αX)

// GX �
Gp

// GY

is an isomorphism. A monad T on an equipment X is horizontally strong if T is a
strong functor and µ and η are horizontally strong.

A.5. Remark. Recall from Remark 7.26 that any transformation α of functors between
equipments induces an oplax transformation H(α) of functors between horizontal bicat-
egories. Horizontal strength of α is equivalent to requiring H(α) to be a strong (aka
pseudo) transformation (hence the name).

A.6. Example. Let C
F ''

G

77�� α D be a transformation between pullback-preserving func-

tors between categories with pullbacks. It is not hard to verify that the induced trans-
formation Span(α) is horizontally strong if and only if α is a cartesian natural trans-
formation, meaning that all its naturality squares are pullbacks. Therefore, if T is a
pullback-preserving monad on C, the monad Span(T) is horizontally strong if and only
if µ and η are cartesian natural transformations. Such a T is often called a cartesian
monad; see §B.1.

A.7. Example. We have remarked that most of the monads from Example 3.7 are not
even strong functors in general, with the exception of the ultrafilter monad on Rel. One
can verify that for this monad, the multiplication transformation is horizontally strong,
but the unit transformation is not; hence it is not a horizontally strong monad.

A.8. Theorem. If T is a horizontally strong monad on an equipment X, then H-Kl(X, T )
is also an equipment.
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Proof (Sketch). It suffices to show that H-Kl(X, T ) has composites. A composable
string of horizontal arrows

X0
�p1 //X1

�p2 // · · · �pn //Xn

in H-Kl(X, T ) consists of horizontal arrows Xi
�pi+1 //TXi+1 in X. Since X is an equipment,

we can form the composite

p1 � T (p2)� · · · � T n−1(pn)� TXn(1, µn−1)

in X, which clearly supplies a weakly opcartesian cell in H-Kl(X, T ). Likewise, TX(1, η) is
a weak unit for X in H-Kl(X, T ). The assumptions on T are required to show that these
weakly opcartesian cells compose, or equivalently that this composition is associative;
rather than write this out in detail we merely compute the 3-fold associativity isomorphism

for X �p // Y �q // Z �r //W .

(p� Tq � TZ(1, µ))� Tr � TW (1, µ)
∼= p� Tq � T 2r � T 2W (1, µT )� TW (1, µ) (strength of µ)
∼= p� Tq � T 2r � T 2W (1, Tµ)� TW (1, µ) (associativity of µ)
∼= p� Tq � T 2r � T (TW (1, µ))� TW (1, µ) (normality of T )
∼= p� T (q � Tr � TW (1, µ))� TW (1, µ) (strength of T ).

Of course, in the unit isomorphisms η is used instead of µ.

A.9. Corollary. If T is a horizontally strong monad on an equipment X, such that
each category HX(A,B) has coequalizers that are preserved by � on both sides and also
preserved by T , then KMod(X, T ) is also an equipment.

Proof. The hypotheses ensure that H-Kl(X, T ) satisfies the conditions of Theorem A.1.

A.10. Example. If T is a cartesian monad on a category C with pullbacks, then we have
seen that the induced monad on Span(C) is horizontally strong; thus H-Kl(Span(C) , T )
is an equipment. If furthermore C has coequalizers that are preserved by pullback and
by T , then Corollary A.9 implies that KMod(Span(C) , T ) is also an equipment.

For example, the “free M -set” monad (M × −) on Set preserves coequalizers, so we
have an equipment of M -graded categories. However, the “free monoid” monad does not
preserve coequalizers, and the virtual equipment of ordinary multicategories is not an
equipment.

A.11. Example. Let V be a symmetric monoidal category with small coproducts pre-
served by⊗ on both sides, and let T be the extension of the “free monoid” monad on Set to
a monad on V-Mat defined in Example 3.12. We have already remarked in Examples 5.11
that T is strong, and an easy calculation shows that it is in fact horizontally strong. Thus,
H-Kl(V-Mat, T ) is an equipment. However, even if V is cocomplete, and in particular
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has coequalizers preserved by ⊗ on both sides, these coequalizers will not in general be
preserved by T . Thus, the virtual equipment KMod(V-Mat, T ) of V-enriched ordinary
multicategories fails to be an equipment. (For V = Set we have seen this already in the
previous example.)

A.12. Example. Let V be a cocomplete symmetric monoidal category with small col-
imits preserved by ⊗ on both sides, and let T be the “free symmetric strict monoidal V-
category” monad on V-Prof from Examples 3.14 and 4.16. We remarked in Examples 5.12
that T is strong. In fact, it is easily seen to be horizontally strong, so that H-Kl(V-Prof, T )
is an equipment. As in the previous example, however, T fails to preserve coequalizers in
H(V-Prof)(A,B), so that KMod(V-Prof, T ) is not an equipment even when V = Set.

When the horizontal arrows in H-Kl(Set-Prof, T ) are identified with the generalized
structure types of [FGHW08] as in Remark 4.20, their horizontal composites are iden-
tified with the substitution operation on structure types. In [FGHW08] the bicategory
H(H-Kl(Set-Prof, T )) was constructed in this way from structure types and substitution.

A.13. Example. Let T be the “free category with strictly associative finite products”
monad on V-Prof from Examples 3.15 and 4.17. We remarked in Examples 5.12 that T
is strong if V is cartesian monoidal. In fact, in this case it can moreover be shown to be
horizontally strong, so that H-Kl(V-Prof, T ) is an equipment.

Now we specialize to V = Set. If 1 denotes the terminal category, then T1 is equivalent
to Setop

f , the opposite of the category of finite sets. Thus, a profunctor 1 � // T1 is
equivalent to a functor Setf // Set, which (since Set is locally finitely presentable)
is equivalent to a finitary endofunctor of Set. It is then not hard to verify that the
equivalence

H(H-Kl(Set-Prof, T ))(1, 1) ' [Setf ,Set]

is actually an equivalence of monoidal categories, and thus induces an equivalence between
categories of monoids. But a monoid inH(H-Kl(Set-Prof, T ))(1, 1) is a T -monoid 1 � //T1,
i.e. a Lawvere theory; thus we recover the classical result of [Law63] that Lawvere theories
can be identified with finitary monads on Set.

An analogous argument for the “free V-category with finite cotensors” monad on
V-Prof from Examples 3.16 and 4.18 reproduces the result of [Pow99] that Lawvere V-
theories can be identified with finitary V-monads on V. In this case, H-Kl(V-Prof, T )
seemingly need not be an equipment, but at least the multicategory H-Kl(V-Prof, T )(1, 1)
is a monoidal category, precisely because it can be identified with the monoidal category
of finitary endofunctors of V under composition.

A.14. Example. Let Set-Prof ls denote the virtual double category whose objects are
locally small categories (that is, large categories with small hom-sets), whose vertical
arrows are functors, and whose horizontal arrows are profunctors taking values in small
sets. Then there is a monad T on Set-Prof ls whose algebras are categories with all small
products, and we have T1 ' Setop. Thus, by analogous reasoning to Example A.13,
we see that T -monoids 1 � // T1 for this T can be identified with arbitrary monads on
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Set. We can likewise obtain monads on any suitable V by using the monad for arbitrary
cotensors on V-Prof ls. In [CS10a] we will see that by regarding monads as particular
generalized multicategories in this way, we can recover the monad associated to an operad
(as originally defined in [May72]) as a particular case of the functoriality of generalized
multicategories.

B. Comparisons to previous theories

We now describe the existing approaches to generalized multicategories, and show how
they compare to our theory. Most existing approaches turn out to be instances of our
theory, applied to a particular sort of monad on a particular sort of virtual equipment.
Unsurprisingly, however, often more can be said in such special cases that is not true in
general. Thus, in each section below we briefly mention some of the additional results
that different authors have obtained in their particular contexts.

B.1. Cartesian Monads. In order to study and define a type of n-category, Leinster
developed a theory of cartesian monads and their associated multicategories. This theory
was developed in a series of papers, eventually culminating in his book [Lei04]. Recall the
following from Example A.6:

B.2. Definition. Let E be a category with pullbacks. A monad (T, η, µ) on E is carte-
sian if T preserves pullbacks, and all naturality squares of η and µ are pullbacks.

Given a cartesian monad, Leinster constructs a bicategory E(T ) of T -spans and defines
a (E, T )-multicategory (or simply a T -multicategory) to be a monad in E(T ). To compare
this to our context, recall that whenever E has pullbacks, Span(E) is an equipment, and
any pullback-preserving monad T on such a E extends to a strong monad on Span(E),
which is horizontally strong just when T is cartesian. It is then easy to see:

B.3. Proposition. For a cartesian monad T on E, Leinster’s bicategory E(T ) is iso-
morphic to H(H-Kl(Span(E), T )).

Therefore, Leinster’s category of (E, T )-multicategories is the vertical category of our
KMod(Span(E) , T ). In particular, what he calls a T -operad is a T -monoid 1 � // T1 in
Span(E).

Actually, Leinster constructs the whole virtual double category KMod(Span(E) , T )
(which he calls an fc-multicategory) in [Lei04, §5.3], and uses it to define transformations
of his generalized multicategories just as we did in §6. (The notes at the end of his §5.3
also point in the direction of our §§5 and 7.)

Leinster also proves most of the results of our §9 in his context, as well as the func-
toriality of the construction mentioned in Remark 4.4. Furthermore, he shows that if T
is a “suitable” cartesian monad on a “suitable” cartesian category E, then the category
of (E, T )-multicategories is itself monadic over a cartesian category of “T -graphs,” and
this monad is also cartesian. Thus the process can be iterated, leading to a definition of
the “opetopes” used in the Baez-Dolan definition of weak n-categories. Finally, Leinster
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also studies algebras for generalized operads, which are closely related to the horizontal
arrows in KMod(X, T ).

B.4. Clubs. Essentially the same theory was developed in [Kel92] for the case of gen-
eralized operads (generalized multicategories on 1). Observe that when T is a cartesian
monad on a category E with finite limits, so that H-Kl(Span(E) , T ) is an equipment, then
in particular the category

E/T1 ' H(H-Kl(Span(E) , T ))(1, 1)

inherits a monoidal structure. It is easy to verify that this monoidal structure on E/T1 is
the same as that constructed by Kelly (see the explicit description in [Kel92, p. 174–175]).
Kelly defined a club over T to be a monoid for this monoidal structure; thus such clubs
can be identified with T -monoids 1 � // T1 in Span(E). He also proved that such clubs
are essentially equivalent to cartesian monads equipped with a “cartesian map” to T .

(Actually, in [Kel92] it was assumed that T preserves certain pullbacks rather than
all pullbacks. This suffices to construct a monoidal structure on E/T1, though not for T
to define a monad on all of Span(E).)

B.5. Pseudomonads on Prof. The existing theory which is probably closest to our
approach involves the construction of a Kleisli bicategory from a pseudomonad on a bicat-
egory such as V-Prof. A general theory of multicategories based on such pseudomonads
does not appear to exist in the literature, but it is implicit in [BD98, Che04, FGHW08,
Gar08, DS03] among other places.

The general framework is, however, quite simple to state: from a pseudomonad T on a
bicategory B, one can construct the Kleisli bicategory BT and consider monads in BT as a
notion of generalized multicategory. (Leinster’s approach is a special case of this for B =
Span(C), as is Hermida’s for a different bicategory—see §B.14, below.) The relationship
with our theory is that if T is a horizontally strong monad on an equipment X, it gives
rise to a pseudomonad H(T ) on the bicategory H(X), and H(X)H(T ) ' H(H-Kl(X, T )) so
that the resulting notions of multicategory agree.

In the converse direction, of course not every pseudomonad on H(X) arises from a
monad on X itself, but we have seen that this is true for most monads relative to which
one may want to define generalized multicategories. In a few cases, however, the extension
to X may not be vertically strict, necessitating the extension of vEquip to a tricategory.

Note that if T is also co-horizontally strong, in the sense that its horizontal dual is
horizontally strong, then it also induces a pseudo-comonad Ĥ(T ) on the bicategory H(X).
From this perspective, T -monoids can be identified with lax Ĥ(T )-coalgebras. Of course,
if we work in the horizontal dual, then Ĥ(T ) becomes a pseudomonad and T -monoids are
its lax algebras. This is the terminology used by several authors, including Hermida. The
authors of [DS03] consider the special case when the bicategory B is monoidal and T is its
free monoid monad, so that T -monoids can be called lax monoids. Such lax monoids can
also be described directly in terms of B, without the need for cocompleteness hypotheses
to ensure that T exists.
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B.6. (T,V)-algebras. Following Barr [Bar70], [CT03] started a series of papers which
described the ideas of a “set-monad with lax extension to V-Mat”, as well as the (T,V)-
algebras associated to these monads. Barr’s original idea showed that the “lax algebras”
of the ultrafilter monad are topological spaces; Clementino and Tholen’s idea extended
this further, developing a framework that eventually included not only topological spaces,
but also metric spaces, approach spaces, and closure spaces.

In the work on (T,V)-algebras, two definitions of set-monad with lax extension to
V-Mat have been proposed. The original version was applicable to all monoidal V.
However, it failed to capture all relevant examples, and so a second, slightly different defi-
nition was proposed in [Sea05], which captured further examples. However, this definition
was only applicable when V was a preorder. As we shall see, Seal’s definition turns out
to be equivalent to asking for a monad on V-Mat (in the case when V is ordered), while
the original definition is equivalent to asking for a monad on V-Mat which is normal.

The original definition, given in [CT03], was as follows:

B.7. Definition. A set monad with lax extension to V consists of a monad
(T, η, µ) on Set, together with a lax functor TM on V-Mat such that:

• TM is the same as T on objects and functions (viewed as V-matrices),

• the comparisons (TMs)(TMr) // TM(sr) are isomorphisms when r is a function,

• when viewed as transformations on TM , η and µ have op-lax structure.

In general, however, this definition was found to be too restrictive, as it didn’t allow
for examples such as extensions of the powerset monad, whose algebras would be closure
spaces. To include this type of example, the requirement that TM was the same as T on
functions needed to be removed. Seal’s definition, given in [Sea05], was the following:

B.8. Definition. Suppose that V is a monoidal preorder. A set monad with lax
extension to V consists of a monad (T, η, µ) on Set, together with a lax functor TM on
V-Mat which is the same as T on objects, and satisfies

(i) Tf ≤ TMf ,

(ii) (Tf)◦ ≤ TMf
◦.

Here, ()◦ denotes taking the opposite V-matrix. By [Sea05, p. 225] the conditions
imply that if q is a V-matrix and f a function, then TM(qf) = (TMq)(Tf) and TM(f ◦q) =
(Tf)◦(TMq).

In [Sea05, p. 203], he also shows that when V is completely distributive, η and µ have
op-lax structure. However, this is not a priori required in his definition. If, however, we
include this axiom in his definition, then his notion of set monad with lax extension is
equivalent to giving our notion of a monad on the virtual double category V-Mat.
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B.9. Proposition. Suppose that V is a monoidal preorder. If T is a set monad with
lax extension TM (in the sense of Seal) for which η and µ are op-lax, then we can define
a monad T on V-Mat which is T on vertical arrows, and TM on horizontal arrows.
Conversely, given a monad T on V-Mat, we can define a set monad with lax extension
which is T on functions, and uses the horizontal action of T to define TM .

Proof. Suppose that we have a set monad with lax extension to V, in the second sense
given above. Define a functor T on the double category V-Mat, which is T on vertical
arrows, and TM on horizontal arrows. Using the η and µ, we get all of the necessary data
for a monad on V-Mat, with the exception of checking that

W Z

X

W

f

��

X YY

Z

g

��

X Y�p //

W Z�
q
//

�� implies

TW TZ

TX

TW

Tf

��

TX TYTY

TZ

Tg

��

TX TY�Tp //

TW TZ�
Tq
//

��

This is equivalent to checking that p ≤ g◦qf ⇒ TM(p) ≤ (Tg)◦TMq(Tf). But this is easy
to check by using the two results given after Seal’s definition.

TM(p) ≤ TM(g◦qf) = (Tg)◦TM(qf) = (Tg)◦(TMq)(Tf)

Conversely, suppose that we have a monad T on V-Mat. We would like to define a
lax extension of T (considered as a Set-monad) to V-Mat . Define TM on matrices as for
T . The only conditions we need to check are Tf ≤ TMf and (Tf)◦ ≤ TMf

◦. To show the
first is equivalent to showing that TB(1, T f) ≤ T (B(1, f)). To show this, recall that we
have a cartesian cell

A B

B B

�B(1,f) //

�
UB

//

f

��
��

Moreover, since T is a functor, it preserves cartesian cells (Theorem 7.24), and so

TA TB

TB TB

�T (B(1,f)) //

�
T (UB)

//

Tf

��
��



644 G.S.H. CRUTTWELL AND MICHAEL A. SHULMAN

is also cartesian. We can thus factor the cell

TA TB

TB TB

TB TB

�TB(1,T f) //

�
UTB

//

Tf

��

�
T (UB)

//

��

��

through it to get a cell

TA TB

TA TB

�TB(1,T f) //

�
T (B(1,f))

//

��

as required. The second inequality follows similarly, using the cartesian cell

B A

B B

�B(f,1) //

�
UB

//

f

��
��

Thus, a monad on V-Mat defines a set-monad with lax extension to V-Mat .

For general V, we can also use the above correspondence to recover the first notion of
notion of set-monad with lax extension: they are the monads which are normal.

B.10. Proposition. Using the above correspondence, we get a set-monad with lax ex-
tension in the first sense if and only if the monad T on V-Mat is normal.

Proof. Suppose we have a set-monad T with lax extension TM in the first sense. Then
we have TMf ∼= Tf for all functions f , and we get a monad on V-Mat. Moreover, we
also have T (B(1, f)) ∼= TB(1, T f). In particular, we have T (A(1, 1)) ∼= TA(1, 1). But
A(1, 1) ∼= UA, so we have T (UA) ∼= UTA. Thus T is normal.

Conversely, suppose that we have a monad T on V-Mat which is normal. We would like
to show that T (B(1, f)) ∼= TB(1, T f). Using the factoring as for the above proposition,
we get a cell in one direction. To get the other direction, we factor

TB TB

TB

TB

TB TBTB

TB

TA TB�T (B(1,f)) //

TB TB�T (UB) //

��

TB TB

TA

TB

Tf

��

TA TBTB

TB

TB TB�
UTB

//

��

through

TB TB

TA

TB

Tf

��

TA TBTB

TB

TA TB�TB(1,T f) //

TB TB�
UTB

//
��
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(note that the bottom cell on the left exists by normality of T ). The composites of the
two cells are identities by the universal property of the cartesian cells, and so we have
T (B(1, f)) ∼= TB(1, T f), as required. We also need to check the condition that the
comparison cell be an isomorphism when r is a function. However, this is equivalent to
asking that T (r(1, s)) ∼= Tr(1, T s), and this follows from Theorem 7.24.

For a set-monad with lax extension T , the category of (T,V)-algebras that Tholen,
Clementino and Seal define is exactly the vertical category of the virtual double category
KMod(V-Mat, T ). They also describe (T,V)-modules, and these are the horizontal arrows
of KMod(V-Mat, T ).

In addition to providing a more conceptual explanation of the notion of lax extension,
and a way to compare (T,V)-algebras with other notions of generalized multicategory, our
general framework improves the theory of (T,V)-algebras in two ways. Firstly, it gives a
context in which the horizontal Kleisli construction makes sense; such a construction has
been recognized as desirable (see, for example, [Tho07, p. 7]), but is impossible using only
bicategories since the monads used in this case are not horizontally strong. Secondly, it
provides a general reason for the observation of [Tho07, p. 15] that any set-monad with
lax extension to V-Mat can also be extended to a monad on V-Cat with a lax extension
to V-Prof (we simply apply the 2-functor Mod).

There are, however, other special aspects of the theory of (T,V)-algebras which we
have not discussed. One is that the category of (T,V)-algebras is generally topological
over Set, and has many other similar formal properties. Another is the use of the “pro”
construction found in [CHT04]. This is useful to describe additional topological structures;
for example, monoids in pro-Rel are quasi-uniform spaces. In general, given a virtual
double category X, one can define a new virtual double category pro-X, and go on to
describe “pro-generalized multicategories”. Further discussion of this, however, awaits a
future paper.

B.11. Non-cartesian monads. The earliest work on generalized multicategories was
by Burroni in [Bur71]. His framework is very similar to Leinster’s (see §B.1) except
that he requires nothing at all about the monad T , not even that it preserve pullbacks
(although the category E must still have pullbacks). This level of generality does not
fit into our existing framework, since if T does not preserve pullbacks then it does not
induce a functor on Span(E) of the sort we have defined. However, it does induce an oplax
functor between pseudo double categories.

The simplest way for us to define an oplax functor is to say it is a functor between
pseudo double categories regarded as co-virtual double categories. Pseudo double cat-
egories, oplax functors, and transformations form a 2-category, and we define an oplax
monad on a pseudo double category to be a monad in this 2-category. Since any functor
on a category E with pullbacks induces an oplax functor on Span(E), any monad on such
an E induces an oplax monad on Span(E). Moreover, we can extend our framework to
deal with oplax functors as follows.
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B.12. Definition. If T is an oplax monad on a pseudo double category X, the hori-
zontal Kleisli virtual double category H-Kl(X, T ) of T is defined as follows.

• Its objects, vertical and horizontal arrows, and cells with nullary source are defined
as when T is a lax functor.

• A cell

Y0 Y1

X0

Y0

f ��

X0 XnXn

Y1

g
��

Y0 Y1
�
q

//

X0 X1
�p1 // X1 X2

�p2 // X2 · · ·�p3 // · · · Xn
�pn //

�� α

in H-Kl(X, T ) is a cell

X0
�p1�T (p2�T (···T (pn−1�Tpn)··· )) //

f
��

��

T nXn

Tg◦µn
��

Y0
�
q

// TY1

in X.

• Composition is defined using the multiplication, unit, and oplax structure of T . For
example, the composite of

� //

��
⇓α

� // � //

��
⇓β

� // � //

��
⇓γ

� //

��� //

��
⇓δ

� // � //

��� //

is given by the composite

δ ◦ (α� T (β � Tγ)) ◦ (1� µ) ◦ (1� T (1� µ)) ◦ T�

in X,where T� is a composite of the oplax structure maps of T :

p1�T (p2�T (p3�T (p4�T (p5�Tp6)))) //p1�Tp2�T 2(p3�Tp4�T 2(p5�Tp6))

Note that when T is a strong functor, both definitions of H-Kl(X, T ) make sense;
however, in this case, they are equivalent.

B.13. Definition. If T is an oplax monad on a pseudo double category X, then a
T -monoid is a monoid in H-Kl(X, T ), and we write KMod(X, T ) = Mod(H-Kl(X, T )).

To compare this to Burroni’s definition, note that H-Kl(X, T ) clearly has weak com-
posites, and hence is an oplax double category (see Example 9.7). Burroni works instead
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with what he calls a pseudo-category, and what we would probably call a lax-biased bi-
category : a bicategory-like structure with units and binary composites and noninvertible
comparison maps

p // p� UA
p // UB � p

p� (q � r) // (p� q)� r.

satisfying suitable axioms. In fact, of course, Burroni’s “pseudo-category of T -spans”
extends to a lax-biased double category. Moreover, any lax-biased double category defines
an oplax double category (and hence a virtual double category), if we take the n-ary
composite to be

〈p1 � · · · � pn〉 = p1 � (p2 � · · · (pn−1 � pn) · · · ).

(Burroni points this out as well; see [Bur71, p. 66, example 3]. He refers to virtual double
categories as simply “multicatégories”.) In this way, Burroni’s Sp(T ) is identified with our
H(H-Kl(Span(E), T )), and thus his “T -categories” can be identified with our T -monoids.
However, he must move outside the bicategory (or “pseudo-category”) framework to define
functors of T -categories, whereas they emerge naturally from our setup.

Burroni also constructs the left adjoint FT from Remark 9.16, and proves the func-
toriality of his construction under lax morphisms of monads. Working with his lan-
guage, [Pen09] gives a version of the representability results from §9.

B.14. Cartesian 2-monads. We have described the horizontal arrows A � // B in
Set-Prof as profunctors, i.e. functors Bop × A // Set, but it is well-known that such
functors can equivalently be described by two-sided discrete fibrations, and that this notion
can be internalized to a sufficiently well-behaved 2-category. [Her01] develops a theory of
generalized multicategories in such a context.

Let K be a finitely complete 2-category (see [Str76]). Since its underlying ordinary
category K0 has pullbacks, we can form the virtual equipment Prof(K0). Now, as observed
in [Str74], for any object A ∈ K we have an internal category ΦA in K, defined by
(ΦA)0 = A and (ΦA)1 = A2 (the cotensor with the arrow category 2). Similarly, every
morphism f : A //B defines an internal functor Φf : ΦA //ΦB, and the same for 2-cells;
thus we have a 2-functor K // V(Prof(K0)). Moreover, this 2-functor is locally full and
faithful, i.e. 2-cells f //g are in bijection with internal natural transformations Φf //Φg.

We define an internal profunctor ΦA �H // ΦB to be a discrete fibration from A to
B if the object H ∈ K/(A×B) is internally discrete, i.e. (K/(A×B))(C,H) is a discrete
category for any C ∈ K/(A×B). We define DFib(K) to be the sub-virtual double category
of Prof(K0) determined by

• The internal categories of the form ΦA,

• The internal functors of the form Φf ,
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• The internal profunctors which are discrete fibrations, and

• All cells between these.

Since the pullback of a discrete fibration is a discrete fibration, and UΦA is a discrete
fibration, DFib(K) is a virtual equipment. Our remarks above show that K ' V(DFib(K)).
Under suitable conditions on K, discrete fibrations can be composed, so that DFib(K)
becomes an equipment. (Several authors have tried to isolate these conditions, with
varying degrees of success; in addition to [Her01] see [Str80] and [CJSV94]. Our approach
sidesteps this issue completely.)

Now suppose that F : K // L is a 2-functor that preserves pullbacks and comma ob-
jects. Then it preserves internal categories, profunctors, the Φ construction, and discrete
fibrations, so it induces a normal functor DFib(F ) : DFib(K) // DFib(L). Likewise, any
2-natural transformation F // G induces a transformation DFib(F ) // DFib(G), so we
have a 2-functor DFib from finitely complete 2-categories to vEquip. In particular, any
2-monad T on K whose functor part preserves pullbacks and comma objects induces a
normal monad on DFib(K), so we can talk about DFib(T )-monoids.

This is basically the context of [Her01], except that, like most other authors, he works
only with bicategories. Thus, he assumes that K has the structure required to com-
pose discrete fibrations, and that moreover T preserves this structure and that µ and η
are cartesian transformations. This ensures that DFib(T ) is horizontally strong, so that
H-Kl(DFib(K),DFib(T )) is an equipment. Under these hypotheses, we have:

B.15. Theorem. The 2-category nKMon(DFib(K),DFib(T )) of normalized DFib(T )-
monoids is isomorphic to the 2-category Lax-Bimod(T )-alg defined in [Her01, 4.3 and
4.4].

Our Theorem 9.2 is also a generalization of results of [Her01]. Hermida proves fur-
thermore that under his hypotheses, the left adjoint FT from Remark 9.16 exists, the
adjunction is monadic when restricted to pseudo T -algebras, and the induced monad Ta
on Lax-Bimod(T )-alg is lax-idempotent (see [KL97]). In [CS10b] we will show that an
analogous result is true for any monad T on an equipment X satisfying suitable cocom-
pleteness conditions.

B.16. Monoidal pseudo algebras. In [Web05], Weber gives a definition of gener-
alized operads enriched in monoidal pseudo algebras. More precisely, for any 2-monad
T on a 2-category K with finite products, and any pseudo T -algebra A which is also
a pseudomonoid in a compatible way, he defines a notion of T -operad in A. A general
description of the relationship of this theory to ours would take us too far afield, so we
will remark only briefly on how such a comparison should go.

For any pseudomonoid A in a 2-category K with finite products, there is a virtual
equipment A-Mat defined as follows. Its objects and vertical arrows are the objects and

arrows of K. A horizontal arrow from X � // Y is a morphism X × Y p // A in K, and a
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cell
X0

�p1 //

f

��
��

X1
// Xn−1

�pn // Xn

g

��
Y0

�
q

// Y1

is a 2-cell

Y0 × Y1 A.q
//

(X0 ×X1)× (X1 ×X2)× · · · × (Xn−1 ×Xn)

Y0 × Y1

(f,g)

��

(X0 ×X1)× (X1 ×X2)× · · · × (Xn−1 ×Xn)

A.

(p1⊗···⊗pn)

��
s{

in K, where ⊗ : A×A //A is the multiplication of the pseudomonoid A (if n = 0 we use
its unit instead).

Now, if A is additionally a pseudo T -algebra in a compatible way, we might hope to

be able to extend T to a monad on A-Mat. However, given a horizontal arrow X �p // Y ,

from X × Y p // A we can form the composite

T (X × Y )
Tp // TA

a // A,

but this is not yet a horizontal arrow TX � // TY . If we assume that A admits well-

behaved left (Kan) extensions, then we can define TX �Tp // TY to be the extension of
the above composite along T (X×Y ) //TX×TY . We can then construct H-Kl(A-Mat, T )
and KMod(A-Mat, T ) as usual. Moreover, we can give an equivalent characterization of
H-Kl(A-Mat, T ) which is valid even in the absence of left extensions: a horizontal arrow

X � // Y is a morphism X × TY p // A in K, and a cell

X0
�p1 //

f

��
��

X1
// Xn−1

�pn // Xn

g

��
Y0

�
q

// Y1

is a 2-cell
X0 × T (X1 × . . . T (Xn−1 × TXn) . . . )

π

��
p1⊗...⊗pn

**X0 × T nXn

1×µn−1

��

�� A

X0 × TXn

f×Tg
��

Y0 × TY1

q

99



650 G.S.H. CRUTTWELL AND MICHAEL A. SHULMAN

in K. Thus, we obtain a notion of T -monoid in A for any monoidal pseudo algebra A.
Weber only considers the case of operads, rather than more general multicategories, but
it is easy to verify that his T -operads in A coincide with those T -monoids in A whose
underlying object in K is the terminal object 1.

Actually, there is a good reason that Weber considers only operads: T -monoids

X0
�X // TX0 in this context for which X0 is not discrete, or at least a groupoid, are

not very familiar objects. In familiar cases such as K = Cat, we would obtain familiar
types of A-enriched multicategory only by taking the horizontal arrows X � //Y in A-Mat
to be morphisms X × Y op // A, rather than X × Y // A. To put this in a general
context, however, requires a 2-category K in which “opposites” make sense, such as the
“2-toposes” of [Web07].
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