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MONADS AS EXTENSION SYSTEMS
—NO ITERATION IS NECESSARY

F. MARMOLEJO AND R. J. WOOD

Abstract. We introduce a description of the algebras for a monad in terms of ex-
tension systems, similar to the one for monads given in [Manes, 1976]. We rewrite
distributive laws for monads and wreaths in terms of this description, avoiding the it-
eration of the functors involved. We give a profunctorial explanation of why Manes’
description of monads in terms of extension systems works.

1. Introduction

For adjoint functors S a H, it has been well known since [Eilenberg & Moore, 1965]
that monad structures on S are in bijective correspondence with comonad structures on
H. Moreover, it is shown in [Eilenberg & Moore, 1965] that if (S,H) is a corresponding
(monad, comonad) pair then the category of S-algebras is isomorphic to the category of
H coalgebras via a functor that identifies the forgetful functors. After [Street, 1972] it has
been clear that these results of [Eilenberg & Moore, 1965] are actually part of the formal
theory of monads, the definitions making sense in any 2-category and the theorems being
provable in any suitably complete 2-category. It was acknowledged in [Lack & Street,
2002] that the formal theory of monads is easily adjusted to the greater generality of
bicategories, although it suffices to prove most results in a general 2-category. Where
possible we take the latter point of view in this paper.

The bijective correspondence of the nullary data

η : 1 S

ε :H 1

//

//

for monads and comonads is accomplished by a single application of taking mates with
respect to the adjunction S a H (in any 2-category). For the binary components, it is
useful to consider the correspondence of the data as a three-step mating process:

µ :SS S

ξ :S HS

λ :SH H

δ :H HH

//

//

//

//
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This leads us to contemplate not only monads S = (S, η, µ), and comonads H = (H, ε, δ)
but also 3-tuples (S a H, η, ξ) and (S a H, ε, λ). For each of the latter two, it is a
simple matter to determine three equations so that the correspondences of the data above
extend to the resulting equational structures. We give such equations for an (S a H, η, ξ),
which we then call an extension system, in Section 9. The experienced reader will see
immediately how to prescribe equations making an (S a H, ε, λ) what we would call a
lifting system, although we will say little, explicitly, about these. We will speak of ξ as an
extension operator, which terminology has already been used, for a special case, in [Manes
& Mulry, 2007].

Suppose that (S a H, η, ξ) is an extension system on an object C in a bicategory K.
Then, for every A,B : T→ C in K, we have the composite functions

K(T,C)(B, SA)→ K(T,C)(B,HSA)→ K(T,C)(SB, SA)

where the first factor is given by composition with ξA and the second by taking mates with
respect to S a H. This composite, which we will call (−)S, satisfies equations, which we
will give in Section 2, but no longer requires that S have a right adjoint in K. Accordingly,
we generalize the definition of extension system to include the case where S does not
necessarily have a right adjoint and show in Section 2 that, given η : 1C → S : C → C
in K, there is a bijective correspondence between monads (S, η, µ) and extension systems
(S, η, (−)S).

In [Manes, 1976], Exercise 1.3, p. 32, monads in Cat were presented as extension
systems in which the data η : 1C → S : C → C on a category C required only that S be
initially given as an object function |S| : |C| → |C| and η as a function defined on |C| with
no a priori naturality requirement. We are able to analyse this simplification in Cat by
considering the canonical embedding of Cat in Pro, the bicategory of profunctors. Here
we use the fact that any category C is, in Pro, the Kleisli object for a canonical monad C
on |C|. We discuss this in Section 9. We remark that when considering extension systems
in Cat, we can always regard the situation as taking place in Pro, where every functor
in Cat has a right adjoint, and exploit the simpler form that extension systems take in
the presence of a right adjoint.

We define algebras for an extension system and, interpolating the aforementioned
theorem of [Eilenberg & Moore, 1965], show that if (S, η, µ) and (S, η, (−)S) correspond
then the categories of algebras for each are isomorphic via an arrow that identifies the
forgetful arrows. Thus we are able to think of extension systems and their algebras as no
more than an alternate presentation for monads. However, there is an important over-
arching reason to consider monads in this way. Extension systems allow us to completely
dispense with the iterates SS and SSS of the underlying arrow. No iteration is necessary.
A moment’s reflection on the various terms of terms and terms of terms of terms that
occur in practical applications suggest that this alone justifies the alternate approach. We
give examples in Section 8.

We use the simplicity of the approach to further advance the general theory of monads
with respect to composition of monads via both distributive laws, Sections 4 and 6, and
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wreaths, Sections 5 and 7. Here we are able to make use of alternate formulations of
distributive laws first given in [Marmolejo, Rosebrugh, Wood, 2002]. In anticipation
of further work, we note that extension systems in higher dimensional category theory
provide an even more important simplification of monads. For even in dimension 2, some
of the tamest examples are built on pseudofunctors that are difficult to iterate.

2. Extension systems in a 2-category

In the Introduction we motivated the idea of an extension system in terms of monad-like
data with underlying arrow S : C → C in a 2-category, in the case that S is part of
an adjunction S a H. However, it is the non-elementary definition, that we can state
without the assumption of a right adjoint for S, that is most useful for our work. After
a preliminary Definition and Lemma we take this as our starting point.

We work in a 2-category K. Let

C

D

E

S
==zzzzzzz

U
//

T

""E
EEEEEE

ε ��
(1)

be a 2-cell (in K). For any span of arrows (C,D) : T → C;D, pasting ε at S defines a
family of functions

(−)#
D,C :K(T,D)(D,SC)→ K(T,E)(TD,UC)

whose effect on d in K(T,D)(D,SC) is the pasting composite

T

C

D

E
C ""E

EEEEEE
D //

S

<<yyyyyyy

U
//

T

""E
EEEEEE

ε ��
d ��

This 2-cell, whose full name is d#
D,C , will often be written simply as d#. The family of

functions (−)#
D,C respects whiskering at T, meaning that for any X : S→ T,

d#X = (dX)# (2)

and respects blistering at D, meaning that for any b :B → D : T→ D,

(db)# = d# · Tb (3)

2.1. Definition. A pasting operator

(−)# :K(T,D)(1, S)→ K(T,E)(T, U)

is a family of functions

(−)#
D,C :K(T,D)(D,SC)→ K(T,E)(TD,UC)

which respects whiskering and blistering.
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2.2. Lemma. For arrows S, T, U configured as is in (1), pasting operators

K(T,D)(1, S)→ K(T,E)(T, U)

are in bijective correspondence with 2-cells TS → U .

Proof. Given a pasting operator (−)# :K(T,D)(1, S)→ K(T,E)(T, U), we have

(1S)#
S,1C

:TS → U.

Moreover, it is easy to see that any d :D → SC arises by whiskering 1S at C by C and
blistering the result at SC by d. Thus any (−)# :K(T,D)(1, S) → K(T,E)(T, U) is
completely determined by (1S)#

S,1C
and the latter can be any 2-cell TS → U . It follows

that the assignment (−)# 7→ (1S)#
S,1C

is a bijection.

2.3. Definition. Let C be an object in a 2-category K. An extension system on C
consists of an arrow S : C→ C, a 2-cell η : 1C → S, and a pasting operator

(−)S :K(T,C)(1, S)→ K(T,C)(S, S)

that we call the S-extension operator. This data is subject to the following equations, for
every C,B,A : T→ C, f :B → SA, and g :C → SB,

ηS = 1S, (4)

B
ηB //

f !!C
CC

CC
CC

C SB

fS

��
SA,

(5)

and

SC
gS
//

(fSg)S ""F
FFFFFFF SB

fS

��
SA.

(6)

2.4. Theorem. For η : 1C → S : C → C in a 2-category K, there is a bijective corre-
spondence between extension systems (S, η, (−)S) and monads (S, η, µ).

Proof. By Lemma 2.2 we have a bijection between pasting operators (−)S and 2-cells
µ :SS → S. Let (S, η, µ) be a monad. The correspondence of Lemma 2.2 provides
fS = µA · Sf :SB → SA. Now (4) is one of the unit monad axioms, while (5) is

fS · ηB = µA · Sf · ηB = µA · ηSA · f = f

using the other unit monad axiom, and (6) is

fS · gS = µA · Sf · µB · Sg = µA · µSA · SSf · Sg = µA · SµA · SSf · Sg
= µA · S(µA · Sf · g) = (fS · g)S
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using monad associativity; so that (S, η, (−)S) is an extension system.
On the other hand, if (S, η, (−)S) is an extension system, the correspondence of

Lemma 2.2 provides µ = 1S
S. The first monad equation is µ · ηS = 1S

S · ηS = 1S
by (5). The second is µ · Sη = 1S

S · Sη = ηS = 1S, by (3) and (4). Monad associativity is
given by

µ · Sµ = 1S
S · Sµ = µS = (1S

S)S = 1S
S · 1S2

S = 1S
S · 1SSS = µ · µS,

using (2), (3), and (6); so that (S, η, µ) is a monad.

From now on we do not need to distinguish between monads and extension systems.
If (S, η, (−)S) and (S, η, µ) correspond, we write (S, η, (−)S) = S = (S, η, µ) and use freely
the equations relating both. Note too that, for b :B → D : T→ C, we have

Sb = (ηD · b)S, (7)

which we leave as a simple exercise.

3. Algebras for extension systems

Notwithstanding the last paragraph, in the spirit of [Eilenberg & Moore, 1965], we give a
definition of algebras for an extension system.

3.1. Definition. For (S, η, (−)S) an extension system on C and X an object, both in
K, an (S, η, (−)S)-algebra with domain X is a pair B = (B, (−)B), where B : X→ C and

(−)B :K(T,C)(1, B)→ K(T,C)(S,B)

is a pasting operator that we call the B-extension operator, subject to the following equa-
tions, for every h :Y → BD and k :Z → SY : T→ C,

Y
ηY //

h !!D
DD

DD
DD

D SY

hB

��
BD,

(8)

SZ
kS
//

(hB·k)B ##F
FFFFFFF SY

hB

��
BD.

(9)

A homomorphism p : (B, (−)B) → (A, (−)A) of (S, η, (−)S)-algebras with domain X is a
2-cell p :B → A subject to the following equation, for every h :Y → BD,

SY
hB
//

(pD·h)A ##F
FFFFFFF BD

pD

��
AD.

(10)
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It is easy to see that (S, η, (−)S)-algebras with domain X and their homomorphisms
form a category K(X, (C, (S, η, (−)S)) equipped with a forgetful functor to K(X,C). We
recall the (S, η, µ)-algebras with domain X as described in [Street, 1972] or [Marmolejo,
1997] and write K(X, (C, (S, η, µ))) for these.

3.2. Theorem. The categories K(X, (C, (S, η, (−)S))) and K(X, (C, (S, η, µ))) are iso-
morphic via a functor that identifies the forgetful functors.

Proof. By Lemma 2.2, pasting operators (−)B :K(T,C)(1, B) → K(T,C)(S,B) are in
bijective correspondence with 2-cells β :SB → B. It suffices to show that the equations
for algebras and their homomorphisms in either sense correspond to those in the other
sense. Let (B, (−)B) be an (S, η, (−)S)-algebra and consider (B, 1B

B), where 1B
B arises

from (−)B as in Lemma 2.2. We have 1B
B · ηB = 1B by (8), and

1B
B · S 1B

B = 1B
B · (ηB · 1BB)S = (1B

B · ηB · 1BB)B = (1B
B)B

= 1B
B · (1SB)S = 1B

B · 1SSB = 1B
B · µB,

by (7), (9), (8), (9) and (2). If p : (B, (−)B)→ (A, (−)A) is a homomorphism of (S, η, (−)S)-
algebras then we have

1A
A · Sp = 1A

A · (ηA · p)S = (1A
A · ηA · p)A = pA = p · 1BB,

by (7), (9), (8), and (10), showing that we also have p : (B, (1B)B)→ (A, (1A)A), a homo-
morphism of (S, η, µ)-algebras.

On the other hand, if (B, β) is an (S, η, µ)-algebra then, for h :Y → BD : Y → C,

define hB = SY Sh // SBD
βD // BD. Now (8) is hB ·ηY = βD ·Sh·ηY = βD ·ηBD ·h =

h, and (9) is

(hB · k)B = βD · SβD · S2h · Sk = βD · µBD · S2h · Sk
= βD · Sh · µY · Sk = hB · kS.

If p : (B, β)→ (A,α) is an (S, η, µ)-homomorphism, then (p ·h)A = α ·Sp ·Sh = p ·β ·Sh =
p · hB establishes (10) showing that we also have an (S, η, (−)S)-homomorphism.

Thus we do not need to distinguish between (S, η, (−)S)-algebras and (S, η, µ)-algebras
and speak simply of S-algebras, freely using all the equations now at hand.

4. The 2-category Mnd(K)

Let K be a 2-category. Recall from [Street, 1972] that an object of the 2-category Mnd(K)
consists of a pair (C,S) where C is an object of K and S is a monad on C, that a 1-cell
from (D,T) to (C,S) consists of a 1-cell F : D→ C and a 2-cell λ :SF → FT in K such
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that the diagrams

F
η
S
F

}}{{
{{

{{
{{ Fη

T

!!C
CC

CC
CC

C

SF
λ

// FT

S2F
Sλ //

µ
S
F

��

SFT
λT // FT 2

Fµ
T

��
SF

λ
// FT

commute, and that a 2-cell (F, λ)→ (F ′, λ′) : (D,T)→ (C,S) consists of a 2-cell ϕ :F →
F ′ in K such that the diagram

SF
λ //

Sϕ
��

FT

ϕT
��

SF ′
λ′
// F ′T

commutes.
In the spirit of Proposition 3.4 in [Marmolejo, Rosebrugh, Wood, 2002] (where it is

done for distributive laws), we have the following lemma.

4.1. Lemma. Given F : D→ C, there is a bijection between 2-cells λ :SF → FT making
(F, λ) : (D,T) → (C, S) a 1-cell of Mnd(K) and 2-cells α :SFT → FT making (FT, α)
an S-algebra satisfying the equation

SFT 2 αT //

SFµ
T

��

FT 2

Fµ
T

��
SFT α

// FT.

Moreover, if under the given bijection λ and α correspond, given F : D→ C, and λ′ and α′

correspond, given F ′ : D→ C, then a 2-cell ϕ :F → F ′ gives a 2-cell ϕ : (F, λ)→ (F ′, λ′)
of Mnd(K) if and only if ϕT :FT → F ′T is an S-homomorphism.

Proof. If we start with α, then λ = α · SFη
T
. In the opposite direction, given λ, define

α = Fµ
T
· λT .

Denote the 2-category implicitly defined by the above lemma with 1-cells (F, α) :
(D,T) → (C,S) by Mnd′(K). Observe that the composition of 1-cells (G, β) : (E,U) →
(D,T) and (F, α) : (D,T)→ (C,S) is given by FG together with

SFGU
SFη

T
GU
// SFTGU

αGU // FTGU
Fβ // FGU.

4.2. Corollary. The correspondences above define an identity-on-objects isomorphism
of 2-categories Mnd(K)→ Mnd′(K), so that Mnd′(K) can be regarded as Mnd(K).
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4.3. Theorem. Let T = (T, η
T
, (−)T) be a monad on D, and let S = (S, η

S
, (−)S) be

a monad on C. A 1-cell in Mnd(K) from (D,T) to (C,S) can equivalently be defined as
follows: (F, (−)λ) : (D,T) → (C,S) where F : D → C, and (FT, (−)λ) is an S-algebra,
such that for every u :U → TV : X→ D and h :X → FTU : X→ C, the diagram

SX
hλ //

(FuT·h)λ ##H
HH

HH
HH

HH
FTU

FuT

��
FTV

(11)

commutes.
Furthermore, given (F, (−)λ), (F ′, (−)λ

′
) : (D,T)→ (C,S), then ϕ :F → F ′ is a 2-cell

in Mnd(K) if and only if ϕT : (FT, (−)λ)→ (F ′T, (−)λ
′
) is a morphism of S-algebras.

Proof. According to Theorem 3.2 we have that pasting operators (−)λ :K(X,C)(1, FT )
→ K(X,C)(S, FT ) that make (FT, (−)λ) an S-algebra are in bijective correspondence
with 2-cells α : SFT → FT that make (FT, α) an S-algebra. So we must show that the
extra equation given in the statement of the theorem is satisfied if and only if the extra
equation given in Lemma 4.1 is satisfied.

Given (F, (−)λ) as in the statement of the theorem, we have that

α := (1FT )λ :SFT → FT.

The extra equation is Fµ
T
·αT = F (1T

T) ·(1FT 2)λ = F (1T
T)λ = (1FT

λ ·η
S
FT ·F (1T

T))λ =
1FT

λ · (η
S
FT ·F (1T

T))S = α ·SFµ
T
. Thus (F, α) : (D,T)→ (C,S) is a 1-cell in Mnd′(K).

In the opposite direction, assume that (F, α) : (D,T)→ (C,S) is a 1-cell in Mnd′(K).
Then for h :X → FTU : X→ C we have that

hλ := SX SFTU FTU.
Sh // αU // (12)

For u :U → TV , the commutative diagram

SX
Sh //

S(F (uT)·h)

%%

SFTU
αU //

SFTu
��

FTU

FTu
��

SFT 2V αTV
//

SFµTV

��

FT 2V

Fµ
T
V

��
SFTV

αV
// FTV

gives us (11).

4.4. Remark. Observe that in the previous theorem we can obtain λ :ST → TS directly
from the pasting operator (−)λ as (FηT )λ to obtain a 1-cell (F, λ) : (D,T) → (C,S) as
described at the beginning of this section.
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5. The 2-category EM(K)

Recall from [Lack & Street, 2002] that the 2-category EM(K) has the same objects and 1-
cells as Mnd(K), but the 2-cells (F, λ)→ (F ′, λ′) : (D,T)→ (C,S) are 2-cells ρ :F → F ′T
in K such that the diagram

SF
λ //

Sρ

��

FT
ρT // F ′T 2

F ′µ
T

��
SF ′T

λ′T
// F ′T 2

F ′µ
T

// F ′T

commutes.

5.1. Lemma. If under the bijection given in Lemma 4.1, λ and α correspond, given
F : D → C, and λ′ and α′ correspond, given F ′ : D → C, then a 2-cell ρ :F → F ′T is a
2-cell ρ : (F, λ)→ (F ′, λ′) of EM(K) if and only if the diagram

SFT
α //

SρT

��

FT
ρT // F ′T 2

F ′µ
T

��
SF ′T 2

α′T
// F ′T 2

F ′µ
T

// F ′T

commutes.

We present the following description of the 2-cells in EM(K).

5.2. Theorem. Given 1-cells (F, (−)λ), (F ′, (−)λ
′
) : (D,T)→ (C,S) in EM(K), a 2-cell

(F, (−)λ)→ (F, (−)λ
′
) in EM(K) can be defined as an S-algebra morphism β : (FT, (−)λ)→

(F ′T, (−)λ
′
) such that for every u :U → TV : X→ D, the diagram

FTU
βU //

FuT

��

F ′TU

F ′uT

��
FTV

βV
// F ′TV

commutes.

Proof. Assume we have β :FT → F ′T as in the statement of the theorem. Define

ρ = ( F FT F ′T
Fη

T // β // ). (13)
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The commutative diagram

SFT

SFη
T
T

��

1SFT %%KKKKKKKKKK
α // FT

1FT

��7
77

77
77

77
77

77
77

7

Fη
T
T
// FT 2

βT //

Fµ
T

��

FT 2

F ′µ
T

��

SFT

α
%%JJ

JJJ
JJJ

JJ

SFT 2

SFµ
T

99ssssssssss

αT
//

SβT %%KKKKKKKKK FT 2
Fµ

T

//

βT $$J
JJJJJJJJ FT

β

##H
HHHHHHHH

SF ′T 2
α′T

// F ′T 2
F ′µ

T

// F ′T

gives us the equation in Lemma 5.1.
In the opposite direction, assume that ρ : (F, λ) → (F ′, λ) : (D,T) → (C,S) satisfies

the equation in Lemma 5.1. Define

β := (FT F ′T 2 F ′T ).
ρT //

F ′µ
T // (14)

Then the commutative diagram

SFT
α //

SρT

��

FT
ρT // F ′T 2

F ′µ
T

��
SF ′T 2 α′T //

SF ′µ
T %%JJJJJJJJJ F ′T 2

F ′µ
T // F ′T

SF ′T
α′

::uuuuuuuuu

tells us that β : (FT, α)→ (F ′T, α′) is a morphism of S-algebras, and for u :U → TV the
commutative diagram

FTU
ρTU //

FTu ��

F ′T 2U
F ′µ

T
U
//

F ′T 2u ��

F ′TU
F ′Tu��

FT 2V
ρT 2V //

Fµ
T
V
��

F ′T 3V
F ′µ

T
TV
//

F ′Tµ
T
V
��

F ′T 2V
F ′µ

T
V

��
FTV

ρTV
// F ′T 2V

F ′µ
T
V
// F ′TV

tells us that βV · FuT = F ′uT · βU .

6. Distributive laws

We recall the characterization of distributive laws given in Proposition 3.5 of [Marmolejo,
Rosebrugh, Wood, 2002].
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6.1. Proposition. Given monads T and S on C in a 2-category K, there is a bijec-
tive correspondence between distributive laws λ :ST → TS of S over T and S-algebras
α :STS → TS that satisfy the commutativity of the diagrams

STS2
STµ

S //

αS
��

STS

α

��
TS2

Tµ
S

// TS,

S2
Sη

T
S
//

µ
S

��

STS

α

��
S

η
T
S
// TS,

ST 2S
STη

S
TS
//

Sµ
T
S

��

STSTS
αTS // TSTS

Tα // T 2S

µ
T
S

��
STS α

// TS,

given by λ 7→ (STS λS // TS2
Tµ

S // TS) with inverse α 7→ (ST
STη

S // STS α // TS).

6.2. Theorem. Let T = (T, η
T
, (−)T) and S = (S, η

S
, (−)S) be monads on C. A dis-

tributive law of S over T can equivalently be given as follows. An S-algebra (TS, (−)λ),
such that

(Tη
S
· η

T
)λ = η

T
S, (15)

and the commutativity of the diagram:

SX
hλ //

((rλ)T·h)λ ##G
GG

GG
GG

GG
TSU

(rλ)T

��
TSV,

(16)

for every h :X → TSU and r :U → TSV .

Proof. Assume (TS, (−)λ) given with the stated properties. We show first that (T, (−)λ) :
(C,S)→ (C,S) is a 1-cell in Mnd(K). Indeed, for u :U → SV we have

T (uS) = (ηTSV · uS)T = ((TηSV · ηTV )λ · uS)T = (((TηSV · ηTV )λ · u)λ)T,

using (7), (15) and (9). Now a direct use of (16) produces (11).
The corresponding 2-cell α = 1TS

λ is, according to Theorem 4.3, an S-algebra and it
satisfies the first of the equations in Proposition 6.1. The second one is given by

α · Sη
T
S = 1TS

λ · (η
S
TS · η

T
S)S = (1TS

λ · η
S
TS · η

T
S)λ = (η

T
S)λ

= ((Tη
S
· η

T
)λ)λ = (Tη

S
· η

T
)λ · 1SS = η

T
S · µ

S
,

whereas the third is

α · Sµ
T
S = 1TS

λ · (η
S
TS · µ

T
S)S = (1TS

λ · η
S
TS · µ

T
S)λ = (µ

T
S)λ = (1TS

T)λ

= ((1TS
λ · η

S
TS)T)λ = (((1TS

λ)T · η
T
STS · η

S
TS)T)λ

= ((1TS
λ)T · (η

T
STS · η

S
TS)T)λ = ((1TS

λ)T · Tη
S
TS)λ

= (((1TS
λ)T)λ · η

S
TSTS · Tη

S
TS)λ = ((1TS

λ)T)λ · (η
S
TSTS · Tη

S
TS)S

= ((1TS
λ)T)λ · STη

S
TS = (1FT

λ)T · 1TSTSλ · STηSTS = αT · αTS · STη
S
TS

= (1TS
T · η

T
TS · α)T · αTS · STη

S
TS = 1TS

T · (η
T
TS · α)T · αTS · STη

S
TS

= µ
T
S · Tα · αTS · STη

S
TS.
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In the opposite direction, assume we have an S-algebra α :STS → TS that satisfies
the conditions of Proposition 6.1. Its corresponding pasting operator in h :X → TSU is
given by

SX
Sh // STSU

αU // TSU,

and produces a 1-cell (T, (−)λ) : (C,S)→ (C,S). Then

(Tη
S
· η

T
)λ = α · STη

S
· Sη

T
= α · Sη

T
S · Sη

S
= η

T
S · µ

S
· Sη

S
= η

T
S,

and for h :X → TSU and r :U → TSV , the commutative diagram

SX
Sh //

S((rλ)T·h)

""

STSU

STSr

��

αU // TSU

TSr

��

STSTSV
αTSV

**UUUUUUUUUUU

STSTSV
STη

S
STSV

//

STαV ��

1STSTSV //

STS2TSV
STSαV

��

αSTSV
//

STµ
S
TSV 44hhhhhhhhhhh

TS2TSV
TSαV

��

Tµ
S
TSV

// TSTSV
TαV ��

ST 2SV STη
S
TSV

//

Sµ
T
SV

��

STSTSV
αTSV

// TSTSV
TαV

// T 2SV
µ
T
SV
��

STSV
αV

// TSV,

tells us that (rλ)T · hλ = ((rλ)T · h)λ.

The proofs of the next two propositions are left to the reader.

6.3. Proposition. Given a distributive law λ of S over T, the composite monad is
given by T ◦λ S = (TS, Tη

S
· η

T
, ((−)λ)T).

There is also a result closer to “compatible structures”:

6.4. Proposition. Let S and T be monads on C. There is a bijection between distribu-
tive laws of S over T and monad structures (TS, Tη

S
·ηT , (−)(TS)) on TS such that for every

k :Y → SX, T (kS) = (η
T
SX · k)(TS), and for every m :Y → TSX and h :X → TSU ,

h(TS) = (h(TS) · η
T
SX)T, and the diagram

TY
mT
//

(h(TS)·m)T ##H
HH

HH
HH

HH
TSX

h(TS)

��
TSU

commutes.
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7. Wreaths

Recall from [Lack & Street, 2002] that given a monad S = (S, η, µ) on an object C of K
and a 1-cell T : C→ C, a wreath consists of 2-cells

σ : 1C → TS, λ :ST → TS, ν :T 2 → TS,

that satisfy the commutativity of the following diagrams:

T
ηT

}}||
||

||
|| Tη

!!B
BB

BB
BB

B

ST
λ

// TS

S2T
Sλ //

µT

��

STS
λS // TS2

Tµ

��
ST

λ
// TS

S
σS //

Sσ
��

TS2

Tµ

��
STS

λS
// TS2

Tµ
// TS

ST 2 λT //

Sν
��

TST
Tλ // T 2S

νS // TS2

Tµ

��
STS

λS
// TS2

Tµ
// TS

T
Tσ //

Tη

��1
11

11
11

11
11

11
11

T 2S

νS
��

TST
Tλoo T

σToo

Tη

||xxxxxxxxxxxxxxxxxxxxxx

TS2

Tµ

��
TS

T 3 Tν //

νT
��

T 2S
νS // TS2

Tµ

��

TST

Tλ
��

T 2S νS
// TS2

Tµ
// TS

7.1. Proposition. Let S be a monad on C and T : C → C be a 1-cell in K. Fix a
2-cell σ : 1C → TS. There is a bijective correspondence between pairs of 2-cells (λ :ST →
TS, ν :T 2 → TS) making (σ, λ, ν) a wreath, and pairs (α :STS → TS, γ :T 2S → TS)
such that (TS, α) is an S-algebra and the following diagrams commute:

STS2 αS //

STµ

��

TS2

Tµ
��

STS α
// TS,

S
σS //

Sσ

��

TS2

Tµ
��

STS α
// TS,

T 2S2
γS //

T 2µ
��

TS2

Tµ
��

T 2S γ
// TS,

T
Tσ //

Tη !!B
BB

BB
BB

B T 2S

γ

��
TS,

TSTS
Tα // T 2S

γ

��
TS

σTS

OO

1TS
// TS,

STSTS
αTS //

STα
��

TSTS
Tα // T 2S

γ

��
ST 2S Sγ

// STS α
// TS,

T 2STS
γTS //

T 2α
��

TSTS
Tα // T 2S

γ

��
T 3S Tγ

// T 2S γ
// TS
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7.2. Theorem. Given a monad S = (S, η, (−)S) on C in K and a 1-cell T : C → C, a
wreath can be equivalently defined as follows:

1. A 2-cell σ : 1C → TS in K.

2. A 1-cell (T, (−)s) : (C,S)→ (C,S) in Mnd(K).

3. A pasting operator (−)t :K(X,C)(1, TS)→ K(X,C)(T, TS).

4. For every A, (σA)t = TηA, and for every f :B → TSA, h :B → SA the diagrams

B
σB //

h
��

TSB

ThS

��
SA

(σA)s
// TSA

B
σB //

f ""E
EE

EE
EE

EE TSB

(fs)t

��
TSA

(17)

commute.

5. For every g :C → TSB, h :B → SA, k :C → B and f :B → TSA the diagrams

TC
gt //

(ThS·g)t ##G
GG

GG
GG

GG
TSB

ThS

��
TSA

(18)

commute.

6. For every f :B → TSA and g :C → TSB, the diagrams

SC
gs //

((fs)tg)s ##G
GG

GG
GG

GG
TSB

(fs)t

��
TSA

TC
gt //

((fs)tg)t ##G
GG

GG
GG

GG
TSB

(fs)t

��
TSA

(19)

commute.

Proof. We know that 2-cells α :STS → TS correspond to the pasting operators (−)s,
and that 2-cells γ :T 2S → TS correspond to the pasting operators (−)t according to
Lemma 2.2.

Assume that we have the conditions of the statement of the theorem. Then α = 1TS
s

and γ = 1TS
t. We check that the conditions of Proposition 7.1 are satisfied. The fact that

(T, (−)s) : (C,S) → (C,S) is a 1-cell in Mnd(K) means, according to Theorem 4.3, that
(TS, α) is an S-algebra and that the first of the diagrams in Proposition 7.1 commutes.
The second is Tµ · σS = T (1S

S) · σS = σs = (1TS
s · ηTS · σ)s = 1TS

s · (ηTS · σ)S = α ·Sσ,
using (17). The third is Tµ ·γS = T (1S

S) ·1TS2
t = (Tµ)t = 1TS

t ·T 2µ = γ ·T 2µ, using (18)
and the fact that (−)t respects blistering. The fourth is γ ·Tσ = 1TS

t ·Tσ = σt = Tη using
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the fact that (−)t respects blistering. The fifth is γ · Tα · σTS = 1TS
t · T (1TS

s) · σTS =
(1TS

s)t ·σTS = 1TS, using (17). The sixth is γ ·Tα ·αTS = (1TS
s)t ·1TSTSs = ((1TS

s)t)s =
(αt)s = (γ · Tα)s = (γs · ηT 2S · Tα)s = γs · (ηT 2S · Tα)S = α · Sγ · STα. And the last is
γ · Tα · γTS = αt · 1TSTSt = (1TS

s)t · 1TSTSt = ((1TS
s)t)t = (αt)t = (γ · Tα)t = γt · T 2α =

γ · Tγ · T 2α.
In the opposite direction assume we have σ : 1C → TS, α :STS → TS and γ :T 2S →

TS that satisfy the conditions of Proposition 7.1. Then for f :B → TSA we have that
f s = αA · Sf , and f t = γA · Tf , that is, (−)s is the pasting operator corresponding
to α and (−)t is the pasting operator corresponding to γ. The fact that (TS, α) is an
S-algebra together with the first commutative diagram of Proposition 7.1 means that
(T, (−)s) : (C,S) → (C,S) is a 1-cell in Mnd(K). Now, (σA)t = γA · TσA = TηA, using
the triangle from Proposition 7.1. Furthermore

T (hS) · σB = TµA · TSh · σB = TµA · σSA · h = αA · SσA · h = (σA)s · h,

using the second commutative diagram from Proposition 7.1, and

(f s)t · σB = γA · TαA · TSf · σB = γA · TαA · σTSA · f = f,

using the fifth commutative diagram of Proposition 7.1 give us (17). (18) is given by

T (hS) · gt = TµA · TSh · γB · Tg = TµA · γSA · T 2Sh · Tg
= γA · T 2µA · T 2Sh · Tg = (T (hS) · g)t

using the third commutative diagram from Proposition 7.1. Finally, the commutative
diagrams

SC

S((fs)t·g)

��

Sg // STSB
αB //

STSf
��

TSB

TSf
��

STSTSA
αTSA //

STαA
��

TSTSA

TαA
��

ST 2SA

SγA

��

T 2SA

γA
��

STSA
αA

// TSA,

TC

T ((fs)t·g)

��

Tg // T 2SB
γB //

T 2Sf
��

TSB

TSf

��
T 2STSA

γTSA //

T 2αA
��

TSTSA

TαA
��

T 3SA

TγA

��

T 2SA

γA
��

T 2SA γA
// TSA,

give us (19).

8. Monads, algebras, distributive laws and wreaths in Cat

What we have been calling extension systems were first described by E. Manes as an
alternative definition for monads on categories in [Manes, 1976]. Manes recognized, in
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giving a monad S on a category C as an extension system, that a mere function |S| : |C| →
|C| and a mere C-arrow valued function η, defined on |C| with no a priori naturality
requirement, sufficed in the presence of an extension operator. Thus fewer axioms are
required for extension systems on categories but we do have to show the naturality of
the transformations that we introduce. However, formally it is very similar to what we
have done so far in a general 2-category, and most of the proofs are similar to the proofs
already given. Thus, in this section we present the precise statements for this important
particular case and give the extra arguments necessary for the naturality of the various
transformations. In the next section, we analyze the extra structure on Cat that enables
the description of extension systems as functions, in terms of profunctors.

First we recall Exercise 1.3.12, page 32, of [Manes, 1976]:

8.1. Theorem. A monad S on a category C can be defined as follows: A function
|S| : |C| → |C|, for every A ∈ C, an arrow ηA :A → SA, and for every morphism
f :B → SA in C, an S-extension fS :SB → SA subject to the axioms: for every A in C,

(ηA)S = 1SA,

for every f :B → SA in C and g :C → SB, the diagrams

B
ηB //

f !!C
CC

CC
CC

C SB

fS

��
SA,

SC
gS
//

(fS·g)S ""E
EE

EE
EE

E SB

fS

��
SA

commute.

Recall then that for ` :B → A, we can define S on ` by the formula S` = (ηA · `)S,
and that this makes S : C → C a functor and η : 1C → S a natural transformation. And
the definition of µA is given by µA = 1SA

S.

8.2. Theorem. Given a monad S = (S, η, (−)S) on the category C, an S-algebra can be
defined as follows: B = (B, (−)B), where B is an object of C, and (−)B assigns to every
arrow of the form h :X → B in C, an extension hB :SX → B subject to the commutativity
of the following diagrams (with h :X → B and y :Y → SX):

X
ηX //

h !!C
CC

CC
CC

C SX

hB

��
B,

SY
yS
//

(hBy)B ""F
FF

FF
FF

F SX

hB

��
B.

A morphism of S-algebras (B, (−)B) to (A, (−)A) can be defined as an arrow ` :B → A in
C subject to the commutativity of the diagram (where h :X → B):

SX
hB
//

(`·h)A ""D
DD

DD
DD

D B

`
��
A.
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Proof. Given (B, (−)B) define the action by 1B
B :SB → B. On the other hand, given

an S-algebra (B, β) and h :X → B in C, define hB = β · Sh.

8.3. Theorem. Let S = (S, η
S
, (−)S) and T = (T, η

T
, (−)T) be monads on the category

C. A distributive law of S over T can be defined as follows. For every A in C an S-
algebra (TSA, (−)λ) such that for every A in C, (Tη

S
A · η

T
A)λ = η

T
SA, and for every

f :B → TSA, (fλ)T : (TSB, (−)λ)→ (TSA, (−)λ) is a morphism of S-algebras.

Proof. Given the conditions of the theorem define αA = 1TSA
λ. We show that α :STS →

TS is natural. So take ` :B → A. Observe that

TS` = (η
T
SA · S`)T = ((Tη

S
A · η

T
A)λ · (η

S
A · `)S)T

= ((Tη
S
A · η

T
A)λ · η

S
A · `)λ)T = ((Tη

S
A · η

T
A · `)λ)T.

Thus

TS` · αB = ((Tη
S
A · η

T
A · `)λ)T · 1TSBλ = (((Tη

S
A · η

T
A · `)λ)T)λ = (TS`)λ

= (1TSA
λ · η

S
TSA · TS`)λ = 1TSA

λ · (η
S
TSA · TS`)S = αA · STS`,

and α is natural.

8.4. Theorem. Given a monad S = (S, η, (−)S) on a category C and an endofunctor
T : C→ C, a wreath can be equivalently given as follows:

1. For every A in C, an arrow σA :A→ TSA.

2. For every A,B in C, functions

C(SB, TSA) C(B, TSA)
(−)soo (−)t // C(TB, TSA)

3. For every A, (TSA, (−)s) is an S-algebra and T (hS) : (TSB, (−)s) → (TSA, (−)s)
is a morphism of S-algebras for every h :B → SA. That is, the diagrams

B
ηB //

f ""E
EEEEEEE SB

fs

��
TSA

SC
kS
//

(fsk)s ##G
GG

GG
GG

GG
SB

fs

��
TSA

SC
gs //

(T (hS)g)s ##G
GG

GG
GG

GG
TSB

T (hS)
��

TSA

(20)

commute for every f :B → TSA, g :C → TSB, and k :C → SB.

4. For every A we have that (σA)t = TηA, and for every f :B → TSA, h :B → SA
the diagrams

B
σB //

h
��

TSB

T (hS)
��

SA
(σA)s

// TSA

B
σB //

f ""E
EE

EE
EE

EE TSB

(fs)t

��
TSA

(21)

commute.
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5. For every g :C → TSB, h :B → SA, k :C → B and f :B → TSA, the diagrams

TC
gt //

(T (hS)g)t ##G
GG

GG
GG

GG
TSB

T (hS)
��

TSA

TC
Tk //

(f ·k)t ##G
GG

GG
GG

GG
TB

f t

��
TSA

(22)

commute.

6. For every f :B → TSA and g :C → TSB, the diagrams

SC
gs //

((fs)tg)s ##G
GG

GG
GG

GG
TSB

(fs)t

��
TSA

TC
gt //

((fs)tg)t ##G
GG

GG
GG

GG
TSB

(fs)t

��
TSA

(23)

commute.

Proof. For A ∈ C, take σA as given and define αA := 1TSA
s and γA := 1TSA

t. We show
first that σ is natural. Take ` :B → A in A, then

TS` · σB = T ((ηA · `)S) · σB = (σA)s · ηA · ` = σA · `,

using (21) and (20). For the naturality of α we have:

TS` · αB = T ((η
S
A · `)S) · 1TSAs = (TS`)s = (1TSA

s · η
S
TSA · TS`)s

= 1TSA
s · (η

S
TSA · TS`)S = αA · STS`,

using the equations of (20). And for the naturality of γ we have

TS` · γB = T ((η
S
A · `)S) · 1TSBt = (TS`)t = γA · T 2S`.

8.5. Example. Beck’s original example [Beck, 1969] has S the free monoid monad and
T the free abelian group monad. Thus SA is the underlying set of the free monoid in A,

SA = {[a1, . . . , an]|n ∈ N, aj ∈ A, j = 1, . . . , n},

η
S

:A→ SA is such that
η
S
(a) = [a],

and for h :A→ SB, we have that

hS([a1, . . . , an]) = h(a1) ∼ h(a2) ∼ · · · ∼ h(an),
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where ∼ denotes concatenation ([b1, . . . , bk] ∼ [c1, . . . , c`] = [b1, . . . , bk, c1, . . . , c`]). On
the other hand, TA is the underlying set of the free group with A generators. Thus the
elements of TA are formal sums ∑

a∈A

na · a

with na ∈ Z for every a ∈ A, and only a finite number of the na are non-zero. η
T
A :A→

TA is such that
η
T
A(c) = 1 · c,

and for k :A→ TB, kT :TA→ TB is

kT

(∑
a∈A

na · a

)
=
∑
a∈A

nak(a),

where this last sum is taken in the abelian group TB.
Now, TSB has a monoid structure given by(∑

w∈SB

mw · w

)
∗

(∑
w∈SB

nw · w

)
=
∑
w∈SB

( ∑
u∼v=w

munu

)
· w.

Thus, given f :A → TSB, we define fλ the unique monoid morphism fλ :SA → TSB
such that

A
η
S
A
//

f ""E
EE

EE
EE

EE SA

fλ

��
TSB

commutes. That is, fλ([a1, . . . , an]) = f(a1) ∗ f(a2) ∗ · · · ∗ f(an). Let g :C → TSB and

take [c1, . . . , cn] ∈ SC. Assume that g(ci) =
∑

w∈SB k
(i)
w · w for i = 1, . . . , n. Then

((fλ)Tg)λ([c1, . . . , cn]) =

(∑
w∈SB

k(1)
w fλ(w)

)
∗ · · · ∗

(∑
w∈SB

k(n)
w fλ(w)

)
.

On the other hand

(fλ)T(gλ([c1, . . . , cn])) =
∑
w∈SB

( ∑
w1∼···∼wn=w

k(1)
w1
· · · k(n)

wn

)
fλ(w).

It takes just a moment to realize that to see that these are the same, it suffices to show
that the operation ∗ distributes over the addition in TSA, but this is easy.

Then the calculation

(η
T
SA · η

S
A)λ([a1, . . . , an]) = η

T
SA · η

S
A(a1) ∗ · · · ∗ ηTSA · ηSA(an)

= (1 · [a1]) ∗ · · · ∗ (1 · [an])

= 1 · [a1, . . . , an]

= η
T
SA([a1, . . . , an])
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shows that we have a distributive law.
We have that λA = (Tη

S
A)λ :STA→ TSA,

λA

([∑
a∈A

n(1)
a · a, . . . ,

∑
a∈A

n(r)
a · a

])
= Tη

S
A

(∑
a∈A

n(1)
a · a

)
∗ · · · ∗ Tη

S
A

(∑
a∈A

n(r)
a · a

)

=

(∑
a∈A

n(1)
a · [a]

)
∗ · · · ∗

(∑
a∈A

n(r)
a · [a]

)
=

∑
[a1,...,ar]

n(1)
a1
· · ·n(r)

ar · [a1, . . . , ar]

as expected.

8.6. Example. Another example from [Beck, 1969] has T arbitrary on C with coprod-
ucts, and S the constants monad. (It is done for the category of sets in Beck’s paper but
it works in the given context.) That is, take a fixed object C in C, define for every A,
SA = A+C, η

S
A = iA :A→ A+C the canonical injection of the first summand, and for

h :A→ SB define hS :SA→ SB as the unique arrow such that the diagram

A
η
S
A
//

h ##F
FF

FF
FF

FF A+ C

hS

��

C

iC{{ww
ww

ww
ww

w

iCoo

B + C

commutes.
Given f :A→ TSB = T (B +C), define fλ : A+C → TSB as the unique arrow that

makes the diagram

A
η
S
A

//

f ''OOOOOOOOOOOOO A+ C

fλ

��

C
iCoo

iC
��

T (B + C) B + C
η
T

(B+C)
oo

commute. The commutative diagram

A
η
S
A

//

η
S
A

��

A+ C

(η
T

(A+C)·η
S
A)λ

��

C
iCoo

iC
��

A+ C
η
T

(A+C)
// T (A+ C) A+ C

η
T

(A+C)
oo

tells us that (η
T
(A + C) · η

S
A)λ = η

T
(A + C). For h :A → SB and g :B → T (D + C),
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the commutative diagram

A
η
S
A
//

h %%JJJJJJJJJJ

gλh

$$

A+ C

hS

��

C
iCoo

iC
��iCxxpppppppppppp

B + C

gλ

��

D + C

η
T

(D+C)xxqqqqqqqqqq

T (D + C)

tells us that (gλ · h)λ = gλ · hS. And the commutative diagram

A
η
S
A

//

f ''PPPPPPPPPPPPPP

(gλ)Tf

&&

A+ C

fλ

��

C
iCoo

iC

vvnnnnnnnnnnnnnnn

iC

��

T (B + C)

(gλ)T

��

B + C
η
T

(B+C)
oo

gλvvmmmmmmmmmmmmmm

T (D + C) D + C
η
T

(D+C)
oo

tells us that ((gλ)T · f)λ = (gλ)T · fλ. Therefore we have a distributive law, where
λA :STA→ TSA is the unique arrow that makes the diagram

TA
iTA //

T iA ''PPPPPPPPPPPP TA+ C

λA
��

C
iCoo

iC
��

T (A+ C) A+ C
η
T

(A+C)
oo

commute.

8.7. Example. Another example from [Beck, 1969] is to take a monoid M and the
monad M it defines on Set. That is, to every set A we assign the set M ×A, η

M
A :A→

M×A is η
M

(a) = (e, a), where e is the unit element of M , and for f = 〈f1, f2〉 :B →M×A
we define

fM(m, b) = (m ∗ f1(b), f2(b))

where ∗ :M ×M →M is the multiplication of the monoid. It is clear that fM · η
M
B = f ,

and if g = 〈g1, g2〉 :C →M ×B and (m, c) ∈M × C, we have that

fM(gM(m, c)) = fM(m ∗ g1(c), g2(c)) = ((m ∗ g1(c)) ∗ f1g2(c), f2g2(c)),

whereas (fMg)M(m, c) = (m ∗ (g1(c) ∗ f1g2(c)), f2g2(c)), so gMfM = (gMf)M. Given any
monad T on Set and f :A→ T (M ×B) define fλ :M × A→ T (M ×B) as

fλ(m, a) = T (m ∗ (−)×B)(f(a)).
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By the naturality of η
T
, we have

(η
T
(M × A) · η

M
A)λ(m, a) = T (m ∗ (−)× A)((η

T
(M × A) · η

M
A)(a))

= (T (m ∗ (−)× A) · η
T
(M × A))(e, a)

= η
T
(M × A)(m ∗ (−)× A)(e, a)

= η
T
(M × A)(m, a).

Furthermore (fλ·η
M
A)(a) = fλ(e, a) = T (e∗(−)×B)(f(a)) = f(a). For g = 〈g1, g2〉 :C →

M × A and (m, c) ∈M × C we have

(fλgM)(m, c) = fλ(gM(m, c)) = fλ(m ∗ g1(c), g2(c)) = T (m ∗ g1(c) ∗ (−)× A)(f(g2(c)))

= T (m ∗ (−)× A)(T (g1(c) ∗ (−)× A)(f(g2(c))))

= T (m ∗ (−)× A)((fλg)(c)) = (fλg)λ(m, c).

It is not hard to show that for any m ∈ M , fλ ◦ (m ∗ (−) × B) = T (m ∗ (−) × A) ◦ fλ.
Then for h :C → T (M × A) and (m, c) ∈M × C we have

((fλ)Th)λ(m, c) = (T (m ∗ (−)× A) · (fλ)T)(h(c))

= ((η
T
(M × A) · (m ∗ (−)× A))T · (fλ)T)(h(c))

= (((η
T
(M × A) · (m ∗ (−)× A))T · fλ)T)(h(c))

= ((T (m ∗ (−)× A) · fλ)T)(h(c)) = (fλ · (m ∗ (−)×B))T(h(c))

= ((fλ)T · η
T
(M ×B) · (m ∗ (−)×B))T(h(c))

= ((fλ)T · T (m ∗ (−)×B))(h(c)) = ((fλ)T · hλ)(m, c).

We thus have a distributive law of M over T.

8.8. Example. An example taken from [Varacca, 2003] has the monad P on Set of
finite non-empty subsets, whose structure is given by, for any set X, PX = {X0 ⊆ X|X0

finite non-empty}, ηPX :X → PX is ηPX(x) = {x}, and for any function f :Y → PX,
fP(Y0) =

⋃
y∈Y0

f(y).
On the other hand we have the monad V on Set of indexed valuations, whose struc-

ture is given as follows. For a set X, V (X) has as elements equivalent classes of spans

K X(0,∞)
χ //roo in Set with K finite, and the given span is equivalent to the span

K ′ X(0,∞)
χ′ //r′oo iff there is a bijection κ :K → K ′ such that the diagram

K

X(0,∞)

K ′

χ

((PPPPPPr
uukkkkkk

χ′

66nnnnnn
r′

iiSSSSS
κ

��

commutes. The arrow ηVX :X → V (X) is such that the span associated to x ∈ X is

1 X.(0,∞) pxq //p1qoo
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Take a function f :Y → V (X). For y ∈ Y denote the span f(y) by Ky X.(0,∞)
χy //ryoo

Define fV :V (Y )→ V (X) on the span J Y(0,∞)
ψ //qoo as the span

∐
j∈J Kψ(j) X,(0,∞)

χ //roo

where r and χ are the unique functions such that the diagram

(0,∞)

q(j)·−
��

Kψ(j)
rψ(j)

oo

incj
��

χψ(j)

&&LLLLLLLLLLLL

(0,∞)
∐

j∈J Kψ(j)r
oo

χ
// X

commutes for every i ∈ I. Thus for k ∈ Kψ(j) we have χ(k) = χψ(j)(k) and r(k) =
q(j) · rψ(j)(k).

It is clear that fV ◦ ηV Y = f , and for g :Z → V (Y ) write g(z) as

Jz Y.(0,∞)
ψz //qzoo (24)

Then fVgV on the span I Z(0,∞)
ζ //poo is the span

∐
j∈
∐
i∈I Jζ(i)

Kψζ(i)(j) X,(0,∞)
χ //roo

where for a k ∈ Kψ(j) with j ∈ Jζ(i) we have

ξ(k) = ξψ
ζ(i)(j)(k) and r(k) = p(i) · qζ(i)(j) · rψζ(i)(j)(k).

On the other hand, (fVg)V on the same span gives us∐
i∈I

∐
j∈Jζ(i)

Kψζ(i)(j) X(0,∞)
χ′ //r′oo

where for a k ∈ Kψζ(i)(j) with j ∈ Jζ(i) and i ∈ I we have

ξ′(k) = ξψ
ζ(i)(j)(k) and r′(k) = p(i) · qζ(i)(j) · rψζ(i)(j)(k).

Then the canonical isomorphism∐
j∈
∐
i∈I Jζ(i)

Kψζ(i)(j)

∐
i∈I

∐
j∈Jζ(i)

Kψζ(i)(j)

' //
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shows that these spans are the same element of V (X). That is, the diagram

V (Z)
gV
//

(fVg)V $$H
HH

HH
HH

HH
V (Y )

fV

��
V (X)

commutes. We have then shown that we have a monad V.
We now give the distributive law. Take h :Y → P (V (X)), and take a span

J Y.(0,∞)
ψ //qoo

For every choice function ` : J →
⋃
j∈J h(ψ(j)) (that is, `(j) ∈ h(ψ(j))), if `(j) is the span

Kj X,(0,∞)
χj //rjoo

for j ∈ J , we form the span S(`, q, ψ) as ∐
j∈J Kj X,(0,∞)

χ //roo

where for k ∈ Kj we define χ(k) = χj(k) and r(k) = q(j) · rj(k). We define

hλ((q, ψ)) = {S(`, q, ψ)|` : J →
⋃
j∈J

h(ψ(j)) is a choice function}.

We show that this defines a distributive law of V over P. We must show first that
this definition of hλ produces a structure of V-algebra on P (V (X)). We know that
ηV Y (y) = (p1q, pyq). Then a choice function ` : 1→ h(y) is simply to pick an element in
h(y). Then S(`, p1q, pyq) is this chosen element, thus hλ ◦ ηV Y = h.

Then a typical element in hλ(gV( I Z))(0,∞)
ζ //poo is formed as follows. Assume

g(z) is given by (24) for every z ∈ Z. Then for every i ∈ I and every j ∈ Jζ(i) we take an
element

Kij X(0,∞)
χij //rijoo

in h(ψζ(i)(j)). Then the element of hλ(gV(p, ζ)) is

(0,∞)
∐

(i,j)∈
∐
i∈I Jζ(i)

Kijr
oo

χ
// X,

where for k ∈ Kij, χ(k) = χij(k) and r(k) = qζ(i)(j) · rij(k).
On the other hand, a typical element of (hλgV)λ(p, ζ) is formed as follows. For every

i ∈ I and j ∈ Jζ(i) take an element

Kij X(0,∞)
χij //rijoo
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in h(ψζ(i)(j)). Then the element is formed as

(0,∞)
∐

i∈I
∐

j∈Jζ(i) Kij
r′

oo
χ′

// X,

where for k ∈ Kij (j ∈ Jζ(i)) we have that χ′(k) = χij(k) and r′(k) = p(i) · qζ(i)(j) · rij(k).
The canonical isomorphism

∐
i∈I
∐

j∈Jζ(i) Kij →
∐

(i,j)∈
∐
i∈I Jζ(i)

Kij then tell us that

hλgV = (hλg)λ.
The condition (ηPV (X) · ηVX)λ = ηPV (X) is easy, since there is only one possible

choice function for a given element in V (X).
Finally, take k :Z → P (V (Y )) and h :Y → P (V (X)). We must check that (hλ)Pkλ =

((hλ)Pk)λ. Take I Z(0,∞)
ζ //poo in V (Z). Then a typical element of ((hλ)Pkλ)(p, ζ)

is formed as follows: for every i ∈ I chose a span Ji Y(0,∞)
ψi //qioo in k(ζ(i)), then

for every j ∈ Ji choose a span Kij X(0,∞)
χij //rijoo in h(ψi(j)); then the element in

question is ∐
(i,j)∈

∐
i∈I Ji

Kij X(0,∞)
χ //roo

where for k ∈ Kij, (j ∈ Ji) we have χ(k) = χij(k) and r(k) = p(i) · qi(j) · rij(k).
On the other hand, a typical element in ((hλ)Pk)λ(p, ζ) is formed as follows: for every

i ∈ I we take a span Ji Y(0,∞)
ψi //qioo in k(ζ(i)), then for every j ∈ Ji we take a

span Kij X(0,∞)
χij //rijoo in h(ψi(j)); then the element in question is

∐
i∈I
∐

j∈Ji Kij X(0,∞)
χ′ //r′oo

where for k ∈ Kij, (j ∈ Ji) we have χ′(k) = χij(k) and r′(k) = p(i) · qi(j) · rij(k).
Therefore, (hλ)Pkλ = (hλk)λ. Thus we have a distributive law.

Compare with the proof given in [Varacca, 2003].

8.9. Example. This one is taken from [Manes & Mulry, 2007]. Let S be the free monoid
monad (described in example 8.5) and let T the submonad of S of nonempty words:

TA = {[a1, . . . , an]|n ∈ N\{0}, aj ∈ A, j = 1, . . . , n},

for any set A. Give TSA the following binary operation

[U1, . . . , Uk] ∗ [V1, . . . , V`] = [U1, . . . , Uk−1, Uk ∼ V1, V2, . . . , V`]

where U1, . . . , Uk, V1, . . . , V` are elements of SA, and ∼ denotes concatenation. It is imme-
diate to see that TSA with this operation is a monoid. Therefore, if for an f :B → TSA
we define fλ :SA→ TSA such that

fλ([a1, . . . , an]) = f(a1) ∗ · · · ∗ f(an),
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we obtain an S-algebra (TSA, ( )λ). Now, for [a1, . . . , ak] ∈ SA we have

(TηSA · ηTA)λ([a1, . . . , ak]) = [[a1]] ∗ · · · ∗ [[ak]] = [[a1, . . . , ak]] = ηTSA([a1, . . . , ak]).

Finally we must show that for f :B → TSA, (fλ)T :TSB → TSA is a monoid morphism
with respect to the operation ∗ on both, TSB and TSA. Let [U1, . . . , Uk], [V1, . . . , V`] ∈
TSB. Then

(fλ)T([U1, . . . , Uk] ∗ [V1, . . . , V`]) = (fλ)T([U1, . . . , Uk−1, Uk ∼ V1, V2, . . . , V`])

= fλ(U1) ∼ · · · ∼ fλ(Uk−1) ∼ fλ(Uk ∼ V1) ∼ fλ(V2) ∼ fλ(V`)

and
(fλ)T([U1, . . . , Uk]) ∗ (fλ)T([V1, . . . , V`])

= (fλ(U1) ∼ · · · ∼ fλ(Uk)) ∗ (fλ(V1) ∼ · · · ∼ fλ(V`))

= fλ(U1) ∼ · · · ∼ (fλ(Uk) ∗ fλ(V1)) ∼ · · · ∼ fλ(V`).

Since it direct to see that fλ(Uk) ∗ fλ(V1) = fλ(Uk ∼ V1), we have a distributive law of S
over T.

8.10. Example. We close our set of examples with a wreath from [Lack & Street, 2002].
Take a short exact sequence in the category of groups

1→ A→ E → G→ 1.

For g ∈ G and a ∈ A denote the action of g on a by ag = g−1ag ∈ A, and let ρ :G×G→ A
be a normalized cocycle corresponding to the extension. Let A be the monad on Set
determined by the group A (as described in example 8.7, there for a monoid M), and take
the functor T = G×− : Set→ Set. For the wreath define σX :X → G×A×X such that
σA(x) = (e, e, x), and for f = 〈f1, f2, f3〉 :Y → G×A×X, define f s :A→ G×A×X as

f s(a, y) = (f1(y), af1(y) · f2(y), f3(y)),

and f t :G× Y → G× A×X as

f t(g, y) = (g · f1(y), ρ(g, f1(y)) · f2(y), f3(y)).

We only verify that the last condition from Theorem 8.4 is satisfied and leave the rest to
the reader. We have that

(f s)t(g, a, y) = (g · f1(y), ρ(g, f1(y)) · af1(y) · f2(y), f3(y)).

Thus for ` = 〈`1, `2, `3〉 :Z → G× A×X we have that (f s)t(`t(g, z)) is

(g · `1(z) · f1`3(z), ρ(g · `1(y), f1`3(z)) · (ρ(g, `1(z)) · `2(z))f1`3(z) · f2`3(z), f3`3(z)),

whereas ((f s)t`)t(g, z) is

(g · `1(z) · f1`3(z), ρ(g, `1(z) · f1`3(z) · ρ(`1(z), f1`3(z)) · `2(z)f1`3(z) · f2`3(z), f3`3(z)).

The fact that they are equal follows from the cocycle condition

ρ(g · h, k) · ρ(g, h)k = ρ(g, h · k)ρ(h, k)

for g, h, k ∈ G.
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9. Extension systems in the bicategory of profunctors

In the Introduction we also mentioned extension systems of the form (ϕ, ψ :S a H, η, ξ)
on an object C in a 2-category K. We recall that η : 1C → S : C→ C and that ξ :S → HS
is to be the mate of a 2-cell µ :SS → S so that explicitly we have

ξ = (S
ϕS // HS2

Hµ // HS)

and

µ = (S2 Sξ // SHS
ψS // S).

We begin this section by reconciling our two usages of the term extension system.

9.1. Lemma. The data (S, η, µ) constitute a monad if and only if the data (ϕ, ψ :S a
H, η, ξ) satisfy the following three equations:

1
η //

ϕ !!B
BB

BB
BB

B S

ξ
��

HS,

S2
Sξ // SHS

ψS
��

S

ηS

OO

1S
// S,

S2
Sξ // SHS

ψS //

ξHS

��

S

ξ

��
HSHS

HψS
// HS.

(25)

Proof. Apply S to the first of these equations and post-compose the result with ψS.
From the definition of µ this gives the monad equation µ · Sη = 1S. Conversely, given
µ · Sη = 1S, the mate 1C → HS with respect to the given adjunction of 1S is ϕ while
that of µ ·Sη is Hµ ·HSη ·ϕ = Hµ ·ϕS · η = ξ · η, from the definition of ξ. The second of
the equations given above is immediately the monad equation µ · ηS = 1S and conversely.
Starting with the third equation, apply S− and note the commutativity of each of the
three squares pasted west or south of the result, as shown in the diagram below. From
the definition of µ, the outer square gives the associativity equation µ · Sµ = µ · µS.

S3
S2ξ //

SξS
��

S2HS
SψS //

SξHS

��

S2

Sξ

��
SHS2

SHSξ//

ψS2

��

SHSHS
SHψS

//

ψSHS

��

SHS

ψS

��
S2

Sξ // SHS
ψS // S.
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Finally, starting with µ · Sµ = µ · µS, get the third equation of the statement from

S2

HS3 HS2

SHS2 HS2HS2 HSHS2 HS2

SHS HS2HS HSHS HS

S2

SHS2

S

SHS

HS2

ϕS2
''OOOOOOOOOOOOOO

SϕS

��

1S2

11cccccccccccccccccccc

SϕS
;;wwwwwwwwww

HµS
//

HS2ϕS

��

HSµ
22ffffffffffffffffffffff

HSϕS

��

1HS2

''OOOOOOOOOOOOO

ϕSHS2
//

SHµ

��

HµHS2
//

HS2Hµ

��

HψS2
//

HSHµ

��
Hµ

''OOOOOOOOOOOOOO

ϕSHS
//

HµHS
//

HψS
//

µ
11dddddddddψS2 ''OOOOOOOO

SHµ 33ggggg

ϕS

##G
GGGGGGG

ψS

%%LLLLLLLLL

Hµ

  A
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
A

Now recall, from [Borceux, 1994] say, the bicategory Pro of categories, profunctors,
and equivariant 2-cells. There is a pseudofunctor (−)∗ : Cat→ Pro which is the identity
on objects and takes a functor F : X→ A to the profunctor with F∗(A,X) = A(A,FX).
For any parallel pair of functors F,G : X → A, there is a bijection between equivariant
2-cells F∗ → G∗ and natural transformations F → G. That is, (−)∗ is locally fully
faithful. Most importantly, for any functor F , there is an adjunction F∗ a F ∗ in Pro,
where F ∗(X,A) = A(FX,A). It follows that to describe a monad (S, η, µ) in Cat via an
extension system, we can either use the general theory of the bulk of this paper or avail
ourselves of the adjunction S∗ a S∗ in Pro and proceed using the elementary definition
provided by the data of Lemma 9.1, subject to the equations (25).

Now, note that in Pro the composite S∗S∗ : C→ C has S∗S∗(B,A) = C(SB, SA) so
that to give a two cell ξ :S∗ → S∗S∗ in Pro is to give an equivariant family of functions
(ξB,A)B,A taking arrows B → SA to SB → SA, whose effect is denoted, as usual, f 7→ fS.
Equivariance of ξ in the variable B means that, for all g :C → B, we have (fg)S = fS ·Sg,
which is just the blister equation (3) of Section 2. Equivariance of ξ in the variable A
means that, for all u :A→ X, we have (Su · f)S = Su · fS which follows easily from (6).
The point here is that when the data for the elementary definition is expanded in Pro,
it amounts to the same data required for the non-elementary definition in Cat. This
reconciles our usage of the term extension system in both cases.

In Section 8, we remarked that Manes’ original presentation of monads in Cat does
not require that S : C→ C be given as a functor nor that η : 1C → S be given as a natural
transformation. It is interesting to note that the bicategory Pro also provides a venue
to discuss this simplification, in terms of the formal theory of monads. For any category
C, write |C| for the set of objects of C regarded as a discrete category. In Pro we have,
on the object |C|, the monad C where C(B,A) = C(B,A). The canonical, identity on
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objects, functor K : |C| → C admits an (op)action of C that we call κ :K∗C→ K∗. The
(C,A) component of this action,

∑
B∈|C|K∗(C,B) × C(B,A) → K∗(C,A) is determined

by the C(C,B)×C(B,A)→ C(C,A) which are given by the composition of C.
The profunctor K∗, together with κ, exhibits C as the Kleisli object in Pro for the

monad C. Moreover, the equivalence mediated by this data restricts to functors, in the
sense that to give a functor F : C→ D is to give a functor F̂ : |C| → D together with an

action F̂∗C → F̂∗. Similarly, to give a natural transformation τ :F → G : C → D is to
give a natural transformation τ̂ : F̂ → Ĝ : |C| → D that respects the actions. An action

F̂∗C→ F̂∗ has a mate C→ F̂ ∗F̂∗. The two action equations translate to make C→ F̂ ∗F̂∗
a morphism of monads on |C| and conversely.

In the case of the data given originally by Manes, we have in these terms: η :K →
Ŝ : |C| → C and now the requisite morphism of monads C → Ŝ∗Ŝ∗ is given by the
composite

C = K∗K∗
K∗η∗ // K∗Ŝ∗

(−)S
// Ŝ∗Ŝ∗

— the monad morphism equations arising from two of those satisfied by the extension
operator (−)S.
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