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FINITELY PRESENTABLE MORPHISMS IN EXACT SEQUENCES

MICHEL HÉBERT

Abstract.

Let K be a locally finitely presentable category. If K is abelian and the sequence

0 K// K X// k // X C
c // // C 0//

is short exact, we show that 1) K is finitely generated⇔ c is finitely presentable; 2) k is
finitely presentable⇔ C is finitely presentable. The “⇐” directions fail for semi-abelian
varieties. We show that all but (possibly) 2)(⇐) follow from analogous properties which
hold in all locally finitely presentable categories. As for 2)(⇐), it holds as soon as K is
also co-homological, and all its strong epimorphisms are regular. Finally, locally finitely
coherent (resp. noetherian) abelian categories are characterized as those for which all
finitely presentable morphisms have finitely generated (resp. presentable) kernel objects.

1. Finitely presentable morphisms

Recall (from [GU, 71] or [AR, 94]) that an object X in a category K is finitely presentable
(finitely generated) if the hom-functor K(X,−) : X −→ Set preserves filtered colimits
(resp. colimits of filtered diagrams made of monomorphisms). Then, K is finitely accessible
if it has a (small) set of finitely presentable objects whose closure under filtered colimits is
all of K. Finally, K is locally finitely presentable if it is finitely accessible and cocomplete.

1.1. Definition. Let f : X // Y be a morphism in K.

(a) f is finitely presentable (resp. finitely generated) if it is a finitely presentable (resp.
finitely generated) object of the slice category (X ↓ K).

(b) f is finitary if X and Y are finitely presentable.

The finitary morphisms of K are actually the finitely presentable objects of the cate-
gory of morphisms K→. They are precisely those finitely presentable morphisms with a
finitely presentable domain (see below).

Finitely presentable morphisms have been first considered in algebraic geometry, where
they play an important role (for example in the Chevalley Theorem; see [GD, 64] and
[D, 92]). In fact, in the category CRng of commutative rings, the definition above
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has a very concrete interpretation, being essentially the structure morphisms R −→
R[x1, ..., xn]/(p1, ..., pm) for the finitely presented algebras.

More generally, in finitary varieties, a morphism f : X −→ Y is finitely presentable
when f provides a way to “present Y ” by adding a finite number of generators and
relations to some presentation of X. This follows from 1.3(6) below.

Finitely presentable morphisms are useful outside algebraic geometry, as shown by the
following examples.

1.2. Applications. Below, we refer to the infinitary version of the above definitions: for
λ a regular infinite cardinal, λ-presentable and λ-ary are what “finitely presentable” and
“finitary” become when “filtered” is replaced by “λ-filtered” throughout in the definitions.

(a) The classes of objects in a locally λ-presentable category K which are closed under
λ-pure subobjects are precisely the cone-injectivity classes with respect to classes
of cones made of λ-presentable morphisms (see [H, 98] for a proof and the precise
definitions). This was used in [H1, 04] to characterize the classes closed under λ-pure
subobjects, products and λ-filtered colimits as the injectivity classes with respect to
sets of λ-ary morphisms (a fact which was first proved directly in [RAB, 02]). Both
characterizations have obvious syntactic translations when K is the category of all
structures of some signature, generalizing and refining the classical “preservation
theorem” of [Ke, 65], which characterizes the (finitary) elementary classes closed
under filtered colimits.

(b) Since every slice (X ↓ K) in a locally finitely presentable K is locally finitely pre-
sentable, every morphism f : X −→ Y in K is a colimit in (X ↓ K) of a filtered
diagram of finitely presentable morphisms. What is more surprising is that f is
actually a transfinite composition of finitely presentable morphisms (see [H, 06],
Example 9). This statement does not hold when restricted either to monomor-
phisms, or to pure monomorphisms: in fact, one can show that if there exists λ such
that every pure monomorphisms is the transfinite composition of λ-presentable pure
monos, then K has enough pure-injectives ([H, 06], Example 13). The same is true
for monomorphisms with respect to injectivity if K has the transferability property
(i.e., monos are stable under pushouts). In [BR, 07], what the authors essentially
do is to show that this occurs whenever K has effective unions (see [B, 94]) of sub-
objects (respectively of pure subobjects), a condition which is met in all familiar
examples of categories with enough (pure-) injectives, as the authors point out.

For reference, we collect below various properties of finitely presentable and finitely
generated morphisms. All are fairly straightforward computations from the definitions,
except the last one, which is proved in [H2, 04].

1.3. Properties. In a finitely accessible category K:
(1) Isomorphisms are finitely presentable.
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(2) Finitely presentable (resp. generated) morphisms are closed under composition.
(3) Given a commutative diagram

• •f //•

•
f1 %%LLLLLLLLLLL

•

•

f2

99rrrrrrrrrrr

- f is finitely generated =⇒ f2 is finitely generated;
- f1 is epi and f is finitely presentable =⇒ f2 is finitely presentable;
- f1 is strong epi =⇒ [f is finitely generated ⇔ f2 is finitely generated].

(4) Given a morphism f : X // Y ,
- X is finitely generated and Y is finitely presentable =⇒ f is finitely presentable;
- X is finitely presentable =⇒ [Y is finitely presentable ⇔ f is finitely presentable];
- Y is finitely generated =⇒ f is finitely generated;
- f is strong epi =⇒ f is finitely generated.

(5) Pushouts of finitely presentable (resp. generated) morphisms (along any morphism)
are finitely presentable (resp. generated).
(6) If K has connected colimits, then every finitely presentable morphism is the pushout
of a finitary morphism (along some morphism).

Note that the coequalizer of a pair of finitely presentable morphisms is not necessarily
finitely presentable.

In the category Mod-R of all right R-modules, R a ring, the embedding A ↪→ B of a
submodule is finitely presentable if and only if the quotient B/A is a finitely presentable
module (see [H, 06]). However a finitely presentable morphism may not have a finitely
presentable kernel. This raises questions on the behavior of finitely presentable morphisms
in exact sequences, which are addressed in the next section.

2. Main results

Theorem 2.1 below is first stated in the narrow context of locally finitely presentable
abelian category. It could be more quickly proved directly, but our goal is to get as much
as we can of it in the most general context. Hence we will derive much of it from results in
locally finitely presentable categories (Proposition 2.5), and then in certain co-homological
categories (Proposition 2.7).

Note that a finitely accessible abelian category is necessarily locally finitely pre-
sentable, and also that a locally finitely presentable pointed category is abelian if and
only if all monos and all epis are normal (i.e., are kernels and cokernels respectively; see
for example [B, 94], Section 1.4).

2.1. Theorem. Let K be a locally finitely presentable abelian category. Then in every
short exact sequence

0 K// K X// k // X Cc // // C 0//
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1) K is finitely generated ⇔ c is finitely presentable;
2) k is finitely presentable ⇔ C is finitely presentable.

2.2. Notes. In both 1) and 2), the “⇐” directions fail for semi-abelian varieties (in the
sense of [BB, 04]): in the exact sequence

0 [F2,F2]// [F2,F2] F2
// // F2 (F2)ab// // (F2)ab 0//

in Grp, where F2 is the free group on two generators, and (F2)ab = Z× Z is its abelian-
ization, it is well-known that the commutator [F2,F2] is not finitely generated, and easily
shown that its embedding in F2 is not finitely presentable. However F2 and (F2)ab (and
hence F2 � (F2)ab) are obviously finitely presentable.

Before proving Theorem 2.1, we prove the following consequence. Recall (from [F,
75]) that a locally finitely presentable category is locally finitely coherent if every mono
with finitely generated domain and finitely presentable codomain has its domain finitely
presentable, and is locally finitely noetherian if every finitely generated object is finitely
presentable.

2.3. Theorem. Let K be a locally finitely presentable abelian category. Then
A) in every exact sequence

0 K// K X// k // X Y
f // Y C

c // // C 0// (*)

1) [ K is finitely generated and C is finitely presentable ] ⇒ f is finitely presentable;

2) f is finitely presentable ⇒ C is finitely presentable.

B) Furthermore,

3) [ f is finitely presentable ⇒ K is finitely generated ] holds for every exact sequence
(*) iff K is locally finitely coherent;

4) [ f is finitely presentable⇒ K is finitely presentable ] holds for every exact sequence
(*) iff K is locally finitely noetherian.

Proof. Let f = f2f1 be the image (= (Epi, Mono)) factorization of f .
1) Since f2 = ker c and f1 = coker k, both f1 and f2 are finitely presentable under the

hypotheses (by Theorem 2.1), and hence f too (by 1.3).
2) Given f finitely presentable, f2 is finitely presentable by 1.3 (3). Hence C is finitely

presentable by Theorem 2.1.
3) (⇒) Given a monomorphism g : A � B with A finitely generated and B finitely

presentable, there exists an epimorphism h : D � A with D finitely presentable ([AR,
94]). Now gh is finitary, hence finitely presentable. By the assumption, its kernel object
is then finitely generated, so that h is finitely presentable, by Theorem 2.1. But then A
must be finitely presentable, by 1.3 (4).
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(⇐) Given f : X // Y finitely presentable in (*), there exists, by 1.3 (6), a pushout
diagram

X Y
f

//

X ′

X

u

��

X ′ Y ′
g // Y ′

Y

v

��

with X ′ and Y ′ finitely presentable. Take the image factorization g = g2g1 of g and
consider the pushout u′ of u along g1, and then the pushout u′′ of u′ along g2. Then we
can assume u′′ = v and f = f ′2f

′
1:

X ′ Z ′
g1 // // Z ′ Y ′// g2 //X ′

X

u

��

Y ′

Y

v

��
X Z

f ′
1 // Z Y

f ′
2 //

Z ′

Z

u′

��
X Y

f

77

Then f ′1 is epi and f ′2 is mono, since K is abelian. Now Z ′ is finitely generated because g1

is (strongly) epi and X ′ is finitely presentable, and so it is finitely presentable, from the
assumption. Therefore g1 is finitely presentable, and so is its pushout f ′1. But ker f ′1 =
ker f (since f ′2 is mono), hence K is finitely generated by Theorem 2.1, as required.

4) (⇒) Given X finitely generated, consider the short exact sequence

0 X// X X +X ∼= X ×X// i1 // X +X ∼= X ×X X
π2 // // X 0//

where i1 and π2 are the canonical injection and projection respectively. Then π2 is finitely
presentable, by Theorem 2.1, so that X is finitely presentable, by the assumption.

(⇐) Clear from Theorem 2.1.

2.4. Problems. Theorem 2.3 raises the question of the characterization of the finitely
presentable morphisms by completing (in the exact sequence (*)) the equation

[ f finitely presentable ] ⇐⇒ [ ?? + C finitely presentable ].

Note that “K finitely generated” would do precisely for the locally finitely coherent cat-
egories.

There is a formulation for morphisms: if f2f1 is the image factorization of f , the
question is how to complete the equivalence

[ f is finitely presentable ] ⇐⇒ [ ?? + f2 is finitely presentable ].
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Here, “f1 is finitely generated” is too weak (it is true of every epimorphism!), and “f1

is finitely presentable” is too strong, since the equivalence

[ f is finitely presentable ] ⇐⇒ [ f1 and f2 are finitely presentable ]

also characterizes the locally finitely coherent categories, as the proof of part 3)(⇐) of
Theorem 2.3 actually shows.

Recall the celebrated theorem of G. Higman ([Hi, 61]), which states that a finitely gen-
erated group can be embedded in a finitely presentable one iff it is recursively presented,
i.e., it has a presentation made of recursively enumerable sets of generators and relations.
Because f1 is always finitely generated, and f2 is automatically finitely presentable when
f is, our question is really one of embeddability, in the slice category (X ↓ K), of a
finitely generated object into a finitely presentable one. Whether anything useful can be
extracted from this connection might be worth investigating.

Much of Theorem 2.1 is an immediate consequence of things already happening in
every locally finitely presentable category, as we will now see. Recall that a relation on
an object X is just a pair u, v : R ⇒ X such that 〈u, v〉 : R // X ×X is mono.

2.5. Proposition. Let K be locally finitely presentable. Then
(a) the finitely presentable regular epis are precisely the coequalizers of relations with
finitely generated domains.
(b) If K is also pointed, then

(i) the finitely presentable normal epis are precisely the cokernels of monomorphisms
with finitely generated domains, and

(ii) the cokernel of every finitely presentable morphism has a finitely presentable codomain.

Proof. (a) This follows readily from Proposition 2.11 in [AH, 09], which states that
the finitely presentable regular epimorphisms are precisely the coequalizers of pairs of
morphisms from finitely presentable domains. Indeed, given a coequalizer diagram

K X
u //

K X
v

// X C
c = // //X C

coeq(u,v)
// //

with c finitely presentable, we can then assume that K is also finitely presentable. We
consider the diagram

K Re // // R X ×X// m // X ×X X
π1 //X ×X X
π2

// X Cc
// //

where me is the (Strong Epi, Mono)-factorization of 〈u, v〉 (which always exists in a locally
finitely presentable category). Then R is finitely generated, and e being epi, c is also the
coequalizer of the relation 〈π1m,π2m〉.

Conversely, given a relation u, v : R ⇒ X with R finitely generated, there must exist
a strong epi e : K � R with K finitely presentable, hence the coequalizer of (ue, ve) is
finitely presentable. But again, coeq(u, v) = coeq(ue, ve).
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(b) (i) A normal epi c : X � C is the coequalizer of some pair of the form 0, v : K ⇒ X.
If c is finitely presentable, the proof of Proposition 2.11 of [AH, 09] shows the existence
of a morphism f : Ki

// K such that Ki is finitely presentable and c is the coequalizer
of 0f = 0 and vf . Hence c is the cokernel of vf . As in (a), the (Strong Epi, Mono)-
factorization me of vf will give us c as the cokernel of m, which has a finitely generated
domain, as required.

For the converse, we argue exactly as in (a).
(ii) Given cf : X //Y � C with c = coker f and f finitely presentable, let h : C //D,

where di : Di
//D is the colimit of a filtered diagram (dij)I . Then hcf = 0, and it is the

colimit (object) of the diagram (dij : 0i // 0j)ij in (X ↓ K), with 0i = 0: X //Di for all
i. Hence there exists i ∈ I and g : Y // Di such that gf = 0 and dig = hc.

X Y
f // Y Cc // // C

D

h

��

Y

D

hc

��?
??

??
??

??
??

??
X

D

0

''OOOOOOOOOOOOOOOOOOOOOOOX

Di

0i=0

��
Di D

di

//

Y

Di

g

���
�

�
�

�
�

�

Then, gf = 0 implies there exists h′ : C // Di, unique such that h′c = g. That dih
′ = h

follows from c being epi. Finally, for h′′ : C //Di such that dih
′′ = dih

′, we have dih
′′c =

hc = dig, so that dijh
′′c = dijg = dijh

′c for some j, hence dijh
′′ = dijh

′, as required.

2.6. Notes. Concerning part a) of Proposition 2.5, examples of semi-abelian varieties
are easily constructed where the domain of the kernel pair of a finitely presentable (even
finitary) morphism is not finitely generated. The case of Grp is special here: it follows
from [Gd, 78] that the domain of the kernel pair of a finitary morphism is finitely generated
(interestingly, [Gd, 78] shows that it is finitely presentable if and only if the codomain of
the finitary morphism is finite.) For example, the domain of the kernel pair of F2 � (F2)ab
in 2.2 is generated by (a, a), (b, b), (1, aba−1b−1), and (aba−1b−1, 1), where a and b are the
free generators of F2. Whether this extends to finitely presentable morphisms seems
unlikely.
Proof of Theorem 2.1

1) follows immediately from Proposition 2.5 (b)(i), since all monos are normal in an
abelian category. 2)(⇒) is 2.5 (b)(ii). 2)(⇐) holds in a slightly more general context, as
the following Proposition 2.7 will show.

Recall from [BB, 04] that a category is called homological if it is pointed, regular, and
protomodular. The latter is also defined in [BB, 04], but we will only need the observation
there (Theorem 4.1.10) that in the presence of the first two conditions, K is homological
iff is satisfies the following Short Five Lemma: given a commutative diagram with short
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exact rows,

0 K ′// K ′ X ′// k′
// X ′ C ′c′ // // C ′ 0//K ′

K

α

��

X ′

X

β

��

C ′

C

γ

��
0 K// K X//

k
// X Cc

// // C 0//

if α and γ are isomorphisms, then so is β. (In this context, that

0 K// K X//
k

// X Cc
// // C 0//

is short exact just means that k is the kernel of c and c is the cokernel of k). Then we
have:

2.7. Proposition. Let K be a locally finitely presentable category. If K is co-homological
and all its strong epimorphisms are normal, then part 2) of Theorem 2.1 holds: in every
short exact sequence

0 K// K X// k // X C
c // // C 0//

k is finitely presentable if and only if C is finitely presentable.

Proof. The “⇒” direction follows from Proposition 2.5.
For the converse, first note that in any locally finitely presentable category K, for any

strong epi c : X � C with C finitely presentable, there exists β : X ′ //X with X ′ finitely
presentable such that cβ is a strong epi. Indeed, one can verify (using in particular [AR,
94] 1.62) that every strong epi is the colimit (fi, gi) : ci // c in K→ of a filtered diagram
(ci)I of finitary strong epis. In particular (gi)I is a colimit cone in K, so that 1C must
factorize through some gi. Then take β : X ′ // X to be fi.

Xi Ci
ci // //Xi

X

fi

��

Ci

C

gi

��

CCi oo_ _ _ _ _ C

C

1C

����
��

��
��

��
��

�

X Cc
// //

Now, g = cβ is a strong epi, hence normal. Being also finitary, Proposition 2.5 (b) (i)
implies it is the cokernel of some monomorphism k′ : K ′ � X ′ with K ′ finitely generated.
This gives us the commutative diagram:

K ′ X ′// k′
// X ′ C

g // // C 0//K ′

K

α

��

X ′

X

β

��

C

C

1C

0 K// K X//
k

// X Cc
// // C 0//
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where α is induced by cβk′ = 0. Now, according to (the dual of) Theorem IV 4.2 of [PT,
04] (the “normalized Barr-Kock” property), this is enough here to conclude that the left
hand square is a pushout. Using the Properties 1.3, we see that k′ is finitely presentable,
and hence its pushout k as well, as required.

2.8. Notes. Among the locally finitely presentable categories, the co-homological reg-
ular ones satisfy the conditions of Proposition 2.7. In fact, the Short Five Lemma being
self-dual, it will be satisfied by these categories, which will then be homological. This in
turn implies that all strong epis are normal (see [PT, 04] IV.4.4).

Hence we have that the conditions
(i) K is co-homological and regular;
(ii) K is homological and co-regular;
(iii) K is homological and co-homological
are all equivalent. It was recently observed by G. Janelidze (see [RT, 02] for a proof) that
the latter condition actually implies that K is additive, and hence that it is equivalent to
the following two:
(iv) K is additive, regular and co-regular;
(v) K is quasi-abelian (= almost abelian = Raikov-semiabelian).
The quasi-abelian categories are defined as the additive categories in which all kernels and
cokernels exist and are stable under pushouts and pullbacks respectively. The category
of torsion-free abelian groups is a (non-abelian) example. Quasi-abelian categories and
several closely related concepts have been widely studied in many papers ([Ra, 69], [Ru,
01], [Ko, 05], [Gn, 66]), in particular what I will call the BP-preabelian categories (from
[BP, 65]). The latter are defined as those additive categories in which every morphism can
be factorized as a normal epimorphism, followed by a bimorphism, followed by a normal
monomorphism (in well-powered and finitely complete categories, this just means that
strong epimorphisms and strong monomorphisms are normal). Rump ([Ru, 08]) recently
showed that they are not all regular nor co-regular (and hence not quasi-abelian). Note
that they have been called semi-abelian in various papers, but should not be confused
with the semi-abelian categories mentioned in 2.2 and 2.6 above, which were introduced
in [JMT, 02].

We don’t know whether the conditions of Proposition 2.7 imply that K is regular, and
hence almost abelian.

2.9. Problems. (1) Is part 2) of Theorem 2.1 also a trivial consequence of something
happening in every locally finitely presentable category?

In particular, in a pointed locally finitely presentable category (or at least in a semi-
abelian category), is every normal epi with a finitely presentable codomain the cokernel of
some finitely presentable (mono)morphism? Is this even the case in Grp, for that matter?

(2) Does part 1) of Theorem 2.1 hold under the conditions of Proposition 2.7?
(3) Does part 2) of Theorem 2.1 hold in all locally finitely presentable additive cate-

gories?
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Question (3) is motivated by the following. A pure mono in a locally finitely pre-
sentable category K can be defined as a morphism f : A //B such that for all commutative
square

A B
f

//

X

A
��

X Y
g // Y

B
��

Y

A

d

���
�

�
�

�
�

�

with g finitely presentable, there exists a diagonal d making the upper triangle commute
([H, 98]). Theorem 5.2 of [P, 09] states that if K is also additive, a pure mono f satisfies
this diagonalization property for every morphism g with the codomain of its cokernel
finitely presentable. (The proof there appears to be incorrect, but one can prove the
statement using the argument in [AR, 04], Example 3). Note that if K is (locally finitely
presentable additive and) regular and coregular, this follows trivially from our Proposition
2.7.

2.10. Acknowledgement. The author is grateful to Marino Gran for drawing his
attention to the literature on quasi-abelian categories and pointing out its relevance to
the subject, and to Yaroslav Kopylov for correcting his mistakes on the various meanings
of “semiabelian”.
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[AR, 04] Adámek, J., Rosický, J., On pure quotients and pure subobjects, Czech. Math.
J. 54(129) (2004), no. 3, 623–636.

[B, 94] Borceux, F., Handbook of Categorical Algebra 2, Encyclopedia of Mathematics
Vol.51, Cambridge University Press, Cambridge 1994.

[BB, 04] Borceux, F., Bourn, D. Mal’cev, Protomodular, Homological and Semi-Abelian
Categories, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht
2004.
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