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NOTES ON BIMONADS AND HOPF MONADS

BACHUKI MESABLISHVILI AND ROBERT WISBAUER

Abstract. For a generalisation of the classical theory of Hopf algebra over fields, A.
Bruguières and A. Virelizier study opmonoidal monads on monoidal categories (which
they called bimonads). In a recent joint paper with S. Lack the same authors define the
notion of a pre-Hopf monad by requiring only a special form of the fusion operator to
be invertible. In previous papers it was observed by the present authors that bimonads
yield a special case of an entwining of a pair of functors (on arbitrary categories). The
purpose of this note is to show that in this setting the pre-Hopf monads are a special case
of Galois entwinings. As a byproduct some new properties are detected which make a
(general) bimonad on a Cauchy complete category to a Hopf monad. In the final section
applications to cartesian monoidal categories are considered.

1. Introduction

The classical definitions of bialgebras and Hopf algebras over fields (or rings) heavily
depend on constructions based on the tensor product. This may have been one of the
reasons why first generalisations of this notions were formulated for monoidal categories,
or even autonomous monoidal categories when the properties of finite dimensional Hopf
algebras were in the focus. This was also the starting point for the definitions of Hopf
monads by I. Moerdijk in [13]. McCrudden [8] suggested to call these functors opmonoidal
monads and A. Bruguières and A. Virelizier just called them bimonads in [3, Section 2.3].

To be more precise, such a bimonad on a monoidal category (V,⊗, I) is a monad
T = (T,m, e) on V endowed with natural transformations χ : T⊗ → T ⊗ T and a
morphism θ : T (I) → I subject to certain (compatibility) conditions. These allow to
define left and right fusion operators by

H l
V,W : (T (V )⊗mW )χV,T (W ) : T (V ⊗ T (W )) −→ T (V )⊗ T (W ),

Hr
V,W : (mV ⊗ T (W ))χT (V ),W : T (T (V )⊗W ) −→ T (V )⊗ T (W ).

As a general form of the Fundamental Theorem for Hopf algebras it is described in
[2, Theorem 4.6] under which conditions the opmonoidal monads induce an equivalence
between the base (autonomous monoidal) category and the category of related bimodules.

It was observed in [11] (see also [1]) that the notions around Hopf algebras can be
formulated for any category A without referring to tensor products. For a bimonad on A
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one requires simply a monad and a comonad structure whose compatibility is essentially
expressed by distributive laws (e.g. [11, Definition 4.1]).

As pointed out in [11, Section 2.2], the opmonoidal monads yield special cases of the
entwining of a monad with a comonad on any category: Hereby the monad T is entwined
with the comonad GT(I) = − ⊗ T (I). In [12, Theorem 5.11] the above mentioned [2,
Theorem 4.6] is formulated in terms of entwining functors.

In [3] an opmonoidal monad (bimonad) is called a Hopf monad provided the left and
right fusion operators are isomorphisms and it is called a left (resp. right) pre-Hopf monad
if, for any V ∈ V, the morphisms H l

I,V (resp. Hr
V,I) is invertible.

In this paper we show that the right pre-Hopf monads T are just those for which the
related entwining is GT(I)-Galois in the sense of [11, 3.13]. This leads to an improved
version of [3, Theorem 6.11] which describes when a pre-Hopf monad on V induces an
equivalence between V and the category of left Hopf T-modules (see Theorem 4.7).

In Section 1 we recall some basic notions and can use [3, Lemma 2.19] to improve
some of our own results on Galois entwinings (see Theorem 2.12).

This is applied in Section 2 to find new properties of a bimonad in the sense of [11] to
make it a Hopf monad, provided the base category is Cauchy complete.

In Section 3 opmonoidal monads T on (V,⊗, I) are investigated. In this case T (I)
is a comonoid in V and we have an entwining between T and GT(I) = − ⊗ T (I). As
mentioned above, the main result in this section is Theorem 2.12 which tells us when pre-

Hopf monads induce an equivalence between V and VGT(I)

T . We also observe (in 4.2) that
for any V-comonoid C = (C, δ, ε), T (C) also allows for a V-comonoid structure provided
C allows for a group-like morphism g : I → C. In this case we get functors from V to

VGT(C)

T and the question arises under which conditions these induce an equivalence. It is
shown in Theorem 4.8 that this is only the case if g : I → C is an (comonad) isomorphism.

In the final section we consider applications to cartesian monoidal categories and
provide examples of pre-Hopf functors for which the related comparison functor is not an
equivalence.

2. Preliminaries

For a monad T = (T,m, e) on a category A, we write AT for the Eilenberg-Moore category
of T-modules and write

ηT , εT : ϕT ⊣ UT : AT → A

for the corresponding forgetful-free adjunction. Dually, if G = (G, δ, ε) is a comonad on
A, we denote by AG the Eilenberg-Moore category of G-comodules and by

ηG, εG : UG ⊣ ϕG : A → AG

the corresponding forgetful-cofree adjunction.
For convenience we recall some notions and results from [12, Section 3].
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2.1. Module functors. For a monad T = (T,m, e) on A, a (left) T-module consists
of a functor R : B → A, equipped with a natural transformation α : TR → R satisfying
α · eR = 1R and α ·mR = α · Tα.

According to [4, Proposition II.1.1], if (R,α) is a T-module, then the assignment

b 7−→ (R(b), αb)

extends uniquely to a functor R : B → AT with UTR = R. This gives a bijection, natural
in T, between left T-module structures on R : B → A and functors R : B → AT with
UTR = R.

It is also shown in [4] that, for any T-module (R : B → A, α) admitting a left adjoint
functor F : A → B, the composite

tR : T
Tη // TRF

αF // RF ,

where η : 1 → RF is the unit of the adjunction F ⊣ R, is a monad morphism from T to
the monad on A generated by the adjunction F ⊣ R.

2.2. Definition. ([1, 2.19]) A left T-module R : B → A with a left adjoint F : A → B
is said to be T-Galois if the corresponding morphism tR : T → RF of monads on A is an
isomorphism.

Expressing the dual of [10, Theorem 4.4] in the present situation gives:

2.3. Proposition.The functor R is an equivalence of categories if and only if the functor
R is T-Galois and monadic.

2.4. Comodule functors. Given a comonad G = (G, δ, ε) on A, a left G-comodule
is a functor F : B → A equipped with a natural transformation β : F → GF satisfying
εF · β = 1F and δF · β = Gβ · β.

A left G-comodule structure on F : B → A is equivalent to the existence of a functor
F : B → AG (dual to [4, Proposition II.1.1]) with F = UGF .

If a G-comodule (F, β) admits a right adjoint R : A → B, with counit σ : FR → 1,
then there is a comonad morphism

tF : FR
βR // GFR

Gσ // G

from the comonad generated by the adjunction F ⊣ R to the comonad G.

2.5. Definition. ([11, Definition 3.5]) A left G-comodule F : B → A with a right adjoint
R : A → B is said to be G-Galois if the corresponding morphism tF : FR → G of
comonads on A is an isomorphism.

Now [5, Theorem 2.7] (also [10, Theorem 4.4]) can be rephrased as follows:

2.6. Proposition.The functor F is an equivalence of categories if and only if the functor
F is G-Galois and comonadic.

Recall [12, Definition 1.19]:
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2.7. Definition. Let T = (T,m, e) be a monad and G = (G, δ, ε) a comonad on A. If
(G,α : TG → G) is a left T-module, then we say that (G,α) is T-Galois, if the composite

γG : TG
Tδ // TGG

αG // GG

is an isomorphism.
Dually, if (T, β : T → GT ) is a left G-comodule, then (T, β) is G-Galois, if the

composite

γT : TT
βT // GTT

Gm // GT

is an isomorphism

2.8. Entwinings. Recall (for example, from [15]) that an entwining ormixed distributive
law from a monad T = (T,m, e) to a comonad G = (G, δ, ε) on a category A is a natural
transformation λ : TG → TG with certain commutative diagrams (e.g. [14, 5.3]).

It is well-known (see [15]) that the following structures are in bijective correspondence:

• entwinings λ : TG → GT ;

• comonads Ĝ = (Ĝ, δ̂, ε̂) on AT that extend G in the sense that

UT Ĝ = GUT , UT δ̂ = δUT and UT ε̂ = εUT ;

• monads T̂ = (T̂ , m̂, ê) on AG that extend T in the sense that

UGT̂ = TUG, UGm̂ = mUG and UGê = eUG.

For any entwining λ : TG → GT , (a, ha) ∈ AT and (a, θa) ∈ AG (e.g. [14, Section 5]),

Ĝ(a, ha) = (G(a), G(ha) · λa), δ̂(a,ha) = δa, ε̂(a,ha) = εa,

T̂ (a, θa) = (T (a), λa · T (θa)), m̂(a,θa) = ma, ê(a,θa) = ea.

We write AG
T (λ) (or just AG

T when λ is understood) for the category whose objects are
triples (a, ha, θa), where (a, ha) ∈ AT and (a, θa) ∈ AG, with commuting diagram

T (a)
ha //

T (θa)

��

a
θa // G(a)

TG(a)
λa

// GT (a).

G(ha)

OO

The assignments (a, ha, θa) → ((a, ha), θa)) and ((a, ha), θa)) → ((a, θa), ha) yield iso-
morphisms of categories

AG
T (λ) ≃ (AT )

Ĝ ≃ (AG)T̂ .
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We fix now an entwining λ : TG → GT and let K : A → (AG)T̂ be a functor satisfying

ϕG = UT̂K. Writing αK : T̂ ϕG → ϕG for the corresponding T̂-module structure on ϕG

(see 2.1), the natural transformation

UG(αK) : TG = TUGϕG = UGT̂ ϕG −→ UGϕG = G

provides a left T-module structure on G (see [12, Section 2]).

Similarly, if K : A → (AT )
Ĝ is a functor with ϕT = U ĜK, then the natural transfor-

mation
UT (βK) : T = UTϕT −→ GT = GUTϕT = UT ĜϕT ,

where βK : ϕT → ĜϕT is the corresponding Ĝ-comodule structure on ϕT (see 2.4), induces
a G-comodule structure on T (see again [12, Section 2]).

The following part of [3, Lemma 2.19] is of use for our investigation.

2.9. Lemma. Let τ : FUT → F ′UT be a natural transformation, where F, F ′ : A → B are
arbitrary functors. If the natural transformation

τϕT : FT = FUTϕT −→ F ′UTϕT = F ′T

is an isomorphism, then so is τ .

2.10. Proposition. Suppose K : A → (AT )
Ĝ to be a functor with U ĜK = ϕT and

denote by βK : ϕT → ĜϕT the corresponding Ĝ-comodule structure on ϕT . Then (ϕT , βK)

is Ĝ-Galois if and only if (T, UT (βK)) is G-Galois.

Proof. By 2.5, (ϕT , βK) is Ĝ-Galois if the comonad morphism tK : ϕTUT → Ĝ, which is
the composite

ϕTUT
βKUT−−−→ ĜϕTUT

ĜεT−−→ Ĝ,

is an isomorphism, while, by 2.7, (T, UT (βK)) is G-Galois if the composite

γT : TT
UT βKT// GTT

Gm // GT

is an isomorphism. So, we have to show that tK is an isomorphism if and only if γT is so.
Since UT Ĝ = GUT , the natural transformation

UT tK : UTϕTUT
UT βKUT−−−−−→ UT ĜϕTUT

UT ĜεT−−−−→ UT Ĝ

can be rewritten as

TUT
UT βKUT−−−−−→ GUTϕTUT

GUT εT−−−−→ GUT .

Then UT tKϕT is the composite

TT = TUTϕT
UT βKUTϕT−−−−−−−→ GUTϕTUTϕT

GUT εTϕT−−−−−−→ GUTϕT ,

and since UT ε
TϕT = m : TT = UTϕTUTϕT → UTϕT = T, it follows that UT tKϕT is

just γT . Now, if tK is an isomorphism, it is then clear that γT = UT (tK)ϕT is also an
isomorphism. Conversely, if γT is an isomorphism, then by Lemma 2.9, UT tK is also an
isomorphism. But since UT is conservative, tK is an isomorphism too. This completes the
proof.
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Dually, one has

2.11. Proposition. Suppose that K : A → (AG)T̂ is a functor with UT̂K = ϕG and

let αK : T̂ ϕG → ϕG be the corresponding T̂-module structure on ϕG. Then (ϕG, αK) is

T̂-Galois if and only if (G,UG(αK)) is T-Galois.

In view of Propositions 2.10 and 2.11, we get from Propositions 2.3 and 2.6:

2.12. Theorem. In the situation of Proposition 2.10, the functor K : A → (AT )
Ĝ is an

equivalence of categories if and only if (T, UT (βK)) is G-Galois and the monad T is of
effective descent type (i.e. the functor ϕT : A → AT is comonadic.)

Dually, in the situation of Proposition 2.11, the functor K : A → (AG)T̂ is an equiva-
lence if and only if (G,UG(αK)) is T-Galois and the comonad G is of effective codescent
type (i.e. the functor ϕG : A → AG is monadic).

2.13. Galois entwinings. Let T = (T,m, e) be a monad and G = (G, δ, ε) a comonad
on a category A with an entwining λ : TG → GT . If G has a group-like morphism
g : 1 → G (in the sense of [12, Definition 3.1]), then T has two left G-comodule structures
given by

gT : T → GT and g̃ : T
Tg // TG

λ // GT ,

and it was shown in [12] that the equaliser (T g, i) of these natural transformations admits
the structure of a monad in such a way that i : T g → T becomes a monad morphism.
We write i∗ : AT → AT g for the functor that takes an arbitrary T-algebra (a, ha) ∈ AT to
the Tg-algebra (a, ha · ia) ∈ AT g . When the category AT admits coequalisers of reflexive
pairs (which is certainly the case if A has coequalisers of reflexive pairs and the functor
T preserves them), i∗ has a left adjoint i∗ : AT g → AT . In this case, according to the

results of [12], there is a comparison functor i : AT g → (AT )
Ĝ yielding commutativity of

the diagram

A

Kg,G

((

ϕT &&MMMMMMMMMMMMM
ϕTg // AT g

i∗
��

i // (AT )
Ĝ

UĜ
wwooooooooooooo

AT

(1)

where U Ĝ : (AT )
Ĝ → AT is the evident forgetful functor and Kg,G : A → (AT )

Ĝ is the

functor that takes a ∈ A to ((T (a),ma), g̃a) ∈ (AT )
Ĝ (see [12, Section 3]).

Let us write G̃ for the comonad generated by the adjunction i∗ ⊣ i∗ and write

• SKg,G
: UTϕT → Ĝ for the comonad morphism corresponding to the outer diagram

in (1),

• SϕTg : UTϕT → G̃ for the comonad morphism corresponding to the left triangle in
(1),
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• and Si : G̃ → Ĝ for the comonad morphism corresponding to the right triangle in
(1) that exists according to [12, Proposition 1.20].

2.14. Definition. [12] Under the circumstances above, we call (T,G, λ, g) a Galois

entwining if the comonad morphism Si : G̃ → Ĝ is an isomorphism, or, equivalently, the

functor i∗ is Ĝ-Galois. In this case g : 1 → G is said to be a Galois group-like morphism.

2.15. Theorem. [12] Let λ : TG → GT be an entwining from a monad T to a comonad
G on a category A. Suppose that g : 1 → G is a group-like morphism such that the
corresponding functor i∗ : AT → AT g admits a left adjoint functor i∗ : AT g → AT . Then
the comparison functor i : AT g → (AT )

Ĝ is an equivalence of categories if and only if
(T,G, λ, g) is a Galois entwining and the functor i∗ is comonadic.

3. Bimonads

The preceding results allow to formulate new conditions which turn bimonads into Hopf
monads. Recall from [11, Definition 4.1] that a bimonad H on any category A is an
endofunctor H : A → A with a monad structure H = (H,m, e), a comonad structure
H = (H, δ, ε), and an entwining λ : HH → HH from the monad H to the comonad H
inducing commutativity of the diagrams

HH
εH //

Hε
//

m

��

H

ε
��

H
ε // 1,

1
e //

e

��

H

δ
��

H
eH //

He
// HH,

1
e //

=
��>

>>
>>

>>
> H

ε
��
1,

HH
m //

Hδ
��

H
δ // HH

HHH
λH

// HHH.

Hm

OO

Given a bimonad H, one has the comparison functor

KH : A → AH
H = AH

H(λ), a 7→ (H(a),ma, δa)

with commutative diagrams

A
KH //

ϕH
$$JJJJJJJJJJJJ AH

H ≃ (AH)
Ĥ

UĤ

��
AH ,

A
KH //

ϕH
%%JJJJJJJJJJJJ AH

H ≃ (AH)Ĥ

U
Ĥ

��

AH .

Writing KH (resp. KH) for the composite A KH−−→ AH
H ≃ (AH)

Ĥ (resp. A KH−−→ AH
H ≃

(AH)Ĥ) and writing αKH
(resp. αKH

) for the Ĥ-comodule (resp. Ĥ-module) structure
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on ϕH (resp. ϕH) that exists by 2.4 (resp. 2.1), we know from [11, 4.3] that UH(αKH
) =

δ : H → HH and that UH(αKH
) = m : HH → H. It then follows from 2.7 that

γH : H H → HH is the composite

HH
δH−→ HHH

Hm−−→ HH,

while γH : HH → H H is the composite

HH
Hδ−→ HHH

mH−−→ HH.

Employing the notions considered above we have the following list of

3.1. Characterisations of Hopf monads. For a bimonad H on a Cauchy complete
category A, the following are equivalent :

(a) (ϕH , αKH
) is Ĥ-Galois, i.e., the composite tKH

: ϕHUH

αKH
UH

−−−−→ ĤϕHUH

ĤεH−−→ Ĥ is
an isomorphism;

(b) (ϕH , αKH
) is Ĥ-Galois, i.e., the composite tKH

: Ĥ
ĤηH−−−→ ĤϕHUH

αK
H
UH

−−−−−→ ϕHUH is
an isomorphism;

(c) the unit e : 1 → H is a Galois group-like morphism;

(d) the functor KH : A → AH
H (hence also KH : A → (AH)

Ĥ and KH : A → (AH)Ĥ) is
an equivalence of categories;

(e) (H,m) is H-Galois, i.e., γH : HH
δH−→ HHH

Hm−−→ HH is an isomorphism;

(f) (H, δ) is H-Galois, i.e., γH : HH
Hδ−→ HHH

mH−−→ HH is an isomorphism;

(g) H has an antipode, i.e., there exists a natural transformation S : H → H with

m ·HS · δ = e · ε = m · SH · δ.

Proof. (a), (c) and (d) are equivalent by [12, 4.2], while (e), (f) and (g) are equivalent
by [11, 5.5]. Moreover, (a)⇔(e) follows by Proposition 2.10 and (b)⇔(f) by Proposition
2.11.
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3.2. Example. Let (V, τ) be a lax braided monoidal category (see, for example, [3]) and
A = (A,m, e, δ, ε) a bialgebra in V. We write H for the endofunctor A⊗− : V → V. It is
easy to verify directly, using the axioms of lax braidings, that the natural transformation
τ = τA ⊗− : HH → HH is a local prebraiding (in the sense of [11]) and that

(H,m, e, δ, ε),

where m = m ⊗ −, e = e ⊗ −, δ = δ ⊗ − and ε = ε ⊗ −, is a τ -bimonad on V. Then,
according to [11, Section 6], the composite τ̃ = mH · Hτ · δH is an entwining from
the monad (H,m, e) to the comonad (H, δ, ε) that makes (H,m, e, δ, ε) a bimonad on V.
Writing VA

A for the category VH
H(τ̃), we get from Theorem 3.1 the following generalisation

of [11, Theorem 6.12]:

3.3. Proposition. Let (V, τ) be a lax braided category such that V is Cauchy complete.
If A is a bialgebra in V, then the comparison functor

K : V → VA
A, V 7→ (A⊗ V,m⊗ V, δ ⊗ V ),

is an equivalence of categories if and only if A is a Hopf algebra, that is, A has an
antipode.

4. Opmonoidal Monads

4.1. Pre-Hopf monads.Recall (for example, from [8]) that an opmonoidal functor from
a monoidal category (V,⊗, I) to a monoidal category (V′,⊗′, I′) is a triple (S, χ, θ), where
S : V → V′ is a functor, χ : S⊗ → S ⊗′ S is a natural transformation, and θ : S(I) → I′
is a morphism that are compatible with the tensor structures. Note that opmonoidal
functors S take V-comonoids (i.e. comonoids in V) into V′-comonoids in the sense that
if C = (C, δ, ε) is a V-comonoid, then the triple S(C) = (S(C), χC,C · S(δ), θ · S(ε)) is a
V′-comonoid.

Recall also (again from [8]) that an opmonoidal monad on a monoidal category (V,⊗, I)
is a monad T = (T,m, e) on the category V whose functor part T is an opmonoidal
endofunctor together with natural transformations

χV,W : T (V ⊗W ) → T (V )⊗ T (W ) for V,W ∈ V

and a morphism θ : T (I) → I that are compatible with the monad structure.
For example, it was pointed out in [2] that any bialgebra A = (A, µ, η, δ, ε) in a

braided monoidal category (V,⊗, I) with braiding τV,W : V ⊗W → W ⊗ V gives rise to
an opmonoidal V-monad A⊗−, where the natural transformation χV,W : A⊗ V ⊗W →
A⊗ V ⊗ A⊗W is the composite

A⊗ V ⊗W
δ⊗V⊗W // A⊗ A⊗ V ⊗W

A⊗τA,V ⊗W
// A⊗ V ⊗ A⊗W ,

while θ : A → I is just ε.



290 BACHUKI MESABLISHVILI AND ROBERT WISBAUER

From now on we shall assume (actually without loss of generality by the coherence
theorem in [7]) that all our monoidal categories are strict.

According to [3], an opmonoidal monad T = (T,m, e) on the monoidal category
(V,⊗, I) is left pre-Hopf if, for any object V of V, the composite

H l
I,V : TT (V ) = T (I⊗ T (V ))

χI,T (V )−−−−→ T (I)⊗ TT (V )
T (I)⊗mV−−−−−→ T (I)⊗ T (V )

is an isomorphism, and T is right pre-Hopf provided

Hr
V,I : TT (V ) = T (T (V )⊗ I)

χT (V ),I−−−−→ TT (V )⊗ T (I) mV ⊗T (I)−−−−−→ T (V )⊗ T (I)

is an isomorphism. T is called a pre-Hopf monad if it is both left and right pre-Hopf.
For for any (V, hV ) ∈ VT and W ∈ V, consider the morphisms

Hr
V,W : T (V ⊗W )

χV,W−−−→ T (V )⊗ T (W )
hV ⊗T (W )−−−−−−→ V ⊗ T (W ),

and for any V ∈ V and (W,hW ) ∈ VT , define

Hl
V,W : T (V ⊗W )

χV,W−−−→ T (V )⊗ T (W )
T (V )⊗hW−−−−−−→ T (V )⊗W.

It is shown in [3] that, for any V ∈ V, Hr
−,V (resp. H l

V,−) is an isomorphism if and
only if Hr

−,V (resp. Hl
V,−) is so. In particular, T is right (resp. left) pre-Hopf monad if

and only if for any (V, hV ) ∈ VT , the morphism Hr
V,I (resp. Hl

I,V ) is an isomorphism.

4.2. Entwined modules. Let (V,⊗, I) be a monoidal category and let T = (T,m, e)
be an opmonoidal monad on V. As the functor T is opmonoidal, for any V-comonoid
C = (C, δ, ε), the triple T (C) = (T (C), χC,C · T (δ), θI · T (ε)) is also a V-comonoid. In
particular, the triple T (I) = (T (I), χI, I, θ) is a V-comonoid corresponding to the trivial
V-comonoid I = (I, 1I, 1I). Given a V-comonoid C, we write GC for the comonad on V
whose functor part is GC = −⊗ C.

The compatibility axioms for T ensure that the natural transformation

λC
− := H l

−,C = (T (−)⊗mC) · χ−, T (C) : T (−⊗ T (C)) → T (−)⊗ T (C)

is a mixed distributive law (entwining) from the monad T to the comonad GT (C) and the
diagrams in 2.8 come out as

V⊗ T (C)
eV ⊗T (C)

vvmmmmmmmmmmmm
eV ⊗T (C)

��
T (V⊗ T (C))

λC
V,T (C)

// T (V )⊗T (C),

T (V⊗T (C))
T (V⊗T (ε)) //

λC
V,T (C)

��

T (V⊗T (I))
T (V⊗θ)

&&MMMMMMMMMM

T (V )⊗T (C)
T (V )⊗T (ε)

// T (V )⊗T (I)
T (V )⊗θ

// T (V ),
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T (V ⊗ T (C))

λC
V,T (C)

��

T (V⊗T (δ)) // T (V ⊗ T (C ⊗ C))
T (V⊗χC,C)

// T (V ⊗ T (C)⊗ T (C))

λC
V ⊗T (C),T (C)

��
T (V ⊗ T (C))⊗ T (C)

λC
V,T (C)

⊗T (C)

��
T (V )⊗ T (C)

T (V )⊗T (δ)// T (V )⊗ T (C ⊗ C)
T (V )⊗χC,C // T (V )⊗ T (C)⊗ T (C),

T (T (V ⊗ T (C)))
T (λC

V,T (C)) //

mV ⊗T (C)

��

T (T (V )⊗ T (C))
λC
T (V ),T (C) // TT (V )⊗ T (C)

mV ⊗T (C)
��

T (V ⊗ T (C))
λC
V,T (C) // T (V )⊗ T (C).

The entwined T (C)-modules are objects V ∈ V with a T -module structure h : T (V ) →
V and a T (C)-comodule structure ρ : V → V ⊗ T (C) inducing commutativity of the
diagram

T (V ) h //

T (ρ)
��

V
ρ // V ⊗ T (C)

T (V ⊗ T (C)) χV,T (C)

// T (V )⊗ TT (C)
T (V )⊗mC

// T (V )⊗ T (C).

h⊗T (C)

OO

They form a category in an obvious way which we denote by VT (C)
T . It is clear that VT (C)

T

is just the category VGT (C)

T (λC) = (VT )
ĜT (C) .

When C = I is the trivial V-comonad, the entwined T (I)-modules are named right
Hopf T -modules in [2, Section 4.2] (also [3, 6.5]).

There is another description of the category VT (C)
T . Since T is opmonoidal, VT is a

monoidal category, and the functor ϕT : V → VT is also opmonoidal. Then, for any
V-comonoid C, the triple

ϕT (C) = ((T (C),mC), χC,C · T (δ), θI · T (ε)))

is a VT -comonoid and it is easy to see that the comonad ĜT (C) is just the comonad

GϕT (C) and that the category VT (C)
T is just the category (VT )

ϕT (C). In particular, if
ϕT (I) = ((T (I),mI) χI, I, θ) is a VT -comonoid corresponding to the trivial V-comonoid

I = (I, 1I, 1I), then ĜT (I) = GϕT (I) and VT (I)
T = (VT )

ϕT (I).

4.3. Remark. It follows from the results of [12, 5.13] that, for an arbitrary bialgebra
A = (A, µ, η, δ, ε) in a braided monoidal category (V,⊗, I), the following are equivalent:
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(i) the natural transformation λI
− = H l

−,I : A⊗−⊗ A → A⊗−⊗ A,
corresponding to the opmonoidal V-monad A⊗−, is an isomorphism;

(ii) the morphism λI
I = H l

I,I : A⊗ A → A⊗ A is an isomorphism;

(iii) the composite A⊗ A
δ⊗A−−→ A⊗ A⊗ A

A⊗m−−−→ A⊗ A is an isomorphism.

Recall (for example from [10]) that condition (iii) is in turn equivalent to saying that
A has an antipode, i.e. A is a Hopf algebra. It follows from the equivalence (i)⇔(iii)
that, for any V ∈ V, the natural transformation H l

−,V , which is easily seen to be just the
natural transformation H l

−,I ⊗ V , is an isomorphism, or equivalently, the monad A ⊗ −
is left Hopf, if and only if A is a Hopf algebra. Moreover, if the monad A ⊗ − is left
pre-Hopf (and hence, in particular, the morphism H l

I,I is an isomorphism), then according
to the equivalence (ii)⇔(iii), A is a Hopf algebra. Putting this information together and
using that, quite obviously, any left Hopf monad is left pre-Hopf, we have proved that the
following are equivalent:

(i) A is a Hopf algebra;

(ii) the monad A⊗− is left pre-Hopf;

(iii) the monad A⊗− is left Hopf.

This result may be compared with [3, Proposition 5.4(a)].

4.4. Group-like morphisms. Suppose now that the V-comonoid C allows for a group-
like element g : I → C (see [10], [11]). Then direct inspection shows that g : I g−→
C

eC−→ T (C) is a group-like element for the V-comonoid T (C) implying that the natural
transformation −⊗ g : 1 → −⊗ T (C) is a group-like morphism. Thus the results of [10]
apply. In particular, the composite

T (−)
T (−⊗g)−−−−→ T (−⊗ T (C))

λC
−−→ T (−)⊗ T (C)

gives the structure ϑ : ϕT → ϕT ĜT (C) of a ĜT (C)-comodule on the functor ϕT : V → VT .
Since in the diagram

T (−)
T (−⊗g) //

χ−,I

��

T (−⊗ C)
T (−⊗eC) //

χ−,C

��

T (−⊗ T (C))
χ−,T (C) // T (−)⊗ T 2(C)

T (−)⊗mC

��
T (−)⊗ T (I)

T (−)⊗T (g)
// T (−)⊗ T (C)

T (−)⊗T (eC)dddddddddddddd

22dddddddddddddd

T (−)⊗ T (C)

the rectangle and the top triangle commute by naturality of χ, while the bottom triangle
commutes since e is the unit for the multiplication m, it follows that ϑ is just the natural
transformation

T (−)
χ−,I−−→ T (−)⊗ T (I) T (−)⊗T (g)−−−−−−→ T (−)⊗ T (C).
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It then follows that the assignment V −→ ((T (V ),mV ), (T (V ) ⊗ T (g)) · χV,I) yields a
functor

Kg,C := Kg,GT (C)
: V → VT (C)

T = (VT )
ĜT (C)

with ϕT = U ĜT (C)Kg,C.
One calculates that for any (V, hV ) ∈ VT , the (V, hV )-component of the induced

comonad morphism SKg,C
: ϕTUT → ĜT (C) is the composite

T (V )
χV, I // T (V )⊗ T (I) T (V )⊗T (g) // T (V )⊗ T (C)

hV ⊗T (C) // V ⊗ T (C).

In particular, when C is the trivial V-comonoid I together with the evident group-like
morphism 1I : I → I, the morphism χ−,I : T (−) → T (−) ⊗ T (I) gives the structure

ϑ′ : ϕT → ϕT ĜT (I) of a ĜT (I)-comodule on the functor ϕT : V → VT , and then one has

ϕT = U ĜT (I)K1I,I with the comparison functor K1I,I(V ) = ((T (V ),mV ), χV, I). Moreover,
for any (V, hV ) ∈ VT , the (V, hV )-component of the induced comonad morphism SK1I,I

:

ϕTUT → ĜT (I) is the composite

T (V )
χV, I // T (V )⊗ T (I) hV ⊗T (I) // V ⊗ T (I).

Comparing now ϑ and ϑ′ gives

ϑ = (T (−)⊗ T (g)) · ϑ′ (2)

while comparing SKg,C
and SKeI,I

and using that

(hV ⊗ T (C)) · (T (V )⊗ T (g)) = (V ⊗ T (g)) · (hV ⊗ T (I))

by bifunctoriality of the tensor product, gives

SKg,C
= (−⊗ T (g)) · SKeI,I

. (3)

It is easy to see that SKeI,I
just the composite Hr

V,I. This yields in particular a fact
proved in [3, Lemma 6.5]:

4.5. Lemma. Hr
−,I : T(−) → −⊗ T(I) is a morphism of comonads ϕTUT → ĜT(I).

We already know (see 4.1) that T is a right pre-Hopf monad iff the natural transfor-
mation Hr

−,I (or, equivalently, the comonad morphism SKeI,I
) is an isomorphism. It now

follows from Proposition 2.10:

4.6. Proposition. An opmonoidal monad T on V is a right pre-Hopf monad if and only
if T is GT(I)-Galois.

This allows us to present an improved version of [3, Theorem 6.11].
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4.7. Theorem. For an opmonoidal monad T on a monoidal category (V,⊗, I), the fol-
lowing are equivalent:

(a) the functor K1I,I : V → VT(I)
T is an equivalence of categories;

(b) (i) T is GT(I)-Galois,

(ii) T is of effective descent type.

Proof. The assertion follows by Proposition 2.6.

4.8. Theorem. Let T = (T,m, e) be an opmonoidal monad on a monoidal category
(V,⊗, I) and C = (C, δ, ε) a V-comonoid with a group-like element g : I → C. The
following are equivalent:

(a) the functor Kg,C : V → (VT)
ϕT(C)

is an equivalence of categories;

(b) K1I,I : V → (VT)
ϕT(I)

is an equivalence of categories and g is an isomorphism;

(c) (i) T is GT(I)-Galois,

(ii) T is of effective descent type,

(iii) g is an isomorphism.

Proof.Note first that, being group-like morphisms, g and T (g) are split monomorphisms.
Hence the natural transformation −⊗T (g) : GT (I) → GT (C) is also a split monomorphism.

Now, if the functor Kg,C : V → VT(C
T = (VT )

ĜT (C) is an equivalence of categories,
then it follows from Proposition 2.6 that the monad T is of effective descent type and

the comonad morphism SKg,C
: ϕTUT → ĜT (C) is an isomorphism. Since SKg,C

= (− ⊗
T (g)) · SKeI,I

by (3) and since the natural transformation − ⊗ T (g) : GT (I) → GT (C) is a
split monomorphism, it follows that the natural transformations −⊗ T (g) and SKeI,I

are
both isomorphisms. Then, in particular, T (g) is an isomorphism. Since T is of effective
descent type, the functor T is conservative (see, [9, Proposition 3.11]). Thus g is also
an isomorphism. Since T is of effective descent type and since SKeI,I

is an isomorphism,

it follows from Proposition 2.6 that the functor KeI,I : V → VT(I)
T is an equivalence

of categories. Hence (a) implies (b). Since (b) trivially implies (a), (a) and (b) are
equivalent. Finally, (b) and (c) are equivalent by Theorem 4.7.

4.9. Galois group-like morphisms. We will assume from now on that our monoidal
category (V,⊗, I) admits equalisers.

Let T = (T,m, e) be an opmonoidal monad on V, C a V-comonoid and g : I → C
a group-like element. Since V has equalisers, one can consider the V-monad T−⊗g. We
write Tg for this monad. Let us say that g : I → C is a Galois group-like element if the
induced group-like morphism − ⊗ g : 1 → GT (C) is Galois. In particular, the group-like
element 1I : I → I is Galois if the group-like morphism − ⊗ 1I = − ⊗ eC : 1 → GT (I) is
Galois.

Specialising now Theorem 2.15 to the present situation gives:
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4.10. Theorem. Let T be an opmonoidal monad on a monoidal category (V,⊗, I) and C
a V-comonoid. Suppose that g : I → C is a group-like element such that the corresponding
functor i∗ : VT → VT g admits a left adjoint functor i∗ : VT g → VT . Then the comparison

functor i : VT g → VT (C)
T = (VT )

ĜT (C) is an equivalence of categories if and only if g is a
Galois group-like element and the functor i∗ is comonadic.

Direct inspection shows (see also [12, Section 5]) that T 1I is given by the equaliser

T 1I(−) // T (−)
T (−)⊗eI //

χ−,I
// T (−)⊗ T (I),

while T g is given by the equaliser

T g(−) // T (−)
T (−)⊗eI //

χ−,I
// T (−)⊗ T (I) T (−)⊗T (g) // T (−)⊗ T (C).

Since g, being a group-like morphism, is a split monomorphism, so too is the natural
transformation T (−) ⊗ T (g). It follows that the monad T1I can be identified with the
monad Tg. Since g : I → C is nothing but a comonoid morphism from the trivial V-
comonoid I to the V-comonoid C and since any opmonoidal functor preserves comonoid
morphisms, T (g) : T (I) → T (C) can be seen as a morphism of V-comonoids T (I) → T (C).
It is then easy to see that the induced morphism of V-comonads −⊗T (g) : GT (I) → GT (C)

can be lifted to a morphism ̂−⊗ T (g) : ĜT (I) → ĜT (C) of VT -comonads. Using that
ϑ = (T (−)⊗T (g))·ϑ′ by (2), it follows from [12, Lemma 3.9] that one has the commutative
diagram

i∗
α //

α′
""EE

EE
EE

EE
EE ĜT (C) · i∗

ĜT (I) · i∗
̂−⊗T (g)·i∗

99ssssssssss
,

where i : T g = T 1I → T is the canonical inclusion, while α (resp. α′) is a left ĜT (C)-

comodule (resp. ĜT (I)-comodule) structure on i∗. It then follows that one also has com-
mutativity of

G̃T (C)

Si //

Si ""EE
EE

EE
EE

ĜT (C)

ĜT (I)

̂−⊗T (g)

<<yyyyyyyy
,

(4)

where G̃T (C) denotes the comonad generated by the adjunction i∗ ⊢ i∗ (see 2.13).

4.11. Proposition. Let T be an opmonoidal monad on a monoidal category (V,⊗, I)
and C a V-comonoid.
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(1) A group-like element g : I → C is Galois if and only if the group-like element
1I : I → I is Galois and the morphism T (g) : T (I) → T (C) is an isomorphism.

(2) If the monad T is conservative, then any V-comonoid admitting a Galois group-like
element is (isomorphic to) the trivial V-comonoid I.

Proof. To say that the group-like morphism g : I → C (resp. 1I : I → I) is Galois

is to say that the comonad morphism Si : G̃T (I) → ĜT (I) (resp. Si : G̃T (C) → ĜT (C))
is an isomorphism. Now, since T (g) is a split monomorphism, the result follows from
the commutativity of diagram (4). This proves (1). Recalling that a monad is called
conservative provided that its functor part is conservative, one sees that (2) follows from
(1).

Combining Theorem 4.10 and Proposition 4.11 gives:

4.12. Theorem. Let T be an opmonoidal monad on a monoidal category (V,⊗, I) such
that the functor i∗ : VT → VT 1I admits a left adjoint functor i∗ : VT 1I → VT and C a
V-comonoid. Then, for any group-like element g : I → C, the following are equivalent:

(a) g : I → C is a Galois group-like element and the functor i∗ is comonadic;

(b) the comparison functor i : VT g → (VT)
ϕT(C)

is an equivalence of categories;

(c) 1I : I → I is a Galois group-like element, the functor i∗ is comonadic and the
morphism T (g) : T (I) → T (C) is an isomorphism;

(d) the comparison functor i : VT 1I → (VT)
ϕT(I)

is an equivalence of categories and the
morphism T (g) : T (I) → T (C) is an isomorphism.

It is easy to see that, in the case where the monad T1I = Tg is (isomorphic to) the
identity monad, the functor ϕT 1I = ϕT g is (isomorphic to) the identity functor, the functor
i∗ is (isomorphic to) the functor ϕT , while the functor i is (isomorphic to) the comparison
functor Kg,C. Using now that the monad T is conservative provided that the functor ϕT

is so, in the light of Proposition 4.11, we get from Theorems 4.8 and 4.12:

4.13. Theorem. Let T be an opmonoidal monad on a monoidal category (V,⊗, I) such
that the monad T1I is (isomorphic to) the identity monad and C a V-comonoid. Then,
for any group-like element g : I → C, the following are equivalent:

(a) g : I → C is a Galois group-like element and the functor ϕT is comonadic;

(b) the comparison functor Kg,C : V → (VT)
ϕT(C)

is an equivalence of categories;

(c) 1I : I → I is a Galois group-like element, the functor ϕT is comonadic, and the
morphism g : I → C is an isomorphism;

(d) the comparison functor Kg,I : V → (VT)
ϕT(I)

is an equivalence of categories and the
morphism g : I → C is an isomorphism;
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(e) (i) T is GT(I)-Galois,

(ii) T is of effective descent type,

(iii) g is an isomorphism.

4.14. Definition. We say that an opmonoidal monad T on a monoidal category V is
augmented if it is equipped with a monad morphism σ : T → 1V. In this case σ is said to
be an augmentation.

4.15. Lemma. Suppose that T is an augmented right-Hopf opmonoidal monad on a
monoidal category V with an augmentation σ : T → 1V. Then, for any V ∈ V, the
composite

σV : T (V )
χV,I−−→ T (V )⊗ T (I) σV ⊗T (I)−−−−−→ V ⊗ T (I)

is an isomorphism.

Proof. Just note that, since σ : T → 1V is a morphism of monads, for any V ∈ V,
(V, σV ) is an object of VT .

4.16. Theorem. Let T = (T,m, e) be an augmented right-Hopf opmonoidal monad on
a Cauchy complete monoidal category (V,⊗, I) with an augmentation σ : T → 1V. Then,
for any group-like element g : I → C, the following are equivalent:

(a) g : I → C is a Galois group-like element;

(b) the comparison functor Kg,C : V → (VT)
ϕT(C)

is an equivalence of categories;

(c) the comparison functor Kg,I : V → (VT)
ϕT(I)

is an equivalence of categories and the
morphism g : I → C is an isomorphism;

(d) 1I : I → I is a Galois group-like element and the morphism g : I → C is an
isomorphism;

(e) (i) T is GT(I)-Galois,

(ii) g is an isomorphism.

Proof. Using naturality of χ, it is not hard to check that the diagram

T (V )

σV

��

T (V )⊗eI //
χV,I

// T (V )⊗ T (I)
σV ⊗T (I)

��
V ⊗ T (I)

V⊗T (I)⊗eI //

V⊗χI,I
// V ⊗ T (I)⊗ T (I)

commutes. Since σV is an isomorphism by Lemma 4.15, it follows that T 1I(V ) is (isomor-
phic to) the equaliser of the pair

V ⊗ T (I)
V⊗T (I)⊗eI //

V⊗χI,I
// V ⊗ T (I)⊗ T (I) .
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Using now that

• θ · eI = 1I and (θ ⊗ T (I)) · χI,I = 1T (I), since the monad T is opmonoidal, and

• (θ ⊗ T (I)) · (T (I)⊗ eI) = eI · θ by naturality of composition,

one sees that the diagram

I
eI // T (I)
θ

bb
T (I)⊗eI //

χI,I
// T (I)⊗ T (I)

θ⊗T (I)

gg
.

is a split equaliser. Since split equalisers are preserved by any functor the diagram

V
V⊗eI // V ⊗ T (I)

V⊗T (I)⊗eI //

V⊗χI,I
// V ⊗ T (I)⊗ T (I)

is a (split) equaliser. Thus the monad T1I is (isomorphic to) the identity monad.
Next, as σ : T → 1V is a morphism of monads, σ · e = 1. Thus the unit of the monad

T is a split monomorphism, and since the category V is Cauchy complete by hypothesis,
it follows from [9, Corollary 3.17] that T is of effective descent type, i.e. the functor ϕT

is comonadic. Putting now this information together, the assertions follow by Theorem
4.13.

5. Applications

In this final section we outline some applications of the notions developed.

5.1. Monads on cartesian monoidal categories. Let A be a category with finite
products. Then A is equipped with the (symmetric) monoidal structure (A,×, 1) (known
as the cartesian monoidal structure), where a×b is some chosen product of a and b, and 1 is
a chosen terminal object in A. For any object a ∈ A, we write !a for the unique morphism
a → 1. Given morphisms f : a → x and g : a → y in A, we write < f, g >: a → x× y for
the unique morphism inducing commutativity of the diagram

a
f

wwnnnnnnnnnnnnnnn
g

''PPPPPPPPPPPPPPP

<f,g>
��

x x× y
p1

oo
p2

// y.

Any monad T on A has a canonical structure of an opmonoidal monad given by

χa,b =< T (p1), T (p2) >: T (a× b) → T (a)× T (b), θ =!T (1) : T (1) → 1.

Thus, for any monad T on A, the category AT is also cartesian.
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Since, for any a ∈ A, the projection p1 : a ≃ a× 1 → a is (isomorphic to) the identity
morphism 1a : a → a, while the projection p2 : a ≃ a × 1 → 1 is (isomorphic to) the
morphism !a : a → 1, χa,1 : T (a) → T (a)× T (1) is just the morphism < 1T (a), T (!a) >.

An arbitrary object a ∈ A has a canonical A-comonoid structure given by the diagonal
morphism ∆a =<1a, 1a>: a → a × a. Writing a for the corresponding A-comonoid, one
has that Aa is (isomorphic to) the comma category A↓a (see, for example, [12]). Modulo
this isomorphism, the forgetful functor Ua : Aa → A corresponds to the functor

Σa : A↓a → A, (x → a) −→ x,

while its right adjoint ϕa : A → Aa corresponds to the functor

a∗ : A → A↓a, x −→ (p1 : a× x → a).

Suppose now T to be a monad on a cartesian category A such that the category AT

admits equalisers. Then one can form the monad T 11 . Moreover, modulo the isomorphism
of categories (AT )

ϕT (1) ≃ (AT ↓ ϕT (1)), one rewrites Diagram (1) from 2.13 as

A

K11,1

((

ϕT &&NNNNNNNNNNNNNN
ϕ
T11 // AT 11

i∗
��

i // (AT ) ↓ ϕT (1)

ΣϕT (1)
uukkkkkkkkkkkkkkkk

AT
.

(5)

Note that, for any a ∈ A, K11,1(a) = ((T (a),ma), T (!a)).

5.2. Remark. Obviously, for any (a, ha) ∈ AT , the (a, ha)-component of the natural
transformation Hr

−,1 : T → −× T (1) is the composite

T (a)
<1T (a),T (!a)>// T (a)× T (1)

ha×T (1) // a× T (1),

which is the same as the morphism

T (a)
<ha,T (!a)>−−−−−−→ a× T (1).

If T (1) ≃ 1, then T (!a) ≃!T (a) and thus <ha, T (!a)> can be identified with the morphism
ha : T (a) → a.

Now fix a monad T = (T,m, e) on a cartesian monoidal category A with equalisers.
Then, for any a ∈ A, T 11(a) can be calculated as the equaliser of the diagram

T (a)
<1T (a),T (!a)>//

1T (a)×e1
// T (a)× T (1).
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But since 1T (a) × e1 can be identified with the morphism < 1T (a), e1·!T (a) >, the diagram

T 11(a)
ia // T (a)

<1T (a),T (!a)>//

<1T (a),e1·!T (a)>
// T (a)× T (1)

is an equaliser if and only if so is

T 11(a)
ia // T (a)

p2·<1T (a),T (!a)> //

p2·<1T (a),e1·!T (a)>
// T (1) .

As p2· < 1T (a), T (!a) >= T (!a) and p2· < 1T (a), e1·!T (a) >= e1·!T (a), the diagram

T 11(a)
ia // T (a)

T (!a) //

e1·!T (a)

// T (1)

is an equaliser. It follows that if T (1) ≃ 1, then ia is an isomorphism. Conversely, if ia
is an isomorphism, then T (!a) = e1·!T (a). In particular, T (!1) = e1·!T (1). But T (!1) = 11,
implying that both e1 and !T (1) are isomorphisms. Thus:

5.3. Lemma. Let T be a monad on a cartesian monoidal category (A,×, 1). Then the
canonical inclusion i : T 11 → T is an isomorphism if and only if the functor part T
preserves the terminal object.

5.4. Proposition. Let (A,×, 1) be a cartesian monoidal category. For any monad T on
A, whose functor part preserves the terminal object 1, the comparison functor

i : AT 11 → (AT )
ϕT (1)

is an equivalence. In particular, 11 : 1 → 1 is a Galois group-like element (w.r.t. T).

Proof. Since T (1) ≃ 1, the monads T11 and T are isomorphic by Lemma 5.3. It then
follows from commutativity of diagram (5) that i is just the functor (ϕT (1))

∗ : AT →
(AT ) ↓ ϕT (1). But since T (1) ≃ 1, ϕT (1) is a terminal object in AT . Thus the functor
(ϕT (1))

∗ (and hence also i) is an isomorphism of categories.
Now the last assertion follows from Theorem 4.12.

Recall that a monad T = (T,m, e) on a category A is said to be idempotent if the
multiplication m : TT → T is a natural isomorphism.

5.5. Proposition. Let (A,×, 1) be a cartesian monoidal category. Any idempotent
monad on A, whose functor part preserves the terminal object 1, is right pre-Hopf.

Proof. It is well-known that if T = (T,m, e) is an idempotent monad on a category A,
then for any (a, ha) ∈ AT , the morphism ha : T (a) → a is an isomorphism. Thus the
result follows from Remark 5.2.
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5.6. Example. Recall from [7] that a category A with all finite products is called carte-
sian closed if for each object a ∈ A, the functor a × − : A → A has a right adjoint
(−)a : A → A.

For any object a ∈ A, the endofunctor Ta = (−)a can be made a monad with multi-
plication and unit

mx = x∆a : TaTa(x) = (xa)a ≃ xa×a → Ta(x) = xa, ex = x!a : x → xa = Ta(x).

Let A be a cartesian closed category such that the terminal object 1 has a nontrivial
proper subobject u � 1 (for example, let A be the category of set-valued sheaves on
a nontrivial topological space). Since u × u ≃ u, the diagonal ∆u : u → u × u is
an isomorphism, whence the monad Tu is idempotent. Since 1u = 1, the functor (−)u

preserves the terminal object and it follows from Proposition 5.5 that the opmonoidal
monad TU is right pre-Hopf.

Note that by Proposition 5.4, the comparison functor K11,1 : V → (VTu)
ϕTu

(1)

is not
an equivalence of categories. Thus Tu is an example of an opmonoidal monad which is
right pre-Hopf, but the corresponding comparison functor K11,1 is not an equivalence of
categories.

5.7. Example. Recall that the covariant power set functor P : Set → Set is defined by

P(X) = Sub(X), P(f : X → Y ) = P(X)
P(f)−−→ P(Y ),

where Sub(X) is the set of all subsets of X and for each U ∈ Sub(X), P(f)(U) is the
image f(U) of U under f . P is actually the functor part of a monad (P , e,m) with

eX : X → P(X) the singleton map, eX : x → {x}, and
mX : PP(X) → P(X) the union, mX({Xα}) =

∪
α Xα.

It is well-known that the Eilenberg-Moore category of P-algebras is isomorphic to
the category CSLat of complete (join-)semilattices. Recall that the category CSLat has
as its objects partially ordered sets (X,≤) which admit arbitrary suprema, and as its
morphisms f : X → Y maps which preserve suprema. We write 2 for the two-element
semilattice ϕP(1) = {0 ≤ 1}.

It is not hard to check that P11 is just the proper power set functor P+, where
P+(X) = P(X) \ {∅}. It is also well-known (see, for example, [6, Problem 1.3.3.]) that
the Eilenberg-Moore category of P+-algebras is isomorphic to the categoryACSLat of al-
most complete (join-)semilattices, i.e. partially ordered sets (X,≤) such that the suprema
of all non-empty subsets of X exists. Morphisms f : (X,≤) → (Y,≤) of ACSLat are
non-empty suprema preserving maps.

Writing i : P+ → P for the canonical inclusion, it is not hard to see that the functor

i∗ : SetP = CSLat → SetP+ = ACSLat
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just forgets about the bottom element, while

i∗ : ACSLat → CSLat

takes an object X ∈ ACSLat to the complete semilattice X obtained from X by adding
a bottom element 0X . It then follows in particular that the endofunctor i∗i

∗ : CSLat →
CSLat takes a complete semilattice X to the complete semilattice X obtained from X by
adding a new bottom element 0X < 0X . Direct inspection shows that, for anyX ∈ CSLat,
the X-component of the comonad morphism Si : Gi → GϕP (1) is the map ω : X → X × 2

defined by

ω(x) =

{
(x, 1) if x ̸= oX
(0X , 0) if x = oX .

It is clear that ω is not an isomorphism. Thus 11 : 1 → 1 is not a Galois group-like
element (w.r.t. the monad P), and hence, by Theorem 4.12, the comparison functor

i : SetP+ = ACSLat → (SetP ↓ ϕP (1)) = (CSLat ↓ 2),

which sends an object X ∈ ACSLat to (ω : X → 2) ∈ (CSLat ↓ 2) with

ω(x) =

{
1 if x ̸= oX
0 if x = oX ,

is not an equivalence of categories. According to [12, 1.4], i admits a right adjoint r: for
any (ω : X → 2) ∈ (CSLat ↓ 2), r(ω) = (ω)−1(1). It is now easy to see that ri ≃ 1.
Thus ACSLat is a full coreflective subcategory of (CSLat ↓ 2).

Note finally that P+(1) = 1. Now it follows from Proposition 5.4 that 11 : 1 → 1 is a
Galois group-like element w.r.t. the monad P+.
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Clemens Berger, Université de Nice-Sophia Antipolis, cberger@math.unice.fr
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