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NOTE ON STAR-AUTONOMOUS COMONADS

CRAIG PASTRO

Abstract. We develop an alternative approach to star-autonomous comonads via
linearly distributive categories. It is shown that in the autonomous case the notions of
star-autonomous comonad and Hopf comonad coincide.

1. Introduction

Given a linearly distributive category C, this note determines what structure is required of
a comonad G on C so that CG, the category of Eilenberg-Moore coalgebras of G, is again a
linearly distributive category. Furthermore, if C is equipped with negations (and is hence a
star-autonomous category), the structure required to lift the negations to CG is determined
as well. This latter is equivalent to lifting star-autonomy and it is shown that the notion
presented is equivalent to a star-autonomous comonad [PS09]. As a consequence of the
presentation given here, it may be easily seen that any star-autonomous comonad on an
autonomous category is a Hopf monad [BV07].

2. Lifting linear distributivity

Suppose C is a monoidal category and G : C → C is a comonad on C. Recall that CG, the
category of (Eilenberg-Moore) coalgebras of G, is monoidal if and only if G is a monoidal
comonad [M02]. In this section we are interested in the structure required to lift linear
distributivity to the category of coalgebras.

A linearly distributive category C is a category equipped with two monoidal structures
(C, ⋆, I) and (C, ⋄, J),1 and two compatibility natural transformations (called “linear dis-
tributions”)

∂l : A ⋆ (B ⋄ C) → (A ⋆ B) ⋄ C
∂r : (B ⋄ C) ⋆ A→ B ⋄ (C ⋆ A),

satisfying a large number of coherence diagrams [CS97].
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1For simplicity we assume that the monoidal structures are strict, although this is not necessary.
Furthermore, in their original paper [CS97] the tensor products ⋆ and ⋄ are respectively denoted by ⊗
and ⊕, and called tensor and par, emphasizing their connection to linear logic.
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Suppose G = (G, δ, ϵ) is a comonad on a linearly distributive category C which is a
monoidal comonad on C with respect to both ⋆ and ⋄, with structure maps (G, ϕ, ϕ0) and
(G,ψ, ψ0) respectively. If, for G-coalgebras A, B, and C, the comonad G satisfies

GA ⋆ (GB ⋄GC) GA ⋆ G(B ⋄ C) G(A ⋆ (B ⋄ C))

(GA ⋆ GB) ⋄GC G(A ⋆ B) ⋄GC G((A ⋆ B) ⋄ C),

1⋆ψ
//

ϕ
//

ϕ⋄1
//

ψ
//

∂l

��

∂l

��

(1)

it may be seen that the morphism ∂l becomes a G-coalgebra morphism. If G satisfies a
similar axiom for ∂r, i.e.,

(GB ⋄GC) ⋆ GA G(B ⋄ C) ⋆ GA G((B ⋄ C) ⋆ A)

GB ⋄ (GC ⋆ GA) GB ⋄G(C ⋆ A) G(B ⋄ (C ⋆ A)),

ψ⋆1
//

ϕ
//

1⋄ϕ
//

ψ
//

∂r

��

∂r

��

(2)

then ∂r also becomes a G-coalgebra morphism. Thus,

2.1. Proposition. Given a linearly distributive category C and a comonad G : C → C
satisfying axioms (1) and (2), the category CG is a linearly distributive category.

2.2. Example. Let C be a symmetric linearly distributive category and (B, µ, η, δ, ϵ) a
bialgebra in C with respect to ⋄. That is, the structure morphisms are given as

µ : B ⋄B → B δ : B → B ⋄B
η : J → B ϵ : B → J.

Then, G = B ⋄ − is a comonad and is monoidal with respect to both ⋄ and ⋆. The latter

via I ∼= J ⋄ I η⋄1−−→ B ⋄ I, and the following,

(B ⋄ U) ⋆ (B ⋄ V )
∂r−−−−−−→ B ⋄ (U ⋆ (B ⋄ V ))

1 ⋄ (1 ⋆ c)−−−−−−→ B ⋄ (U ⋆ (V ⋄B))
1 ⋄ ∂l−−−−−−→ B ⋄ ((U ⋆ V ) ⋄B)
1 ⋄ c−−−−−−→ B ⋄ (B ⋄ (U ⋆ V ))
∼=−−−−−−→ (B ⋄B) ⋄ (U ⋆ V )
µ ⋆ 1−−−−−−→ B ⋄ (U ⋆ V ).

Rather large diagrams, which we leave to the faith of the reader, prove that B ⋄ − satis-
fies (1) and (2), so that CB = ComodC(B), the category of comodules of B, is a linearly
distributive category.
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3. Lifting negations

Suppose now that C is a linearly distributive category equipped with negations S and S ′

(corresponding to ⊥(−) and (−)⊥ in [CS97]). That is, functors S, S ′ : Cop → C together
with the following (dinatural) evaluation and coevaluation morphisms

SA ⋆ A
eA−→ J A ⋆ S ′A

e′A−→ J

I
nA−→ A ⋄ SA I

n′
A−→ S ′A ⋄ A,

(3)

satisfying the four evident “triangle identities”. One such is(
A ∼= I ⋆ A

n⋆1−−→ (A ⋄ SA) ⋆ A ∂r−→ A ⋄ (SA ⋆ A)
1⋄e−−→ A ⋄ J ∼= A

)
= 1A.

If C is equipped with such negations we say simply that C is a linearly distributive category
with negations.

We are interested to lift negations to CG. This means we must ensure that the “nega-
tion” functors S, S ′ : Cop → C lift to functors (CG)op → CG, and the evaluation and
coevaluation morphisms are in CG, i.e., are G-coalgebra morphisms.

The following is essentially known from [S72].

3.1. Proposition. A (contravariant) functor S : Cop → C may be lifted to a functor

S̃ : (CG)op → CG such that the diagram

(CG)op CG

Cop C,

S̃ //

U

��

U

��
S //

(in which U : CG → C is the underlying functor) commutes, if and only if there is a
natural transformation

ν : S → GSG

satisfying the following two axioms

S GSG

SG

ν //

ϵSG

��

Sϵ

##G
GGGGGGGGGGGGG S GSG G2SG

GSG G2SG2.

ν //
δSG //

ν

##G
GGGGGGGGGGGGG

GνG //

G2Sδ

OO

(4)

This may be viewed as a distributive law of a contravariant functor over a comonad [S72].

In this case, we say that S may be lifted to CG, and a functor S̃ : (CG)op → CG is defined
as

S̃(A, γ) =
(
SA, SA

ν−→ GSGA
GSγ−−→ GSA

)
S̃(f) = Sf.
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(To see the reverse direction, suppose (A, γ) is a coalgebra and S̃ is a functor CG → CG,
so that S̃A = (SA, γ̃) is again a coalgebra. Define

ν := SA
γ̃−→ GSA

GSϵA−−−→ GSGA,

which may be seen to satisfy the axioms in (4).) We will usually let the context differen-

tiate between S and S̃ and simply write S in both cases.
Now, suppose S and S ′ may be lifted to CG, that is, they are equipped respectively

with natural transformations

ν : S → GSG and ν ′ : S ′ → GS ′G,

satisfying (4). It remains to lift the evaluation and coevaluation morphisms (3). Consider
the following axioms.

SA ⋆ GA SA ⋆ A J

GSGA ⋆ G2A G(SGA ⋆ GA) GJ

ν⋆δ

�� ϕ
//

GeGA //

1⋆ϵ //
eA //

ψ0

��

(5)

I

GA ⋄ SGA GA ⋄GSG2A G(A ⋄ SG2A)

G(A ⋄ SGA)GI G(A ⋄ SA)

n

��
1⋄ν //

ϕ
//

G(1⋄Sδ)

OO

ϕ0
// Gn //

G(1⋄Sϵ)
//

(6)

GA ⋆ S ′A A ⋆ S ′A J

G2A ⋆ GS ′GA G(GA ⋆ S ′GA) GJ

δ⋆ν′

�� ϕ
//

Ge′GA //

ϵ⋆1 //
e′A //

ψ0

��

(7)

I

S ′GA ⋄GA GS ′G2A ⋄GA G(S ′G2A ⋄ A)

G(S ′GA ⋄ A)GI G(S ′A ⋄ A)

n′

��
ν′⋄1 //

ϕ
//

G(S′δ⋄1)

OO

ϕ0
// Gn′

//
G(S′ϵ⋄1)

//

(8)

3.2. Proposition. Suppose C is a linearly distributive category with negation, G is a
monoidal comonad satisfying axioms (1) and (2) (so that CG is linearly distributive), and
that S and S ′ may be lifted to CG. Then, G satisfies axioms (5), (6), (7), and (8) if and
only if CG is a linearly distributive category with negation.
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Proof. Suppose (A, γ) is a G-coalgebra. We start by proving that axiom (5) holds if
and only if e : SA⋆A→ J is a G-coalgebra morphism. The following diagram proves the
“only if” direction,

SA ⋆ A GSGA ⋆ GA G(SGA ⋆ A)

G(SA ⋆ A)

SA ⋆ GA GSGA ⋆ G2A G(SGA ⋆ GA)

GJ,

SA ⋆ A J

(5)

1

��

ν⋆γ
//

ϕ
//

G(Sγ⋆1)

**TTTTTTTTTTTT

1⋆γ

��

1⋆Gγ

��

G(1⋆γ)

��

Ge

��

ν⋆δ //
ϕ

//

Ge

**TTTTTTTTTTTTTTT

1⋆ϵ

��
e //

ψ0
11bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

and this next diagram the “if” direction

SA ⋆ GA GSGA ⋆ G2A

SA ⋆ A SGA ⋆ GA GSG2A ⋆ G2A GSGA ⋆ G2A G(SGA ⋆ GA)

J GJ,

1⋆ϵ

}}{{{{{{{{{{{{

Sϵ⋆1

��

ν⋆δ //

GSGϵ⋆1

����
��

��
��

��
�

1

""F
FF

FF
FF

FF
FF

FF ϕ

$$

e

!!C
CC

CC
CC

CC
CC

CC

eGA

��

ν⋆δ // GSδ⋆1 //
ϕ

//

GeGA

��ψ0
//

where the bottom square commutes as eGA is a G-coalgebra morphism.
Next we prove that axiom (6) holds if and only if n : I → A ⋄ SA is a G-coalgebra

morphism. The “only if” direction is given by

I

A ⋄ SA GA ⋄ SGA GA ⋄GSG2A G(A ⋄ SG2A) G(A ⋄ SGA)

GI

GA ⋄ SA GA ⋄GSGA G(A ⋄ SGA) G(A ⋄ SA),

G(A ⋄ SA)

(6)

ϕ0
// Gn //

G(1⋄Sϵ)

��

G(1⋄Sγ)

��

n

##G
GGG

GG
GG

GG
GGG

GG

1⋄ν //
ϕ

//
G(1⋄Sδ)

//

n

��

γ⋄1
##G

GGGGGGGGGGGGG

1⋄ν //
ϕ

//
G(1⋄Sγ)

//

1⋄Sγ

��

1⋄GSGγ

��

G(1⋄SGγ)

��

1

��
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and the “if” direction by

I

GA ⋄ SGA G2A ⋄GSG2A G(GA ⋄ SG2A) G(GA ⋄ SGA) G(A ⋄ SA)

GI

GA ⋄GSG2A G(A ⋄ SG2A) G(A ⋄ SGA),

ϕ0
//

nGA

��

GnGA

��

Gn

##G
GGGGGGGGGGGG

δ⋄ν //

1⋄ν
&&MMMMMMMMMMMMMMMMM

ψ
//

Gϵ⋄1

��

G(1⋄Sδ)
//

G(ϵ⋄1)

��

G(ϵ⋄1)

��

G(1⋄Sϵ)
{{ww

ww
ww

ww
ww

ww
w

ψ
//

G(1⋄Sδ)
//

where the top square commutes as nGA is a G-coalgebra morphism.
The remaining two axioms are proved similarly.

4. Star-autonomous comonads

Suppose C = (C,⊗, I, S, S ′) is a star-autonomous category. A star-autonomous comonad
G : C → C is a comonad satisfying axioms (described below) so that CG becomes a star-
autonomous category [PS09]. In this section we show that comonads as in Proposition 3.2
and star-autonomous comonads coincide.

We recall the definition of star-autonomous comonad [PS09], but, as it suits our needs
better here, we present a more symmetric version. First recall that a star-autonomous
category C = (C,⊗, I, S, S ′) may be defined as a monoidal category (C,⊗, I) equipped
with an adjoint equivalence

S ⊣ S ′ : Cop ≃−→ C

such that
C(A⊗B, SC) ∼= C(A, S(B ⊗ C)), (9)

natural in A,B,C ∈ C. The functor S is called the left star operation and S ′ the right
star operation.

By the Yoneda lemma, the isomorphism in (9) determines, and is determined by, the
two following “evaluation” morphisms:

e = eA,B : S(A⊗B)⊗ A→ SB and e′ = e′B,A : B ⊗ S ′(A⊗B) → S ′A.

4.1. Definition. A star-autonomous comonad on a star-autonomous category C is a
monoidal comonad G : C → C equipped with

ν : S → GSG and ν ′ : S ′ → GS ′G,
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satisfying (4) (i.e., S and S ′ may be lifted to CG), and this data must be such that the
following four diagrams commute.

SS ′G G

GSGS ′G GSS ′

∼= //

∼=

��

ν

��
GSν′ //

S ′SG G

GS ′GSG GS ′S

∼= //

∼=

��

ν′

��
GSν //

S(A⊗B)⊗GA S(A⊗B)⊗ A SB

GSG(A⊗B)⊗G2A GSGB

G(SG(A⊗B)⊗GA) G(S(GA⊗GB)⊗GA)

1⊗ϵ
//

eA,B
//

ν

��
44

44
44

44
44

ν⊗δ

��
















ϕ

��
44

44
44

44
4

G(Sϕ⊗1)
//

GeGA,GB

EE���������

GB ⊗ S ′(A⊗B) B ⊗ S ′(A⊗B) S ′A

G2B ⊗GS ′G(A⊗B) GS ′GA

G(GB ⊗ S ′G(A⊗B)) G(GB ⊗ S ′(GA⊗GB))

ϵ⊗1
//

e′B,A
//

ν′

��
44

44
44

44
44

δ⊗ν′

��
















ϕ

��
44

44
44

44
4

G(1⊗S′ϕ)
//

Ge′GB,GA

EE���������

The first two diagrams above ensure that the unit and the counit of the adjoint equiv-
alence S ⊣ S ′ lifts to CG, while the latter two diagrams above respectively ensure that e
and e′ are G-coalgebra morphisms, so that the isomorphism (9) also lifts to CG.

We wish to show that star-autonomous comonads and comonads as in Proposition 3.2
coincide. It should not be surprising considering the following theorem.

4.2. Theorem. [CS97, Theorem 4.5] The notions of linearly distributive categories with
negation and star-autonomous categories coincide.

Given a star-autonomous category (C,⊗, I⊗, S, S ′), identifying ⋆ := ⊗ (and the monoidal
unit I := I⋆ = I⊗) and defining

A ⋄B := S ′(SB ⋆ SA) ∼= S(S ′B ⋆ S ′A) J := SI ∼= S ′I (10)
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results in a linearly distributive category with negations (C, ⋆, I, ⋄, J, S, S ′) [CS97]. In [CS97],
they consider the symmetric case, but the correspondence between linearly distributive
categories with negation and star-autonomous categories holds in the noncommutative
case as well.

Given Theorem 4.2, Proposition 3.2 says that if C is star-autonomous, and G is such
a comonad, then CG is star-autonomous. We now compare the two definitions.

Suppose now that G is a comonad on a linearly distributive category C, as in Propo-
sition 3.2. We wish to show that it is a star-autonomous comonad. Rather than proving
the axioms, it is simpler to show directly that the morphisms under consideration are
G-coalgebra morphisms. To this end, the unit and the counit of the adjoint equivalence
S ⊣ S ′ are defined respectively by the composites

A ∼= I ⋆ A
n′
SA⋆1−−−→ (S ′SA ⋄ SA) ⋆ A ∂r−→ S ′SA ⋄ (SA ⋆ A)

1⋄n−−→ S ′SA ⋄ J ∼= S ′SA

and

S ′SA ∼= I ⋆ S ′SA
nA⋆1−−−→ (A ⋄ SA) ⋆ S ′SA

∂r−→ A ⋄ (SA ⋆ S ′SA)
1⋄e′SA−−−→ A ⋄ J ∼= A,

and the evaluation morphisms eA,B and e′B,A respectively by the composites

S(A ⋆ B) ⋆ A

(S(A ⋆ B) ⋆ A) ⋆ I

(S(A ⋆ B) ⋆ A) ⋆ (B ⋄ SB) (S(A ⋆ B) ⋆ A ⋆ B) ⋄ SB,

J ⋄ SB

SB

∼=

��

1⋆n

��
∂l //

eA⋆B⋄1

OO

∼=

OO

eA,B
//

and

B ⋆ S ′(A ⋆ B)

I ⋆ (B ⋆ S ′(A ⋆ B))

(S ′A ⋄ A) ⋆ (B ⋆ S ′(A ⋆ B)) S ′A ⋄ (A ⋆ B ⋆ S ′(A ⋆ B)).

S ′A ⋄ J

SB

∼=

��

n′⋆1

��
∂r //

1⋄e′A⋆B

OO

∼=

OO

e′B,A
//

In the situation of Proposition 3.2, we see that all four of these morphisms are given as
composites of G-coalgebra morphisms, and thus, are G-coalgebra morphisms themselves.
Therefore, G is a star-autonomous comonad.
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In the other direction suppose G is a star-autonomous comonad on a star-autonomous
category C. It is similar to show that it is a comonad satisfying the requirements of
Proposition 3.2. Using the identifications in (10), the two linear distributions are defined
as the following composites.

A ⋆ (B ⋄ C)

A⊗ S ′(SC ⊗ SB)

A⊗ S ′(SC ⊗ S(A⊗B)⊗ A)

S ′(SC ⊗ S(A⊗B))

(A ⋆ B) ⋄ C∂l //

∼=

��

1⊗S′(1⊗e)

  
AA

AA
AA

AA
AA

A

e′

>>}}}}}}}}}}}

∼=

OO
(B ⋄ C) ⋆ A

S(S ′C ⊗ S ′B)⊗ A

S(A⊗ S ′(C ⊗ A)⊗ S ′B)⊗ A)

S(S ′(C ⊗ A)⊗ S ′B)

B ⋄ (C ⋆ A)
∂r //

∼=

��

S(e′⊗1)⊗1

  
AA

AA
AA

AA
AA

A

e

>>}}}}}}}}}}}

∼=

OO

The evaluation maps eA and e′A are defined as eA,I and e′A,I , and the coevaluation maps
nA and n′

A as

nA =
(
I ∼= SS ′I

S(e′A,I)−−−−→ S(A⊗ S ′A) = A ⋄ SA
)

n′
A =

(
I ∼= S ′SI

S′(eA,I)−−−−→ S ′(SA⊗ A) = S ′A ⋄ A
)

Again, each morphism is a G-coalgebra morphism, or composite thereof, and therefore is
itself a G-coalgebra morphism.

Thus, both notions coincide, and we will simply call either a star-autonomous comonad,
and let context differentiate the axiomatization.

4.3. Example. Any Hopf algebra H in a star-autonomous category C gives rise to a
star-autonomous comonad H ⊗− : C → C. See [PS09, p. 3515] for details.

4.4. Example. If C is a symmetric closed monoidal category with finite products, then
we may apply an instance of the Chu construction [B79] to produce a star-autonomous
category Chu(C, 1). The category C fully faithfully embeds into Chu(C, 1),

C ↪→ Chu(C, 1)

and this functor is strong symmetric monoidal. Thus, any Hopf algebra in C becomes a
Hopf algebra in Chu(C, 1), and thus, an example of a star-autonomous comonad.

5. The compact case ⋆ = ⋄
If C is a linearly distributive category with negation for which ⋆ = ⋄ (and thus, I = J),
then C is an autonomous (= rigid) category. The functor S provides left duals, while S ′

provides right duals. It is not hard to see that, in this case, any star-autonomous monad
G (after turning arrows around) is a Hopf monad [BV07]. Set ⋆ = ⋄ and I = J and
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dualize axioms (5), (6), (7), and (8). They correspond in [BV07] to axioms (23), (22),
(21), and (20) respectively. (In their notation ∨(−) = S and (−)∨ = S ′.) Therefore, we
have:

5.1. Proposition. Star-autonomous monads on autonomous categories are Hopf mon-
ads.

Acknowledgements: I would like to thank Robin Cockett and Masahito Hasegawa for
valuable discussions, and an anonymous referee for valuable suggestions.
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
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