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TENSORS, MONADS AND ACTIONS

Dedicated to the memory of Pawe l Waszkiewicz

GAVIN J. SEAL

Abstract. We exhibit sufficient conditions for a monoidal monad T on a monoidal
category C to induce a monoidal structure on the Eilenberg–Moore category CT that
represents bimorphisms. The category of actions in CT is then shown to be monadic
over the base category C.

0. Introduction

The original motivation for the current work stemmed from the observation that the
category CM of actions of a monoid M in a monoidal category (C,⊗, E) is monadic over
its base. When the base monoidal category is itself an Eilenberg–Moore category CT,
the composition of the forgetful functors (CT)M → CT and CT → C is monadic again
in classical examples: the category of R-modules, seen as a category of R-actions in the
category SetA ∼= AbGrp of abelian groups, is monadic over Set, and the category of actions
of an integral quantale in the category SetP ∼= Sup of sup-semilattices is monadic over
Set [15]. These instances suggest the following underlying principle:

The category (CT)M of actions of a monoid M in a monoidal Eilenberg–Moore
category CT is monadic over C.

In order to define actions in CT, we first need a tensor (− ⊠ −) on CT that encodes the
“bilinear” nature of the action morphism M ⊠ X → X. The providential structure is
provided by a monoidal monad on (C,⊗, E) that allows the introduction of morphisms in
C that are “T-algebra homomorphisms in each variable”, as originally suggested in [11].

Let us say a word on the technical setting we adopted for this work. In [7, 8, 9, 10],
Kock presents the fundamentals of symmetric monoidal monads in a context of closed
categories. However, closedness does not appear to play an explicit role in the classical
construction of the tensor product on AbGrp or Sup. It also seems reasonable to aim for
an action morphism that occurs as an algebraic structure M ⊗A→ A on A, rather than
as a morphism of monoids M → [A,A] (where [−,−] would designate an internal hom).
Hence, we chose to follow [4] and consider a base category whose monoidal structure is
neither assumed to be symmetric, nor closed. Alas, the result we needed in op.cit. is
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presented with a somewhat obscure proof (in particular, the proposed construction of
the unit isomorphism in CT seems a bit brusque). This lead us to our current version of
Theorem 2.5.5 that, in turn, provided the necessary ingredients to prove the sought result
in Theorem 3.3.3. We note that the hypotheses of Theorem 2.5.5 involve conditions
on the tensor (− ⊠ −) that might not be practical to verify, as the latter is realized
via a coequalizer. To remedy this, Theorem 2.6.4 proposes hypotheses that can be tested
directly on the base category in the non-closed case (to be compared with Corollary 2.5.7).

Our work is thus structured as follows. In Section 1, we establish the relevant def-
initions and notations pertaining to monoidal monads. We also recall that these are
fundamentally linked to monoidal structures of Kleisli categories. In Section 2, we recall
how bimorphisms and the tensor on CT induced by a monoidal monad T are related.
Proposition 2.2.2 then exhibits the link between the tensor proposed in [11] with the one
studied in [4]. We also review some useful facts about reflexive coequalizers, and recall in
2.5.3 that the tensor in CT of free algebras is the free algebra of their tensor in C (see [4,
Proposition 21]). This observation is crucial to establish that the tensor on CT is associa-
tive, a fact that is proved in Theorem 2.5.5, and again in Theorem 2.6.4 with alternative
hypotheses. We then consider algebraic functors CT → CS induced by monoidal monad
morphisms S → T, and show that they are themselves monoidal. Once CT is equipped
with the adequate monoidal structure, we turn our attention to actions in Section 3. Our
main result is, as mentioned above, that the monadic functors (CT)M → CT and CT → C
compose to form yet another monadic functor (CT)M → C. We conclude by showing that
the classical restriction-of-scalars functor between categories of modules is algebraic.

Throughout the text, we illustrate the various notions introduced with the classical
examples mentioned above, that is, with structures related to the free abelian group and
the powerset monads. Example 2.6.5 also demonstrates that binary coproducts in CT can
be interpreted as the tensor induced by binary coproducts in C. Of course, these examples
are far from being exhaustive, but we feel that they adequately represent the concepts
developed, while hinting at further applications.

1. Basic structures

1.1. Monoidal categories. Let C be a monoidal category, with its tensor denoted by
(−⊗−) : C× C→ C, its unit by E, and its structure natural isomorphisms by

αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z) , λX : E ⊗X → X , ρX : X ⊗ E → X .

When the monoidal category C is symmetric, we denote by σX,Y : X ⊗ Y → X ⊗ Y
the components of its braiding natural isomorphisms (see [13] or [3]). We will denote a
monoidal category (C,⊗, α, E, λ, ρ) or (C,⊗, α, E, λ, ρ, σ) more briefly by (C,⊗, E).

1.1.1. Example. The monoidal category recurrent in most of our examples is the cate-
gory (Set,×, {?}) of sets and maps with its cartesian structure.
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1.2. Monoidal monads. Let (C,⊗, E) be a monoidal category. A monoidal monad
T = (T, µ, η) is a monad in the 2-category of monoidal categories, monoidal functors, and
monoidal transformations; that is, the functor T : C → C comes with a family of maps
κ = (κX,Y : TX ⊗ TY → T (X ⊗ Y ))X,Y ∈obC, natural in X and Y , that make (T, κ, ηE) a
monoidal functor, and µ, η monoidal natural transformations (see [13, Section XI.2]).

Similarly, a symmetric monoidal monad T = (T, µ, η) is a monad in the 2-category of
symmetric monoidal categories, symmetric monoidal functors, and monoidal transforma-
tions.

1.2.1. Examples.

(1) The identity monad I = (1C, 1, 1) on a monoidal category C is a monoidal monad
via the identity natural transformation (1X⊗Y : X ⊗ Y → X ⊗ Y )X,Y ∈obC. The
monoidal monad is symmetric whenever C is.

(2) The free abelian group monad A = (A,
∑
, (−)) on (Set,×, {?}) is a symmetric

monoidal monad via the natural transformation κ whose component κX,Y : AX ×
AY → A(X × Y ) sends a pair

(∑
x∈X nx · x,

∑
y∈Y ny · y

)
(with all coefficients ni

integers) to the element
∑

x∈X,y∈Y (nx + ny) · (x, y).

(3) The powerset monad P = (P,
⋃
, {−}) on Set (with its cartesian structure) is a

symmetric monoidal monad via the natural transformation ι whose component ιX,Y :
PX×PY → P (X×Y ) sends a pair of subsets (A,B) to their product A×B ⊆ X×Y .

(4) Any monad T on a category C whose monoidal structure is given by finite coproducts
(so ⊗ = + and E = ∅ is the initial object in C) is monoidal with respect to the
connecting C-morphisms κA,B : TA+ TB → T (A+B).

Monoidal monads correspond to monoidal structures of the Kleisli category, as follows.

1.2.2. Proposition. Given a monad T on a monoidal category C, there is a bijective
correspondence between the following data:

(1) families κ = (κX,Y : TX ⊗ TY → T (X ⊗ Y ))X,Y ∈obC of C-morphisms natural in X
and Y making T a monoidal monad;

(2) monoidal structures on the Kleisli category CT such that the left adjoint functor
FT : C→ CT is strict monoidal.

Moreover, (T, κ) is symmetric precisely when the corresponding monoidal structure on CT
is symmetric.

Proof. Given a C-morphism κZ,W , and C-morphisms f : X → TZ, g : Y → TW , one
can define the C-morphism f ⊗T g := κZ,W · (f ⊗ g) : X ⊗Y → T (Z⊗W ), thus equipping
CT with a tensor ⊗T for which FT is strict monoidal. Conversely, if CT is monoidal with a
tensor ⊗T, then strict monoidality of FT forces equality X⊗T Y = X⊗Y for all C-objects
X and Y , and one can define κX,Y := 1TX ⊗T 1TY . (See for example [4, Proposition 8].)
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1.3. Monoidal monad morphisms. Let (S, ι) and (T, κ) be monoidal monads on a
monoidal category (C,⊗, E). A monad morphism φ : S → T is monoidal if it is a
monoidal natural transformation.

1.3.1. Example. For any monoidal monad (T, κ) on (C,⊗, E), the unit η : (I, 1)→ (T, κ)
is a monoidal monad morphism.

The correspondence of Proposition 1.2.2 extends to morphisms.

1.3.2. Proposition. Given a monad T on a monoidal category C, there is a bijective
correspondence between the following data:

(1) monoidal monad morphisms φ : S→ T;

(2) strict monoidal functors L : CS → CT that commute with the left adjoint functors
from C:

CS
L // CT

C .
FS

__

FT

??

Proof. The one-to-one correspondence between monad morphisms and functors between
the Kleisli categories is standard (see for example [14, Theorem 2.2.2]): a monad morphism
φ : S → T defines a functor L : CS → CT that is the identity on objects and sends a CS-
morphism f : X → SY to the CT-morphism φY ·f : X → TY ; conversely, a functor L as in
(2) defines a monad morphism φ : S→ T via its components φX := L(1SX) : SX → TY .
One easily verifies that if φ is monoidal, then L is strict monoidal, and that the converse
holds, too.

2. The monoidal structure of CT

The prototypical tensor product that we wish to study is provided by the tensor product
of R-modules. The role of this tensor is to represent bilinear maps. In our setting, the
monoidal structure of the monad allows the introduction of the notion of such a “morphism
in each variable” (as suggested in [11] and [8]).

2.1. Bimorphisms. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E),
and denote by CT its category of Eilenberg–Moore algebras. For T-algebras (A, a), (B, b),
and (C, c), we say that a C-morphism f : A ⊗ B → C is a CT-bimorphism1 (or simply a
bimorphism) if the diagram

TA⊗ TB
a⊗b
��

κ // T (A⊗B)
Tf
// TC

c

��

A⊗B f
// C

(2.1.i)

1These bimorphisms should not be confused with the C-morphisms that are at the same time monic
and epic. Since we do not consider the latter, there is little reason to avoid the bimorphism terminology.
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commutes. The set of all bimorphisms f : (A, a) ⊗ (B, b) → (C, c) is denoted by
CT(A,B;C).

2.1.1. Examples.

(1) For the identity monad I = (1C, 1, 1) on a monoidal category C, with the identity
natural transformation, CI-bimorphisms are just C-morphisms since CI ∼= C.

(2) For the free abelian group monad A, the category SetA is isomorphic to AbGrp, the
category of abelian groups. Via the natural transformation κ of Example 1.2.1(2),
a SetA-bimorphism f : A×B → C is a map that is additive in each variable.

(3) For the powerset monad P on Set with the natural transformation ι of Exam-
ple 1.2.1(3), the Eilenberg–Moore category SetP is isomorphic to Sup, the cate-
gory of complete sup-semilattices. With this interpretation, a SetP-bimorphism
f : A×B → C is a map that preserves suprema in each variable.

The next result shows in what sense a bimorphism captures the idea of a “morphism
in each variable”.

2.1.2. Proposition. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E).
For T-algebras (A, a), (B, b), and (C, c), a C-morphism f : A⊗B → C is a CT-bimorphism
if and only if both diagrams

A⊗ TB
1⊗b
��

κ·(η⊗1)
// T (A⊗B)

Tf
// TC

c

��

A⊗B f
// C

and

TA⊗B
a⊗1
��

κ·(1⊗η)
// T (A⊗B)

Tf
// TC

c

��

A⊗B f
// C

commute.

Proof. If f is a CT-bimorphism, then one can append each of the following commutative
diagrams

A⊗ TB η⊗1
//

1⊗b ''

TA⊗ TB
a⊗b
��

A⊗B

and

TA⊗B 1⊗η
//

a⊗1 ''

TA⊗ TB
a⊗b
��

A⊗B
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to the left of (2.1.i) to obtain the respective diagrams of the statement. Conversely, if the
two diagrams of the statement commute, then

f · (a⊗ b) = f · (1A ⊗ b) · (a⊗ 1TB)

= c · Tf · κA,B · (ηA ⊗ 1TB) · (a⊗ 1TB)

= c · Tf · κA,B · (Ta⊗ T1B) · (ηTA ⊗ 1TB)

= c · T (f · (a⊗ 1B)) · κTA,B · (ηTA ⊗ 1TB)

= c · T (c · Tf · κA,B · (1TA ⊗ ηB)) · κTA,B · (ηTA ⊗ 1TB)

= c · Tf · µA⊗B · TκA,B · T (1TA ⊗ ηB) · κTA,B · (ηTA ⊗ 1TB)

= c · Tf · µA⊗B · TκA,B · κTA,TB · (T1TA ⊗ TηB) · (ηTA ⊗ 1TB)

= c · Tf · κA,B · (µA ⊗ µB) · (ηTA ⊗ TηB) = c · Tf · κA,B .

This shows commutativity of (2.1.i).

2.1.3. Proposition. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E).
Then

CT(−,−;−) : (CT × CT)op × CT → Set

is a functor defined by
CT(g, h; k)(f) := k · f · (g ⊗ h)

for all CT-morphisms g : A′ → A, h : B′ → B, k : C → C ′, and bimorphisms f : A⊗B →
C.

Proof. The given functor is well-defined. Indeed, for C-morphisms f , g, h, k as in the
claim (and T-algebras (A, a), (B, b), (C, c), (A′, a′), (B′, b′), (C ′, c′)), one has

c′ · T (k · f · (g ⊗ h)) · κA′,B′ = k · c · Tf · κA,B · (Tg ⊗ Th)

= k · f · (a⊗ b) · (Tg ⊗ Th) = k · f · (g ⊗ h) · (a′ ⊗ b′) ,

so that CT(g, h; k)f is indeed in CT(A′, B′;C ′). Functoriality is immediate by monoidality
of C.

2.2. Tensor products. Consider a monoidal monad (T, κ) on a monoidal category
(C,⊗, E). The tensor product qA,B : T (A⊗ B)→ (A ⊠ B, aon b) of T-algebras (A, a) and
(B, b) is given by the following coequalizer diagram

T (TA⊗ TB)
µ·Tκ

//

T (a⊗b)
// T (A⊗B)

q
// A ⊠B

in CT. We often assume that qA,B is implicit and speak of the tensor product (A⊠B, a ./ b),
or simply A ⊠B. For CT-morphisms g : (A, a)→ (A′, a′), h : (B, b)→ (B′, b′), one has

qA′,B′ · T (g ⊗ h) · µA⊗B · TκA,B = qA′,B′ · µA′,B′ · TT (g ⊗ h) · TκA,B
= qA′,B′ · µA′,B′ · TκA′,B′ · T (Tg ⊗ Th)

= qA′,B′ · T (a′ ⊗ b′) · T (Tg ⊗ Th)

= qA′,B′ · T (g ⊗ h) · T (a⊗ b) ,



TENSORS, MONADS AND ACTIONS 409

so there is a unique CT-morphism g⊠h : A⊠B → A′⊠B′ with (g⊠h)·qA,B = qA′,B′ ·T (g⊗h),
and the diagram

T (A⊗B)
q
//

T (g⊗h)
��

A ⊠B

g⊠h

��

T (A′ ⊗B′) q
// A′ ⊠B′

commutes.
We say that CT has tensors when qA,B exists for all T-algebras A and B. In par-

ticular, if CT has reflexive coequalizers, then it has tensors. For CT to moreover be a
monoidal category, we also need associativity and unit isomorphisms in CT that make the
corresponding coherence diagrams commute. This is the subject of Theorem 2.5.5.

2.2.1. Convention. For the sake of convenience, from now on we say that a diagram
of the form

X
g
//

h
// Y

f
// Z

commutes if f · g = f · h.

2.2.2. Proposition. Given a monoidal monad (T, κ) on a monoidal category (C,⊗, E)
and T-algebras (A, a), (B, b), the following statements are equivalent for all C-morphisms
f : T (A⊗B)→ C:

(i) the diagram T (TA⊗ TB)
µ·Tκ

//

T (a⊗b)
// T (A⊗B)

f
// C commutes;

(ii) the diagram T (TA⊗ TB)
µ·T (κ·(η·a⊗1))

//

µ·T (κ·(1⊗η·b))
// T (A⊗B)

f
// C commutes.

Proof. Suppose that f · µA⊗B · TκA,B = f · T (a⊗ b). Then one immediately obtains

f · µA⊗B · T (κA,B · (ηA · a⊗ 1TB)) = f · T (a⊗ b) = f · µA⊗B · T (κA,B · (1TA ⊗ ηB · b)) .

Conversely, suppose that f ·µA⊗B ·T (κA,B ·(ηA ·a⊗1TB)) = f ·µA⊗B ·T (κA,B ·(1TA⊗ηB ·b))
holds. One first notes

f · T (a⊗ b) = f · µA⊗B · TηA⊗B · T (a⊗ b)
= f · µA⊗B · T (κA,B · (ηA ⊗ ηB) · (a⊗ b))
= f · µA⊗B · T (κA,B · (ηA · a⊗ 1TB) · (1TA ⊗ ηB · b))
= f · µA⊗B · T (κA,B · (1TA ⊗ ηB · b) · (1TA ⊗ ηB · b))
= f · µA⊗B · T (κA,B · (1TA ⊗ ηB · b)) ,

so

f · T (a⊗ 1B) = f · µA⊗B · T (κA,B · (1TA ⊗ ηB)) and

f · T (a⊗ b) = f · µA⊗B · T (κA,B · (ηA · a⊗ 1TB)) .
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These equalities, together with the fact that

κA,B = κA,B · (µA ⊗ µB) · (ηTA ⊗ TηB)

= µA⊗B · TκA,B · κTA,TB · (1TTA ⊗ TηB) · (ηTA ⊗ 1TB)

= µA⊗B · T (κA,B · (1TA ⊗ ηB)) · κTA,B · (ηTA ⊗ 1TB)

yield

f · µA⊗B · TκA,B = f · µA⊗B · T (µA⊗B · T (κA,B · (1TA ⊗ ηB)) · κTA,B · (ηTA ⊗ 1TB))

= f · µA⊗B · T (κA,B · (1TA ⊗ ηB)) · µTA⊗B · T (κTA,B · (ηTA ⊗ 1TB))

= f · T (a⊗ 1B) · µTA⊗B · T (κTA,B · (ηTA ⊗ 1TB))

= f · µA⊗B · T (κA,B · (ηA · a⊗ 1TB)) = f · T (a⊗ b) ,

as required.

2.2.3. Corollary. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E)
such that CT has tensors. Then for T-algebras (A, a) and (B, b), the diagram

T (TA⊗ TB)
µ·T (κ·(η·a⊗1))

//

µ·T (κ·(1⊗η·b))
// T (A⊗B)

q
// A ⊠B

is a coequalizer in CT (with qA,B as defined in 2.2).

Proof. This is an immediate consequence of the previous Proposition.

2.2.4. Remarks.

(1) Corollary 2.2.3 confirms that the coequalizer suggested to define a tensor in [11,
Remark, Section 1] is the same as the one appearing in [4, Proposition 16].

(2) As remarked by Linton [12], the study of bimorphisms trivializes for certain monads.
For example, suppose that T is a monoidal monad on (Set,×, {?}) whose T-algebras
X have two nullary operations 0, 1 : {?} → X and a binary one (−)∗(−) : X×X →
X such that

0 ∗ x = 0 and 1 ∗ x = x

for all x ∈ X. If f : A×B → C is a bimorphism, then

f(a, 1) = 1 and f(0, b) = 0

for all a ∈ A, b ∈ B, so that 1 = f(0, 1) = 0. Hence, if c ∈ C, then c = 1 ∗ c =
0 ∗ c = 0. That is, the only bimorphisms f : A × B → C are those for which C
is a singleton. (See also Remark 2.3.5.) This observation applies in particular to
bimorphisms in the category of semirings.
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2.3. Representing bimorphisms. A major motivation to the introduction of tensor
products in categories of R-modules is the representation of bimorphisms. Here, we show
that the tensor product of 2.2 plays that role with respect to the bimorphisms of 2.1.

2.3.1. Proposition. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E)
such that CT has tensors. Then

CT(− ⊠−,−) : (CT × CT)op × CT → Set

is a functor.

Proof. Immediate by functoriality of (−⊗−) and T (see 2.2 and Proposition 2.1.3).

The relation between bimorphisms and the tensor product is the subject of the fol-
lowing results.

2.3.2. Lemma. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E). For T-
algebras (A, a), (B, b), (C, c), the following statements are equivalent for any C-morphism
f : A⊗B → C:

(i) f is a bimorphism;

(ii) The diagram T (TA⊗ TB)
µ·Tκ

//

T (a⊗b)
// T (A⊗B)

c·Tf
// C commutes.

Proof. If f is a bimorphism, then

c · Tf · µA⊗B · TκA,B = c · Tc · TTf · TκA,B = c · Tf · T (a⊗ b) .

Conversely, if the diagram in (ii) commutes, then

c · Tf · κA,B = c · Tf · µA⊗B · ηT (A⊗B) · κA,B = c · Tf · T (a⊗ b) · ηTA⊗TB = f · (a⊗ b) ,

so f is a bimorphism.

2.3.3. Lemma. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E) such
that CT has tensors. For T-algebras (A, a), (B, b), and (C, c), the following statements
hold.

(1) If f : A⊗B → C is a bimorphism, then there is a unique CT-morphism f : A⊠B → C
such that

T (A⊗B)

q

��

Tf
// TC

c

��

A ⊠B
f

// C

commutes.

(2) If g : A⊠B → C is a CT-morphism, then g ·qA,B ·ηA⊗B : A⊗B → C is a bimorphism
that induces g, that is, g · qA,B · ηA⊗B = g.
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Proof. Since c · Tf is a CT-morphism, the first claim follows directly from Lemma 2.3.2
and the universal property of the coequalizer qA,B.

Given a CT-morphism g : A ⊠ B → C, one uses that qA,B is a coequalizer and that
g · qA,B : (T (A⊗B), µA⊗B)→ (C, c) is a CT-morphism to write

g · qA,B · ηA⊗B · (a⊗ b) = g · qA,B · T (a⊗ b) · ηTA⊗TB
= g · qA,B · µA⊗B · TκA,B · ηTA⊗TB
= g · qA,B · µA⊗B · ηT (A⊗B) · κA,B
= g · qA,B · µA⊗B · TηA⊗B · κA,B
= c · T (g · qA,B) · TηA⊗B · κA,B = c · T (g · qA,B · ηA⊗B) · κA,B ,

showing that g · qA,B · ηA⊗B is a bimorphism. Since

c · T (g · qA,B · ηA⊗B) = g · qA,B · µA⊗B · TηA⊗B = g · qA,B ,

the CT-morphism induced by g · qA,B · ηA⊗B is indeed g.

2.3.4. Proposition. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E)
such that CT has tensors. For T-algebras (A, a), (B, b), and (C, c), there is a bijection

CT(A,B;C) ∼= CT(A ⊠B,C)

natural in each variable.

Proof. The required bijection is described in Lemma 2.3.3. Indeed, if g : A⊠B → C is a
CT-morphism, then f = g · qA,B · ηA⊗B is a bimorphism, to which corresponds the unique
CT-morphism g : A ⊠ B → C. Conversely, if f : A⊗ B → C is a bimorphism, then there
is a CT-morphism f : A ⊠ B → C such that c · Tf = f · qA,B; according to Lemma 2.3.3,
one obtains in return a bimorphism

g = f · qA,B · ηA⊗B = c · Tf · ηA⊗B = c · ηC · f = f .

For a CT-bimorphism f : A ⊗ B → C, and CT-morphisms g : A′ → A, h : B′ → B,
k : C → C ′, one has

k · f · (g ⊠ h) · qA′,B′ = k · f · qA,B · T (g⊗ h) = k · c · Tf · T (g⊗ h) = c′ · Tk · Tf · T (g⊗ h) ,

that is,
k · f · (g ⊗ h) = k · f · (g ⊠ h)

(by unicity of the induced CT-morphism). Hence, the bijection is natural.
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2.3.5. Remark. In the trivial cases where the only bimorphisms are C-morphisms f :
A ⊗ B → I into the terminal object of C (as in Remark 2.2.4(2)), Proposition 2.3.4
shows that A ⊠ B ∼= I: the identity CT-morphism 1A⊠B corresponds to a bimorphism
f : A⊗B → A ⊠B, so that A ⊠B ∼= I.

2.4. Reflexive coequalizers. We recall here some basic results pertaining to reflexive
coequalizers, and thus applying to the coequalizer q defined in 2.2.

2.4.1. Proposition. A functor F : X × Y → Z preserves reflexive coequalizers if and
only if F (X,−) : Y → Z and F (−, Y ) : X → Z preserves reflexive coequalizers for all
X ∈ obX, Y ∈ obY.

Proof. The necessity of the statement is immediate since F (X, g) = F (1X , g) and
F (f, Y ) = F (f, 1Y ) for all X ∈ obX, Y ∈ obY. For the sufficiency, see the dual of
[5, Corollary 1.2.12].

Since we wish to study the tensor products A ⊠ B defined via the reflexive CT-
coequalizer qA,B : T (A ⊗ B) → A ⊠ B, we recall below two results pertaining to the
existence of such colimits.

2.4.2. Proposition. Let T be a monad on C. If C has reflexive coequalizers and T
preserves them, then the forgetful functor CT → C creates them.

Proof. See [11, Proposition 3].

The next existence result is not used explicitly in this work, but it can prove helpful
for the verification of hypotheses in specific examples.

2.4.3. Proposition. For a regular monad T on C (see [1, Definition 20.21]), CT has all
colimits that exist in C.

Proof. See [1, Proposition 20.33].

2.5. The monoidal Eilenberg–Moore category. Let (T, κ) be a monoidal monad
on a monoidal category (C,⊗, E). Theorem 2.5.5 presents sufficient conditions for the
CT-morphisms

qA,B : T (A⊗B)→ A ⊠B

to induce a monoidal structure on CT. The proof of this result relies in part on the explicit
description of the coequalizer qTA,TB : T (TA⊗ TB)→ TA ⊠ TB defined in 2.5.3.

2.5.1. Lemma. Let T be a monad on a category C. For C-morphisms r : Z → TY ,
s : Z → Y , and p : TY → X,

(p · µY · Tr = p · Ts) =⇒ (p · r = p · ηY · s) .

Proof. One simply has

p · r = p · µY · ηTY · r = p · µY · Tr · ηZ = p · Ts · ηZ = p · ηY · s .
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2.5.2. Proposition. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E).
The following statements hold:

(1) the diagram

T (TTA⊗ TTB)
µ·Tκ

//

T (µ⊗µ)
// T (TA⊗ TB)

µ·Tκ
// T (A⊗B)

forms a coequalizer in CT;

(2) if f : A → A′ and g : B → B′ are C-morphisms, then T (f ⊗ g) : T (A ⊗ B) →
T (A′ ⊗B′) is the unique CT-morphism that makes the diagram

T (TA⊗ TB)
µ·Tκ

//

T (Tf⊗Tg)
��

T (A⊗B)

T (f⊗g)
��

T (TA′ ⊗ TB′) µ·Tκ
// T (A′ ⊗B′)

commute.

Proof. By naturality of µ and the fact that µ · µT = µ · Tµ, one has

µA⊗B · TκA,B · µTA⊗TB · TκTA,TB = µA⊗B · TµA⊗B · TTκA,B · TκTA,TB
= µA⊗B · TκA,B · T (µA ⊗ µB) ,

so the diagram in the statement commutes. Suppose that f : (T (TA⊗ TB), µTA⊗TB)→
(C, c) is a CT-morphism that makes

T (TTA⊗ TTB)
µ·Tκ

//

T (µ⊗µ)
// T (TA⊗ TB)

f
// C

commute. Setting f := f · T (ηA ⊗ ηB), one has

f · µA⊗B · TκA,B = f · µA⊗B · TκA,B · T (TηA ⊗ TηB)

= c · Tf · TκA,B · T (TηA ⊗ TηB)

= c · Tf · TηTA⊗TB = f

by using the equality f ·κTA,TB = f ·ηTA⊗TB ·(µA⊗µB) following from Lemma 2.5.1. Since
µA⊗B · TκA,B is an epimorphism, the comparison CT-morphism f is uniquely determined.

The diagram in the concluding statement commutes by naturality of µ and κ, and the
unicity of the induced map follows from the fact that µA⊗B · TκA,B is epic.
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2.5.3. Identifying coequalizers. In view of Proposition 2.5.2, we can set

qTA,TB := µA⊗B · TκA,B and TA ⊠ TB := T (A⊗B)

for all A,B ∈ obC. Hence, if f : TA→ TA′ and g : TB → TB′ are C-morphisms, then

Tf ⊠ Tg = T (f ⊗ g) : TA ⊠ TB → TA′ ⊠ TB′ .

If moreover the coequalizer qA,B : T (A ⊗ B) → A ⊠ B exists in CT, it follows from
commutativity of

T (TA⊗ TB)
T (a⊗b)

//

µ·Tκ
��

T (A⊗B)

q

��

T (A⊗B)
q

// A ⊠B

that
qA,B = a ⊠ b .

These identifications will be used without necessarily further mention in the proof of
Theorem 2.5.5.

2.5.4. Remark. The following result states that, under certain hypotheses, (CT,⊠, TE)
becomes a monoidal category with associativity and unit structure isomorphisms induced
by those of (C,⊗, E). The meaning of this term is made clear directly in the proof in an
attempt to avoid a rather cumbersome direct definition.

2.5.5. Theorem. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E) such
that all the coequalizers qA,B exist in CT. If

T (TA⊗ TB) ⊠ TTC
(µ·Tκ)⊠µ

//

T (a⊗b)⊠Tc
// T (A⊗B) ⊠ TC

q⊠c
// (A ⊠B) ⊠ C

TTA ⊠ T (TB ⊗ TC)
µ⊠(µ·Tκ)

//

Ta⊠T (b⊗c)
// TA ⊠ T (B ⊗ C)

a⊠q
// A ⊠ (B ⊠ C)

are coequalizer diagrams and qA,B⊠qC,D are epimorphisms (for all T-algebras (A, a), (B, b),
(C, c) and (D, d)), then (CT,⊠, TE) is a monoidal category with structure morphisms
induced by those of (C,⊗, E).

Moreover, if (C,⊗, E) and (T, κ) are symmetric monoidal, then so is (CT,⊠, TE).

Proof. In this proof, we consider T-algebras (A, a), (B, b), (C, c), (D, d), as well as
(A′, a′), (B′, b′), (C ′, c′).

Associativity. By 2.5.3 and the definitions of α and κ, both the inner and outer squares
in

T ((TA⊗ TB)⊗ TC)

Tα
��

(µ·Tκ)⊠µ
//

T (a⊗b)⊠Tc
// T ((A⊗B)⊗ C)

Tα
��

T (TA⊗ (TB ⊗ TC))
(µ·Tκ)⊠µ

//

Ta⊠T (b⊗c)
//
T (A⊗ (B ⊗ C))
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commute in CT. By hypothesis, qA,B ⊠ c and a ⊠ qB,C are coequalizers, so there is a
CT-isomorphism αA,B,C : (A ⊠B) ⊠ C → A ⊠ (B ⊠ C) induced by Tα:

T ((A⊗B)⊗ C)
q⊠c

//

Tα
��

(A ⊠B) ⊠ C

α
��

T (A⊗ (B ⊗ C))
a⊠q

// A ⊠ (B ⊠ C) .

Note that for CT-morphisms f : (A, a) → (A′, a′), g : (B, b) → (B′, b, ), h : (C, c) →
(C ′, c′), the diagram

T ((A⊗B)⊗ C)
q⊠c

//

T ((f⊗g)⊗h)
��

(A ⊠B) ⊠ C

(f⊠g)⊠h

��

T ((A′ ⊗B′)⊗ C ′) q⊠c′
// (A′ ⊠B′) ⊠ C ′ ;

commutes, and there is a similar diagram for f ⊠ (g⊠h). Naturality of Tα, commutativity
of the diagrams for (f ⊠ g)⊠ h, f ⊠ (g ⊠ h) and αA,B,C together with the fact that qA,B ⊠ c
is epic yield naturality of α:

(A ⊠B) ⊠ C

(f⊠g)⊠h

��

α // A ⊠ (B ⊠ C)

f⊠(g⊠h)

��

(A′ ⊠B′) ⊠ C ′ α // A′ ⊠ (B′ ⊠ C ′) .

Commutativity of the coherence diagram

((A ⊠B) ⊠ C) ⊠D α //

α⊠1
��

(A ⊠B) ⊠ (C ⊠D) α // A ⊠ (B ⊠ (C ⊠D))

(A ⊠ (B ⊠ C)) ⊠D α // A ⊠ ((B ⊠ C) ⊠D)

1⊠α

OO

follows from commutativity of the coherence diagram of T (((A ⊗ B) ⊗ C) ⊗ D), the
definition and naturality of α, the fact that qA,B = a ⊠ b, and the hypothesis that (qA,B ⊠
c) ⊠ d ∼= qA,B ⊠ qC,D is epic.

Unitariness. For a T-algebra (A, a), the composite C-morphism

TE ⊗ A 1⊗η
// TE ⊗ TA κ // T (E ⊗ A) Tλ // TA a // A

is a bimorphism: on one hand, we have

a · T (a · TλA · κE,A · (1TE ⊗ ηA)) · κTE,A
= a · TλA · µE⊗A · TκE,A · κTE,TA · (1TTE ⊗ TηA)

= a · TλA · κE,A · (µE ⊗ µA) · (1TTE ⊗ TηA)

= a · TλA · κE,A · (µE ⊗ 1TA) ,
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and on the other hand,

a · TλA · κE,A · (1TE ⊗ ηA) · (µE ⊗ a)

= a · TλA · κE,A · (1TE ⊗ Ta · ηTA) · (µE ⊗ 1TA)

= a · Ta · TλTA · κE,TA · (1TE ⊗ ηTA) · (µE ⊗ 1TA)

= a · µA · T (TλA · κE,A · (ηE ⊗ 1TA)) · κE,TA · (1TE ⊗ ηTA) · (µE ⊗ 1TA)

= a · TλA · µE⊗A · TκE,A · κTE,TA · (TηE ⊗ ηTA) · (µE ⊗ 1TA)

= a · TλA · κE,A · (µE ⊗ µA) · (TηE ⊗ ηTA) · (µE ⊗ 1TA)

= a · TλA · κE,A · (µE ⊗ 1TA) .

By Lemma 2.3.3, there is therefore a unique CT-morphism λA that makes the diagram

T (TE ⊗ A)

q

��

T (a·Tλ·κ·(1⊗η))
// TA

a

��

TE ⊠ A
λ // A

commute. Its inverse is the CT-morphism induced by l := qTE,A · T (ηE ⊗ 1A) · Tλ−1A :
TA→ TE ⊠ A. Indeed, since a is a coequalizer in CT of (Ta, µA), and

(qTE,A · T (ηE ⊗ 1A) · Tλ−1A ) · Ta
= qTE,A · T (1TE ⊗ a) · T (ηE ⊗ 1TA) · Tλ−1TA
= qTE,A · T (µE ⊗ a) · T (TηE ⊗ 1TA) · T (ηE ⊗ 1TA) · Tλ−1TA
= qTE,A · µTE⊗A · TκTE,A · T (TηE ⊗ 1TA) · T (ηE ⊗ 1TA) · Tλ−1TA
= qTE,A · µTE⊗A · TT (ηE ⊗ 1A) · TκE,A · T (ηE ⊗ 1TA) · Tλ−1TA
= qTE,A · µTE⊗A · TT (ηE ⊗ 1A) · TTλ−1A
= (qTE,A · T (ηE ⊗ 1TA) · Tλ−1TA) · µA ,

there is a unique induced CT-morphism A → TE ⊠ A (given by l · ηA). Using this
computation, we can also compose l with T (a · TλA · κTE,A · (1TE ⊗ ηA)) to obtain

qTE,A · T (ηE ⊗ 1A) · Tλ−1A · T (a · TλA · κTE,A · (1TE ⊗ ηA))

= qTE,A · T (ηE ⊗ 1A) · Tλ−1A · TλA · µTE⊗A · TκTE,A · T (1TE ⊗ ηA)

= qTE,A · µTE⊗A · TκTE,A · T (TηE ⊗ ηA)

= qTE,A · T (µE ⊗ a) · T (TηE ⊗ ηA)

= qTE,A .

Since qTE,A is epic, we have l · ηA · λA = 1TE⊠A. With

a · (T (a · TλA · κTE,A · (1TE ⊗ ηA))) · (T (ηE ⊗ 1A) · Tλ−1A ) = a ,
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we obtain similarly λA · l · ηA = 1A. Hence, λA is an isomorphism in CT. Naturality of λ
follows from a standard diagram chase involving the defining diagrams of λA, λB, the facts
that 1TE ⊠ f and f are CT-morphisms, and that qTE,A is epic. The natural isomorphism
ρA : A ⊠ TE → A is obtained symmetrically via the defining diagram

T (A⊗ TE)

q

��

T (a·Tρ·κ·(η⊗1))
// TA

a

��

A ⊠ TE
ρ

// A .

Commutativity of

(A ⊠ TE) ⊠B

ρ⊠1
&&

α // A ⊠ (TE ⊠B)

1⊠λxx

A ⊠B

follows again by a standard diagram chase involving the defining diagrams of the three
given morphisms, and the fact that qA,TE ⊠ b is epic.

Symmetry. By using symmetry of the monoidal monad (T, κ), one obtains the exis-
tence of a family of CT-morphisms σA,B : A ⊠B → B ⊠ A via the diagram

T (A⊗B) Tσ //

q

��

T (B ⊗ A)

q

��

A ⊠B
σ // B ⊠ A .

Naturality of σ, as well as commutativity of the symmetry diagrams for a symmetric
monoidal category then follows by straightforward diagrammatic arguments.

The following result is a more memorable version of Theorem 2.5.5.

2.5.6. Corollary. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E)
such that CT has tensors. If A ⊠ (−) and (−) ⊠B preserve reflexive coequalizer diagrams
in CT (for all T-algebras A, B), then (CT,⊠, TE) is a monoidal category whose structure
morphisms are induced by those of (C,⊗, E).

Moreover, if (C,⊗, E) and (T, κ) are symmetric monoidal, then so is (CT,⊠, TE).

Proof. The statement follows directly from Theorem 2.5.5. Indeed, all qA,B and T-
algebras structures are reflexive coequalizers, so Proposition 2.4.1 yields that qA,B ⊠ c,
a ⊠ qB,C and qA,B ⊠ qC,D are coequalizers of their respective diagrams.

In the case where (C,⊗, E) is closed symmetric monoidal, the closed structure can be
lifted to CT provided that C has equalizers and reflexive coequalizers.

2.5.7. Corollary. Let (T, κ) be a monoidal monad on a closed symmetric monoidal
category (C,⊗, E) with equalizers and such that CT has tensors. Then (CT,⊠, TE) is a
monoidal category whose structure morphisms are induced by those of (C,⊗, E).
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Proof. The equalizer hypothesis allows us to apply the construction of an internal hom
in CT described in [9, Theorem 2.2] that makes A⊠(−) left adjoint for any A ∈ CT (see also
the proof of [8, Proposition 1.3]). In particular, A ⊠ (−) preserves reflexive coequalizers,
and Corollary 2.5.6 applies.

2.5.8. Examples.

(1) In the case where (T, κ) = (I, 1) is the identity monoidal monad on a monoidal
category (C,⊗, E), Theorem 2.5.5 reduces to a tautology, namely that (C,⊗, E) is
monoidal.

(2) For the free abelian group cartesian monad (A, κ) on Set (Example 1.2.1(2)), Corol-
lary 2.5.7 describes the usual tensor product over Z of the category SetA ∼= AbGrp
of abelian groups.

(3) For the monoidal powerset monad (P, ι) on Set (Example 1.2.1(3)), Corollary 2.5.7
yields the classical tensor product on SetP ∼= Sup (see [16]).

2.6. Alternative hypotheses. In the case where (C,⊗, E) is not closed symmetric
monoidal (see Corollary 2.5.7), it might be delicate to verify the more general hypotheses
of Theorem 2.5.5 or even of Corollary 2.5.6 since each of these involve the induced tensor
(− ⊠−). Theorem 2.6.4 below presents a situation where the hypotheses can be directly
tested on the original data T and (C,⊗, E). The proof hinges on how certain coequalizers
can be tensored.

2.6.1. Proposition. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E),
and consider coequalizer diagrams

TZ
µ·Tr

//

Ts
// TY

p
// X and TZ ′

µ·Tr′
//

Ts′
// TY ′

p′
// X ′

in CT (here, (X, x), (X ′, x′) are T-algebras, and the objects of the form TA are equipped
with their free structure µA). Suppose that T (− ⊗ −) : CT × CT → CT preserves the
coequalizer diagram of (p, p′), that T (Tp⊗Tp′) is an epimorphism, and that the coequalizer
qX,X′ : T (X ⊗X ′)→ X ⊠X exists.

If the coequalizer of µY⊗Y ′ · T (κY,Y ′ · (r ⊗ r′)) and T (s ⊗ s′) exists CT, then it can be
given by qX,X′ · T (p · ηY ⊗ p′ · ηY ′):

T (Z ⊗ Z ′)
µ·T (κ·(r⊗r′))

//

T (s⊗s′)
// T (Y ⊗ Y ′) q·T (p·η⊗p′·η)

// X ⊠X ′ .

Proof. By hypothesis, there are coequalizer diagrams

T (TZ ⊗ TZ ′)
T ((µ·Tr)⊗(µ·Tr′))

//

T (Ts⊗Ts′)
// T (TY ⊗ TY ′) T (p⊗p′)

// T (X ⊗X ′) .
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and

T (Z ⊗ Z ′)
µ·T (κ·(r⊗r′))

//

T (s⊗s′)
// T (Y ⊗ Y ′) t // X ~X ′

in CT. We proceed to show that X ~X ′ and X ⊠X ′ are isomorphic. Since the diagram

T (TZ ⊗ TZ ′)
T ((µ·Tr)⊗(µ·Tr′))

//

T (Ts⊗Ts′)
// T (TY ⊗ TY ′) t·µ·Tκ

// X ~X ′

commutes, there exists a unique CT-morphism t : T (X ⊗X ′)→ X ~X ′ such that

t · T (p⊗ p′) = t · µY⊗Y ′ · TκY,Y ′ . (2.6.ii)

We can therefore consider the diagram

T (TTY ⊗ TTY ′) T (Tp⊗Tp′)
//

µ·Tκ
��

T (µ⊗µ)
��

T (TX ⊗ TX ′)
µ·Tκ

��

T (x⊗x′)
��

T (TY ⊗ TY ′) T (p⊗p′)
//

µ·Tκ
��

T (X ⊗X ′)

t
��

T (Y ⊗ Y ′) t // X ~X ′

in which the inner- and outer-upper squares commute, as does the lower one; Proposi-
tion 2.5.2 moreover implies that the two left vertical arrows of the large square can be
identified. By hypothesis, T (Tp ⊗ Tp′) is an epimorphism, so the vertical CT-morphism
T (TX ⊗ TX ′)→ X ~X ′ that makes the large square commute is unique, that is,

T (TX ⊗ TX ′)
µ·Tκ

//

T (x⊗x′)
// T (X ⊗X ′) t // X ~X ′

commutes. Thus, the universal property of qX,X′ yields a unique CT-morphism t : X⊠X ′ →
X ~X ′ such that

t · qX,X′ = t .

Let us verify now that t is an isomorphism. With (2.6.ii), one obtains

t · qX,X′ · T (p⊗ p′) = t · µY⊗Y ′ · TκY,Y ′ , (2.6.iii)

and therefore

t = t · qX,X′ · T (p⊗ p′) · T (ηY ⊗ ηY ′) = tX,X′ · qX,X′ · T (p · ηY ⊗ p′ · ηY ′) .

The equality

qX,X′ · T (p · ηY ⊗ p′ · ηY ′) · µY⊗Y ′ · TκY,Y ′ = qX,X′ · T (p⊗ p′) , (2.6.iv)
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with Lemma 2.5.1 shows that

T (Z ⊗ Z ′)
µ·T (κ·(r⊗r′))

//

T (s⊗s′)
// T (Y ⊗ Y ′) q·T (p·η⊗p′·η)

// X ⊠X ′

commutes. The universal property of t then yields a unique CT-morphism u : X ~X ′ →
X ⊠X ′ such that

qX,X′ · T (p · ηY ⊗ p′ · ηY ′) = u · t ,

and we can consider the following commutative diagram:

T (TY ⊗ TY ′) T (p⊗p′)
//

µ·Tκ
��

T (X ⊗X ′) q
//

t

((

X ⊠X ′

t
��

T (Y ⊗ Y ′) t //

T (η⊗η)
��

X ~X ′

u

��

T (TY ⊗ TY ′) T (p⊗p′)
// T (X ⊗X ′) q

// X ⊠X ′ .

By using (2.6.iv), one then observes

qX,X′ · T (p⊗ p′) = u · t · qX,X′ · T (p⊗ p′) ,

so u · t = 1X⊠X′ because both qX,X′ and T (p⊗ p′) are epimorphisms. By exchanging the

displayed upper and lower diagrams, one obtains similarly that t · u = 1X~X′ , and can

conclude that t is an isomorphism with inverse u.

2.6.2. Corollary. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E)
with reflexive coequalizers. If T (X ⊗ −) and T (− ⊗ Y ) preserve reflexive coequalizers in
C (for all X, Y ∈ obC), then

T ((TA⊗ TB)⊗ TC)
µ·T (κ·(κ⊗1))

//

T ((a⊗b)⊗c)
// T ((A⊗B)⊗ C)

q·T (q·η⊗1)
// (A ⊠B) ⊠ C

and

T (TA⊗ (TB ⊗ TC))
µ·T (κ·(1⊗κ))

//

T (a⊗(b⊗c))
// T (A⊗ (B ⊗ C))

q·T (1⊗q·η)
// A ⊠ (B ⊠ C)

are coequalizer diagrams in CT (for all T-algebras (A, a), (B, b) and (C, c)).
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Proof. We prove the statement for the first diagram, the proof for the second following
similarly. For this, we only need to verify that the hypotheses of Proposition 2.6.1 are
verified for the reflexive coequalizer diagrams

T (TA⊗ TB)
µ·Tκ

//

T (a⊗b)
// T (A⊗B)

q
// A ⊠B and TTC

µ
//

Tc
// TC

c // C .

Since T ∼= T (E⊗−) preserves reflexive coequalizers, these lift to CT by Proposition 2.4.2,
and T (qA,B ⊗ 1C) is therefore a coequalizer in CT; thus, T (qA,B ⊗ c) is one too by Propo-
sition 2.4.1. Similarly, T (TqA,B ⊗Tc) is a reflexive coequalizer in CT and consequently an
epimorphism. Finally, the coequalizer of

µ(A⊗B)⊗C · T (κA⊗B,C · (κA⊗B ⊗ 1C)) and T (a⊗ b)⊗ Tc

exists in CT because it is a reflexive pair (split by T ((ηA ⊗ ηB)⊗ ηC)).

2.6.3. Corollary. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E)
with reflexive coequalizers. If T (X ⊗ −) and T (− ⊗ Y ) preserve reflexive coequalizers in
C (for all X, Y ∈ obC), then

T ((A⊗B)⊗ (C ⊗D))
q·T (q·η⊗q·η)

// (A ⊠B) ⊠ (C ⊠D)

is an epimorphism in CT (for all T-algebras (A, a), (B, b), (C, c), and (D, d)).

Proof. The given morphism is in fact a reflexive coequalizer in CT, obtained by applying
Proposition 2.6.1 to the coequalizer diagrams of qA,B and qC,D.

2.6.4. Theorem. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E) with
reflexive coequalizers. If T (X ⊗−) and T (−⊗Y ) preserve reflexive coequalizers in C (for
all X, Y ∈ obC), then (CT,⊠, TE) is a monoidal category whose structure morphisms are
induced by those of (C,⊗, E).

Moreover, if (C,⊗, E) and (T, κ) are symmetric monoidal, then so is (CT,⊠, TE).

Proof. We verify the hypotheses of Theorem 2.5.5. By Proposition 2.4.2, qA,B exists
and is therefore is a reflexive coequalizer of (µA⊗B · TκA,B, T (a ⊗ b)) in CT. With the
convention of 2.5.3, the first coequalizer diagram in Corollary 2.6.2 is in fact

T (TA⊗ TB) ⊠ TTC
µ·Tκ⊠µ

//

T (a⊗b)⊠Tc
// T (A⊗B) ⊠ TC

q⊠c
// (A ⊠B) ⊠ C .

Indeed, we already know that T ((a ⊗ b) ⊗ c) = T (a ⊗ b) ⊠ Tc; moreover, with qTA,TB =
µA⊗B · TκA,B in the diagram

T (T (TA⊗ TB)⊗ TTC)

µ·Tκ
��

T (µ·Tκ⊗µ)
// T (T (A⊗B)⊗ TC)

µ·Tκ
��

T ((TA⊗ TB)⊗ TC)
µ·T (κ·(κ⊗1))

// T ((A⊗B)⊗ C) ,
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we see that µ(A⊗B)⊗C · T (κA⊗B,C · (κA,B ⊗ 1TC)) = µA⊗B · TκA,B ⊠ µC ; finally, since qA,B
is a CT-morphism and qA⊠B,C = (a ./ b) ⊠ c, we have by functoriality of (− ⊠−):

qA⊠B,C · T (qA,B · ηA⊗B ⊗ 1C) = ((a ./ b) ⊠ c) · (T (qA,B · ηA⊗B) ⊠ 1TC)

= (qA,B ⊠ c) · ((µA⊗B · TηA⊗B) ⊠ 1TC) = qA,B ⊠ c .

By symmetry, the second coequalizer diagram of Corollary 2.6.2 shows that a ⊠ qB,C is
the coequalizer of (µA ⊠ µB⊗C · TκB,C , Ta ⊠ T (b ⊗ c)). By using that qA,B = a ⊠ b and
qC,D = c ⊠ d are CT-morphisms in Corollary 2.6.3, we obtain that

qA,B ⊠ qC,D = qA⊠B,C⊠D · T (qA,B · ηA⊗B ⊗ qC,D · ηC⊗D)

is an epimorphism. Hence, Theorem 2.5.5 applies.

2.6.5. Example. For the monoidal category (C,+,∅) of Example 1.2.1(4), we note that
the functor X+(−) preserves coequalizers for all X ∈ obC. In general, C is not monoidal
closed (for example, if C = Set and X is a non-empty set, the functor X + (−) is not left
adjoint, as it does not preserve coproducts), so Corollary 2.5.7 does not apply. Neverthe-
less, if CT has tensors, then (− ⊠−) turns out to be the binary coproduct in CT (see [11,
Proposition 2]). In this case, (CT,⊠, T∅) is monoidal because of the universal property of
coproducts; alternatively, (−⊠−) is left adjoint to the diagonal functor, so Corollary 2.5.6
applies.

In the case where C has reflexive coequalizers and the monad functor T preserves
them (so that CT has reflexive coequalizers by Proposition 2.4.2), Theorem 2.6.4 states
that (CT,⊠, T∅) is monoidal, a result that essentially summarizes the previous discussion.

2.7. Monoidal monad morphisms and Eilenberg–Moore categories. Once a
monoidal structure on the Eilenberg–Moore category has been established, it is not sur-
prising that monoidal monad morphisms induce monoidal functors, although these need
not be strict as in Proposition 1.3.2.

2.7.1. Proposition. Let (C,⊗, E) be a monoidal category, and (S, ι), (T, κ) monoidal
monads on C. Suppose that CT and CS both have tensors that make (CT,⊠, TE) and
(CS,~, SE) monoidal categories with structures induced by those of (C,⊗, E). If φ :
(S, ι)→ (T, κ) is a monoidal monad morphism, then the induced functor

Cφ : CT → CS

(that commutes with the forgetful functors to C) is itself monoidal.

Proof. Set S = (S, ν, δ) and T = (T, µ, η). Recall that the algebraic functor Cφ sends
a T-algebra (A, a) to the S-algebra (A, a · φA) and is identical on morphisms. For T-
algebras (A, a) and (B, b), one has φA⊗B · νA⊗B = µA⊗B · φT (A⊗B) · SφA⊗B, that is, φA⊗B :
S(A⊗B)→ T (A⊗B) is a CS-morphism. Hence, the inner- and outer-left squares in the
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diagram

S(SA⊗ SB)
ν·Sι //

S((a·φ)⊗(b·φ))
//

φ·S(φ⊗φ)
��

S(A⊗B)
p

//

φ

��

A~B

φ
��

T (TA⊗ TB)
µ·Tκ

//

T (a⊗b)
//
T (A⊗B)

q
// A ⊠B

commute in CS. If pA,B denotes the coequalizer of the upper row, there is consequently a
unique CS-morphism φA,B : (A ~ B, (a · φA) ./ (b · φB)) → (A ⊠ B, (a ./ b) · φA⊠B) that

makes the square on the right commute. These φA,B (for A,B ∈ obCT) are easily seen to
be natural in A and B.

A standard diagram chase involving defining diagrams of the induced structures yields
commutativity of

(A~B) ~ C
φ~1

//

α
��

(A ⊠B) ~ C
φ
// (A ⊠B) ⊠ C

α
��

A~ (B ~ C)
1~φ

// A~ (B ⊠ C)
φ
// A ⊠ (B ⊠ C) .

Similarly, commutativity of

SE ~ A
φ~1
//

λ
&&

TE ~ A
φ
// TE ⊠ A

λ
xx

A

and

A~ SE
1~φ
//

ρ
&&

A~ TE
φ
// A ⊠ TE

ρ
xx

A

is routinely verified. Hence, the functor Cφ with φ : Cφ(−) ~ Cφ(−) → Cφ(− ⊠ −) and
φE : SE → TE is monoidal.

2.7.2. Example. The unit monad morphism η : I → T of a monoidal monad T (Ex-
ample 1.3.1) induces the forgetful functor Cη : CT → CI ∼= C that is therefore monoidal
(whenever (CT,⊗, TE) is monoidal with structures morphisms induced by (C,⊗, E)).

2.7.3. Remark. Example 2.7.2 shows that in the context of Theorem 2.5.5, the forgetful
functor GT : CT → C is monoidal. Standard diagram chases also show that the left adjoint
F T : C → CT is strong monoidal with respect to κ : F T(−) ⊠ F T(−) → F T(− ⊗ −) and
1TE : TE → TE (where κX,Y : (TX⊠TY, µX ./ µY )→ (T (X⊗Y ), µX⊗Y ) denotes the CT-
morphism induced by the bimorphism κX,Y for all X, Y ∈ obC). Hence, the adjunction
F T a GT : CT → C is monoidal, mirroring the closed case studied in [9] in relation with
commutative monads.
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3. Actions

3.1. Monoids. Let (C,⊗, E) be a monoidal category. The category of monoids

(M,m : M ⊗M →M, e : E →M)

in C with their homomorphisms is denoted by Mon(C) (see [13, Section VII.3]).

3.1.1. Examples.

(1) For Set with its cartesian structure, Mon(Set) = Mon, the usual category of monoids
with their homomorphisms.

(2) A unital ring R is an abelian group that is also a monoid in which the distributive
laws hold, that is, the multiplication R×R→ R is Z-bilinear and is therefore equiva-
lently described as a group homomorphism R⊗ZR→ R. Hence, unital rings are pre-
cisely the monoids in AbGrp (with its usual tensor product), and Mon(AbGrp) = Rng
is the category of unital rings and their homomorphisms.

(3) A quantale V is a complete lattice with a monoid operation (−⊗−) : V×V → V that
preserves suprema in each variable; with the tensor product in Sup, the category of
complete lattices and sup-preserving maps, the monoid operation may equivalently
be considered a morphism V ⊗ V → V in Sup. Hence, one has Mon(Sup) = Qnt,
the category of quantales and their homomorphisms.

3.2. Actions in a monoidal category. Let (C,⊗, E) be a monoidal category, and
M = (M,m, e) a monoid in C. The category of M -actions

a : M ⊗ A→ A

in C (that is, of left actions of M on objects of C, see [13, Section VII.4]) with their
equivariant C-morphisms is denoted by CM (indeed, a monoid M in a monoidal category
(C,⊗, E) gives rise to a monad on C whose Eilenberg–Moore category is the category of
M -actions and equivariant C-morphisms, in generalization of the monadic group actions
in Set described in [13, Section VI.2]).

3.2.1. Examples.

(1) If C = Set, and M is a monoid, the category SetM is the usual category of M -actions
and equivariant maps.

(2) The monoidal structure of AbGrp is given by the tensor product over Z, and a
monoid R in AbGrp is a ring. Hence, AbGrpR is the usual category R-Mod of left
R-modules.



426 GAVIN J. SEAL

(3) Given a quantale V = (V,⊗, k), that is, a monoid is Sup, the category SupV is
described as follows. A V -action X in Sup is a complete lattice X together with a
bimorphism (−) · (−) : V ×X → X in Sup such that

(u⊗ v) · x = u · (v · x) , k · x = x ,

for all v ∈ V , x ∈ X, and a sup-map f : X → Y is equivariant whenever

f(v · x) = v · f(x)

for all v ∈ V , x ∈ X.

3.3. Monadic actions. In general, monadic functors do not compose. In the case of
actions in CT however, they do (Theorem 3.3.3 below).

3.3.1. Proposition. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E)
such that CT has tensors, and (CT,⊠, TE) a monoidal category whose structure morphisms
are induced by those of (C,⊗, E).

A monoid (M, ξ) in (CT,⊠, TE) induces a monad M ⊠ T on C whose functor is M ⊠
T (−) : C → C, and whose multiplication and unit are given by their components at
X ∈ obC as follows:

µ̃X = (m ⊠ 1TX) · α−1M,M,TX · (1M ⊠ (ξ ./ µX)) ,

η̃X = (e ⊠ 1TX) · λ−1TX · ηX .

Proof. The composite of the adjunctions

(CT)M //⊥ CT
//⊥

M⊠(−)
oo

C
Too

yields an adjunction (CT)M //⊥ C
M⊠T (−)
oo

that induces the described monad.

3.3.2. Lemma. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E) such
that CT has tensors, and (CT,⊠, TE) a monoidal category whose structure morphisms are
induced by those of (C,⊗, E).

The C-morphisms (e ⊠ 1TX) · λ−1TX : TX → M ⊠ TX are the components of a monad
morphism τ : T→M ⊠ T.

Proof. Naturality of the components τX := (e⊠ 1TX) ·λ−1TX (for X ∈ obC) is immediate.
Agreement on the units is also easily verified:

η̃X = (e ⊠ 1TX) · λ−1TX · ηX = τX · ηX .



TENSORS, MONADS AND ACTIONS 427

For the multiplications, one has

µ̃X ·(1M ⊠ TτX) · τTX
= (m ⊠ 1TX) · α−1M,M,TX · (1M ⊠ ((e ⊠ 1TX) · λ−1TX · µX)) · τTX
= (λM ⊠ 1TX) · ((1TE ⊠ e) ⊠ 1TX) · α−1TE,TE,TX · (1TE ⊠ (λ

−1
TX · µX)) · λ−1TX

= (e ⊠ 1TX) · (λTE ⊠ 1TX) · α−1TE,TE,TX · λ
−1
TE⊠TX · λ

−1
TX · µX

= (e ⊠ 1TX) · λ−1TX · µX = τX · µX

(we use [6] for the penultimate equality), so τ is indeed a monad morphism.

3.3.3. Theorem. Let (T, κ) be a monoidal monad on a monoidal category (C,⊗, E) such
that CT has tensors, and (CT,⊠, TE) a monoidal category whose structure morphisms are
induced by those of (C,⊗, E).

For a monoid (M, ξ) in (CT,⊠, TE), there is an isomorphism between the category of
algebras of the monad M ⊠ T and the category of M-actions in CT:

CM⊠T ∼= (CT)M .

In particular, the forgetful functor (CT)M → C is strictly monadic.

Proof. The comparison functor K : (CT)M → CM⊠T sends a T-algebra (A, a1) with an
action a2 : M ⊠ A → A in CT to the (M ⊠ T)-algebra (A, a2 · (1M ⊠ a1)). We proceed to
verify that K is an isomorphism.

The monad morphism τ : T→M ⊠T of Lemma 3.3.2 induces a functor Cτ : CM⊠T →
CT that sends a (M ⊠ T)-algebra (A, a) to the T-algebra (A, a · τA) and commutes with
the forgetful functors to C. Set a1 := a · τA, so that

T (TM ⊗ TA)
µ·Tκ

//

T (ξ⊗a1)
// T (M ⊗ A)

q
//M ⊠ A

is a coequalizer diagram. There is then a unique CT-morphism a2 : M ⊠A→ A such that

T (M ⊗ A)
q

//

T (1⊗η)
��

M ⊠ A

a2

��

T (M ⊗ TA)
q
//M ⊠ TA

a // A

commutes. To see this, we use the universal property of qM,A. Indeed, τA = (e⊠1TA)·λ−1TA :
TA→M ⊠ TA is a CT-morphism, so the diagram

T (TM ⊗ TA)
T (ξ⊗η)

//

T (ξ⊗1) ++

T (M ⊗ TTA)
T (1⊗T ((e⊠1)·λ−1

))
//

T (1⊗µ)
��

T (M ⊗ T (M ⊠ TA))

T (1⊗(ξ./µ))
��

T (M ⊗ TA)
T (1⊗((e⊠1)·λ−1

))
// T (M ⊗ (M ⊠ TA))
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commutes; by definition of a (M ⊠ T)-algebra (A, a), the diagram

T (M ⊗ T (M ⊠ TA))

T (1⊗(ξ./µ))
��

q
//M ⊠ T (M ⊠ TA)

1⊠(ξ./µ)
��

1⊠Ta //M ⊠ TA
a

((

T (M ⊗ (M ⊠ TA))
q

//M ⊠ (M ⊠ TA))
(m⊠1)·α−1

//M ⊠ TA
a // A

also commutes. By glueing these diagrams together along T (1M ⊗ (ξ ./ µA)), one obtains,

with a1 = a · (e ⊠ 1TA) · λ−1TA and qM,TA · T (1⊗ Ta) = (1M ⊠ Ta) · qM,T (M⊠TA),

a · qM,TA · T (1M ⊗ ηA) · T (ξ ⊗ a1)
= a · qM,TA · T (1M ⊗ Ta1) · T (ξ ⊗ ηTA)

= a · (1M ⊠ Ta) · qM,T (M⊠TA) · T (1M ⊗ T ((e ⊠ 1TA) · λ−1TA)) · T (ξ ⊗ ηTA)

= a · (m ⊠ 1TA) · α−1M,M,TA · qM,M⊠TA · T (1M ⊗ ((e ⊠ 1TA) · λ−1TA)) · T (ξ ⊗ 1TA)

= a · (m ⊠ 1TA) · α−1M,M,TA · (1M ⊠ ((e ⊠ 1TA) · λ−1TA)) · qM,TA · T (ξ ⊗ 1TA)

= a · (ρM ⊠ 1TA) · α−1M,TE,TA · (1M ⊠ λ
−1
TA) · qM,TA · T (ξ ⊗ 1TA)

= a · qM,TA · T (ξ ⊗ 1TA) .

Since one also has

a · qM,TA · T (1M ⊗ ηA) · µM⊗A · TκM,A

= a · qM,TA · µM⊗TA · TκM,TA · T (1TM ⊗ TηA)

= a · qM,TA · T (ξ ⊗ 1TA) ,

the existence and unicity of the required CT-morphism a2 follows. Moreover,

a · qM,TA = a · qM,TA · T (1M ⊗ ηA) · T (1M ⊗ a1)
= a2 · qM,A · T (1M ⊗ a1)
= a2 · (1M ⊠ a1) · qM,TA ,

so a = a2 · (1M ⊠ a1) because qM,TA is epic. Let us verify that a2 : M ⊠A→ A defines an
action. For this, we use

a · (1M ⊠ Ta) = a2 · (1M ⊠ a1) · (1M ⊠ Ta)

= a2 · (1M ⊠ a) · (1M ⊠ (ξ ./ µA))

= a2 · (1M ⊠ a2) · (1M ⊠ (1M ⊠ a1)) · (1M ⊠ (ξ ./ µA))

and

a · µ̃A = a2 · (m ⊠ 1A) · (1M⊠M ⊠ a1) · α−1M,M,TA · (1M ⊠ (ξ ./ µA))

= a2 · (m ⊠ 1A) · α−1M,M,A · (1M ⊠ (1M ⊠ a1)) · (1M ⊠ (ξ ./ µA)) .
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Moreover, for any T-algebra structure b : TB → B, the CT-morphisms T (1M ⊗ b) is an
epimorphism, so that qM,A · T (1M ⊗ b) = (1M ⊠ b) · qM,TA implies that (1M ⊠ b) is epic.
Since a · (1M ⊠ Ta) = a · µ̃A, and (1M ⊠ (1M ⊠ a1)), (1M ⊠ (ξ ./ µA)) are both epic, we
obtain

a2 · (1M ⊠ a2) = a2 · (m ⊠ 1A) · α−1M,M,A ,

the first condition for a2 to be an action. The second condition comes from

a · η̃A = a2 · (1M ⊠ a1) · (e ⊠ 1TA) · λ−1TA · ηA = a2 · (e ⊠ 1A) · λ−1A · a1 · ηA = a2 · (e ⊠ 1A) · λ−1A
with a · η̃A = 1A. Finally, any (M ⊠ T)-algebra homomorphism f : (A, a)→ (B, b) yields
a T-algebra homomorphism f : (A, a · τA)→ (B, b · τB) that is equivariant: one has

f ·a2 · (1M ⊠a1) = f ·a = b · (1M ⊠Tf) = b2 · (1M ⊠b1) · (1M ⊠Tf) = b2 · (1M ⊠f) · (1M ⊠a1) ,
so that f · a2 = b2 · (1M ⊠ f) because (1M ⊠ a1) is epic.

Hence, a (M ⊠T)-algebra (A, a) yields a T-algebra (A, a1) with an action a2 : M ⊠A→
A, and K((A, a1), a2) returns the original (M ⊠T)-algebra (A, a), since a = a2 · (1M ⊠ a1).

Conversely, the K-image of a T-algebra (A, a1) with an action a2 : M ⊠ A → A is a
(M ⊠ T)-algebra (A, a2 · (1M ⊠ a1)). Since

a2 · (1M ⊠ a1) · τA = a2 · (e ⊠ 1A) · λ−1A · a1 = a1

and the diagram

T (M ⊗ A) 1 //

T (1⊗η)
��

T (M ⊗ A)
q

//M ⊠ A

a2

��

T (M ⊗ TA)
q

//

T (1⊗a1)

77

M ⊠ TA

1⊠a1

99

a // A

commutes, one recuperates the original triplet ((A, a1), a2) from (A, a2 · (1M ⊠ a1)); that
is, K is an isomorphism.

3.3.4. Examples.

(1) Any monoid M in a monoidal category (C,⊗, E) yields an isomorphism (CI)M ∼=
CM ∼= CM⊗I. This immediate result is also the T = I case of Theorem 3.3.3.

(2) If T = A is the free abelian group monad and M = R is a ring, the isomorphisms

R-Mod ∼= AbGrpR ∼= (SetA)R ∼= SetR⊗ZA

recall the classical monadicity of R-modules over Set, and describe the free R-module
over a set X as R⊗Z AbX.

(3) For a quantale V , the category SupV of V -actions (Example 3.2.1(3)) is isomorphic to
the category SetV⊗P. The classical description of the tensor in Sup (see for example
[2]) yields isomorphisms

V ⊗ PX ∼= Sup(Sup(V, Sup(PX, 2)), 2) ∼= Set(X, V ) .

The case where V is integral was treated in [15], where it is proved that SupV is
monadic over Set.
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3.4. Monad morphisms. Suppose that S and T are monoidal monads on (C,⊗, E) that
respectively induce monoidal categories (CS,~, SE) and (CT,⊠, TE). Proposition 3.4.2
below shows that every pair of monoid homomorphism f : N →M and monoidal monad
morphism φ : S→ T induces a monad morphism (f, φ) : N~S→M⊠T, and thus a functor
(CT)M → (CS)N between the respective categories of actions. The usual restriction-of-
scalars functor between categories of modules then appears as the S = T = A instance of
this result (Corollary 3.4.3).

3.4.1. Lemma. Let (C,⊗, E) be a monoidal category, and (S, ι), (T, κ) monoidal monads
on C. Suppose that CT and CS both have tensors that make (CT,⊠, TE) and (CS,~, SE)
monoidal categories with structures induced by those of (C,⊗, E).

If φ : S → T is a monoidal monad morphism and ((N, ζ), n, d) is a monoid in CT,
then (N, ζ · φN) with multiplication n · φN,N and unit d · φE is a monoid in CS.

Proof. Since (N, ζ) is a T-algebra, (N, ζ · φN) is an S-algebra. The structures d · φE :
SE → N and n · φN,N : N ~ N → N are CS-morphisms (see the proof of Proposi-
tion 2.7.1). Commutativity of the corresponding monoid diagrams in (CS,~, SE) follows
from commutativity of the monoid diagrams of (N, n, d) in (CT,⊠, TE) combined with
commutativity of the diagrams showing that the functor Cφ : CT → CS is monoidal with
respect to φ and φE (Proposition 2.7.1).

3.4.2. Proposition. Let (C,⊗, E) be a monoidal category, and (S, ι), (T, κ) monoidal
monads on C. Suppose that CT and CS both have tensors that make (CT,⊠, TE) and
(CS,~, SE) monoidal categories with structures induced by those of (C,⊗, E).

If φ : S → T is a monoidal monad morphism, and f : N → M a monoid homomor-
phism in CT, then there is a monad morphism (f, φ) : N ~ S→M ⊠T whose components
at X ∈ obC are given by the CS-morphism φM,TX · (f ~ φX) : N ~ SX →M ⊠ TX.

Proof. By Lemma 3.4.1, N can be seen as a monoid in (CS,~, SE), thus defining a monad
N ~ S. Via the functor Cφ : CT → CS, the arrows f and φX are CS-morphisms, so f ~ φX
is defined in CS, and so is φM,TX by Proposition 2.7.1. To verify that these components
define a monad morphism, we use our usual notations S = (S, ν, δ), T = (T, µ, η) for
the monads, and (N, n, d), (M,m, e) for the monoids. Moreover, we let the context
differentiate between the induced structure morphisms α, δ and ρ of CT or CS.

By using the definitions and properties of the involved morphisms, we compute

φM,TX · (f ~ φX) · δ̃X = φM,TX · (f ~ φX) · (d · φE ~ 1SX) · λ−1SX · δX
= φM,TX · (e~ 1TX) · (φE ~ 1TX) · (1SE ~ φX) · λ−1SX · δX
= (e ⊠ 1TX) · φTE,TX · (φE ~ 1TX) · λ−1TX · φX · δX
= (e ⊠ 1TX) · λ−1TX · ηX = η̃X .
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For the multiplications, we use that

φM,TX · (f ~ φX) · (n · φN,N ~ 1SX) · α−1N,N,SX
= (m · (f ⊠ f) ⊠ 1TX) · φN⊠N,TX · (φN,N ~ 1TX) · α−1N,N,TX · (1N ~ (1N ~ φX))

= (m · (f ⊠ f) ⊠ 1TX) · α−1N,N,TX · φN,N⊠TX · (1N ~ φN,TX) · (1N ~ (1N ~ φX))

= (m ⊠ 1TX) · α−1M,M,TX · φM,M⊠TX · (1M ~ φM,TX) · (f ~ (f ~ φX))

and since φM,TX · (f ~ φX) : N ~ SX →M ⊠ TX is a CS-morphism,

φM,M⊠TX · (1M ~ φM,TX) · (f ~ (f ~ φX)) · (1N ~ (ζ · φN ./ νX))

= φM,M⊠TX · (f ~ ((ξ ./ µX) · φM~TX)) · (1N ~ S(φM,TX · (f ~ φX)))

= (1M ⊠ (ξ ./ µX)) · φM,T (M⊠TX) · (f ~ φM⊠TX) · (1N ~ S(φM,TX · (f ~ φX))) .

Hence,

φM,TX ·(f ~ φX) · ν̃X
= φM,TX · (f ~ φX) · (n · φN,N ~ 1SX) · α−1N,N,SX · (1N ~ (ζ · φN ./ νX))

= µ̃X · φM,T (M⊠TX) · (f ~ φM⊠TX) · (1N ~ S(φM,TX · (f ~ φX))) ,

so the components φM,TX ·(f~φX) satisfy the two conditions for being a monad morphism.

3.4.3. Corollary. [Restriction of scalars] Let (C,⊗, E) be a monoidal category, and
(T, κ) a monoidal monad on C. Suppose that CT has tensors that make (CT,⊠, TE) a
monoidal category with structure morphisms induced by those of (C,⊗, E).

If f : N → M is a monoid homomorphism in CT, then the monad morphism (f, 1T) :
N ⊠ T→M ⊠ T induces a functor C(f,1T) : (CT)M → (CT)N .

Proof. The monad morphism is the φ = 1T case of Proposition 3.4.2, and the result
follows from the isomorphisms (CS)N ∼= CN~S and (CT)M ∼= CM⊠T (Theorem 3.3.3).
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