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MULTITENSOR LIFTING AND STRICTLY UNITAL HIGHER
CATEGORY THEORY

MICHAEL BATANIN, DENIS-CHARLES CISINSKI AND MARK WEBER

Abstract. In this article we extend the theory of lax monoidal structures, also known
as multitensors, and the monads on categories of enriched graphs that they give rise to.
Our first principal result – the lifting theorem for multitensors – enables us to see the
Gray tensor product of 2-categories and the Crans tensor product of Gray categories
as part of this framework. We define weak n-categories with strict units by means
of a notion of reduced higher operad, using the theory of algebraic weak factorisation
systems. Our second principal result is to establish a lax tensor product on the category
of weak n-categories with strict units, so that enriched categories with respect to this
tensor product are exactly weak (n+1)-categories with strict units.

1. Introduction

This paper continues the developments of [Batanin-Weber, 2011] and [Weber, 2013] on the
interplay between monads and multitensors in the globular approach to higher category
theory, and expands considerably on an earlier preprint [Batanin-Cisinski-Weber, 2009].
To take an important example, according to [Weber, 2013] there are two related combi-
natorial objects which can be used to describe the notion of Gray category. One has the
monad A on the category G3(Set) of 3-globular sets whose algebras are Gray categories,
which was first described in [Batanin,1998]. On the other hand there is a multitensor (ie
a lax monoidal structure) on the category G2(Set) of 2-globular sets, such that categories
enriched in E are exactly Gray categories. The theory described in [Weber, 2013] explains
how A and E are related as part of a general theory which applies to all operads of the
sort defined originally in [Batanin,1998].

However there is a third object which is missing from this picture, namely, the Gray
tensor product of 2-categories. It is a simpler object than A and E, and categories enriched
in 2-Cat for the Gray tensor product are exactly Gray categories. The purpose of this
paper is to exhibit the Gray tensor product as part of our emerging framework. This is
done by means of the lifting theorem for multitensors – theorem(3.5) of this article.

Strict n-categories can be defined by iterated enrichment, and the lifting theorem
leads one to hope that such an inductive definition can be found for a wider class of
higher categorical structures. The second main result of this article – theorem(6.2) – says
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that one has a similar process of iterated enrichment to capture weak n-categories with
strict units. In this result the appropriate (lax) tensor product L≤n of weak n-categories
with strict units is identified, so that categories enriched in weak n-categories with strict
units using this tensor product are exactly weak (n+1)-categories with strict units.

In order to formulate this second result, we identify a new class of higher operad,
these being the reduced T≤n-operads of section(5.3). Moreover we describe the notion
of contractibility for such operads which enables one to formalise the idea that a given
higher categorical structure should have strict units. Then weak n-categories with strict
units are defined as algebras of the universal contractible reduced T≤n-operad, analogous
to how weak n-categories were defined operadically in [Batanin,1998]. It turns out that
the lifting theorem is particularly compatible with these new notions, and it is this fact
which is chiefly responsible for theorem(6.2).

Let us turn now to a more detailed introduction to this article. Recall [Batanin-
Weber, 2011, Weber, 2013] that a multitensor (E, u, σ) on a category V consists of n-ary
tensor product functors En : V n → V , whose values on objects are denoted in any of the
following ways

E(X1, ..., Xn) En(X1, ..., Xn) E
1≤i≤n

Xi E
i
Xi

depending on what is most convenient, together with unit and substitution maps

uX : Z → E1X σXij : E
i

E
j
Xij → E

ij
Xij

for all X, Xij from V which are natural in their arguments and satisfy the obvious unit
and associativity axioms. It is also useful to think of (E, u, σ) more abstractly as a lax
algebra structure on V for the monoid monad1 M on CAT, and so to denote E as a
functor E : MV → V . The basic example to keep in mind is that of a monoidal structure
on V , for in this case E is given by the n-ary tensor products, u is the identity and the
components of σ are given by coherence isomorphisms for the monoidal structure.

A category enriched in E consists of a V -enriched graph X together with composition
maps

κxi : E
i
X(xi−1, xi)→ X(x0, xn)

for all n ∈ N and sequences (x0, ..., xn) of objects of X, satisfying the evident unit and
associativity axioms. With the evident notion of E-functor (see [Batanin-Weber, 2011]),
one has a category E-Cat of E-categories and E-functors together with a forgetful functor

UE : E-Cat→ GV.

When E is a distributive multitensor, that is when En commutes with coproducts in
each variable, one can construct a monad ΓE on GV over Set. The object map of the

1Recall that for a category V , an object of MV is a finite sequence (X1, ..., Xn) of objects of V ,
that one only has morphisms in MV between sequences of the same length, and that such a morphism
(X1, ..., Xn)→ (Y1, ..., Yn) consists of morphisms fi : Xi → Yi for 1 ≤ i ≤ n.
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underlying endofunctor is given by the formula

ΓEX(a, b) =
∐

a=x0,...,xn=b

E
i
X(xi−1, xi),

the unit u is used to provide the unit of the monad and σ is used to provide the multiplica-
tion. The identification of the algebras of ΓE and categories enriched in E is witnessed by
a canonical isomorphism E-Cat ∼= G(V )ΓE over GV . In section(2) we recall the relevant
aspects of the theory of multitensors and monads from [Weber, 2013].

If one restricts attention to unary operations, then E1, u and the components σX :
E2

1X → E1X provide the underlying endofunctor, unit, and multiplication for a monad on
V . This monad is called the unary part of E. When the unary part of E is the identity
monad, the multitensor is a functor operad. This coincides with existing terminology,
see [McClure-Smith, 2004] for instance, except that we don’t in this paper consider any
symmetric group actions. Since units for functor operads are identities, we denote any
such as a pair (E, σ), where as for general multitensors E denotes the functor part and σ
the substitution.

By definition then, a functor operad is a multitensor. On the other hand, as observed
in [Batanin-Weber, 2011] lemma(2.7), the unary part of a multitensor E acts on E, in
the sense that as a functor E factors as

MV V E1 V// UE1 //

and in addition, the substitution maps are morphisms of E1-algebras. Moreover an E-
category structure on a V -enriched graph X includes in particular an E1-algebra structure
on each hom X(a, b) of X with respect to which the composition maps are morphisms of
E1-algebras. These observations lead to

1.1. Question. Given a multitensor (E, u, σ) on a category V can one find a functor
operad (E ′, σ′) on V E1 such that E ′-categories are exactly E-categories?

The first main result of this paper, theorem(3.5), says that question(1.1) has a nice
answer: when E is distributive and accessible and V is cocomplete, one can indeed find a
unique distributive accessible such E ′.

One case of our lifting theorem in the literature is in the work of Ginzburg and Kapra-
nov on Koszul duality [Ginzburg-Kapranov, 1994]. Formula (1.2.13) of that paper, in the
case of a K-collection E coming from an operad, implicitly involves the lifting of the mul-
titensor corresponding (as in [Batanin-Weber, 2011] example(2.6)) to the given operad.
For instance, our lifting theorem gives a general explanation for why one must tensor over
K in that formula. As we shall see in section(3.11), another existing source of examples
comes from Day convolution [Day, 1970].

Taking E to be the multitensor on Gn(Set) such that ΓE is the monad whose algebras
are weak (n+1)-categories, one might hope that the statement that “E ′-categories are
exactly E-categories” in this case expresses a sense in which weak (n+1)-categories are
categories enriched in weak n-categories for an appropriate tensor product E ′. However as
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we explain in section(5.2), the presence of weak identity arrows as part of the structure of
weak (n+1)-category prevents such a pleasant interpretation directly, because composition
with weak identity arrows gives the homs of an E-category extra structure, as can already
be seen for the case n = 1 of bicategories.

Having identified this issue, it is natural to ask

1.2. Question. Does the lifting theorem produce the tensor products enabling weak n-
categories with strict units to be obtained by iterated enrichment?

For this question to be well-posed it is necessary to define weak n-categories with strict
units.

To do this it is worth first meditating a little on the operadic definition of weak n-
category. Indeed since such a definition first appeared in [Batanin,1998], as the algebras
of a weakly initial higher operad of a certain type, there have been a number of works
that have refined our understanding. In [Leinster, 2003] this topic was given a lovely
exposition, the focus was shifted to considering operads that were strictly initial with the
appropriate properties rather than weakly so, and an alternative notion of contractibility
was given which, for expository purposes, is a little simpler. Thus in this article we use
Leinster contractibility throughout, however as we point out in remark(4.9), one can give
a completely analogous development using the original notions.

On a parallel track, Grandis and Tholen initiated an algebraic study of the weak fac-
torisation systems arising in abstract homotopy theory in [Grandis-Tholen, 2006], this
was refined by Garner in [Garner, 2009(2)] and then applied to higher category theory in
[Garner, 2009] and [Garner, 2010]. We devote a substantial part of section(4) to a discus-
sion of these developments, both by way of an updated review of the definition of weak
n-category, and because we make essential use of Garner’s theory of weak factorisation
systems later in the article.

Assimilating these developments one can present an operadic definition of weak n-
categories in the following way. One has a presheaf category T≤n-Coll0 of T≤n-collections
over Set (called “normalised collections” in [Batanin,1998]) and there are two finitary
monads on T≤n-Coll0 the first of whose algebras are T≤n-operads over Set. To give an
algebra structure for the second of these monads is to exhibit a given T≤n-collection over
Set as contractible, and one obtains this monad from an algebraic weak factorisation
system, in the sense of [Garner, 2009(2)], on T≤n-Coll0. In general the monad coproduct
of a pair of finitary monads on a locally finitely presentable category is itself finitary, and
so its category of algebras will also be locally finitely presentable. Applied to the two
monads in question, the algebras of their monad coproduct are contractible T≤n-operads
over Set, the initial such being the operad for weak n-categories.

We now adapt this to give an operadic definition weak n-category with strict units
in the following way. First, one considers only reduced T≤n-operads, which are those
that contain a unique unit operation of each type. Second, one strengthens the no-
tion of contractibility, by giving an algebraic weak factorisation system on the category
PtRd-T≤n-Coll of pointed reduced T≤n-collections. This notion of underlying collection
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includes the substitution of unique unit operations as part of the structure. The purpose
of this refined contractibility notion is to encode the idea that the unique unit operations
of the operads under consideration really do behave as strict identities. So as before one
has a pair of finitary monads, but this time on the category PtRd-T≤n-Coll, one whose al-
gebras are reduced operads, and the other whose algebras are pointed reduced collections
that are exhibited as contractible in this stronger sense. One then imitates the scheme
laid out in the previous paragraph, defining the operad for weak n-categories with strict
units as the initial object of the category of algebras of the coproduct of these two monads
on PtRd-T≤n-Coll.

A novelty of this definition is that it uses the extra generality afforded by the theory of
algebraic weak factorisation system’s of [Garner, 2009(2)]. Namely, while in the standard
theory of weak factorisation systems one considers those that are generated, via the small
object argument of Quillen, by a set of generating cofibrations. In Garner’s algebraic ver-
sion of the small object argument, one can consider a category of generating cofibrations.
The algebraic weak factorisation system we consider on PtRd-T≤n-Coll has a category of
generating cofibrations, and it is the morphisms of this category by means of which the
strictness of units is expressed.

Having obtained a reasonable definition of weak n-category with strict units, we then
proceed to answer question(1.2) in the affirmative, this being our second main result
theorem(6.2). For any T≤n+1-operad B over Set, there is a T≤n-operad h(B), whose
algebras are by definition the structure possessed by the homs of a B-algebra. This is
the object map of a functor h, and if one restricts attention to reduced B, and then
contractible reduced B, h in either of these contexts becomes a left adjoint, which is the
formal fact that enables theorem(6.2) to go through.

This paper is organised in the following way. In section(2) we review the theory
of multitensors from [Weber, 2013]. Then in section(3) we discuss the lifting theorem.
The theorem itself is formulated and proved in section(3.2), applications are presented in
sections(3.6) and (3.11), and the 2-functorial aspects of the lifting theorem are presented
in section(3.13). We give a review of the definition of weak n-category and the theory of
algebraic weak factorisation systems in section(4). In section(5) we present our definition
of weak n-category with strict units, and then the tensor products which exhibit this
notion as arising by iterated enrichment are produced in section(6).

Notation and terminology. Efforts have been made to keep the notation and terminol-
ogy of this article consistent with [Weber, 2013]. The various other standard conventions

and abuses that we adopt include regarding the Yoneda embedding C → Ĉ as an inclu-
sion, and so by the Yoneda lemma regarding x ∈ XC for X ∈ Ĉ as an arrow x : C → X
in Ĉ. To any such X, and more generally any pseudo-functor X : Cop → Cat, the
Grothendieck construction gives the associated fibration into C, the domain of which we
denote as el(X) and call the “category of elements of X”. The objects of the topologists’
simplicial category ∆ are as usual written as ordinals [n] = {0 < ... < n} for n ∈ N, and
regarded as a full subcategory of Cat. Thus in particular [1] is the category consisting
of one non-identity arrow, and E [1] denotes the arrow category of a category E . We use a
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different notation for the algebraists’ simplicial category ∆+, objects here being regarded
as ordinals n = {1 < ... < n} for n ∈ N. In section(5.3), we adopt the abuse of identifying
the left adjoint reflection of the inclusion of a full subcategory with the idempotent monad
generated by the adjunction.

2. Review of the theory of multitensors

Given a category V , GV is the category of graphs enriched in V . Thus G1 = Set and
Gn(Set) is equivalent to the category of n-globular sets. As a category GV is at least
as good as V . Two results from [Weber, 2013] which express this formally, are propo-
sition(2.11) which explains how colimits in GV are constructed from those in V , and
theorem(2.15) from which it follows that if V is locally presentable (resp. a Grothendieck
topos, resp. a presheaf topos) then so is GV .

Certain colimits in GV are very easy to understand directly, namely those connected
colimits in which the arrows of the diagram are identities on objects. For in this case,
as pointed out in remark(2.13) of [Weber, 2013], one can just take the object set of the
colimit to be that of any of the V -graphs appearing in the diagram, and compute the
colimit one hom at a time in the expected way. These colimits will play a basic role in
the developments of section(3.2).

Formal properties of the endofunctor G : CAT → CAT were discussed in section(2)
of [Weber, 2013]. In particular G preserves Eilenberg Moore objects, so that given a
monad T on a category V , one has an isomorphism G(V )G(T ) ∼= G(V T ) expressing that
the algebras of the monad GT on GV are really just graphs enriched in the category V T

of algebras of T .
As explained in the introduction to this article, given a distributive multitensor E on

a category V with coproducts, the formula

ΓEX(a, b) =
∐

a=x0,...,xn=b

E
i
X(xi−1, xi)

describes the object map of the underlying endofunctor of the monad ΓE on the category
GV of graphs enriched in V , whose algebras are E-categories. The assignment (V,E) 7→
(GV,ΓE) is itself the object map of a locally fully faithful 2-functor

Γ : DISTMULT −→ MND(CAT/Set)

from the full sub-2-category DISTMULT of the 2-category of lax monoidal categories,
lax monoidal functors and monoidal natural transformations, consisting of those (V,E)
where V has coproducts and E is distributive, to the 2-category of monads, as defined in
[Street, 1972], in the 2-category CAT/Set.

From this perspective then, the category GV is regarded as being “over Set”, that is
to say, it is taken together with the functor (−)0 : GV → Set which sends a V -graph to
its set of objects. A monad in CAT/Set is called a monad over Set, and the monad ΓE
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is over Set because: (1) for any V -graph X, the objects of ΓEX are those of X; (2) for
any morphism of V -graphs f : X → Y , the object map of ΓEf is that of f ; and (3) the
components of the unit and multiplication of ΓE are identity-on-objects morphisms of
V -graphs. From the point of view of structure, ΓE being over Set says that the structure
of an E-category gives nothing at the level of objects.

Section(3), and especially theorem(3.7) of [Weber, 2013], contains a careful analysis
of how properties of E correspond to properties of the induced monad ΓE. The par-
ticular fact following from that discussion that we shall use below is recorded here in
lemma(2.1). Recall that a multitensor E is λ-accessible for some regular cardinal λ, when
the underlying functor E : MV → V preserves λ-filtered colimits, and that this condition
is equivalent to each of the En : V n → V preserving λ-filtered colimits in each variable
(see [Weber, 2013] section(3) for more discussion).

2.1. Lemma. Suppose that V is a cocomplete category, λ is a regular cardinal and E is
distributive multitensor on V . Then E is λ-accessible iff ΓE is λ-accessible.

Monads T on GV over Set of the form ΓE for some distributive multitensor E on V a
category with coproducts, are those that are path-like and distributive in the sense that
we now recall. These properties concern only the functor part of the given monad, and
so for the sake of the proof of theorem(3.5) below, we shall formulate these definitions
more generally than in [Weber, 2013], for functors over Set between categories of enriched
graphs.

When the category V has an initial object ∅, sequences (X1, ..., Xn) of objects of V
can be regarded as V -graphs. The object set for the V -graph (X1, ..., Xn) is {0, ..., n},
for 1 ≤ i ≤ n the hom from (i−1) to i is Xi, and the other homs are ∅. An evocative
informal picture of this V -graph is

0 1 ... n−1 n
X1 // X2 // Xn−1 // Xn //

because it encourages one to imagine Xi as being the object of ways of moving from (i−1)
to i in this simple V -graph.

Given a functor T : GV → GW over Set, one can define a functor T : MV → W
whose object map is given by

T
1≤i≤n

Xi = T (X1, ..., Xn)(0, n).

Note that since T is over Set, the W -graph T (X1, ..., Xn) also has object set {0, ..., n},
and so the expression on the right hand side of the above equation makes sense as a hom
of this W -graph. By definition T amounts to functors T n : V n → W for each n ∈ N.

2.2. Definition. Let V and W be categories with coproducts. A functor T : GV → GW
over Set is distributive when for each n ∈ N, T n preserves coproducts in each variable. A
monad T on GV over Set is distributive when its underlying endofunctor is distributive.

As in [Weber, 2013] section(4), this definition can be reexpressed in more elementary
terms without mention of T .
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Intuitively, path-likeness says that the homs of the W -graphs TX are in some sense
some kind of abstract path object. Formally for a functor T : GV → GW over Set, given
a V -graph X and sequence x = (x0, ..., xn) of objects of X, one can define the morphism

x : (X(x0, x1), X(x1, x2), ..., X(xn−1, xn))→ X

whose object map is i 7→ xi, and whose hom map between (i − 1) and i is the identity.
For all such sequences x one has

T (x)0,n : T
i
X(xi−1, xi)→ TX(x0, xn)

and so taking all sequences x starting at a and finishing at b one induces the canonical
map

πT,X,a,b :
∐

a=x0,...,xn=b

T
i
X(xi−1, xi)→ TX(a, b)

in W .

2.3. Definition. Let V and W be categories with coproducts. A functor T : GV →
GW over Set is path-like when for all X ∈ GV and a, b ∈ X0, the maps πT,X,a,b are
isomorphisms. A monad T on GV over Set is path-like when its underlying endofunctor
is path-like.

A basic result concerning these notions that will be useful below is

2.4. Lemma. Let V , W and Y be categories with coproducts and R : V → W , T : GV →
GW and S : GW → GY be functors.

1. If R preserves coproducts then GR is distributive and path-like.

2. If S and T are distributive and path-like, then so is ST .

Proof. (1): Since R preserves the initial object one has GR(Z1, ..., Zn) = (RZ1, ..., RZn)
and so GR : MV → W sends sequences of length n 6= 1 to ∅, and its unary part is just
R. Thus GR is distributive since R preserves coproducts, and coproducts of copies of ∅
are initial. The summands of the domain of πGR,X,a,b are initial unless (x0, ..., xn) is the
sequence (a, b), thus πGR,X,a,b is clearly an isomorphism, and so GR is path-like.

(2): Since S and T are path-like and distributive one has

ST (Z1, ..., Zn)(0, n) ∼=
∐

0=r0≤...≤rm=n

S
1≤i≤m

T
ri−1<j≤ri

Zj

and so ST is path-like and distributive since S and T are, and since a coproduct of
coproducts is a coproduct.
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The aforementioned characterisation of monads of the form ΓE is then given by the
following result.

2.5. Theorem. ([Weber, 2013] theorem(4.9)). For a category V with coproducts, a
monad T on GV over Set is of the form ΓE for a distributive multitensor E iff T is
path-like and distributive, in which case one can take E = T .

So far we have discussed two important constructions, Γ which produces a monad
from a multitensor, and (−) which produces a multitensor from a monad. We now recall
a third construction (−)× which also produces a multitensor from a monad. If V has
finite products and T is any monad on V , then one can define a multitensor T× on V as
follows

T×
1≤i≤n

Xi =
n∏
i=1

TXi.

A category enriched in T× is exactly a category enriched in V T using the cartesian product.
As explained in section(5) of [Weber, 2013], this is an instance of a general phenomenon
of a distributive law of a multitensor over a monad, in this case witnessed by the fact that
any monad T will be opmonoidal with respect to the cartesian product on V . If moreover
V has coproducts and V ’s products distribute over them, so that cartesian product

∏
on

V is a distributive multitensor, and if T preserves coproducts, then T× is a distributive
multitensor. The 2-functoriality of Γ and the formal theory of monads [Street, 1972] then
ensures that at the level of monads one has a distributive law G(T )Γ(

∏
) → Γ(

∏
)G(T )

between the monads Γ(
∏

) and G(T ) on GV .
Fundamental to the globular approach to higher category are the monads T≤n, defined

for n ∈ N, on the category Gn(Set) of n-globular sets, whose algebras are strict n-
categories. Higher categorical structures in dimension n in this approach are by definition
algebras of T≤n-operads, and a T≤n-operad is by definition a monad A on Gn(Set) equipped
with a cartesian monad morphism2 α : A→ T≤n. In terms of the theory described so far,
the monads T≤n have a simple inductive description

• T≤0 is the identity monad on Set.

• Given the monad T≤n on GnSet, define the monad T≤n+1 = ΓT ×≤n on Gn+1Set.

The fact that T≤n algebras are strict n-categories is immediate from this definition, our
understanding of what the constructions Γ and (−)× correspond to at the level of algebras
and enriched categories, and the definition of strict n-category via iterated enrichment
using cartesian product. Moreover, an inductive definition of the T≤n via an iterative
system of distributive laws [Cheng, 2011], is also an immediate consequence of this point
of view.

That one has this good notion of T≤n-operad expressible so generally in terms of
cartesian monad morphisms, so that it fits within the framework of Burroni [Burroni,

2That is, a natural transformation between underlying endofunctors, whose naturality squares are
pullbacks, and which is compatible with the monad structures.
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1971], Hermida [Hermida, 2000] and Leinster [Leinster, 2003], is due to the fact that T≤n
is a cartesian monad. That is, its functor part preserves pullbacks and the naturality
squares for its unit and multiplication are pullback squares. The underlying endofunctor
T≤n satisfies a stronger condition than pullback preservation, namely, it is a local right
adjoint, that is to say, for any X ∈ Gn(Set), the functor

(T≤n)X : Gn(Set)/X −→ Gn(Set)/T≤nX

obtained by applying T≤n to arrows into X, is a right adjoint. A cartesian monad whose
functor part satisfies this stronger property is called a local right adjoint monad3 in this
article, and this notion is important because for such monads one can define the nerve
of an algebra in a useful way. See [Berger, 2002], [Weber, 2007], [Melliès, 2010] and
[Berger-Melliès-Weber, 2012] for further discussion.

All these pleasant properties enjoyed by the monads T≤n can be understood in terms
the compatibility of these properties with the constructions Γ and (−)×. See [Weber,
2013], especially theorem(3.7) and example(5.7), for more details.

A T≤n-operad over Set is a T≤n-operad α : A → T≤n such that the monad A is over
Set and α’s components are identities on objects. We denote by T≤n-Op0 the category
of T≤n-operads over Set. There is also a notion of E-multitensor for a given cartesian
multitensor E on a category V , which consists of another multitensor F on V equipped
with a cartesian morphism of multitensors φ : F → E. We denote by E-Mult the
category of E-multitensors. Thanks to the functoriality of Γ and its compatibility with
the categorical properties participating in these definitions one has

2.6. Theorem. The constructions Γ and (−) give an equivalence of categories

T ×≤n-Mult ' T≤n+1-Op0.

This result first appeared as corollary(7.10) of [Batanin-Weber, 2011], and was subse-
quently generalised in [Weber, 2013] theorem(6.2) with T ×≤n replaced by a general cartesian
multitensor E on a lextensive category V .

3. Lifting theorem

3.1. Overview. In [Crans, 1999] the so-called “Crans tensor product” of Gray categories
was constructed by hand, and categories enriched in this tensor product were called “4-
teisi” and were unpacked in [Crans, 2000], these being Crans’ candidate notion of semi-
strict 4-category. From the perspective of these papers it is not at all clear that one
can proceed in the reverse order, first constructing a T≤4-operad for 4-teisi, and then
obtaining the tensor product from this. By ordering the discussion in this way one makes
a direct formal connection between the combinatorial work of Crans and the theory of
higher operads. Even given an intuition that one can begin with the operad and then

3In [Berger-Melliès-Weber, 2012] the terminology strongly cartesian monad is used.
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obtain the tensor product, it is very far from clear from the way that things are described
in [Crans, 1999] and [Crans, 2000], how one would express such an intuition formally
without drowning in the complexity of the combinatorial notions involved.

The lifting theorem applied to this example gives a formal expression of this intuition
in a way independent of any of these combinatorial details. It does not however say
anything about how the T≤4-operad for 4-teisi is constructed. Put simply, the T≤4-operad
for 4-teisi is the input, and the Crans tensor product is the output for this application of
the lifting theorem.

This section is organised as follows. In section(3.2) we formulate and prove the lift-
ing theorem as an answer to question(1.1). Then in section(3.6) we discuss how this
result brings the Gray and Crans tensor products, of 2-categories and Gray categories
respectively, into our framework. Section(3.11) exhibits Day convolution as arising via
an application of the lifting theorem. Finally in section(3.13) we exhibit the process of
lifting a multitensor as a right 2-adjoint to an appropriate inclusion of functor operads
among multitensors.

3.2. The theorem and its proof. The idea which enables us to answer question(1.1)
is the following. Given a distributive multitensor E on V one can consider also the
multitensor Ẽ1 whose unary part is also E1, but whose non-unary parts are all constant
at the initial object. This is clearly a sub-multitensor of E, also distributive, and moreover
as we shall see one has Ẽ1-Cat ∼= G(V E1) over GV . Thus from the inclusion Ẽ1 ↪→ E one
induces the forgetful functor U fitting in the commutative triangle

G(V E1) E-Cat

GV

oo U

UE����G(UE1 )

For sufficiently nice V and E this forgetful functor has a left adjoint. The category of
algebras of the induced monad T will be E-Cat since U is monadic. Thus problem is
reduced to that of establishing that this monad T arises from a multitensor on V E1 . By
theorem(2.5) this amounts to showing that T is path-like and distributive.

In order to implement this strategy, we must understand something about the explicit
description of the left adjoint G(V E1)→ E-Cat, and this understanding is a basic part of
monad theory that we now briefly recall. Suppose that (M, ηM , µM) and (S, ηS, µS) are
monads on a category E , and φ : M→S is a morphism of monads. Then φ induces the
forgetful functor φ∗ : ES → EM and we are interested in computing the left adjoint φ! to
φ∗. By the Dubuc adjoint triangle theorem [Dubuc, 1970], one may compute the value of
φ! at an M -algebra (X, x : MX→X) as a reflexive coequaliser

(SMX,µSMX) (SX, µSX) φ!(X, x)

µSXS(φX)
//

SηMX
oo

Sx
//

q(X,x) // (1)
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in ES, when this coequaliser exists. Writing T for the monad induced by φ! a φ∗, the
components of the unit ηT of T are given by

X
ηSX−→ SX

q(X,x)−−−→ φ!(X, x).

The coequaliser (1) is taken in ES, and we will need to have some understanding of
how this coequaliser is computed in terms of colimits in E . So we suppose that E has
filtered colimits and coequalisers, and that S is λ-accessible for some regular cardinal λ.
Then the underlying object USφ!(X, x) in E of φ!(X, x) is constructed in the following
way. We shall construct morphisms

vn,X,x : SQn(X, x)→ Qn+1(X, x) qn,X,x : Qn(X, x)→ Qn+1(X, x)

q<n,X,x : SX → Qn(X, x)

starting with Q0(X, x) = SX by transfinite induction on n.

Initial step. Define q<0 to be the identity, q0 to be the coequaliser of µS(Sφ) and
Sx, q<1 = q0 and v0 = q0b. Note also that q0 = v0η

S.

Inductive step. Assuming that vn, qn and q<n+1 are given, we define vn+1 to be the
coequaliser of S(qn)(µSQn) and Svn, qn+1 = vn+1(ηSQn+1) and q<n+2 = qn+1q<n+1.

Limit step. Define Qn(X, x) as the colimit of the sequence given by the objects Qm(X, x)
and morphisms qm for m < n, and q<n for the component of the universal cocone at m = 0.

colimm<n S
2Qm colimm<n SQm colimm<nQm

QnSQnS2Qn

µ<n // v<n //

(Sv)<n

// oo
η<n

µ
// oo

η

on,2
��

on,1
��

We write on,1 and on,2 for the obstruction maps measuring the extent to which S and
S2 preserve the colimit defining Qn(X, x). We write µS<n, (Sv)<n, v<n and ηS<n for the
maps induced by the µSQm, Svm, vm and ηSQm for m < n respectively. Define vn as the
coequaliser of on,1µ<n and on,1(Sv)<n, qn = vn(ηSQn) and q<n+1 = qnq<n.

Then since S preserves λ-filtered colimits, this sequence stabilises in the sense that for
any ordinal n such that |n| ≥ λ, qn,X,x is an isomorphism. Thus for any such n one may
take

φ!(X, x) = (Qn(X, x), q−1
n vn) q<n : (SX, µX)→ (Qn(X, x), q−1

n vn)

as an explicit definition of φ!(X, x) and the associated coequalising map in V S. The proof
of this is essentially standard – see theorem(3.9) of [Barr-Wells, 2005] for example, and
so we omit the details.
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In fact all that we require of the above details is that the transfinite construction
involves only connected colimits. Moreover in the context that we shall soon consider,
these will be connected colimits of diagrams of V -graphs which live wholly within a single
fibre of (−)0 : GV → Set. As was explained in section(2) and in remark(2.13) of [Weber,
2013], such colimits in GV are straight forward.

3.3. Lemma. Let V be a category with coproducts, W be a cocomplete category, J be a
small connected category and

F : J → [GV,GW ]

be a functor. Suppose that F sends objects and arrows of J to functors and natural
transformations over Set.

(1) Then the colimit K : GV→GW of F may be chosen to be over Set.

Given such a choice of K:

(2) If Fj is path-like for all j ∈ J , then K is also path-like.

(3) If Fj is distributive for all j ∈ J , then K is also distributive.

Proof. Colimits in [GV,GW ] are computed componentwise from colimits in GW and so
for X ∈ GV we must describe a universal cocone with components

κX,j : Fj(X)→ KX.

By remark(2.13) of [Weber, 2013] we may demand that the κX,j are identities on objects,
and then compute the hom of the colimit between a, b ∈ X0 by taking a colimit cocone

{κX,j}a,b : Fj(X)(a, b)→ KX(a, b)

in W . This establishes (1). Since the properties of path-likeness and distributivity involve
only colimits at the level of the homs as does the construction of K just given, (2) and
(3) follow immediately since colimits commute with colimits in general.

Recall the structure-semantics result of Lawvere, which says that for any category E ,
the canonical functor

Mnd(E)op → CAT/E T 7→ U : ET → E

with object map indicated is fully faithful (see [Street, 1972] for a proof). An important
consequence of this is that for monads S and T on E , an isomorphism ET ∼= ES over E is
induced by a unique isomorphism S ∼= T of monads. We now have all the pieces we need
to implement our strategy. First, in the following lemma, we give the result we need to
recognise the induced monad on G(V E1) as arising from a multitensor.
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3.4. Lemma. Let λ be a regular cardinal. Suppose that V is a cocomplete category, R
is a coproduct preserving monad on V , S is a λ-accessible monad on GV over Set, and
φ : GR→S is a monad morphism over Set. Denote by T the monad on G(V R) induced
by φ! a φ∗.

(1) One may choose φ! so that T is over Set.

Given such a choice of φ!:

(2) If S is distributive and path-like then so is T .

(3) If R is λ-accessible then so is T .

Proof. Let us denote by ρ : RUR → UR the 2-cell datum of the Eilenberg-Moore
object for R, and note that since G preserves Eilenberg Moore objects, one may identify
UGR = G(UR) and Gρ as the 2-cell datum for GR’s Eilenberg-Moore object. Now T is
over Set iff G(UR)T is. Moreover since R preserves coproducts UR creates them, and
so T is path-like and distributive iff G(UR)T is. Since G(UR)T = USφ!, it follows that
T is over Set, path-like and distributive iff USφ! is. Since the monads S and GR are
over Set, as are ρ and φ, it follows by a transfinite induction using lemma(3.3) that all
successive stages of this construction give functors and natural transformations over Set,
whence USφ! is itself over Set. Lemma(2.4) ensures that the functors GR and G(RUR)
are distributive and path-like, since R preserves coproducts and UR creates them. When
S is also distributive and path-like, then by the same sort of transfinite induction using
lemmas(2.4) and (3.3), all successive stages of this construction give functors that are
distributive and path-like, whence USφ! is itself distributive and path-like.

Supposing R to be λ-accessible, note that GR is also λ-accessible. One way to see this
is to consider the distributive multitensor R̃ on V whose unary part is R and non-unary
parts are constant at the initial object. Thus R̃ will be λ-accessible since R is. To give an
R̃-category structure on X ∈ GV amounts to giving R-algebra structures to the homs of
X, and similarly on morphisms, whence one has a canonical isomorphism R̃-Cat ∼= G(V R)
over GV , and thus by structure-semantics one obtains ΓR̃ ∼= GR. Hence by lemma(2.1),
GR is indeed λ-accessible. But then it follows that UGR = G(UR) creates λ-filtered
colimits, and so T is λ-accessible iff G(UR)T = USφ! is. In the transfinite construction
of USφ!, it is now clear that the functors involved at every stage are λ-accessible by yet
another transfinite induction, and so USφ! is λ-accessible as required.

To finish the proof we must check that T ’s monad structure is over Set. Since µT is
a retraction of ηTT it suffices to verify that ηT is over Set, which is equivalent to asking
that the components of G(UR)ηT are identities on objects. Returning to the more general
setting of a morphism of monads φ : M → S on E and (X, x) ∈ EM discussed above, the
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outside of the diagram on the left

MX X

USφ!(X, x)SX

SMX SX

S2X

x //

UMηT
(X,x)

��
//

USq(X,x)

��

φX

Sx //
::

µSX
��SφX

ηSMX

�� ηSX��

USq(X,x)
��

ηSSX
::

1

GG

G(RUR) GUR

USφ!SG(UR)

Gρ //

G(UR)ηT

��
//

q

��

φG(UR)

clearly commutes, thus one has a commutative square as on the right in the previous
display, and so the result follows.

3.5. Theorem. (Multitensor lifting theorem) Let λ be a regular cardinal and let E
be a λ-accessible distributive multitensor on a cocomplete category V . Then there is, to
within isomorphism, a unique functor operad (E ′, σ′) on V E1 such that

1. (E ′, σ′) is distributive.

2. E ′-Cat ∼= E-Cat over GV .

Moreover E ′ is also λ-accessible.

Proof. Write ψ : Ẽ1 ↪→ E for the multitensor inclusion of the unary part of E, and
then apply lemma(3.4) with S = ΓE, R = E1 and φ = Γψ to produce a λ-accessible
distributive and path-like monad T on G(V E1) over Set. Thus by theorem(2.5) T is a
distributive multitensor on V E1 with T -Cat ∼= E-Cat. Moreover since T ∼= ΓT it follows
by lemma(2.1) that T is λ-accessible. As for uniqueness suppose that (E ′, σ′) is given as
in the statement. Then by theorem(2.5) Γ(E ′) is a distributive monad on G(V E1) and
one has

G(V E1)Γ(E′) ∼= E-Cat

over G(V E1). By structure-semantics one has an isomorphism Γ(E ′)∼=T of monads. Since
Γ is locally fully faithful, one thus has an isomorphism E ′∼=T of multitensors as required.

From the above proofs in the explicit construction of E ′ one first obtains ΓE ′. In
particular one has a coequaliser

ΓE(E1X1, ..., E1Xn) ΓE(X1, ..., Xn) ΓE ′((X1, x1), ..., (Xn, xn))
//
//

// (2)

in E-Cat, and then one takes

n

E′
i=1

(Xi, xi) = ΓE ′((X1, x1), ..., (Xn, xn))(0, n).

The set of objects for each of the E-categories appearing in (2) is {0, ..., n}, and the
morphisms are all identities on objects. The explicit construction of (2) at the level of
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V -graphs proceeds, as we have seen, by a transfinite construction. From this and the
definition of V -graphs of the form ΓE(X1, ..., Xn), it is clear that for all the E-categories
appearing in (2), the hom between a and b for a > b is initial. Thus to understand (2)
completely it suffices to understand the homs between a and b for a ≤ b.

By the explicit description of the monad ΓE, the hom of each stage of the transfinite
construction in GV of the coequaliser (2), depends on the homs between c and d – where
a ≤ c ≤ d ≤ b – of the earlier stages of the construction. Thus the hom between a and b
of (2) is

E
a<i≤b

E1Xi E
a<i≤b

Xi E′
a<i≤b

(Xi, xi)
σ //

E
i
xi
//

// (3)

and moreover, by virtue of its dependence on the intermediate homs (ie between c and
d as above), this will not simply be the process of taking (3) to be the coequaliser in
V E1 . For instance when E ′ is the Gray tensor product as in example(3.9) below, what we
have here is a description of the Gray tensor product of 2-categories in terms of certain
coequalisers in Gray-Cat.

However note that when one applies E ′ to sequences of free E1-algebras, as in

n

E′
i=1

(E1Xi, σ(Xi)) = ΓE ′((E1X1, σ(X1)), ..., (E1Xn, σ(Xn)))(0, n)

= ΓE ′GE1(X1, ..., Xn)(0, n)

= ΓE(X1, ..., Xn)(0, n) =
n

E
i=1

Xi

one simply recovers E.

3.6. Gray and Crans tensor products. In the examples that we present in this
section we shall use the following notation. We denote by A the appropriate T≤n+1-
operad over Set and by E the T ×≤n-multitensor associated to it by theorem(2.6), so that
one has

A = ΓE E = A

and Gn+1(Set)A ∼= E-Cat over Gn+1(Set). The monad E1 on Gn(Set) has as algebras the
structure borne by the homs of an A-algebra. Theorem(3.5) produces the functor operad
E ′ on Gn(Set)E1 such that

Gn+1(Set)A ∼= E ′-Cat ∼= E-Cat

over Gn(Set)E1 . Moreover E ′ is the unique such functor operad which is distributive. The
first of our examples is the most basic.

3.7. Example. When A is the terminal T≤n+1-operad, E is the terminal T ×≤n-multitensor,
and so E1 = T≤n. Since strict (n+1)-categories are categories enriched in n-Cat using
cartesian products, and these commute with coproducts (in fact all colimits), it follows by
the uniqueness part of theorem(3.5) that E ′ is just the cartesian product of n-categories.
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The general context in which this example can be generalised is that of a distributive
law of a multitensor over a monad, as described in section(5) of [Weber, 2013]. Recall that
in theorem(5.4) of [Weber, 2013] such a distributive law was identified with structure on
the monad making it opmonoidal with respect to the multitensor, and that analogously to
the usual theory of distributive laws between monads, one has a lifting of the multitensor
to the category of algebras of the monad. As the following example explains, the two
senses of the word “lifting” – coming from the theory of distributive laws, and from the
lifting theorem – are in fact compatible.

3.8. Example. Let E be a multitensor on V and T be an opmonoidal monad on (V,E).
Then one has by theorem(5.4) of [Weber, 2013] a lifted multitensor E ′ on V T . On the
other hand if moreover V is cocomplete, E is a distributive and accessible functor operad,
and T is coproduct preserving and accessible, then E ′ may also be obtained by applying
theorem(3.5) to the composite multitensor EM(T ). When E is given by cartesian product
EM(T ) is just another name for the multitensor T×, making E ′ the cartesian product
of T -algebras by the uniqueness part of theorem(3.5) and proposition(2.8) of [Batanin-
Weber, 2011]. Specialising further to the case T = T≤n, we recover example(3.7).

In the above examples we used the uniqueness part of theorem(3.5) to enable us to
identify the lifted multitensor E ′ as the cartesian product. In each case we had the
cartesian product on the appropriate category of algebras as a candidate, and the afore-
mentioned uniqueness told us that this candidate was indeed our E ′ because the resulting
enriched categories matched up. In the absence of this uniqueness, in order to identify E ′

one would have to unpack its construction, and as we saw in the proof of lemma(3.4), this
involves a transfinite colimit construction in the appropriate category of enriched graphs.
The importance of this observation becomes greater as the operads we are considering
become more complex. We now come to our leading example.

3.9. Example. Take A to be the T≤3-operad for Gray categories constructed in
[Batanin,1998] (example(4) after corollary(8.1.1)). Since E1 is the monad on G2(Set) for
2-categories, in this case E ′ is a functor operad for 2-categories. However the Gray tensor
product of 2-categories [Gray, 1974] is part of a symmetric monoidal closed structure. Thus
it is distributive as a functor operad, and since Gray categories are categories enriched in
the Gray tensor product by definition, it follows that E ′ is the Gray tensor product.

Lemma(2.5) of [Crans, 2000] unpacks the notion of 4-tas (“tas” being the singular
form, “teisi” being the plural) in detail. This explicit description can be interpretted
as an explicit description of the T≤4-operad for 4-teisi. On the other hand from [Crans,
1999], one can verify that ⊗Crans is distributive in the following way. First we note that
to say that ⊗Crans is distributive is to say that

id⊗ ci : A⊗Crans Bi −→ A⊗Crans B

is a coproduct cocone, for all Gray categories A and coproduct cocones (Bi
ci−→ B : i ∈ I)

of Gray categories, since ⊗Crans is symmetric. Since the forgetful functor Gray-Cat →
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G(2-Cat) creates coproducts, and using the explicit description of coproducts of enriched

graphs, a discrete cocone (Ci
ki−→ C : i ∈ I) in Gray-Cat is universal iff it is universal

at the level of objects and each of the ki’s is fully faithful (in the sense that the hom
maps are isomorphisms of 2-categories). From the explicit description of ⊗Crans given in
section(4) of [Crans, 1999], one may witness that

A⊗Crans (−) : Gray-Cat −→ Gray-Cat

preserves fully faithful Gray-functors. Thus the distributivity of ⊗Crans follows since at
the level of objects ⊗Crans is the cartesian product.

3.10. Example. Take A to be the T≤4-operad for 4-teisi. The associated multitensor
E has E1 equal to the T≤3-operad for Gray categories. Thus theorem(3.5) constructs
a functor operad E ′ of Gray categories whose enriched categories are 4-teisi. As we
explained above ⊗Crans is distributive, and so the uniqueness part of theorem(3.5) ensures
that E ′ = ⊗Crans, since teisi are categories enriched in the Crans tensor product by
definition.

3.11. Day convolution. While this article is directed primarily at an improved under-
standing of the examples discussed above, within a framework that one could hope will
lead to an understanding of the higher dimensional analogues of the Gray tensor product,
it is interesting to note that Day convolution can be seen as an instance of the multitensor
lifting theorem.

The set of multimaps (X1, ..., Xn)→ Y in a given multicategory C shall be denoted as
C(X1, ..., Xn;Y ). Recall that a linear map in C is a multimap whose domain is a sequence
of length 1. The objects of C and linear maps between them form a category, which we
denote as Cl, and we call this the linear part of C. The set of objects of C is denoted as
C0. Given objects

A11, ..., A1n1 , ......, Ak1, ..., Aknk B1, ..., Bk C

of C, we denote by

σA,B,C : C(B1, ..., Bk;C)×
∏
i

C(Ai1, ..., Aini ;Bi)→ C(A11, ..., Aknk ;C)

the substitution functions of the multicategory C. One thus induces a function

σA,C :

∫ B1,...,Bk

C(B1, ..., Bk;C)×
∏
i

C(Ai1, ..., Aini ;Bi)→ C(A11, ..., Aknk ;C)

in which for the purposes of making sense of this coend, the objects B1, ..., Bk are regarded
as objects of the category Cl. A promonoidal category in the sense of Day [Day, 1970],
in the unenriched context, can be defined as a multicategory C such that these induced
functions σA,C are all bijective. A promonoidal structure on a category D is a promonoidal
category C such that Cl = Dop.
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A lax monoidal category (V,E) is cocomplete when V is cocomplete as a category and
En : V n → V preserves colimits in each variable for all n ∈ N. In this situation the
multitensor E is also said to be cocomplete. When C is small it defines a functor operad
on the functor category [Cl,Set] whose tensor product F is given by the coend

F
i
Xi =

∫ C1,...,Cn

C(C1, ..., Cn;−)×
∏
i

XiCi

and substitution is defined in the evident way from that of C. By proposition(2.1) of
[Day-Street, 2003] F is a cocomplete functor operad and is called the standard convo-
lution structure of C on [Cl,Set]. By proposition(2.2) of [Day-Street, 2003], for each
fixed category D, standard convolution gives an equivalence between multicategories on
C such that Cl = D and cocomplete functor operads on [D,Set], which restricts to the
well-known [Day, 1970] equivalence between promonoidal structures on Dop and closed
monoidal structures on [D,Set].

We have recalled these facts in a very special case compared with the generality at
which this theory is developed in [Day-Street, 2003]. In that work all structures are
considered as enriched over some nice symmetric monoidal closed base V , and moreover
rather than D = Cl as above, one has instead an identity on objects functor D→ Cl. The
resulting combined setting is then what are called V-substitudes in [Day-Street, 2003], and
in the V = Set case the extra generality of the functor D→ Cl, corresponds at the level
of multitensors, to the consideration of general closed multitensors on [D,Set] instead of
mere functor operads. We shall now recover standard convolution, for the special case
that we have described above, from the lifting theorem.

Given a multicategory C we define the multitensor E on [C0,Set] via the formula(
E

1≤i≤n
Xi

)
(C) =

∐
C1,...,Cn

(
C(C1, ..., Cn;C)×

∏
1≤i≤n

Xi(Ci)

)

using the unit and compositions for C in the evident way to give the unit u and substitution
σ for E. When C0 has only one element, this is the multitensor on Set coming from the
operad P described in [Batanin-Weber, 2011] and [Weber, 2013], whose tensor product is
given by the formula

E
1≤i≤n

Xi = Pn ×X1 × ...×Xn.

An E-category with one object is exactly an algebra of the coloured operad P in the usual
sense. A general E-category amounts to a set X0, sets X(x1, x2)(C) for all x1, x2 ∈ X0

and C ∈ C0, and functions

C(C1, ..., Cn;C)×
∏
i

X(xi−1, xi)(Ci)→ X(x0, xn)(C) (4)

compatible in the evident way with the multicategory structure of C. On the other hand
an F -category amounts to a set X0, sets X(x1, x2)(C) natural in C, and maps as in
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(4) but which are natural in C1, ..., Cn, C, and compatible with C’s multicategory struc-
ture. However this added naturality enjoyed by an F -category isn’t really an additional
condition, because it follows from the compatibility with the linear maps of C. Thus
E and F -categories coincide, and one may easily extend this to functors and so give
E-Cat ∼= F -Cat over G[C0,Set].

The unary part of E is given on objects by

E1(X)(C) =
∐
D

Cl(D,C)×X(D)

which should be familiar – E1 is the monad on [C0,Set] whose algebras are functors
Cl → Set, and may be recovered from left Kan extension and restriction along the
inclusion of objects C0 ↪→ Cl. Thus the category of algebras of E1 may be identified with
the functor category [Cl,Set]. Since the multitensor E is clearly cocomplete, it satisfies
the hypotheses of theorem(3.5), and so one has a unique finitary distributive multitensor
E ′ on [Cl,Set] such that E-Cat ∼= E ′-Cat over G[C0,Set]. By uniqueness we have

3.12. Proposition. Let C be a multicategory, F be the standard convolution structure
on [Cl,Set] and E be the multitensor on [C0,Set] defined above. Then one has an iso-
morphism F ∼= E ′ of multitensors.

In particular when C is a promonoidal category proposition(3.12) expresses classical
unenriched Day convolution as a lift in the sense of theorem(3.5).

3.13. The 2-functoriality of multitensor lifting. We now express the lifting
theorem as a coreflection to the inclusion of functor operads within a 2-category of mul-
titensors which are sufficiently nice that theorem(3.5) can be applied to them.

Recall [Street, 1972] that when a 2-category K has Eilenberg-Moore objects, one has
a 2-functor

semK : MND(K) −→ K[1] (V, T ) 7→ UT : V T → V

which on objects sends a monad T to the forgetful arrow UT which forms part of the
Eilenberg-Moore object of T , and that a straight forward consequence of the universal
property of Eilenberg-Moore objects is that semK (“sem” being short for “semantics”) is
2-fully-faithful. In the case K = CAT if one restricts attention to the sub-2-category of
MND(CAT) consisting of the 1-cells of the form (1E ,−), then one refinds the structure-
semantics result of Lawvere referred to earlier.

The 2-fully-faithfulness of semK says that the one and 2-cells of the 2-category MND(K)
admit an alternative “semantic” description. Given monads (V, T ) and (W,S) in K, to
give a monad functor (H,ψ) : (V, T ) → (W,S), is to give H̃ : V T → W S such that
USH̃ = HUT ; and to give a monad 2-cell φ : (H1, ψ1) → (H2, ψ2) is to give φ : H1→H2

and φ̃ : H̃1→H̃2 commuting with UT and US. Note that Eilenberg-Moore objects in
CAT/Set are computed as in CAT, and we shall soon apply these observations to the
case K = CAT/Set.
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In view of theorem(2.5) of this article and proposition(4.4.2) of [Weber, 2013], the
2-functor Γ restricts to a 2-equivalence

Acc-DISTMULT ' Acc-G-MND. (5)

Here Acc-DISTMULT is the full sub-2-category of DISTMULT consisting of the (V,E)
such that V is cocomplete and the multitensor E is accessible. The 2-category Acc-G-MND
is defined as follows:

• objects are pairs (V, T ), where V is a cocomplete category and T is a monad on GV
which is distributive, path-like and accessible.

• an arrow (V, T ) → (W,S) is a pair (H,ψ), where H : V → W is a functor, and
ψ is a natural transformation making (GH,ψ) : (GV, T ) → (GW,S) a morphism of
MND(CAT/Set).

• a 2-cell (H,ψ)→ (K,κ) is a monad 2-cell (GH,ψ)→ (GK,κ).

Since by [Weber, 2013] proposition(2.1.6), the effect G1 : CAT −→ CAT/Set of G on
arrows into 1 is locally fully faithful, the data of a 2-cell of Acc-G-MND will be of the
form Gφ for a unique natural transformation φ : H → K. Moreover from the recollections
of the previous paragraph, the one and 2-cells of Acc-G-MND can be reinterpreted in
semantic terms.

Let us denote by Acc-FOp the full sub-2-category of Acc-DISTMULT consisting of
the (V,E) such that E is a functor-operad, and by

I : Acc-FOp −→ Acc-DISTMULT

the inclusion.

3.14. Proposition. The assignment (V,E) 7→ (V E1 , E ′), with E ′ defined by theorem(3.5),
is the object map of a right adjoint

C : Acc-DISTMULT −→ Acc-FOp

to the inclusion I.

Proof. We shall define the coreflection C and a 2-natural transformation ε : IC → 1
such that Cε = id and εI = id, so that ε is the counit of an adjunction I a C whose unit
is an identity. Let (H,ψ) : (W,F )→ (V,E) be a lax monoidal functor. Then we have the
following serially commutative diagram of forgetful functors

F -Cat G(W F1) GW

GVG(V E1)E-Cat

UF
′
// G(UF1 ) //

GH
��

//
G(UE1 )

//
UE
′

��
ψ∗ G(ψ∗1)

��

UF

%%

UE

99
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The left-most square is the semantic interpretation of a morphism of monads

(G(ψ∗1), ψ̃) : (G(W F1),ΓF ′) −→ (G(V E1),ΓE ′)

and so by (5), there is a unique natural transformation ψ′ giving the coherence data of a
lax monoidal functor

(ψ∗1, ψ
′) : (W F1 , F ′) −→ (V E1 , E ′)

such that Γ(ψ∗1, ψ
′) = (G(ψ∗1), ψ̃). This enables us to define the 1-cell map of C as

C(H,ψ) = (ψ∗1, ψ
′), and similarly using the semantic interpretation of the 2-cells of

Acc-G-MND and (5), one defines the 2-cell map of C. The 2-functoriality of C follows
from that of Γ and semCAT/Set.

For (V,E) ∈ Acc-DISTMULT one has

E-Cat G(V E1)

GVE-Cat

UE
′
//

G(UE1 )
��

//
UE

��
1

which is the semantic interpretation of

(UE1 , εE) : (V E1 , E ′) −→ (V,E) ∈ Acc-DISTMULT

and we take this to be the component ε(V,E) of ε. To verify naturality with respect to (H,ψ)
as above, note that semCAT/Set(ε(V,E)(ψ

∗
1, ψ

′)) is the composite morphism UF ′ → UE1

depicted on the left in

F -Cat G(W F1)

G(V E1)

GVE-Cat

E-Cat

UF
′
//

G(ψ∗1)
��

G(UE1 )
��

//
UE

��
1

��
ψ∗

UE
′
//

F -Cat G(W F1)

GW

GVE-Cat

F -Cat

UF
′
//

G(UF1 )
��

GH
��

//
UE

��
ψ∗

��
1

UF //

whereas semCAT/Set((H,ψ)ε(W,F )) is the composite depicted on the right. Since UE1ψ∗1 =
HUF1 these are equal and so ε is natural with respect to (H,ψ) by the fully faithfulness
of semCAT/Set. The 2-naturality of ε follows similarly using the 2-fully faithfulness of
semCAT/Set. When E is itself a functor operad one has that E1 is the identity monad,
and so UE1 and thus ε(V,E) are identities, whence εI = id. On the other hand for any
(V,E) ∈ Acc-DISTMULT, εE

∗
1 = id by definition, and so Cε(V,E) = id.
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As pointed out in section(6.1) of [Weber, 2013], the data φ : E → F of a morphism
of multitensors on some category V can also be regarded as the coherences making the
identity functor 1V into a lax monoidal functor (1V , φ) : (V, F )→ (V,E), or alternatively
as the coherences making 1V into an oplax monoidal functor (1V , φ) : (V,E)→ (V, F ).

3.15. Remark. Suppose that ψ : E → T ×≤n is a T ×≤n-multitensor. Then the datum ψ can
also be regarded as the coherence data for a lax monoidal functor

(1Gn(Set), ψ) : (Gn(Set), T ×≤n) −→ (Gn(Set), E),

applying C to it gives a lax monoidal functor

(ψ∗1, ψ
′) : (Gn(Set)T≤n ,

∏
) −→ (Gn(Set)E1 , E ′)

and the components of ψ′ are morphisms

ψ′(X1,x1),...,(Xn,xn) : E
i

′ψ∗1(Xi, xi) −→
n∏
i=1

ψ∗1(Xi, xi)

of E1-algebras defined for each sequence ((X1, x1), ..., (Xn, xn)) of strict n-categories. The
codomain of these morphisms can be written as above since ψ∗1 as a right adjoint preserves
products. This gives a general comparison map between the functor operad E ′ produced
by theorem(3.5) and cartesian products, defined for sequences of E1-algebras that underlie
strict n-categories. In particular when E is as in example(3.9), then ψ∗1 is the identity,
and one has the comparison maps between the Gray tensor product and the cartesian
product of 2-categories.

One of the expected features of the higher dimensional analogues of the Gray tensor
product are such comparisons with cartesian product, which moreover are expected to
be equivalences in the appropriate higher categorical sense. We shall see in remark(6.5)
below, that in the context of reduced T≤n-operads, one always gets such comparison maps
with the cartesian product, and these are defined for all E1-algebras.

4. Weak n-categories via algebraic weak factorisation systems

4.1. Overview. In this section we review the operadic definition of weak n-category
(more precisely Leinster’s variant [Leinster, 2003] of Batanin’s [Batanin,1998] original defi-
nition) in a way that allows adaptation to the strictly unital case in section(5). The overall
scheme of this definition is as follows. One has the category T≤n-Coll0 of T≤n-collections
over Set, and this is a presheaf category. There are two finitary monads on T≤n-Coll0,
Opd≤n and Cont≤n, whose algebras are T≤n-operads over Set and T≤n-collections over Set
with chosen contractions (in the sense to be recalled below), respectively. The coproduct
of these monads Opd≤n

∐
Cont≤n exists and is finitary, and its algebras are T≤n-operads

over Set equipped with chosen contractions. As the category of algebras of a finitary
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monad on a presheaf category, the category of T≤n-operads over Set with chosen contrac-
tions is locally finitely presentable, and so has an initial object K≤n. A weak n-category
is by definition an algebra for K≤n.

The monad Opd≤n can be thought about in a few ways. Most generally, one has a
finite limit sketch S1 whose Set-valued models are T≤n-operads over Set, another such
sketch S2 (this time without any distinguished limit cones) for T≤n-collections over Set,
and an inclusion S2 ↪→ S1 of finite limit sketches which induces the finitary monad Opd≤n.
Another viewpoint is that T≤n-Op0 is the category of monoids for the substitution tensor
product on T≤n-Coll0, this tensor product being filtered colimit preserving in one variable
and cocontinuous in the other, and so by general well-known results such as those of [Kelly,
1980], the monoid monad exists and is finitary. Most particularly, an explicit description
of Opd≤n is given in [Leinster, 2003] Appendix D, from which its finitariness and many
other desirable properties may be witnessed.

As for Cont≤n, our preferred approach will be that of [Garner, 2009], which is to use
the theory of cofibrantly-generated algebraic weak factorisation systems from [Garner,
2009(2)] to give a conceptual understanding of this monad. We shall spend some time
reviewing the relevant aspects of [Garner, 2009(2)] as we shall use this machinery in
section(5).

4.2. Algebraic weak factorisation systems. Composition in any category E can
be regarded as a morphism compE of spans of categories

E

E [2]

E

E [1]

tt **44

tEsE

jj compE

��

where sE (resp. tE) takes the source (resp. target) of a given morphism of E . A functorial
factorisation is a morphism of spans that is a section of compE . On objects a given
functorial factorisation F : E [1] → E [2] takes an arrow f : X → Y of E to a composable
pair

X
Lf−→ Kf

Rf−→ Y

of morphisms whose composite is f . With the evident morphisms one has a category
FF(E) of functorial factorisations for E . For a given F the assignment f 7→ Lf defines a
copointed endofunctor ε : L→ 1 on E [1] such that sEε = idsE , where the f -component of
ε is given as on the left in

X X

YKf

1X //

f
��
//

Rf

��
Lf

X Kf

YY

Lf //

Rf
��
//

1Y

��
f

and similarly, the assignment f 7→ Rf defines a pointed endofunctor η : 1 → R on E [1]

such that tEη = idtE , with the f -component of η given as on the right in the previous
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display. Clearly these give three equivalent viewpoints on the notion, that is to say, to
give a functorial factorisation F , is to give (L, ε) such that sEε = idsE , which in turn is
equivalent to giving (R, η) such that tEη = idtE . Thus (following [Garner, 2009(2)]) we
shall also denote F as the pair (L,R). The assignment f 7→ Kf is the object map of a
functor K : E [1] → E that we call the image of a given functorial factorisation.

Composition of the associated pointed endofunctors gives FF(E) a strict monoidal
structure, with tensor product denoted as ◦r, and whose unit is initial. Composition of
the associated copointed endofunctors gives FF(E) another strict monoidal structure, with
terminal unit and tensor product denoted as ◦l. A key observation of [Garner, 2009(2)]
is that one has natural maps

λF1,F2,F3,F4 : (F1 ◦l F2) ◦r (F3 ◦l F4) −→ (F1 ◦r F3) ◦l (F2 ◦r F4)

providing the interchange maps of a duoidal structure. Recall that a duoidal structure
[Aguiar-Mahajan, 2010] [Batanin-Markl, 2012] on a category V is a pair of monoidal
structures (I1,⊗1, α1, λ1, ρ1) and (I2,⊗2, α2, λ2, ρ2), together with morphisms η : I1 → I2,
µ : I2 ⊗ I2 → I2 and δ : I1 → I1 ⊗2 I1, and natural morphisms

λA,B,C,D : (A⊗2 B)⊗1 (C ⊗2 D) −→ (A⊗1 C)⊗2 (B ⊗1 D)

called interchange maps, such that

• (η, µ) makes I2 a ⊗1-monoid.

• (η, δ) makes I1 a ⊗2-comonoid.

• (ι, δ) are the coherences making ⊗2 : V × V → V lax monoidal for ⊗1.

• (ι, µ) are the coherences making ⊗1 : V × V → V oplax monoidal for ⊗2.

The key observation alluded to above is precisely that one has a duoidal structure on
FF(E) for which I1 = 0, I2 = 1, ⊗1 = ◦r and ⊗2 = ◦l.

A duoidal category is a natural environment for a notion of bialgebra. A bialgebra
structure on X in a general duoidal category V consists of morphisms i : I1 → X,
m : X ⊗1 X → X, c : X → I2 and d : X → X ⊗2 X, such that (i,m) is a ⊗1-monoid
structure, (c, d) is a ⊗2-comonoid structure, and these are compatible in the following
equivalent ways:

• i and m are morphisms of ⊗2-comonoids.

• c and d are morphisms of ⊗1-monoids.

An algebraic weak factorisation system on E (originally called a natural weak factorisation
system in [Garner, 2009(2)]) is by definition a bialgebra in the duoidal category FF(E).
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In particular for an algebraic weak factorisation system F , the copointed endofunctor
(L, ε) has in addition a comultiplication making it into a comonad, and the pointed end-
ofunctor (R, η) has a multiplication making it into a monad. Thus the given factorisation
of f : X → Y as

X
Lf−→ Kf

Rf−→ Y

is into a map Lf which has the structure of an L-coalgebra, followed by the map which
has the structure of an R-algebra. In general L-coalgebras and R-algebras admit lifting
conditions with respect to each other, that is to say, given a commutative square as on
the left in

A C

DB

u //

r

��
//

v

��

l

A C

Kr

DB

Kl

u //

Lr
��

Rr
��
//

v

��
Rl

��
Ll

λ

OO
K(u,v) //

ρ

OO

together with an L-coalgebra structure λ on l and an R-algebra structure ρ on r, one
constructs the diagonal filler as on the right in the previous display. Thus everything
works as with the usual theory of weak factorisation systems, except that here instead of
classes of left and right maps one has the categories of L-coalgebras and R-algebras, and
the liftings are constructed as shown above using the algebraic data. In fact as explained
in [Garner, 2009(2)], every algebraic weak factorisation system has an underlying weak
factorisation system.

For any X ∈ E , L restricts to a comonad LX on the coslice X/E whose coalgebras
are L-coalgebras with domain X. Similarly R restricts to a monad RX on the slice E/X
whose algebras are R-algebras with codomain X. In particular if E has an initial object
0, then L0 is a comonad on E whose coalgebras are objects X of E together with the
structure of an L-coalgebra on the unique map 0→ X. This is the algebraic analogue of
cofibrant replacement, when the underlying weak factorisation system is the factorisation
of morphisms of a Quillen model category into cofibrations followed by trivial fibrations.
Dually when E has a terminal object 1, the monad R1 on E is an algebraic analogue of
fibrant replacement, when the underlying weak factorisation system is the factorisation
of morphisms of a Quillen model category into trivial cofibrations followed by fibrations.

Given a functorial factorisation F = (L,R) with image denoted as K, since colimits
in E [1] and E [2] are computed componentwise as in E , the following statements are clearly
equivalent for a given category C:

• F : E [1] → E [2] preserves limits (resp. colimits) of functors from C.

• L : E [1] → E [1] preserves limits (resp. colimits) of functors from C.

• R : E [1] → E [1] preserves limits (resp. colimits) of functors from C.

• K : E [1] → E preserves limits (resp. colimits) of functors from C.
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When any of these conditions is satisfied, we say that the functorial factorisation pre-
serves the given limit or colimit. In particular given a regular cardinal λ an algebraic
weak factorisation system is said to be λ-ary when its underlying functorial factorisation
preserves λ-filtered colimits, and finitary in the case λ = ℵ0 of filtered colimits. Note that
for a finitary algebraic weak factorisation system (L,R), the comonad L0 and the right
monad R1 are both finitary. Below we shall exhibit Cont≤n as the monad R1 for a finitary
algebraic weak factorisation system (L,R) on T≤n-Coll0.

Since 0 ∈ FF(E) has underlying monad the identity, it preserves all limits and colimits
as a functorial factorisation, and similarly for 1 ∈ FF(E) since its underlying comonad
is the identity. Thus if we write FF(E)′ for the full subcategory of FF(E) consisting of
the functorial factorisations preserving some class of limits and colimits, then the duoidal
structure of FF(E) restricts to FF(E)′. So the algebraic weak factorisation system’s which
preserve the limits and colimits in the given class could equally well be regarded as
bialgebras in FF(E)′.

We conclude this section with an observation that will be of use in section(4.4).

4.3. Lemma. Let P : A → B be an opfibration, and let F = (L,R) be the functorial
factorisation on A of a map into a cocartesian arrow for P followed by a vertical arrow
(ie one sent to an identity by P ). Then F preserves any colimit that P preserves.

Proof. For any functor P : A → B one has the functor iP : A → P/B given on objects
by PA = (A, 1PA, PA), and the structure of an opfibration amounts to a left adjoint
π : P/B → A to iP over B (see [Street, 1974] for instance). One also has the canonical
functor

P ′ : A[1] → P/B A
α−→ A′ 7→ (A,Pα, PA′)

and the image for the cocartesian-vertical factorisation for P is the composite πP ′. Now
the forgetful functor P/B → A×B creates all colimits that are preserved by P . Thus P ′

preserves all colimits that P does since colimits in E [1] are formed componentwise as in
E , and so the result follows since π as a left adjoint preserves all colimits.

4.4. Garner’s small object argument. The algebraic weak factorisation system’s
relevant for us will all be cofibrantly generated, in the sense that they all arise from
Garner’s small object argument, which we now recall in a special case of interest to us
(for the general theory see [Garner, 2009(2)]). Suppose that E is locally finitely presentable
and that a functor J : I → E [1] is given, where I is a small category. Then Garner’s small
object argument produces an algebraic weak factorisation system on E in three steps.
Before we begin to recall these, we invite the reader to keep in mind the more familiar
special case when I is discrete, and so J may be regarded as a set of maps

J = {si
φi−→ di : i ∈ I}

that one might call the “generating cofibrations” of the resulting algebraic weak factori-
sation system.
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The first step is to take the left Kan extension of J along itself to produce L1 :
E [1] → E [1], which comes with a canonical comonad structure (comonads arising this way
are commonly known as “density” comonads). The underlying copointed endofunctor
(L1, ε1) of this comonad does not satisfy the condition sEε1 = idsE that would make it
part of a functorial factorisation, and the point of the second step is to force this condition.
Observe that sE : E [1] → E is an opfibration, in which the cocartesian arrows are those
whose underlying square in E is a pushout4. Then the second step is carried out by
factoring the counit components ε1,f : L1f → f into

L1f
cf−→ L2f

ε2,f−−→ f

a cocartesian arrow followed by a vertical arrow for sE . In this way (L2, ε2) satisfies the
condition sEε2 = idsE and so we have a functorial factorisation. Moreover L2 inherits a
comultiplication from that of L1, making it into a comonad. What is still missing is the
compatible monad structure on R, and the third step of the construction will supply this.

Before proceeding to describe this third step, let us note that the factorisation provided
by the first two steps yields something very familiar in the case where I is discrete. For
suppose that f : X → Y is in E , then L1f and L2f are as indicated on the left in

∐
i,α,β

si X

Y
∐
i,α,β

di

(α) //

f

��

L1f

��

(β)
//

Pf33

L2f

yy
R2f

))

si X

Ydi

α //

f
��
//

β

��
φi =

the summands are indexed over the set of triples (i, α, β) giving rise to a commutative
square as indicated on the right in the previous display. So we have here what is usually
regarded as the first step of Quillen’s small object argument. In general, that is for I not
necessarily discrete, the above coproducts will be replaced by more general colimits.

On completing the first two steps we have produced a functorial factorisation (L2, R2)
in which L2 is a comonad, in other words we have a ◦l-comonoid in FF(E). The third
step of Garner’s small object argument is to take the free bialgebra on this comonoid, and
this encapsulates the algebraic analogue of the transfinite part of Quillen’s small object
argument.

Let us see why this free bialgebra exists in our setting with E locally finitely pre-
sentable. First we note that since I is small and every object of E has rank, the functor
J factors through the inclusion Eλ ↪→ E of the λ-presentable objects where λ is some
regular cardinal. Thus L1 is the left extension of its restriction to Eλ, and so it preserves
λ-filtered colimits. Since the opfibration sE : E [1] → E preserves all colimits and thus

4Note that for any E , sE is a fibration, but what is important for us is that pushouts in E make sE
into an opfibration.
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λ-filtered ones in particular, by lemma(4.3) L2 preserves λ-filtered colimits. So in fact
(L2, R2) is a ◦l-comonoid in FFλ(E), the duoidal category of λ-ary functorial factorisations
on E .

In FFλ(E) the tensor products ◦l and ◦r are cocontinuous in one variable and λ-
filtered colimit preserving in the other, since in each case these are just obtained by the
composition of some kind of λ-ary functors. Because of the compatibility of these tensor
products within the duoidal structure, the tensor product ◦r lifts to a tensor product on
the category ◦l-CoMonλ(E) of λ-ary ◦l-comonoids, and since the forgetful functor Ul :
◦l-CoMonλ(E) → FFλ(E) is strict monoidal and creates colimits, ◦r as a tensor product
on ◦l-CoMonλ(E) is also cocontinuous in one variable and λ-filtered colimit preserving in
the other. Since FFλ(E) and thus ◦l-CoMonλ(E) is evidently cocomplete, one can apply
the construction of the free monoid on a pointed object from [Kelly, 1980] to (L2, R2) ∈
◦l-CoMonλ(E), to obtain the free bialgebra.

One reason we have discussed these details is to make the following observation.

4.5. Lemma. Suppose that J : I → E [1] where E is locally finitely presentable, I is small
and for all i ∈ I, the domain and codomain of J(i) is finitely presentable. Then the
algebraic weak factorisation system obtained from J via Garner’s small object argument
is finitary.

Proof. In this case the λ of the above discussion is ℵ0 and so the third part of the
construction stays within the category of finitary functorial factorisations.

Note that in the general construction of the free bialgebra, one can think of it as
taking place just within FFλ(E), ie one can forget about the ◦l-comonoid structures,
since Ul is strict monoidal and creates colimits, so this extra structure is automatically
compatible with everything that is going on. It is also worth noting that the passage from
(L,R) ∈ FF(E) to RX , for all X ∈ E , preserves colimits and sends ◦r to composition of
pointed endofunctors of E/X, and so for the (L,R) obtained from Garner’s small object
argument, RX is the free monad on the pointed endofunctor (R2)X .

The algebraic weak factorisation system obtained from J : I → E [1] via Garner’s
small object argument is said to be cofibrantly generated by J . For such algebraic weak
factorisation systems one has a direct description of what an R-algebra structure on a

given f : X → Y amounts to. In order to describe this let us denote by i 7→ s(i)
φi−→ d(i)

the object map of J . Then to give an R-algebra structure on f is to give a choice of
diagonal fill

si X

Ydi

α //

f
��
//

β

��
φi γ(i,α,β)

::

for every (i, α, β) such that fα = βφi; and these are compatible in the sense that given
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δ : j → i in I and α and β as above, one has

sj si X

Ydidj

sδ // α //

f

��
//

β
//

dδ

��
φj

φi

��
γ(i,α,β)

77

γ(j,αs(δ),βd(δ))

33

γ(i, α, β)d(δ) = γ(j, αs(δ), βd(δ)). This compatibility condition is one of the novel features
of the theory of algebraic weak factorisation systems, which owes its existence to the fact
that one has a category of “generating cofibrations” as opposed to a mere set. We shall
use this feature below in section(5) to express what it means for unital operations to be
“strict” in our operadic definition of “weak n-category with strict units”.

4.6. T≤n-collections. Up to this point in this article we have been using exclusively the
general definitions of T≤n-collections (resp. operads) as cartesian natural transformations
(resp. cartesian monad morphisms) into T≤n. The advantage of this is that all the
combinatorial aspects of pasting diagrams are neatly packaged into a single very well-
behaved object – the monad T≤n on Gn(Set) for strict n-categories. We now, for both the
convenience of the reader and to set our notation and terminology, recall some of these
combinatorial aspects.

We denote also by Tr≤n the n-globular set T≤n(1). This is the free strict n-category on
the terminal n-globular set, the set of k-cells of which are denoted as Trk, whose elements
can be regarded as k-stage trees in the sense of [Batanin,1998], a k-stage tree p being a
sequence

p(k) p(k−1) ... p(1) p(0)
ξk // // // ξ1 //

in ∆+ such that p(0) = 1. An element x ∈ p(r) is a node of p whose height is r, the
element y = ξr...ξs+1(x) is x’s ancestor of height s, x is said to be a descendant of y,
and a node x is said to be a leaf when it doesn’t have any descendants. The leaves of a
given tree p have a linear order determined by the order on the p(r)’s and the ξr’s. For
k > 0 the source and target functions s, t : Trk+1 → Trk are equal, they correspond to
forgetting the nodes at height (k + 1), that is to say “truncation to height k”, and so we
write s = tr = t. For k < n any k-stage tree p can be regarded as a (k+1)-stage tree zp
such that tr(zp) = p and (zp)(k+1) = 0, and one has an inclusion z : Trk ↪→ Trk+1. The
k-stage tree with exactly one leaf at height k is denoted as Uk, and so the k-stage trees
with exactly one leaf are those of the form zsUk−s. Such trees are said to be linear.

Trees in the sense just described define the n-globular sets to be regarded as globular
pasting schemes. In [Batanin,1998] the notation p∗ was used for the globular set deter-
mined by the tree p. From a general perspective the assignation of a globular set from
a tree is the object map of a functor el(Tr≤n) → Gn(Set) (el(Tr≤n) is the category of
elements of the n-globular set Tr≤n) which comes from the fact that T≤n is a local right
adjoint monad on a presheaf category – so the trees/globular pasting diagrams are the
canonical arities for T≤n, see [Weber, 2007] [Berger-Melliès-Weber, 2012]. For an explicit
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description of this operation, see [Batanin,1998] or [Weber, 2004]. We shall omit the (−)∗

and just refer to the n-globular set p. In particular the n-globular sets p and zp coincide.
The category T≤n-Coll of T≤n-collections admits two useful reformulations because of

the equivalences of categories

T≤n-Coll ' Gn(Set)/Tr≤n ' [el(Tr≤n)op,Set]

the first of which is given by evaluating at 1, and the second is the standard description of
a slice of a presheaf category as a presheaf category. Given p ∈ Trk where k ≤ n, the set Ap
is just the fibre over p ∈ Trk of (α1)k : A(1)k → Trk. When A underlies an operad, a ∈ Ap
is an operation which in any A-algebra composes such a pasting diagram to a k-cell. By
the Yoneda lemma a k-stage tree p may also be regarded as a morphism p : k → Tr≤n
of n-globular sets, and these are exactly the representables when regarding T≤n-Coll as a
presheaf category. For k > 0 one has cosource and cotarget morphisms σ, τ : (k−1)→ k
of representable globular sets, giving cosource and cotarget maps σp, τp : tr(p) → p in
T≤n-Coll, since in Gn(Set)/Tr≤n one has tr(p) = pσ = pτ .

To say that a T≤n-collection is over Set is to say that for the corresponding α : A→
Tr≤n, the fibre over U0 is singleton, that is that AU0 is singleton. The category T≤n-Coll0
is also a presheaf category

T≤n-Coll0 ' [N op
≤n,Set]

where N≤n is the full subcategory of el(Tr≤n) consisting of those trees p 6= U0. Right
Kan extension along the inclusion i : N≤n ↪→ el(Tr≤n) corresponds to the inclusion
T≤n-Coll0 ↪→ T≤n-Coll, and restriction along i applied to A amounts to replacing AU0

with a singleton. So the trees p 6= U0 are also representables in T≤n-Coll0, but viewed
in Gn(Set)/Tr≤n this will be different from p : k → Tr≤n in that the two 0-cells of the
n-globular set k will have been identified. Despite this difference we shall, when there
is no risk of confusion, denote by p this representable object of T≤n-Coll0. Thus for a
T≤n-operad A over Set, one may regard an element of a ∈ Ap, that is to say an operation
a of A of arity p, as a morphism a : p→ A in T≤n-Coll0 by the Yoneda lemma. Similarly,
for k-stage trees p where k > 1, one has σp, τp : tr(p)→ p in T≤n-Coll0.

4.7. T≤n-operads with chosen contractions. The (Leinster-)contractibility of a
T≤n-operad is a condition on the underlying collection. A T≤n-collection is contractible
iff the corresponding morphism α : A→ Tr≤n of n-globular sets satisfies the right lifting
property (right lifting property) with respect to the set

I≤n = {∂(k)
φk−→ k : 0 ≤ k ≤ n} ∪ {∂(n+1)

φ′n−→ n}.

To equip the T≤n-collection with chosen contractions is by definition to give choices of
liftings that witness α’s right lifting property.

As such, possessing chosen contractions is exactly the structure of an R-algebra on α,
where (L,R) is the algebraic weak factorisation system on Gn(Set) cofibrantly generated
by I≤n. As observed in [Garner, 2009], possessing chosen contractions may be similarly
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identified from a cofibrantly generated algebraic weak factorisation system on T≤n-Coll0.
One has

T≤n-Coll0 T≤n-Coll Gn(Set),
rani

//
dom //oo resi

⊥

one defines I ′≤n to be the set of morphisms φ of T≤n-Coll such that dom(φ) ∈ I≤n, and
then I ′′≤n is the set of morphisms resi(φ) of T≤n-Coll0 such that φ ∈ I ′≤n. Denote by
(L′, R′) and (L′′, R′′) the algebraic weak factorisation systems cofibrantly generated by
I≤n and I ′′≤n respectively. Let B ∈ T≤n-Coll0 such that rani(B) corresponds to α. Then
by the definition of I ′≤n, an R-algebra structure on α amounts to an R′-algebra structure
on the unique map rani(B) → 1, which in turn amounts to an R′′-algebra structure on
B → 1 by the definition of I ′′≤n.

Moreover note that the boundaries ∂k of representables are clearly finite colimits of
representables and so are finitely presentable objects of Gn(Set). Thus (L,R) is a finitary
algebraic weak factorisation system. The objects of a slice E/X whose domains are finitely
presentable are finitely presentable in E/X, thus the domains and codomains of φ ∈ I ′≤n
are finitely presentable, whence (L′, R′) is also finitary. The functor rani is clearly finitary
– this is most easily seen by regarding it as the inclusion, thus its left adjoint preserves
finitely presentable objects, whence (L′′, R′′) is also a finitary algebraic weak factorisation
system. We denote by Cont≤n the monad R′′1, and we have proved

4.8. Proposition. The monad Cont≤n on T≤n-Coll0 just described is finitary and its
algebras are T≤n-collections over Set equipped with chosen contractions.

In view of section(4.1), this concludes our recollection of the definition of weak n-category.

4.9. Remark. We have in this work used the definition of Leinster [Leinster, 2003] for
ease of exposition, and because its compatibility with the technology of algebraic weak
factorisation systems has been well discussed in the literature [Garner, 2009]. However
one can, in a similar way, recast the original definition of [Batanin,1998] in similar terms,
though working with strictly rather than weakly initial T≤n-operads of the appropriate
type. In this variant instead of T≤n-Coll0 one works with pointed collections, that is,
with the coslice 1Gn(Set)/T≤n-Coll0. On this coslice there are three finitary monads whose
algebras are T≤n-operads, pointed T≤n-collections equipped with a system of compositions,
and pointed T≤n-collections that are contractible in the sense of [Batanin,1998], with the
last of these obtained via a finitary algebraic weak factorisation system. The algebras of
the coproduct of these monads are, in the language of [Batanin,1998], exactly “contractible
normalised n-operads equipped with a system of compositions”, and the algebras of the
initial such are weak n-categories in the sense of [Batanin,1998].

4.10. Further remarks on generating cofibrations. We analyse the sets I≤n,
I ′≤n and I ′′≤n of generating cofibrations a little more, and develop some further notation and
terminology for the sake of section(5). The role of the “extra” arrow φ′n in the definition
of I≤n is that it ensures that for the resulting algebraic weak factorisation system (L,R),
the structure of R-algebra involves unique lifting against the map φn : ∂(n) → n. This
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is part of a general phenomenon first observed by Bousfield in section(4) of [Bousfield,
1977]. We are grateful to Richard Garner for pointing us to this reference.

4.11. Lemma. (Bousfield [Bousfield, 1977]) Let E be a category with pushouts, φ : S → D
in E, and form φ′ as follows:

S D

S ′D

φ //

τ
��
//

σ

��
φ po

D1D 00

1D

��
φ′

''

Then f : X → Y satisfies the right lifting property with respect to φ and φ′ iff it satisfies
the unique right lifting property with respect to φ.

Given a cocomplete category E satisfying either (∗) or (†) of [Garner, 2009(2)] sec-
tion(4)5, and that J : I → E [1] with I small, and denote by (L,R) the algebraic weak
factorisation system cofibrantly generated by J . Suppose that a subset S of the objects
of I are given, and regard S as a discrete subcategory of I. Define IS = I

∐
S and

JS : IS → E [1] for the functor which agrees with J on I, and for s ∈ S is given by
JS(s) = J(s)′ defined as in lemma(4.11). Denote by (LS , RS) the algebraic weak factori-
sation system cofibrantly generated by JS .

4.12. Corollary. For E, J : I → E [1] and S as just defined, an RS-algebra structure
on f : X → Y in E is exactly an R-algebra structure together with the property that f has
the unique right lifting property with respect to the morphisms of S.

4.13. Remark. In corollary(4.12) S was just a subset of I regarded as a discrete subcat-
egory. There is an evident way to extend (−)′ of lemma(4.11) to morphisms of generating
cofibrations, and then one could take S to be a full subcategory of I. However this gives
nothing different, because the uniqueness of the lifting conditions would imply that the
compatibilities expressed by these extra morphisms of generating cofibrations would be
automatically satisfied by any RS-algebra. In fact, if one wished to be completely mini-
malistic, one could also remove any morphisms of I ⊆ IS whose domains are in S, because
for the same reason the resulting cofibrantly generated algebraic weak factorisation system
would be the same.

Returning to I≤n, the above discussion shows that instead of defining I≤n one can
instead define

Ĩ≤n = {∂(k)
φk−→ k : 0 ≤ k ≤ n}

and distinguish S = {φn} so that (Ĩ≤n)S = I≤n. Thus we introduce

5These are general conditions under which Garner’s small object argument works, and in particular
are satisfied when E is locally finitely presentable.
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4.14. Terminology. Let J : I → E [1] and S be as in corollary(4.12). Then the elements
of S are said to be strict, and the morphisms J(s) for s ∈ S are said to be generating
strict cofibrations. The algebraic weak factorisation system cofibrantly generated by (S, J)
is defined to be the algebraic weak factorisation system cofibrantly generated by JS .

So as an alternative to defining I≤n, we define instead Ĩ≤n in which φn is distinguished as
being strict, and consider the algebraic weak factorisation system cofibrantly generated
therefrom.

Similarly instead of considering I ′≤n, we define instead the set

Ĩ ′≤n = {∂(p)
φp−→ p : p ∈ Trk, 0 ≤ k ≤ n}

of morphisms of T≤n-Coll, where p is regarded as a morphism p : k → Tr≤n of n-globular
sets by Yoneda, and thus as a collection, in fact the collections of this form are exactly
the representables – remembering that T≤n-Coll is a presheaf category. The T≤n-collection
∂(p) is by definition the composite

∂(k)
φk−→ k

p−→ Tr≤n

and so φk underlies the morphism φp : ∂(p) → p of collections. Then we distinguish the
φp for p ∈ Trn as being strict. In the same way, as an alternative to I ′′≤n we define

Ĩ ′′≤n = {∂(p)
φp−→ p : p ∈ Trk, 0 < k ≤ n}

of morphisms of T≤n-Coll0, again distinguishing φp for p ∈ Trn as strict. As before the p
here are representables in the presheaf category T≤n-Coll0, noting that resi sends U0 to
the initial object and all the other representables to the representables of the same name
in T≤n-Coll0, and so we define φp in T≤n-Coll0 for p 6= U0 to be resi(φp). There is no harm
in excluding the case resi(φU0) since this is the identity on the initial object, against which
every map satisfies the unique right lifting property, and so its inclusion or exclusion has
no effect on the resulting algebraic weak factorisation system.

Finally we note that Ĩ≤n, Ĩ ′≤n and Ĩ ′′≤n admit alternative inductive descriptions, in-
trinsic to Gn(Set), T≤n-Coll and T≤n-Coll0, an analogue of which will be important for
section(5.5). For Ĩ≤n the initial step is that ∂(0) is initial and φ0 is the unique map
∂(0)→ 0. For 0 ≤ k < n, ∂(k + 1) and φk+1 are defined by the pushout

∂k k

∂(k + 1)k

φk //

��
//

��
φk

po

k + 1σ //

τ

��
φk+1

''

where σ and τ are the cosource and cotarget maps from G≤n regarded as morphisms
between representable n-globular sets. For Ĩ ′≤n one defines φp : ∂(p) → p for p ∈ Trk
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(regarded as a representable) by induction on k. The base case is that ∂(U0) is initial and
φU0 is determined uniquely and the inductive step is indicated in

∂tr(p) tr(p)

∂(p)tr(p)

φtr(p) //

τ ′p
��

//
σ′p

��
φtr(p) po

pσp 00

τp

��
φp

''

where the cosource and target maps σp and τp are obtained in the evident way from those
for Gn(Set) (ie using T≤n-Coll ' Gn(Set)/Tr≤n and Yoneda). The inductive definition
of Ĩ ′′≤n within T≤n-Coll0 is described identically, except that the base case is that ∂(p) is
initial for all p ∈ Tr1.

5. Weak n-categories with strict units

5.1. Overview. It is natural to ask whether the lifting theorem gives us an inductive
formulation of the notion weak n-category, as recalled above in section(4), via iterated
enrichment. That is, one can ask whether there is a functor operad L≤n on the category
Gn(Set)K≤n of K≤n-algebras, such that

L≤n-Cat ∼= Gn+1(Set)K≤n+1 (6)

over Gn+1(Set). Note that given a T≤n+1-operad B over Set, we can consider the unary
part of its corresponding T ×≤n-multitensor, which is a T≤n-operad, and denote this by h(B).
This is the object map of a functor

h : T≤n+1-Op0 −→ T≤n-Op.

The operad h(B) describes the structure that the homs of a B-algebra have. So what
the lifting theorem does give us, when applied to K≤n+1, is a functor operad L≤n on
Gn(Set)h(K≤n+1) satisfying equation(6). Thus our desired inductive formulation of the
notion weak n-category would follow if

h(K≤n+1) ∼= K≤n (7)

which from the point of view of algebras says that the structure that the homs of a weak
(n + 1)-category have is exactly that of a weak n-category. In this section we shall see
that the presence of weak units causes (7) to be false. However we shall give a notion of

“weak n-category with strict units” by producing the operads K(su)
≤n which describe such

structures, which do verify the appropriate analogue of (7). Thus the lifting theorem
produces the functor operads giving a formulation of weak n-categories with strict units
via iterated enrichment.
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5.2. Weak units. Equation(7) isn’t true even in the case n = 1. Let B be a bicategory.
Then by definition any hom B(x, y) of B is a category, whose objects are arrows x → y,
an arrow f → g of B(x, y) is a 2-cell f ⇒ g in B, and composition is given by vertical
composition of 2-cells. However, this is not the only structure that B(x, y) has in general.
For instance one can consider composition by the identities 1x and 1y giving endofunctors

(−) ◦ 1x : B(x, y)→ B(x, y) 1y ◦ (−) : B(x, y)→ B(x, y),

and more complicated processes involving just composing with identities such as

1y ◦ ((1y ◦ 1y) ◦ (((−) ◦ 1x) ◦ 1x)) : B(x, y)→ B(x, y).

Thus one has a non-trivial monoid M whose elements are such formal expressions and
multiplication is given by substitution. In addition to all this the coherence isomorphisms
of B give isomorphisms between all these endofunctors, and from the coherence theorem
for bicategories, any diagram of such isomorphisms commutes.

Let us write ch : Set→ Cat for the right adjoint to the functor ob : Cat→ Set which
sends a category to its set of objects. Given a set X, ch(X) is known as the indiscrete
category on X, it has object set X and exactly one arrow between any 2 objects. From the
previous paragraph and the coherence theorem for bicategories, the hom of a bicategory
is a category equipped with a strict action by the strict monoidal category ch(M). Thus
in the case n = 1, K≤2 is an operad whose algebras are bicategories, K≤1-algebras are
categories, but h(K≤2)-algebras are categories strictly acted on by ch(M). In particular
note that the free h(K≤2)-algebra on a graph Z has underlying object set given by Z0×M ,
and so h(K≤2) is not even over Set.

5.3. Reduced T≤n-operads. Let α : A → T≤n be a T≤n-collection. When A underlies
a T≤n-operad and p is a linear tree, then the elements of Ap are unital operations of some
type. For example an operation of arity zU0 distinguishes a one cell ux : x → x in any
A-algebra X for all x ∈ X0. As another example, an operation of arity z2U0 will have
source and target operations of arity zU0, and so such an operation will distinguish one
cells ux and vx : x → x and 2-cells ux → vx in any A-algebra X for all x ∈ X0. In
general an operation of arity zrUs distinguishes for each s-cell x in an A-algebra X, a
single (r+s)-cell ux whose s-dimensional source and target is x, and so the sources and
targets of ux in dimensions between s and r+s will also be part of the data determined
such an operation, and in any of these intermediate dimensions, these need not be the
same cell.

5.4. Definition. Let α : A → T≤n be a T≤n-collection. Then α is reduced when for all
linear trees p ∈ Trk where k ≤ n, the set Ap is singleton. A reduced T≤n-operad is one
whose underlying T≤n-collection is reduced in this sense. We denote by Rd-T≤n-Coll the
full subcategory of T≤n-Coll consisting of the reduced T≤n-collections, and by Rd-T≤n-Op
the full subcategory of T≤n-Op consisting of the reduced T≤n-operads.

Thus for a reduced T≤n-operad one has a unique operation of each “unit type” (i.e., of each
arity p where p is a linear tree). Examples include the terminal operad T≤n, the T≤2-operad
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for sesqui-categories, and the T≤3-operad for Gray categories, and one would expect that
the (yet to be defined) operads describing the higher analogues of Gray categories to be
of this form. To say that a T≤n-collection A is over Set is to say that AU0 is singleton,
and so reduced T≤n-collections and reduced T≤n-operads are in particular over Set.

The category Rd-T≤n-Coll is a presheaf category, one has

Rd-T≤n-Coll ' [Rop
≤n,Set]

where R≤n is the full subcategory of el(Tr≤n) consisting of those trees p which are not
linear. The inclusion I : Rd-T≤n-Coll ↪→ T≤n-Coll can also be seen as the process of right
Kan extending along the inclusion i : R≤n ↪→ el(Tr≤n), so its left adjoint L is given by
restriction along i. One has

Rd-T≤n-Op T≤n-Op

T≤n-CollRd-T≤n-Coll

J //

U

��
//

I

��
U(rd) pb (8)

a pullback square in CAT, where I and J are the inclusions, and U and U (rd) are the
forgetful functors. Each of the categories in (8) are the categories of models of finite limit
sketches and so are locally finitely presentable, and the square itself is induced by a square
of morphisms of limit sketches. Thus each of the functors in (8) are finitary and monadic.

While not essential for this article, it is of interest that one has explicit descriptions of
the left adjoints to each of the functors participating in (8). We already gave the explicit
description of the left adjoint L of I, and the construction of free operads as described
in Appendix D of [Leinster, 2003] gives an explicit description of the left adjoint F of U .
Given an explicit description L′ of J , F (rd) = L′FI is then an explicit description of the
left adjoint to U (rd) as witnessed by the natural isomorphisms

Rd-T≤n-Op(L′FIA,B) ∼= T≤n-Coll(IA, UJB) = T≤n-Coll(IA, IU (rd)B)
∼= Rd-T≤n-Coll(A,U (rd)B).

An explicit description of L′ follows from the work of Harvey Wolff [Wolff, 1978].
Theorem(2.1) of [Wolff, 1978] deals with the following situation. One has a bipullback
square in CAT as on the left in

C A

BD

J //

U
��
//

I

��
V bipb

FU 1A

PFILU

ε //

π
��
//

��
FηL po (9)

where A has pushouts, I and J are fully faithful and regarded as inclusions, I has left
adjoint L with unit η, and U has left adjoint F with counit ε. The conclusion of Wolff’s
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theorem is that the pointed endofunctor (P, π), constructed via the pushout as on the
right in the previous display, is well-pointed (i.e., Pπ = πP ) and its algebras are exactly
the objects of C (i.e., those in the image of J). Thus in particular when A is locally
finitely presentable and U and I are finitary, the left adjoint L′ of J is constructed as the
free monad on (P, π) and is finitary. Then by virtue of well-pointedness, L′ is constructed
as the colimit of the sequence

1 P P 2 ...π // Pπ // P 2π //

– see [Kelly, 1980].
One can apply Wolff’s theorem in the case (8) since U being monadic is an isofibration,

and so the pullback of (8) is also a bipullback. However we shall obtain a more basic
description of L′. Denote by LinTr≤n ↪→ Tr≤n subobject of Tr≤n consisting of the linear
trees. Clearly these trees are closed under substitution of trees, and so LinTr≤n underlies
a T≤n-operad which we denote as RGr≤n. To give an n-globular set X an RGr≤n-algebra
structure, is to give common sections zk : Xk → Xk+1 for its source and target maps
s, t : Xk+1 → Xk for 0 ≤ k < n. That is, RGr≤n-algebras are exactly reflexive n-globular
sets. Both as a T≤n-collection and as a T≤n-operad, RGr≤n is subterminal, that is to say,
the unique map ρ : RGr≤n → T≤n into the terminal collection/operad is a monomorphism.
For any T≤n-operad A, the operations of the T≤n-operad A × RGr≤n are exactly the
operations of A whose arities are linear trees, and the projection pA : A×RGr≤n → RGr≤n
assigns these operations to their arities. Thus to say that A is reduced is to say that pA
is an isomorphism, which amounts to saying that one has a bipullback square as on the
left in

Rd-T≤n-Op T≤n-Op

T≤n-Op/RGr≤n1

J //

∆RGr≤n��
//

p1RGr≤nq

��
bipb

A× RGr≤n A

PARGr≤n

qA //

πA
��

//
��

pA po

where ∆RGr≤n is given by pulling back along ρ. Applying Wolff’s theorem to this situation,
the left adjoint L′ to J is the free monad on the pointed endofunctor (P, π) constructed as
on the right in the previous display, where pA and qA are the product projections. We are
indebted to Steve Lack for pointing out that our explicit construction of L′ is an instance
of Wolff’s theorem, thereby enabling us to describe this construction here more efficiently.

5.5. Defining weak n-categories with strict units. While a reduced T≤n-operad
has unique operations of each unit type, there is no guarantee that these really act as
units with respect to the other operations. In this section we formalise this aspect, and
then by mimicking the approach to defining weak n-categories in section(4.1), we shall
define weak n-categories with strict units. The main idea is to work with a richer notion
of collection, namely one that remembers the unit operations of a T≤n-operad, and then
define a stronger notion of contractibility for such collections, by isolating an appropriate
algebraic weak factorisation system.
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Let us first recall, for the convenience of the reader and to fix notation, substitution
for T≤n-operads. For a T≤n-operad α : A → T≤n, the substitution is encoded by the
multiplication of the monad A. The object A ◦ A of T≤n-Coll is the composite

A2 α2

−→ T 2
≤n

µ−→ T≤n

where µ here is the multiplication of the monad T≤n, and then A’s multiplication underlies
a morphism A ◦ A → A in T≤n-Coll. To book-keep what is going on at the level of the
sets of operations of A, it is convenient to use the notion of morphism of k-stage trees.

Given k-stage trees p and q, a morphism f : p→ q consists of functions f (i) as shown

p(k) p(k−1) ... p(1) p(0)

q(k) q(k−1) ... q(1) q(0)

∂k // // // ∂1 //

∂k
// // //

∂1
//

f (k)
��

f (k−1)

��
f (1)
��

f (0)
��

making the above diagram commute serially (in Set), and such that for 0 < i ≤ k, f (i)

is order preserving on the fibres of ∂i. In this way one has a category Ωk, whose set of
objects is Trk, and an n-globular category Ω≤n whose underlying n-globular set (i.e its
object of objects when one views globular categories as category objects in Gn(Set)) is
Tr≤n. Recall from [Batanin-Street, 2000] that Ω≤n has a universal property – it is the free
categorical T≤n-algebra containing an internal T≤n-algebra.

For any given node x of q of height r one can consider a morphism x̃ : zk−rUr → q
which picks out x and all its ancestors. Pulling the components of x̃ back along those of f
produces a tree f−1(x) ∈ Trr, and one has an inclusion zk−rf−1(x) ↪→ p of k-stage trees.
When x is the i-th leaf of q we denote f−1(x) as pi, and all the pi’s together are called
the fibres of f . Now the trees pi provide a labelling of q in the sense that truncating pi
and pi+1 to the height of the highest common ancestor of the i-th and (i+1)-th leaves
of q gives the same tree for 1 ≤ i < a, where a is the number of leaves of q. From the
explicit description of T≤n then, f : p→ q may be identified with an element of T 2

≤n(1)k,
the effect of T≤n(!) (where ! : T≤n(1)→ 1 is the unique map) on this element is q, and of
µ1 on this element is p. In other words the result of substituting the pi into q is p. Now
for a T≤n-operad A, the data defining the operad substitution of A amounts to sets and
functions

σf : Aq ×
(
Ap1 ×Ap′1 ...×Ap′a−1

Apa

)
−→ Ap

for all morphisms f : p→ q of k-stage trees, where p′i is the result of truncating pi to the
height of the highest common ancestor of the i-th and (i+1)-th leaves of q.

5.6. Definition. A morphism f : p→ q of k-stage trees is an inclusion when its compo-
nents – the f (i) – are injective functions. We denote by Ω

(incl)
≤n the sub-n-globular category

consisting of all the trees and the inclusions between them.
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It is also worth noting that the categories Ω≤n and Ω
(incl)
≤n sit naturally within Joyal’s

category Θn. In the language of [Berger, 2002], Ω≤n (resp. Ω
(incl)
≤n ) is dual to the sub-

category of Θn consisting of all the objects and the covers (resp. degeneracies) between
them.

Clearly a morphism of k-stage trees is an inclusion iff its fibres are linear. Thus σf
for f an inclusion encodes the substitution of operations of unit type into operations
of (an arbitrary) arity q. In this case when A is reduced, the sets Api and Ap′i are all
singletons, and so σf may be regarded simply as a function σf : Aq → Ap. It is these
substitutions that we wish to include in our richer notion of collection. Denote by Ψ≤n
the full subcategory of el(Ω

(incl)
≤n ) consisting of the non-linear trees.

5.7. Definition. A pointed reduced T≤n-collection is a presheaf A : Ψop
≤n → Set. We

denote by PtRd-T≤n-Coll = [Ψop
≤n,Set] the category of pointed reduced T≤n-collections.

Thus a pointed reduced collection A contains a set of operations of arity p for any
tree p that is not linear, just as with a reduced collection, and in addition one has extra
functions between those sets that codify the substitution of unique operations of unit type
into arbitrary operations. Recall that Rd-T≤n-Coll ' [Rop

≤n,Set] where R≤n is the full
subcategory of el(Tr≤n) consisting of the trees which are not linear, and so there is by
definition an identity on objects functor i : R≤n → Ψ≤n, with the morphisms of Ψ≤n not
in the image of i coming from inclusions of trees. Denoting by j : R≤n → el(Tr≤n) the
fully faithful inclusion, we have adjunctions

PtRd-T≤n-Coll Rd-T≤n-Coll T≤n-Coll
resi

//
ranj

//
oo lani oo resj

⊥ ⊥

given by left Kan extension and restriction along i, and right Kan extension and restriction
along j. Note in particular the effect of resj and lani on representables. One has resj(p) =
0 if p is a linear tree, otherwise one can take resj(p) = p, and one has lani(p) = p for all
representables. Moreover from the description of boundaries of representables as pushouts
in T≤n-Coll, it is clear that resj(∂p) = 0 if tr(p) is linear.

Let us now describe the appropriate cofibrantly generated algebraic weak factorisation
system on PtRd-T≤n-Coll. We shall define the functor

J : V≤n −→ (PtRd-T≤n-Coll)[1]

where V≤n is the subcategory of Ψ≤n consisting of all the non-linear trees, and just the

inclusions between them. Note that the category el(Ω
(incl)
≤n ), as the domain of a split

fibration into G≤n, comes with a strict factorisation system in which the left class are the
vertical arrows, and the right class are the chosen cartesian arrows (i.e., chosen by the given
split cleavage). Thus Ψ≤n inherits such a factorisation system, R≤n is the subcategory
of morphisms in the right class – consisting of the cosource and cotarget morphisms, and
V≤n is the subcategory of morphisms in the left class – the vertical morphisms, which in
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this case are the inclusions of trees. We shall define the object and arrow maps of J in
an inductive manner.

Recall that sources and targets for Tr≤n agree and are given by truncation. For
0 ≤ r ≤ k ≤ n let us denote by trk−r : Trk → Trr the function which sends p ∈ Trk to
its height-r truncation, that is to say, to the tree p(r) → ... → p(0). When k − r = 1 this
was denoted above simply as tr. The non-linear height ht(p) of p ∈ Trk is greatest h ∈ N
such that trk−h(p) is a linear tree. Since trk(p) = U0 is linear, ht(p) is well-defined for all
p ∈ Trk, and by definition a tree p is linear iff ht(p) = 0.

For a non-linear tree p we write J(p) = φp : ∂(p) → p in PtRd-T≤n-Coll, and these
maps are defined by induction on ht(p). For the base case ht(p) = 1, we take ∂(p) to be
initial giving us a unique map φp : ∂(p)→ p. Similarly as in section(4.7) ∂(p) and φp, for
p of non-linear height > 1, are defined by

∂tr(p) tr(p)

∂(p)tr(p)

φtr(p) //

τ ′p
��

//
σ′p

��
φtr(p) po

pσp 00

τp

��
φp

''

though now in the category PtRd-T≤n-Coll. Note that the image of the object map of J
just described agrees with applying laniresj to I ′≤n, except for the presence of copies of 10

(coming from φp and φ′p in T≤n-Coll with p linear).
Given an inclusion f : p→ q of non-linear k-stage trees we shall define ∂(f) as on the

left in
∂(f) : ∂(p)→ ∂(q) J(f) = (∂(f), f) : φp → φq

such that φq∂(f) = fφp, which thus gives a morphism J(f) in (PtRd-T≤n-Coll)[1] as on
the right in the previous display. We define ∂(f) by induction on the non-linear height of
p. For the base case where ht(p) = 1, ∂(p) = 0 and so ∂(f) is uniquely defined and one
has φq∂(f) = fφp by initiality. When ht(p) > 1, ∂(f) is constructed in

∂tr(p) tr(p)

∂(p)tr(p)

φtr(p) //

τ ′p
��

//
σ′p

��
φtr(p) po

∂tr(q) tr(q)

∂(q)tr(q)

φtr(q) //

τ ′q

��
//

σ′q

��

φtr(q)

∂(tr(f))
aa

tr(f)
==

tr(f)}} ∂(f) !!

in which the existence of ∂(tr(f)) and φtr(q)∂(tr(f)) = tr(f)φtr(p) follow by induction, and
so ∂(f) is defined uniquely so that ∂(f)σ′p = σ′qtr(f) and ∂(f)τ ′p = τ ′qtr(f). In order that
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this induction goes through we must verify φq∂(f) = fφp. Since (σ′p, τ
′
p) are jointly epic,

it suffices to show φq∂(f)σ′p = fφpσ
′
p and φq∂(f)τ ′p = fφpτ

′
p. One has

φq∂(f)σ′p = φqσ
′
qtr(f) = σqtr(f) = fσp = fφpσ

′
p,

φq∂(f)τ ′p = fφpτ
′
p follows similarly. The functoriality of J is clear by construction. Finally

we define the set S of strict objects of V≤n to be the non-linear n-stage trees.

5.8. Proposition. The algebraic weak factorisation system (L,R) on PtRd-T≤n-Coll
cofibrantly generated by (S, J) defined above is finitary.

Proof. By lemma(4.5) it suffices to show that the domains and codomains of arrows
of PtRd-T≤n-Coll in the image of JS are all finitely presentable. The domains are non-
linear trees viewed as objects of PtRd-T≤n-Coll, are representables, and so are finitely
presentable objects. The codomains are clearly finite colimits of representables, and so
are also finitely presentable.

5.9. Definition. A choice of unital contractions for a pointed reduced T≤n-collection
A is an R1-algebra structure on A for the algebraic weak factorisation system (L,R) of
proposition(5.8). A choice of unital contractions for a reduced T≤n-operad is one for its
underlying pointed reduced collection.

Explicitly a choice of unital contractions for A amounts to

• choice of contractions in the usual sense for the underlying collection, and

• a compatibility condition on these choices with respect to the process of substituting
the unique unit operations to general operations.

For p an object of Ψ≤n, a morphism p→ A in PtRd-T≤n-Coll is by Yoneda an operation
of A of arity p, and a morphism ∂(p)→ A is, by the definition of ∂(p), a pair of operations
(a, b) of (the underlying T≤n-collection of) A both of arity tr(p), whose sources and targets
agree (called “parallel operations” in [Leinster, 2003]). So within PtRd-T≤n-Coll a choice
of contractions γ amounts to choices of fillers as in

∂(p) A

1p

(a,b) //

��
//

��
φp γ(p,a,b)

77

(10)

for all 0 < k ≤ n, non-linear k-stage trees p, and parallel operations (a, b) as shown.
We remind the reader that as pointed out in [Leinster, 2003], the choice γ encodes two

aspects of higher category theory in one go – compositions and coherences. For example
taking p to be the 1-stage tree on the left

•
•
•

z

(
•
•
••
)
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then an operation of arity p is a binary composition of 1-cells, and in (10) (a, b) are
determined uniquely (i.e., a and b are both the operadic unit in dimension 0), and so the
contraction in this instance gives a distinguished binary composition of 1-cells as part of
the resulting algebraic structure. On the other hand taking p to be the 2-stage tree on the
right in the previous display, then (a, b) of (10) will be a pair of operations that compose
chains of 1-cells of length 3, and then the filler will give distinguished coherence 2-cells
between these. So in general γ distinguishes a higher categorical operation of each arity.

The compatibility for a choice of unital contractions for A says that if one substitutes
some unique unit operations into a given distinguished operation – either one that gives
some kind of composition, or one that gives some kind of coherence – then the result is
another distinguished operation. For example part of the data of a choice of contractions
for a reduced operad A will be a choice of operation that composes chains of one-cells of
length n for all n ≥ 2. Compatibility says in particular that, if one starts with a chain

w
f−→ x

g−→ y
h−→ z

of one-cells in a given A-algebra, and then regards it as a longer chain by adding in some
identity arrows

w
f−→ x

1x−→ x
1x−→ x

g−→ y
h−→ z

1z−→ z

which are part of the structure by virtue of the reducedness of A (i.e., what we denote
here as identity one-cells are provided by the unique operation of A of arity z(U0)), then
applying the chosen method of composition to this longer chain should agree with applying
the chosen method of composition to the original chain.

As the foregoing discussion indicates, the existence of a choice of unital contractions for
a given reduced T≤n-operad A amounts to saying that one can distinguish operations of A
of each arity, in such a way that this choice is compatible with the process of substituting
in unit operations. While this may seem like a strong condition at first glance, we shall see
now that such choices can be exhibited in low-dimensional cases of interest, and moreover
one has universal such T≤n-operads that we will use to define weak n-categories with strict
units. In section(6) we shall see that this choice of unital contractions is exactly what we
need to get an alternative iterative formulation.

5.10. Example. Let A be the T≤2-operad whose algebras are bicategories in the sense
of Bénabou [Bénabou, 1967] for which the unit coherence 2-cells are identities, and we
write “◦” for the given binary horizontal composition of 1-cells. The strictness of the
units ensures that A is reduced. The coherence theorem for bicategories ensures that
one has unique choices of contractions γ(p, a, b) when p is a 2-stage tree. So to give a
chosen contraction for A we must choose a distinguished composite of chains of 1-cells of
length n, for n ≥ 2. The set of all such compositions may be identified with the set of
binary bracketings of n symbols, so for each n we must choose one of these. There are two
obvious choices, to bracket completely to the left or completely to the right, as illustrated
in

x0
f1−→ x1

f2−→ x2
f3−→ x3

f4−→ x4 ((f4 ◦ f3) ◦ f2) ◦ f1 f4 ◦ (f3 ◦ (f2 ◦ f1))
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in the case n = 4. Clearly each of these schemes is compatible with units, for example

(((((1x4 ◦ f4) ◦ f3) ◦ 1x2) ◦ 1x2) ◦ f2) ◦ f1 = ((f4 ◦ f3) ◦ f2) ◦ f1,

and so in two ways, one can exhibit a choice of unital contractions for A.

5.11. Example. Let A be the T≤3-operad for Gray categories. The underlying 1-operad
is terminal, A’s contractibility ensures that one has unique choices of contractions γ(p, a, b)
when p is a 2-stage tree, and so the only choices that aren’t forced concern what one takes
to be the distinguished composites of non-degenerate 2-dimensional pasting diagrams in
a Gray category. The set of all ways to compose a given such pasting diagram, say

• • • • •
��
//
AA

// &&
88

����
//
AA II

α11��

α21��

α13��

α14��

α24��

α34��

α44��

to a 2-cell, that one has in a Gray category, can be identified with linear orders ≤ on the
set of αij such that i1 ≤ i2 implies αi1j ≤ αi2j, or in other words, with (2, 1, 4)-shuffles.
There are two evident unit-compatible choices. In terms of linear orders one can define
αi1j1 < αi2j2 iff j1 < j2 or (j1 = j2 and i1 < i2); or alternatively αi1j1 < αi2j2 iff j1 > j2 or
(j1 = j2 and i1 < i2), which for the above example correspond to the linear orders

(α11, α21, α13, α14, α24, α34, α44) (α14, α24, α34, α44, α13, α11, α21)

which correspond to “moving” down each column completely, and from left-to-right or
right-to-left respectively.

Not every “systematic looking” choice of compositions need give a unit-compatible
choice of contractions. For instance in this last example another choice of contractions
could be to move from left to right and row by row, just as one reads text in European
languages, so that in the case of the above pasting diagram one would choose the order

(α11, α13, α14, α21, α24, α34, α44).

The choice of contractions so determined is not unit-compatible, because the distinguished
composite for the pasting diagram on the left

• • •&&
88

&&
88f�� g�� • • •

��
//
AA

��
//
AA

1��

f��

g��

1��

corresponds to the order (f, g), whereas substituting in identities to the distinguished
composite as indicated on the right in the previous display, gives the operation that
corresponds to the other order (g, f).

We now proceed to give the definition of weak n-category with strict units, following
the approach of section(4).
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5.12. Proposition. There is a finitary monad on PtRd-T≤n-Coll whose algebras are
reduced operads equipped with a choice of unital contractions.

Proof. It suffices to give two finitary monads on PtRd-T≤n-Coll, one whose algebras are
reduced collections equipped with chosen unital contractions, and the other whose algebras
are reduced operads, because then the required monad will just be the coproduct of these.
In the first case one has the monad R1 for the finitary algebraic weak factorisation system
(L,R) of proposition(5.8). In the second case one can use a general finite limit sketch
argument to establish the existence of the required finitary monad. Alternatively for a
construction, one has forgetful functors

Rd-T≤n-Op PtRd-T≤n-Coll Rd-T≤n-Coll,U // resi //

resi is cocontinuous and monadic by a standard application of the Beck Theorem (using
that i is a bijective on objects functor), we noted the finitariness of U (rd) = resiU and
constructed explicitly its left adjoint in section(5.3), and so Dubuc’s adjoint triangle
theorem [Dubuc, 1970] gives an explicit construction of the left adjoint of U . Moreover
U is finitary since both resi and U (rd) create filtered colimits, and monadic by another
standard application of the Beck theorem.

Thus the category of reduced operads equipped with a choice of unital contractions is
locally finitely presentable, and we denote its initial object as K(su)

≤n .

5.13. Definition. A weak n-category with strict units is a K(su)
≤n -algebra.

Since as we noted above chosen unital contractions are in particular chosen contrac-
tions, there is an operad morphism K≤n → K(su)

≤n by the universal property of K≤n, and
thus every weak n-category with strict units has an underlying weak n-category.

6. Strictly unital weak n-categories via iterated enrichment

The bulk of this section will be occupied with the proof of

6.1. Lemma. For all n ∈ N one has an isomorphism of T≤n-operads

h(K(su)
≤n+1) ∼= K(su)

≤n .

As explained in section(5.1), from lemma(6.1) and the lifting theorem one obtains the
following result.

6.2. Theorem. For all n ∈ N there is a distributive functor operad L≤n on the category

Gn(Set)K
(su)
≤n of algebras of K(su)

≤n and an isomorphism of categories

L≤n-Cat ∼= Gn+1(Set)K
(su)
≤n+1 (11)
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over Gn+1(Set).

Thus the lifting theorem has produced the tensor products – the L≤n’s – enabling us to
recover the notion of weak n-category with strict units of definition(5.13) inductively by
successive enrichment – as expressed by (11) at the level of objects.

In general we have functors

h : T≤n+1-Op0 −→ T≤n-Op r : T≤n-Op −→ T≤n+1-Op0.

Recall from section(5.1) that for a T≤n+1-operad B over Set, the operad h(B) describes
the structure that the homs of a B-algebra have, and is constructed formally by taking
the unary part of the T ×≤n-multitensor associated to B by [Weber, 2013] theorem(6.1.1).
On the other hand given a T≤n-operad A, r(A) is the T≤n+1-operad Γ(A×), whose algebras
are categories enriched in Gn(Set)A using the cartesian product by proposition(3.2.1) of
[Weber, 2013] and proposition(2.8) of [Batanin-Weber, 2011]. Since (Γ(A×))1 = A one
has that rh = 1.

We shall prove lemma(6.1) by first proving

6.3. Lemma. The functors h and r defined above restrict to an adjunction

Rd-T≤n+1-Op Rd-T≤n-Op
h //

r
oo ⊥

between categories of reduced operads.

and then denoting by CtRd-T≤n-Op the category of reduced T≤n-operads with chosen
unital contractions, we shall prove

6.4. Lemma. The adjunction of lemma(6.3) lifts to an adjunction

CtRd-T≤n+1-Op CtRd-T≤n-Op
h //

r
oo ⊥

between categories of reduced operads with chosen unital contractions.

Since lemma(6.1) is then just the statement that this lifted h preserves the initial object,
it follows immediately from lemma(6.4).

We now describe the object maps of h and r in more elementary terms. Recall from
[Weber, 2013] section(3), that given a category V with an initial object, a finite sequence
(X1, ..., Xm) of objects of V can be regarded as a V -graph whose set of objects is {0, ...,m},
(X1, ..., Xm)(i, i+1) = Xi and the other homs are initial. This simple construction enables
an inductive definition of “k-dimensional globular pasting diagram”:

• base case k = 0: the representable globular set 0, with one vertex and no edges, is
the unique 0-dimensional pasting diagram.
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• inductive step: a (k+1)-dimensional pasting diagram p is a sequence (p1, ..., pm) of
k-dimensional pasting diagrams.

which makes the connection with trees very transparent. So a (k+1)-stage tree p can be
regarded as a sequence of maps in ∆+ as on the left

p(k+1) → ...→ p(1) → p(0)=1
∑m

i=1 p
(k)
i → ...→

∑m
i=1 p

(0)
i → 1

or as a sequence of k-stage trees (p1, ..., pm) as indicated on the right in the previous
display where p(1) = m. In particular, the tree (p) is obtained from the tree p by adding
a new root and an edge from the new root to the old root. With these preliminaries in
hand one has, by unpacking the definitions, the formulae

h(B)p = B(p) r(A)p =
k∏
i=1

Api

for p = (p1, ..., pm) ∈ Trk+1, expressing the effect of h and r at the level of sets of
operations.

For a given morphism of (k+1)-stage trees f : q → p with fibres (r1, ..., rs) we shall
need, for the proof of lemma(6.3) below, to unpack a description of corresponding substi-
tution function

σ
rh(B)
f : rh(B)p ×

(
rh(B)r1 ×rh(B)r′1

...×rh(B)r′s−1
rh(B)rs

)
−→ rh(B)q

for rh(B) in terms of substitution functions for B. To do so, we must describe the
morphism f : q → p of (k+1)-trees in the same inductive terms as we did trees in the
previous paragraph. So we let q(1) = l and denote by (l1, ..., lm) the cardinality of the
fibres of f (1) : l → m which is order preserving by definition. Now let us reindex the
sequence of fibres (r1, ..., rs) of f to keep track of over which pi a given fibre of f lives, so
we write

(r1, ..., rs) = (r11, ..., rmsm)

that is to say, rij for 1 ≤ i ≤ m and 1 ≤ j ≤ si, is the j-th fibre of f that lives over pi.
Moreover we shall describe each of the rij as sequences of trees one dimension lower as in

rij = (rij1, ..., rijli).

Thus the inductive description of the components of f is as

f (δ+1) = (f
(δ)
11 , ..., f

(δ)
1l1

) + ...+ (f
(δ)
m1, ..., f

(δ)
mlm

)

where fiα : qiα → pi for 1 ≤ i ≤ m and 1 ≤ α ≤ lm, is the morphism of k-stage trees
whose fibres are (ri1α, ..., risiα). By this notation the number of leaves of p is s, and the
number of leaves of pi is si. Let us denote by tijα the number of leaves of rijα. Thus rij has∑

α tijα leaves, and q has
∑

i,j,α tijα leaves. With these details in hand, one may readily

verify that σ
rh(B)
f may be rewritten as a product, varying over i and α, of the functions

σBfiα : B(pi) ×
(
B(ri1α) ×B(r′

ilα
)
...×B(r′

isi−1α
)
B(risiα)

)
−→ B(qiα).
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Proof. (of lemma(6.3)): by the above explicit formulae, h and r send reduced operads
to reduced operads. Given a reduced T≤n+1-operad B, we shall describe a morphism as
on the left in

νB : B −→ rh(B) νB,p,i : Bp −→ B(pi)

of T≤n+1-operads, naturally in B, such that hνB = id and νBr = id, so that ν is the
unit of the desired adjunction in which the counit is the identity. To give the morphism
of underlying T≤n+1-collections, it suffices by the explicit descriptions of r and h spelled
out above, to give functions νB,p,i as indicated on the right in the previous display, where
0 < k ≤ n, p = (p1, ..., pm) ∈ Trk+1 and 1 ≤ i ≤ m, satisfying appropriate naturality
conditions. Denoting by πi : (pi) → p the canonical inclusion of trees, we define νB,p,i
from the base change function in the underlying pointed reduced collection, namely as
νB,p,i = B(πi). This clearly defines a morphism of T≤n-collections.

Intuitively, νB is compatible with the operad structures since it was defined by sub-
stitution of unit operations. Formally, for any morphism f : q → p of trees whose fibres
are denoted as (r1, ..., rs), we must show that

Bp ×
(
Br1 ×Br′1 ...×Br′s−1

Brs

)
Bq

rh(B)qrh(B)p ×
(
rh(B)r1 ×rh(B)r′1

...×rh(B)r′s−1
rh(B)rs

)
σBf //

νB,q

��
//

σ
rh(B)
f

��

νB,p×(νB,r1×νB,r′1
...×ν

B,r′s−1
νB,rs ) (12)

commutes. It suffices to verify this commutativity after composition with each projection
projiα : rh(B)q → B(qiα). We do this now using the notation established above for
f : q → p. For

(b, b11, ..., bmsm) ∈ Bp ×
(
Br1 ×Br′1 ...×Br′s−1

Brs

)
the effect of projiα composed with the top path of (12) on this element is

(b[b11, ..., bmsm ])

v, ..., v,︸ ︷︷ ︸∑
X ti′jα′

u, ..., u,︸ ︷︷ ︸∑
j tijα

v, ..., v︸ ︷︷ ︸∑
Y ti′jα′

 (13)

where
X = {(i′, α′) : i′ < i or (i′ = i and α′ < α)}
Y = {(i′, α′) : i′ > i or (i′ = i and α′ > α)}.

On the other hand the effect on (b, b11, ..., bmsm) of projiα composed with the bottom path
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of (12) isb[ v, ..., v,︸ ︷︷ ︸∑
i′<i,j si′j

u, ..., u,︸ ︷︷ ︸∑
j sij

v, ..., v︸ ︷︷ ︸∑
i′>i,j si′j

]


bi1[ v, ..., v,︸ ︷︷ ︸∑

α′<α ti1α′

u, ..., u,︸ ︷︷ ︸
ti1α

v, ..., v︸ ︷︷ ︸∑
α′>α ti1α′

], ...

..., bisi [ v, ..., v,︸ ︷︷ ︸∑
α′<α tisiα′

u, ..., u,︸ ︷︷ ︸
tisiα

v, ..., v︸ ︷︷ ︸∑
α′>α tisiα′

]

 (14)

Using the associativity of substitution, and that for all operations x ofB one has x[v, ..., v] =
v by reducedness, (13) equals

b

 v, ..., v,︸ ︷︷ ︸∑
i′<i,j si′j

bi1[ v, ..., v,︸ ︷︷ ︸∑
α′<α ti1α′

u, ..., u,︸ ︷︷ ︸
ti1α

v, ..., v︸ ︷︷ ︸∑
α′>α ti1α′

], ...

..., bisi [ v, ..., v,︸ ︷︷ ︸∑
α′<α tisiα′

u, ..., u,︸ ︷︷ ︸
tisiα

v, ..., v︸ ︷︷ ︸∑
α′>α tisiα′

], v, ..., v︸ ︷︷ ︸∑
i′>i,j si′j

 (15)

and by applying operad associativity and one of the operad unit laws to (14), one obtains
(14)=(15).

Proof. (of lemma(6.4)): we must explain how the functors r and h of lemma(6.3) lift
to the level of reduced operads with chosen unital contractions, and then show that the
operad map νB is compatible with the chosen unital contractions.

Recall that the data of a choice γ of contractions for B ∈ Rd-T≤n-Op amounts to
morphisms

γ(p, a, b) : p −→ B

in PtRd-T≤n-Coll, for all 0 ≤ k ≤ n, non-linear p ∈ Trk+1 and a, b ∈ Btr(p) such that
s(a) = s(b) and t(a) = t(b), and that this choice is unital when it satisfies

γ(q, atr(f), btr(f)) = γ(p, a, b)f

for all p, a, b as above and tree inclusions f : q → p. Given γ and recalling the explicit
description of h(B) given above, γ′(p, a, b) = γ((p), a, b) defines a choice γ′ of contractions
for h(B). The unitality of γ′ with respect to an inclusion f : q → p follows from that of
γ with respect to the evident inclusion (f) : (q) → (p). Clearly if F : B → B′ preserves
chosen contractions, then so does h(F ). Thus h lifts to the level of operads with chosen
unital contractions.

Suppose that a choice ψ of unital contractions for A ∈ Rd-T≤n-Op is given. Recalling
the explicit description of r(A) given above,

ψ′(p, (a1, ..., am), (b1, ..., bm)) = (ψ(p1, a1, b1), ..., ψ(pm, am, bm))
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where p = (p1, ..., pm), defines a choice of contractions for r(A). Note that the inductive
description of a tree morphism f : q → p given above simplifies in the case where f is
an inclusion, because f (1) is injective and so li = 0 or 1, and so one may write f as a
composite

(q1, ..., ql)
(f1,...,fl)−−−−−→ (pf (1)(1), ..., pf (1)(l))

ss
f(1)−−−→ (p1, ..., pm)

where ssf (1) is the subsequence inclusion corresponding to the injection f (1) interpreted
as an inclusion of trees in the evident way, and the fi are themselves inclusions of trees.
By definition ψ′ is compatible with such subsequence inclusions. Since ψ is unital, ψ′ is
compatible with tree inclusions of the form (f1, ..., fl) as above, and so ψ′ is itself unital.
Clearly if G : A → A′ preserves chosen contractions, then so does r(G). Thus r lifts to
the level of operads with chosen unital contractions.

Let us now verify that νB is compatible with chosen contractions. So given 0 ≤ k ≤ n,
p = (p1, ..., pm) ∈ Trk+1 and a, b ∈ Btr(p) such that s(a) = s(b) and t(a) = t(b), we must
verify

νB(γ(p, a, b)) = γ′′(p, νB(a), νB(b))

and it suffices to verify this equation for all 1 ≤ i ≤ m after applying the projection
proji : rh(B)p → B(pi). Recalling the inclusion π : (pi) → p of trees, by the definition of
νB we have

projiνB(γ(p, a, b)) = γ(p, a, b)πi

whereas

projiγ
′′(p, νB(a), νB(b)) = γ′(pi, atr(πi), btr(πi)) = γ((pi), atr(πi), btr(πi))

= γ(p, a, b)πi

in which the first two equalities follow from the definitions, and the last follows from the
unitality of γ with respect to πi.

6.5. Remark. For a reduced T≤n+1-operad B we have the component νB : B → rh(B)
of the unit of the above adjunctions. If we denote by E the T ×≤n-multitensor such that
ΓE = B, then E×1 is the T ×≤n-multitensor such that ΓE×1 = rh(B), and then νB is the
effect of Γ on a T ×≤n-multitensor map κE : E → E×1 , whose unary part is the identity.
The natural transformation κE can be regarded as the coherence data for a lax monoidal
functor

(1, κE) : (Gn(Set), E×1 ) −→ (Gn(Set), E),

applying C from proposition(3.14) to this gives

(1, κ′E) : (Gn(Set)E1 ,
∏

) −→ (Gn(Set)E1 , E ′)

and the components of κ′E are of the form

(κ′E)Z1,...,Zn :
n

E′
i=1

Zi −→
n∏
i=1

Zi

defined for all finite sequences (Z1, ..., Zn) of E1-algebras. In particular one has comparison
maps between the functor operads L≤n of theorem(6.2) and the cartesian product of weak
n-categories with strict units.
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