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ON THE MONAD OF INTERNAL GROUPOIDS

DOMINIQUE BOURN

Abstract. We deeply analyse the structural organisation of the fibration of points
and of the monad of internal groupoids. From that we derive: 1) a new characterization
of internal groupoids among reflexive graphs in the Mal’cev context; 2) a setting in which
a Mal’cev category is necessarily a protomodular category.

Introduction

This article is the result of the effort to understand the universal property of the split
epimorphism (pY0 , s

Y
0 ) : Y × Y � Y among all the split epimorphisms, a question that

arises from many aspects of Mal’cev and protomodular categories, where it plays a pivotal
role. For that, we had to analyse the remarkable structural organisation of the fibration
of points ¶E : PtE → E (the codomain functor). It was already known that there is
on PtE a monad (T, λ, µ) whose category of algebras AlgT is nothing but the category
GrdE of internal groupoids in E, see [4]. It appears, here, that the functor J : E→ PtE
defined by J(Y ) = (pY0 , s

Y
0 ) is precisely the right adjoint of the functor ¶E.T : PtE → E

which is nothing but the domain functor. What is unexpected is that this functor J
is monadic (where is originated the conceptual reason why the functor ( )0 = ¶E.UT :
AlgT = GrdE → E is still a fibration) and that it allows a localization of the monad
(T, λ, µ) into a monad (TY , λY , µY ) on the fibre PtYE which is described by the following
diagram:

X // (f,1) //

f
##

Y ×X

pY

��

Y × (Y ×X)

pY

ww

Y×pXoo

Y

s
cc

(1,s)

OO

(s0,s)

77

Of this last monad we could get out three considerations of the highest interest in the
context of a Mal’cev category C:
1) any reflexive graph (d0, d1) : X1 ⇒ X0 in C is a groupoid if and only if the following
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two subobjects commute in the unital fibre PtX0C:

X1
// (d0,1)//

d0
$$

X0 ×X1

pX0

��

X1
oo(d1,1)oo

d1
zzX0

s0
dd

(1,s0)

OO
s0 ::

which is a localization of the classical characterization [R[d0], R[d1]] = 0,
2) when a pointed Mal’cev category C satisfies the property of algebraic exponentiation
(see [13] and [8]) for any map, it is necessarily protomodular,
3) when the Mal’cev category C is not pointed and regular, if it satisfies the property of
algebraic exponentiation for any map, the full subcategory C] whose objects have global
support is protomodular.
Section 1 is devoted to the fibration of points and to the monad of internal groupoids,
Section 2 to the “localization” (TY , λY , µY ) and to the TY -algebras, and Section 3 to the
applications in the Mal’cev context.
We should like to thank S. Lack for a very useful bibliographical suggestion.

1. The monad of internal groupoids

1.1. The first observation. Let (T, λ, µ) be any monad on a category E and let us
consider the following commutative diagram:

E T //

W   

E

V��
F

1.2. Proposition. Suppose that the functor W = V.T has a right adjoint W̃ , then the
functor W in the following commutative diagram:

AlgT
UT

//

W ""

E

V��
F

has a right adjoint Ŵ , and it is such that: UT .Ŵ ' W̃ .

Proof. This is a mere corollary of Theorem 3.7.2 in [2]. Consider the following commu-
tative diagram:

AlgT
W=V.UT

// F

E
V.T

??

FT

bb
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It satisfies the conditions of Theorem 3.7.2 in [2]: since F T has a right adjoint UT which
is monadic and V.T has a right adjoint W̃ , it remains to show that W = V.UT preserves
coequalizers of UT -contractible pairs; it is the case for UT , and such a coequalizer becomes
a contractible coequalizer in E, and thus it is preserved by any functor.
The right adjoint functor Ŵ can be described in the following way; let us denote by
w : WW̃ ⇒ 1F the natural transformation associated with the right adjoint W̃ , then the
natural transformation w.V µ : V T 2W̃ ⇒ 1F induces a unique natural transformation:
β : TW̃ ⇒ W̃ such that: w.V Tβ = w.V µW̃ . It is easy to check that β satisfies the
axioms of T -algebras. We have Ŵ (Y ) = (W̃ (Y ), βY ), the natural map ε̂ : V.UT .Ŵ ⇒ 1F
being given by wY .V (λW̃ (Y )) : V.W̃ (Y )→ Y .

When the functor V is the identity on E, then we get the well known result of Eilenberg-
Moore [11] according to which when the endofunctor of a monad (T, λ, µ) admits a right
adjoint G, this functor G is underlying a comonad (G, ε, δ) such that the categories AlgT

and CoalC coincide. Actually we shall need the following precisions:

1.3. Proposition. Assume the assumptions of the previous proposition, and denote by
(Θ, η, W̃ (wV T )) the monad on E induced by the right adjoint W̃ . There is a unique natural
transformation m : T ⇒ Θ = W̃ .V.T such that wV T .V T (m) = V (µ) and which is actually
a morphism of monads:

(T, λ, µ)⇒ (Θ, η, W̃ (wV T ))

namely such that the following diagram commutes:

X
λX //

ηX %%

T (X)
mX��

T 2(X)
µXoo

T (mX)��

W̃V T (X) TW̃V T (X)
mW̃V TX��

W̃V TW̃V T (X)
W̃ (wV T (X))

ii

If we denote by M : AlgΘ → AlgT the induced comparison functor, the right adjoint Ŵ
of V.UT is nothing but the functor M.ΦΘ in the following diagram:

AlgT
UT

""
UT
��

AlgΘ UΘ
//

M 99

E E
V{{

F
ΦΘ

ee
W̃

OO

where ΦΘ is the natural comparison functor to the category of Θ-algebras and any triangle
on the left hand side commutes.

Proof. By adjunction, the map V (µX) : V.T 2(X) → V.T (X) determines a unique map
mX : T (X) → W̃ .V.T (X) such that wV T (X).V T (mX) = V (µX). Let us show it is under-
lying a morphism of monads. First we have mX .λX = ηX just checking:
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wV T (X).V T (mX).V T (λX) = V (µX .V T (λX)) = 1V T (X) = wV T (X).V T (ηX). Then we have

mX .µX = W̃ (wV T (X)).mW̃V T (X).T (mX) just checking:

wV T (X).V TW̃ (wV T (X)).V T (mW̃V T (X)).V T
2(mX)

= wV T (X).wV TW̃V T (X).V T (mW̃V T (X)).V T
2(mX)

= wV T (X).V (µW̃V T (X)).V T
2(mX) = wV T (X).V T (mX).V (µT (X))

= V (µX).V (µT (X)) = V (µX).V T (µX) = wV T (X).V T (mX).V T (µX)

Now we have M.ΦΘ(Y ) = (W̃ (Y ), W̃ (wY ).mW̃ (Y )), and it is easy to check that the map

W̃ (wY ).mW̃ (Y ) is the map βY of the end of the proof of the previous proposition. The

natural transformation η̂ : 1AlgT ⇒ M.ΦΘ.V.U
T is given, for any T -algebra (X, ξ) by the

unique map η̂(X, ξ) : X → W̃V (X) satisfying: wV (X).V T (η̂(X, ξ)) = V (ξ).

Let us end this very general section by a relatively straightforward result we shall need
later on:

1.4. Proposition. Let U : E → F be a functor having a right adjoint G. Then U
preserves the jointly strongly epic families.

Proof. Let Wi
fi→ X; i ∈ I be a jointly strongly epic family in E; now consider a map

h : U(X)→ Y and a monomorphism t : T � Y through which any map h.U(fi) factorizes
by a map gi : U(Wi) → T . The image G(t) by the right adjoint G is a monomorphism
G(T ) � G(Y ) in E. On the other hand, the map h produces a map h̄ : X → G(Y ) in the
same way as the maps gi produce maps ḡi : Wi → G(T ) such that G(t).ḡi = h̄.fi. Since
the family (fi)i∈I is jointly strongly epic, then necessarily, we get a factorization l:

Wi

fi ��

ḡi // G(T )
��
G(t)
��

X
h̄
//

l

77

G(Y )

The adjunction gives rise to a map l̃ : U(X)→ T such that t.l̃ = h.

1.5. The fibration of points. We shall study here a specific example of the situation
introduced above. Recall that, E being any category, we denote by PtE the category
whose objects are the split epimorphisms in E with a given splitting and morphisms the
commutative squares between these data, and by ¶E : PtE → E the functor associating
its codomain with any split epimorphism. As soon as the category E has pullbacks, the
left exact functor ¶E is a fibration whose cartesian maps are the pullbacks between split
epimorphisms. More precisely it is a fibered reflection [4], in the sense that it admits
a fully faithful right adjoint I defined by I(Y ) = (1Y , 1Y ). The fibre above Y will be
denoted PtYE. From now on we shall suppose that any category has finite limits. There
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is a left exact monad (T, λ, µ) on PtE defined by the following diagram:

X // s1 //

f
��

R[f ]

p0

��

R2[f ]

p0

��

p2oo

Y //
s
//

s

OO

X

s0

OO

R[f ]

s0

OO

p1

oo

where T (f, s) = (p0, s0), and the other arrows in the diagram above are given by the
iterated kernel equivalence relations:

R2[d0]

d2 //
d1 //

d0

//
R[f ]

d1 //

d0

// X
f
//oo Y

soo

Now consider the diagram:

PtE T //

¶E.T ##

PtE

¶E||
E

Actually, the functor ¶E.T : PtE→ E is nothing but the domain functor. Finally let us
recall that the category AlgT is nothing but the category GrdE of internal groupoids in
E, see [4].

1.6. Proposition. The functor ¶E.T : PtE→ E has a right adjoint J defined by J(Y ) =
(p0, s0) : Y × Y � Y . In other words the split epimorphism J(Y ) is the universal split
epimorphism with respect to the domain functor. Moreover this functor J is monadic and
consequently conservative.

Proof. Let us denote by w : ¶E.T.J ⇒ 1E the natural transformation defined by wY =
pY1 : Y × Y → Y . Given any split epimorphism (f ′, s′) and any map g : ¶E.T (f ′, s′) =
X ′ → Y , the unique factorization (m,n) : (f ′, s′) → J(Y ) in PtE such that we get
wY .¶E.T (m,n) = g is given by the following diagram:

X ′
(g.s′.f ′,g) //

f ′
��

Y × Y
p0
��

Y ′
g.s′

//

s′

OO

Y

s0

OO

Finally, it is straightforward that the functor J creates coequalizers of J-contractible
pairs.
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Accordingly, we are here in the situation of our first observation where moreover any
functor is left exact, the endofunctor T as well, and with two very special features. We
already noticed the first one: the functor W̃ = J is monadic. On the other hand, given
any groupoid X1, the natural map η̂X1

(see Proposition 1.3) is the following one:

X1

d0
��

d1
��

(d0,d1)// X0 ×X0

p0

��
p1

��
X0

OO

X0

OO

Accordingly, and this is the second special feature, the map η̂Ŵ (Y ) is an isomorphism:

Y × Y
p0
��

p1
��

(p0,p1)// Y × Y
p0
��

p1
��

Y

OO

Y

OO

It is the conceptual reason why the forgetful left exact functor ( )0 : AlgT = GrdE→ E is a
fibered reflection, namely is such that the natural transformation ε̂ (see the end of the proof
of Proposition 1.2) is an isomorphism: indeed, since the map η̂Ŵ (Y ) is an isomorphism,

it is the case for any Ŵ (ε̂X); but, since the functor W̃ = UT .Ŵ is monadic, the functor
Ŵ is conservative, and consequently ε̂X is an isomorphism. Rather unexpectedly, the
Proposition 1.2 seems to show that the fibered reflection aspect of ( )0 is independent
from the existence of the right adjoint I of ¶E, namely from the fact that ¶E is itself a
fibered reflection.

1.7. Strongly split epimorphisms. We shall need also the following, when the cate-
gory E is pointed. Any split epimorphism (f, s) determines now a split sequence:

Kerf //
k // X

f // Y
s
oo

1.8. Definition. We shall say that the split epimorphism (resp. the split sequence) is a
strongly split epimorphism (resp. a strongly split exact sequence), when the pair (k, s) is
jointly strongly epic.

This terminology is justified by the following:

1.9. Proposition. Let E be a pointed category with finite limits. Any strongly split
epimorphism (f, s) is a normal epimorphism. In other words, any split sequence associated
with a strongly split epimorphism is a strongly split exact sequence.

Proof. Consider the associated split sequence:

Kerf // k // X
f // //

Yoos
oo
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We have to show that f is the cokernel of k. Let g : X → T be a map such that: g.k = 0.
The only possible factorization Y → T is g.s. So we need to show that g.s.f = g. For
that let us introduce the equalizer i of the pair (g, g.s.f). It is clear that both k and s
factor through i. Consequently i is an isomorphism, and the two maps in question are
equal.

This result was noticed independently in [15]. According to this proposition, a pointed
category C with finite limits is protomodular [3] if and only if any split epimorphism is a
strongly split epimorphism.

2. The induced monad on the fibres PtYE
The monad (T, λ, µ) on PtE has other very strong properties: the endofunctor T pre-
serves the ¶E-cartesian maps, while the natural transformations λ and µ are themselves
¶E-cartesian, see [4]. Finally the natural transformation m : T ⇒ W̃V T defined in Propo-
sition 1.3 is given, for any split epimorphism (f, s) : X � Y , by the following map, and
consequently, lies inside the fibre PtXE:

R[f ]

d0
��

(d0,d1)// X ×X
p0

��
X

s0

OO

X

s0

OO

In other words, we have a third special feature, namely: V (mX) = 1V T (X).

2.1. The monad (TY , λY , µY ). With all this information, we can derive a monad
(TY , λY , µY ) on the fibre PtYE from the monad (T, λ, µ) on PtE by means of the following
fibered construction, where, first, the map λ̄X is the ¶E-cartesian map above V (λX), and
λYX is the factorization inside the fibre PtYE induced by mX ; this makes the upper
square a pullback:

X
λX //

λYX ��

T (X)
mX��

TY (X)
λ̄X // W̃V T (X)

T 2
Y (X)

λ̄TY X

//

µYX
OO

W̃V T (TY (X))

W̃ (nX)
OO

On the other hand, by adjunction, the map λ̄X : TY (X)→ W̃V T (X) in PtE corresponds
to a map nX : V T (TY (X)) → V T (X) in E such that nX .V (λTY (X)) = V (λX); indeed
we get first: nX .V T (λYX)) = wV T (X).V T (λ̄X).V T (λYX) = wV T (X).V T (mX).V T (λX) =
V (µX).V T (λX) = 1V T (X). Now, from V (λTY (X)) = V T (λYX).V (λX), we get:
nX .V (λTY (X)) = nX .V T (λYX).V (λX) = V (λX). The map µYX is the factorization of

W̃ (nX).λ̄TYX through the ¶E-cartesian map λ̄X . In spite of appearances, the map µX is
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involved in the process, since it is involved in the definition of the map mX . The monad
(TY , λY , µY ) is now precisely described by the following diagram in E:

X // (f,1) //

f
##

Y ×X
pY

��

Y × (Y ×X)

pY

ww

Y×pXoo

Y

s

cc

(1,s)

OO

(s0,s)

77

2.2. The TY -algebras. We shall determine now the nature of the TY -algebra structures
on a split epimorphism (f, s) : X � Y and show how, in some specific context, they are
controlling the decompositions of the form X ' Y × T (see also [7]). Actually the
monad (TY , λY , µY ) is generated by an adjunction: let us denote by Y \E the usual coslice
category and by ΥY : Y \E → PtYE the functor defined, for any map t : Y → T by
ΥY (t) = (pY , (1, t)) : Y × T � Y .

2.3. Proposition. The functor ΥY has a left adjoint ΨY : PtYE → Y \E defined by
ΨY (f, s) = s. It is left exact and produces the monad (TY , λY , µY ).

Proof. Straightforward checking.

So, there is a canonical left exact comparison functor ΓY :

Y \E ΓY //

ΥY $$

AlgTY

UTYyy
PtYE

The upper level of the canonical sequence yielded by the adjunction in Y \E:

(ΨY .ΥY )2(t)
//
// ΨY .ΥY (t) // t

is, in E:

Y × Y × T
pY1 ×T //

pY0 ×T
// Y × T

pT // T

It is clear that, when E is pointed, it is a coequalizer diagram, and that consequently the
factorization ΓY is fully faithful. The same property holds, when E is regular [1] and the
object Y has global support.
Let us now characterize the TY -algebras. For that let us recall the following: given any
pair (R, S) of equivalence relations on an object X consider the following pullback:

R�S // //

��

S × S
(d0×d0,d1×d1)
��

R×R //
(d0,d1)×(d0,d1)

// X4
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which determines the double parallelistic relation associated to (R, S) (see [6] and also
[10]):

R�S
pR0 ��

pR1��
pS0

//

pS1 //
S

d0
��

d1
��

oo

R
d0

//

d1 //

OO

X

OO

oo

2.4. Definition. We say that the pair (R, S) is strictly centralizing when one of the
downward and rightward commutative square is a pullback.

In this circumstance, all the other commutative squares are pullbacks since the one in
question determines a discrete fibration between groupoids. In the set theoretical context
this means that for any triple xRySz, there is a unique t such that xStRz. In any category
E, and for any pair (Y, T ) of objects the pair (R[pY ], R[pT ]) is a strictly centralizing pair on
the object Y ×T . A strictly centralizing pair (R, S) is necessarily such that: R∩S = ∆X .

2.5. Proposition. A TY -algebra structure ψ : Y ×X → X on (f, s) is equivalent to the
data of an equivalence relation S on X such that the pair (R[f ], S) is strictly centralizing
and the equivalence relation S satisfies: f(S) = ∇Y .

Proof. The map ψ satisfies: f.ψ = pY , ψ.(f, 1) = 1X and ψ.p0 ×X = ψ.Y × ψ. Notice
that the map s is not involved. Actually the previous equations show that the map ψ
completes the following diagram into a vertical discrete fibration between groupoids:

Y × Y ×X
Y×Y×f ����

Y×ψ
//

p0×X //

p1×X //

Y ×X
Y×f����

ψ
//

pX //

X

f����

(f,1)oo

Y × Y × Y
p0

//
p1 //

p2 //
Y × Y

p0

//

p1 //
Y

s0oo

This implies that the right hand side dotted square is a pullback. Since the lower groupoid
is an equivalence relation, so is the upper one which produces an equivalence relation S
on X, which is such that: f(S) = ∇Y since f and Y × f are (split) epimorphisms. If we
complete the previous diagram by the kernel equivalence relations:

R[φ]

p0

��
p1

��

R(p0)
//

R(p1) //
R[f ]

d0
��

d1
��

oo

S
d0

//

d1 //

OO

φ ����

X

OO

oo

f ����
Y × Y

p0

//

p1 //
Yoo
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the upper part of the diagram is the parallelistic double relation associated with the pair
(S,R[f ]). The lower squares being pullbacks, so are the upper ones, and the pair (S,R[f ])
is strictly centralizing.
Conversely, suppose there is an equivalence relation S satisfying the previous conditions.
Let us consider the following diagram:

R[f ]�S

pR0 ��
pR1��

pS0

//

pS1 //
S

d0
��

d1
��

oo q // // T

�� ��
R[f ]

d0

//

d1 //

OO

X

OO

oo f // Y
s

oo

OO

Since we have, on the left hand side, discrete fibrations between equivalence relations and
since f is a split epimorphism, we have the quotient T of the upper horizontal equivalence
relation, which produces the dotted right hand side pullbacks. Since R[f ] ∩ S = ∆X , the
vertical right hand side groupoid T is actually an equivalence relation on Y . Now we
have T = f(S) = ∇Y as equivalence relations, and consequently T ' Y × Y as objects.

Accordingly we have S ' Y × X, whence the splitting ψ : Y × X ' S
d0−→ X (and the

TY -algebra) we were looking for.

2.6. Corollary. When E is pointed, any comparison functor ΓY is an equivalence of
categories; in other words, we have AlgTY ' Y \E. When E is exact [1] (or even efficiently
regular), it is the case provided that the object Y has global support.

Proof. We know that, in both situations, the comparison ΓY is fully faithful. We are
going to show that it is essentially surjective. Given any TY -algebra ψ let us consider the
following diagram where the left hand side part is a vertical discrete fibration between
equivalence relations:

Y ×X
Y×f ����

ψ
//

pX //

X

f����

(f,1)oo q // // T

����
Y × Y

p0

//

p1 //
Y

s0oo
τY

// // 1

In both cases the upper equivalence relation is effective and we can complete the diagram
with its quotient map q which produces the right hand side pullback. Accordingly we get
an isomorphism γ in PtYE:

X
γ //

f
##

Y × T
pY

��
Y

s
cc

(1,γ.s)

OO

In the pointed case, the splitting of the terminal map τY imposes (actually by construction)
T ' Kerf .
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2.7. Special TY -algebras. But it does not impose that we have γ.s = 0. We already
noticed that the section s of f is not directly involved in the equations defining a TY -
algebra.

2.8. Definition. A TY -algebra ψ is said to be special when, in addition, it satisfies:
ψ.Y × s = s.p0.

Accordingly a TY -algebra ψ is special, when the section s of f determines a section of the
discrete fibration described in the proof of Proposition 2.5; it consequently determines
a section of the terminal map τT : T → 1 in the subsequent corollary. Whence the
straightforward following:

2.9. Proposition. Suppose the category E is pointed. Then a split epimorphism (f, s) :
X � Y is isomorphic to the split epimorphism (pY , ιY ) : Y ×Kerf � Y if and only if it
is endowed with the structure of a special TY -algebra.

3. Mal’cev context

Mal’cev categories were introduced in [9] and [10] as those categories C in which any
reflexive relation is an equivalence relation. They are characterized by the fact that any
fibre PtYC of the fibration ¶C is unital, a context in which there is an intrinsic notion
of commutation [3]. On the other hand, in this same context, there is also an intrinsic
notion of commutation of equivalence relations, see [16] and [6]; thanks to Definition 2.4,
we are allowed to say now that two equivalence relations R and S on an object X are
strictly centralizing if and only if we have: R ∩ S = ∆X .

3.1. Mal’cev monads. Recall also that a monad (T, λ, µ) on any category E is said to be
a Mal’cev monad, when the pair (λT, Tλ) is jointly strongly epic [5]. The main property
of a Mal’cev monad is that any T -algebra is characterized by the only unit axiom. First
we get the following:

3.2. Proposition. Let C be a Mal’cev category. Then the monads (T, λ, µ) on PtC and
(TY , λY , µY ) on PtYC for any Y are Mal’cev monads.

Proof. 1) The first statement comes from the fact that, in a Mal’cev category, any kernel
equivalence relation of a split epimorphism:

R[f ]

d1 //

d0

// X
f
//oos0oo

s1

��
Y

soo

is such that the pair (s0, s1) is jointly strongly epic.
2) Suppose, now, we have a subobject W � Y ×Y ×X containing s0×X and Y × (f, 1).
This can be understood as a relation (y, y′)Wx such that (y, y)Wx for all (y, x) and
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(y, f(x))Wx for all (y, x). Let us recall that, in a Mal’cev category, any relation is
difunctional. Consider, for any triple (y, y′, x), the following diagram:

(y, y) x

(y, y′) s(y′)

It shows that ((y, y′), x) is in W , and that w is an isomorphism.

Accordingly, any splitting ψ : Y ×X → X of the map (f, 1) such that f.ψ = pY determines
a TY -algebra and produces the conditions of Proposition 2.5 which can be reformulated:

3.3. Proposition. Let C be a Mal’cev category. A TY -algebra structure ψ : Y ×X → X
on (f, s) is equivalent to the data of an equivalence relation S on X such that we have:
R[f ] ∩ S = ∆X and f(S) = ∇Y .

3.4. Internal groupoids in the Mal’cev context. Since (T, λ, µ) becomes a
Mal’cev monad, a reflexive graph (d0, d1) : X1 ⇒ X0 is a groupoid if and only if there is
a map d2:

R[d0]

d2

��
d1 //

d0

//
X1

d1 //

d0

// X0
oo

such that d0.d2 = d1.d0 and d2.s1 = 1X1 .
On the other hand it is well known [10] that, in this context, any internal category is
a groupoid. Now, some aspects of the monad TY on PtYC will allow us to shed a new
light on another well known property of Mal’cev categories concerning what is called
multiplicative reflexive graph in [10]. From any reflexive graph (d0, d1) : X1 ⇒ X0 in C,
we get, by the monad TX0 , two subobjects in PtX0C:

X1
// (d0,1)//

d0
$$

X0 ×X1

pX0

��

X1
oo(d1,1)oo

d1
zzX0

s0
dd

(1,s0)

OO
s0

::

We can assert now the following:

3.5. Proposition. Let C be a Mal’cev category. The reflexive graph in question is a
groupoid if and only if these two subobjects commute in PtX0C.
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Proof. These two subobjects commute in the fibre PtX0C when they have a cooperator
φ : X1 ×X0 X1 → X0 ×X1 (i.e. a map satisfying: φ.s0 = (d1, 1) and φ.s1 = (d0, 1)):

X1 ×X0 X1

φ
��

d2

xx

d0

&&

X1
// (d0,1)//

d0 &&

s1

88

X0 ×X1

pX0
��

X1
oo(d1,1)oo

d1xx

s0

ff

X0

s0
ff

(1,s0)

OO
s0

88

where the whole quadrangle is a pullback. The map φ is consequently a pair (d0.d2, d1),
where d1 : X1 ×X0 X1 → X1 is such that: d1.s0 = 1X1 and d1.s1 = 1X1 . This map d1

with these two identities makes multiplicative in the sense of [10] the reflexive graph in
question. And, according to Theorem 2.2 in [10], in a Mal’cev category, any reflexive-
multiplicative graph is a groupoid.

It is well known also that, in this context of Mal’cev categories, an internal reflexive graph
(d0, d1) : X1 ⇒ X0 in C is actually an internal groupoid if and only if the equivalence
relations R[d0] and R[d1] commute in C, i.e. if and only if we have [R[d0], R[d1]] = 0,
see [10] and [6]. So, in the Mal’cev context, a reflexive graph is a groupoid if and only if
either the equivalence relations R[d0] and R[d1] commute in C or the subobjects (d0, 1)
and (d0, 1) commute in the fibre PtX0C. Further properties of internal groupoids in a
Mal’cev categories are developed in [12].

3.6. When Mal’cev categories are protomodular. The unit of the monad TY
on the fibre PtYE is actually the kernel of a split epimorphism in this pointed category:

X // (f,1)//

f $$

Y ×X
pY
��

Y×f// //
Y × Yoo

Y×s
oo

pY

xx
Y

s
dd

s0

88

In the Mal’cev context this split sequence is actually a split exact sequence:

3.7. Proposition. Let C be any Mal’cev category. Then the previous split sequence in
PtYC is a strongly split exact sequence in PtYC, or equivalently it produces a strongly
split epimorphism PtYC (see Definition 1.8).

Proof. Let w : W � Y × X be a subobject containing (f, 1) and Y × s. Since C is
Mal’cev, the relation W on Y ×X is difunctional. Consider, for any pair (y, x) ∈ Y ×X,
the following diagram:

f(x) x

y s.f(x)

It shows that (y, x) is in W , and that w is an isomorphism.
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We have now the following characterization:

3.8. Lemma. Let C be a Mal’cev category and (f, s) : X � Y any split epimorphism. A
map ψ : Y × X → X is a special TY -algebra if and only if we have ψ.(f, 1) = 1X and
ψ.Y × s = s.p0. Accordingly there is at most one special TY -algebra structure on it.

Proof. These conditions are necessary. Conversely it remains to show that ψ.f = pY
which is a consequence of the fact that, thanks to the asserted conditions, the compositions
of these two maps by the strongly epic pair ((f, 1), Y × s) are the same.

3.9. Proposition. Let C be a Mal’cev category. The two subobjects (f, 1) and Y × s
commute in PtYC if and only if the split epimorphism (f, s) is endowed with the structure
of a special TY -algebra. When the category C is pointed, the only split epimorphisms
inducing this commutation are the trivial ones (pY , ιY ) : Y × T � T .

Proof. Suppose the two subobjects (f, 1) and Y × s commute in PtYC, and denote by
(α, β) : X × Y → Y ×X the associated cooperator:

X × Y f×Y

++

pX JJ

&&
Y ×X Y × Y

p0 ��
Y×s
oo

s×Y

kk

X
f // //

(f,1)
OO

(1,f)

VV

Y

s0

OO

oo
s

oo

such that (α, β).(1, f) = (f, 1) and (α, β).s× Y = Y × s. This means that β.(1, f) = 1X
and β.s×Y = s.p1. If we denote by twY,X : Y ×X → X×Y the twisting isomorphism, we
get (β.twY,X).(f, 1) = 1X and (β.twY,X).Y × s = s.p0. According to the previous lemma,
the map ψ = β.twY,X is then a special TY -algebra. Conversely if ψ is a special TY -algebra
structure on (f, s), then β = ψ.twX,Y is the cooperator which makes commute the pair
((f, 1), Y × s). The last assertion is a straightforward consequence of Proposition 2.9.

In [13], was made the remarkable observation that, in the category Gp of groups, any
change of base functor with respect to the fibration of points has a right adjoint. The
same property holds in the category R-Lie of Lie R-algebras, where R is a commutative
ring, see [14]. Such a kind of category was called locally algebraically cartesian closed in
[8]. The specific cohesion generated by this local algebraic cartesian closedness can be
measured by the following:

3.10. Theorem. Let C be a pointed Mal’cev category. When, in addition, it is locally
algebraically cartesian closed, then it is protomodular.

Proof. Let (f, s) : X � Y be a split epimorphism in C. In the pointed Mal’cev fibre
PtYC we get the previous strongly split exact sequence. Now the change of base functor
α∗Y along the initial map, having a right adjoint, preserves the jointly strongly epic pairs,
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see Proposition 1.4. Accordingly the image by α∗Y of this strongly split exact sequence,
namely the following one:

Kerf //
k // X

f // Y
s
oo

is still a strongly split exact sequence, which is the characterization of a pointed proto-
modular category [3].

Now, what does happen in the non-pointed case? The answer is the following:

3.11. Theorem. Let C be a regular Mal’cev category. When, in addition, it is locally
algebraically cartesian closed, then the full subcategory C] of C whose objects are those
which have global support is protomodular.

Proof. Let y : Y ′ → Y be any map in C; we have to show that the change of base
functor h∗ : PtYC → PtY ′C is conservative. Since h∗ is left exact, it is enough to check
it on monomorphisms. So let u : (f̄ , s̄) � (f, s) be a monomorphism in PtYC. We get a
morphism of strong split exact sequences in this fibre:

X̄ // (f̄ ,1)//

u
��

Y × X̄
Y×u

��

Y×f̄// //
Y × Yoo

Y×s̄
oo

X //
(f,1)
// Y ×X

Y×f// //
Y × Yoo

Y×s
oo

Suppose that h∗(u) is an isomorphism. Since C is lacc, the change of base functor h∗

preserves the strong split exact sequences. Accordingly the monomorphism h∗(Y × u) is
an isomorphism as well in the fibre PtY ′C; that means that the monomorphism Y ′ × u :
Y ′×X̄ � Y ′×X is an isomorphism in C. Now, when Y ′ has global support, the following
square has vertical regular epimorphisms:

Y ′ × X̄ //Y
′×u //

pX′ ����

Y ′ ×X
pX����

X̄ //
u

// X

Consequently, if Y ′ × u is an isomorphism, so is u.

The two previous results are even more striking, if we recall that, according to Theorem
4.3 in [8], any locally algebraically cartesian closed protomodular category is necessarily
strongly protomodular.

References

[1] M. Barr, Exact categories, Springer L.N. in Math., 236, 1971, 1-120.

[2] M. Barr and C. Wells, Toposes, triples and theories, Reprints in Theory and Appli-
cations of Categories, (12), 2005, 1-288.



ON THE MONAD OF INTERNAL GROUPOIDS 165

[3] F. Borceux and D. Bourn, Mal’cev, protomodular, homological and semi-abelian
categories, Kluwer, Mathematics and its applications, vol. 566, 2004.

[4] D. Bourn, The shift functor and the comprehensive factorization for internal
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