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POLYNOMIALS IN CATEGORIES WITH PULLBACKS

MARK WEBER

Abstract. The theory developed by Gambino and Kock, of polynomials over a locally
cartesian closed category E , is generalised for E just having pullbacks. The 2-categorical
analogue of the theory of polynomials and polynomial functors is given, and its rela-
tionship with Street’s theory of fibrations within 2-categories is explored. Johnstone’s
notion of “bagdomain data” is adapted to the present framework to make it easier to
completely exhibit examples of polynomial monads.

1. Introduction

Thanks to unpublished work of André Joyal dating back to the 1980’s, polynomials admit
a beautiful categorical interpretation. Given a multivariable polynomial function p with
natural number coefficients, like say

p(w, x, y, z) = (x3y + 2, 3x2z + y) (1)

one may break down its formation as follows. There is a set In = {w, x, y, z} of “input
variables” and a two element set Out of “output variables”. Rewriting p(w, x, y, z) =
(x3y + 1 + 1, x2z + x2z + x2z + y), there is a set

MSum = {x3y, (1)1, (1)2, (x
2z)1, (x

2z)2, (x
2z)3, y}

of “monomial summands”, and a set

UVar = {x1, x2, x3, y1, x4, x5, z1, x6, x7, z2, x8, x9, z3, y2}

of “usages of variables”, informally consisting of no w’s, nine x’s, two y’s and three z’s.
The task of forming the polynomial p can then be done in three steps. First one takes
the input variables and duplicates or ignores them according to how often each variable is
used. The book-keeping of this step is by means of the evident function p1 : UVar→ In,
which in our example forgets the subscripts of elements of UVar. In the second step one
performs all the multiplications, and this is book-kept by taking products over the fibres
of the function p2 : UVar→MSum which sends each usage to the monomial summand
in which it occurs, that is

x1, x2, x3, y1 7→ x3y x4, x5, z1 7→ (x2z)1 x6, x7, z2 7→ (x2z)2

x8, x9, z3 7→ (x2z)3 y2 7→ y.
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Finally one adds up the summands, and this is book-kept by summing over the fibres of
the evident function p3 : MSum→ Out. Thus the polynomial p “is” the diagram

In UVar MSum Outoo p1 p2 // p3 // (2)

in the category Set. A categorical interpretation of the formula (1) from the diagram
(2) begins by regarding an n-tuple of variables as (the fibres of) a function into a given
set of cardinality n. Duplication of variables is then interpretted by the functor ∆p1 :
Set/In→ Set/UVar given by pulling back along p1, taking products by the functor Πp2 :
Set/UVar→ Set/MSum and taking sums by applying the functor Σp3 : Set/MSum→
Set/Out given by composing with p3. Composing these functors gives

P(p) : Set/In→ Set/Out

the polynomial functor corresponding to the polynomial p.
Functors of the form ∆p1 , Πp2 and Σp3 are part of the bread and butter of category

theory. For any map p3 in any category, one may define Σp3 between the appropriate
slices, and one requires only pullbacks in the ambient category to interpret ∆p1 more
generally. The functor Πp2 is by definition the right adjoint of ∆p2 , and its existence is a
condition on the map p2, called exponentiability. Locally cartesian closed categories are by
definition categories with finite limits in which all maps are exponentiable. Consequently
a reasonable general categorical definition of polynomial is as a diagram

X A B Yoo p1 p2 // p3 // (3)

in some locally cartesian closed category E . The theory polynomials and polynomial
functors was developed at this generality in the beautiful paper [11] of Gambino and
Kock. There the question of what structures polynomials in a locally cartesian closed E
form was considered, and it was established in particular that polynomials can be seen
as the arrows of certain canonical bicategories, with the process of forming the associated
polynomial functor giving homomorphisms of bicategories.

In this paper we shall focus on the bicategory PolyE of polynomials and cartesian maps
between them in the sense of [11]. Our desire to generalise the above setting comes from
the existence of canonical polynomials and polynomial functors for the case E = Cat and
the wish that they sit properly within an established framework. While local cartesian
closedness is a very natural condition of great importance to categorical logic, enjoyed for
example by any elementary topos, it is not satisfied by Cat. Avoiding the assumption of
local cartesian closure may be useful also for applications in categorical logic. For example,
the categories of classes considered in Algebraic Set Theory [14] are typically not assumed
to be locally cartesian closed, but the small maps are assumed to be exponentiable.

The natural remedy of this defect is to define a polynomial p between X and Y in a
category E with pullbacks to be a diagram as in (3) such that p2 is an exponentiable map.
Since exponentiable maps are pullback stable and closed under composition, one obtains



POLYNOMIALS IN CATEGORIES WITH PULLBACKS 535

the bicategory PolyE together with the “associated-polynomial-functor homomorphism”,
as before. We describe this in Section 3.

The main technical innovation of Sections 2 and 3 is to remove any reliance on type
theory in the proofs, giving a completely categorical account of the theory. In establishing
the bicategory structure on PolyE in Section 2 of [11], the internal language of E is used
in an essential way, especially in the proof of Proposition 2.9. Our development makes no
use of the internal language. Instead we isolate the concept of a distributivity pullback
in Section 2.2 and prove some elementary facts about them. Armed with this technology
we then proceed to give an elementary account of the bicategory of polynomials, and
the homomorphism which encodes the formation of associated polynomial functors. Our
treatment requires only pullbacks in E .

Our second extension to the categorical theory of polynomials is motivated by the fact
that Cat is a 2-category. Thus in Section 4.1 we develop the theory of polynomials within
a 2-category K with pullbacks, and the polynomial 2-functors that they determine. In this
context the structure formed by polynomials is a degenerate kind of tricategory, called a
2-bicategory, which roughly speaking is a bicategory whose homs are 2-categories instead
of categories. However except for this change, the theory works in the same way as for
categories. In fact our treatment of the 1-categorical version of the theory in Section 3
was tailored in order to make the previous sentence true (in addition to giving the desired
generalisation).

A first source of examples of 2-categorical polynomials come from the 2-monads consid-
ered first by Street [27] whose algebras are fibrations. In Proposition 4.2.3 these 2-monads
are exhibited as being polynomial in general. Fibrations in a 2-category play another role
in this work, because it is often the case that the maps participating in a polynomial may
themselves be fibrations or opfibrations in the sense of Street. This has implications for
the properties that the resulting polynomial 2-functor inherits. To this end, the general
types of 2-functor that are compatible with fibrations are recalled from [34] in Section
4.3, and the polynomials that give rise to them are identified in Theorem 4.4.5.

As explained in [7, 23] certain 2-categorical colimits called codescent objects are im-
portant in 2-dimensional monad theory. Theorem 4.4.5 has useful consequences in [32], in
which certain codescent objects which arise naturally from a morphism of 2-monads are
considered. When these codescent objects arise from a situation conforming appropriately
to the hypotheses of Theorem 4.4.5, they acquire extra structure which facilitates their
computation. Also of relevance to the computation of associated codescent objects, we
have in Theorem 4.5.1 identified sufficient conditions on polynomials in Cat so that their
induced polynomial 2-functors preserve all sifted colimits.

While the bicategorical composition of polynomials has been established in [11], and
more generally in Sections 3 and 4 of this paper, actually exhibiting explicitly a polynomial
monad requires some effort due to the complicated nature of this composition. However
one can often avoid the need to check monad axioms by using an alternative approach,
based on Johnstone’s notion of “bagdomain data” [13]. The essence of this approach is
described in Theorem 5.3.3 and its 2-categorical analogue Theorem 5.4.1. These methods
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are then illustrated in Section 5.4, where various fundamental examples of polynomial
2-monads on Cat are exhibited. In particular the 2-monads on Cat for symmetric and
for braided monoidal categories are polynomial 2-monads.

Polynomial functors over some locally cartesian closed category E arise in diverse math-
ematical contexts as explained in [11]. They arise in computer science under the name
of containers [1]. Tambara in [30] studied polynomials over categories of finite G-sets
motivated by representation theory and group cohomology. Very interesting applications
of Tambara’s work were found by Brun in [8] to Witt vectors, and in [9] also to equiv-
ariant stable homotopy theory and cobordism. Moreover in [22] one finds applications of
polynomial functors to higher category theory.

Having generalised to the consideration of non-locally cartesian closed categories we
have expanded the possible scope of applications. In this article we have described some
basic examples of polynomial monads over Cat. Further examples for Cat of relevance
to operads are provided in [3, 32, 33]. The results of Section 3 apply also to polynomials
over Top which were a part of the basic setting of the work of Joyal and Bisson [4] on
Dyer-Lashof operations.

Notations. We denote by [n] the ordinal {0 < ... < n} regarded as a category. The
category of functors A → B and natural transformations between them is usually denoted
as [A,B], though in some cases we also use exponential notation BA. For instance E [1] is
the arrow category of a category E , and E [2] is a category whose objects are composable
pairs of arrows of E . A 2-monad is a Cat-enriched monad, and given a 2-monad T on a
2-category K, we denote by T -Algs the 2-category of strict T -algebras and strict maps,
T -Alg the 2-category of strict algebras and strong maps1 and Ps-T -Alg for the 2-category
of pseudo-T -algebras and strong maps, following the usual notations of 2-dimensional
monad theory [5, 23].

2. Elementary notions

In this section we describe the elementary notions which underpin our categorical treat-
ment of the bicategory of polynomials in Section 3. In Section 2.1 we recall basic facts
and terminology regarding exponentiable morphisms. In Section 2.2 we introduce dis-
tributivity pullbacks, and prove various general facts about them.

2.1. Exponentiable morphisms. Given a morphism f : X → Y in a category E ,
we denote by Σf : E/X → E/Y the functor given by composition with f . When E
has pullbacks Σf has a right adjoint denoted as ∆f , given by pulling back maps along f .
When ∆f has a right adjoint, denoted as Πf , f is said to be exponentiable. A commutative

1Which are T -algebra morphisms up to coherent isomorphism
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square in E as on the left

A B

DC

f //

k

��
//

g

��
h

E/A E/B

E/DE/C

Σf //
OO

∆k

//
Σg

∆h

OO
α +3

E/A E/B

E/DE/C

oo
∆f

Πk

��

∆g

oo
��

Πh
ks β

determines a natural transformation α as in the middle, as the mate of the identity
ΣkΣf = ΣgΣh via the adjunctions Σh a ∆h and Σk a ∆k. We call α a left Beck-
Chevalley cell for the original square. There is another left Beck-Chevalley cell for this
square, namely Σh∆f → ∆gΣk, obtained by mating the identity ΣkΣf = ΣgΣh with the
adjunctions Σf a ∆f and Σg a ∆g. If in addition h and k are exponentiable maps, then
taking right adjoints produces the natural transformation β from α, and we call this a
right Beck-Chevalley cell for the original square. There is another right Beck-Chevalley
cell ∆kΠg → Πf∆h when f and g are exponentiable. It is well-known that the original
square is a pullback if and only if either associated left Beck-Chevalley cell is invertible,
and when h and k are exponentiable, these conditions are also equivalent to the right
Beck-Chevalley cell β being an isomorphism. Under these circumstances we shall speak
of the left or right Beck-Chevalley isomorphisms.

Clearly exponentiable maps are closed under composition and any isomorphism is
exponentiable. Moreover, exponentiable maps are pullback stable. For given a pullback
square as above in which g is exponentiable, one has Σh∆f

∼= ∆gΣk, and since Σh is
comonadic, ∆g has a right adjoint by the Dubuc adjoint triangle theorem [10].

When E has a terminal object 1 and f is the unique map X → 1, we denote by
ΣX , ∆X and ΠX the functors Σf , ∆f and Πf (when it exists) respectively. In fact since
ΣX : E/X → E takes the domain of a given arrow into X, it makes sense to speak of it
even when E doesn’t have a terminal object. An object X of a finitely complete category
E is exponentiable when the unique map X → 1 is exponentiable in the above sense (ie
when ΠX exists). A finitely complete category E is cartesian closed when all its objects
are exponentiable, and locally cartesian closed when all its morphisms are exponentiable.

Note that as right adjoints the functors ∆f and Πf preserve terminal objects. An
object h : A→ X of the slice category E/X is terminal if and only if h is an isomorphism
in E , but there is also a canonical choice of terminal object for E/X – the identity 1X .
So for the sake of convenience we shall often assume below that ∆f and Πf are chosen so
that ∆f (1Y ) = 1X and Πf (1X) = 1Y .

2.2. Distributivity pullbacks. For f : A → B in E a category with pullbacks,
∆f : E/B → E/A expresses the process of pulling back along f as a functor. One may
then ask: what basic categorical process is expressed by the functor Πf : E/A → E/B,
when f is an exponentiable map?

Let us denote by ε
(1)
f the counit of Σf a ∆f , and when f is exponentiable, by ε

(2)
f the
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counit of ∆f a Πf . The components of these counits fit into the following pullbacks:

Y X

BA

ε
(1)
f,b //

b
��
//

f

��
∆f b pb

Q P A

BR

ε
(2)
f,a // a //

f
��
//

Πfa

��
ε
(1)
f,Πf a pb (4)

Now the universal property of ε
(1)
f , as the counit of the adjunction Σf a ∆f , is equivalent

to the square on the left being a pullback as indicated. An answer to the above question
is obtained by identifying what is special about the diagram on the right in (4), that

corresponds to the universal property of ε
(2)
f as the counit of ∆f a Πf . To this end we

make

2.2.1. Definition. Let g : Z → A and f : A → B be a composable pair of morphisms
in a category E . Then a pullback around (f, g) is a diagram

X Z A

BY

p // g //

f
��
//

r

��
q pb

in which the square with boundary (gp, f, r, q) is, as indicated, a pullback. A morphism
(p, q, r)→ (p′, q′, r′) of pullbacks around (f, g) consists of s : X → X ′ and t : Y → Y ′ such
that p′s = p, qs = tq′ and r = r′s. The category of pullbacks around (f, g) is denoted
PB(f, g).

For example the pullback on the right in (4) exhibits (ε
(2)
f,a, ε

(1)
f,Πfa

,Πfa) as a pullback

around (f, a). One may easily observe directly that the universal property of ε
(2)
f,a is

equivalent to (ε
(2)
f,a, ε

(1)
f,Πfa

,Πfa) being a terminal object of PB(f, a). Thus we make

2.2.2. Definition. Let g : Z → A and f : A→ B be a composable pair of morphisms in
a category E . Then a distributivity pullback around (f, g) is a terminal object of PB(f, g).
When (p, q, r) is a distributivity pullback, we denote this diagramatically as follows:

X Z A

BY

p // g //

f
��
//

r

��
q dpb

and we say that this diagram exhibits r as a distributivity pullback of g along f .

Thus the answer to the question posed at the beginning of this section is: when
f : A → B is an exponentiable map in E a category with pullbacks, the functor Πf :
E/A→ E/B encodes the process of taking distributivity pullbacks along f .
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For any (p, q, r) ∈ PB(f, g) one has a Beck-Chevalley isomorphism as on the left

Πq∆p∆g
∼= ∆rΠf δp,q,r : ΣrΠq∆p → ΠfΣg

which when you mate it by Σr a ∆r and Σg a ∆g, gives a natural transformation δp,q,r as
on the right in the previous display. When this is an isomorphism, it expresses a type of
distributivity of “sums” over “products”, and so the following proposition explains why
we use the terminology distributivity pullback.

2.2.3. Proposition. Let f be an exponentiable map in a category E with pullbacks. Then
(p, q, r) is a distributivity pullback around (f, g) if and only if δp,q,r is an isomorphism.

Proof. Since (ε
(2)
f,g, ε

(1)
f,Πfg

,Πfg) is terminal in PB(f, g), one has unique morphisms d and
e fitting into a commutative diagram

Z

X Y

B

ED

ww

p

q //
r

''
gg

ε
(2)
f,g

ε
(1)
f,Πf g

// Πfg

77d

��

e

��

pb

in which the middle square is a pullback by the elementary properties of pullbacks. Thus
(p, q, r) is a distributivity pullback if and only if e is an isomorphism. Since the adjunctions
Σr a ∆r and Σg a ∆g are cartesian, δp,q,r is cartesian, and so it is an isomorphism if
and only if its component at 1Z ∈ E/Z is an isomorphism. Since ∆p(1Z) = 1X and
Πq(1X) = 1Y one may easily witness directly that (δp,q,r)1X = e.

When manipulating pullbacks in a general category, one uses the “elementary fact”
that given a commutative diagram of the form

A B C

FED

// //

��
////

�� ��
pb

then the front square is a pullback if and only if the composite square is. In the remainder
of this section we identify three elementary facts about distributivity pullbacks.

2.2.4. Lemma. (Composition/cancellation) Given a diagram of the form

B6

B2

B

X Y

B3

B4 B5

Z

h9 // h6 //

h7

��
//

g
//

f

��h

��h2

��h8

//
h3

�� h5

h4

��

pb

dpb

pb
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in any category with pullbacks, then the right-most pullback is a distributivity pullback
around (g, h4) if and only if the composite diagram is a distributivity pullback around
(gf, h).

Proof. Let us suppose that right-most pullback is a distributivity pullback, and that C1,
C2, k1, k2 and k3 as in

B6

B2

B

X Y

B3

B4 B5

Z

C1 C2

C3

h9 // h6 //

h7

��
//

g
//

f

��h

��h2

��h8

//
h3

�� h5

h4

��

&&

k1

k2 //

k3

		

k4

��

k5

11

,,k6

k7

$$

k8

��

k9

��

k10

��

k11

��

pb

dpb

dpb

are given such that the square with boundary (hk1, gf, k3, k2) is a pullback. Then we
must exhibit r : C1 → B6 and s : C2 → B5 unique such that h2h8r = k1, h6h9r = sk2 and
h7s = k3. Form C3, k4 and k5 by taking the pullback of k3 along g, and then k6 is unique
such that k5k6 = k2 and k4k6 = fhk1. Clearly the square with boundary (hk1, f, k4, k6)
is a pullback around (f, h). From the universal property of the left-most distributivity
pullback, one has k7 and k8 as shown unique such that k1 = h2k7, h3k7 = k8k6 and
h4k8 = k4. From the universal property of the right-most distributivity pullback, one has
k9 and k10 as shown unique such that k8 = h5k9, h6k9 = k10k5 and h7k10 = k3. Clearly
h5k9k6 = h3k7 and so by the universal property of the top-left pullback square one has
k11 as shown unique such that h8k11 = k7 and h9k11 = k9k6. Clearly h2h8k11 = k1,
h6h9k11 = k10k2 and h7k10 = k3 and so we have established the existence of maps r and s
with the required properties.

As for uniqueness, let us suppose now that r : C1 → B6 and s : C2 → B5 are given
such that h2h8r = k1, h6h9r = sk2 and h7s = k3. We must verify that r = k11 and
s = k10. Since the right-most distributivity pullback is in particular a pullback, one has
k′9 : C3 → B4 unique such that h4h5k

′
9 = k4 and h6k

′
9 = sk5. Since (h4h5, h6) are jointly

monic, and clearly h4h5h9r = h4h5k
′
9k6 and h6h9r = h6k

′
9k6, we have h9r = k′9k6. By

the universal property of the left-most distributivity pullback, it follows that h5k
′
9 = k8

and h8r = k7. Thus by the universal property of the left-most distributivity pullback, it
follows that k9 = k′9 and k10 = s. Since (h8, h9) are jointly monic, h8k11 = k7 = h8r and
h9k11 = k9k6 = h9r, we have r = k11.

Conversely, suppose that the composite diagram is a distributivity pullback around
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(gf, h), and that C1, C2, k1, k2 and k3 as in

B6

B2

B

X Y

B3

B4 B5

Z

C3 C2C1

h9 // h6 //

h7

��
//

g
//

f

��h

��h2

��h8

//
h3

�� h5

h4

��

k3

		

k2 ////k5

k4

$$

k1

��

k8

��

k7

��

k6

��

pb

dpb

pb

are given such that the square with boundary (h4k1, g, k3, k2) is a pullback. We must give
r : C1 → B4 and s : C2 → B5 unique such that k1 = h5r, h6r = sk2 and h7s = k3.
Pullback k1 along h3 to produce C3, k4 and k5. This makes the square with boundary
(hh2k4, gf, k3, k2k5) a pullback around (gf, h). Thus one has k6 and k7 as shown unique
such that h8k6 = k4, h6h9k6 = k7k2k1 and k7h7 = k3. By universal property of the right
pullback and since gh4k1 = h7k7k2, one has k8 as shown unique such that h5k8 = k1 and
h6k8 = k7k2. By the uniqueness part of the universal property of the left distributivity
pullback, it follows that h5k8 = k1, and so we have established the existence of maps r
and s with the required properties.

As for uniqueness let us suppose that we are given r : C1 → B4 and s : C2 → B5 such
that k1 = h5r, h6r = sk2 and h7s = k3. We must verify that r = k8 and s = k7. By
the universal property of the top-left pullback one has k′6 unique such that h8k

′
6 = k4 and

h9k
′
6 = rk5. By the uniqueness part of the universal property of the left distributivity

pullback, it follows that h8k6 = h8k
′
6 and h5k8 = h5r. Thus by the uniqueness part of the

universal property of the composite distributivity pullback, it follows that k6 = k′6 and
s = k7. Since (h4h5, h6) are jointly monic, it follows that r = k8.

2.2.5. Lemma. (The cube lemma). Given a diagram of the form

A2

A3

A1

B2

B1

D2

D1

C2

C3

C1

f1 //

k1

��
//

g1

��

h1

f2 //
k2��

//
g2

��h2h3

��

d1

))
d2

))

d3

55
d4

55

d5

uu

d6

ii
pbpb(1) (2)

(3)

dpb

in any category with pullbacks, in which regions (1) and (2) commute, region (3) is a
pullback around (f2, d2), the square with boundary (f1, k1, g1, h1) is a pullback and the
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bottom distributivity pullback is around (g2, d4). Then regions (1) and (2) are pullbacks if
and only if region (3) is a distributivity pullback around (f2, d2).

Proof. Let us suppose that (1) and (2) are pullbacks and p, q and r are given as in

A2

A3

A1

B2

B1

D2

D1

C2

C3

C1

f1 //

k1

��
//

g1

��

h1

f2 //
k2��

//
g2

��h2h3

��

d1

))
d2

))

d3

55
d4

55

d5

uu

d6

ii
pbpbpb pb

pb

dpb

X Y

��

p

q //

r

��s2

��

t2

��

s

ss t ++

such that the square with boundary (q, r, f2, d2p) is a pullback. Then one can use the
bottom distributivity pullback to induce s2 and t2 as shown, and then the pullbacks (1)
and (2) to induce s and t, and these clearly satisfy d1s = p, f1s = tq and r = d5t. On the
other hand given s′ : X → A1 and t′ : Y → B1 satisfying these equations, define s′2 = h1s

′

and t′2 = k1t
′. But then by the uniqueness part of the universal property of the bottom

distributivity pullback it follows that s′2 = s2 and t′2 = t2, and from the uniqueness parts
of the universal properties of the pullbacks (1) and (2), it follows that s = s′ and t = t′,
thereby verifying that s and t are unique satisfying the aforementioned equations.

For the converse suppose that (3) is a distributivity pullback. Note that (2) being a
pullback implies that (1) is by elementary properties of pullbacks, so we must show that
(2) is a pullback. To that end consider s and t as in

A2

A3

A1

B2

B1

D2

D1

C2

C3

C1

f1 //

k1

��
//

g1

��

h1

f2 //
k2��

//
g2

��h2h3

��

d1

))
d2

))

d3

55
d4

55

d5

uu

d6

ii
pbpb= =

dpb

dpb

P Z

s

��
t

��

u

��

v //

w

��

x��

y

ss
z

++

such that k2s = d6t, and then pullback s and f2 to produce P , u and v. Using the fact
that the bottom distributivity pullback is a mere pullback, one has w unique such that
d4d3w = h2u and g1w = tv. Using the inner left pullback, one has x unique such that
h3x = d3w and d2x = u. Using the distributivity pullback (3), one has y and z unique



POLYNOMIALS IN CATEGORIES WITH PULLBACKS 543

such that d1y = x, f1y = zv and s = d5z. By the uniqueness part of the universal property
of the bottom distributivity pullback, it follows that t = k1z. Thus we have constructed
z satisfying s = d5z and t = k1z. On the other hand given z′ : Z → B1 such that s = d5z

′

and t = k1z
′, one has y′ : P → A1 unique such that d2d1y = u and f1y = zv, using the

fact that the top distributivity pullback is a mere pullback. Then from the uniqueness
part of the universal property of that distributivity pullback, it follows that y = y′ and
z = z′. Thus as required z is unique satisfying s = d5z and t = k1z.

2.2.6. Lemma. (Sections of distributivity pullbacks). Let

D A B

CE

p // g //

f
��
//

r

��
q dpb

be a distributivity pullback around (f, g) in any category with pullbacks. Three maps

s1 : B → A s2 : B → D s3 : C → E

which are sections of g, gp and r respectively, and are natural in the sense that s1 = ps2

and qs2 = s3f , are determined uniquely by the either of the following: (1) the section s1;
or (2) the section s3.

Proof. Given s1 a section of g, induce s2 and s3 uniquely as shown:

D A B

CE

p // g //

f
��
//

r

��
q dpb

B

C

s1

��

f
��

1

;;

s2 //

s3 //

using the universal property of the distributivity pullback. On the other hand given the
section s3, one induces s2 using the fact that the distributivity pullback is a mere pullback,
and then put s1 = ps2.

We often assume that in a given category E with pullbacks, some choice of all pullbacks,
and of all existing distributivity pullbacks, has been fixed. Moreover we make the following
harmless assumptions, for the sake of convenience, on these choices once they have been
made. First we assume that the chosen pullback of an identity along any map is an
identity. This ensures that ∆1X = 1E/X and that ∆f (1B) = 1A for any f : A → B.
Similarly we assume that all diagrams of the form

• • •

••

1 // 1 //

f

��
//

1

��
f dpb

• • •

••

1 // g //

1
��
//

g

��
1 dpb
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are among our chosen distributivity pullbacks. This has the effect of ensuring that
Πf (1A) = 1B for any exponentiable f : A→ B, and that Π1X = 1E/X .

3. Polynomials in categories

This section contains our general theory of polynomials and polynomial functors. In
Section 3.1 we give an elementary account of the composition of polynomials, culminating
in Theorem 3.1.10, in which polynomials in a category E with pullbacks are exhibited
as the 1-cells of the bicategory PolyE . Then in Section 3.2, we study the process of
forming the associated polynomial functor, exhibiting this as the effect on 1-cells of the
homomorphism PE : PolyE → CAT in Theorem 3.2.6. At this generality, the homs of
the bicategory PolyE have pullbacks, and the hom functors of PE preserve them. This
gives the sense in which the theory of polynomial functors could be iterated, and this is
described in Section 3.3. The organisation of this section has been chosen to facilitate its
generalisation to the theory of polynomials in 2-categories, in Section 4.1.

3.1. Bicategories of polynomials. Let E be a category with pullbacks. In this
section we give a direct description of a bicategory PolyE , whose objects are those of
E , and whose one cells are polynomials in E in the following sense. For X, Y in E , a
polynomial p from X to Y in E consists of three maps

X A B Yoo p1 p2 // p3 //

such that p2 is exponentiable. Let p and q be polynomials in E from X to Y . A cartesian
morphism f : p→ q is a pair of maps (f0, f1) fitting into a commutative diagram

X

A B

Y

B′A′

��

p1

p2 //
p3

��

__

q1

q2
//

q3

??f0

��

f1

��

pb

We call f0 the 0-component of f , and f1 the 1-component of f . With composition inherited
in the evident way from E , one has a category PolyE(X, Y ) of polynomials from X to Y
and cartesian morphisms between them. These are the homs of our bicategory PolyE .

In order to describe the bicategorical composition of polynomials, we introduce the
concept of a subdivided composite of a given composable sequence of polynomials. This
enables us to give a direct description of n-ary composition for PolyE , and then to describe
the sense in which coherence for this bicategory “follows from universal properties”.

Consider a composable sequence of polynomials in E of length n, that is to say, poly-
nomials

Xi−1 Ai Bi Xi
oo pi1 pi2 // pi3 //

in E , where 0 < i ≤ n. We denote such a sequence as (pi)1≤i≤n, or more briefly as (pi)i.
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3.1.1. Definition. Let (pi)1≤i≤n be a composable sequence of polynomials of length n.
A subdivided composite over (pi)i consists of objects (Y0, ..., Yn), morphisms

q1 : Y0 → X0 q2,i : Yi−1 → Yi q3 : Yn → Xn

for 0 < i ≤ n, and morphisms

ri : Yi−1 → Ai si : Yi → Bi

for 0 < i ≤ n, such that p11r1 = q1, pn3sn = q3 and

Yi Ai+1

XiBi

ri+1 //

pi+1,1

��
//

pi3

��
si =

Yi−1 Yi

BiAi

q2i //

si
��
//

pi2

��
ri pb

For example a subdivided composite over (p1, p2, p3), that is when n = 3, assembles
into a commutative diagram like this:

• • • • • • • • • •

• • • •

oo
p11 p12

//
p13

// oo
p21 p22

//
p23

// oo
p31 p32

//
p33

//

q21 // q22 // q23 //

r1

��

s1

��

r2

��

s2

��

r3

��
s3

��

q1

��

q3

��
pb pb pb

We denote a general subdivided composite over (pi)i simply as (Y, q, r, s).

3.1.2. Definition. Let (pi)1≤i≤n be a composable sequence of polynomials of length n.
A morphism (Y, q, r, s) → (Y ′, q′, r′, s′) of subdivided composites consists of morphisms
ti : Yi → Y ′i for 0 ≤ i ≤ n, such that q1 = q′1t0, q′2iti−1 = tiq2i, q3 = q′3tn, ri = r′iti−1 and
si = s′iti. With compositions inherited from E , one has a category SdC(pi)i of subdivided
composites over (pi)i and morphisms between them.

Given a subdivided composite (Y, q, r, s) over (pi)i, note that the morphisms q2i are
exponentiable since exponentiable maps are pullback stable, and that the composite q2 :
Y0 → Yn defined as q2 = q2n...q21 is also exponentiable, since exponentiable maps are
closed under composition. Thus we make

3.1.3. Definition. The associated polynomial of a given subdivided composite (Y, q, r, s)
over (pi)i is defined to be

X0 Y0 Yn Xn
oo q1 q2 // q3 //

The process of taking associated polynomials is the object map of a functor

ass : SdC(pi)i −→ PolyE(X0, Xn).

Having made the necessary definitions, we now describe the canonical operations on
subdivided composites which give rise to the bicategorical composition of polynomials.
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Let n > 0 and (pi)1≤i≤n be a composable sequence of polynomials in E . One has evident
forgetful functors res0 and resn as in

SdC(pi)1<i≤n SdC(pi)1≤i≤n SdC(pi)1≤i<n
oo res0 resn //

(−)·p1

// oo
pn·(−)

⊥ ⊥

and we now give a description of the right adjoints of these forgetful functors.
For (Y, q, r, s) a subdivided composite over (pi)1≤i<n, we construct the subdivided

composite
pn · (Y, q, r, s) := (pn · Y, pn · q, pn · r, pn · s)

over (pi)1≤i≤n as follows. First we form the diagram on the left

Xn−1 An Bn Xn

Yn−1 C

(pn · Y )n−1 (pn · Y )n

oo
pn1 pn2

//
pn3

//

oo

q3
�� ��

��

(pn·q)2,n//

��

(pn·q)3

��

εn−1

��
dpb

pb =

=

(pn · Y )n−k−1 (pn · Y )n−k

Yn−kYn−k−1

(pn·q)2,n−k//

εn−k

��
//

q2,n−k

��

εn−k−1 pb

and then for 1 ≤ k < n we form pullbacks as on the right in the previous display. Finally
we define

(pn · q)1 = q1ε0 (pn · r)i = riεi−1 (pn · s)i = siεi.

The εi are the components of a morphism

ε(Y,q,r,s) : resn(pn · (Y, q, r, s)) −→ (Y, q, r, s)

of subdivided composites. The n = 4 case of this construction is depicted in the diagram:

• • • • • • • • • •

• • • •

• • •

•
• •

oo
p11 p12

//
p13

// oo
p21 p22

//
p23

// oo
p31 p32

//
p33

// oo
p41 p42

//
p43

//

q21 // q22 // q23 //

• • •

r1
��

s1
��

r2
��

s2
��

r3
��

s3
��

q1
��

q3
��

ww

��

ww

(p4·q)24//

��

(p4·q)3

��

ε0
��

ε1
zz

ε2
��

(p4·q)21 // (p4·q)22 // (p4·q)23 //

pb pb pb

pb pb pb

pb dpb

3.1.4. Lemma. The morphisms ε(Y,q,r,s) just described are the components of the counit
of an adjunction resn a pn · (−).

Proof. Let (Y ′, q′, r′, s′) be a subdivided composite over (pi)1≤i≤n, then for t as in

resn(pn · (Y, q, r, s)) (Y, q, r, s)

resn(Y ′, q′, r′, s′)

ε(Y,q,r,s) //
77

tresn(t′)

gg
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we must give t′ unique so that the above triangle commutes. The following commutative
diagram assembles this given data in the case n = 4.

• • • • • • • • • •

• • • •

• • •

•
• •

oo
p11 p12

//
p13

// oo
p21 p22

//
p23

// oo
p31 p32

//
p33

// oo
p41 p42

//
p43

//

q21 // q22 // q23 //

• • •

r1
��

s1
��

r2
��

s2
��

r3
��

s3
��

q1
��

q3
��

ww

��

ww

(p4·q)24//

��

(p4·q)3

��

ε0
��

ε1
zz

ε2
��

(p4·q)21 // (p4·q)22 // (p4·q)23 //

pb pb pb

pb pb pb

pb dpb

• • • • •q′21 //
q′22 //

q′23 //
q′24 //

t0

��
t1


t2
��

t3
��

q′3



r′4

��

s′4

��

Since qn−1tn−1 = pn1r
′
n one induces u : Y ′n−1 → C using the defining pullback of C, and

then one induces t′n−1 : Y ′n−1 → Yn−1 and t′n : Y ′n → Yn from the maps u and s′n using the
distributivity pullback. The rest of the t′i are induced inductively as follows. For 0 < i < n
given t′i : Y ′i → Yi, one induces t′i−1 using the maps ti−1 and t′i and the pullback which
defines (pn ·Y )i−1. By construction the t′i are the components of the required unique map
t′.

For (Y, q, r, s) a subdivided composite over (pi)1<i≤n, we construct the subdivided
composite

(Y, q, r, s) · p1 := (Y · p1, q · p1, r · p1, s · p1)

over (pi)1≤i≤n as follows. First one takes the pullback on the left, then for 0 < i < n the
distributivity pullbacks as in the middle,

C02 Y0

X1B1

f0 //

q1
��

//
p13

��
g0 pb

Ci1 Ci2

YiYi−1

Ci−1,2

q′2,i //

fi

��
//

q2,i

��
fi−1

��
gi

dpb

(Y · p1)n−i−1 (Y · p1)n−i

Cn−i−1,2Cn−i−1,1

(q·p1)2,n−i //

g′′i��
//

q′2,n−i−1

��
g′i+1 pb

and then for 0 < i < n one takes the pullbacks as on the right in the previous display,
setting (q · p1)2,n = q′2,n−1, g′′1 = gn−1, g′′i+1 = gn−i+1g

′
i+1 for i+ 1 < n, g′′n−1 = g0g1g

′
n−1 and

q′02 = p12. Finally one defines

(q · p1)1 = p11g
′
n (q · p1)3 = q3fn−1.
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In the case n = 4 one obtains a diagram like this:

• • • • • • • • • • • • •

• • • •

oo
p11 p12

//
p13

// oo
p21 p22

//
p23

// oo
p31 p32

//
p33

// oo
p41 p42

//
p43

//

q21 // q22 // q23 //

r1
��

s1
��

r2
��

s2
��

r3
��

s3
��

q1
��

q3
��

pb pb pb

•

•

•

•

•

•

•

• ••

g′4

��

g′3

��

g1��

f0��

g′2��

g2��

f1

��

g3=g′′1��

f2

��

f3

��

(q·p1)21 // (q·p1)22 // (q·p1)23 // (q·p1)24 //

q′22
//

q′21
//

g0

��

(q·p1)1

��

(q·p1)3

��
pb

pb

dpb

dpb

dpb

pb

pb

The equations ε′0 = f0g1g
′
3, ε′n−1 = fn−1 and ε′i = fig

′′
n−i−1 for 0 < i < n − 1, define the

components of the morphism

ε′Y,q,r,s : res0((Y, q, r, s) · p1) −→ (Y, q, r, s).

3.1.5. Lemma. The morphisms ε′Y,q,r,s just described are the components of the counit of
an adjunction res0 a (−) · p1.

Proof. Given (Y, q, r, s) in SdC(pi)1≤i≤n and t as in

res0((Y, q, r, s) · p1) (Y, q, r, s)

res0(Y ′, q′, r′, s′)

ε′Y,q,r,s //
55

tres0(t′)

ii

we must exhibit t′ as shown unique so that the above diagram commutes. In the case
n = 4 the data (Y ′, q′, r′, s′) and t fit into the following diagram:

• • • • • • • • • • • • •

• • • •

oo
p11 p12

//
p13

// oo
p21 p22

//
p23

// oo
p31 p32

//
p33

// oo
p41 p42

//
p43

//

q21 // q22 // q23 //

r1
��

s1
��

r2
��

s2
��

r3
��

s3
��

q1
��

q3
��

pb pb pb

•

•

•

•

•

•

•

• ••

��

��

��

��

��

��

��

��

�� ��

(q·p1)21 // (q·p1)22 // (q·p1)23 // (q·p1)24 //

//

//

���� ��
pb

pb

dpb

dpb

dpb

pb

pb

• • • • •

��

q′1

q′21 //
q′22 //

q′23 //
q′24 //

q′3



t1

��

t2

��

t3

��

t4

��

r′1





s′1

��
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Using the pullback that defines C02 and the maps s′1 and t1, one induces Y ′1 → C02.
Using the distributivity pullbacks one induces successively the morphisms Y ′i → Ci1 and
Y ′i+1 → Ci2 for 0 < i < n. In the case i = n − 1 we denote these maps as t′n−1 and t′n
respectively. The components t′i for 0 ≤ i < n − 1 are then induced from this data and
the pullbacks that define the objects (Y · p1)i. By construction the t′i are the components
of the required unique map t′.

3.1.6. Proposition. For any composable sequence (pi)1≤i≤n of polynomials in a category
E with pullbacks, the category SdC(pi)i has a terminal object.

Proof. We proceed by induction on n. In the case n = 0, observe that a subdivided
composite consists just of the data Y0, q1 : Y0 → X0 and q3 : Y0 → X0, and that SdC() is
the category SpanE(X0, X0) of endospans of X0. The identity endospan is terminal. For
the inductive step apply either of the functors pn · (−) or (−) · p1 which as right adjoints,
preserve terminal objects.

3.1.7. Definition. Let E be a category with pullbacks. A composite of a composable
sequence (pi)1≤i≤n of polynomials in E , is defined to be the associated polynomial of a
terminal object in the category SdC(pi)i. When such a composite has been chosen, it is
denoted as pn ◦ ... ◦ p1.

Let us consider now some degenerate cases of Definition 3.1.7.

• n = 0: Choosing identity spans as terminal nullary subdivided composites (see the
proof of Proposition 3.1.6), nullary composition of polynomials gives polynomials
whose constituent maps are all identities. That is,

X X X Xoo 1X 1X // 1X //

is the “identity polynomial on X” as one would hope.

• n = 1: One may identify SdC(p) as the slice PolyE(X0, X1)/p, and thus choose 1p
as the terminal unary subdivided composite over (p). Thus the unary composite of
a given polynomial p is just p.

• n = 2: applying p2 ·(−) to p1, or (−) ·p1 to p2, gives the same subdivided composite,
namely

• • • • • • •

•

• ••

oo
p11 p12

//
p13

// oo
p21 p22

//
p23

//

��

{{ ##



// //

���� ��

pb dpb

pb

which is terminal by the case n = 1 and since the functors p2 · (−) and (−) · p1,
as right adjoints, preserve terminal objects. Thus the associated composite of the
above is the binary composite p2 ◦ p1, and this agrees with the binary composition
of polynomials given in [11].
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3.1.8. Lemma. Let n > 0 and (pi)1≤i≤n be a composable sequence of polynomials in a
category E with pullbacks. Then one has canonical isomorphisms

SdC(pi)1≤i<n PolyE(X0, Xn−1)

PolyE(X0, Xn)SdC(pi)1≤i≤n

ass //

pn◦(−)
��

//
ass

��
pn·(−) ∼=

SdC(pi)1<i≤n PolyE(X1, Xn)

PolyE(X0, Xn)SdC(pi)1≤i≤n

ass //

(−)◦p1
��

//
ass

��
(−)·p1 ∼=

Proof. The canonical isomorphism on the left follows from the definitions and the el-
ementary properties of pullbacks. The canonical isomorphism on the right follows from
the definitions, and iterated application of Lemma 2.2.4.

In order to make explicit the horizontal composition of 2-cells in PolyE we consider a
horizontally composable sequence of morphisms of polynomials of length n, that is to say
diagrams

Xi−1

Ai Bi

Xi

B′iA′i

ww
pi1

pi2 //
pi3

''
77

qi3
//

qi2

qi1

gg
f0i

��

f1i

��

pb

in E , for 0 < i ≤ n. We denote such a sequence as (f0i, f1i)i : (pi)i → (qi)i since it
is a morphism of the category

∏n
i=1 PolyE(Xi−1, Xi). The process of vertically stacking

subdivided composites and their morphisms on top of (f0i, f1i)i gives a functor

SdC(f0i, f1i)i : SdC(pi)i −→ SdC(qi)i.

The assignation (f0i, f1i)i 7→ SdC(f0i, f1i)i is functorial, and natural in the evident sense
with respect to the restriction and associated polynomial functors defined above. For
any choice t1 and t2 of terminal object of SdC(pi)i and SdC(qi)i respectively, one has
composites

pn ◦ ... ◦ p1 = ass(t1) qn ◦ ... ◦ q1 = ass(t2)

by Definition 3.1.7, and a unique morphism ut1,t2 : SdC(f0i, f1i)i(t1)→ t2.

3.1.9. Definition. Let E be a category with pullbacks and (f0i, f1i)i : (pi)i → (qi)i be
a horizontally composable sequence of polynomial morphisms of length n. Then in the
context just described, the 2-cell

fn ◦ ... ◦ f1 : pn ◦ ... ◦ p1 −→ qn ◦ ... ◦ q1

is defined to be ass(ut1,t2).
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In the case n = 2 the original data and the chosen terminal subdivided composites
comprise the solid parts of the diagram,

•
• •

•
• •

••
••

•
••

• ww
//

'' ww

//

''
77

//

gg77

//

gg f01

��
f11

��
f02

��
f12

��
pb pb

•

• ••
��

ww ''

//

��

����

��

//

pb

pb dpb

•

• ••
OO

gg 77

//

HH

@@^^

VV

//

pb

pb dpb

φ1

��
φ2

		

φ3

��

φ4

��

and one then induces φ1 using the pullback defining its codomain, φ2 and φ3 are then
induced by the universal property of the bottom distributivity pullback, and finally φ4

is induced by the bottom pullback. One verifies easily that (φ4, φ2, φ3) a morphism of
subdivided composites, thus it is ut1,t2 , and so by Definition 3.1.9 the composite f2 ◦ f1 is
given by (φ4, φ3).

3.1.10. Theorem. Let E be a category with pullbacks. One has a bicategory PolyE , whose
objects are those of E, whose hom from X to Y is PolyE(X, Y ), horizontal composition
of 1-cells is given by Definition 3.1.7, and horizontal composition of 2-cells is given by
Definition 3.1.9.

Proof. By induction on n, using the fact that the functors pn · (−) and (−) · p1 pre-
serve terminal objects, and Lemma 3.1.8, it follows that any iterated binary composite
of polynomials of length n, is a composite in the sense of Definition 3.1.7. That is, such
an iterated composite is the associated polynomial of a terminal subdivided polynomial,
which arises from the composable sequence of polynomials that participates in the given
iterated binary composite. Hence between any two alternative brackettings of a given
composite, there is a unique isomorphism of their underlying subdivided composites, giv-
ing rise to a “coherence” isomorphism of the composites themselves upon application of
“ass”. Any diagram of such coherence isomorphisms must commute, since it is the image
by the appropriate “ass” functor, of a diagram whose vertices are all terminal subdivided
composites. Thanks to our conventions regarding chosen pullbacks and chosen distribu-
tivity pullbacks of identities described in Section 2.2, the unit coherence isomorphisms
here turn out to be identities.

The functoriality of horizontal composition comes from the functoriality of (f0i, f1i)i 7→
SdC(f0i, f1i)i and the naturality of SdC(f0i, f1i)i with respect to the “ass” functors. It
remains to verify the naturality of the coherence isomorphisms identified in the previous
paragraph. To this end we suppose that a horizontally composable sequence (f0i, f1i)i :
(pi)i → (qi)i of morphisms of polynomials of length n, and binary brackettings β1 and β2

of n things is given. Let us denote by tβ1(pi)i, tβ2(pi)i, tβ1(qi)i and tβ2(qi)i the terminal
subdivided composites witnessing the iterated binary composites of (pi)i and (qi)i via the
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given brackettings. In SdC(qi)i one has the diagram

SdC(f0i, f1i)i(tβ1(pi)i) SdC(f0i, f1i)i(tβ2(pi)i)

tβ2(qi)itβ1(qi)i

//

��//��

oo

oo

in which the top horizontal arrows are the effect of applying SdC(f0i, f1i)i to the unique
morphisms, and the other morphisms are determined uniquely and both squares commute
because tβ1(qi)i and tβ2(qi)i are terminal. Applying ass : SdC(qi)i → PolyE(X0, Xn) to
this diagram gives the squares witnessing the naturality of the coherence morphisms.

A span in E as on the left

X Z Yoo s t // X Z Z Yoo s 1Z // t //

may be identified as a polynomial in which the middle map is an identity as on the right.
Polynomial composition of spans coincides exactly with span composition, giving us a
strict inclusion

SpanE ↪→ PolyE

of bicategories which is the identity on objects and locally fully faithful. For a given map
f : X → Y in E , we denote by f • : X → Y and f• : Y → X the polynomials

X X X Yoo 1 1 // f // Y X X Xoo f 1 // 1 //

respectively. These are spans, it is well known that one has f • a f• and that this is part
of the basic data of the proarrow equipment (E ,SpanE) [36, 37]. By the above strict
inclusion, this extends to another proarrow equipment (E ,PolyE), and all this at the
generality of a category E with pullbacks. It is worth noting that polynomial composites
of the form f • ◦ p and q ◦ g• are particularly easy, these being

• • • •oo p1 p2 // fp3 // • • • •oo gq1 q2 // q3 //

respectively.
The homs of PolyE interact well with the slices of E . For all X and Y one has obvious

forgetful functors

E/X PolyE(X, Y ) E/Yoo
lX,Y rX,Y //

and we refer to these as the left and right projections of the homs of PolyE . From the
above descriptions of composites of the form f • ◦ p and q ◦ g•, one obtains immediately
the sense in which these forgetful functors are natural.

3.1.11. Lemma. For all f : Y → Z and g : X → W one has

ΣglX,Y = lW,Y ((−) ◦ g•) ΣfrX,Y = rX,Z(f • ◦ (−))
lX,Y = lX,Z(f • ◦ (−)) rX,Y = rW,Y ((−) ◦ g•)
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3.2. Polynomial functors. Let E be a category with pullbacks. In this section we
define a homomorphism of bicategories

PE : PolyE −→ CAT X 7→ E/X

with object map as indicated, in Theorem 3.2.6. Given a polynomial p : X → Y in E ,
the functor PE(p) : E/X → E/Y is defined to be the composite Σp3Πp2∆p1 , which for the
sake of brevity, will also be denoted as p(−) : E/X → E/Y . In more elementary terms the
effect of p(−) on an object x : C → X of E/X is described by the following commutative
diagram:

X A B Y

C C2

C3 C4

oo
p1 p2

//
p3

//

oo

x �� ��

��

//

��

p(x)

��

dpb

pb

Similarly one may, by exploiting the universal property of the pullback and distributivity
pullback in this description, induce the maps which provide the arrow map of p(−). These
explicit descriptions together with Lemma 3.1.11 enables us to catalogue all the ways one
can use the composition of PolyE to describe the functor p(−), and we record this in

3.2.1. Lemma. Let p : X → Y be a polynomial in E.

1. Given x : C → X in E/X, one has

p(x) = rZ,Y (p ◦ x• ◦ g•)

for all Z and g : C → Z.

2. Given x1 : C1 → X, x2 : C2 → X and h : C1 → C2 over X, one has

p(h) = rZ,Y (p ◦ h′ ◦ g•)

for all Z and g : C2 → Z, where h′ : x•2 → x•1h• is the mate of the identity x•2h
• = x•1

via h• a h•.

To prove Theorem 3.2.6 we exhibit an analogous result, Lemma 3.2.5, giving all the
ways of expressing PE ’s 2-cell map in terms of composition in PolyE . Preliminary to
this result we reconcile two ways of describing PE ’s 2-cell map – that given in [11] versus
a direct description in terms of morphisms of induced from pullbacks and distributivity
pullbacks, in Lemma 3.2.4. Lemmas 3.2.2 and 3.2.3 are preliminary to Lemma 3.2.4. The
reader not interested in such technical details is encouraged to skip ahead to the statement
of Theorem 3.2.6 below.
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The description of PE ’s 2-cell map given in [11], is to associate to a given cartesian
morphism f : p → q between polynomials from X to Y , the following natural transfor-
mation

E/X

E/A E/B

E/Y

E/B′E/A′

∆p1
<<

Πp2 //
Σp3

""

∆q1 ""

Πq2

//
Σq3

<<
∆f0

OO

∆f1

OO

∼= ∼= ��

(5)

in which the isomorphism in the middle is a Beck-Chevalley isomorphism, and Σp3∆f1 →
Σq3 is the mate of the identity via Σf1 a ∆f1 . The advantage of this description is that
the functoriality of the resulting hom functor

(PE)X,Y : PolyE(X, Y ) −→ CAT(E/X, E/Y )

is evident. We will show that the component at x : C → X of (PE)X,Y (f) is given by the
map f4,x, constructed in

X

A B

Y

A′ B′

C

C2

C3 C4

C ′2

C ′3 C ′4

uu
p1

p2 //
p3

))
ii

q1
q2

// q3

55
{{

uu

//

p(x)

��
cc

ii

//

q(x)

AAx //

))

55

��

OO

f0

��
f1

��

f2,x

��

f3,x

��

f4,x

��

pb

pb

dpb

dpb

pb

(6)

To construct this diagram one induces f2,x using f0 and the bottom pullback, and then
it follows that the square (C2, A,A

′, C ′2) is a pullback. One can then induce f3,x and
f4,x using the bottom distributivity pullback. Lemma 2.2.5 ensures that (C4, B,B

′, C ′4)
is a pullback, and elementary properties of pullbacks ensure that (C2, C3, C

′
3, C

′
2) and

(C3, C4, C
′
4, C

′
3) are also pullbacks.

Our next task is to explain why (6) really does describe the components of (5). This
verification begins by unpacking, for a given commuting square as shown on the right

A B

DC

f //

k

��
//

g

��
h

E/A E/B

E/DE/C

Σf //
OO

∆k

//
Σg

∆h

OO
α +3

E/A E/B

E/DE/C

oo
∆f

Πk

��

∆g

oo
��

Πh
ks β
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the left Beck-Chevalley cell α, and when h and k are exponentiable, the right Beck-
Chevalley cell β, in elementary terms. Since α is obtained by taking the mate of the
identity ΣgΣh = ΣkΣf via the adjunctions Σh a ∆h and Σk a ∆k, it follows that α is

uniquely determined by the equation Σkε
(1)
f = (ε

(1)
g Σk)(Σgα). On the other hand one has

the commutative diagram
A3

A2 A B

DCC2

∆hx // f //

k

��
//

g
//

x

��

ε
(1)
h,x

αx

\\ ∆k(gx)

!!

ε
(1)
k,gx

��
h

��
pb

(7)

and the above equation, for the component x, is witnessed by the commutativity of the
bottom triangle. Thus

3.2.2. Lemma. The components of α are induced as in (7).

Moreover we can see directly from (7) that if the original square is a pullback, then
α is invertible, and the converse follows by considering the case x = 1C . The right Beck-
Chevalley cell β may be obtained by taking the mate of ∆f∆k

∼= ∆h∆g via ∆h a Πh and
∆k a Πk. Thus it is uniquely determined by the commutativity of

∆h∆gΠk ∆hΠh∆f

∆f∆f∆kΠk

∆hβ //

ε
(2)
h ∆f��

//
∆f ε

(2)
k

��
coh.Πk

(8)

whereas inside E for all B2 and x : B2 → B we have

A B

DCC3

A3

A2 B2

B3

D2C2

A4

f
//

k
��
//g��

h

''
77

��
//44

��

++ //

//
ww

xww

��

gg

//

��

βx

??

pb

pb

pb

dpb dpb

(9)

constructed as follows. Take the distributivity pullback of x along k and then pullback
the result along g. Pullback x along f and then take the distributivity pullback of the
result along h. Then form the top pullback and induce the morphism A4 → C2. By
the elementary properties of pullbacks, it follows that the squares (A4, B3, D2, C2) and
(A4, A, C,C2) are pullbacks. From this last we induce the dotted arrows using the left
distributivity pullback.
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3.2.3. Lemma. The components of β are induced as in (9).

Proof. Note that the square (A4, A3, C3, C2) is also a pullback, and so one can identify
the commuting triangle (A4, A3, A2) with (8), once one has understood that A4 → A2 is
the (appropriate component of) the lower composite in (8).

From this construction and Lemma 2.2.5 one may witness directly that if the original
square is a pullback, then β is invertible, and the converse is easily witnessed by consid-
ering the case x = 1B. With these details sorted out we can now proceed to the proof
of

3.2.4. Lemma. The component at x : C → X of the natural transformation described in
(5) is the morphism f4,x described in (6).

Proof. The proof consists of unpacking the definition of (PE)X,Y (f)x with reference to
the diagram (6), keeping track of the canonical isomorphisms that participate in the
definition. All of this may be witnessed in

X

A B

Y

A′ B′

C

C2

C3 C4

C ′2

C ′3 C ′4

ww

//

''
gg

//

77
��

ww

//

��

__

gg

//

MM
//

''

77

��

OO

�� ��

��

f3,x

��

f4,x

��

D1



,,

ww

D2 D3

xx

//

��
φ ��

�� }}

D4

��

α

��

D5
rr



11
γYY βkk

in which the solid arrows appeared already in (6), and the dotted arrows are constructed
as follows. Form D1 by pulling back f0 and C ′2 → A′, then D1 → C is the composite for
the triangle (D1, C

′
2, C). The form D2, D3 and D4 by taking the distributivity pullback

of D1 → A along p2. Form D4 by pulling back f1 and C ′4 → B′. The construction of the
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rest of the data proceeds in the same way as for (9) as shown in

A A′

B′BD3

D2

D1 C ′2

C ′3

C ′4D4

D5

//

��
//

��

))
55

��
//33

��

,, //

//
uu

uu

��

ii

//

γ
""

β
<<

pb

pb

pb

dpb dpb

Thus the arrow labelled as β is by Lemma 9 the right Beck-Chevalley isomorphism, and
γ is also invertible. Clearly φ is an isomorphism witnessing the pseudo-functoriality of
∆(−), and considering (7) for the square

B Y

YB′

p3 //

1Y
��
//

q3

��
f0

the arrow labelled α is evidently the appropriate component of the left Beck-Chevalley
cell by Lemma 3.2.2. Thus (PE)X,Y (f)x is by definition the composite

C4 D3 D4 C ′4// β−1
// α //

and to finish the proof we must show that this composite is f4,x. Provisionally let us
denote by ξ this composite, and by ζ the composite

C3 D2 D5 C ′3.// γ−1
// //

Observe that the squares

C2 C3

C ′3C ′2

oo

ζ
��

oo
��

C3 C4

C ′4C ′3

//

ξ
��
//

��
ζ

C4 B

B′C ′4

//

f1

��
//

��
ξ

are commutative, and so by the uniqueness aspect of the universal property of the bottom
distributivity pullback, it follows that ζ = f3,x and ξ = f4,x.

The importance of this alternative description is that it can, in various ways, be written
in terms of composition in the bicategory PolyE whose composition and coherence we
understand. These ways are described in the following result, which follows immediately
from Lemma 3.1.11 and Lemma 3.2.4.
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3.2.5. Lemma. Let p and q : X → Y be polynomials in E and f : p → q be a cartesian
morphism between them. Then given x : C → X in E/X, one has

PE(f)x = f4,x = rZ,Y (p ◦ x• ◦ g•)

for all Z and g : C → Z.

The fact that the one and 2-cell maps of PE have, by Lemmas 3.2.1 and 3.2.5, been
described in terms of the bicategory structure of PolyE , is the reason why they give a
homomorphism of bicategories. We expand on this further in the proof of

3.2.6. Theorem. Let E be a category with pullbacks. With the object map X 7→ E/X,
arrow map p 7→ Σp3Πp2∆p1, and 2-cell map depicted in (5), one has a homomorphism

PE : PolyE −→ CAT

of bicategories.

Proof. It remains to exhibit the coherence isomorphisms and verify the coherence axioms.
We assume a canonical choice of all pullbacks and existing distributivity pullbacks as
explained at the end of Section 2.2. In particular this implies that identities in PolyE
are strict, making PE(1X) = 1E/X for all X ∈ E by Lemma 3.2.1. Let p : X → Y and
q : Y → Z be polynomials. For x : C → X in E/X one has the associativity isomorphism

α−1
q,p,x• : q ◦ (p ◦ x•) ∼= (q ◦ p) ◦ x•

and so the component of the coherence isomorphism

πq,p,x : PE(q)PE(p)(x) ∼= PE(q ◦ p)(x)

is defined to be lC,Z(α−1
q,p,x•). Naturality in q, p and x is clear by definition. Note that by

Lemma 3.1.11 there are many other descriptions of this same component, namely

πq,p,x = rD,Z(α−1
q,p,x• ◦ g•)

for any D and g : C → D. Using this and Lemmas 3.2.1 and 3.2.5, one can exhibit
any component of any bicategorical homomorphism coherence diagram, as the image of
a diagram of coherence isomorphisms in PolyE , by a right projection of one of PolyE ’s
homs. By Theorem 3.1.10 all such diagrams commute.

3.2.7. Definition. A polynomial functor over E is a functor which is isomorphic to
a composite of functors of the form Σf , ∆g and Πh, where f and g can be arbitrary
morphisms of E , and h can be an exponentiable morphism of E .

It follows from Theorem 3.2.6 that a functor between slices of E is polynomial if and
only if it is in the essential image of PE .
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3.2.8. Definition. Let X ∈ E . A monad T on E/X is a polynomial monad if it is
isomorphic to a monad of the form PE(p), where p is a monad on X in PolyE . A
morphism φ : S → T of monads on E/X is a polynomial monad morphism if φ factors as

S PE(q) PE(p) T
ι1 // PE(φ′) // ι2 //

where ι1 and ι2 are isomorphisms of monads, and φ′ : q → p is a morphism of monads on
X in PolyE .

We conclude this section by observing that the hom functors of PE are faithful and
conservative.

3.2.9. Proposition. For any category E with pullbacks and objects X, Y ∈ E, the hom
functor (PE)X,Y is faithful and conservative.

Proof. Considering the instance of (6) in which x = 1X , it is clear that f4,1X = f1,
and so by Lemma 3.2.4 (PE)X,Y (f) uniquely determines f1. Let us now consider the case
x = q1. In that case C = A′ and the morphisms C ′2 → C and C ′2 → A′, namely the
projections of the pullback defining C ′2, have a common section s1 : A′ → C ′2. Applying
Lemma 2.2.6 to the bottom distributivity pullback, one obtains the sections s2 : A′ → C ′3
and s3 : B′ → C ′4 satisfying the naturality conditions of that lemma. Since the square
(C4, B,B

′, C ′4) is a pullback, one induces unique s4 : B → C4 which is a section of the
given map C4 → B and satisfies f4,xs4 = s3f1. Applying Lemma 2.2.6, this time to the
top distributivity pullback, one induces the natural sections s5 : A→ C3 and s6 : A→ C2.
From the naturality conditions of the sections so constructed and the commutativities in
the original general diagram (6), it follows easily that f0 is equal to the composite

A C2 C = A′,
s6 // //

which by construction and Lemma 3.2.4, is determined uniquely by (PE)X,Y (f), and so
(PE)X,Y is faithful. If (PE)X,Y (f) is invertible, then f1, which we saw is the component
at 1X of this natural transformation, must also be invertible. Since f0 is a pullback along
q2 of f1, f0 is also invertible, and so (PE)X,Y is conservative.

Example 2.10 of [11] shows that (PE)X,Y is not full in general, and this is discussed
further in Remark 3.3.4.

3.3. Enrichment over CATpb. Recall from [6] that the category CATpb of cate-
gories with pullbacks and pullback preserving functors is cartesian closed. The product in
CATpb is as in CAT, and the internal hom [X, Y ] is the category of pullback preserving
functors X → Y and cartesian transformations between them. A CATpb-bicategory is a
bicategory B whose homs have pullbacks and whose compositions

compX,Y,Z : B(Y, Z)× B(X, Y )→ B(X,Z)
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preserve them. The basic example is CATpb itself. A homomorphism F : B → C
of CATpb-bicategories is a homomorphism of their underlying bicategories whose hom
functors preserve pullbacks. The point of this section is to show that for any category E
with pullbacks, the homomorphism PE is in fact a homomorphism of CATpb-bicategories.

For all f : A → B in a category E with pullbacks, it is easy to witness directly that
the adjunction Σf a ∆f lives in CATpb. So polynomial functors preserve pullbacks, and
the diagram (5) may be regarded as living in CATpb. In other words, PE sends 2-cells
in PolyE to cartesian transformations. Thus the hom maps of PE may be regarded as
landing in the homs of CATpb, that is, one can write

(PE)X,Y : PolyE(X, Y )→ CATpb(E/X, E/Y ).

In fact these functors themselves live in CATpb. To see this we first we note that

3.3.1. Lemma. For any category E with pullbacks and objects X, Y ∈ E, the category
PolyE(X, Y ) has pullbacks, and a commutative square in PolyE(X, Y ) is a pullback if
and only if its 1-component is a pullback in E.

Proof. One has a canonical inclusion

PolyE(X, Y ) −→ E←→→

of PolyE(X, Y ) into the functor category. In general, given a category C, an arrow α in
C, and a square

P B

CA

q //

g
��
//

f

��
p

in [C, E ], then if the naturality squares of f and g at α are pullbacks, then so are those for
p and q, by the elementary properties of pullback squares. Since exponentiable maps are
pullback stable, and one may choose pullbacks in E so that identity arrows are pullback
stable, it follows that pullbacks in PolyE(X, Y ) exist and are formed as in E←→→. Thus
it follows in particular that a commutative square in PolyE(X, Y ) as in the statement
is a pullback if and only if its 0 and 1-components are pullbacks in E . But from the
elementary properties of pullbacks, if the 1-component square is a pullback then so is the
0-component.

and so one has

3.3.2. Proposition. For any category E with pullbacks and objects X, Y ∈ E, the functor
(PE)X,Y preserves and reflects pullbacks.

Proof. Since by Proposition 3.2.9 (PE)X,Y is conservative, it suffices to show that it pre-
serves pullbacks. But by the elementary properties of pullbacks, a square in CATpb(E/X, E/Y )
is a pullback if and only if its component at 1X is a pullback. Since by Lemma 3.2.4 the
component at 1X of (PE)X,Y (f) is just f1, the result follows from Lemma 3.3.1.
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3.3.3. Theorem. Let E be a category with pullbacks. Then PolyE is a CATpb-bicategory
and

PE : PolyE −→ CATpb

is a homomorphism of CATpb-bicategories.

Proof. By Proposition 3.3.2 it suffices to show that the composition functors of PolyE
preserve pullbacks. One has for each X, Y, Z ∈ E , an isomorphism

PolyE(Y, Z)×PolyE(X, Y ) PolyE(X,Z)

CATpb(E/X, E/Z)CATpb(E/Y, E/Z)×CATpb(E/X, E/Y )

◦ //

(PE)X,Z
��

//
◦

��
(PE)Y,Z×(PE)X,Y ∼=

The vertical functors preserve and reflect pullbacks by Proposition 3.3.2, the bottom one
preserves pullbacks since CATpb is a CATpb-bicategory by cartesian closedness, and so
the composition functor for PolyE preserves pullbacks as required.

3.3.4. Remark. In the case where E is locally cartesian closed, the work of Gambino
and Kock [11] tells us more. In that case E is in particular a monoidal category via its
cartesian product, and it acts as a monoidal category on its slices. Moreover polynomial
functors over such E acquire a canonical strength. Then by Proposition 2.9 of [11], the
image of PE consists of the slices of E , polynomial functors over E and strong cartesian
transformations between them.

3.3.5. Remark. Since for any category E with pullbacks the homs of PolyE also have
pullbacks, the above result can be applied to any of those homs in place of E , giving
a sense in which the theory of polynomials may be iterated. Such iteration is implicit
in unpublished work of Martin Hyland on fibrations, type theory and the Dialectica
interpretation. Building on this, the thesis [31] of von Glehn provides polynomial models
of type theory, and shows the possibility of a more sophisticated kind of iteration.

We conclude this section by describing the sense in which the hom functors of PE are
fibrations. First we require some preliminary definitions. Given a functor F : A → B, a
morphism f : X → Y of A is F -cartesian when for all g : Z → X and h : FZ → FX such
that F (g)h = Ff , there exists a unique k : Z → X such that Fk = h and fk = g. When
F is a fibration in the bicategorical sense of Street [29], we say that it is a bi-fibration.
This property on F can be formulated in elementary terms as follows: every f : B → FA
factors as

B FC FB
g // Fh//

where h is F -cartesian and g is an isomorphism.

3.3.6. Proposition. Suppose that E is a category with finite limits, and let X and Y ∈ E.
Then

(PE)X,Y : PolyE(X, Y ) −→ CATpb(E/X, E/Y )

is a bi-fibration, and every morphism of PolyE(X, Y ) is (PE)X,Y -cartesian.
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Proof. We begin by verifying that (φ0, φ1) : (p1, p2, p3)→ (q1, q2, q3) as in

X

E1 B1

Y

B2E2

ww
p1

p2 //
p3

''
77

q3
//

q2

q1

gg φ0

��

φ1

��

pb

is (PE)X,Y -cartesian. Denoting by 1 the terminal object of E , note that P(φ0, φ1) =
φ1. Given (ψ0, ψ1) : (r1, r2, r3) → (q1, q2, q3), and a cartesian natural transformation
α : PE(r1, r2, r3) → PE(q1, q2, q3) such that PE(φ0, φ1)α = PE(ψ0, ψ1), we must exhibit
(β0, β1) : (r1, r2, r3) → (p1, p2, p3) unique such that PE(β0, β1) = α and (φ0, φ1)(β0, β1) =
(ψ0, ψ1) in PolyE . But the first of these equations forces β1 = α1, and the second equation
forces β0 to be induced as in

X

E1 B1

Y

B2E2

ww

//

''
77

q3
//

q2

q1

gg φ0

��

φ1

��

pb

E3 B3

��

r3

r2 //

r3

��

β0

��

ψ0

��

α1

��

ψ1

��

The statement that (PE)X,Y is a bi-fibration is a reformulation of the fact that if P :
E/X → E/Y is a polynomial functor and φ : Q → P is a cartesian transformation, then
Q is also polynomial. This appeared as Lemma 2.10 of [11], and the proof given there
works at the present generality.

3.3.7. Corollary. Let E be a category with finite limits, X ∈ E, P and Q be monads
on E/X, and φ : Q → P be a monad morphism. If P is a polynomial monad and φ is a
cartesian monad morphism, then Q is a polynomial monad and φ is a polynomial monad
morphism.

Proof. It suffices to show that if p is a monad on X in PolyE and φ : QtoPE(p) is a
cartesian monad morphism, then φ factors as

Q PE(q) PE(p)
ι // PE(ψ)//

where ι is an isomorphism of monads on E/X and ψ : q → p is a morphism of monads on X
in PolyE . At the level of endomorphisms this follows from Proposition 3.3.6, so it suffices
to exhibit a monad structure on q making ι and ψ into monad morphisms. The unit
ηq : 1→ q is defined to be the unique 2-cell such that ψη = ηp and PE(η

q) = ηPE(q) = ιηQ,
by the (PE)X,X-cartesianness of ψ. The multiplication µq : q ◦ q → q is defined similarly
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as the unique 2-cell such that ψµq = µp(ψ ◦ ψ) and PE(µ
q) = ιµQ(ι ◦ ι)−1. The monad

axioms for (q, ηq, µq) are deduced from those of p and the uniqueness aspects of ψ’s
(PE)X,X-cartesianness, and with respect to this structure, ι and ψ are monad morphisms
essentially by definition.

4. Polynomials in 2-categories

We now develop the 2-categorical aspects of the theory of polynomials. In Section 4.1 we
directly generalise Section 3 to the setting of 2-categories. One sense in which the study
of polynomial 2-functors is richer than its 1-dimensional counterpart, is that one can
consider whether such 2-functors are compatible with the theory of fibrations internal to
the 2-category in which the corresponding polynomial lives. We review briefly the theory
of fibrations in a 2-category in Section 4.2, and in Section 4.3 recall from [34] the gen-
eral theory of familial 2-functors, which are those 2-functors (not necessarily polynomial)
which are compatible with the 2-categorical theory of fibrations. Then in Section 4.4 we
give conditions on polynomials and morphisms thereof, so that the resulting polynomial
2-functors and morphisms thereof are familial. Since 2-dimensional monad theory [5] is
most usefully applied to sifted colimit preserving 2-monads as explained at the begin-
ning of Section 4.5, we give conditions on a polynomial in Cat so that ensure that its
corresponding polynomial 2-functor preserves sifted colimits in Theorem 4.5.1.

4.1. Polynomial 2-functors. In this section we extend the developments of Section 3
to the setting of 2-categories. Let K be a 2-category with pullbacks. Recall that when one
speaks of pullbacks, or more generally any weighted limit in a 2-category, the universal
property has a 2-dimensional aspect. That is, a square S in K is by definition a pullback
in K if and only if for all X ∈ K, the square K(X,S) in CAT is a pullback in CAT. On
objects this is the usual universal property of a pullback as in ordinary category theory,
and on arrows this is the “2-dimensional aspect”. Recall also [17] that if K admits tensors
with [1], then the usual universal property implies this 2-dimensional aspect, but in the
absence of tensors, one must verify the 2-dimensional aspect separately.

Similarly when we speak of distributivity pullbacks in K we will also demand that these
satisfy a 2-dimensional universal property. Let g : Z → A and f : A → B be in K. We
describe first the 2-category PB(f, g) of pullbacks around (f, g). The underlying category
of PB(f, g) is described as in Definition 2.2.1. Let (s, t) and (s′, t′) : (p, q, r) → (p′, q′, r′)
be morphisms in PB(f, g). Then a 2-cell between them consists of 2-cells σ : s → s′ and
τ : t → t′ of K, such that p′σ = 1p, qσ = τq′ and 1r = r′σ. Compositions for PB(f, g)
are inherited from K. One thus defines a distributivity pullback around (f, g) in K to be
a terminal object of the 2-category PB(f, g).

The meaning of distributivity pullbacks in this 2-categorical environment is the same
as in the discussion of Section 2.2. First note that Σf : K/A → K/B is a 2-functor, and
that by virtue of the 2-dimensional universal property of pullbacks in K, ∆f : K/B → K/A
is a 2-functor and Σf a ∆f is a 2-adjunction. To say that all distributivity pullbacks along
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f exist in K is to say that ∆f has a right 2-adjoint, denoted Πf as before, and this right
adjoint encodes the process of taking distributivity pullbacks along f . Such morphisms
f in K are said to be exponentiable, and as in the 1-dimensional case, exponentiable
maps are closed under composition and are stable by pullback along arbitrary maps.
Moreover Lemmas 2.2.4, 2.2.5 and 2.2.6 remain valid in our 2-categorical environment.
The verification of this is just a matter of using the 2-dimensional aspects of pullbacks
and distributivity pullbacks to induce the necessary 2-cells, in exact imitation of how one
induced the arrows during these proofs in Section 2.2.

Polynomials in K and cartesian morphisms between them are defined as in Section
3.1. Given polynomials p and q : X → Y , and cartesian morphisms f and g : p → q, a
2-cell φ : p → q consists of 2-cells φ0 : f → g0 and φ1 : f1 → g1 such that p1 = q1φ0,
q2φ0 = φ1p2 and q3φ1 = p3. With compositions inherited from K one has a 2-category
PolyK(X, Y ) together with left and right projections

K/X PolyK(X, Y ) K/Y.oo
lX,Y rX,Y //

For a composable sequence (pi)i of polynomials as in

Xi−1 Ai Bi Xi
oopi1 pi2 // pi3 //

one defines the 2-category SdC(pi)i of subdivided composites over (pi)i as follows. The
objects and arrows are defined as in Definitions 3.1.1 and 3.1.2. Given morphisms t and
t′ : (Y, q, r, s) → (Y ′, q′, r′, s′) of subdivided composites, a 2-cell τ : t → t′ consists of 2-
cells τi : ti → t′i in K for 0 ≤ i ≤ n, such that q1 = q′1τ0, q′2iτi1 = τiq2i, q3 = q′3τn, ri = r′iτi1
and si = s′iτi. Compositions in SdC(pi)i are inherited from K. The process of taking the
associated polynomial of a subdivided composite, as described in Definition 3.1.3, is 2-
functorial. The forgetful functors resn and res0 become 2-functors. The fact that Lemmas
3.1.4 and 3.1.5 remain valid in our 2-categorical environment, is once again a matter of
using the 2-dimensional aspects of pullbacks and distributivity pullbacks to induce the
necessary 2-cells in the same way that the arrows during these proofs were induced in
the 1-dimensional case. Thus these 2-categories of subdivided composites admit terminal
objects, and so one may define the composition of polynomials as in Definition 3.1.7.
Moreover composition is 2-functorial.

Lemma 3.2.4 gives a direct description of the arrow map of the hom functors of PE as
being induced by the universal properties of pullbacks and distributivity pullbacks. Thus
in our 2-categorical setting, with the 2-dimensional aspects of these universal properties
available, we can do the same one dimension higher and induce directly the components
of the modification induced by a 2-cell between maps of polynomials. Thus we have
2-functors

(PK)X,Y : PolyK(X, Y )→ 2-CAT(K/X,K/Y )

for all objects X and Y of a 2-category K with pullbacks. We now describe the structure
that polynomials in a 2-category form.
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4.1.1. Definition. A 2-bicategory consists of a bicategory B whose hom categories are
endowed with 2-cells making them 2-categories and the composition functors

compX,Y,Z : B(Y, Z)× B(X, Y )→ B(X,Z)

are endowed with 2-cell maps making them into 2-functors. In addition we ask that the
coherence isomorphisms of B be natural with respect to the 3-cells.

Since a 2-bicategory B is a degenerate sort of tricategory, we shall call the 2-cells in
its homs 3-cells of B.

4.1.2. Examples.

1. Given a 2-category K with pullbacks, the bicategory SpanK has the additional
structure of a 2-bicategory in which a 3-cell f → g consists of a 2-cell φ as in

X

A

Y

B

uu

s1 t1

))
55

t2s2

ii f

��

g

��

φ +3

such that s2φ = id and t2φ = id.

2. Dually one has a 2-bicategory CospanK of cospans in any 2-category K with
pushouts.

3. Any strict 3-category such as 2-CAT is a 2-bicategory.

4.1.3. Definition. A homomorphism F : B → C of 2-bicategories is a homomorphism
of their underlying bicategories whose hom functors are endowed with 2-cell maps making
them into 2-functors, and whose coherence data is natural with respect to 3-cells.

4.1.4. Theorem. Let K be a 2-category with pullbacks. One has a 2-bicategory PolyK
whose objects are those of K, whose hom between X and Y ∈ K is PolyK(X, Y ), and whose
compositions are defined as above. Moreover with object, arrow and 2-cell maps defined
as in the categorical case, and 3-cell map as defined above, one has a homomorphism

PK : PolyK −→ 2-CAT

of 2-bicategories.

Proof. By the way that things have been set up, Lemma 3.1.8 and Theorem 3.1.10
lift to our 2-categorical setting, with the extra naturality of the coherences coming from
the 2-dimensional aspect of all the universal properties being used. Thus PolyK is a
2-bicategory. Since in the proof of Theorem 3.2.6 the coherences of PE were obtained
from associativity coherences in PolyE , the extra naturality enjoyed by the associativities
in PolyK gives the extra naturality required for the coherences of PK. Thus PK is a
homomorphism of 2-bicategories.
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The notions polynomial 2-functor, polynomial 2-monad and morphism of polynomial
2-monads are defined as in Definitions 3.2.7 and 3.2.8. Similarly one may speak of poly-
nomial pseudo monads when the coherences are themselves also in the essential image of
PK.

4.1.5. Example. Suppose that a morphism U : E → B in a 2-category K with finite
limits is both exponentiable and a classifying discrete opfibration in the sense of [35].
One can then define a discrete opfibration in K to be U-small when it arises by pulling
back U . By definition U -small discrete opfibrations are pullback stable in K. Often they
are also closed under composition, and when this is the case, one can consider the full
sub-2-bicategory SU of PolyK consisting of those polynomials

I A C Joo s p // t //

such that p is a U -small discrete opfibration. The condition of being a classifying discrete
opfibration then implies that the polynomial

1 E B 1oo U // // (10)

is a biterminal object in SU(1, 1). As such it admits a canonical pseudo-monad structure.
When K = Cat and U is the forgetful functor Setf,• → Setf from the category of finite
pointed sets to that of finite sets, a U -small discrete opfibration is one with finite fibres, and
these are evidently closed under composition. By the finitary analogue of [34] Corollary
5.12, the endofunctor associated to (10) is the finite “Fam” construction, which associates
to a category its finite coproduct completion. Replacing U by Uop gives a polynomial
pseudo monad on Cat whose underlying endofunctor gives the finite product completion
of a category. To summarise, the finite coproduct and finite product completion pseudo
monads on Cat are polynomial pseudo monads.

The 2-categorical analogues of Proposition 3.3.6 and Corollary 3.3.7 are also valid,
with proofs adapted from the 1-dimensional case in the same way as above. We record
these results as follows.

4.1.6. Proposition. Let K be a 2-category with finite limits and let X and Y ∈ K. Let
P be a polynomial 2-functor K/X → K/Y , and T be a polynomial 2-monad on K/X. Let
φ : Q→ P be a 2-natural transformation, and ψ : S → T be a morphism of 2-monads.

1. If φ is cartesian then Q is a polynomial 2-functor.

2. If ψ is cartesian then S is a polynomial 2-monad and ψ is a morphism of polynomial
2-monads.

4.2. Fibrations 2-monads. The 2-monads whose algebras are fibrations and opfibra-
tions to be recalled here, play two roles in this work: (1) as part of the background to the
discussion of familial 2-functors below in Section 4.3, and (2) as examples of polynomial
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2-monads in Proposition 4.2.3. Fibrations internal to a 2-category were introduced by
Street in [27].

Elementary descriptions of fibrations were given in Section 2 of [35] in terms of carte-
sian 2-cells. A similar 2-categorical reformulation of split fibrations, in which cleavages
were expressed 2-categorically via the notion of chosen cartesian 2-cell, was given in Sec-
tion 3 of [34]. Thus for any 2-category K, one can define fibrations and split fibrations in
K. Moreover, given fibrations f : A→ B and g : C → D in K, a morphism of fibrations
(u, v) : f → g is a commutative square

A C

DB

u //

g
��
//

v

��
f

such that post-composition with u sends f -cartesian 2-cells to g-cartesian 2-cells. When
f and g are split fibrations, (u, v) is a strict morphism when post-composing with u
preserves chosen cartesian 2-cells.

Thus one has 2-categories Fib(K) and SFib(K) of fibrations, morphisms thereof and
2-cells; and of split fibrations and strict morphisms respectively, coming with forgetful
2-functors into K[1]. Dually an opfibration in a general 2-category K is a fibration in the
2-category Kco obtained by reversing 2-cells. We freely use the associated dual notions,
such as (chosen) f -opcartesian 2-cells below, and we define

OpFib(K) = Fib(Kco)co SOpFib(K) = SFib(Kco)co.

When K has comma objects, Street [27] observed that fibrations can be regarded as
pseudo algebras for certain easy to define 2-monads. The comma squares

1B ↓ f A

BB

qf //

f
��
//

1B

��
ΦK(f)

λf +3

f ↓ 1B B

BA

ΨK(f) //

1B
��
//

f

��
pf

λ′f +3

describe the effect on objects of the underlying endofunctors of 2-monads ΦK and ΨK on
K[1]. For f : A → B the component of the unit of ΦK is of the form (ηf , 1B) where ηf is
unique such that

ΦK(f)ηf = f qfηf = 1A λfηf = id

and the f -component of the multiplication is of the form (µf , 1B) where µf is unique such
that

ΦK(f)µf = Φ2
K(f) qfµf = qfqΦK(f) λfµf = (λfqΦK(f))λΦK(f).

The unit and multiplication of ΨK are described dually.
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We follow the established notation of 2-dimensional monad theory by denoting, for a
2-monad T on a 2-category K, T -Algs, Ps-T -Alg and Kl(T ) the 2-categories of strict T -
algebras and strict maps, pseudo T -algebras and strong2 maps and the Kleisli 2-category
of T respectively. Moreover one has

UT : T -Algs −→ K FT : K −→ Kl(T )

the right adjoint part of the Eilenberg-Moore adjunction for T , and the left adjoint part of
the Kleisli adjunction for T respectively. We proceed now to exhibit explicit descriptions
of these for the 2-monads ΦK and ΨK.

Denote by K[1]
colax the 2-category of functors [1] → K, colax natural transformations

between them, and modifications; and by K[1]
lax the 2-category of functors [1] → K, lax

natural transformations between them, and modifications. Thus a morphism f → g of
K[1]

colax is the unlabelled data in

A C

DB

//

g
��
//

��
f +3

and for K[1]
lax the 2-cell is in the opposite direction. Since strict natural transformations

are degenerate instances of lax and colax ones, one has canonical inclusions K[1] ↪→ K
[1]
colax

and K[1] ↪→ K
[1]
lax. The following result is known, though perhaps formulated slightly more

globally than usual.

4.2.1. Proposition. [20, 27] Let K be a 2-category with comma objects.

1. One has isomorphisms

Ps-ΦK-Alg ∼= Fib(K) ΦK-Algs
∼= SFib(K)

Ps-ΨK-Alg ∼= OpFib(K) ΨK-Algs
∼= SOpFib(K)

commuting with the evident 2-functors into K[1].

2. One has isomorphisms

Kl(ΦK) ∼= K[1]
colax Kl(ΨK) ∼= K[1]

lax

commuting with the evident 2-functors out of K[1].

Proof. In the caseK = Cat of (1) is completely standard. See [20] for a recent discussion.
The result for general K follows by a representable argument since the 2-monads ΦK and
ΨK are described in terms of limits, and the notions of cartesian and opcartesian 2-cell are
representable. The isomorphisms (2) are easily exhibited by using the universal property
of comma objects and the definition of Kl(ΦK) and Kl(ΨK).

2Meaning that the coherence data consists of invertible 2-cells
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The fibre of the codomain 2-functor K[1] → K over B ∈ K is exactly the slice 2-
category K/B, and these 2-monads restrict to the 2-monads ΦK,B and ΨK,B on K/B
defined originally by Street in [27]. Using Proposition 4.2.1 one then has an explicit
description of the algebras of ΦK,B (resp. ΨK,B) as fibrations (resp. opfibrations) with
codomain B. Similarly 1-cells x→ y of Kl(ΦK,B) (resp. Kl(ΨK,B)) may be identified with
lax triangles

X Y

B

//

y����x
+3

X Y

B.

//

y����x
ks

For any nice symmetric monoidal category V over which one may wish to enrich, one
has a notion of monoidal V-category, and so in particular taking V = Cat (with the
cartesian tensor product), one has a canonical notion of monoidal 2-category3. In this
sense, for any 2-bicategory B and object B therein, the hom B(B,B) is a monoidal 2-
category. Following [18, 21] we define a pseudo monoid in a monoidal 2-category K, with
unit and multiplication denoted u : I →M and m : M ⊗M →M , to be colax idempotent
(resp. lax idempotent) when u⊗M a m aM ⊗ u (resp. M ⊗ u a m a u⊗M).

4.2.2. Definition. Let B be a 2-bicategory and B ∈ B. Then a pseudo monad (resp.
2-monad) on B in B is a pseudo monoid (resp. monoid) in the monoidal 2-category
B(B,B). A pseudo monad on B in B is colax idempotent (resp. lax idempotent) when its
corresponding pseudo monoid in B(B,B) is so.

Writing [n] for the ordinal {0 < ... < n} one has a cospan in Cat as on the left

[0] [1] [0]
δ1 // oo δ0 B B[1] Boo d1 d0 //

B[1] B

BB

d0 //

1B
��
//

1B

��
d1

+3

and cotensoring this with B gives the span in K in the middle, where ZA denotes the
cotensor of Z ∈ K with the category A. This span fits into comma square as depicted on
the right in the previous display. To some extent the following result is implicit in the work
of Street [27, 28, 29], and all that we have done is to observe that Street’s approach to the
fibrations 2-monads exhibits them as polynomial 2-monads. In fact, since the underlying
endofunctors come from spans, they are examples of “linear” polynomial 2-functors.

4.2.3. Proposition. Let K be a 2-category with comma objects and pullbacks and let
B ∈ K.

3Monoidal bicategories in the most general sense whose underlying bicategory is a 2-category are
weaker than this.
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1. ΦK,B is the result of applying PK to a colax idempotent 2-monad in PolyK whose
underlying endomorphism is

B B[1] B[1] B.oo d0 1 // d1 //

2. ΨK,B is the result of applying PK to a lax idempotent 2-monad in PolyK whose
underlying endomorphism is

B B[1] B[1] B.oo d1 1 // d0 //

Proof. The two statements are dual, so we consider just the monad ΦK,B. By the
elementary properties of comma squares and pullbacks, one can factor the defining comma
square of ΦK,B(f) = ΦK(f) as

1K,B ↓ f B[1] B

BBA

// d1 //

1K,B

��
//

1K,B

//
f

��
d0
��

ΦK,B(f)

##

pb ks

and so one has ΦK,B(f) = Σd1∆d0(f). This expresses on objects that ΦK,B is the result
of applying PK to the endopolynomial of the statement.

Recall that the inclusion ∆ ↪→ Cat is a cocategory object, and as described in [24, 29],
the standard presentation of (topologists’) ∆ as a subcategory of Cat has the 2-categorical
feature that the successive generating coface and codegeneracy maps are adjoint. Thus
the diagram

[0] [1] [2] [3] ......

[0]

[0]

σ0oo

σ1

oo
//

σ0oo
⊥
⊥

σ2

oo
//

oo
//

σ0oo
⊥
⊥
⊥
⊥

t

��

δ0=t

��

t

��

t

��

...

b

ZZ

δ1=b

VV

b

OO

b

KK

...

(11)

in which each functor labelled as “t” picks out the top element of its codomain, and each
functor labelled as “b” picks out a bottom element, is a colax idempotent 2-monad in
CospanCat. Cotensoring it with an object B in any finitely complete 2-category K, gives
a colax idempotent 2-monad in SpanK and by means of the inclusion SpanK ↪→ PolyK,
one has a polynomial colax idempotent 2-monad on B. The observation that associated
2-monad on K/B, obtained via application of PK, is the 2-monad ΦK,B is easily verified,
and was implicit in Section 2 of [29].
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4.2.4. Remark. In general d1 is a split fibration and d0 is a split opfibration. In 2-
categories K, such as the case K = Cat, in which fibrations and opfibrations are expo-
nentiable, it follows that ΦK,B and ΨK,B are themselves left adjoints. For such situations
fibrations and opfibrations are thus also coalgebras for 2-comonads (ie those obtained
from ΦK,B and ΨK,B by taking right adjoints), and the forgetful 2-functors UΦK,B and
UΨK,B create all colimits.

4.3. Familial 2-functors. We now recall, and to some extent update, the theory of
familial 2-functors from [34]. Intuitively, a familial 2-functor is one that is compatible
in an appropriate sense with the theory of fibrations recalled in the previous section. In
Section 4.4 we will identify conditions on polynomials in a 2-category which ensure that
the corresponding 2-functor is familial.

The compatibility of familial 2-functors with the theory of fibrations is expressed
formally by the formal theory of monads [26], in which monads in a 2-category A were
organised in various useful ways into 2-categories. Since this material is used so extensively
in this section, we recall it briefly now.

We denote a monad in a 2-category A as a pair (A, t) where A ∈ A, t is the underlying
one-cell of the monad on A in A, and we denote the unit and multiplication 2-cells as
ηt and µt respectively. A lax morphism f : (A, t) → (B, s) in A consists of an arrow
f : A → B in A, and a “coherence” 2-cell f l : sf → ft which satisfies f l(ηsf) = fηt

and f l(µsf) = (fµt)(f lt)(sf l). A colax morphism f : (A, t) → (B, s) in A consists of
an arrow f : A → B in A, and f c : ft → sf satisfying f c(fηt) = ηsf and f c(fµt) =
(µsf)(sf c)(f ct). Lax and colax morphisms of monads were called “monad functors” and
“monad opfunctors” in [26] respectively.

Given a monad (A, t) in A one may have an associated Eilenberg-Moore object, which
is a type of 2-categorical limit, whose universal 0 and 1-cell data is denoted as At and
ut : At → A respectively. The corresponding colimit notion is that of a Kleisli object,
the universal 0 and 1-cell data of which is denoted At and ft : A → At respectively. See
[26] for the precise definitions. When A = Cat, At is the category of algebras and At is
the Kleisli category, and in the general situation ut has a left adjoint and ft has a right
adjoint. When A is the 2-category of 2-categories, a monad in A is a 2-monad (K, T ),
and the 0 and 1-cell data of the Eilenberg-Moore and Kleisli objects are denoted as

UT : T -Algs −→ K FT : K −→ Kl(T )

respectively.
In general, when the 2-category A admits Eilenberg-Moore objects, given monads

(A, t) and (B, s) in A, and an arrow f : A → B, then 2-cells f l : sf → ft providing
coherence data of a lax monad morphism are in bijection with liftings f to the level of
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algebras as on the left in

At Bs

BA

f //

us

��
//

f

��
ut =

As Bs

BA

f
//
OO
fs

//
f

ft

OO
=

and dually, when A admits Kleisli objects, colax coherence data f c : ft → sf is in
bijection with extensions of f to f as on the right in the previous display.

4.3.1. Remark. Let K be a 2-category with comma objects and pullbacks and f : A→
B be a morphism therein. The 2-functor Σf : K/A → K/B clearly extends to lax
triangles, and so one has Σf : Kl(ΦK,A)→ Kl(ΦK,B) such that ΣfFΦK,A

= FΦK,B
Σf . Such

an extension is equivalent to the data of a 2-natural transformation σf providing the
coherence datum for a colax morphism of 2-monads

(Σf , σf ) : (K/A,ΦK,A) −→ (K/B,ΦK,B)

and so by taking mates [19] with respect to Σf a ∆f , also to the coherence datum δf for
a lax morphism of 2-monads

(∆f , δf ) : (K/B,ΦK,B) −→ (K/A,ΦK,A).

This last is in turn equivalent to lifting ∆f to the level of split fibrations, that is to say,
to giving a 2-functor ∆f : ΦK,B-Algs → ΦK,A-Algs such that UΦA∆f = ∆fU

ΦB . The
2-functor ∆f witnesses the pullback stability of split fibrations.

We recall now the familial 2-functors of [34]. For a 2-functor T : K → L and an object
X ∈ K, we denote by TX : K/X → L/TX the 2-functor given on objects by applying T
to morphisms into X. A local right adjoint K → L is a 2-functor T : K → L equipped
with a left adjoint to TX for all X ∈ K. Given an adjunction as on the left

A B
R

//

Loo
⊥ A/X B/RX

RX

//
oo
⊥

and X ∈ A, one always has an adjunction as on the right in the previous display. Thus
when K has a terminal object 1, to exhibit T as a local right adjoint, it suffices to give a
left adjoint to T1.

4.3.2. Definition. Let K and L be 2-categories with comma objects, and suppose that
K has a terminal object 1. Then a familial 2-functor K → L consists of local right adjoint
T : K → L together with T 1 : K → ΦT1-Algs such that UΦT1T 1 = T1.

Familial 2-functors are exactly those 2-functors which are compatible with fibrations
because of
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4.3.3. Proposition. Let K and L be 2-categories with comma objects, suppose that K
has a terminal object 1 and let T be a 2-functor. To give T the structure of a familial
2-functor is to give the coherence data φT for a lax morphism

(T [1], φT ) : (K[1],ΦK) −→ (L[1],ΦL)

of 2-monads.

Proof. It is straight forward to adapt Theorem 6.6 of [34] to provide, given T 1, the lifting
of T [1] to a 2-functor ΦK-Algs → ΦL-Algs. Conversely, given such a lifting one recovers
T 1 by restricting to split fibrations in K into 1.

Implicit in Definition 5.2 of [34] is the idea that morphisms of familial 2-functors
are simply cartesian 2-natural transformations. In this work we wish to adopt a more
specialised notion which is compatible with Propostion 4.3.3.

4.3.4. Definition. Let S and T be familial 2-functors K → L. Then a 2-natural trans-
formation α : S → T is familial when it is cartesian and for all X ∈ K, α’s naturality
square with respect to the unique map tX : X → 1 is a morphism of split fibrations
(αX , α1) : StX → TtX .

4.3.5. Lemma. Let α : S → T be a familial natural transformation between familial
2-functors K → L, and f : A→ B be a split fibration in K. Then the naturality square

SA TA

TBSB

αA //

Tf
��

//
αB

��
Sf

is a morphism (αA, αB) : Sf → Tf of split fibrations in L.

Proof. Recall from Lemma 6.3 of [34] that a 2-cell ψ as indicated on the left in

X SA

x
!!

y

==ψ��

X SD

SASC

g2 //

Sh2

��
//

Sh1

��
g1 Sδ

77ψ1 +3
Sψ2 +3

is chosen Sf -cartesian if and only if ψ2 is chosen f -cartesian, where x = S(h1)g1 and
y = S(h2)g2 are S-generic factorisations in the sense of [34], and ψ1 and ψ2 are unique
such that the composite on the right in the previous display equal to ψ and ψ1 is chosen
StD-cartesian. We must show that if ψ is chosen Sf -cartesian, then αAψ is chosen Tf -
cartesian. In

X SD

SASC

g2 //

Sh2

��
//

Sh1

��
g1 Sδ

77ψ1 +3
Sψ2 +3

TD

TATC

Th2

��
//

Th1

Tδ

77

Tψ2+3

αD

%%

%%αC %%
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αDψ1 is chosen TtD-cartesian since (αD, α1) is a morphism of split fibrations StD → TtD,
and so the result follows by Lemma 6.3 of [34] applied to T .

When T : K → L is familial we denote by T : ΦK-Algs → ΦL-Algs the lifting of T [1]

corresponding to φT . Then one obtains the following result immediately from Lemma
4.3.5.

4.3.6. Proposition. Let S and T be familial 2-functors and α : S → T be a cartesian
natural transformation between them. Then α is familial if and only if it lifts to a 2-natural
transformation α : S → T .

We freely use and apply the dual notions and results, an opfamilial 2-functor being one
which is compatible in the same way with opfibrations. A familial (resp. opfamilial) 2-
monad is one whose underlying endo-2-functor, unit and multiplication are familial (resp.
familial).

4.3.7. Remark. All the examples familial and opfamilial 2-monads exhibited in [34] turn
out to be familial and opfamilial 2-monads in the more restricted sense of this article. For
those that arise from polynomials, we shall establish this from general results below.

4.4. Familial 2-functors from polynomials. In this section we identify conditions
on polynomials in a 2-category and their morphisms, ensuring that the associated 2-
functors and 2-natural transformations are familial. The central result to this effect
appears in this section as Theorem 4.4.5. The task of proving this result breaks up into
that of identifying conditions ensuring that 2-functors of the form ∆f and Πf , and the
“Beck-Chevalley 2-cells” lift to the level of split fibrations. These conditions are presented
in turn in Lemmas 4.4.1-4.4.4 below.

4.4.1. Lemma. [12] Let f : A→ B be a split opfibration in a 2-category K with pullbacks
and comma objects.

1. One has ∆f : Kl(ΦK,B)→ Kl(ΦK,A) such that ∆fFΦK,B
= FΦK,A

∆f .

2. If f is a discrete opfibration then Σf a ∆f .

Proof. (1): Given (k, γ) : x→ y in Kl(ΦK,B), we pullback to obtain X2 and Y2 in

X2

Y2

A

X

Y

B

q1 //

x

��
//

f

��
∆fx

h2



q2 //

y

��
//

��

∆fy

k
55

k2
55

γ 19γ2 8@

γ2 is the chosen f -opcartesian lift of γq1, and then k2 is unique such that ∆f (y)k2 = h2

and q2k2 = kq1. One defines ∆f (k, γ) = (k2, γ2). Given a 2-cell κ : (k, γ)→ (k′, γ′), then



POLYNOMIALS IN CATEGORIES WITH PULLBACKS 575

by the opcartesianness of γ2 one has κ2 : ∆f (y)k2 → ∆f (y)k′2 unique such that κ2γ2 = γ′2
and fκ2 = yκq1. By the 2-dimensional universal property of the pullback defining Y2,
one has κ3 : k2 → k′2 unique such that ∆f (y)κ3 = κ2 and q2κ3 = κq1. We then define
∆f (κ) = κ3. The 2-functoriality of these assignations follows easily from the uniqueness
of the various lifts in these constructions and the 2-dimensional universal property of
pullbacks in K.

(2): Note that in the above diagram q1 and q2 are the components of the counit of
Σf a ∆f at x and y respectively. Thus the commutativity of the diagram ensures that
the counit is natural with respect to lax triangles, and 2-naturality follows similarly. It
remains to verify the 2-naturality of the unit of Σf a ∆f with respect to lax triangles
when f is a discrete opfibration. Denoting the defining pullback of ∆fΣfx as on the left
in

X2 X

BA

qx //

fx
��
//

f

��
∆fΣfx pb

X Y

A

k //

y����x

γ +3

ηx : X → X2 is unique such that ∆fΣf (x)ηx = x and qxηx = 1X . Naturality with respect
to (k, γ) amounts to checking that ηyk = k2ηx and γ = γ2ηx in

X

Y

A

k
77

y



##x

γ 3;

B

f
��

A //
f

X2
//qx

Y2
//qy

k2
77

∆fΣfy

����

γ2 3;

X //ηx

Y //ηy

k
77

��((

x

γ 3;

in which γ2 is unique such that fγ2 = fγqx. Thus fγ2ηx = fγ and so since f is a discrete
opfibration, the uniqueness of lifts implies γ2ηx = γ and ∆fΣf (y)k2ηx = ky. From this
last one obtains the first equation of

∆fΣf (y)ηyk = ∆fΣf (y)k2ηx qyk2ηx = qyηyk

and the second equation is also easily verified, so that by the joint monicness of (∆fΣf (y), qy),
one has ηyk = k2ηx. The verification of the 2-dimensional part of naturality proceeds
straight forwardly along similar lines, and so is left to the reader.

4.4.2. Lemma. [12] Let f : A → B be an exponentiable split opfibration in a 2-category
K with pullbacks and comma objects.

1. One has Πf : ΦK,A-Algs → ΦK,B-Algs such that UΦK,BΠf = ΠfU
ΦK,A.

2. If f is a discrete opfibration then ∆f a Πf .
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Proof. (1): By the formal theory of monads the data of the extension ∆f of Lemma
4.4.1(1) is equivalent to that of a 2-natural transformation ∂f providing the coherence
datum for an oplax morphism

(∆f , ∂f ) : (K/B,ΦK,B) −→ (K/A,ΦK,A).

Since f is exponentiable, this is in turn equivalent, by taking mates with respect to the
adjunction ∆f a Πf , to the data of a 2-natural transformation πf providing the coherence
datum of a lax morphism

(Πf , πf ) : (K/A,ΦK,A) −→ (K/B,ΦK,B).

This last is in turn equivalent to the lifting Πf of Πf to the level of split fibrations.
(2): The data of the adjunction Σf a ∆f established in Lemma 4.4.1(2) corresponds

by the formal theory of monads to the data of an adjunction of oplax morphisms of 2-
monads whose underlying 2-adjunction is Σf a ∆f . This means that in addition to having
the oplax coherence data σf and ∂f described above, one has the compatibility of the unit
ηf and counit εf of the adjunction Σf a ∆f with respect to these coherences, which in
explicit terms is the commutativity of

ΦK,A ∆fΣfΦK,A

∆fΦK,BΣfΦK,A∆fΣf

ηfΦK,A//

∆fσf
��

∂fΣf

oo
��

ΦK,Aηf

Σf∆fΦK,B ΣfΦK,A∆f

ΦK,BΣf∆f .ΦK,B

Σf∂f//

σf∆f
��

ΦK,Bεf
oo

��
εfΦK,B

In terms of string diagrams (which go from top to bottom) in the 2-category of 2-categories
(see [15]), the above commutative diagrams are expressed as

ηf

σf

∂f

ΦK,A

ΣfΦK,A ∆f

= ηf

∆f Σf

ΦK,A

ΦK,A

εf

σf

∂f

ΦK,B

Σf ΦK,B∆f

= εf

∆fΣf

ΦK,B

ΦK,B

(12)

It suffices now to verify that the lax coherence data δf and πf are compatible with the
unit η′f and counit ε′f of ∆f a Σf in the same way, which is to say that

η′f

πf

δf

= η′f

ε′f

πf

δf

= ε′f (13)
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because then by the formal theory of monads this corresponds to giving the rest of the
data of the required adjunction ∆f a Πf . The definition of δf and πf as mates of σf and
∂f in explicit terms says that

ηf

σf

εf

= δf

η′f

∂f

ε′f

= πf (14)

and so the left equation of (13) is established by the calculation

η′

π

δ

=

η′

∂

ε′

η′

η

σ

ε

=

η′

∂η

σ

ε

=
η′

η

ε

= η′

which uses (12), (14) and the adjunction triangle equations. The right equation in (13)
follows from a similar calculation.

Recall that given a commutative square in K as on the left

A C

DB

h //

g

��
//

k

��
f

K/A K/C

K/DK/B

Σh //
OO

∆g

//
Σk

∆f

OO
α +3

K/A K/C

K/DK/B

oo∆h

Πg

��

∆k

oo
��

Πf ks β (15)

one has a canonical 2-natural transformation α is obtained from ΣkΣf = ΣgΣh and the
adjunctions Σf a ∆f and Σg a ∆g. If f and g are exponentiable, then by taking right
adjoints one has a canonical 2-natural transformation β as on the right.

4.4.3. Lemma. If in a 2-category K with comma objects and pullbacks, the left-most
square in (15) underlies a morphism of split opfibrations f → g, then α extends to a
2-natural transformation α as on the left

Kl(ΦK,A) Kl(ΦK,C)

Kl(ΦK,D)Kl(ΦK,B)

Σh //
OO
∆g

//
Σk

∆f

OO
α +3

ΦK,A-Algs ΦK,C-Algs

ΦK,D-AlgsΦK,B-Algs

oo∆h

Πg
��

∆k

oo
��

Πf
ks β

and if f and g are exponentiable, then β lifts to a 2-natural transformation β as on the
right.
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Proof. By the formal theory of monads α extends to α if and only if α underlies a monad
2-cell, that is to say, satisfies axioms of compatibility with the colax monad morphism
structures on Σh∆f and ∆gΣk. When f and g are exponentiable this in turn is equivalent,
by the calculus of mates, to asking that β satisfy compatibility with respect to the lax
monad morphism structures on Πf∆h and ∆kΠg, which is moreover equivalent to the
existence of the lifting β. Thus it suffices to exhibit α, in other words, that α is 2-natural
with respect to lax triangles.

For the 1-dimensional part of this naturality note that the component of α at x : X →
B is as shown on the right

X2 X

B

D.C

A

x3 //

x
��

k
��
//

g

��
h

��
x2

f
//

pb

X2 X

B

DC

A
X3

x3 //

x
��

k
��
//

g

��
h

��
x2 ��αx x5

@@

x4

��
pb

Denoting by (k2, ψ2) the result of pulling back (k, ψ) along f

X2

Y2

A

X

Y

B

//

x ��
//

f

��x2

//

y

��
//

��

y2

k
66k2

66

ψ 2:ψ2 2:

as in Lemma 4.4.1, the desired naturality comes down to the commutativity of the prism
(X2, Y2, Y3, X3, C, A) in

X3

Y3

C

X

Y

D

x5 //

kx ��
//

g

��x4

y5 //

ky

��
//

��

y4

k
66k3

66

kψ 2:ψ3 2:

A

X2

Y2

��

k2
66

��

αx //

αy //

h
//

ψ2 2:

in which (k3, ψ3) is the result of pulling back (k, kψ) along g. Since gψ3αx = ghψ2,
and both ψ3αx and hψ2 are chosen g-opcartesian, it follows that ψ3αx = hψ2. Taking
codomains of this gives y4k3αx = y4αyk2, and y5k3αx = y5βyk2, so k3αx = αyk2. The
uniqueness part of opcartesianness can be used to verify 2-naturality.

Given a commutative triangle as on the left

A B

C

h //

g����f

K/A K/B

K/C

oo ∆h

Σg����Σf

κ +3 (16)
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one has a canonical 2-natural transformation as on the right obtained from ΣgΣh = Σf

and Σh a ∆h. When moreover f and g are split fibrations, since split fibrations compose,
the 2-functors Σf and Σg lift to 2-functors

Σf : ΦK,A-Algs −→ ΦK,C-Algs Σg : ΦK,B-Algs −→ ΦK,C-Algs

respectively.

4.4.4. Lemma. The 2-natural transformation (16) lifts to a 2-natural transformation

ΦK,A-Algs ΦK,B-Algs

ΦK,C-Algs

oo ∆h

Σg||""Σf

κ +3

when f and g each have the structure of a split fibration.

Proof. Let p : E → B be a split fibration. We have to show that the component κp
is a morphism of split fibrations, that is to say, that post-composition with κp preserves
chosen cartesian 2-cells. So we consider a chosen fp2-cartesian 2-cell ψ as in

X E2 E

B

C

A

x1

''

h
//

x2

77
κp //

p
��

g����f

��
p2

ψ��

pb

and we must show that κpψ is chosen gp-cartesian. By the way in which one describes the
cleavage for a composite of split fibrations, to say that κpψ is chosen gp-cartesian is to say
that κpψ is chosen p-cartesian and pκpψ is chosen g-cartesian; and to say that ψ is chosen
fp2-cartesian is to say that ψ is chosen p2-cartesian and p2ψ is chosen f -cartesian. By
the way in which one describes the cleavage of a morphism resulting from pulling back a
split fibration, to say that ψ is chosen p2-cartesian is to say that κpψ is chosen p-cartesian.
Since h is a morphism of split fibrations and p2ψ is chosen f -cartesian, hp2ψ is chosen
g-cartesian, and so the result follows.

4.4.5. Theorem. Let K be a 2-category with pullbacks and comma objects. Denote by
P : K/I → K/J the polynomial 2-functor associated to the polynomial on the left

I E B Joo s p // t // I

E1 B1

J

B2E2

ww

s1

p1 //
t1

''
77

t2//
p2

s2

gg f2

��

f1

��

pb= =
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and by φ : P → Q the 2-natural transformation associated to the morphism of polynomials
indicated on the right in the previous display. Then

1. If p has the structure of a split opfibration and t has the structure of a split fibration,
then P lifts to a 2-functor P : ΦK,I-Algs → ΦK,J -Algs such that UΦK,JP = PUΦK,I .

2. If in the context of (1) I is discrete, then P is a familial 2-functor.

3. If (f2, f1) : p1 → p2 is a morphism of split opfibrations and (f1, 1J) : t1 → t2 is a
morphism of split fibrations, then φ lifts to a 2-natural transformation φ : P → Q
such that UΦK,Jφ = φUΦK,I .

4. If in the context of (3) I is discrete, then φ is a familial 2-natural transformation.

Proof. When I is discrete ΦK,I is the identity 2-monad, and so (2) follows from (1) by
the definition of familial 2-functor, and (4) follows from (3) by the definition of familial
2-natural transformation. To obtain (1), define P = ΣtΠp∆p, where Πp exists by Lemma
4.4.1 and the remarks immediately following that result, and Σt exists by the compos-
ability of split fibrations. To obtain (3), note that φ may be obtained as the composite

K/I

K/E1 K/B1

K/J.

K/B2K/E2

∆s1
55

Πp1 //
Σt1

))
55

Σt2//
Πp2

))∆s2

OO

∆f2

OO

∆f1
∼= β�� κ��

The unnamed isomorphism is obtained by adjunction from the identity Σf2Σs1 = Σs2

which clearly extends to the level of lax slices, and so this isomorphism lifts to the level of
split fibrations by the same argument as that given in the first paragraph of the proof of
Lemma 4.4.3. By Lemma 4.4.3 β also lifts to the level of split fibrations, and by Lemma
4.4.4 κ does too, and so (3) follows.

4.4.6. Remark. In subsequent work we shall also use the dual of the above result, in
which K is replaced by Kco. For instance the dual version of (2) says that if I is discrete,
p has the structure of a split fibration and t has the structure of a split opfibration, then
P is opfamilial. Note also that when J is discrete, t, t1 and t2 are automatically split
(op)fibrations in a unique way and f1 is a morphism thereof.

4.5. Preservation of sifted colimits. Two dimensional monad theory becomes a
particularly powerful framework when applied to codescent object preserving 2-monads.
For instance, as explained in [7, 23], a codescent object preserving 2-monad T on a 2-
category of the form Cat(E) automatically satisfies the conditions of Power’s general
coherence theorem [23, 25]. Thus knowing T preserves codescent objects implies a coher-
ence theorem for T -algebras in this case. In particular one recovers the usual coherence
theorems for monoidal, braided monoidal and symmetric monoidal categories in this way,
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without any combinatorial analysis. Moreover as discussed in [32], knowing that a 2-
monad preserves codescent objects is one desirable condition leading to the ability to
compute internal algebra classifiers involving T .

Codescent objects are particular instances of a class of 2-categorical colimits called
sifted colimits, which include also reflexive coequalisers and filtered colimits. Recall that
any weight J : Cop → Cat (with C a small 2-category) determines, by virtue of the
cocompleteness of Cat as a 2-category, a functor

J ∗ − : [C,Cat] −→ Cat

given on objects by taking colimits in Cat weighted by J , and J is a sifted weight when
J ∗ − preserves finite products. A sifted colimit is a weighted colimit whose weight is
sifted. In other words, sifted colimits are exactly those colimits which in Cat commute
with finite products. Sufficient conditions on a polynomial in Cat so that its corresponding
polynomial 2-functor preserves sifted colimits is provided by

4.5.1. Theorem. The polynomial 2-functor associated to a polynomial

I A B Joo s p // t //

in Cat such that I is discrete and p is a discrete fibration or a discrete opfibration with
finite fibres, preserves sifted colimits.

Proof. It suffices to show that Πp∆s preserves sifted colimits since Σt as a left adjoint
preserves all colimits. We consider the case where p is a discrete fibration; the proof for
the case where p is a discrete opfibration is similar. By Theorem 4.4.5(1) applied in the
case K = Catco, one has the commutative diagram

Cat/I

ΨK,E-Algs ΨK,B-Algs

Cat/B.Cat/E

∆s
44

Πp //

U
ΨK,B
��

//
Πp

//
∆s

U
ΨK,E
��

By Remark 4.2.4 UΨK,E and UΨK,B create all colimits, and so it suffices to show that Πp

preserves sifted colimits.
Since ΨK,E-Algs and ΨK,B-Algs are 2-equivalent to the functor 2-categories [E,Cat]

and [B,Cat], and in these terms ∆p corresponds to the process of precomposition with
p, by Lemma 4.4.2(2) one may identify Πp with the process of right Kan extension along
p. But since p is a discrete fibration, such right Kan extensions are computed simply by
taking products over the fibres of p. Since these products are finite, and limits and colimits
in [B,Cat] are componentwise, the result follows by the definition of “sifted colimit”.
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4.5.2. Examples. By Theorem 4.5.1 the finite product completion and finite coproduct
completion endofunctors of Cat described in Example 4.1.5 preserve sifted colimits.

4.5.3. Examples. In part 3 of [2] Batanin and Berger exhibit various flavours of “operad”
as algebras of polynomial monads over Set. The underlying endo-polynomial in all of their
examples is of the form

I E B Ioo s p // t // (17)

where p is a function with finite fibres. The algebras of the associated monad on Set/I are
the particular flavour of operad under consideration in Set, however for the homotopical
aspects of that work, it is also important to regard (17) as a componentwise discrete
polynomial in Cat. The corresponding 2-monad on Cat/I is familial and opfamilial by
Theorem 4.4.5 and preserves sifted colimits by Theorem 4.5.1.

5. Examples of polynomial 2-monads on Cat

In this section we exhibit the 2-monads

1. M for monoidal categories,

2. S for symmetric monoidal categories,

3. B for braided monoidal categories,

4. Cfin for categories with finite coproducts, and

5. Pfin for categories with finite products

on Cat, as polynomial 2-monads. These are all well-known cartesian 2-monads which
were, for instance, basic examples for Kelly and his collaborators [5, 16, 18], in the es-
tablishment of 2-dimensional monad theory. We recall them as such in Section 5.1, and
then in Section 5.2 exhibit their underlying endofunctors as polynomial. In Section 5.3
we reexpress Johnstone’s idea of bagdomain data, as a way of indirectly exhibiting the
unit and multiplication of a polynomial monad. We apply this method in Section 5.4 to
our examples. Many other examples are exhibited in [33].

5.1. The examples as cartesian 2-monads. Let X be a category. Then the objects
of M(X), S(X), B(X), Cfin(X) and Pfin(X) are the same, namely they are finite sequences
(x1, ..., xn) of objects of X. Denoting n as the discrete category {1, ..., n} with n objects,
we regard a sequence (x1, ..., xn) as a functor x : n→ X.

A morphism x → y in Cfin(X) consists of a function φ and a natural transformation
φ as on the left in

m n

X

φ //

y����x

φ +3

x1 x2 x3 x4

y1 y2 y3

��
φ1



 φ2



φ3

��
φ4
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An alternative point of view is that such a morphism is a function (φ) decorated by the
morphisms of X (the components of φ) as indicated in the example on the right. Since
it is useful to be able to reason precisely from this latter point of view, we make a brief
notational digression.

We denote by S the category whose objects are natural numbers, and whose morphisms
m→ n are functions m→ n. The category S is a skeleton of the category of finite sets and
functions. We denote a sequence (x1, ..., xn) of objects of X alternatively as (xk)1≤k≤n,
or as (xk)k, as convenience dictates. The result of concatenating a sequence of sequences
((xk,l)1≤l≤nk

)1≤k≤m, is denoted (xk,l)k,l. Implicit in this notation is the identification

{(k, l) : 1 ≤ k ≤ m, 1 ≤ l ≤ nk} = {1, ..., n1 + ...+ nm}

via the lexicographic ordering of the former. Given morphisms φ : m1 → m2 and φk :
n1,k → n2,φ(k) in S for 1 ≤ k ≤ m1, we denote by φ(φk)k the morphism Σkn1,k → Σkn2,k

given by (φ(φk)k)(k, l) = (φ(k), φk(l)). In these terms a general morphism of Cfin(X), is
of the form

(φ, (φk)1≤k≤m) : (xk)1≤k≤m −→ (yk)1≤k≤n

where φ : m→ n is in S, and φk : xk → yφk is in X for 1 ≤ k ≤ m. We refer to the datum
φ of such a morphism as the indexing function.

The unit for Cfin is given by the full inclusion of sequences of length 1. On objects
the components µX : C2

fin(X)→ Cfin(X) are given by concatenation of sequences, and on
morphisms by

µX(φ, (φk, (φk,l)l)k) = (φ(φk)k, (φk,l)k,l),

which in intuitive terms, is just substitution of decorated functions. With the notation
provided it is straight forward to verify that (Cfin, η, µ) is a cartesian 2-monad on Cat.

We have already considered a version of this 2-monad in Example 4.1.5. The difference
is that here, we have taken a skeleton of the category of finite sets to index our families,
and have more carefully book-kept the combinatorics. It is straight forward to check that
Cfin is lax idempotent4 and thus to exhibit the pseudo algebras of either version as being
the same, namely, categories with finite coproducts. The virtue of the more pain-staking
approach taken here, is that Cfin is a 2-monad rather than just a pseudo monad.

One defines the 2-monad Pfin as Pfin(X) = Cfin(Xop)op. In direct terms, a morphism
of Pfin(X) is of the form

(φ, (φk)1≤k≤m) : (xk)1≤k≤m −→ (yk)1≤k≤n

where φ : n → m is in S, and φk : xφk → yk is in X for 1 ≤ k ≤ n. This is a
colax idempotent cartesian 2-monad, and its pseudo algebras are categories with finite
products.

The morphisms of the category S(X) are defined to be those of Cfin(X) (or equally
well, of Pfin(X)) whose underlying indexing functions are bijections. It is clear that S is a

4Or in older language, Cfin is a Kock-Zöberlein 2-monad of colimit like variance.
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sub-2-monad of Cfin, and that the inclusion ιSC : S ↪→ Cfin is a cartesian monad morphism.
It follows that S is also a cartesian 2-monad. It is straight forward to verify directly
that pseudo S-algebras are exactly unbiased5 symmetric monoidal categories, and strict
algebras are exactly symmetric strict monoidal categories. Moreover the various notions
of S-morphism – lax, colax, pseudo and strict – correspond to symmetric lax, colax, strong
and strict monoidal functors respectively. Similarly one defines the cartesian 2-monad M
for monoidal categories, by defining the morphisms of M(X) as those of Cfin(X) whose
indexing functions are identities.

As explained in [15] the 2-monad B for braided monoidal categories, there denoted
B o (−), is given similarly as for S, except that the indexing bijections are replaced by
indexing braids, in the definition of the morphisms of B(X). The process of taking the
underlying permutation of a braid, gives a cartesian monad morphism π : B → S, and
so B is also a cartesian 2-monad. Once again the different types of algebras and algebra
morphisms of B reconcile in the expected way with braided (strict) monoidal categories
and braided (lax, colax, strong or strict) monoidal functors. One also has a cartesian
monad morphism ιMB : M → B, whose components can be regarded as the identity on
objects inclusion which regards morphisms of M(X) as identity braids whose strings are
decorated by the morphisms of X. The composite πιMB is denoted ιMS , and its components
regards morphisms of M(X) as identity permutations whose strings are decorated by the
morphisms of X.

To summarise, one has a diagram of cartesian 2-monads and cartesian monad mor-
phisms as on the left

M B S

Cfin

Pfin

ιMB

//
π
//

ιSC 77

ιSP
''

ιMS

""
N B P

S

Sop

// //

77

''

"" (18)

and the result of evaluating at 1 is denoted as on the right. Each monad morphism here
is componentwise an identity on objects, and so in particular each functor on the right is
the identity on objects. On the right one has M(1) = N the natural numbers, B(1) = B
the braid category, S(1) = P the permutation category, and so on. Recall, the non-empty
hom-sets of P are P(n, n) = Σn, where Σn is the group of permutations of n elements, and
similarly, B(n, n) is Brn, the n-th braid group. In this section we shall establish that the
left diagram of (18) is a diagram of polynomial 2-monads and morphisms thereof.

5.2. Underlying endofunctors as polynomial functors. We denote by S∗ the
coslice 1/S, whose objects may be regarded as pairs (i, n) where n ∈ N and 1 ≤ i ≤ n,
with i regarded as a “chosen basepoint”. A morphism (i,m) → (j, n) of S∗ is thus a

5This means that an n-ary tensor product is defined for all n, and invertible coherence maps are
given. The coherence theorems one has available enable one to identify these with symmetric monoidal
categories defined in the usual biased way, with a unit and binary product, and so we regard pseudo
S-algebras as symmetric monoidal categories, disregarding the biased/unbiased distinction.
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function f : m → n such that fi = j. By definition, S∗ comes with a forgetful functor
US : S∗ → S, and US is a discrete opfibration with finite fibres. The fibre over n ∈ S may
be identified with the set n = {1, ..., n}. Since US is a discrete opfibration, and (US)op is
a discrete fibration, US and (US)op are exponentiable functors.

5.2.1. Lemma. The underlying endofunctors of Cfin and Pfin are the result of applying
PCat to

1 S∗ S 1oo US
// // 1 Sop

∗ Sop 1oo (US)op

// //

respectively.

Proof. We give the proof for Cfin, the case of Pfin follows similarly. Provisionally we
write P for the 2-functor corresponding to the polynomial on the left in the above display.
By definition one has

1 S∗ S 1

X X × S∗

P∗X PX

oo
US

// //

oo

��
pX��

��

//

qX

�� ��

dpb

pb

(19)

and we now proceed to identify PX with Cfin(X). An object of PX may be regarded as
a functor h : [0] → PX, and thus also as a pair n : [0] → S together with h : [0] → PX
such that qh = n. By ∆US a ΠUS and since qX = ΠUS(pX), such an h is in bijection with
k : (US)−1{n} → X × S∗ over S∗, but this in turn is just an n-tuple (x1, ..., xn) of objects
of X. Thus an object of PX is a pair (n, x) where n ∈ N and x : n → X. Similarly
regarding arrows of PX as functors [1] → PX and using the adjointness ∆US a ΠUS in
the same way, one finds that a morphism (m,x)→ (n, y) of PX consists of φ : m→ n in
S together with φ as in

m n

X

φ //

y����x

φ +3

and so P and Cfin agree on objects. Note that P∗X also has an easy explicit description.
Namely, an object is a triple (i, n, x) where (n, x) ∈ PX and 1 ≤ i ≤ n, and a morphism
(i,m, x) → (j, n, y) consists of φ and φ as above making (φ, φ) : (m,x) → (n, y) a
morphism of PX, such that φi = j. Moreover, all the functors participating in (19) also
admit straight forward direct descriptions in these terms.

We must now verify that Pf = Cfin(f) for f : X → Y . Note that Pf is induced
from f by the pullbacks and distributivity pullbacks that go into defining PX and PY ,
whereas Cfin(f) is the functor described by composing with f , that is on objects one has
Cfin(f)(n, x) = (n, fx). Let us define Cfin∗(f) : P∗X → P∗Y to be the functor given on
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objects by (i, n, x) 7→ (i, n, fy). By the uniqueness aspects of the universal properties of
the pullbacks and distributivity pullbacks involved in defining PY , it suffices to show that

X × S∗ P∗X PX

S

PYP∗YY × S∗

oo //
qX

''
77

qY
//oo

��

f×1S∗ Cfin∗(f)

��

Cfin(f)

��

commutes. Given that everything in this diagram has been made so explicit, this is a
straight forward calculation.

The functor (ιSC)1 : P → S is the inclusion of the maximal subgroupoid of S, and
similarly (ιSP )1 is also a maximal subgroupoid inclusion. We define P∗ as the maximal
subgroupoid of S∗. It comes with a forgetful functor UP : P∗ → P. Equivalently, P∗ = 1/P.
The functor UP fits into pullback squares in

P∗ P

SS∗

UP
//

(ιSC)1

��
//

US

��
pb1 1

ww
gg

''
77

P∗ P

SopSop
∗

UP
//

(ιSP )1

��
//

(US)op

��
pb1 1

ww
gg

''
77

By Propositions 3.3.6 and 4.1.6 the underlying endofunctor of S is a polynomial 2-functor,
and one may regard these morphisms of polynomials as corresponding to the 2-natural
transformations ιSC and ιSP . Similarly by pulling back along π1 and (ιMS )1, one defines
UB : B∗ → B and UN : N∗ → N, exhibits B and M as polynomial 2-functors, and π, ιMS
and ιMB as arising from morphisms of polynomials. To summarise, we have

5.2.2. Corollary. At the level of the underlying endofunctors, the left diagram of (18)
is in the essential image of PCat.

To establish that (18) is a diagram of polynomial 2-monads and morphisms thereof, one
way to proceed would be to write down the polynomial monad structures for Cfin and Pfin

explicitly, and then use Proposition 4.1.6. To avoid computations involving composites
of such polynomials, for instance when verifying monad axioms, we use an alternative
approach. This approach is described in general in the next section, and applied to our
examples in Section 5.4.

5.3. Bagdomain data as polynomial monad structures. The construction of the
finite coproduct and finite product completion were seen to underlie polynomial pseudo
monads in Cat in Example 4.1.5. However as explained in Section 5.1 these constructions
underlie 2-monads, and a framework for these is described in this section. It is little more
than an explicit encoding of some of the developments of Section 2 of [13], in the language
of polynomials.

Recall that when a category E has pullbacks the codomain functor cod : E [1] → E is a
fibration, and that a morphism of E [1] is cod-cartesian if and only if its underlying square
in E is a pullback square.
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5.3.1. Definition. Let E be a category with pullbacks and p : E → B be a morphism
therein. Then a p-fibration is a cod-cartesian arrow into p, and a morphism of p-fibrations
is a morphism in E [1] ↓ p between p-fibrations.

As such a p-fibration consists of an arrow f : X → Y of E together with (u, v) fitting
into a pullback square

X Y

BE

f //

v
��
//

p

��
u pb

X1 Y1

Y2X2

f1 //

v3

��
//

f2

��
u3 pb

as on the left. In this context we say that (u, v) is a p-fibration structure on f . For a
morphism of p-fibrations (f1, u1, v1)→ (f2, u2, v2) one has morphisms u3 and v3 as on the
right in the previous display such that u3u2 = u1 and v3v2 = v1. Clearly, u3 is uniquely
determined by v3 and the universal property of the pullback containing (f2, u2, v2), and
so in minimalistic terms, (u3, v3) amounts to v3 : Y1 → Y2 over B.

5.3.2. Example. Let E = Set and regard UN : N∗ → N ∈ Set. Explicitly, N∗ = {(i, j) :
i ∈ N, 1 ≤ j ≤ i} and UN(i, j) = i. Observe that for n ∈ N, |(UN)−1{n}| = n. To give
a function f : X → Y the structure of a UN-fibration is by definition to give functions u
and v fitting into a pullback square

X Y

NN∗

f //

v
��
//

UN

��
v pb

and so f must have finite fibres since UN does. Moreover for y ∈ Y such that f−1{y} = n,
u restricts to a bijection uy between f−1{y} and (UN)−1{n}, and so amounts to a linear
order on f−1{y}. Conversely given a function f : X → Y with finite fibres and a linear
order on each fibre, one determines v by the formula vy = |f−1{y}|, and then u by taking
ux = (n, i), where n = |f−1{fx}| and i is x’s position in the linear order on f−1{fx}.
Thus a UN-fibration is a function with finite fibres together with a linear order on each
fibre.

Recall that a double category (resp. double functor) is a category (resp. functor)
internal to CAT. Given a category E we denote by D(E) the double category as on the
left

E [2] E [1] EidEoo
domE //

codE
//

//
compE //

// X1 X0

d1 //

d0

//

whose objects are those of E , vertical arrows and horizontal arrows are morphisms of E ,
and squares are commutative squares in E . Any double category X has, by forgetting
horizontal identities and compositions, an underlying graph internal to CAT, consisting
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of the source and target functors as on the right in the previous display. Our conventions
are that X0 is the category of objects and vertical arrows, and X1 is the category of
horizontal arrows and squares between them.

In the context of Definition 5.3.1 we define

Up : D(p) −→ D(E)

a graph morphism internal to CAT, as follows. The category D(p)0 of objects and vertical
arrows of D(p) is E , and (Up)0 = 1E . The category D(p)1 of horizontal arrows and squares
of D(p), is the category of p-fibrations and their morphisms. Every p-fibration has an
underlying arrow of E , and every morphism of p-fibrations has an underlying square, the
assignations of which provide (Up)1.

5.3.3. Theorem. Let E be a category with finite limits and p : E → B an exponentiable
morphism therein. There is a bijection between the following types of data:

1. Unit and multiplication 2-cells in PolyE making

1 E B 1oo p // //

the underlying endoarrow of a monad in PolyE .

2. Double category structures on D(p) making Up a double functor.

Proof. We denote by P : 1 → 1 the endoarrow of (1). To give the data of a 2-cell
u : 11 → P in PolyE is to give (u1, u2) fitting into a pullback square

1 1

BE

//

u1

��
//

p

��
u2 pb

X X

11

1X //

��
//

��
pb

X X

YY

1X //

f
��
//

1Y

��
f pb

as on the left. Given this data any identity arrow 1X : X → X acquires the structure of
a p-fibration, namely that which makes the square on the middle in the previous display
a morphism 1X → 11 of p-fibrations. Given a morphism f : X → Y of E , with respect
to these p-fibration structures on identity arrows, the square on the right in the previous
display is clearly a morphism of p-fibrations. Thus one has a functor idp : E → D(p)1

such that (Up)1idp = idE . Conversely, such a functor amounts to assigning a p-fibration
structure to each identity map in such a way that for all f : X → Y the right square
above is a morphism of p-fibrations. Thus in particular there is a p-fibration structure on
11, which amounts to (u1, u2) as on the left in the previous display. The processes just
described are easily verified to exhibit a bijection between 2-cells u : 11 → P of PolyE
and functors idp as above.

To give a functor compp : D(p)1×ED(p)1 → D(p)1 such that (Up)1compp = compE(Up)2,
where (Up)2 is induced in the evident way using (Up)1, is to give, for each composable pair
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f : X → Y , g : Y → Z in E together with p-fibration structures on f and g, a p-fibration
structure on the composite gf , and that this assignation be functorial. This functoriality
means that given morphisms of p-fibrations (u, v) : f → f ′ and (v, w) : g → g′ as in

X Y Z

Z ′Y ′X ′

f // g //

w
��
//

g′
//

f ′

��
u v

��

the composite square underlies a p-fibration morphism (u,w) : gf → g′f ′.
Suppose that a 2-cell m : P ◦P → P in PolyE is given. Then given also a composable

pair f : X → Y , g : Y → Z in E together with p-fibration structures on f and g, one has

1 E B 1 E B 1

B × E

F B(2)E(2)

X Y Z

oo
p
// // oo

p
// //

��

��

πE

����

// //

���� ��

f
//

g
//

WW __ ?? GG

pb dpb

pb

pb pb

WW

II OOOO

in which the lower pullback squares witness the p-fibration structures on f and g. By
the universal property of B × E one induces the unique arrow Y → B × E commuting
with the morphisms into B and E. Thus the bottom right pullback is around (p, πE),
and so by the distributivity pullback one induces the morphisms Y → F and Z → B(2).
Finally using the top right pullback one induces X → E(2). The squares (X, Y, F,E(2))
and (Y, Z,B(2), F ) so arising are pullbacks, and so the composite pullback

X Y Z

B(2)FE(2)

f // g //

��
////

�� ��
pb pb

E B

m1

��
//

p

��
m2 pb

exhibits a p-fibration structure on gf , and so we have described the object map of the
functor compp.

The composite p(2) : E(2) → B(2) is the middle map of the composite polynomial P ◦P .
When f and g are the morphisms E(2) → F and F → B(2) respectively, the top row of
vertical arrows in the previous display are identities, and so one has a p-fibration structure
on p(2). Moreover for general f and g, the composite of the top pullbacks of the previous
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display exhibits a morphism gf → p(2) of p-fibrations. From

1 E B 1 E B 1

B × E

F B(2)E(2)

X ′ Y ′ Z ′

oo
p
// // oo

p
// //

��

��

πE

����

// //

���� ��

f ′ // g′ //

WW __ ?? GG

pb dpb

pb

pb pb

WW

II OOOO

X Y Z
f

//
g

//

w

OO
v

OO
u

OO
pb pb

in which (u, v) and (v, w) are morphisms of p-fibrations, (u,w) is a morphism gf → g′f ′ of
p-fibrations, thus giving the arrow map for compp. In this way from a 2-cell m : P ◦P → P
in PolyE , one obtains the functor compp such that (Up)1compp = compE(Up)2.

Conversely given compp, the pullbacks appearing in the formation of P ◦ P exhibit

p-fibration structures on E(2) → F and F → B(2), and applying compp to this composable

pair gives a p-fibration structure to p(2), which amounts to the components (m1,m2) of a
2-cell m : P ◦ P → P . It is straight forward to verify that the processes described here
exhibit a bijection between such 2-cells and such functors compp. The straight forward
verification that the unit and associative laws for u and m correspond with the unit and
associative laws for horizontal composition in the double category D(p) is left to the
reader.

It was the data of Theorem 5.3.3(1) that Johnstone named bagdomain data in Defini-
tion 2.1 of [13].

5.3.4. Remark. In the context of Theorem 5.3.3, one can consider polynomials as on
the left

I X Y Joo s f // t // I

X1 Y1

J

Y2X2

ww
s1

f1 //
t1

''
77

t2//
f2

s2

gg u

��

v

��

pb= =

in which the middle map f has the structure of a p-fibration, morphisms thereof as on the
right in which the middle pullback square is a morphism of p-fibrations. We call such a
polynomial a p-structured polynomial from I to J . By definition the process of pulling back
in E carries along p-fibration structures, and by Theorem 5.3.3 one has a composition of p-
fibrations. Thus composition in PolyE can be extended to a composition of p-structured
polynomials. In this way one has a bicategory Polyp, whose 1-cells are p-structured
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polynomials, together with a strict homomorphism of bicategories Polyp → PolyE , and
the polynomial

1 E B 1oo p // //

is by definition terminal in the hom category Polyp(1, 1). The monad structure it acquires
is by definition that of Theorem 5.3.3. Thus for any category E with finite limits, any
monad in PolyE on 1 arises in a manner analogous to the process described in Example
4.1.5.

5.3.5. Example. By concatenating linear orders on fibres, UN-fibrations as characterised
in Example 5.3.2 can be composed, and this composition is functorial with respect to
morphisms of UN-fibrations. The polynomial monad one gets by Theorem 5.3.3 is the
monoid monad on Set. Regarding UN as a functor between discrete categories and arguing
the same way, one recovers the monad M on Cat.

5.4. Exhibiting the examples. The foregoing discussion is adapted to the 2-categorical
context in the following way. For an exponentiable morphism p : E → B in a 2-category
K with pullbacks, we define p-fibrations and morphisms thereof as in Definition 5.3.1.
Given p-fibrations (f1, u1, v1) and (f2, u2, v2) and morphisms thereof as in

X1 Y1

BE

f1 //

v1

��
//

p

��
u1 pb

X2 Y2

BE

f2 //

v2

��
//

p

��
u2 pb

X1 Y1

Y2X2

f1 //

v3

��
//

f2

��
u3 pb

X1 Y1

Y2X2

f1 //

v4

��
//

f2

��
u4 pb

X1 Y1

Y2X2

f1 //

v4

��
//

f2

��

u4

v3 ����u3

α 08 β 08

a 2-cell (u3, v3) → (u4, v4) is a pair (α, β) such that the cylinder on the right commutes,
and u2α = id and v2β = id. In minimalistic terms using the 2-dimensional universal
property of pullbacks, (α, β) is determined by the 2-cell β over B.

We call a category (resp. functor) internal to 2-CAT a double 2-category (resp. double
2-functor). For any 2-category K one has the double 2-category D(K)

K[2] K[1] K.idKoo
domK //

codK
//

//
compK //

//

In the situation where K has pullbacks and p is as above, the graph morphism Up :
D(p) → D(K) internal to 2-CAT is defined analogously to the definition given above
with D(p)0 = K, (Up)0 = 1K, D(p) is the 2-category of p-fibrations as just defined and
(Up)1 is the evident forgetful 2-functor. The following result is proved in the same way
as Theorem 5.3.3 with the 2-dimensional universal properties one now has providing the
additional required information.

5.4.1. Theorem. Let K be a 2-category with finite limits and p : E → B be an exponen-
tiable morphism therein. There is a bijection between the following types of data:
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1. Unit and multiplication 2-cells in PolyK making

1 E B 1oo p // //

the underlying endoarrow of a 2-monad in PolyK.

2. Double 2-category structures on D(p) making Up a double 2-functor.

There is also a version of this result useful for exhibiting morphisms of polynomial
2-monads. Given a pullback square

E1 B1

B2E2

p1 //

v
��
//

p2

��
u pb

in K in which p1 and p2 are exponentiable, composing with this pullback square is the
effect on objects of a 2-functor D(u, v)1 : D(p1) → D(p2). Defining D(u, v)0 : K → K to
be the identity, one has a graph morphism D(u, v) : D(p1) → D(p2) internal to 2-CAT
over D(K). It is straight forward to extend the proof of Theorem 5.4.1 to a proof of

5.4.2. Theorem. In the context just described, there is a bijection between the following
types of data:

1. Unit and multiplication 2-cells on in PolyK making

1

E1 B1

1

E2B2

ww

p1 //

''
77

//
p2

gg u

��

v

��

pb

the underlying endoarrow of a morphism of 2-monads in PolyK.

2. Double 2-category structures on D(p1) and D(p2) making Up1, Up2 and D(u, v) double
2-functors.

We now have sufficiently many tools to enable us to witness the diagram (18) as being
a diagram of polynomial 2-monads. First we shall understand some of the relevant double
2-categories of p-fibrations for appropriate p. Recall from the definition of UP : P∗ → P
given in Section 5.2, that P is the permutation category, and that P∗ has objects those of
N∗ as described explicitly in Example 5.3.2. An arrow (m, i)→ (n, j) of P∗ can only exist
when m = n, in which case it is a permutation ρ ∈ Σn such that ρi = j. The forgetful
functor UP is a discrete fibration of groupoids with finite fibres.
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5.4.3. Lemma.

1. To give a UP-fibration is to give a functor f : X → Y which is a discrete fibration
and a discrete opfibration with finite fibres, together with a linear order on each fibre.

2. Given UP-fibrations f1 : X1 → Y1 and f2 : X2 → Y2, a to give a morphism f1 → f2

of UP-fibrations is to give a pair (h, k) of functors fitting into a pullback square as
on the left

X1 Y1

Y2X2

f1 //

k
��
//

f2

��
h pb

X1 Y1

Y2.X2

f1 //

k2

��
//

f2

��
h2

k1 ����h1

α 08 β 08

such that for all y ∈ Y1, h|f−1
1 {y}

: f−1
1 {y} → f−1

2 {ky} is order preserving.

3. Given f1 and f2 as in (2), and morphisms (h1, k1) and (h2, k2) of UP-fibrations,
to give a 2-cell (h1, k1) → (h2, k2) in D(UP)1 is to give a pair (α, β) fitting into a
commutative cylinder as on the right in the previous display.

Proof. In each case we shall explain how to go from UP-fibrations, morphisms or 2-cells
thereof to the data described in the statement, and how to go back, leaving to the reader
the straight forward task of showing that these processes give the required bijections.

(1): To give a functor f : X → Y the structure of a UP-fibration is by definition to
give functors u and v fitting into a pullback square

X Y

P.P∗

f //

v
��
//

UP

��
u pb

(20)

Thus f is a discrete fibration and a discrete opfibration with finite fibres since UP is, and
these properties on a functor are pullback stable. For y ∈ Y , writing n = vy, because of
the pullback (20) on objects, u restricts to a bijection between f−1{y} and (UP)−1{n},
this latter set being {(n, 1), ..., (n, n)} in explicit terms. But to give such a bijection is
to give a linear order on f−1{y}, by taking the i-th element of f−1{y} to be the element
sent to (n, i) by the bijection.

Conversely suppose one has a functor f : X → Y which is a discrete fibration and
a discrete opfibration with finite fibres, together with a linear order on each fibre. For
y ∈ Y one can define vy = |f−1{y}|. Putting n = vy and denoting the linearly ordered
set f−1{y} as {x1 < ... < xn}, for 1 ≤ i ≤ n we define uxi = (n, i). For β : y → y′ in Y ,
the unique lifting property f enjoys by being a discrete opfibration provides a function
f−1{y} → f−1{y′}, the unique lifting property f enjoys by being a discrete fibration
provides a function f−1{y′} → f−1{y}, and the uniqueness of these lifting properties
ensures that these functions are mutually inverse. Let n = vy = vy′ and denote by
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{x1 < ... < xn} and {x′1 < ... < x′n} the linearly ordered sets f−1{y} and f−1{y′}
respectively. The lifting properties just described give us, for 1 ≤ i ≤ n, a morphism
αi : xi → x′ρi of X, and the above bijection f−1{y} → f−1{y′} is given by xi 7→ x′ρi. Thus
ρ ∈ Σn, and we define vβ = ρ and uαi to be ρ : (n, i)→ (n, ρi).

(2): We write (u1, v1) and (u2, v2) for the morphisms which exhibit the UP-fibration
structures of f1 and f2 respectively. By definition a morphism f1 → f2 of UP-fibrations
determines (h, k) fitting into a pullback square as in the statement, and the equation
u2h = u1 restricted to f−1{y}, implies that h|f−1

1 {y}
is order preserving.

Conversely suppose that one has (h, k) as in the statement. We must verify that
u2h = u1 and v2k = v1. For y ∈ Y1 one has

v1y = |f−1
1 {y}| = |f−1

2 {ky}| = v2ky

in which the first and third equalities follow from the definitions of v1 and v2, and the
second equality follows by the pullback of the statement on objects. Writing x1,i (resp.
x2,i) for the i-th element of f−1

1 {y} (resp. f−1
2 {y}), one has

u1x1,i = (n, i) = u2x2,i = u2hxi

where n = v1y = v2ky and x2,i is the i-th element of f−1
2 {ky}, in which the first and

second equalities follow by the definition of u1 and u2, and the third equality follows since
f2h = kf1 and h is order preserving on the fibres of f1.

For β : y → y′ in Y1, we denote by x1,i, x2,i, x
′
1,i and x′2,i the i-th element of f−1

1 {y},
f−1

2 {ky}, f−1
1 {y′} and f−1

2 {ky′} respectively. As in (1) we have α1,i : x1,i → x′1,ρ1i
such

that f1α1,i = β, and α2,i : x2,i → x′2,ρ2i
such that f2α2,i = kβ, where n = v1y = v1y

′ and ρ1,
ρ2 ∈ Σn. We must show that v2kβ = v1β, that is that ρ1 = ρ2, and that u2hα1,i = u1α1,i

for all 1 ≤ i ≤ n. But since hα1,i : hx1,i → hx′1,ρ1i
, hx1,i = x2,i, hx

′
1,ρ1i

= x′2,ρ1i
, and

f2hα1,i = kβ, these equations follow from the uniqueness of lifts for f2.
(3): By definition a 2-cell (h1, k1) → (h2, k2) of D(UP)1 consists of (α, β) of the

statement making the cylinder commute, and moreover verifying u2α = id and v2β = id.
It suffices to show that these last two equations are automatic.

Let y ∈ Y1 and denote by {x1 < ... < xn} the linearly ordered fibre f−1
1 {y}. We have

βy : k1y → k2y in Y2, and for 1 ≤ i ≤ n, we have αxi : h1xi → h2xi in X2. By the
commutativity of the cylinder f2αxi = βy. By the definition of v2 on arrows, one has
v2βy = id, and so by the definition of u2 on arrows, one has u2αxi = id as required.

Thanks to Lemma 5.4.3 we have an explicit description of graph D(UP) internal
to 2-CAT and of the internal graph morphism UUP , which involves forgetting the UP-
fibration structures. Similarly one can understand

UUS : D(US) −→ D(Cat) UUSop : D(USop
) −→ D(Cat)

by analysing what US-fibrations (resp. USop
-fibrations) and their morphisms amount to.

To give a functor f : X → Y a US-fibration (resp. USop
-fibration) structure, is to exhibit

it as a discrete opfibration (resp. discrete fibration) with finite fibres, and to give a linear
order on each fibre. Via the pullback squares relating UP, US and USop

, one has internal
graph morphisms D(ιSC) : D(UP)→ D(US) and D(ιSP ) : D(UP)→ D(USop

) over D(Cat).
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5.4.4. Theorem. The diagram

M B S

Cfin

Pfin

ιMB

//
π
//

ιSC 77

ιSP
''

ιMS

""

described in (18) Section 5.1, is a diagram of polynomial 2-monads and morphisms thereof.

Proof. Any identity functor has a unique UP-fibration structure. Given UP-fibrations
f : X → Y and g : Y → Z, the composite gf is a discrete fibration and discrete opfibration
whose fibres are finite. For any z ∈ Z, an element of the fibre (gf)−1{z} may be identified
as a pair (x, y), where y ∈ g−1{z} and x ∈ f−1{y}. Defining (x1, y1) ≤ (x2, y2) if and only
if y1 < y2 or y1 = y2 and x1 ≤ x2, provides (gf)−1{z} with a linear order. Thus there
is an evident composition of UP-fibrations. Thus D(UP) acquires a double 2-category
structure making UUP : D(UP) → D(K) a double 2-functor. Moreover UUS , UUSop , D(ιSC)
and D(ιSP ) are easily witnessed as double 2-functors, thanks to our explicit understanding
of UP-fibrations, US-fibrations and USop

-fibrations. Thus Cfin, Pfin and S are polynomial
2-monads and ιSC and ιSP are morphisms thereof, by Theorems 5.4.1 and 5.4.2. To exhibit
B, M, π and ιMB as polynomial, we appeal to Proposition 4.1.6 and Corollary 5.2.2, using
the fact that S is a polynomial 2-monad.

Having exhibited these examples as polynomial, Theorems 4.4.5 and 4.5.1 enable us
to read off some of their categorical properties.

5.4.5. Corollary.

1. All the 2-monads of Theorem 5.4.4 are sifted colimit preserving.

2. [34] M, B and S are familial and opfamilial, Cfin is familial, and Pfin is opfamilial.

3. ιSC is a familial 2-monad morphism, ιSP is an opfamilial 2-monad morphism, and all
the other morphisms of Theorem 5.4.4 are both familial and opfamilial.
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
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