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FINITE CATEGORIES WITH PUSHOUTS

D. TAMBARA

Abstract. Let C be a finite category. For an object X of C one has the hom-functor
Hom(−, X) of C to Set. If G is a subgroup of Aut(X), one has the quotient functor
Hom(−, X)/G. We show that any finite product of hom-functors of C is a sum of hom-
functors if and only if C has pushouts and coequalizers and that any finite product of
hom-functors of C is a sum of functors of the form Hom(−, X)/G if and only if C has
pushouts. These are variations of the fact that a finite category has products if and only
if it has coproducts.

1. Introduction

It is well-known that in a partially ordered set the infimum of an arbitrary subset exists
if and only if the supremum of an arbitrary subset exists. A categorical generalization
of this is also known. When a partially ordered set is viewed as a category, infimum
and supremum are respectively product and coproduct, which are instances of limits and
colimits. A general theorem states that a category has small limits if and only if it has
small colimits under certain smallness conditions ([Freyd and Scedrov, 1.837]).

We seek an equivalence of this sort for finite categories. As finite categories having
products are just partially ordered sets, we ought to replace the existence of product by
some weaker condition.

Let C be a category. For an object X of C, hX denotes the hom-functor Hom(−, X) of
C to the category Set. A functor Cop → Set is said to be representable if it is isomorphic
to hX for some X. A functor is said to be familially representable if it is isomorphic to a
sum of hom-functors hX ([Carboni and Johnstone]). For a subgroup G of Aut(X), hX/G
denotes the quotient of hX by the induced action of G. We say a functor Cop → Set is
nearly representable if it is isomorphic to hX/G for some X and G.

Existence of product of objects X and Y of C is phrased as representability of hX×hY .
Using familial representability and near representability, we obtain the following results
for a finite category C. Firstly any finite product of hom-functors of C is familially
representable if and only if C has pushouts and coequalizers; secondly any finite product
of hom-functors is a sum of nearly representable functors if and only if C has pushouts.

In Sections 2 and 3 basic properties of nearly representable functors and their rela-
tions to weak pushouts are discussed. In Section 4 we prove a result about connected
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components of powers of a set-valued functor. In Section 5 we prove the above-mentioned
results. In Section 6 we give a construction of a finite category having pushouts and
coequalizers by using powers of a functor. In Section 7 we give an example of a finite
category having pushouts based on a partially ordered set with group action.

2. Nearly representable functors

Let C be a category. The category of sets is denoted by Set. The category of functors
Cop → Set is denoted by [Cop,Set]. Limits and colimits in this category are given
pointwise. For instance, the product F×F ′ of F, F ′ ∈ [Cop,Set] is given by (F×F ′)(X) =
F (X) × F ′(X). A final object of [Cop,Set] is the functor 1 given by 1(X) = {1} for all
X ∈ C. The sum F

∐
F ′ of F and F ′ is given by (F

∐
F ′)(X) = F (X)

∐
F ′(X), and an

initial object is the functor ∅ given by ∅(X) = ∅.
If a group G acts on a set E, E/G denotes the quotient set of E under the action. If

G acts on a functor F ∈ [Cop,Set], F/G denotes the quotient functor of F : (F/G)(X) =
F (X)/G for X ∈ C. For an object X of C, hX denotes the hom-functor Hom(−, X) on C.
If G acts on an object X of C, then G acts on hX so we have the quotient hX/G. We call
a functor isomorphic to hX/G a nearly representable functor. For a functor F :Cop → Set
and an object Z of C, an element c ∈ F (Z) corresponds to a morphism γ:hZ → F
by Yoneda’s Lemma. If a subgroup G of Aut(Z) leaves c invariant, then γ induces a
morphism hZ/G → F . Thus a G-invariant element in F (Z) bijectively corresponds to a
morphism hZ/G→ F .

2.1. Proposition. Let G be a subgroup of Aut(X). Let NAut(X)(G) denote the normal-
izer of G in Aut(X). Then we have an isomorphism of groups

Aut(hX/G) ∼= NAut(X)(G)/G.

Proof. The action of NAut(X)(G) on hX passes to the action on hX/G. This yields the
homomorphism NAut(X)(G) → Aut(hX/G), which we call θ. One sees Ker θ = G. To
show the surjectivity of θ, take any automorphism α:hX/G → hX/G. Then α lifts to a
morphism hX → hX , which comes from a morphism σ:X → X. Similarly α−1 lifts to a
morphism hX → hX , which comes from some σ′:X → X. Then σ′σ induces the identity
on hX/G, so σ′σ ∈ G. Thus σ is an automorphism. Also for any τ ∈ G, στσ−1 induces
the identity on hX/G, so στσ−1 ∈ G. Thus σ normalizes G. As θ(σ) = α, we conclude
that θ is surjective. Hence the desired isomorphism follows.

From this we obtain the following.

2.2. Proposition. Let H be a subgroup of Aut(hX/G). Let H̃ be the inverse image
of H under the natural map NAut(X)(G) → Aut(hX/G). Then we have an isomorphism

(hX/G)/H ∼= hX/H̃.
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An object F ∈ [Cop,Set] is said to be connected if F 6= ∅ and if F ∼= F1 q F2 implies
F1 = ∅ or F2 = ∅. Representable functors are connected and so are images of them,
especially nearly representable functors.

Let F1, . . . , Fn be connected objects of [Cop,Set] and put F = F1

∐
· · ·

∐
Fn. Let G

be a subgroup of Aut(F ). Then for σ ∈ G and i ∈ {1, . . . , n} there exist σ(i) ∈ {1, . . . , n}
and σi:Fi → Fσ(i) such that σ is the sum of σi for i = 1, . . . , n. The map (σ, i) 7→ σ(i)
defines an action of G on {1, . . . , n}. Let Gi = {σ ∈ G | σ(i) = i}. The map σ 7→ σi gives
a homomorphism Gi → Aut(Fi). Take a representative R of G-orbits in {1, . . . , n}. Then

F/G ∼=
∐
i∈R

Fi/Gi.

Using this fact and the preceding proposition, we have the following.

2.3. Proposition. If F is a finite sum of nearly representable functors and G is a
subgroup of Aut(F ), then F/G is a finite sum of nearly representable functors.

We next review comma categories ([MacLane]). Let F :Cop → Set be a functor. One
has the comma category C/F . An object of C/F is a pair (X, a) for X ∈ C and a ∈ F (X).
A morphism (X, a)→ (Y, b) of C/F is a morphism u:X → Y of C such that F (u)(b) = a.
We note that C/F is usually called the category of elements of F .

One has also the comma category [Cop,Set]/F . An object of [Cop,Set]/F is a mor-
phism K → F of [Cop,Set]. A morphism (K → F ) → (K ′ → F ) of [Cop,Set]/F is a
morphism K → K ′ of [Cop,Set] making the triangle commutative.

As is well-known, [Cop,Set]/F is equivalent to [(C/F )op,Set]. An equivalence
Φ: [Cop,Set]/F → [(C/F )op,Set] is given as follows. Let u:K → F be an object of
[Cop,Set]/F . Then Φ(u): (C/F )op → Set is defined by

Φ(u)(X, a) = u(X)−1(a) for (X, a) ∈ C/F .

We note that u is an isomorphism in [Cop,Set] if and only if the unique morphism
Φ(u)→ 1 of [(C/F )op,Set] is an isomorphism.

Let an element c ∈ F (Z) correspond to a morphism γ:hZ → F . Then we have

Φ(γ) = h(Z,c)

in [(C/F )op,Set]. Furthermore let a subgroup G of Aut(Z) leave c invariant. Then
γ:hZ → F induces γ̃:hZ/G→ F , and also G ⊂ Aut(Z, c). Then we have

Φ(γ̃) = h(Z,c)/G.

2.4. Proposition. Let F :Cop → Set be a functor. Then F is a sum of nearly rep-
resentable functors if and only if 1: (C/F )op → Set is a sum of nearly representable
functors.
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Proof. Let Zi be objects of C and ci ∈ F (Zi). Let Gi be a subgroup of Aut(Zi) leaving
ci invariant. Then ci induces γ̃i:hZi/Gi → F . These morphisms sum to a morphism
u:
∐

i hZi/Gi → F . Then

Φ(u) =
∐
i

h(Zi,ci)/Gi.

Therefore u is an isomorphism if and only if the unique morphism
∐

i h(Zi,ci)/Gi → 1 is
an isomorphism. This proves the proposition.

For a full subcategory D of C, we consider the following conditions.
(F0) If X ∈ C, there exists a morphism X → Y with Y ∈ D.
(F1) If f1:X → Y1 and f2:X → Y2 are morphisms with Y1, Y2 ∈ D, then there exists a
morphism g:Y1 → Y2 such that f2 = gf1.
(F2) If f1:X → Y and f2:X → Y are morphisms with Y ∈ D, then f1 = f2.

The conjunction of (F0) and (F1) is a stronger condition than the finality of D in C
([MacLane]).

2.5. Proposition. (F1) implies that D is a groupoid.

Proof. Let f :Y1 → Y2 be a morphism with Y1, Y2 ∈ D. By (F1) applied to f :Y1 → Y2
and 1Y1 :Y1 → Y1, we have g:Y2 → Y1 such that 1Y1 = gf . Thus every morphism of D has
a left inverse. It then follows that every morphism of D is an isomorphism.

We note that under the assumption of (F1), D satisfies (F2) if and only if Aut(Y ) = 1
for all Y ∈ D.

2.6. Proposition. Let C be a category and D a subcategory satisfying (F0) and (F1).
Let {Zi} be a representative system of isomorphism classes of objects of D. Then

1 ∼=
∐
i

hZi/Aut(Zi)

in [Cop,Set].

Proof. We could use a well-known theorem on a final subcategory ([MacLane, p.217]),
but we argue directly. It is enough to show that for every X ∈ C there exists a unique
i such that #Hom(X,Zi)/Aut(Zi) = 1 and Hom(X,Zj) = ∅ for all j 6= i. Let X ∈ C.
Using (F0), we take i such that Hom(X,Zi) 6= ∅. By (F1) Aut(Zi) acts on Hom(X,Zi)
transitively. So Hom(X,Zi)/Aut(Zi) is a one-element set. Let Hom(X,Zj) 6= ∅. Then by
(F1) Zi ∼= Zj, so j = i. The uniqueness of i is clear.

2.7. Proposition. Let {Zi} be a family of objects of C. Let Gi be a subgroup of Aut(Zi).
Assume we have an isomorphism

1 ∼=
∐
i

hZi/Gi

in [Cop,Set]. Then {Zi} satisfies (F0) and (F1).
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Proof. For any X ∈ C there exists a unique i such that #Hom(X,Zi)/Aut(Zi) = 1 and
Hom(X,Zj) = ∅ for all j 6= i. (F0) surely holds. To see (F1), let f1:X → Zi1 , f2:X → Zi2
be morphisms. Then i1 = i2. Moreover there exists g ∈ Gi1 with f2 = gf1. Hence (F1)
holds.

2.8. Proposition. Let F :Cop → Set be a functor. The category C/F has a subcategory
satisfying (F0) and (F1) if and only if F is a sum of nearly representable functors.

Proof. This follows from Propositions 2.6, 2.7, and 2.4.

Propositions 2.6, 2.7 and 2.8 specialize to the following well-known facts.

2.9. Proposition. Let C be a category and D a subcategory satisfying (F0), (F1) and
(F2). Let {Zi} be a representative system of isomorphism classes of objects of D. Then

1 ∼=
∐
i

hZi

in [Cop,Set].

2.10. Proposition. Let {Zi} be a family of objects of C. Assume we have an isomor-
phism

1 ∼=
∐
i

hZi

in [Cop,Set]. Then {Zi} satisfies (F0), (F1) and (F2).

2.11. Proposition. Let F :Cop → Set be a functor. The category C/F has a subcategory
satisfying (F0), (F1) and (F2) if and only if F is familially representable.

3. Weak colimits

Recall that a category C is said to be pseudo-filtered if the following conditions hold.
(P1) For every pair of morphisms f :X → Y and g:X → Z, there exist morphisms
h:Y → W and k:Z → W such that hf = kg.
(P2) For every pair of morphisms f :X → Y and g:X → Y , there exists a morphism
h:Y → Z such that hf = hg.

We shall consider these conditions separately.

3.1. Proposition. If C has a subcategory satisfying (F0) and (F1), then C satisfies
(P1).

Proof. Let D be a subcategory satisfying (F0) and (F1). Let f :X → Y , g:X → Z be
morphisms of C. Using (F0), we take morphisms l:Y → U , m:Z → V with U, V ∈ D.
Using (F1) for lf :X → U , mg:X → V , we take n:U → V such that mg = nlf . Thus we
obtain the morphisms nl:Y → V and m:Z → V , which satisfy (nl)f = mg. This proves
(P1).
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3.2. Proposition. If C has a subcategory satisfying (F0), (F1) and (F2), then C satisfies
(P1) and (P2).

Proof. Let D be a subcategory satisfying (F0), (F1) and (F2). We shall verify (P2). Let
f :X → Y and g:X → Y be morphisms of C. Take a morphism l:Y → U with U ∈ D.
Then lf and lg are morphisms X → U , which must coincide by (F2). This proves (P2).

3.3. Proposition. Let C be a finite category. Assume that all morphisms of C are
epimorphisms and C satisfies (P1). Then C has a subcategory satisfying (F0) and (F1).

Proof. Let D be the set of objects X of C such that every morphism X → Y is an
isomorphism. We shall show that D satisfies (F0) and (F1). Since C is finite and all
morphisms are epimorphism, C cannot have an infinite sequence of non-isomorphisms
X1 → X2 → · · ·. Therefore D satisfies (F0).

Let f1:X → Y1, f2:X → Y2 with Y1, Y2 ∈ D. As C satisfies (P1), there exist g1:Y1 →
Z, g2:Y2 → Z such that g1f1 = g2f2. As Y2 ∈ D, g2 is invertible so we have f2 = g−12 g1f1.
Thus (F1) holds.

3.4. Proposition. Let C be a finite category. Assume that all morphisms of C are
epimorphisms and C satisfies (P1) and (P2). Then C has a subcategory satisfying (F0),
(F1) and (F2).

Proof. Let D be as in the preceding proof. Let f1:X → Y and f2:X → Y be morphisms
with Y ∈ D. By (P2) we take a morphism h:Y → Z such that hf1 = hf2. Take a
morphism k:Z → V with V ∈ D. As kh:Y → V is an isomorphism by Proposition 2.5,
we know f1 = f2. Thus D satisfies (F2).

By this proposition and Proposition 2.11 we know that under the assumption that all
morphisms of C are epimorphisms, a functor F :Cop → Set is familially representable if
and only if C/F satisfies (P1) and (P2). In fact this holds under a weaker assumption
that all idempotent morphisms of C split, as stated in [Leinster].

We next review weak colimits ([Freyd and Scedrov]).
An object A of a category C is called a weak initial object if Hom(A,X) is not empty

for all X ∈ C.
A commutative diagram

X
f //

g
��

Y

h
��

Z
k
//W

in a category C is called a weak pushout if for every pair of morphisms h′:Y → W ′ and
k′:Z → W ′ satisfying h′f = k′g, there exists a morphism u:W → W ′ such that h′ = uh,
k′ = uk. A category C is said to have weak pushouts if every diagram

X //

��

Y

Z
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in C can be completed into a weak pushout diagram. If C has weak pushouts, then C
satisfies (P1).

A commutative diagram

X
f //
g
// Y h // Z

is called a weak coequalizer if for every morphism h′:Y → Z ′ satisfying h′f = h′g, there
exists a morphism u:Z → Z ′ such that h′ = uh. A category C is said to have weak
coequalizers if every diagram

X //// Y

in C can be completed into a weak coequalizer. If C has weak coequalizers, then C
satisfies (P2).

3.5. Proposition. Let C be a finite category. Assume
(1) C 6= ∅.
(2) For every pair of objects A and A′ there exists an object B such that

Hom(B,A) 6= ∅ and Hom(B,A′) 6= ∅.
Then C has a weak initial object.

Proof. Let A1, . . . , An be all objects of C. By (1) n ≥ 1. Using (2) repeatedly, we find
an object B such that Hom(B,Ai) 6= ∅ for all i. Then B is a weak initial object.

3.6. Proposition. Let C be a finite category. Assume
(1) C satisfies (P1).
(2) For any X, Y ∈ C, C/hX × hY satisfies (P1).
Then C has weak pushouts.

Proof. Let f :X → Y , g:X → Z be morphisms. We write h′X = Hom(X,−), the
covariant hom-functor. Let K be the comma category of the functor h′Y ×h′X h

′
Z on C.

An object of K is a triple (V, l,m), where l:Y → V and m:Z → V are morphisms of C
satisfying lf = mg. A morphism (V, l,m)→ (V ′, l′,m′) of K is a morphism s:V → V ′ of
C satisfying l′ = sl, m′ = sm. Then, for any h:Y → W and k:Z → W , the diagram

X
f //

g
��

Y

h
��

Z
k
//W

is a weak pushout in C if and only if (W,h, k) is a weak initial object of K.
It is enough to show that K has a weak initial object. We verify that K satisfies the

assumption of Proposition 3.5.
First of all K is finite. As C satisfies (P1), K is not empty.
Let (V, l,m), (V ′, l′,m′) ∈ K. Consider F = hV × hV ′ in [Cop,Set]. Then

(l, l′) ∈ F (Y ), (m,m′) ∈ F (Z).
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Put b = (l, l′), c = (m,m′). Then

f ∗(b) = (lf, l′f), g∗(c) = (mg,m′g).

The right-hand sides are the same element, which we denote by a. Then a ∈ F (X) and
we have morphisms in C/F :

f : (X, a)→ (Y, b), g: (X, a)→ (Z, c).

As C/F satisfies (P1), we take a commutative diagram

(X, a) //

��

(Y, b)

l1
��

(Z, c) m1

// (V1, d1).

Then
X //

��

Y

l1
��

Z m1

// V1

is commutative, so (V1, l1,m1) ∈ K.
As d1 ∈ F (V1), we write

d1 = (s, s′) with s:V1 → V, s′:V1 → V ′.

As l∗1(d1) = b, we have
sl1 = l, s′l1 = l′,

and as m∗1(d1) = c, we have
sm1 = m, s′m1 = m′.

Thus
s ∈ Hom((V1, l1,m1), (V, l,m)), s′ ∈ Hom((V1, l1,m1), (V

′, l′,m′)).

By Proposition 3.5 K has a weak initial object.

3.7. Proposition. Let C be a finite category. Assume
(1) C satisfies (P2).
(2) For any X, Y ∈ C, C/hX × hY satisfies (P2).
Then C has weak coequalizers.

This is proved similarly to the preceding proposition.
The following are well-known.
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3.8. Proposition. Let C be a category and F :Cop → Set a functor. Assume that C
has pushouts. Then the following are equivalent.

(i) C/F has pushouts.
(ii) F turns pushouts into pullbacks.

3.9. Proposition. Let C be a category and F :Cop → Set a functor. Assume that C
has coequalizers. Then the following are equivalent.

(i) C/F has coequalizers.
(ii) F turns coequalizers into equalizers.

The following is known as well.

3.10. Proposition. Let C be a finite category. Assume that C has coproducts. Then C
is a preordered set.

Proof. Let X, Y ∈ C. Let Xn be a coproduct of n copies of X. The set of objects Xn

for all n ≥ 1 is finite. Hence the set of integers #Hom(Xn, Y ) for all n ≥ 1 is finite. But
#Hom(Xn, Y ) = (#Hom(X, Y ))n. This forces that #Hom(X, Y ) = 1 or 0. Thus C is a
preordered set.

3.11. Proposition. Let C be a finite category. Assume that C has pushouts. Then
every morphism of C is an epimorphism.

Proof. Let A ∈ C. The comma category A\C, that is, the category of morphisms
A → X, has coproducts. By the preceding proposition A\C is a preordered set. This
means that every morphism A→ X is an epimorphism.

4. Powers of functors

Let K be a finite category. An object F ∈ [K,Set] is said to be connected if F 6= ∅ and
if F ∼= F1 q F2 implies F1 = ∅ or F2 = ∅. If F ∈ [K,Set] has values in finite sets, F is a
finite sum of connected subobjects, which we call connected components of F .

Let X ∈ [K,Set] and assume X(k) are finite for all k ∈ K.

4.1. Proposition. If connected components of Xn for all n have only finitely many
isomorphism classes, then X(α) is injective for every morphism α of K.

Proof. Suppose that X(α) is not injective for a morphism α: i → j. Take b ∈ X(j)
such that #X(α)−1(b) > 1. Put p = #X(α)−1(b). Put bn = (b, . . . , b) ∈ X(j)n. Then
#Xn(α)−1(bn) = pn. Take a connected component Yn of Xn such that bn ∈ Yn(j). Then
#Yn(α)−1(bn) = pn. Thus the integers #Yn(i) for all n ≥ 1 are unbound. It follows that
the set of isomorphism classes of Yn is infinite. This proves the proposition.
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4.2. Proposition. If X(α) is injective for every morphism α of K, then the connected
components of Xn for all n have only finitely many isomorphism classes.

Proof. For sets A and B write

Sur(A,B) = {A→ B | surjection}, Inj(A,B) = {A→ B | injection}.

Write [m] = {1, 2, . . . ,m}. For a set S and n ≥ 0 we have a natural decomposition

Sn ∼=
∐

α:[n]→[m]

Inj([m], S),

where α ranges over representatives of Aut([m])-orbits in Sur([n], [m]). An element (α, β)
of the right-hand side with α ∈ Sur([n], [m]) and β ∈ Inj([m], S) corresponds to the map
βα: [n]→ S regarded as an element of the left-hand side.

Now assume X(α) is injective for every morphism α of K. Define the set Inj([m], X)(k)
for k ∈ K by

Inj([m], X)(k) = Inj([m], X(k)).

For a morphism α: i→ j of K the injection X(α) induces the map

Inj([m], X(i))→ Inj([m], X(j)).

Defining Inj([m], X)(α) to be this map, we have an object Inj([m], X) of [K,Set].
The natural decomposition of n-th power of sets yields the decomposition

Xn ∼=
∐
α

Inj([m], X)

in [K,Set].
If m > max{#X(k) | k ∈ K}, then Inj([m], X) = ∅. Hence connected components of

Xn for all n are isomorphic to subobjects of Inj([m], X) for m ≤ max{#X(k) | k ∈ K}.
Consequently they have only finitely many isomorphism classes.

5. Proof of the theorems

5.1. Theorem. Let C be a finite category. The following are equivalent.
(1) The functors 1 and hX × hY for all X, Y ∈ C are sums of nearly representable

functors .
(2) C has pushouts.
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Proof. Assume (1). Let X, Y ∈ C and G ⊂ Aut(X), H ⊂ Aut(Y ). Then

hX/G× hY /H ∼= (hX × hY )/(G×H).

As hX × hY is a sum of nearly representable functors, so is (hX × hY )/(G × H) by
Proposition 2.3. Thus we know that the product of two nearly representable functors is
a sum of nearly representable functors.

It follows that for every X ∈ C and positive integer n, hnX is a sum of nearly rep-
resentable functors; in other words, the connected components of hnX are nearly repre-
sentable. But C being finite, nearly representable functors on C have only finitely many
isomorphism classes. Proposition 4.1 then tells us that hX(f) is injective for every mor-
phism f of C. Hence all morphisms of C are epimorphisms.

As 1 is a sum of nearly representables, C has a subcategory satisfying (F0) and (F1)
by Proposition 2.7. Hence C satisfies (P1) by Proposition 3.1.

Let X, Y ∈ C. As hX × hY is a sum of nearly representables, C/hX × hY has a
subcategory satisfying (F0) and (F1) by Proposition 2.8. Hence C/hX × hY satisfies
(P1). By Proposition 3.6 it follows that C has weak pushouts. All morphisms of C being
epimorphisms, weak pushout is true pushout. So C has pushouts.

Conversely assume (2). By Proposition 3.11 all morphisms of C are epimorphisms,
and by Proposition 3.3 C has a subcategory satisfying (F0) and (F1). Then 1 is a sum
of nearly representable functors by Proposition 2.6.

Let X, Y ∈ C. As hX and hY turn pushouts into pullbacks, so does hX × hY . By
Proposition 3.8, C/hX × hY has pushouts. Hence by Proposition 3.3 C/hX × hY has a
subcategory satisfying (F0) and (F1). Then hX × hY is a sum of nearly representable
functors by Proposition 2.8.

By the same argument as above, (2) implies that finite limits of hom-functors are sums
of nearly representable functors. Also, by a result of [Paré], (2) implies that C has finite
simply connected colimits.

5.2. Theorem. Let C be a finite category. The following are equivalent.
(1) The functors 1 and hX × hY for all X, Y ∈ C are familially representable.
(2) C has pushouts and coequalizers.

This is proved similarly to Theorem 5.1 by using Propositions 2.11 and 3.7 and 3.4
and 3.9.

We discuss the case where the condition for 1 of the theorem is deleted.
Any category C can be enlarged to a category with final object. Define a category D

as follows. Objects of D are objects of C and a new object ω. Morphisms of D between
objects of C are the same as morphisms of C. There is a unique morphism from every
object of C to ω, and there is no morphism from ω to objects of C. Thus D is a category
containing C and ω is a final object of D. So 1 ∈ [Dop,Set] is representable.
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Here we write a hom-functor on C as hCX and a hom-functor on D as hDX . It is easily
verified that for X, Y ∈ C, hCX × hCY is familially representable if and only if hDX × hDY is
familially representable. Also it is verified that a diagram

X //

��

Y

Z

in C can be completed to a pushout diagram in D if and only if it can be completed to
a pushout diagram in C or never completed to a commutative square in C. A similar
equivalence for coequalizer holds.

Using these facts and applying Theorem 5.2 to D, we obtain the following.

5.3. Theorem. Let C be a finite category. The following (1) and (2) are equivalent.
(1) hX × hY for all X, Y ∈ C are familially representable.
(2) (a) Every diagram

X //

��

Y

Z

in C can be completed to a pushout diagram if it can be completed to a commutative
diagram

X //

��

Y

��
Z // V.

(b) Every diagram
X //// Y

in C can be completed to a coequalizer diagram if it can be completed to a commutative
diagram

X //// Y // Z.

An example of categories satisfying (1) of this theorem is the orbit category of a fusion
system for a finite group ([Diaz and Libman, Proposition 2.9]), which is treated also in
[Oda] in connection to the generalized Burnside ring.

6. Construction of a finite category with pushouts and coequalizers

Let K be a finite category. Let X ∈ [K,Set] be a functor valued in finite sets. Suppose
that X takes all morphisms of K to injective maps. By Proposition 4.2 the connected
components of Xn for all n have only finitely many isomorphism classes. Let C be a
representative system of isomorphism classes of those components.
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For any objects U, V of C, we have an isomorphism in [K,Set]

U × V ∼=
∐

Wi

for some Wi ∈ C. Also
1 ∼=

∐
Zi

for some Zi ∈ C. Regard C as a full subcategory of [K,Set]. Then

hU × hV ∼=
∐

hWi
,1 ∼=

∐
hZi

in [Cop,Set]. Thus C satisfies conditions (1) of Theorem 5.2 and so C has pushouts and
coequalizers.

Every category satisfying (1) of Theorem 5.2 arises this way. Indeed, suppose that C
satisfies the condition. The Yoneda functor X 7→ hX embeds C into [Cop,Set]. Since
every morphism of C is an epimorphism, hX takes every morphism of C to an injective
map. Let M be the sum of hX for all X ∈ C. Then for every n the power Mn is a sum
of hY for Y ∈ C. Thus the full subcategory consisting of representatives of isomorphism
classes of connected components of Mn for all n is equivalent to C.

7. Example of a category with pushouts

For finite categories with pushouts, we do not have a unified construction. We only give
a special construction from a partially ordered set with pushouts and group action. A
partially ordered set could be replaced by a small category, but we confine ourselves to
the simpler case.

Let P be a partially ordered set and G a group. Suppose that G acts on P , namely a
map P ×G→ P taking (x, σ) to xσ is given so that

(xσ)τ = xστ

and
x ≤ y ⇒ xσ ≤ yσ.

Suppose further that for each x ∈ P a subgroup Kx of G is given so that the following
conditions hold.

(i) σ ∈ Kx ⇒ xσ = x.
(ii) x ≤ y ⇒ Kx ⊂ Ky.
(iii) σ−1Kxσ = Kxσ .

We define a category C as follows. Objects of C are elements of P . For x, y ∈ P the
hom-set Hom(x, y) of C is given by

Hom(x, y) = {σ | σ ∈ G, x ≤ yσ}/Ky.
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Owing to (i) the set {σ | σ ∈ G, x ≤ yσ} is stable under the left multiplication of Ky, and
the right-hand side is the quotient of this set under the action of Ky. We denote the class
of σ in Hom(x, y) by [σ]. The composition of D is defined by

[τ ][σ] = [τσ].

7.1. Proposition. C is a category.

Proof. We verify that the composition is well-defined. Let x ≤ yσ, y ≤ zτ . Then
x ≤ zτσ. Suppose [σ] = [σ′] in Hom(x, y) and [τ ] = [τ ′] in Hom(y, z). Then σ′ = ασ,
τ ′ = βτ for some α ∈ Ky, β ∈ Kz. Then

τ ′σ′ = βτασ = βτατ−1τσ.

By Ky ⊂ Kzτ = τ−1Kzτ , we know α ∈ τ−1Kzτ , so τατ−1 ∈ Kz. Hence βτατ−1 ∈ Kz.
Thus [τ ′σ′] = [τσ] in Hom(x, z).

7.2. Proposition. If P has pushouts, then so does C.

Proof. Let a diagram

x
[σ] //

[τ ]

��

y

z

in C be given. We must complete this into a pushout diagram. Since [σ]:x → y is the
composite of [1]:x→ yσ and an isomorphism [σ]: yσ → y, we may assume σ = 1. Similarly
we may assume τ = 1. Then x ≤ y, x ≤ z in P . Take a pushout

x

��

// y

��
z // w

(1)

in P . We shall show the diagram

x

[1]

��

[1] // y

[1]

��
z

[1]
// w

(2)

is a pushout in C.
This is a commutative diagram. Suppose that

x

[1]

��

[1] // y

[λ]

��
z

[µ]
// v
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is a commutative diagram in C. Then y ≤ vλ, z ≤ vµ, and as [λ] = [µ] in Hom(x, v) we
have vλ = vµ and λ = αµ for some α ∈ Kv. Since (1) is a pushout in P , we have w ≤ vλ.

Then [λ]: y → v factors as y
[1] // w

[λ] // v and [µ]: z → v factors as z
[1] // w

[µ] // v .
The uniqueness of such a morphism w → v is clear. Thus (2) is a pushout. This completes
the proof.

References

A.Carboni and P.Johnstone, Connected limits, familial representability and Artin glueing,
Math.Struct.Comp.Science 5 (1995), 441–459.

A.Diaz and A.Libman, The Burnside ring of fusion systems, Advances in Math. 222
(2009), 1943–1963.

P.J.Freyd and A.Scedrov, Categories, Allegories, North-Holland, Amsterdam, 1990.

T.Leinster, The Euler characteristic of a category, Documenta Math. 13 (2008), 21–49.

S.MacLane, Categories for the working mathematician, second edition, Springer-Verlag,
New York, 1978.

F.Oda, The generalized Burnside ring with respect to p-centric subgroups, J.Algebra 320
(2008), 3726–3732.
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