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INTERCATEGORIES

MARCO GRANDIS AND ROBERT PARÉ

Abstract. We introduce a 3-dimensional categorical structure which we call inter-
category. This is a kind of weak triple category with three kinds of arrows, three kinds
of 2-dimensional cells and one kind of 3-dimensional cells. In one dimension, the com-
positions are strictly associative and unitary, whereas in the other two, these laws only
hold up to coherent isomorphism. The main feature is that the interchange law between
the second and third compositions does not hold, but rather there is a non-invertible
comparison cell which satisfies some coherence conditions. We introduce appropriate
morphisms of intercategory, of which there are three types, and cells relating these. We
show that these fit together to produce a strict triple category of intercategories.

Introduction

With this paper, we undertake the study of intercategories (short for interchange cate-
gories). These are special kinds of three-dimensional categories. Roughly speaking, they
consist of two double categories that share the same horizontal structure, and whose
operations are related by interchange morphisms.

A triple category [5] is a category object in double categories which themselves are
category objects in Cat. An analysis of this reveals that there are three kinds of arrows
each with its own category structure, and for any two of these, appropriate double cells
with two compositions producing a double category. Finally there are triple cells which
look like blocks that can be pasted in three directions, satisfying interchange for any two
of them. The generalization to higher dimensions is straightforward.

In practice this is too rigid. Already for double categories, where the main examples
involve the composition of spans or profunctors of some sort, there is a need to relax the
associativity and unit laws to allow isomorphisms. Thus for a weak double category there
is one direction in which the equations hold strictly and a second one in which they hold
up to coherent isomorphism, just like for bicategories. Any attempt to allow the equations
to hold up to isomorphism in both directions simultaneously only leads to a vicious circle
from which there seems to be no escape. Yet it would be nice to be able to do this. For
example, transposing the two directions is a useful duality for (strict) double categories
but is not available for weak ones.
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The quintet construction is another case in point. From a 2-category we get a double
category whose horizontal and vertical arrows are the 1-cells of the 2-category, and whose
double cells are squares with a 2-cell in them. This is a nice “symmetric” way of turning a
2-category into a double one and is in fact the universal solution to providing companions
for every 1-cell [9]. The quintet construction works perfectly well for bicategories. It just
doesn’t give a weak double category. But it almost does.

These considerations prompted Verity to introduce what he called double bicategories
[15]. The name may suggest that this is a four-dimensional concept although the intention
is simply a slight relaxation of the double category notion. As we shall see in [10], it is
really a three-dimensional concept, an intercategory in fact. So intercategories may also
be viewed as weakened double categories held together by a more basic strict structure.

There are many ways of weakening the notion of triple category. The theory of weak
n-categories would suggest having composition in the first direction satisfy the category
equations strictly, in the second direction up to coherent isomorphism and in the third
up to coherent equivalence. The coherence conditions would then mirror those for tri-
categories [6] with the possibility of some extra ones involving identities. However, we
know of no genuine example of this kind of triple category except for those coming from
tricategories, so there seems to be no advantage in developing such a theory at this time.

Our notion of intercategory is simpler and motivated by a number of examples of
different kinds. As above there are three kinds of arrows and 2-dimensional cells, and one
kind of 3-dimensional ones. The first type of arrow carries a category structure whereas
the second and the third only satisfy the equations up to isomorphisms of the first type.
In fact the first and second type of arrows with the corresponding cells form a weak double
category, and so do the first and third. And here is the crucial point: the cells whose
boundaries are arrows of the second and third kind have two compositions just like the
other two but the interchange law doesn’t hold. There is instead a comparison 3-cell,
in a specified direction, satisfying coherence conditions just like those for the duoidal
categories of [4] (called 2-monoidal categories in [1]).

Duoidal categories are one of our motivating examples. They are “clearly” a three-
dimensional structure and, just as monoidal categories can be thought of as one-object
bicategories, it is tempting to try to interpret duoidal categories as the one-object version
of some more general kind of 3-dimensional structure. And indeed duoidal categories
are special kinds of intercategories. This gives a third way of viewing intercategories, as
duoidal categories with several objects.

The plan for the paper is as follows. We introduce intercategories as a kind of lax
triple category and set up our notation in Section 1. We postpone the discussion of the
coherence conditions until Sections 4 and 5. After some double category preliminaries
in Section 2, we give two more conceptual presentations of intercategory in Section 3.
The equivalence of these is established in Section 4 where a more symmetric notion is
introduced. Here all the coherence conditions are given. In Section 5 we reformulate
these conditions using the more transparent 2-dimensional notation of Section 1.

In Section 6 we study morphisms of intercategories. There are three types, like for
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duoidal categories. There are those that are lax in both the horizontal and vertical
directions, and those that are colax in them. There are also those that are colax in the
horizontal direction and lax in the vertical. The other way around, horizontally lax and
vertically colax, doesn’t work because the arrows that should give the coherence diagrams
do not compose. There are also double cells relating the three types of morphism in pairs.
Finally, these double cells can be the faces of cubes whose commutativity is well-posed.
The main theorem of the paper is Theorem 6.3 which says that all of this fits together to
produce a strict triple category of intercategories.

Somewhat mysteriously, horizontal intercategories only produce two of the three types
of morphism and one kind of cell. Vertical intercategories give one of these and a new
one, with their own cells. It is with double pseudocategories that we get all three kinds of
morphism and three kinds of cell. The mystery is resolved in Section 7 where we consider
pseudocategories, not in a 2-category, but in the double category Dbl. With Theorem 7.7
we can now rest assured that all presentations are equivalent.

1. Intercategories

An intercategory A is a 3-dimensional structure whose constituents look like cubes

Ā

A

Ā

•v

��

A B◦h // B

Ā′ B̄′◦̄
h′

//

A′

Ā′

•v′

��

A′ B′◦h
′
// B′

B̄′

•w′

��

A

A′
f ��

B

B′

g

��

Ā

Ā′
f̄ ��

α′

ψ

φ

It has:

• objects (A,B, . . .)

• three kinds of arrow; transversal (f, g, . . .), horizontal (h, h′, . . .) and vertical (v, v′, . . .)

• three kinds of (2-dimensional) cell, horizontal (φ, . . .), vertical (ψ, . . .), basic (α′, . . .)

• 3-dimensional cubes (not named in the diagram above).

It also has three kinds of composition:

• transversal for transversal arrows, horizontal and vertical cells, and cubes. It is
denoted by · or juxtaposition, which is strictly associative and unitary. The identities
are denoted 1

• horizontal for horizontal arrows, horizontal and basic cells, and cubes. It is denoted
by ◦ or |, and is associative and unitary up to coherent transversal isomorphism
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• vertical for vertical arrows, vertical and basic cells, and cubes. It is denoted by • or
−, and is associative and unitary up to coherent transversal isomorphism

Mnemonic: As we go from transversal to horizontal to vertical, the notation becomes
heavier (uses more ink).

These structures interact as follows:

• transversal and horizontal form a weak double category

• transversal and vertical form a weak double category

• horizontal and vertical are related by interchangers

χ : (α ◦ β) • (ᾱ ◦ β̄) // (α • ᾱ) ◦ (β • β̄)

which is also written as

χ :
α|β
ᾱ|β̄

// α

ᾱ

∣∣∣ β
β̄

An important feature of this notation is that the α, β, ᾱ, β̄ don’t change place.

The other interchangers are

µ : idv • idv̄ // idv•v̄, δ : Idh◦h′ // Idh ◦ Idh′ , τ : IdidA
// idIdA

also written as

µ :
idv
idv̄

// id v
v̄
, δ : Idh|h′ // Idh|Idh′ , τ : IdidA

// idIdA

These are transversally special cubes, i.e. their horizontal and vertical faces are
transversal identities. They compose in the transversal direction.

For example, µ is the cube (shown as a morphism from back to the front)

Ã Ã◦ //

Ā

Ã

•v̄

��

Ā Ā◦ // Ā

Ã

• v̄

��

Ā Ā◦ //

A

Ā

•v

��

A A◦idA // A

Ā

•v

��

Ã Ã◦
idĀ

//Ã

Ā̄A

Ã

• v̄

��

A

Ā

•v

��

Ã

Ã

Ã

Ã

Ā

Ā

A

A

idv̄

idv

µ(v,v̄) //

Ā

A

Ā

•v

��

A A◦idA // A

Ā

Ã

•v̄

��

Ã Ã◦
idÃ

//

A

Ã

•v·v̄

��

A A◦ // A

Ã

•v·v̄

��

Ã

Ã

A

A

A

A

idv·v̄
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Naturality is in the transversal direction. For example, id can also be applied to
vertical cells ψ giving a cube idψ

Ā

A

Ā

•v

��

A A◦idA // A

Ā′ Ā′◦
id
Ā′

//

A′

Ā′

•v′

��

A′ A′◦ // A′

Ā′

•v′

��

A

A′
f ��

A

A′

f

��

Ā

Ā′
f̄ ��

idv′

ψ

idf

needed to express naturality of µ

idv′

idv̄′
id v′

v̄′µ(v′,v̄′)
//

idv
idv̄

idv′

idv̄′

idψ
idψ̄
��

idv
idv̄

id v
v̄

µ(v,v̄) // id v
v̄

id v′
v̄′

idψ
ψ̄

��

These have to satisfy all the obvious coherence conditions, of which there are many (32 by
one way of counting), although this is below average for weak 3-dimensional structures.
We return to this in Section 4.

It is thus desirable to have a more abstract theoretical presentation. This will be es-
pecially useful in studying the various kinds of morphism of intercategories. The different
points of view provide extra insight into the concepts, and can prove useful in checking
the various examples. These different ways of viewing intercategories are presented in the
following sections (3 and 4), where the coherence conditions will be made explicit.

We give two examples to guide the reader through the maze of 3-dimensional commu-
tative diagrams. Many more may be found in [10].

The first is given by duoidal categories, categories D with two tensors ⊗ and � related
by lax interchange (see [1, 3, 4]). (We follow most closely the notation of [4] although
they use γ for the interchanger which we call χ.) This can be considered as a degenerate
intercategory with one object. The objects of D provide the basic cells, and the morphisms
of D the cubes. The remaining constituents are all identities. A general cube looks like

∗

∗

∗

∗ ∗∗

∗ ∗

∗

∗

∗ ∗∗

∗

∗

∗

∗

∗

∗

∗

D′
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with an arrow d : D //D′ inside. Horizontal and vertical composition are given by ⊗ and
� respectively. In this example all of the interchangers χ, δ, µ, τ can be non-invertible,
for example when the horizontal composition is product and the vertical coproduct.

The second example is given by spans of cospans in a category with pullbacks and
pushouts. A general cube looks like

· ·oo

·

·

OO· ·oo ·

·

OO

· ·//

·

·

OO· ·// ·

·

OO· ·oo

·

·
��

· ·oo ·

·
��
· ·//

·

·
��

· ·// ·

·
��

·· oo·

·''
· ·//·

·''
·

·''
·

·
��

·''

·

OO

·

·''

Horizontal (resp. vertical) composition is given by pullback (resp. pushout). Note that
because the interchanger χ is not invertible, the spans must be horizontal and the cospans
vertical. More details may be found in [10].

2. Preliminaries on double categories

Recall from [9] the strict double category Dbl whose objects are weak double categories,
horizontal arrows are lax functors (of double categories), and vertical arrows are colax
functors. It is, of course, the double cells that are of most interest, given the well-known
problems with lax transformations in general. A double cell

C D
G

//

A

C

•U

��

A BF // B

D

•V

��

π

is given by

(1) a horizontal arrow πA : V FA //GUA for each object A of A, and

(2) a double cell

V FĀ GUĀ
πĀ
//

V FA

V FĀ

•V Fu

��

V FA GUA
πA // GUA

GUĀ

•GUu

��

πu

for each vertical arrow u : A • // Ā of A.



INTERCATEGORIES 1221

These are required to satisfy a number of more or less obvious compatibility conditions
which can be found in [9]. Note, in passing, that in writing out these conditions one
realizes that πA has to be in the direction given.

From this double category Dbl we can extract two 2-categories LxDbl and CxDbl by
restricting the vertical (resp. horizontal) arrows to be identities. So the objects of LxDbl
are weak double categories, the arrows are lax functors, and the 2-cells are horizontal
transformations. CxDbl has the same objects, the colax functors as arrows and again
horizontal transformations as 2-cells.
Remark: It’s not unreasonable to wonder where the usual problems of making lax func-
tors into a 2-category have gone, given that 2-categories and bicategories can be consid-
ered as special weak double categories. In the case of 2-categories considered as horizontal
double categories, lax functors are just 2-functors and horizontal transformations are 2-
natural transformations so there are no problems there. If, on the other hand, bicategories
are considered as vertical weak double categories (i.e. horizontal arrows are identities),
then lax functors are what are usually called lax functors but horizontal transformations
are now the (dual) icons of Lack [13], whose main feature is precisely that they are the
2-cells of a 2-category.

Recall that a lax functor F : A //B takes objects, horizontal and vertical arrows and
double cells of A to like ones in B as illustrated in

Ā Ā′
ā

//

A

Ā

•v

��

A A′
a // A′

Ā′

•v′

��

α 7−→F

FĀ FĀ′
F ā

//

FA

FĀ

•Fv

��

FA FA′
Fa // FA′

FĀ′

•Fv′

��

Fα

F is required to be functorial in the horizontal direction, whereas in the vertical direction
comparison special cells (horizontal domains and codomains identities) are provided

FA FA

FA

FA

•idFA

��

FA FAFA

FA

•F (idA)

��

φA

FÃ FÃ

FĀ

FÃ

•F v̄

��

FĀ

FÃ

FĀ

FA

FĀ

•Fv

��

FA FAFA

FÃ FÃ

FA

FÃ

FA FAFA

FÃ

•F (v·v̄)

��

φ(v,v̄)

φA : idFA // F (idA) φ(v, v̄) : Fv · F v̄ // F (v · v̄)
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which are required to satisfy

Fv F (v · idĀ)oo
Fρ

Fv · idFĀ

Fv

ρ

��

Fv · idFĀ Fv · F (idĀ)
Fv·φĀ // Fv · F (idĀ)

F (v · idĀ)

φ(v,idĀ)

��
Fv F (idA · v)oo

Fλ

idFA · Fv

Fv

λ

��

idFA · Fv F (idA) · FvφA·Fv // F (idA) · Fv

F (idA · v)

φ(idA,v)

��

(Fv · F v̄) · F ṽ F (v · v̄) · F ṽ
φ(v,v̄)·F ṽ

//

Fv · (F v̄ · F ṽ)

(Fv · F v̄) · F ṽ

κ

��

Fv · (F v̄ · F ṽ) Fv · F (v̄ · ṽ)
Fv·φ(v̄,ṽ) // Fv · F (v̄ · ṽ)

F (v · v̄) · F ṽF (v · v̄) · F ṽ F ((v · v̄) · ṽ)
φ(v·v̄,ṽ)

//

Fv · F (v̄ · ṽ)

F (v · v̄) · F ṽ

Fv · F (v̄ · ṽ) F (v · (v̄ · ṽ))
φ(v,v̄·ṽ) // F (v · (v̄ · ṽ))

F ((v · v̄) · ṽ)

Fκ

��

If the φ’s are isomorphisms, F is said to be strong, and if they are identities, F is strict.
So strict functors preserve, not only vertical identities and composition on the nose, but
also the structural isomorphisms ρ, λ, κ, as can be seen from the above diagrams.

Remark: Strict functors go counter to the received wisdom about morphisms of (weak)
two dimensional structures but they arise surprisingly often, e.g. the projections out
of comma objects are strict, and are very useful. The following result, whose proof is
straightforward, illustrates this and is crucial for us.

2.1. Proposition. Let F : A // C and G : B // C be strict functors. Then the set-
theoretical pullback of F and G on objects, arrows and cells defines a weak double category
A×C B which is the 2-pullback of F and G in LxDbl . The projections onto A and B are
strict functors.

Remark: The 2-pullback of F and G may exist even when F and G are not strict. For
example, the images of F and G may be disjoint, in which case the empty double category
is the 2-pullback. It is not clear exactly which pullbacks exist in LxDbl , nor what the
2-categorical property of strict functors is that makes their pullbacks better.

3. Horizontal and vertical intercategories

The notion of pseudocategory in a 2-category with 2-pullbacks is pretty clear and has
already appeared in print [14]. We generalize this a bit to suit our purposes: we don’t
assume that 2-pullbacks exist but restrict our definition to diagrams where the requisite
ones do.

Given a diagram

B
∂0 //
∂1

// A
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in a 2-category A, the 2-limit of the diagram

B

A
∂1
!!

B BB

A
∂0
}}

A A

B

A
}}

B

A
!!

B

A
∂1
!!

B

A
∂0}}

· · ·

A
∂1 !!

BB

A
∂0
}}

can be constructed using 2-pullbacks. We call this limit the iterated 2-pullback and denote
it by B ×A B ×A · · · ×A B = B(n) and the projections by

pi : B(n) //B, i = 1, . . . , n.

Also let B(0) = A and B(1) = B. If f : B(n) //B(m) we will denote B(r) ×A f ×A B(s) by

fr+1,...,r+n : B(r+n+s) //B(r+m+s).

3.1. Definition. A pseudocategory object in A is a diagram B
∂0 //
∂1

// A for which the

iterated 2-pullbacks B(n) exist, together with morphisms

(1) id : A //B

(2) m : B(2) //B

and iso 2-cells

(3)

B(2) Bm
//

B(3)

B(2)

m12

��

B(3) B(2)m23 // B(2)

B

m

��

κ ⇓

(4)/(5)

B B(2)id1 //B

B

=

##

B(2)

B

m

��

λ ⇓
B(2) Boo id2B(2)

B
��

B

B

=

{{

ρ ⇓

satisfying the usual coherence conditions (pentagon, etc.).

Note that a pseudocategory in Cat is exactly a weak double category.

3.2. Definition. A horizontal intercategory is a pseudocategory

C m //
p1 //

p2

// B oo id

∂0 //

∂1

// A

in LxDbl where ∂0 and ∂1 are strict functors.
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In this definition, it is understood that

B A
∂0

//

C

B

p2

��

C Bp1 // B

A

∂1

��

is a pullback so that p1 and p2 are also strict and thus the pullbacks needed to express
coherence also exist.

In this presentation the horizontal and vertical arrows of A are the transversal and
vertical arrows of the A of Section 1, so the cells of A are the vertical cells of A. The
objects, horizontal and vertical arrows, and cells of B are the horizontal arrows, horizontal
and basic cells, and cubes of A. (See table at the end of Section 4.)

Given two pseudocategories C m //
p1 //

p2

//B oo id

∂0 //

∂1

//A and C ′ m′ //
p′1 //

p′2

//B′ oo id′
∂′0 //

∂′1

//A′ in a

2-category, a lax functor from the first to the second consists of three arrows f , g, h such
that

C ′ B′

C

C ′

h

��

C BB

B′

g

��

p1 //
p2

//

p′1 //

p′2

// B′ A′

B

B′
��

B AA

A′

f

��

∂0 //
∂1

//

∂′0 //

∂′1

//

“commutes sequentially” i.e. f∂i = ∂′ig, and gpj = p′jh for i = 0, 1 and j = 1, 2. (So h
is in fact determined by f and g.) Apart from these three arrows there are also given
comparison 2-cells

A′ B′
id′

//

A

A′

f

��

A B
id // B

B′

g

��

⇒
η

C ′ B′
m′

//

C

C ′

h

��

C B
m // B

B′

g

��

⇒
µ

satisfying the usual equations, i.e. unit and associativity.
There are also colax morphisms of pseudocategory objects with the same conditions

except that η and µ go in the opposite direction.
Returning now to intercategories as pseudocategories in LxDbl , we get two kinds of
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morphisms, lax and colax

C′ B′

C

C′

H

��

C BB

B′

G

��

//////

////// B′ A′

B

B′
��

B AA

A′

F

��

oo //
//

oo //
//

but the F , G, H are always lax. We analyze them further in the next section.
There is a different way of looking at intercategories as pseudocategories, i.e. in the

2-category CxDbl . We get an equivalent notion of intercategory but not the same notions
of morphisms. We’ll call them vertical intercategories. In the next section, we prove that
horizontal and vertical intercategories are equivalent notions.

3.3. Definition. A vertical intercategory is a pseudocategory

X2 M //
P1 //

P2

// X1
oo Id

D0 //

D1

// X0

in CxDbl where D0 and D1 are strict functors.

Now, the objects, horizontal and vertical arrows, and cells of X0 are the objects,
transversal and horizontal arrows, and horizontal cells of A, respectively. X1 consists of
vertical arrows, vertical and basic cells, and cubes of A. (See table at the end of Section
4.)

4. Double pseudocategories in a 2-category

With a view to understanding the equivalence of the two preceding definitions of intercat-
egory, we present a more symmetric version which doesn’t refer to lax or colax. Although
we only need it for CAT , the definition we give below works in any 2-category with 2-
pullbacks, with a simple change of word here and there. This may be useful, say for
V-CAT for appropriate monoidal categories V, but just the fact that the notion can be
thus internalized says something about the definition.

If we make the double categories A, B, C of Definition 3.2 explicit as pseudocategories
in CAT we get a 3× 3 diagram of categories and functors

C2 B2
//

C1

C2

OOC1 B1
// B1

B2

OO

C2 B2//

C1

C2

OOC1 B1// B1

B2

OO

C2 B2
//

C1

C2

OOC1 B1
// B1

B2

OOC1 B1
//

C0

C1

��

C0 B0
// B0

B1

��
C1 B1//

C0

C1

OOC0 B0// B0

B1

OO

C1 B1
//

C0

C1

OOC0 B0
// B0

B1

OO

B2 A2
oo

B1

B2

OOB1 A1
oo A1

A2

OO

B2 A2//

B1

B2

OOB1 A1//A1

A2

OO

B2 A2
//

B1

B2

OOB1 A1
//A1

A2

OOB1 A1
oo

B0

B1

��

B0 A0
oo A0

A1

��
B1 A1//

B0

B1

OOB0 A0//A0

A1

OO

B1 A1
//

B0

B1

OOB0 A0
//A0

A1

OO

(∗)
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A horizontal intercategory is a bit less than this and a bit more too. “A bit less”
because some of those categories and functors are determined by the others. For example,
we only need to specify the categories A0,B0,A1,B1, but we need the others to serve as
domains for the composition functors. “A bit more” because we need an extra row and
column in order to specify the structural isomorphisms (associativity, etc.) and one more
row and column to express the coherence conditions.

The names of the 36 functors follow those of Definition 3.1. The vertical ones are
the uppercase versions of the corresponding horizontal ones. The first condition on (∗) is
that each of the rows X0,X1,X2 and each of the columns A,B,C represent weak double
categories. In particular the following diagrams are pullbacks in CAT :

Bi Ai
∂i1

//

Ci

Bi

pi1

��

Ci Bi

pi2 // Bi

Ai

∂i0

��

i = 0, 1, 2(1)

and

A1 A0
DA1

//

A2

A1

PA1

��

A2 A1

PA2 //A1

A0

DA0

��

(2)

B1 B0
DB1

//

B2

B1

PB1

��

B2 B1

PB2 // B1

B0

DB0

��

(3)

C1 C0
DC1

//

C2

C1

PC1

��

C2 C1

PC2 // C1

C0

DC0

��

(4)

Each of these weak double categories comes with its structural natural isomorphisms,
usually clear from the context, denoted κ, λ, ρ in the first case and κ′, λ′, ρ′ in the second.

The domains and codomains as well as the pullback projections preserve all the struc-
ture. More precisely, the following diagrams commute.
Those involving ∂0, ∂1

B1 A1
∂1
i

//

B0

B1

OO

DBj

B0 A0

∂0
i //A0

A1

OO

DAj(5)

B2 A2
∂2
i

//

B1

B2

OO

PBk

B1 A1

∂1
i //A1

A2

OO

PAk(6)

B1 A1
∂1
i

//

B0

B1

IdB

��

B0 A0

∂0
i //A0

A1

IdA

��

(7)

B2 A2
∂2
i

//

B1

B2

OO

MB

B1 A1

∂1
i //A1

A2

OO

MA(8)
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Those involving p1, p2

C1 B1
p1
k

//

C0

C1

OO

DCi

C0 B0

p0
k // B0

B1

OO

DBi(9)

C2 B2
p2
k

//

C1

C2

OO

PCi

C1 B1

p1
k // B1

B2

OO

PBl(10)

C1 B1
p1
k

//

C0

C1

IdC

��

C0 B0

p0
k // B0

B1

IdB

��

(11)

C2 B2
p2
k

//

C1

C2

OO

MC

C1 B1

p1
k // B1

B2

OO

MB(12)

Those involving id,m

B1 A1
oo

id1

B0

B1

OO

DBi

B0 A0
oo id0

A0

A1

OO

DAi(13)

B2 A2
oo

id2

B1

B2

OO

PBk

B1 A1
oo id1

A1

A2

OO

PAk(14)

C1 B1
m1

//

C0

C1

OO

DCi

C0 B0
m0

// B0

B1

OO

DBi(15)

C2 B2
m2

//

C1

C2

OO

PCk

C1 B1
m1

// B1

B2

OO

PBk(16)

The crucial ingredients are the natural transformations

B1 A1
oo

id1

B0

B1

IdB

��

B0 A0
oo id0

A0

A1

IdA

��

(17)

�# τ

B2 A2
oo

id2

B1

B2

OO

MB

B1 A1
oo id1

A1

A2

OO

MA

(18)

;C
µ

C1 B1
m1

//

C0

C1

IdC

��

C0 B0
m0

// B0

B1

IdB

��

(19)

{�
δ

C2 B2
m2

//

C1

C2

OO

MC

C1 B1
m1

// B1

B2

OO

MB
k

(20)

[c χ

Apart from the coherence conditions on κ, λ, ρ, κ′, λ′, ρ′, giving pseudocategories, the
following must also hold.
Those involving id

B3

B2

M23 %%

B3 B1B1

B2

99

M

A3

A2

M23 %%

A3 A1A1

A2

99

M

A3 A1

A2

A3

99M12

A2

A1

M

%%
A3

B3

id

��

A2

B2

id

��

A1

B1

id

��

=

B3

B2

M23 %%

B3 B1B1

B2

99

M

B3 B1

B2

B3

99M12

B2

B1

M

%%

A3 A1

A2

A3

99M12

A2

A1

M

%%
A3

B3

id

��

A2

B2

id

��

A1

B1

id

��
µ23

KS
µ
KS

κ′
KS

µ12

KS
µ
KS

κ′
KS

(21)
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B1

B2

Id1 %%

B1 B1B1

B2

99

M

A1

A2

Id1 %%

A1 A1A1

A2

99

M

A1

B1

id

��

A2

B2

id

��

A1

B1

id

��
τ1
KS

µ
KS

λ′
KS

=

B1

B2

Id1 %%

B1 B1B1

B2

99

M

B1 B1

A1

B1

id

��

A1 A1A1

B1

id

��

λ′
KS

1id

KS
(22)

B1

B2

Id2 %%

B1 B1B1

B2

99

M

A1

A2

Id2 %%

A1 A1A1

A2

99

M

A1

B1

id

��

A2

B2

id

��

A1

B1

id

��
τ2
KS

µ
KS

ρ′
KS

=

B1

B2

Id2 %%

B1 B1B1

B2

99

M

B1 B1

A1

B1

id

��

A1 A1A1

B1

id

��

ρ′
KS

1id

KS
(23)

Those involving m

B3

B2

M23 %%

B3 B1B1

B2

99

M

C3

C2

M23 %%

C3 C1C1

C2

99

M

C3 C1

C2

C3

99M12

C2

C1

M

%%
C3

B3

m

��

C2

B2

m

��

C1

B1

m

��

=

B3

B2

M23 %%

B3 B1B1

B2

99

M

B3 B1

B2

B3

99M12

B2

B1

M

%%

C3 C1

C2

C3

99M12

C2

C1

M

%%
C3

B3

m

��

C2

B2

m

��

C1

B1

m

��
χ23

KS
χ
KS

κ′
KS

χ12

KS
χ
KS

κ′
KS

(24)

B1

B2

Id1 %%

B1 B1B1

B2

99

M

C1

C2

Id1 %%

C1 C1C1

C2

99

M

C1

B1

m

��

C2

B2

m

��

C1

B1

m

��δ1
KS

χ
KS

λ′
KS

=

B1

B2

%%

B1 B1B1

B2

99B1 B1

C1

B1

m

��

C1 C1C1

B1

m

��

λ′
KS

1m
KS

(25)
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B1

B2

Id2 %%

B1 B1B1

B2

99

M

C1

C2

Id2 %%

C1 C1C1

C2

99

M

C1

B1

m

��

C2

B2

m

��

C1

B1

m

��δ2
KS

χ
KS

ρ′
KS

=

B1

B2

%%

B1 B1B1

B2

99B1 B1

C1

B1

m

��

C1 C1C1

B1

m

��

ρ′
KS

1m
KS

(26)

Those specific to κ

D2

C2

m23 %%

D2 B2B2

C2

99

m

D1

C1

m23 %%

D1 B1B1

C1

99

m

D1 B1

C1

D1

99m12

C1

B1

m

%%
D1

D2

OO

M
C1

C2

OO

M

B1

B2

OO

M =

D2

C2

m23 %%

D2 B2B2

C2

99

m

D2 B2

C2

D2

99m12

C2

B2

m

%%

D1 B1

C1

D1

99m12

C1

B1

m

%%
D1

D2

OO

M

C1

C2

OO

M
B1

B2

OO

M

χ23

KS
χ
KS

κ
KS

χ12

KS
χ
KS

κ
KS

(27)

D0

C0

m23 %%

D0 B0B0

C0

99

m

D1

C1

m23 %%

D1 B1B1

C1

99

m

D1 B1

C1

D1

99m12

C1

B1

m

%%
D1

D0

OO

Id
C1

C0

OO

Id

B1

B0

OO

Id =

D0

C0

m23 %%

D0 B0B0

C0

99

m

D0 B0

C0

D0

99m12

C0

B0

m

%%

D1 B1

C1

D1

99m12

C1

B1

m

%%
D1

D0

OO

Id

C1

C0

OO

Id
B1

B0

OO

Id

δ23

KS
δ
KS

κ
KS

δ
KS

δ
KS

κ
KS

(28)

Those specific to λ

B2

C2

id1 %%

B2 B2B2

C2

99

m

B1

C1

id1 %%

B1 B1B1

C1

99

m

B1

B2

OO

M
C1

C2

OO

M

B1

B2

OO

M

µ1

KS
χ
KS

λ
KS

=

B2

C2

id1 %%

B2 B2B2

C2

99

m

B2 B2

B1

B2

OO

M

B1 B1B1

B2

OO

M

λ
KS

1µ
KS

(29)
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B0

C0

id1 %%

B0 B0B0

C0

99

m

B1

C1

id1 %%

B1 B1B1

C1

99

m

B1

B0

OO

Id
C1

C0

OO

Id

B1

B0

OO

Id

τ1
KS

δ
KS

λ
KS

=

B0

C0

id1 %%

B0 B0B0

C0

99

m

B0 B0

B1

B0

OO

Id

B1 B1B1

B0

OO

Id

λ
KS

1Id

KS
(30)

Those specific to ρ

B2

C2

id2 %%

B2 B2B2

C2

99

m

B1

C1

id2 %%

B1 B1B1

C1

99

m

B1

B2

OO

M
C1

C2

OO

M

B1

B2

OO

M

µ2

KS
χ
KS

ρ
KS

=

B2

C2

id2 %%

B2 B2B2

C2

99

m

B2 B2

B1

B2

OO

M

B1 B1B1

B2

OO

M

ρ
KS

1µ
KS

(31)

B0

C0

id2 %%

B0 B0B0

C0

99

m

B1

C1

id2 %%

B1 B1B1

C1

99

m

B1

B0

OO

Id
C1

C0

OO

Id

B1

B0

OO

Id

τ2
KS

δ
KS

ρ
KS

=

B0

C0

id2 %%

B0 B0B0

C0

99

m

B0 B0

B1

B0

OO

Id

B1 B1B1

B0

OO

Id

ρ
KS

1Id

KS
(32)

Let us call the above structure double pseudocategory object.

4.1. Theorem. The following three structures are the same, i.e. they are specified by the
same data and satisfy the same conditions.
(a) Double pseudocategories in Cat.
(b) Horizontal intercategories, i.e. pseudocategories

C m //
p1 //

p2

// B oo id

∂0 //

∂1

// A in LxDbl

(c) Vertical intercategories, i.e. pseudocategories

X2 M //
P1 //

P2

// X1
oo Id

D0 //

D1

// X0 in CxDbl



INTERCATEGORIES 1231

Proof. (a) ⇔ (b) The double categories A,B,C, when expressed as truncated simplicial
categories, give the columns of (∗), the structural isomorphisms κ′, λ′, ρ′ and the pullbacks
(2), (3), (4).

That the ∂i are strict double functors is equivalent to conditions (5), (6), (7) and (8).
Condition (6) is to ensure that ∂2

i is the right morphism.
That

B A
∂1

//

C

B

p1

��

C Bp2 // B

A

∂0

��

is a pullback is equivalent to having the pullbacks (1) together with (9), (10), (11) and
(12).

For id : A // B to be a lax functor it must preserve domain and codomain (13) and
satisfy (14) to ensure that id2 is the right morphism. The identity comparison is given by
τ of (17) and the composition comparison by µ of (18).

Similarly m : C // B is a lax functor if and only if it satisfies (15) and (16) with the
laxity morphisms given by δ (19) and χ (20).

With the structural isomorphisms κ, λ, ρ of C ////// B oo //
// A we see that the

data and functor commutativities for a vertical intercategory and a double pseudocate-
gory in Cat are the same ((1)-(20)). The equations on the natural transformations also
correspond.

The coherence conditions for id are: associativity (21), left unit law (22) and right
unit law (23).

The coherence conditions for m are: associativity (24), left unit law (25) and right
unit law (26).

For κ to be a transformation we need (27), (28); for λ, we need (29), (30) and for ρ,
(31), (32).

This shows that a horizontal intercategory is the same as a double pseudocategory
in Cat . To show that a vertical intercategory is also the same is similar although the
conditions correspond in a different order. We give them here for completeness.

That Di are strict functors correspond to (5), (9), (13), (15).
That

X1 X0D1

//

X2

X1

P1

��

X2 X1
P2 // X1

X0

D0

��

is a pullback corresponds to the pullbacks (2), (3), (4) and commutativities (6), (10), (14),
(16).

Id is colax corresponds to (7), (11) with the structure maps τ (17) and δ (19).
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M is colax corresponds to (8), (12) and the structure maps µ (18) and χ (20).
The coherence conditions for Id are (28), (30), (32) and those for M are (27), (29),

(31).
For κ′ to be a transformation we need (21), (24); for λ′ we need (22), (25) and for ρ′

we need (23), (26).

The following table summarizes how the four different presentations of intercategory
are related.

Object of A Object of A0 Object of A Object of X0

Transversal arrow Morphism of A0 Horizontal arrow of A Horizontal arrow of X0

Horizontal arrow Object of B0 Object of B Vertical arrow of X0

Vertical arrow Object of A1 Vertical arrow of A Object of X1

Horizontal cell Morphism of B0 Horizontal arrow of B Double cell of X0

Vertical cell Morphism of A1 Double cell of A Horizontal arrow of X1

Basic cell Object of B1 Vertical arrow of B Vertical arrow of X1

Cube Morphism of B1 Double cell of B Double cell of X1

There are eight symmetries for intercategories, generated by three dualities, h, v, tr,
just like for double categories. As the basic unit of structure in an intercategory is the cube,
one might expect 48, as we would have for triple categories. But the transversal direction
is special and must be invariant, which cuts the possibilities down to 16. However, since
the interchanger χ is directed, only half of these are valid symmetries. In fact there are
two dual notions of intercategory: the one we are using here in which

χ :
|
|

//
∣∣∣

that we will call right intercategory, and the one in which χ goes in the opposite direction
called left intercategory.

The dualities are determined by what they do to the horizontal and vertical direction:
– h reverses the horizontal direction while maintaining the vertical and transversal,
– v reverses the vertical direction while maintaining the horizontal and transversal,
– tr switches the horizontal and vertical directions and reverses the transversal. Because
the interchangers are directed from a vertical composite of horizontal composites to the
other way around, if we switch horizontal and vertical we must also reverse the direction
of transversal arrows.
The other symmetries are combinations of these.
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5. Coherence in the 2-dimensional notation

Apart from the interchangers χ, δ, µ, τ there are the associativity and unit isomorphisms
for A.

κ : α|(β|γ) // (α|β)|γ, λ : idv|α // α, ρ : α|idw // α

and

κ′ :
α
β
γ

//
α
β

γ
, λ′ :

Idh
α

// α, ρ′ :
α

Idh̄
// α.

We usually omit the κ and κ′ (leaving them understood), but keep the left and right unit
isomorphisms.

The two-dimensional notation makes the overall structure easier to understand. Con-
ditions (1)-(16) in the definition of double pseudocategory object are all bookkeeping for
domains, codomains and composable pairs, and are implicit in the geometric representa-
tion. (17)-(20) give the interchangers, whose naturality is also implicit.

Conditions (21)-(32) are as follows.

idv
id v̄

ṽ

id v
v̄
ṽ

µ
//

idv
idv̄
idṽ

idv
id v̄

ṽ

idv
µ

��

idv
idv̄
idṽ

id v
v̄

idṽ

µ
idṽ //

id v
v̄

idṽ

id v
v̄
ṽ

µ

��

(21)

idv id IdA
v

oo
idλ′

IdidA

idv

idv

λ′

��

IdidA

idv

idIdA

idv

τ
idv // idIdA

idv

id IdA
v

µ

��

(22)

idv id v
IdĀ

oo
idρ′

idv
IdidĀ

idv

ρ′

��

idv
IdidĀ

idv
idIdĀ

idv
τ // idv

idIdĀ

id v
IdĀ

µ

��

(23)

α

γ

∣∣∣∣ βδ
ε|φ

α
γ

ε

∣∣∣∣∣∣ βδ
φ

χ
//

α|β
γ|δ
ε|φ

α

γ

∣∣∣∣ βδ
ε|φ

χ

ε|φ
��

α|β
γ|δ
ε|φ

α|β
γ

ε

∣∣∣ δ
φ

α|β
χ // α|β

γ

ε

∣∣∣ δ
φ

α
γ

ε

∣∣∣∣∣∣ βδ
φ

χ

��

(24)
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Idh|Idk
α|β

Idh
α

∣∣∣∣ Idk
βχ

//

Idh|k
α|β

Idh|Idk
α|β

δ

α|β
��

Idh|k
α|β

α|βλ′ // α|β

Idh
α

∣∣∣∣ Idk
β

OO

λ′|λ′
(25)

α|β
Idh̄|Idk̄

α

Idh̄

∣∣∣∣ βIdk̄χ
//

α|β
Idh̄|k̄

α|β
Idh̄|Idk̄

α|β
δ

��

α|β
Idh̄|k̄

α|βρ′ // α|β

α

Idh̄

∣∣∣∣ βIdk̄

OO

ρ′|ρ′
(26)

α

δ

∣∣∣ β|γ
ε|φ

α

δ

∣∣∣ β
ε

∣∣∣∣ γφα

δ

∣∣∣∣∣χ
//

α|β|γ
δ|ε|φ

α

δ

∣∣∣ β|γ
ε|φ

χ

��

α|β|γ
δ|ε|φ

α|β
δ|ε

∣∣∣∣ γφχ // α|β
δ|ε

∣∣∣∣ γφ

α

δ

∣∣∣ β
ε

∣∣∣∣ γφ

χ

∣∣∣∣∣γφ
��

(27)

Idh|k|Idl Idh|Idk|Idl
δ|Idl

//

Idh|k|l

Idh|k|Idl

δ

��

Idh|k|l Idh|Idk|lδ // Idh|Idk|l

Idh|Idk|Idl

Idh|δ

��

(28)

α

β
id v

v̄

∣∣∣∣αβoo
λ

idv|α
idv̄|β

α

β

λ
λ

��

idv|α
idv̄|β

idv
idv̄

∣∣∣∣ αβχ // idv
idv̄

∣∣∣∣ αβ

id v
v̄

∣∣∣∣αβ
µ|αβ
��

(29)

Idh idIdA|Idhoo
λ

IdidA|h

Idh

Idλ

��

IdidA|h IdidA|Idh
δ // IdidA|Idh

idIdA|Idh

τ |Id

��

(30)

α

β

α

β

∣∣∣∣ idw
w̄

oo
ρ

α|idw
β|idw̄

α

β

ρ
ρ

��

α|idw
β|idw̄

α

β

∣∣∣∣ idw
idw̄

χ // α

β

∣∣∣∣ idw
idw̄

α

β

∣∣∣∣ idw
w̄

α
β |µ
��

(31)

Idh Idh|idIdB
oo
ρ

Idh|idB

Idh

Idρ

��

Idh|idB Idh|IdidB
δ // Idh|IdidB

Idh|idIdB

Id|τ

��

(32)
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6. Morphisms

As mentioned in Section 3, by considering intercategories as pseudo-category objects in
LxDbl we get two notions of morphism between them corresponding to internal lax and
colax functors. As we see below, we also get cells relating them. We get a similar situation
looking at pseudocategories in CxDbl . We are now in a position to analyze this further.

First, we generalize our double category Dbl of [9].

6.1. Theorem. For any 2-category A we get a strict double category PsCat(A), whose
objects are pseudo-category objects in A, with lax functors as horizontal arrows and colax
functors as vertical ones and suitable double cells.

Proof. It is clear that we have a strictly associative and unitary composition of lax
functors, and colax ones too.

We must define double cells, which is just a question of expressing the definition of [9]
diagramatically. A double cell π has a boundary

C D
G

//

A

C

•U

��

A BF // B

D

•V

��

π

with A,B,C,D pseudocategories in A, F,G lax functors and U, V colax functors. A
consists, in part, of objects and arrows

A2 m //
p1 //

p2

// A1
oo id

∂0 //

∂1

// A0

and similarly for B,C,D. Similarly F consists of arrows

B2 B1
//

A2

B2

F2

��

A2 A1
// A1

B1

F1

��
B2 B1//

A2

B2

A2 A1// A1

B1B2 B1
//

A2

B2

A2 A1
//
A1

B1B1 B0
oo

A1

B1

��

A1 A0
oo A0

B0

F0

��
B1 B0//

A1

B1

A1 A0// A0

B0B1 B0
//

A1

B1

A1 A0
//
A0

B0

commuting with ∂0, ∂1 (so F2 is determined by F0 and F1). As in [9] we denote the laxity
cells by F , or more explicitly

B0 B1id
//

A0

B0

F0

��

A0 A1
id // A1

B1

F1

��

F 0 ;C and

B2 B1m
//

A2

B2

F2

��

A2 A1
m // A1

B1

F1

��

F 2 ;C
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Similar notation applies to G,U, V . The cell π then consists of three cells, π0, π1, π2

Ci DiGi
//

Ai

Ci

Ui

��

Ai Bi
Fi // Bi

Di

Vi

��

πi
{�

which preserve domains and codomains (so π2 is determined by π0 and π1) and satisfy

Ci DiGi
//

Ai

Ci

Ui

��

Ai Bi
Fi // Bi

Di

Vi

��

C1 D1G1

//C1

B1B1

D1

V1

��

Bi

B1

��

Ci

C1

��

Di

D1

��

πi
{�

Gi
{�

V i
{�

=
Ci

Ai

Ci

Ui

��

Ai Bi
Fi // Bi

C1 D1G1

//

A1

C1

U1

��

A1 B1
G1 // B1

D1

V1

��

Ai

A1

��

Bi

B1

��

Ci

C1

��

π1
{�

U i
{�

F i
{�

where the transversal arrows are id’s for i = 0 and m’s for i = 2. The πi can be pasted
horizontally and vertically and associativity, unit laws and interchange hold strictly. Note
that the above conditions are commutative cubes of 2-cells whose front is π1 and back π0

and π2 respectively. So they may be pasted horizontally and vertically as well, and the
pasted π’s still satisfy these conditions.

What this gives us when applied to the 2-category LxDbl are two kinds of morphism
of intercategory and a corresponding notion of double cell. We can also apply it to the
2-category CxDbl to get the same kind of thing. To see how they are related we must
express them in more elementary terms. First let’s examine lax functors

C̄ B̄//

C

C̄

H

��

C B// B

B̄

G

��
C̄ B̄//

C

C̄

C B// B

B̄C̄ B̄//

C

C̄

C B// B

B̄̄B Āoo

B

B̄
��

B Aoo A

Ā

F

��
B̄ Ā//

B

B̄

B A// A

ĀB̄ Ā//

B

B̄

B A// A

Ā

of pseudo-category objects in LxDbl . F,G,H are lax functors as they come from LxDbl
but we also have laxity transformations

Ā B̄
id

//

A

Ā

F

��

A Bid // B

B̄

G

��

F ;C and

C̄ B̄m
//

C

C̄

H

��

C Bm // B

B̄

G

��

H ;C
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F is given by functors Fi : Ai
//Āi, i = 0, 1, 2 and the same for G and H, and all domains

and codomains are preserved. Let’s denote the corresponding morphism of intercategories
by Φ : A // Ā.

Thus Φ takes objects of A to objects of Ā and transversal arrows to transversal arrows,
given by F0. It takes vertical arrows and vertical cells to similar ones in Ā, given by F1.
Similarly it takes horizontal arrows and cells to the same kind in Ā (given by G0) and
basic cells and cubes to like ones in Ā (given by G1). All domains and codomains are
respected, as illustrated by

Ā

A

Ā

v

��

A A′
a // A′

B̄ B̄′//

B

B̄
��

B B′// B′

B̄′
��

A

B
��

A′

B′
��

Ā

B̄
f̄ ��

β

γ

α

7−→
ΦĀ

ΦA

ΦĀ

Φv

��

ΦA ΦA′Φa // ΦA′

ΦB̄ ΦB̄′//

ΦB

ΦB̄
��

ΦB ΦB′// ΦB′

ΦB̄′
��

ΦA

ΦB
��

ΦA′

ΦB′
��

ΦĀ

ΦB̄
Φf̄ ��

Φβ

Φγ

Φα

Transversal composition (of arrows, horizontal and vertical cells) is preserved strictly. For
vertical composition we are given comparison cells, coming from F and G. For an object
A, a vertical cell

ΦA

ΦA

IdΦA

��

ΦA

ΦA

ΦA

Φ(IdA)

��

φv(A)

and for a horizontal arrow a : A // A′ a cube

ΦA ΦA′
Φa

//

ΦA

ΦA

IdΦA

��

ΦA ΦA′Φa // ΦA′

ΦA′

IdΦA′

��

ΦA ΦA′
Φa

//ΦA

ΦA′ΦA′

ΦA′

Φ(IdA′ )

��

ΦA′

ΦA′

ΦA

ΦA

ΦA′

ΦA′

IdΦa

=

φv(A′)
φv(a) //

ΦA

ΦA

ΦA

IdΦA

��

ΦA ΦA′Φa // ΦA′

ΦA ΦA′
Φa

//

ΦA

ΦA
��

ΦA ΦA′Φa // ΦA′

ΦA′

Φ(IdA′ )

��

ΦA

ΦA
��

ΦA′

ΦA′
��

ΦA

ΦA
��

Φ(Ida)

φv(A)

=

Following our simplified notation of Section 4, we write both of these as

φv : IdΦ
// Φ(Id). (1)
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For vertical arrows A •v // Ā •v̄ // Ã we are given vertical cells

ΦA

ΦĀ

•Φv
��

ΦĀ

ΦÃ

•Φv̄
��

ΦA

ΦA

ΦÃ

ΦÃ

ΦA

ΦÃ

Φ(v·v̄)

��

φv(v,v̄)

and for basic cells

Ã Ã′//

Ā

Ã

v̄

��

Ā Ā′// Ā′

Ã′

v̄′

��

Ā Ā′//

A

Ā

v

��

A A′// A′

Ā′

v′

��

ᾱ

α

we are given cubes

ΦÃ ΦÃ′//

ΦĀ

ΦÃ

Φv̄

��

ΦĀ ΦĀ′// ΦĀ′

ΦÃ′
��

ΦĀ ΦĀ′//

ΦA

ΦĀ

Φv

��

ΦA ΦA′// ΦA′

ΦĀ′
��

ΦÃ ΦÃ′//ΦÃ

ΦA′ΦA′

ΦÃ′

Φ(v′·v̄′)

��

ΦÃ

ΦÃ

ΦÃ′

ΦÃ′

ΦA′

ΦA′

Φᾱ

Φα

φv
φv(α,ᾱ) //

ΦĀ

ΦA

ΦĀ

Φv

��

ΦA ΦA′// ΦA′

ΦĀ

ΦÃ

Φv̄

��

ΦÃ ΦÃ′//

ΦA

ΦÃ
��

ΦA ΦA′// ΦA′

ΦÃ′

Φ(v′·v̄′)

��

ΦÃ

ΦÃ

ΦA

ΦA

ΦA′

ΦA′

Φ(α·ᾱ)

φv

We denote this by

φv : Φα
Φᾱ

// Φ
(
α
ᾱ

)
(2)

The transformation F : (id)F //G(id) is given by assigning to each object A of A a
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horizontal arrow F (A) : idFA //G(idA) of B̄, i.e. to each object of A a horizontal cell

ΦA

ΦA

ΦA ΦA
idΦA //

ΦA ΦA
Φ(idA)

//

ΦA

ΦA

φh(A)

and to each vertical arrow of A a corresponding cell of B̄, i.e. for each vertical arrow

A •v //A′ of A a cube

ΦA′ ΦA′
idΦA′

//

ΦA

ΦA′

Φv

��

ΦA ΦA
idΦA // ΦA

ΦA′

Φv

��

ΦA′ ΦA′
Φ(idA′ )

//ΦA′

ΦAΦA

ΦA′

Φv

��

ΦA

ΦA

ΦA′

ΦA′

ΦA′

ΦA′

idΦv

φh(A′)

φh(v) //

ΦA′

ΦA

ΦA′

Φv

��

ΦA ΦA
idΦA // ΦA

ΦA′ ΦA′//

ΦA

ΦA′

Φv

��

ΦA ΦA// ΦA

ΦA′

Φv

��

ΦA

ΦA

ΦA

ΦA

ΦA′

ΦA′

Φ(idv)

φh(A′)

We denote both of these by

φh : idΦ
// Φ(id) (3)

Similarly the transformation H : mH //Gm is given by

φh : Φα|Φβ // Φ(α|β). (4)

The transformations (1)-(4) have to satisfy the following conditions.
First, vertical laxity (laxity of F and G)

Φα Φ

(
Idh
α

)
oo

Φ(λ′)

IdΦh

Φα

Φα

λ′

��

IdΦh

Φα

Φ(Idh)

Φα

φv
Φα // Φ(Idh)

Φα

Φ

(
Idh
α

)φv

��
(5)

Φα Φ

(
α

Idh̄

)
oo

Φ(ρ′)

Φα

IdΦh̄

Φα

ρ′

��

Φα

IdΦh̄

Φα

Φ(Idh̄)

Φα
φv // Φα

Φ(Idh̄)

Φ

(
α

Idh̄

)φv
��

(6)
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Φα

Φ

(
β

γ

) Φ

 α

β

γ

φv
//

Φα

Φβ

Φγ

Φα

Φ

(
β

γ

)
Φα
φv

��

Φα

Φβ

Φγ

Φ

(
α

β

)
Φγ

φv
Φγ //

Φ

(
α

β

)
Φγ

Φ

 α

β

γ



φv

��

(7)

Next, horizontal laxity (laxity of F ,H)

Φα Φ(idv|α)oo
Φ(λ)

idΦv|Φα

Φα

λ

��

idΦv|Φα Φ(idv)|Φα
φh|Φα // Φ(idv)|Φα

Φ(idv|α)

φh

��

(8)

Φα Φ(α|idw)oo
Φ(ρ)

Φα|idΦw

Φα

ρ

��

Φα|idΦw Φα|Φ(idw)
Φα|φh // Φα|Φ(idw)

Φ(α|idw)

φh

��

(9)

Φα|Φ(β|γ) Φ(α|β|γ)
φh

//

Φα|Φβ|Φγ

Φα|Φ(β|γ)

Φα|φh

��

Φα|Φβ|Φγ Φ(α|β)|Φγφh|Φγ // Φ(α|β)|Φγ

Φ(α|β|γ)

φh

��

(10)

Finally, vertical/horizontal compatibility (F ,H horizontal transformations)

idIdΦA
idΦ(IdA)idφv

//

IdidΦA

idIdΦA

τ

��

IdidΦA
IdΦ(idA)

Idφh // IdΦ(idA)

idΦ(IdA)idΦ(IdA) Φ(idIdA)
φh
//

IdΦ(idA)

idΦ(IdA)

IdΦ(idA) Φ(IdidA)
φv // Φ(IdidA)

Φ(idIdA)

Φ(τ)

��

(11)

idΦv
Φv̄

idΦ v
v̄idφv

//

idΦv

idΦv̄

idΦv
Φv̄

µ

��

idΦv

idΦv̄

Φidv
Φidv̄

φh
φh // Φidv

Φidv̄

idΦ v
v̄

idΦ v
v̄

Φ(id v
v̄
)

φh
//

Φidv
Φidv̄

idΦ v
v̄

Φidv
Φidv̄

Φ

(
idv
idv̄

)
φv // Φ

(
idv
idv̄

)

Φ(id v
v̄
)

Φµ

��

(12)
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IdΦh|IdΦk Φ(Idh)|Φ(Idk)
φv |φv

//

IdΦh|Φk

IdΦh|IdΦk

δ

��

IdΦh|Φk IdΦ(h|k)

Idφh // IdΦ(h|k)

Φ(Idh)|Φ(Idk)Φ(Idh)|Φ(Idk) Φ(Idh|Idk)φh
//

IdΦ(h|k)

Φ(Idh)|Φ(Idk)

IdΦ(h|k) Φ(Idh|k)
φv // Φ(Idh|k)

Φ(Idh|Idk)

Φδ

��

(13)

Φα

Φᾱ

∣∣∣∣ Φβ

Φβ̄
Φ
(α
ᾱ

)∣∣∣Φ(β
β̄

)
φv |φv

//

Φα|Φβ
Φᾱ|Φβ̄

Φα

Φᾱ

∣∣∣∣ Φβ

Φβ̄

χ

��

Φα|Φβ
Φᾱ|Φβ̄

Φ(α|β)

Φ(ᾱ|β̄)

φh
φh // Φ(α|β)

Φ(ᾱ|β̄)

Φ
(α
ᾱ

)∣∣∣Φ(β
β̄

)
Φ
(α
ᾱ

)∣∣∣Φ(β
β̄

)
Φ

(
α

ᾱ

∣∣∣ β
β̄

)
φh

//

Φ(α|β)

Φ(ᾱ|β̄)

Φ
(α
ᾱ

)∣∣∣Φ(β
β̄

)

Φ(α|β)

Φ(ᾱ|β̄)
Φ

(
α|β
ᾱ|β̄

)
φv // Φ

(
α|β
ᾱ|β̄

)

Φ

(
α

ᾱ

∣∣∣ β
β̄

)Φ(χ)

��

(14)

The data (1)-(4) satisfying conditions (5)-(14) is a complete description of what we call
lax-lax morphisms of intercategories. They compose in the obvious way and the unit laws
and associativity hold strictly. This is because composition comes from the transversal
structure.

If, instead, we consider colax morphisms, still between pseudocategories in LxDbl ,
then the F,G,H above are still lax functors, but now the transformations F and H go in
the opposite direction. This means that the transformations φv of (1) and (2) remain the
same whereas the φh of (3) and (4) are in the opposite direction. Examining conditions
(5)-(14) we see that (5)-(7) are unchanged but in (8)-(14) the reversal of φh produces a
new commutative diagram of a similar sort. We call this sort of morphism colax-lax.

We can now give an explicit description of the cells π introduced in Theorem 6.1.
Consider a diagram of intercategories

C D
Ψ

//

A

C

Σ

��

A BΦ // B

D

Θ

��

π

where Φ and Ψ are lax-lax and Σ and Θ colax-lax. A cell π as above consists of:
– for every object A of A, a transversal arrow in D

πA : ΘΦA //ΨΣA (1)
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– for every vertical arrow v : A • // Ā of A, a vertical cell in D

ΘΦĀ ΨΣAπv

ΘΦA

ΘΦĀ

•ΘΦv

��

ΘΦA

ΨΣA

πA

��
ΘΦĀΘΦĀ

ΨΣĀ

πĀ

��
ΨΣĀ

•ΨΣv

��

πv : ΘΦv //ΨΣv (2)

– for every horizontal arrow f : A ◦ //A′ of A a horizontal cell in D

ΘΦA ΘΦA′◦ΘΦf //

ΨΣA ΨΣA′◦
ΨΣf

//

ΘΦA

ΨΣA

πA
��

ΘΦA′

ΨΣA′

πA′

��
πf

πf : ΘΦf //ΨΣf (3)

– for every basic cell

Ā Ā′
f̄

//

A

Ā

•v

��

A A′
f // A′

Ā′

•v′

��

α

a cube πα in D

ΘΦĀ

ΘΦA

ΘΦĀ

•ΘΦv

��

ΘΦA ΘΦA′◦ΘΦf // ΘΦA′

ΨΣĀ ΨΣĀ′◦
ΨΣf̄

//

ΨΣA

ΨΣĀ

•

��

ΨΣA ΨΣA′◦ // ΨΣA′

ΨΣĀ′

•ΨΣv̄

��

ΘΦA

ΨΣA
��

ΘΦA′

ΨΣA′

πA′

��

ΘΦĀ

ΨΣĀ

πĀ ��

ΨΣα

πv

πf

πα : ΘΦα //ΨΣα (4)
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(1)-(4) set up the structure of π and make the domains and codomains explicit, which
are just as one would expect. We give the equations that π must satisfy only at the
highest level with the understanding that they imply corresponding ones lower down so
as to make the domains and codomains work.

There are two groups of equations. The first expressing that π is made up of 2-cells
in LxDbl .

IdΨΣh Ψ(IdΣh)ψv
//

IdΘΦh

IdΨΣh

Idπh

��

IdΘΦh Θ(IdΦh)
θv // Θ(IdΦh)

Ψ(IdΣh)Ψ(IdΣh) ΨΣ(Idh)
Ψ(σv)

//

Θ(IdΦh)

Ψ(IdΣh)

Θ(IdΦh) ΘΦ(Idh)
Θφv // ΘΦ(Idh)

ΨΣ(Idh)

π(Idh)

��

(5)

ΨΣα
ΨΣβ

Ψ(Σα
Σβ

)
ψv

//

ΘΦα
ΘΦβ

ΨΣα
ΨΣβ

πα
πβ

��

ΘΦα
ΘΦβ

Θ(Φα
Φβ

)
θv // Θ(Φα

Φβ
)

Ψ(Σα
Σβ

)Ψ(Σα
Σβ

) ΨΣ(α
β
)

Ψ(σv)
//

Θ(Φα
Φβ

)

Ψ(Σα
Σβ

)

Θ(Φα
Φβ

) ΘΦ(α
β
)

Θφv // ΘΦ(α
β
)

ΨΣ(α
β
)

π(α
β

)

��

(6)

The second group expressing that π is a cell as in Theorem 6.1.

Θ(idΦv)

ΘΦ(idv)

Θφh

��

idΘΦv

Θ(idΦv)

??

θh

idΘΦv

ΘΦ(idv)ΘΦ(idv) ΨΣ(idv)
π(idv)

//

idΘΦv

ΘΦ(idv)

idΘΦv idΨΣv
idπv // idΨΣv

ΨΣ(idv)

Ψ(idΣv)

ΨΣ(idv)

??

Ψ(σh)

idΨΣv

Ψ(idΣv)

ψh

��

idΨΣv

ΨΣ(idv)

(7)

Θ(Φα|Φβ)

ΘΦ(α|β)

Θ(φh)

��

ΘΦα|ΘΦβ

Θ(Φα|Φβ)

??

θh

ΘΦα|ΘΦβ

ΘΦ(α|β)ΘΦ(α|β) ΨΣ(α|β)
π(α|β)

//

ΘΦα|ΘΦβ

ΘΦ(α|β)

ΘΦα|ΘΦβ ΨΣα|ΨΣβ
πα|πβ // ΨΣα|ΨΣβ

ΨΣ(α|β)

Ψ(Σα|Σβ)

ΨΣ(α|β)

??

Ψ(σh)

ΨΣα|ΨΣβ

Ψ(Σα|Σβ)

ψh

��

ΨΣα|ΨΣβ

ΨΣ(α|β)

(8)
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Horizontal and vertical composition comes from the pasting of cubes, as explained in
Theorem 6.1, and is defined in terms of transversal composition. For cells

D D′
Ψ′

//

B

D

Θ

��

B B′Φ′ // B′

D′

Θ′

��

and

C̄ D̄
Ψ̄

//

C

C̄

Σ̄

��

C DΨ // D

D̄

Θ̄

��

π′ π̄

(π|π′)(α) = (Θ′Φ′Φα π′Φα //Ψ′ΘΦα Ψ′πα //Ψ′ΨΣα) = (Ψ′πα)(π′Φα),

π

π̄
(α) = (Θ̄ΘΦα Θ̄πα // Θ̄ΨΣα π̄Σα // Ψ̄Σ̄Σα) = (π̄Σα)(Θ̄πα).

We have just described the double category PsCat(LxDbl). We can now do the same
for PsCat(CxDbl) keeping in mind the identification of pseudocategories in LxDbl with
pseudocategories in CxDbl .

An internal lax functor is, in part, a diagram

Y2 Y1
//

X2

Y2

T2

��

X2 X1
// X1

Y1

��
Y2 Y1//

X2

Y2

X2 X1// X1

Y1Y2 Y1
//

X2

Y2

X2 X1
// X1

Y1Y1 Y0
oo

X1

Y1

T1

��

X1 X0
oo X0

Y0

T0

��
Y1 Y0//

X1

Y1

X1 X0// X0

Y0Y1 Y0
//

X1

Y1

X1 X0
// X0

Y0

where the Ti are colax functors of double categories. So T0, for example, comes with
comparison cells

T0(x · x̄) // T0x · T0x̄, T0(id) // idT0 ,

where x and x̄ are vertical arrows of X0. Now, when an intercategory A is considered as
a pseudo-category in CxDbl as above, the vertical arrows of X0 are the horizontal arrows
of A. It will follow then that if a morphism of intercategories is represented as a diagram
in CxDbl it will be horizontally colax. If we further have cells

Y0 Y1Id
//

X0

Y0

T0

��

X0 X1
Id // X1

Y1

T1

��

;C

Y2 Y1M
//

X2

Y2

T2

��

X2 X1
M // X1

Y1

T1

��

;C

to give us an internal lax functor, we get comparisons for vertical identities and com-
position at the intercategory level. That is, a lax functor of pseudocategories in CxDbl
gives a colax-lax morphism of intercategories. This is the same as a colax functor of
pseudocategories in LxDbl .

We summarize this discussion in the following.
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6.2. Theorem. Under the identifications of Theorem 4.1, colax-lax morphisms corre-
spond to either internal colax functors between pseudocategories in LxDbl or internal lax
functors between pseudocategories in CxDbl .

On the other hand, if we consider colax functors between pseudocategories in CxDbl
we get something new, a colax-colax functor of intercategories.

We also have cells

C D
Ψ

//

A

C

Σ

��

A BΦ // B

D

Θ

��

π

where Φ and Ψ are colax-lax and Σ and Θ are colax-colax. For a basic cell α in A

πα : ΘΦα //ΨΣα.

Remark: The notion of a lax-colax morphism of intercategories (horizontally lax
and vertically colax) doesn’t come up and in fact the vertical/horizontal compatibility
conditions (11)-(14) don’t make sense in this case. For example, (14) would look like

Φα

Φγ

∣∣∣∣ Φβ

Φδ
Φ

(
α

γ

)∣∣∣∣Φ(βδ
)

oo
φv |φv

Φα|Φβ
Φγ|Φδ

Φα

Φγ

∣∣∣∣ Φβ

Φδ

χ

��

Φα|Φβ
Φγ|Φδ

Φ(α|β)

Φ(γ|δ)

φh
φh // Φ(α|β)

Φ(γ|δ)

Φ

(
α

γ

)∣∣∣∣Φ(βδ
)

Φ

(
α

γ

)∣∣∣∣Φ(βδ
)

Φ

(
α

γ

∣∣∣∣ βδ
)

φh
//

Φ(α|β)

Φ(γ|δ)

Φ

(
α

γ

)∣∣∣∣Φ(βδ
)

Φ(α|β)

Φ(γ|δ)
Φ

(
α|β
γ|δ

)
oo φv

Φ

(
α|β
γ|δ

)

Φ

(
α

γ

∣∣∣∣ βδ
)Φ(χ)

��

To sum up what we have so far, there are three kinds of morphisms of intercategories,
lax-lax, colax-lax, and colax-colax and there are two kinds of cells relating the lax-lax
with colax-lax and the colax-lax with colax-colax. These cells give us two strict double
categories of intercategories. Furthermore, these double categories have the colax-lax mor-
phisms in common. This suggests that we might have an intercategory of intercategories
with the colax-lax morphisms as transversal. In fact it is much better: we have a strict
triple category.

In order to complete the construction we first have to define double cells relating lax-
lax functors with colax-colax ones. Let Φ and Ψ be lax-lax and Σ and Θ colax-colax. A
double cell

C D
Ψ

//

A

C

Σ

��

A BΦ // B

D

Θ

��

π
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consists of the same data (1)-(4) as above, satisfying the conditions

Θ(IdΦ)

ΘΦ(Id)

Θφv

��

IdΘΦ

Θ(IdΦ)

??

θv

IdΘΦ

ΘΦ(Id)ΘΦ(Id) ΨΣ(Id)
π(Id)

//

IdΘΦ

ΘΦ(Id)

IdΘΦ IdΨΣ
Idπ // IdΨΣ

ΨΣ(Id)

Ψ(IdΣ)

ΨΣ(Id)

??

Ψ(σv)

IdΨΣ

Ψ(IdΣ)

Ψv

��

IdΨΣ

ΨΣ(Id)

(5′)

Θ

(
Φα

Φβ

)

ΘΦ

(
α

β

)Θφv ��

ΘΦα

ΘΦβ

Θ

(
Φα

Φβ

)
??

θv

ΘΦα

ΘΦβ

ΘΦ

(
α

β

)
ΘΦ

(
α

β

)
ΨΣ

(
α

β

)
π(αβ )

//

ΘΦα

ΘΦβ

ΘΦ

(
α

β

)

ΘΦα

ΘΦβ

ΨΣα

ΨΣβ

πα
πβ // ΨΣα

ΨΣβ

ΨΣ

(
α

β

)
Ψ

(
Σα

Σβ

)

ΨΣ

(
α

β

)
??

Ψ(σv)

ΨΣα

ΨΣβ

Ψ

(
Σα

Σβ

)ψv

��

ΨΣα

ΨΣβ

ΨΣ

(
α

β

)
(6′)

as well as conditions (7) and (8) above.
Such cells compose horizontally and vertically in the same way as the cells for the

lax-lax, colax-lax case. The data is the same, the conditions (7) and (8) are the same and
(5’) and (6’) are the same as the corresponding ones in the colax-lax, colax-colax case. In
fact the conditions (5) and (6) and the conditions (7) and (8) are independent, the former
referring only to the vertical structure and the latter to the horizontal. This gives us a
strict double category which will comprise the basic cells of our triple category.

6.3. Theorem. There is a strict triple category ICat whose objects are intercategories,
with colax-lax morphisms as transversal arrows, lax-lax morphisms as horizontal arrows,
colax-colax morphisms as vertical arrows, with the three kinds of double cells defined above
and with commuting cubes as triple cells.
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Proof. We must say what is meant by a commuting cube. Consider a cube of cells with
back and front as shown

C D
Ψ

//

A

C

Σ

��

A BΦ // B

D

Θ

��

C′ D′
Ψ′

//C′

B′B′

D′

Θ′

��

B

B′

K′

��

C

C′
L ��

D

D′

L′

��

π

κ̄

λ̄

C

A

C

Σ

��

A BΦ // B

C′ D′
Ψ′

//

A′

C′

Σ′

��

A′ B′Φ′ // B′

D′

Θ′

��

A

A′
K ��

B

B′

K′

��

C

C′
L ��

π′

λ

κ

The data for the cells is given by

πα : ΘΦα //ΨΣα,

π′α′ : Θ′Φ′α′ //Ψ′Σ′α′,

κα : K ′Φα // Φ′Kα,

κ̄γ : L′Ψγ //Ψ′Lγ,

λα : Σ′Kα // LΣα,

λ̄β : Θ′K ′β // L′Θβ.

Commutativity means that for every α

Θ′K ′Φα

L′ΘΦα

λ̄Φα

��

Θ′Φ′Kα

Θ′K ′Φα

??

Θκα

Θ′Φ′Kα

L′ΘΦαL′ΘΦα L′ΨΣα
L′πα

//

Θ′Φ′Kα

L′ΘΦα

Θ′Φ′Kα Ψ′Σ′Kαπ′Kα // Ψ′Σ′Kα

L′ΨΣα

Ψ′LΣα

L′ΨΣα

??

κ̄Σα

Ψ′Σ′Kα

Ψ′LΣα

Ψ′λα

��

Ψ′Σ′Kα

L′ΨΣα

commutes. That commuting cubes paste in all three directions is a straightforward, if
long, calculation which we omit.
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7. Pseudocategories in a double category

Theorem 4.1 asserts that double pseudocategories in CAT , horizontal intercategories and
vertical intercategories are the same but it later turns out that the morphisms are not.
Double pseudocategories have three variants of morphism, lax-lax, colax-lax and colax-
colax whereas horizontal (resp. vertical) only have two variants of morphism, lax-lax and
colax-lax (resp. colax-lax and colax-colax). We should then conclude that categorically
the structures are not the same: if they were we should be able to recover the third
variant. If we concentrate on the presentation in LxDbl , the reason for this discrepancy
is that this 2-category is only the horizontal part of Dbl, while the third kind of morphism
is a double category construct.

We want thus to define a horizontal intercategory in the double category Dbl. First,
we need one more concept.

7.1. Definition. A cell

C D
G

//

A

C

•U

��

A BF // B

D

•V

��

σ

in Dbl is (horizontally) strict if F and G are strict functors and σ is a horizontal identity
on objects and vertical arrows of A, i.e. V F = GU .

7.2. Proposition. The horizontal (resp. vertical) composite of strict cells is again strict.

7.3. Proposition. Let

C D
G

//

A

C

•U

��

A BF // B

D

•V

��

σ and

C′ D′
G′

//

A′

C′

•U ′

��

A′ BF ′ // B

D′

•V

��

σ′

be strict cells in Dbl. Then there exist unique U ×V U ′ : A×B A′ • //C×D C′ and strict
cells

C×D C′ Cq1
//

A×B A′

C×D C′

•U×V U ′

��

A×B A′ Ap1 // A

C

•U

��

π1 and

C×D C′ C′q2
//

A×B A′

C×D C′

•U×V U ′

��

A×B A′ A′p2 // A′

C′

•U ′

��

π2
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Further

U Vσ
//

U ×V U ′

U

π

��

U ×V U ′ U ′π′ // U ′

V

σ′

��

is a pullback in Dbl1, the category whose objects are colax functors and whose morphisms
are arbitrary cells in Dbl.

Proof. (Sketch) As π1 and π2 are to be strict, U ×V U ′ has to be given by

U ×V U ′(A,A′) = (UA,U ′A′)

with similar definitions for arrows, cells, and the colaxity structural cells, i.e. everything
happens at the set-theoretical level. The universal property is also like that: it is simply
a question of writing it out.

Let SC(Dbl) be the double category of strict horizontal cospans in Dbl. The objects
are cospans

A F // B oo F ′ A′

of strict functors (considered as horizontal morphisms of Dbl). The horizontal morphisms
are commutative diagrams

A2 B2
F ′2

//

A1

A2

G

��

A1 B1
F1 // B1

B2

H

��
B2 A′2oo

F ′2

B1

B2

B1 A′1oo
F ′1 A′1

A′2

G′

��

of horizontal morphisms of Dbl, i.e. G,H,G′ are lax functors. The vertical morphisms are
strict cells

C D
G

//

A

C

•U

��

A BF // B

D

•V

��

σ

D C′oo
G′

B

D

•

��

B A′oo F ′ A′

C′

•U ′

��

σ′

i.e. U, V, U ′ are colax functors and the diagram commutes. A cell consists of three arbitrary
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cells

C1 C2K
//

A1

C1

•U1

��

A1 A2
G // A2

C2

•U2

��

α

D1 D2L
//

B1

D1

•V1

��

B1 B2
H // B2

D2

•V2

��

β

C′1 C′2
K′

//

A′1

C′1

•U ′1

��

A′1 A′2G′ // A′2

C′2

•U ′2

��

α′

making

C1

A1

C1

•U1

��

A1 B1
// B1

C2 D2
//

A2

C2

•U2

��

A2 B2
// B2

D2

•V2

��

A1

A2

��

B1

B2

��

C1

C2

��
D2 C′2oo

B2

D2

•

��

B2 A′2oo A′2

C′2

•U ′2

��

A′1

A′2
��

σ1 σ′1
β α′

α

σ2 σ′2

B1

B2

��

B1 A′1oo

commute, i.e. σ2α = βσ1 and σ′2α
′ = βσ′1.

The following result follows immediately from the description given above. We use
the same convention regarding subscripts as in Section 3.

7.4. Proposition. Pullback extends to a strict functor of double categories SC(Dbl) // Dbl.

7.5. Definition. Let A = A2
////// A1
oo //

// A0 and B = B2
////// B1
oo //

// B0

be horizontal intercategories. A vertical morphism U : A // B consists of
(1) vertical arrows (colax functors) Ui : Ai • //Bi
(2) strict cells

B1 B0∂i
//

A1

B1

•U1

��

A1 A0
∂i // A0

B0

•U0

��

δi

B2 B1pi
//

A2

B2

•U2

��

A2 A1
pi // A1

B1

•U1

��

πi

and
(3) arbitrary cells

B0 B1id
//

A0

B0

•U0

��

A0 A1
id // A1

B1

•U1

��

η

B2 B1m
//

A2

B2

•U2

��

A2 A1
m // A1

B1

•U1

��

µ

satisfying
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B3

B2

m12 %%

B3 B1B1

B2

99

m

A3

A2

m12 %%

A3 A1A1

A2

99

m

A3 A1

A2

A3

99
m23

A2

A1

m

%%
A3

B3

•U3

��

A2

B2

•U2

��

A1

B1

•U1

��

=

B3

B2

%%

B3 B1B1

B2

99B3 B1

B2

B3

99 B2

B1

%%

A3 A1

A2

A3

99
m23

A2

A1

m

%%
A3

B3

•U3

��

A2

B2

•U2

��

A1

B1

•U1

��
µ12 µ

κ��

µ23 µ

κ��

(4)

B1 B1

B2

B1

::
id1

B2

B1

m

$$λ��

A1 A1

A2

A1

::
id1

A2

A1

m

$$
A1

B1

•U1

��

A1

B1

•U1

��

A2

B2

•U2

��
η1 µ =

B1 B1

A1

B1

•U1

��

A1 A1A1

B1

•U1

��

A1 A1

A2

A1

::
id1

A2

A1

m

$$λ��

1U1

(5)

B1 B1

B2

B1

::
id2

B2

B1

n

$$ρ��

A1 A2

A2

A1

::
id2

A2

A2

m

$$
A1

B1

•U1

��

A1

B1

•U1

��

A2

B2

•U2

��
η2 µ =

B1 B1

A1

B1

•U1

��

A1 A1A1

B1

•U1

��

A1 A1

A2

A1

::
id2

A2

A1

m

$$

1U1

(6)

7.6. Proposition. A vertical morphism of horizontal intercategories is the same as a
colax-colax morphism of double pseudocategories.

Proof. (Sketch) We simply point out where the structural morphisms (dual of (1)-(4) in
Section 6) come from and which can be seen to go in the right directions. We omit the
routine verification of (the dual) conditions (5)-(14).

Because U2 is colax, we get

U(Idf ) // IdUf and U
(α
ᾱ

)
// Uα

Uᾱ
.

The cells η and µ give

ηv : U(idv) // idUv and µα,β : U(α|β) // Uα|Uβ.
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We can also define double cells between horizontal lax (resp. horizontal colax) and
vertical morphisms. (Cells between horizontal lax and horizontal colax have already been
studied in Section 3.) Let F and G be horizontal lax morphisms, and U and V vertical
morphisms as in

C D
G

//

A

C

•U

��

A BF // B

D

•V

��

π

A cell π as above consists of three cells

Ci DiGi
//

Ai

Ci

•Ui

��

Ai Bi
Fi // Bi

Di

•Vi

��

πi

preserved by domain and codomain (so π2 is determined by π0 and π1)

C1 C0∂i
//

A1

C1

•U1

��

A1 A0
∂i // A0

C0

•U0

��

δi

C0 D0G0

//

A0

C0

•

��

A0 B0
F0 // B0

D0

•V0

��

π0

A1 A0
//

A1

A1

A1 B1
F1 // B1

A0A0 B0
//

B1

A0

B1 B0
∂i // B0

B0

=

=

C1 C0∂i
//

C1

C1

C1 D1
// D1

C0C0 D0G0

//

D1

C0

D1 D0
// D0

D0

=

C1 D1G1

//

A1

C1

•U1

��

A1 B1
F1 // B1

D1

•V1

��
D1 D0∂i

//

B1

D1

•

��

B1 B0
∂i // B0

D0

•V0

��

π1 δi

and respecting the structural elements of the morphisms in question

C0 C1id
//

A0

C0

•U0

��

A0 A1
// A1

C1

•U1

��

η

C1 D1G1

//

A1

C1

•

��

A1 B1
// B1

D1

•V1

��

π1

A0 A1id
//

A0

A0

A0 B0
F0 // B0

A1A1 B1F1

//

B0

A1

B0 B1
id // B1

B1

φ0

=

C0 C1id
//

C0

C0

C0 D0
// D0

C1C1 D1G1

//

D0

C1

D0 D1
// D1

D1

γ0

C0 D0G0

//

A0

C0

•U0

��

A0 B0
F0 // B0

D0

•V0

��
D0 D1id

//

B0

D0

•

��

B0 B1
id // B1

D1

•V1

��

π0 ε
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C2 C1m
//

A2

C2

•U2

��

A2 A1
// A1

C1

•

��

µ

C1 D1G1

//

A1

C1

•U1

��

A1 B1
// B1

D1

•V1

��

π1

A2 A1m
//

A2

A2

A2 B2
F2 // B2

A1A1 B1F1

//

B2

A1

B2 B1
m // B1

B1

φ2

=

C2 C1m
//

C2

C2

C2 D2
// D2

C1C1 D1G1

//

D2

C1

D2 D1
// D1

D1

γ0

C2 D2G2

//

A2

C2

•U2

��

A2 B2
F2 // B2

D2

•V2

��
D2 D1m

//

B2

D2

•

��

B2 B1
m // B1

D1

•V1

��

π2 γ

It is routine to check that these cells compose horizontally and vertically giving a strict
double category structure.

We leave it to the reader to formulate the similar notion of cell between horizontal
colax and vertical morphisms.

Finally, we define cubes

C D
G

//

A

C

•U

��

A BF // B

D

•V

��

C′ D′
G′

//C′

B′B′

D′

•V′

��

B

B′

Q

��

C

C′
R ��

D

D′

L

��

π

ρ

σ
//

C

A

C

•U

��

A BF // B

C′ D′
G′

//

A′

C′

•U′

��

A′ B′F′ // B′

D′

•V′

��

A

A′

ρ

��

B

B′

Q

��

C

C′
R ��

π′

ξ

θ

There is at most one and there is one if and only if the cube commutes. Each of the faces
consists of three cells and to say that the cube commutes means that for i = 0, 1, 2 we
have

Ci C′iRi
//

Ci

Ci

Ci Di
// Di

C′iC′i D′iGi
//

Di

C′i

Di D′i// D′i

D′i

ρi

Ci DiGi
//

Ai

Ci

•Ui

��

Ai Bi
Fi // Bi

Di

•Vi

��

πi

Di D′iSi
//

Bi

Di

•

��

Bi B′i
Qi // B′i

D′i

•V ′i

��

σi

=

Ci C′iRi
//

Ai

Ci

•Ui

��

Ai A′i// A′i

C′i

•U ′i

��
C′i D′iGi

//

A′i

C′i

•

��

A′i B′i// B′i

D′i

•V ′i

��

ξ π′i

Ai A′iPi
//

Ai

Ai

Ai Bi
Fi // Bi

A′iA′i B′i
F ′i

//

Bi

A′i

Bi B′i
Qi // B′i

B′i

θi

In this way we get a strict triple category HICat whose objects are horizontal pseu-
docategories in Dbl. The transversal morphisms are the horizontal colax morphisms, the
horizontal morphisms of HICat are the horizontal lax morphisms and the vertical mor-
phisms are what we have just called vertical. The cells and cubes are as defined above.
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There is a similar construction giving a strict triple category VICat of vertical pseudocat-
egories in Dbl.

The following theorem expresses that our three presentations of intercategory produce
the same structure.

7.7. Theorem. The triple categories ICat, HICat and VICat are isomorphic.
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[3] G. Böhm, Y. Chen, L. Zhang, On Hopf monoids in duoidal categories, Journal of Algebra, Vol. 394,
2013, pp. 139-172.

[4] T. Booker and R. Street, Tannaka duality and convolution for duoidal categories, Theory Appl.
Categ. 28 (2013), No. 6, pp. 166-205.

[5] C. Ehresmann, Catégories structurées, Ann. Sci. Ecole Norm. Sup. 80 (1963), 349-425.

[6] R. Gordon, A. J. Power, and R. Street, Coherence for Tricategories, Mem. Amer. Math. Soc.,
1995, Vol. 117, no. 558.

[7] M. Grandis, Higher cospans and weak cubical categories (Cospans in Algebraic Topology, I),
Theory Appl. Categ. 18 (2007), no. 12, pp. 321-347.
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Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown(at)btinternet.com
Valeria de Paiva: valeria.depaiva@gmail.com
Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, Macquarie University: steve.lack@mq.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Ieke Moerdijk, Radboud University Nijmegen: i.moerdijk@math.ru.nl
Susan Niefield, Union College: niefiels@union.edu
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