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GROUPOIDS IN CATEGORIES WITH PRETOPOLOGY

RALF MEYER AND CHENCHANG ZHU

Abstract. We survey the general theory of groupoids, groupoid actions, groupoid
principal bundles, and various kinds of morphisms between groupoids in the framework
of categories with pretopology. The categories of topological spaces and finite or infinite
dimensional manifolds are examples of such categories. We study extra assumptions
on pretopologies that are needed for this theory. We check these extra assumptions in
several categories with pretopologies.
Functors between groupoids may be localised at equivalences in two ways. One uses
spans of functors, the other bibundles (commuting actions) of groupoids. We show
that both approaches give equivalent bicategories. Another type of groupoid morphism,
called an actor, is closely related to functors between the categories of groupoid actions.
We also generalise actors using bibundles, and show that this gives another bicategory
of groupoids.
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1. Introduction
The notion of groupoid has many variants: topological groupoids, étale topological groupoids,
Lie groupoids of finite and infinite dimension, algebraic groupoids, and so on. A subtle
point is that the definition of a groupoid in a category depends on a notion of “cover”
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because the range and source maps are assumed to be covers. A pretopology gives a
reasonable notion of cover in a category.

The need to assume range and source maps to be covers is plain for Lie groupoids:
it ensures that the composable pairs of arrows form a smooth manifold. The covers also
influence the notion of principal bundle because their bundle projections are assumed
to be covers; this is equivalent to “local triviality” in the sense of the pretopology. If
our category is that of topological spaces and the covers are the continuous surjections
with local continuous sections, then we get exactly the usual notion of local triviality
for principal bundles; this is why many geometers prefer this pretopology on topological
spaces. Many operator algebraists prefer the pretopology of open continuous surjections
instead.

Some authors (like Goehle [17]) make no assumptions on the range and source maps of
a topological groupoid. Since any map with a continuous section is a biquotient map, this
amounts to the same as choosing biquotient maps as covers; this is the so called canonical
topology, that is, it is the largest subcanonical pretopology on the category of Hausdorff
topological spaces (see Section 9.6). But how much of the usual theory remains true in
this case?

We will see that some aspects of the theory of groupoid Morita equivalence require
extra assumptions on pretopologies. In particular, we will show that for the pretopology
of biquotient maps, equivalent groupoids may have non-equivalent categories of actions
on spaces. We do not know whether Morita equivalence of groupoids is an equivalence
relation when we choose the pretopology of biquotient maps. In addition to the theory
of Morita equivalence with bibundles, we also extend the theory of anafunctors. It works
without extra assumptions on the pretopology, but is less concrete.

Since we want to work in the abstract setting of groupoids in a category with pre-
topology, we develop all the general theory of groupoids and their actions from scratch.
Most of our results are known for some types of groupoids, of course. Since we develop
the theory from scratch, we also take the opportunity to suggest more systematic nota-
tion for various kinds of morphisms of groupoids. We study functors, anafunctors, and
bibundle functors, actors and bibundle actors; in addition, there are several kinds of equiv-
alences: equivalence functors, ana-isomorphisms, anafunctor equivalences, and bibundle
equivalences; and there are the covering bibundle functors, which are the intersection of
bibundle functors and bibundle actors. The categories of anafunctors and bibundle func-
tors are equivalent, and ana-isomorphisms and bibundle equivalences are also equivalent
notions; all the other types of morphisms are genuinely different and are useful in differ-
ent situations. Several notions of morphisms have been introduced in the context of Lie
groupoids in [41]; our notion of “actor” is unrelated to the one in [41, A.2], however.

Roughly speaking, functors and the related anafunctors and bibundle functors are
appropriate if we view groupoids as generalised spaces, whereas actors and bibundle actors
are appropriate if we view them as generalised symmetries (groups).

Other new names we introduce are basic actions and basic groupoids. A groupoid ac-
tion is basic if, together with some bundle projection, it is a principal action. A groupoid G
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is basic if its action on G0 is a basic action. (The name “principal groupoid” is already
used for something else by operator algebraists, so a new name is needed.)

Our initial goal was to generalise the bicategory of topological groupoids with Hilsum–
Skandalis morphisms as arrows and isomorphisms of the latter as 2-arrows. It is well-
known that this is a bicategory if, say, we use continuous maps with local continuous
sections as covers (see [38]). Our bibundle functors are the analogue of Hilsum–Skandalis
morphisms in a category with pretopology. To compose bibundle functors or bibundle
actors, we need extra assumptions on the pretopology. We introduce these extra assump-
tions here and check them for some pretopologies.

We now explain the contents of the sections of the article.
Section 2 introduces pretopologies on categories with coproducts. Here a pretopology is

a family of maps called covers, subject to some rather mild axioms. The more established
notion of a topos is not useful for our purposes: it does not cover important examples like
the category of smooth manifolds because all finite limits are required to exist in a topos.

All pretopologies are required subcanonical. We also introduce three extra assumptions
that are only sometimes required. Assumption 2.10 concerns final objects and is needed
to define groups and products of groupoids, as opposed to fibre products. Assumption 2.8
requires maps that are “locally covers” to be covers; the stronger Assumption 2.9 requires
that if f ◦p and p are covers, then so must be f . We also prove that the property of being
an isomorphism is local (this is also noticed by [48, Axiom 4]). Assumptions 2.8 and 2.9
are needed to compose bibundle functors and bibundle actors, respectively.

Section 3 introduces groupoids, functors and anafunctors. We first define groupoids in
a category with pretopology in two equivalent ways and compare these two definitions.
One definition has the unit and inversion maps as data; the other one only has the
multiplication, range and source maps as data and characterises groupoids by making
sense of the elementwise condition that there should be unique solutions to equations
of the form g · x = h or x · g = h for given arrows g and h with equal range or equal
source, respectively. We explain in Section 3 how such elementwise formulas should be
interpreted in a general category, following ideas from synthetic geometry [26,34]. We use
elementwise formulas throughout because they clarify statements and proofs.

We define functors between groupoids and natural transformations between such func-
tors in a category with pretopology. We observe that they form a strict 2-category. We
define a “base-change” for groupoids: given a cover p : X � G0, we define a groupoid
p∗(G) with object space X and a functor p∗ : p∗(G) → G; such functors are called hyper-
covers, and they are the prototypes of equivalences. An anafunctor G → H is a triple
(X, p, F ) with a cover p : X � G0 and a functor F : p∗(G) → H. An ana-isomorphism is
an isomorphism p∗(G) ∼= q∗(H) for two covers p : X → G0 and q : X ′ → H0. Anafunctors
form a bicategory. We characterise equivalences in this bicategory by two different but
equivalent criteria: as those anafunctors that lift to an anafunctor isomorphism, and func-
tors that are almost fully faithful and almost essentially surjective. These constructions
all work in any category with a subcanonical pretopology. If we assume that being a cover
is a local condition, then a functor is almost fully faithful and almost essentially surjective
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if and only if it is fully faithful and essentially surjective.
Section 4 introduces groupoid actions, their transformation groupoids, and actors.

Our convention is that the anchor map of a groupoid action need not be a cover; this is
needed to associate bibundle functors to functors. We call an action a sheaf if its anchor
map is a cover. The transformation groupoid of a groupoid action combines the action
and the groupoid that is acting. An actor from G to H is a left action of G on H1 that
commutes with the right translation action of H. We show that such an actor allows to
turn an H-action on X into a G-action on X in a natural way. Any such functor from
G-actions to H-actions with some mild extra conditions comes from an actor. This is the
type of “morphism” that seems most relevant when we think of a groupoid as a general
form of symmetry, that is, as something that acts on other objects.

Section 5 introduces principal bundles over groupoids and basic groupoid actions. A
principal G-bundle is a (right) G-action m : X ×s,G0,r G1 → X with a cover p : X � Z, such
that the map

(m, pr1) : X ×s,G0,r G1 → X ×p,Z,p X, (x, g) 7→ (x · g, x), (1)

is an isomorphism. Then Z is the orbit space of the right G-action, so the bundle projection
is unique if it exists. A G-action is basic if it is a principal bundle when taken together
with its orbit space projection. We construct pull-backs of bundles and relate maps on the
base and total spaces of principal bundles; this is crucial for the composition of bibundle
functors. We show that the property of being principal is local, that is, a pull-back of a
“bundle” along a cover is principal if and only if the original bundle is.

Principal bundles and basic actions allow us to define bibundle equivalences, bibundle
functors, and bibundle actors. These are all given by commuting actions of G and H on
some object X of the category. For a bibundle functor, we require that the right H-action
together with the left anchor map X→ G0 as bundle projection is a principal bundle; for
a bibundle equivalence, we require, in addition, that the left G-action together with the
right anchor map X→ H0 is a principal bundle. For a bibundle actor, we require the right
action to be basic – with arbitrary orbit space – and the right anchor map X→ H0 to be
a cover. If X is both a bibundle actor and a bibundle functor, so that both anchor maps
are covers, then we call it a covering bibundle functor.

We show that functors give rise to bibundle functors and that bibundle functors give
rise to anafunctors. The bibundle functor associated to a functor is a bibundle equivalence
if and only if the functor is essentially surjective and fully faithful.

The composition of bibundle functors, actors, and equivalences is only introduced in
Section 7 because it requires extra assumptions about certain actions being automatically
basic. Section 7.1 discusses these extra assumptions. The stronger one, Assumption 7.2,
requires all actions of Čech groupoids to be basic; the weaker one, Assumption 7.3, only
requires this for sheaves over Čech groupoids, that is, for actions of Čech groupoids with a
cover as anchor map. The weaker version of the assumption together with Assumption 2.8
on covers being local suffices to compose bibundle equivalences and bibundle functors; the
stronger form together with Assumption 2.9 (the two-out-of-three property for covers) is
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needed to compose covering bibundle functors and bibundle actors. Under the appropriate
assumptions, all these types of bibundles form bicategories.

We show in Section 7.29 that the equivalences in these bicategories are precisely the
bibundle equivalences. Section 7.17 shows that the bicategory of bibundle functors is
equivalent to the bicategory of anafunctors. Section 7.24 describes the composite of
two bibundle functors by an isomorphism similar to (1). Section 7.27 shows that the
assumption needed for the composition of bibundle actors is equivalent to the assumption
that the property of being basic is a local property of G-actions.

We show in Section 7.19 that every bibundle actor is a composite of an actor and a
bibundle equivalence. Thus the bicategory of bibundle actors is the smallest one that con-
tains bibundle equivalences and actors and is closed under the composition of bibundles.
A similar decomposition of bibundle functors into bibundle equivalences and functors is
constructed in Section 6.10 when passing from bibundle functors to anafunctors.

Section 8 describes the quasi-categories of bibundle functors, covering bibundle func-
tors, and bibundle equivalences very succinctly. The main point are similarities between
the multiplication in a groupoid, a groupoid action, and the map relating the product of
two bibundle functors to the composite.

Section 9 considers several examples of categories with classes of “covers” and checks
whether these are pretopologies and satisfy our extra assumptions. Section 9.2 considers
sets and surjective maps, a rather trivial case. Section 9.6 considers several classes of
“covers” between topological spaces; quotient maps do not form a pretopology; biquotient
maps form a subcanonical pretopology for which Assumption 7.2 fails; open surjections
and several smaller classes of maps are shown to be subcanonical pretopologies satisfying
all our assumptions.

Section 9.41 considers smooth manifolds, both of finite and infinite dimension, with
submersions as covers. These form a subcanonical pretopology on locally convex manifolds
and several subcategories, which satisfies the assumptions needed for the composition of
bibundle functors and bibundle equivalences. For Banach manifolds, we also prove the
stronger assumptions that are needed for the composition of bibundle actors and covering
bibundle functors. It is unclear whether these stronger assumptions still hold for Fréchet or
locally convex manifolds. Thus all the theory developed in this article applies to groupoids
in the category of Banach manifolds and finite-dimensional manifolds, and most of it, but
not all, applies also to Fréchet and locally convex manifolds.

For a category C, we write X ∈∈ C for objects and f ∈ C for morphisms of C. Our
categories need not be small, that is, the objects may form a class only. The set-theoretic
issues that this entails are not relevant to our discussions below and can be handled easily
using universes. Hence we leave it to the reader to add appropriate remarks where needed.

2. Pretopologies
The notion of a Grothendieck (pre)topology from [1] formalises properties that “covers” in
a category should have. Usually, a “cover” of an object X is a family of maps fα : Uα → X,
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α ∈ A. If our category is extensive (see [10]), we may replace such a family of maps by a
single map

(fα)α∈A :
⊔
α∈A

Uα → X.

This reduces notational overhead, and is ideal for our purposes because in the following
definitions, we never meet covering families but only single maps that are covers.

2.1. Definition. Let C be a category with coproducts. A pretopology on C is a collec-
tion T of arrows, called covers, with the following properties:

(1) isomorphisms are covers;

(2) the composite of two covers is a cover;

(3) if f : Y → X is an arrow in C and g : U � X is a cover, then the fibre product
Y ×X U exists in C and the coordinate projection pr1 : Y ×X U � Y is a cover.
Symbolically,

Y

U X
g

f =⇒
Y ×f,X,g U Y

U X

pr1

pr2
g

f (2)

We use double-headed arrows � to denote covers.
We always require pretopologies to be subcanonical:

2.2. Definition and Lemma. A pretopology T is subcanonical if it satisfies the follow-
ing equivalent conditions:

(1) each cover f : U � X in T is a coequaliser, that is, it is the coequaliser of some
pair of parallel maps g1, g2 : Z ⇒ U ;

(2) each cover f : U � X in T is the coequaliser of pr1, pr2 : U ×f,X,f U ⇒ U ;

(3) for any object W and any cover f : U � X, we have a bijection
C(X,W ) ∼→ {h ∈ C(U,W ) | h ◦ pr1 = h ◦ pr2 in C(U ×f,X,f U,W )}, g 7→ g ◦ f ;

(4) all the representable functors C( ,W ) on C are sheaves.
Proof. Condition (3) makes explicit what it means for C( ,W ) to be a sheaf and for f
to be the coequaliser of pr1, pr2, so (2) ⇐⇒ (3) ⇐⇒ (4). (2) implies (1) by taking
Z = U ×f,X,f U and gi = pri for i = 1, 2. It remains to prove (1)⇒(3).

Let g1, g2 : Z ⇒ U be as in (1). Then fg1 = fg2, so that (g1, g2) is a map Z →
U ×f,X,f U . Let pri : U ×f,X,f U → U for i = 1, 2 be the coordinate projections. Since
pri ◦ (g1, g2) = gi for i = 1, 2, a map h ∈ C(U,W ) with h ◦ pr1 = h ◦ pr2 also satisfies
h ◦ g1 = h ◦ g2. Since we assume f to be a coequaliser of g1 and g2, such a map h is of
the form h̃ ◦ f for a unique h̃ ∈ C(X,W ). Conversely, any map of the form h̃ ◦ f satisfies
(h̃ ◦ f) ◦ pr1 = (h̃ ◦ f) ◦ pr2. Thus (1) implies (3).
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2.3. Definition. Let T be a pretopology on C and let P be a property that arrows in C
may or may not have. An arrow f : Y → X has P locally if there is a cover g : U � Y
such that pr2 : Y ×f,X,g U → U has P.

The property P is local if an arrow has P if and only if it has P locally, that is, in the
situation of (2), f : Y → X has P if and only if pr2 : Y ×f,X,g U → U has P.

2.4. Isomorphisms are local.

2.5. Proposition. If the pretopology is subcanonical, then the property of being an iso-
morphism is local.
Proof. Giorgi Arabidze pointed out a slightly stronger version of this result that works
in any category C, not necessarily with a pretopology. Namely, let Y f−→ X and U

g−→ X
be arrows in C such that the fibre product Y ×f,X,g U exists in C and the projection
pr2 : Y ×f,X,g U → U is an isomorphism. If g is a coequaliser in C (see Definition and
Lemma 2.2) and the projection pr1 : Y ×f,X,g U → Y is an epimorphism, then f is an
isomorphism. If C is a category with a subcanonical pretopology and g is a cover, then
the assumptions above are satisfied.

To prove the more general statement above, take two arrows u1, u2 : A ⇒ U that
have g as their coequaliser. Form y := pr1 ◦ pr−1

2 ◦ u2 : A→ U → Y ×f,X,g U → Y . Since
f ◦ y = g ◦pr2 ◦pr−1

2 ◦u2 = g ◦u1, there is a unique b : A→ Y ×f,X,g U with pr1 ◦ b = y and
pr2◦b = u1. Since pr2 is invertible, b = pr−1

2 ◦u1, so pr1◦pr−1
2 ◦u1 = y = pr1◦pr−1

2 ◦u2. Since g
is the coequaliser of u1 and u2, there is a unique arrow c : X → Y with c ◦ g = pr1 ◦ pr−1

2 .
This satisfies f ◦ c ◦ g = g. Since g is a coequaliser, it is epic, so f ◦ c ◦ g = g implies
f ◦ c = idX . Furthermore, c ◦ f ◦ pr1 = c ◦ g ◦ pr2 = pr1 gives c ◦ f = idY because we
assumed pr1 to be epic. Thus c is inverse to f .

2.6. Remark. Example 9.12 provides Hausdorff topological spaces (X, τ1), (X, τ2) and Y
such that the identity map (X, τ1) → (X, τ2) is a continuous bijection but not a homeo-
morphism, and a quotient map f : (X, τ2) → Y such that the map f : (X, τ1) → Y is a
quotient map as well, and such that the identical map

(X, τ1)×f,Y,f (X, τ1)→ (X, τ1)×f,Y,f (X, τ2)

is a homeomorphism. Thus the pull-back of a non-homeomorphism along a quotient map
may become a homeomorphism. Quotient maps on topological spaces do not form a
pretopology, so this does not contradict Proposition 2.5.

2.7. Simple extra assumptions on pretopologies. Consider the fibre-product sit-
uation of (2). Then g is a cover by assumption and pr1 is one by the definition of a
pretopology. If f is a cover as well, then so is pr2 by the definition of a pretopology.
That the converse holds is an extra assumption on the pretopology, which means that the
property of being a cover is local.
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2.8. Assumption. The property of being a cover is local, that is, in the fibre-product
situation of (2), if g and pr2 in (2) are covers, then so is f .

If g and pr2 are covers, then so is g ◦pr2 = f ◦pr1 as a composite of covers, and pr1 is a
cover by definition of a pretopology. Hence Assumption 2.8 is weaker than the following
two-out-of-three property:

2.9. Assumption. Let f ∈ C(Y, Z) and p ∈ C(X, Y ) be composable. If f ◦ p and p are
covers, then so is f .

A pretopology is called saturated if f is a cover whenever f◦p is one, without requiring p
to be a cover as well (see [44, Definition 3.11]). This stronger assumption fails in many
cases where Assumption 2.9 holds (see Example 9.33), and Assumption 2.9 suffices for all
our applications. For the categories of locally convex and Fréchet manifolds with surjective
submersions as covers, Assumption 2.8 holds, but we cannot prove Assumption 2.9. The
other examples we consider in Section 9 all verify the stronger Assumption 2.9.

2.10. Assumption. There is a final object ? in C, and all maps to it are covers.

2.11. Lemma. Under Assumption 2.10, C has finite products. If f1 : U1 � X1 and
f2 : U2 � X2 are covers, then so is f1 × f2 : U1 × U2 → X1 ×X2.
Proof. The first statement is clear because products are fibre products over the final
object ?. The second one is [22, Lemma 2.7].

Assumption 2.10 has problems with initial objects. For instance, the unique map from
the empty set to the one-point set is not surjective, so Assumption 2.10 fails for any
subcanonical pretopology on the category of sets. We must exclude the empty set for
Assumption 2.10 to hold. We will not use Assumption 2.10 much.

3. Groupoids in a category with pretopology
Let C be a category with coproducts and let T be a subcanonical pretopology on C. We
define groupoids in (C, T ) in two equivalent ways, with more or less data.

3.1. First definition. A groupoid in (C, T ) consists of

• objects G0 ∈∈ C (objects) and G1 ∈∈ C (arrows),

• arrows r ∈ C(G1,G0) (range), s ∈ C(G1,G0) (source), m ∈ C(G1×s,G0,r G1,G1) (multi-
plication), u ∈ C(G0,G1) (unit), and i ∈ C(G1,G1) (inversion),

such that

(1) r and s are covers;
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(2) m is associative, that is, r◦m = r◦pr1 and s◦m = s◦pr2 for the coordinate projections
pr1, pr2 : G1 ×s,G0,r G1 ⇒ G1, and the following diagram commutes:

G1 ×s,G0,r G1 ×s,G0,r G1 G1 ×s,G0,r G1

G1 ×s,G0,r G1 G1

m×G0,r idG1

idG1 ×s,G0 m m

m

(3)

(3) the following equations hold:

r ◦ u = idG0 , r(1x) = x ∀x ∈ G0,

s ◦ u = idG0 , s(1x) = x ∀x ∈ G0,

m ◦ (u ◦ r, idG1) = idG1 , 1r(g) · g = g ∀g ∈ G1,

m ◦ (idG1 , u ◦ s) = idG1 , g · 1s(g) = g ∀g ∈ G1,

s ◦ i = r, s(g−1) = r(g) ∀g ∈ G1,

r ◦ i = s, r(g−1) = s(g) ∀g ∈ G1,

m ◦ (i, idG1) = u ◦ s, g−1 · g = 1s(g) ∀g ∈ G1,

m ◦ (idG1 , i) = u ◦ r, g · g−1 = 1r(g) ∀g ∈ G1.

The right two columns interpret the equalities of maps in the left column in terms
of elements. The conditions above imply

m ◦ (u, u) = u, 1x · 1x = 1x ∀x ∈ G0,

i2 = idG1 , (g−1)−1 = g ∀g ∈ G1,

m ◦ (i×r,G0,s i) = i ◦m ◦ σ, g−1 · h−1 = (h · g)−1 ∀g, h ∈ G1, r(g) = s(h);

here σ : G1 ×r,G0,s G1 ∼→ G1 ×s,G0,r G1 denotes the flip of the two factors.

Most statements and proofs are much clearer in terms of elements. It is worthwhile,
therefore, to introduce the algorithm that interprets equations in terms of elements as in
the middle and right columns above as equations of maps as in the left column.

The variables x ∈ G0, g, h ∈ G1 are interpreted as maps in C from some object ? ∈∈ C to
G0 and G1, respectively. Thus an element x of X ∈∈ C is interpreted as a map x : ?→ X,
and denoted by x ∈ X. The elements of X form a category, which determines X by the
Yoneda Lemma.

If an elementwise expression A is already interpreted as a map A : ?→ G1, then r(A)
means r ◦ A : ? → G0, s(A) means s ◦ A : ? → G0, and A−1 means i ◦ A : ? → G1; if an
elementwise expression A is interpreted as A : ?→ G0, then 1A means u◦A : ?→ G1. If A
and B are elementwise expressions that translate to maps A,B : ?→ G1 with s(A) = r(B),
that is, s ◦ A = r ◦B : ?→ G0, then A ·B means the composite map

m ◦ (A,B) : ? (A,B)−−−→ G1 ×s,G0,r G1 m−→ G1.
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This algorithm turns the conditions in the middle and right column above into the
conditions in the left column if we let ? vary through all objects of C. More precisely, the
equation in the left column implies the interpretation of the condition in the other two
columns for any choice of ?, and the converse holds for a suitable choice of ?.

For instance, in the last condition g−1 ·h−1 = (h ·g)−1, we may choose ? = G1×r,G0,s G1,
g = pr1 : ? → G1, and h = pr2 : ? → G1. The interpretation of the formula g−1 · h−1 =
(h · g)−1 for these choices is m ◦ (i×r,G0,s i) = i ◦m ◦ σ.

As another example, the associativity diagram (3) is equivalent to the elementwise
statement

(g1 · g2) · g3 = g1 · (g2 · g3) ∀g1, g2, g3 ∈ G1, s(g1) = r(g2), s(g2) = r(g3). (4)

To go from the elementwise statement to (3), choose ? = G1 ×s,G0,r G1 ×s,G0,r G1, g1 = pr1,
g2 = pr2, g3 = pr3 (we take one factor for each of the free variables g1, g2, g3, and implement
the assumptions s(g1) = r(g2), s(g2) = r(g3) by fibre-product conditions). Then A := g1 ·g2
is interpreted as m◦ (pr1, pr2) : G1×s,G0,r G1×s,G0,r G1 → G1, so (g1 ·g2) ·g3 = A ·g3 becomes
the map

m ◦ (m ◦ (pr1, pr2), pr3) = m ◦ (m×G0,r idG1) ◦ (pr1, pr2, pr3) = m ◦ (m×G0,r idG1)

from G1×s,G0,r G1×s,G0,r G1 to G1. Similarly, g1 · (g2 · g3) is interpreted as m◦ (idG1×s,G0 m).
Thus (g1 · g2) · g3 = g1 · (g2 · g3) implies that (3) commutes. Conversely, if (3) commutes,
then (g1 · g2) · g3 = g1 · (g2 · g3) for any choice of ? ∈∈ C and g1, g2, g3 : ? → G1 with
s ◦ g1 = r ◦ g2 and s ◦ g2 = r ◦ g3. Thus (3) is equivalent to the elementwise statement
above.

We may also use elementwise formulas to define maps. For instance, suppose that
we have already defined maps f : X → G1 and g : Y → G1. Then there is a unique map
F : X ×s◦f,G0,r◦g Y → G1 given elementwise by F (x, y) := f(x) · g(y) for all x ∈ X, y ∈ Y
with s ◦ f(x) = r ◦ g(y). If a map f ∈ C(X,Z) is given in terms of elements, then it is an
isomorphism if and only if every element z of Z may be written as f(x) for a unique x ∈ X:
the interpretation of this statement in terms of maps is exactly the Yoneda Lemma.

3.2. Remark. Why do we need the range and source maps to be covers? Of course, we
need some assumption for the fibre product G1 ×s,G0,r G1 to exist, but there are deeper
reasons. Many results in the theory of principal bundles depend on the locality of isomor-
phisms (Proposition 2.5), which holds only for pull-backs along covers. The composition
of bibundle equivalences cannot work unless we require their anchor maps to be covers.
The range and source maps of a groupoid must be covers because they are the anchor
maps for the unit bibundle equivalence G1 on G.

3.3. Second definition. For groupoids in sets, the existence of units and inverses is
equivalent to the existence of unique solutions x ∈ G1 to equations of the form x · g = h
for g, h ∈ G1 with s(g) = s(h) and g · x = h for g, h ∈ G1 with r(g) = r(h). This leads us
to the following equivalent definition of a groupoid in (C, T ):
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3.4. Definition. A groupoid G in (C, T ) consists of G0 ∈∈ C (objects), G1 ∈∈ C
( arrows), r ∈ C(G1,G0) ( range), s ∈ C(G1,G0) (source), and m ∈ C(G1 ×s,G0,r G1,G1)
(multiplication), such that

(1) the maps r and s are covers;

(2) the maps

(pr2,m) : G1 ×s,G0,r G1 ∼→ G1 ×s,G0,s G1, (x, g) 7→ (g, x · g), (5)
(pr1,m) : G1 ×s,G0,r G1 ∼→ G1 ×r,G0,r G1, (g, x) 7→ (g, g · x), (6)

are well-defined isomorphisms;

(3) m is associative in the sense of (3) or, equivalently, (4).

The first condition implies that the fibre products G1 ×s,G0,r G1, G1 ×s,G0,s G1 and
G1 ×r,G0,r G1 used above exist in C. The maps in (5) and (6) are well-defined if and only
if s ◦m = s ◦ pr2 and r ◦m = r ◦ pr1, so these two equations are assumed implicitly.

If (G1,G0, r, s,m, u, i) is a groupoid in the first sense above, then it is one in the sense
of Definition 3.4: the map (g, h) 7→ (h · g−1, g) is inverse to (5), and the map (g, h) 7→
(g, g−1 · h) is inverse to (6). The converse is proved in Proposition 3.9.

3.5. Lemma. The invertibility of the map in (5) is equivalent to the elementwise statement
that for all g, h ∈ G1 with s(g) = s(h) there is a unique x ∈ G1 with s(x) = r(g) and
x · g = h. The invertibility of the map in (6) is equivalent to the elementwise statement
that for all g, h ∈ G1 with r(g) = r(h) there is a unique x ∈ G1 with s(g) = r(x) and
g · x = h.
Proof. We only prove the first statement, the second one is similar.

We interpret g, h, x as maps g, h, x : ? → G1 in C. The elementwise statement says
that for ? ∈∈ C and g, h : ? → G1 with s ◦ g = s ◦ h there is a unique x ∈ C(?,G1) with
s◦x = r◦g and m◦(x, g) = h. The maps g and h with s◦g = s◦h are equivalent to a single
map (g, h) : ?→ G1 ×s,G0,s G1, and the conditions s ◦ x = r ◦ g and m ◦ (x, g) = h together
are equivalent to (x, g) being a map ? → G1 ×s,G0,r G1 with (pr2,m) ◦ (x, g) = (g, h).
Hence the elementwise statement is equivalent to the statement that for each object ?
of C and each map (g, h) : ? → G1 ×s,G0,s G1 there is a unique map A : ? → G1 ×s,G0,r G1

with (pr2,m) ◦A = (g, h). This statement means that (pr2,m) is invertible by the Yoneda
Lemma.

To better understand (5) and (6), we view m as a ternary relation on G1.

3.6. Definition. An n-ary relation between X1, . . . , Xn ∈∈ C is R ∈∈ C with maps
pj : R → Xj for j = 1, . . . , n such that given xj ∈ Xj for j = 1, . . . , n, there is at most
one r ∈ R with pj(r) = xj for j = 1, . . . , n.

The multiplication relation defined by m has

R := G1 ×s,G0,r G1, p1 := pr1, p2 := pr2, p3 := m.
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3.7. Lemma. The maps in (5) and (6) are well-defined isomorphisms if and only if the
following three maps are well-defined isomorphisms:

(p1, p2) : R→ G1 ×s,G0,r G1,

(p2, p3) : R→ G1 ×s,G0,s G1,

(p1, p3) : R→ G1 ×r,G0,r G1.

Proof. The first isomorphism is the definition of R, the second one is (5), the third one
is (6).

When we view the multiplication as a relation, then the isomorphisms (5) and (6)
become similar to the statement that the multiplication is a partially defined map.

3.8. Equivalence of both definitions of a groupoid.

3.9. Proposition. Let (G0,G1, r, s,m) be a groupoid in (C, T ) as in Definition 3.4, where
(C, T ) is a category with a subcanonical pretopology. Then there are unique maps u : G0 →
G1 and i : G1 → G1 with the properties of unit map and inversion listed above. Moreover,
the multiplication m is a cover.
Proof. We write down the proof in terms of elements. Interpreting this as explained
above gives a proof in a general category with pretopology.

First we construct the unit map. For any g ∈ G1, the elementwise interpretation of (5)
in Lemma 3.5 gives a unique map ū : G1 → G1 with s(ū(g)) = r(g) and ū(g) · g = g. Hence
r(ū(g)) = r(ū(g) · g) = r(g). Associativity implies

ū(g) · (g · h) = (ū(g) · g) · h = g · h = ū(g · h) · (g · h)

for all g, h ∈ G1 with s(g) = r(h). Since ū(g · h) is unique, this gives ū(g · h) = ū(g) for all
g, h ∈ G1 with s(g) = r(h), that is, ū ◦m = ū ◦ pr1. The map (pr1,m) is the isomorphism
in (6), so we get ū◦pr1 = ū◦pr2 on G1×r,G0,r G1. Since the pretopology T is subcanonical,
the cover r is the coequaliser of pr1, pr2 : G1 ×r,G0,r G1 ⇒ G1. Hence there is a unique map
u : G0 → G1 with ū = u ◦ r. Since r is an epimorphism, the equations s ◦ ū = r and r ◦ ū = r
imply s ◦ u = idG0 and r ◦ u = idG0 . Interpreting 1x = u(x) for x ∈ G0, this becomes
s(1x) = x = r(1x) for all x ∈ G0. The defining condition ū(g) · g = g for g ∈ G1 becomes
1r(g) · g = g for all g ∈ G1. If g, h ∈ G1 satisfy s(g) = r(h), then

(g · 1s(g)) · h = g · (1s(g) · h) = g · (1r(h) · h) = g · h.

Since g is the unique element of G1 with x · h = g · h by (5), we also get g · 1s(g) = g for
all g ∈ G1. Hence the unit map has all required properties.

The inverse map i : G1 → G1 is defined as the unique map with s(i(g)) = r(g) and
i(g) · g = 1s(g) for all g ∈ G1. Since s(g) = s(1s(g)), (5) provides a unique map with this
property. We write g−1 instead of i(g) in the following. Then s(g−1) = r(g), g−1 · g = 1s(g)
by definition, and r(g−1) = r(g−1 · g) = r(1s(g)) = s(g). Associativity gives

(g · g−1) · g = g · (g−1 · g) = g · 1s(g) = g = 1r(g) · g.
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Since the map x : G1 → G1 with x · g = 1r(g) · g is unique by (5), this implies g · g−1 = 1r(g).
Similarly, associativity gives

(g · h)−1 · (g · h) = 1s(g·h) = 1s(h) = (h−1 · g−1) · (g · h)

for all g, h ∈ G1 with s(g) = r(h). Hence the uniqueness of the solution of x · (g ·h) = 1s(h)
implies (g · h)−1 = h−1 · g−1 for all g, h ∈ G1 with s(g) = r(h). Similarly,

(g−1)−1 · g−1 = 1s(g−1) = 1r(g) = g · g−1,

and the uniqueness of the solution to x · g−1 = 1r(g) gives (g−1)−1 = g for all g ∈ G1. Thus
the inversion has all expected properties.

Since s is a cover, so is the coordinate projection pr2 : G1×s,G0,sG1 → G1. Composing pr2
with the invertible map in (5) gives that m : G1 ×s,G0,r G1 → G1 is a cover.

3.10. Examples. The following examples play an important role for the general theory.

3.11. Example. An object X of C is viewed as a groupoid by taking G1 = G0 = X,
r = s = idX , and letting m be the canonical isomorphism X ×X X

∼→ X. A groupoid is
isomorphic to one of this form if and only if its range or source map is an isomorphism.
Such groupoids are called 0-groupoids.

3.12. Example. Let p : X � Y be a cover. Its Čech groupoid is the groupoid defined
by G0 = X, G1 = X ×p,Y,pX, r(x1, x2) = x1, s(x1, x2) = x2 for all x1, x2 ∈ X with p(x1) =
p(x2), and (x1, x2) · (x2, x3) := (x1, x3) for all x1, x2, x3 ∈ X with p(x1) = p(x2) = p(x3).
The range and source maps are covers by construction. The multiplication is clearly
associative. The canonical isomorphisms

G1 ×s,G0,r G1 ∼→ X ×p,Y,p X ×p,Y,p X, (x1, x2, x2, x3) 7→ (x1, x2, x3),
G1 ×r,G0,r G1 ∼→ X ×p,Y,p X ×p,Y,p X, (x1, x2, x1, x3) 7→ (x1, x2, x3),
G1 ×s,G0,s G1 ∼→ X ×p,Y,p X ×p,Y,p X, (x1, x2, x3, x2) 7→ (x1, x2, x3),

show that (5) and (6) are isomorphisms. Thus we have a groupoid in (C, T ). Its unit and
inversion maps are given by 1x = (x, x) and (x1, x2)−1 = (x2, x1).

3.13. Example. Let G be a groupoid and let p : X � G0 be a cover. We define a
groupoid p∗G = G(X) with objects X and arrows X ×p,G0,r G1×s,G0,pX, range and source
maps pr1 and pr3, and with the multiplication map defined elementwise by

(x1, g1, x2) · (x2, g2, x3) := (x1, g1 · g2, x3)

for all x1, x2, x3 ∈ X, g1, g2 ∈ G1 with p(x1) = r(g1), p(x2) = s(g1) = r(g2), p(x3) =
s(g2); this multiplication is associative. Since the maps s, r, and p are covers, the fibre
product X ×p,G0,r G1 ×s,G0,p X exists and the source and range maps of G(X) are covers.
Straightforward computations show that (5) and (6) are isomorphisms. Units and inverses
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are given by 1x = (x, 1p(x), x) and (x1, g, x2)−1 = (x2, g
−1, x1) for all x, x1, x2 ∈ X, g ∈ G1

with p(x1) = r(g), p(x2) = s(g).
If G is just a space Y viewed as a groupoid (Example 3.11), then G(X) is the Čech

groupoid defined in Example 3.12.
Let p1 : X1 � X2 and p2 : X2 � G0 be covers. Then p2 ◦ p1 is a cover and there is a

natural groupoid isomorphism p∗1(p∗2G) ∼= (p2 ◦ p1)∗G.

3.14. Example. Assume Assumption 2.10 about a final object ?. Then a group in (C, T )
is a groupoid G with G0 = ?. The range and source maps G1 → G0 = ? are automatically
covers by Assumption 2.10. The multiplication is now defined on the full product G1 ×?
G1 = G1 × G1, and the isomorphisms (5) and (6) also take place on the product G1 × G1.
The unit in a groupoid is a map u : ?→ G1. For any object ? ∈∈ C, let 1 : ?→ G1 be the
composite of u with the unique map ? → ?. These maps give the unit element in G1. It
satisfies 1 · g = g = g · 1 for any map g : ?→ G1.

3.15. Functors and natural transformations.

3.16. Definition. Let G and H be groupoids in (C, T ). A functor from G to H is given
by arrows F i ∈ C(Gi,Hi) in C for i = 0, 1 with rH(F 1(g)) = F 0(rG(g)) and sH(F 1(g)) =
F 0(sG(g)) for all g ∈ G1 and F 1(g1 · g2) = F 1(g1) ·F 1(g2) for all g1, g2 ∈ G1 with sG(g1) =
rG(g2).

The identity functor idG : G→ G on a groupoid G has F i = idGi for i = 0, 1.
The product of two functors F1 : G→ H and F2 : H→ K is the functor F2 ◦F1 : G→ K

given by the composite maps F i
2 ◦ F i

1 : Gi → Ki for i = 0, 1.
Let F1, F2 : G ⇒ H be two parallel functors. A natural transformation F1 ⇒ F2 is

Φ ∈ C(G0,H1) with s(Φ(x)) = F 0
1 (x), r(Φ(x)) = F 0

2 (x) for all x ∈ G0 and Φ(r(g)) ·F 1
1 (g) =

F 1
2 (g) · Φ(s(g)) for all g ∈ G1:

F 0
1 (s(g)) F 0

1 (r(g))

F 0
2 (s(g)) F 0

2 (r(g))

F 1
1 (g)

Φ(s(g)) Φ(r(g))
F 1

2 (g)

The identity transformation 1F : F ⇒ F on a functor F : G → H is given by Φ(x) =
1F (x) for all x ∈ G0. If Φ: F1 ⇒ F2 is a natural transformation, then its inverse Φ−1 is
the natural transformation F2 ⇒ F1 given by i ◦ Φ: x 7→ Φ(x)−1.

The vertical product of natural transformations Φ: F1 ⇒ F2 and Ψ: F2 ⇒ F3 for
three functors F1, F2, F3 : G H is the natural transformation Ψ ·Φ: F1 ⇒ F3 defined by
(Ψ · Φ)(x) := Ψ(x) · Φ(x) for all x ∈ G0.

Let F1, F
′
1 : G ⇒ H and F2, F

′
2 : H ⇒ K be composable pairs of parallel functors and let

Φ: F1 ⇒ F ′1 and Ψ: F2 ⇒ F ′2 be natural transformations. Their horizontal product is the
natural transformation Ψ ◦ Φ: F2 ◦ F1 ⇒ F ′2 ◦ F ′1 defined by

(Ψ ◦ Φ)(x) := Ψ((F ′1)0(x)) · F 1
2 (Φ(x)) = (F ′2)1(Φ(x)) ·Ψ(F 0

1 (x)),
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F 0
2 ◦ F 0

1 (x) F 0
2 ◦ (F ′1)0(x)

(F ′2)0 ◦ F 0
1 (x) (F ′2)0 ◦ (F ′1)0(x)

F 1
2 (Φ(x))

Ψ(F 0
1 (x)) Ψ((F ′1)0(x))

(F ′2)1(Φ(x))

(Ψ ◦ Φ)(x)

for all x ∈ G0. This diagram commutes because of the naturality of Ψ applied to Φ(x).
If Φ: F1 ⇒ F2 is a natural transformation, then

Φ−1 · Φ = 1F1 : F1 ⇒ F1, Φ · Φ−1 = 1F2 : F2 ⇒ F2,

justifying the name inverse. Thus all natural transformations between groupoids are
natural isomorphisms.

3.17. Proposition. Groupoids, functors, and natural transformations in (C, T ) with the
products defined above form a strict 2-category in which all 2-arrows are invertible.
Proof. See [2,28,39] for the definition of a strict 2-category. The proof is straightforward.

3.18. Example. Let G be a groupoid and let p : X � G0 be a cover. Then p and the
map pr2 : X ×p,G0,r G1×s,G0,pX → G1 form a functor p∗ : G(X)→ G. Functors of this form
are called hypercovers.

3.19. Example. Let G and H be groupoids, F : G → H a functor, and p : X � H0 a
cover. Let X̃ := G0×F 0,H0,pX; this exists and pr1 : X̃ � G0 is a cover because p is a cover.
We define a functor p∗(F ) = F (X) : G(X̃) → H(X) by pr2 : X̃ → X on objects and by
(x1, g, x2) 7→ (pr2(x1), F 1(g), pr2(x2)) for all x1, x2 ∈ X̃, g ∈ G1 with pr1(x1) = r(g) and
pr1(x2) = s(g) on arrows.

3.20. Example. An equivalence from the identity functor on G to a functor F : G → G
is Φ ∈ C(G0,G1) with s ◦ Φ = idG0 , r ◦ Φ = F 0, and

F 1(g) = Φ(r(g)) · g · Φ(s(g))−1 for all g ∈ G1. (7)

Conversely, let Φ be any section for s : G1 � G0. Then F 0 = r ◦ Φ and (7) define an
endomorphism Ad(Φ) = F : G → G such that Φ is a natural transformation idG0 ⇒ F .
Functors F : G→ G that are naturally equivalent to the identity functor are called inner.

The horizontal product of Φi : idG0 ⇒ Ad(Φi) for i = 1, 2 is a natural transformation

Φ1 ◦ Φ2 : idG0 ⇒ Ad(Φ1) ◦ Ad(Φ2).

Here
Φ1 ◦ Φ2(x) := Φ1(r ◦ Φ2(x)) · Φ2(x) for all x ∈ G0. (8)

This product on sections for s gives a monoid with unit u : x 7→ 1x. The map Ad from
this monoid to the submonoid of inner endomorphisms of G is a unital homomorphism,
that is, Ad(Φ1 ◦ Φ2) = Ad(Φ1) ◦ Ad(Φ2) and Ad(1) = idG.
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3.21. Definition and Lemma. The following are equivalent for a section Φ of s:

(1) Φ is invertible for the horizontal product ◦;

(2) Ad(Φ) is an automorphism;

(3) r ◦ Φ is invertible in C.

Sections of s with these equivalent properties are called bisections.
Proof. Let Φ be invertible for ◦ with inverse Φ−1. Then Ad(Φ−1) is inverse to Ad(Φ),
so Ad(Φ) is an automorphism of G. Then r ◦ Φ = Ad(Φ)0 ∈ C(G0,G0) is invertible in C.
Conversely, if α := r ◦ Φ is invertible in C, then Φ−1(x) := Φ(α−1(x))−1 : G0 → G1 has
s(Φ−1(x)) = r(Φ(α−1(x))) = αα−1(x) = x, so it is a section, and both Φ ◦ Φ−1 = 1x and
Φ−1 ◦ Φ = 1x. We have shown (1)⇒(2)⇒(3)⇒(1).

We may think of a section as a subobject Φ(G0) ⊆ G1 such that s restricts to an iso-
morphism Φ(G0) ∼→ G0. Being a bisection means that both s and r restrict to isomorphisms
Φ(G0) ∼→ G0. This explains the name “bisection.”

Isomorphisms of groupoids with natural transformations between them form a strict
2-groupoid. Thus the automorphisms of G with natural transformations between them
form a strict 2-group or, equivalently, a crossed module. The crossed module combines
automorphisms of G and bisections because the latter are the natural transformations
from the identity functor to another automorphism of G. The crossed module involves
the horizontal product ◦ on bisections and the composition ◦ on automorphisms, and the
group homomorphism Ad from bisections to automorphisms; another piece of structure
is the conjugation action of automorphisms on bisections, given by conjugation:

F • Φ := 1F ◦ Φ ◦ 1F−1 : idG = F ◦ idG ◦ F−1 ⇒ F Ad(Φ)F−1.

By the definition of the horizontal product, we have

F • Φ(x) = F 1(Φ(x)) for all x ∈ G0.

The crossed module conditions Ad(F •Φ) = F Ad(Φ)F−1 and Ad(Φ1)•Φ2 = Φ1 ◦Φ2 ◦Φ−1
1

are easy to check.

3.22. Anafunctors. The functor p∗ : G(X) → G from Example 3.18 is not an isomor-
phism, but should be an equivalence of groupoids. When we formally invert these functors,
we arrive at the following definition:

3.23. Definition. Let G and H be groupoids in C. An anafunctor from G to H is a
triple (X, p, F ), where X ∈∈ C, p : X � G0 is a cover, and F : G(X) → H is a functor,
with G(X) defined in Example 3.13.

An isomorphism between two anafunctors (Xi, pi, Fi), i = 1, 2, is an isomorphism
ϕ ∈ C(X1, X2) with p2 ◦ ϕ = p1 and F2 ◦ ϕ∗ = F1, where ϕ∗ : G(X1) → G(X2) is the
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functor given on objects by ϕ and on arrows by ϕ1
∗(x1, g, x2) = (ϕ(x1), g, ϕ(x2)) for all

x1, x2 ∈ X1, g ∈ G1 with p1(x1) = r(g), p1(x2) = s(g).
The functor F : G(X)→ H is a pair of maps

F 0 : X → H0, F 1 : X ×p,G0,r G1 ×s,G0,p X → H1

with r(F 1(x1, g, x2)) = F 0(x1), s(F 1(x1, g, x2)) = F 0(x2) for all x1, x2 ∈ X, g ∈ G1 with
p(x1) = r(g), s(g) = p(x2), and F 1(x1, g1, x2) · F 1(x2, g2, x3) = F 1(x1, g1 · g2, x3) for all
x1, x2, x3 ∈ X, g1, g2 ∈ G1 with p(x1) = r(g1), p(x2) = s(g1) = r(g2), and p(x3) = s(g2).

Pronk [42] and Carchedi [11] and several other authors use spans of functors like we do,
but with weak equivalences instead of hypercovers. As a consequence, they use the weak
instead of the strong pull-back to compose spans. An equivalent notion of anafunctor is
used by Roberts [44], who also shows that we get an equivalent bicategory if we invert all
weak equivalences. The following construction of the bicategory of anafunctors may also
be found in [44].

We are going to compose anafunctors. Let G1, G2 and G3 be groupoids in (C, T ) and
let (Xij, pij, Fij) for ij = 12 and ij = 23 be anafunctors from Gi to Gj. Their product
(X13, p13, F13) is the anafunctor from G1 to G3 given by

X13 := X12 ×F 0
12,G0

2,p23 X23,

p13 := p12 ◦ pr1 : X13 � X12 � G0,

F13 := F23 ◦ F12(X23) : G1(X13) ∼= G1(X12)(X23)→ G2(X23)→ G3.

Thus F 0
13(x1, x2) = F 0

23(x2) for all x1 ∈ X12, x2 ∈ X23 with F 0
12(x1) = p23(x2) and

F 1
13(x1, x2, g, x3, x4) = F 1

23(x2, F
1
12(x1, g, x3), x4) for all x1, x3 ∈ X12, x2, x4 ∈ X23, g ∈ G1

with F 0
12(x1) = p23(x2), F 0

12(x3) = p23(x4), p12(x1) = r(g), p12(x3) = s(g). The map
pr1 : X13 � X12 is a cover because p23 is one. Hence p13 is a cover as a composite of
covers.

3.24. Lemma. The composition of anafunctors is associative up to isomorphism; the
associator comes from the canonical isomorphism

(X12 ×F 0
12,G0

2,p23 X23)×F 0
23pr2,G0

3,p34 X34
∼→ X12 ×F 0

12,G0
2,p23pr1

(X23 ×F 0
23,G0

3,p34 X34).

The identity functor viewed as an anafunctor with X = G0 and p = idG0 is a unit for this
composition, up to the natural isomorphisms Y ×G0 G0 ∼= Y ∼= G0 ×G0 Y .
Proof. The proof is routine.

Since fibre products are, in general, only associative up to the canonical isomorphism in
the above lemma, anafunctors do not form a category; together with their isomorphisms,
they give a bicategory. We now incorporate natural transformations into this bicategory.

To simplify notation, we usually ignore the associators in Lemma 3.24 from now on,
assuming that fibre products are strictly associative.
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3.25. Definition. Let G and H be groupoids in C and let (X1, p1, F1) and (X2, p2, F2) be
anafunctors from G to H. Let X := X1×p1,G0,p2X2 and let p := p1◦pr1 = p2◦pr2 : X � G0.
We get functors F1 ◦ (pr1)∗ : G(X) → H and F2 ◦ (pr2)∗ : G(X) → H. An anafunctor
natural transformation from (X1, p1, F1) to (X2, p2, F2) is a natural transformation Φ: F1◦
(pr1)∗ ⇒ F2 ◦ (pr2)∗:

X X1

X2 G0

pr1

pr2 p1

p2

p

G(X) G(X1)

G(X2) H

(pr1)∗

(pr2)∗ F1

F2

Φ

The natural transformation Φ is a map Φ: X → H1 with s ◦ Φ = F 0
1 ◦ pr1 : X → H0,

r ◦ Φ = F 0
2 ◦ pr2 : X → H0, and

Φ(x1, x2) · F 1
1 (x1, g, x3) = F 1

2 (x2, g, x4) · Φ(x3, x4)

for all x1, x3 ∈ X1, x2, x4 ∈ X2, g ∈ G1 with p1(x1) = p2(x2) = r(g) and p1(x3) = p2(x4) =
s(g).

3.26. Example. Let (Xi, pi, Fi) for i = 1, 2 be anafunctors from G to H and let ϕ : X1
∼→

X2 be an isomorphism between them. Then

Φ(x1, x2) := F 1
1 (ϕ−1(x2), 1p1(x1), x1) = F 1

2 (x2, 1p2(x2), ϕ(x1))

for all x1 ∈ X1, x2 ∈ X2 with p1(x1) = p2(x2) is a natural transformation from (X1, p1, F1)
to (X2, p2, F2).

3.27. Lemma. Let F1, F2 : G → H be functors and let p : X � G0 be a cover. Let
p∗ : G(X)→ G be the induced hypercover. Then natural transformations F1 ◦ p∗ ⇒ F2 ◦ p∗
are in canonical bijection with natural transformations F1 ⇒ F2.
Proof. A natural transformations Φ: F1 ⇒ F2 induces a natural transformation Φ ◦
1p∗ : F1 ◦ p∗ ⇒ F2 ◦ p∗ by the horizontal product; explicitly, Φ ◦ 1p∗ is the map Φ ◦ p : X �
G0 → H1. To show that this canonical map Φ 7→ Φ◦1p∗ is bijective, we must prove that any
natural transformation Ψ: F1 ◦ p∗ ⇒ F2 ◦ p∗ : G(X) ⇒ H1 factors uniquely through p and
a map Φ: G0 → H1; the latter is then automatically a natural transformation F1 ⇒ F2
because p1

∗ : G(X)1 � G1 is a cover, hence an epimorphism, and the conditions for a
natural transformation hold after composing with p1

∗.
Since Ψ is natural with respect to all arrows (x1, 1p(x1), x2) in G(X) for x1, x2 ∈ X

with p(x1) = p(x2), we get Ψ(x1) = Ψ(x2) if p(x1) = p(x2). Since the pretopology is
subcanonical and p is a cover, Ψ factors uniquely through p : X � G0.
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3.28. Theorem. Groupoids in (C, T ), anafunctors and natural transformations of ana-
functors with the composition of anafunctors described above form a bicategory with in-
vertible 2-arrows.
Proof. We must compose natural transformations of anafunctors vertically and horizon-
tally. We reduce this to the same constructions for ordinary natural transformations: the
reduction explains why the conditions for a bicategory hold.

Let (Xi, pi, Fi) be three anafunctors from G to H and let Φij : (Xi, pi, Fi)⇒ (Xj, pj, Fj)
for ij = 12, 23 be natural transformations to compose vertically. Let Xij := Xi×pi,G0,pj

Xj

and pij := pi ◦ pr1 = pj ◦ pr2 : Xij � G0 for ij = 12, 13, 23. Let X123 := X1 ×p1,G0,p2

X2 ×p2,G0,p3 X3 and p123 := p1 ◦ pr1 = p2 ◦ pr2 = p3 ◦ pr3 : X � G0.
The given natural transformations are maps Φ12 : X12 → H1 and Φ23 : X23 → H1

with, among others, s(Φ12(x1, x2)) = F 0
1 (x1), r(Φ12(x1, x2)) = F 0

2 (x2) = s(Φ23(x2, x3)),
r(Φ23(x2, x3)) = F 0

3 (x3) for all xi ∈ Xi with pi(xi) = pj(xj) for i, j ∈ {1, 2, 3}. We define

Φ: X123 → H1, Φ(x1, x2, x3) := Φ23(x2, x3) · Φ12(x1, x2),

which is well-defined because r(Φ12(x1, x2)) = F 0
2 (x2) = s(Φ23(x2, x3)); moreover,

s(Φ(x1, x2, x3)) = s(Φ12(x1, x2)) = F 0
1 (x1)

and
r(Φ(x1, x2, x3)) = r(Φ23(x2, x3)) = F 0

3 (x3).
The naturality of Φij implies that Φ is a natural transformation from F1◦(pr1)∗ : G(X123)→
H to F3 ◦ (pr3)∗ : G(X123) → H. Lemma 3.27 shows that Φ factors uniquely through
pr13 : X123 � X13 and thus gives a natural transformation Φ13 : (X1, p1, F1)⇒ (X3, p3, F3).
This Φ13 is the vertical product of Φ23 and Φ12.

If Φ12 comes from an isomorphism of anafunctors ϕ12 : X1 → X2 as in Example 3.26,
then the composite Φ13 above is

Φ13 : X1 ×p1,G0,p3 X3
ϕ12×G0,p3

X3
−−−−−−−→∼=

X2 ×p2,G0,p3 X3
Φ23−−→ H1. (9)

Similarly, if Φ23 comes from an isomorphism of anafunctors ϕ23 : X2 → X3, then the
vertical product Φ13 is

Φ13 : X1 ×p1,G0,p3 X3
X1×p1,G0ϕ

−1
23−−−−−−−−→∼=

X1 ×p1,G0,p2 X2
Φ12−−→ H1. (10)

As a consequence, the natural transformation corresponding to the identity isomorphism
of an anafunctor is a unit for the vertical product.

Since arrows in groupoids are invertible, any natural transformation of anafunctors
has an inverse: exchange the order of the factors in the fibre product and compose Φ
with the inversion map on H1. This is an inverse for the vertical product above. Thus all
2-arrows are invertible.
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When we further compose with a natural transformation

Φ34 : (X3, p3, F3)⇒ (X4, p4, F4),

then we may first construct a natural transformation on the fibre product X1234 of all
four Xi. Then by Lemma 3.27 this factors uniquely through the covers X1234 � X124 and
X1234 � X134, and then further through the covers X124 � X14 and X134 � X14. The
resulting map on X14 does not depend on whether we factor through X124 or X134 first.
Thus the vertical product is associative.

Now we turn to the horizontal product. Let K be a third groupoid in (C, T ); let
(Xi, pi, Fi) for i = 1, 2 be anafunctors G→ H and let (Yi, qi, Ei) for i = 1, 2 be anafunctors
H→ K; let Φ: (X1, p1, F1)⇒ (X2, p2, F2) and Ψ: (Y1, q1, E1)⇒ (Y2, q2, E2) be anafunctor
natural transformations. The horizontal product Ψ◦Φ must be a natural transformation of
anafunctors E1◦F1 ⇒ E2◦F2. We are going to reduce it to an ordinary horizontal product
of natural transformations of composable functors. To make our functors composable, we
pass to larger fibre products.

First, let

Y := Y1 ×q1,H0,q2 Y2, Ēi := Ei ◦ (pri)∗ : H(Y )→ H(Yi)→ K;

by definition, Ψ is a natural transformation of functors Ψ: Ē1 ⇒ Ē2. Secondly, let

YiXj := Yi ×qi,H0,F 0
j
Xj

for i, j ∈ {1, 2} and

Y X := Y1X1 ×G0 Y2X1 ×G0 Y1X2 ×G0 Y2X2 ∼= (Y ×q,H0,F 0
1
X1)×G0 (Y ×q,H0,F 0

2
X2).

Let F̄i : G(Y X) → H(Y ) be the composite functors G(Y X) → G(Y ×G0 Xi) → H(Y ),
where the first functor is associated to the coordinate projection Y X � Y ×G0 Xi and the
second functor is Fi(Y ). The natural transformation of anafunctors Φ induces a natural
transformation of ordinary functors Φ̄ : F̄1 ⇒ F̄2.

Now the natural transformations of ordinary functors Ψ and Φ̄ may be composed
horizontally in the usual way, giving a natural transformation Ē1 ◦ F̄1 ⇒ Ē2 ◦ F̄2. The
composite functor Ēi ◦ F̄j : G(Y X)→ K and the composite anafunctor Ei ◦Fj are related
as follows: the latter is given by a functor Ei ◦ Fj : G(YiXj) → K, and we get Ēi ◦ F̄j
by composing Ei ◦ Fj with the functor G(Y X) → G(YiXj) associated to the coordinate
projection Y X → YiXj. Now Lemma 3.27 shows that the natural transformation Ψ ◦ Φ̄
descends to a natural transformation of anafunctors E1 ◦ F1 ⇒ E2 ◦ F2. This defines the
horizontal product.

It is routine to see that the horizontal product is associative and commutes with the
vertical product (exchange law). For each proof, we replace anafunctors by ordinary
functors defined over suitable fibre products, and first get the desired equality of natural
transformations on this larger fibre product. Then Lemma 3.27 shows that it holds as an
equality of natural transformations of anafunctors.
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The composition of anafunctors is associative and unital up to canonical isomorphisms
of anafunctors by Lemma 3.27. These isomorphisms give natural transformations by
Example 3.26. These are natural with respect to natural transformations of anafunctors
and satisfy the usual coherence conditions; this follows from the simplifications of the
vertical product with isomorphisms in (9) and (10).

3.29. Theorem. The bicategory of anafunctors is the localisation of the 2-category of
groupoids, functors and natural transformations at the class of hypercovers, and it is also
the localisation at the class of weak equivalences.

This theorem clarifies in which sense the anafunctor bicategory is the right bicategory
of groupoids to work with. It follows from results in [44]: first, [44, Theorem 7.2] says that
the anafunctor bicategory is the localisation at the class of all weak equivalences; secondly,
[44, Proposition 6.4] implies that it makes no difference whether we localise at hypercovers
or weak equivalences. Instead of a proof, we make the statement of Theorem 3.29 more
concrete.

Let Fun be the strict 2-category of groupoids, functors and transformations. Let
Ana be the bicategory of groupoids, anafunctors and anafunctor natural transformations.
Let D be another bicategory. We embed Fun→ Ana in the obvious way, sending a functor
F : G→ H to the anafunctor (G0, idG0 , F ). We assume now that fibre products in C of the
form X×XY or Y ×XX are equal to Y , not just canonically isomorphic via the coordinate
projection; this can be arranged by redefining the fibre product in these cases. This choice
ensures that the map from functors to anafunctors above is part of a strict homomorphism
of bicategories. Furthermore, it implies that the identity functors are strict units in the
bicategory of anafunctors, that is, the unit transformations idG ◦(X, p, F ) ∼= (X, p, F ) and
(X, p, F ) ◦ idH ∼= (X, p, F ) for an anafunctor (X, p, F ) : G→ H are identity 2-arrows.

Since the embedding Fun ↪→ Ana is a strict homomorphism, we may restrict a mor-
phism of bicategories E : Ana → D to a morphism E|Fun : Fun → D; restrict a trans-
formation Φ: E1 → E2 between two morphisms E1, E2 : Ana ⇒ D to a transformation
Φ|Fun : E1|Fun → E2|Fun; and restrict a modification ψ : Φ1 → Φ2 between two such trans-
formations Φ1,Φ2 : E1 ⇒ E2 to a modification ψ|Fun : Φ1|Fun → Φ2|Fun. Here and below we
use the notation of [28] regarding bicategories, morphisms, transformations, and modifi-
cations.

Theorem 3.29 turns out to be equivalent to the combination of the following three
more concrete statements:

(1) Any homomorphism Fun→ D that maps hypercovers to equivalences is the restric-
tion of a homomorphism Ana→ D.

(2) Let Ē1, Ē2 : Ana ⇒ D be homomorphisms. Any strong transformation Ē1|Fun →
Ē2|Fun is the restriction of a strong transformation Ē1 → Ē2.

(3) Let Ē1, Ē2 : Ana ⇒ D be homomorphisms and let Φ̄1, Φ̄2 : Ē1 ⇒ Ē2 be strong
transformations. Restriction to Fun gives a bijection from modifications Φ̄1 ⇒ Φ̄2
to modifications Φ̄1|Fun ⇒ Φ̄2|Fun.
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We restrict attention to homomorphisms and strong transformations, as usual in the
theory of localisations [42, 44]. That is, we require the 2-arrows in D that appear in the
definition of a morphism or a transformation to be invertible.

Actually, instead of (2), the localisation theorem in [44] only says that any strong
transformation Φ: Ē1|Fun → Ē2|Fun is equivalent to the restriction of a strong transfor-
mation Φ̄ : Ē1 → Ē2 by an invertible modification t : Φ̄|Fun → Φ. We may, however, get
rid of t because Fun and Ana have the same objects. Thus we may conjugate Φ̄ by the
invertible modification t to get a strong transformation that restricts to Φ exactly. Hence
the usual form of the localisation theorem gives (2). Similarly, instead of (1), the local-
isation theorem in [44] only says that for any homomorphism E : Fun → D there is a
homomorphism Ē : Ana→ D such that Ē|Fun is equivalent to E; that is, there are strong
transformations between E and Ē|Fun that are inverse to each other up to invertible modifi-
cations. In particular, this strong transformation gives equivalences E(G) ∼= Ē(G) for any
groupoid G; we may conjugate Ē by these to produce an equivalent homomorphism Ē ′

so that all the arrows Ē ′(G) → E(G) involved in the resulting strong transformation
Ē ′|Fun ∼= E become identities. Hence this strong transformation only consists of invertible
2-arrows Ē ′(F ) ∼= E(F ) for all functors F , subject to some conditions. We use these in-
vertible 2-arrows together with the identity 2-arrows on Ē ′(X, p, F ) for anafunctors with
non-identical p to change Ē ′ once more to an equivalent homomorphism Ē ′′ : Ana → D.
Now the strong transformation Ē ′′|Fun ∼= E becomes the identity transformation; that is,
Ē ′′|Fun = E. Thus (1)–(3) are equivalent to the usual form of the localisation theorem.

If the bicategory D is strictly unital as well, then it makes sense to restrict attention
to strictly unital homomorphisms. A homomorphism on Ana is strictly unital if and only
if its restriction to Fun is. Hence assertions (1)–(2) continue to hold for strictly unital
homomorphisms and strictly unital strong transformations as well.

3.30. Anafunctor equivalences and ana-isomorphisms. An arrow f : G → H in
a bicategory is an equivalence if there are an arrow g : H → G and invertible 2-arrows
g ◦ f ⇒ idG and f ◦ g ⇒ idH.

3.31. Definition. Equivalences in the bicategory of anafunctors are called anafunctor
equivalences.

Anafunctor natural transformations may be far from being “isomorphisms.” This
makes it non-trivial to decide whether a given anafunctor is an anafunctor equivalence.
We are going to provide necessary and sufficient conditions for this that are easier to
check.

3.32. Definition. An ana-isomorphism between two groupoids G and H in (C, T ) is given
by an object X ∈∈ C, covers p : X � G0 and q : X � H0, and a groupoid isomorphism
F : p∗(G) ∼→ q∗(H) with F 0 = idX . An anafunctor from G to H lifts to an ana-isomorphism
if it is equivalent (through an anafunctor natural transformation) to (X, p, q∗ ◦ F̄ ) for an
ana-isomorphism (X, p, q, F̄ ).
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3.33. Definition. A functor F : G→ H is essentially surjective if the map

rX : G0 ×F 0,H0,r H1 → H0, (g, x) 7→ s(x), (11)

is a cover. It is almost essentially surjective if the map (11) is a cover locally (see
Definition 2.3). It is fully faithful if the fibre product G0×F 0,H0,r H1×s,H0,F 0 G0 exists in C
and the map

G1 → G0 ×F 0,H0,r H1 ×s,H0,F 0 G0, g 7→ (r(g), F 1(g), s(g)), (12)

is an isomorphism in C. It is almost fully faithful if there is some cover q : Y � H0 for
which the functor q∗(F ) is fully faithful.

It is trivial that essentially surjective functors are almost essentially surjective and
fully faithful functors are almost fully faithful. The converse holds under Assumption 2.8:

3.34. Lemma. If Assumption 2.8 holds, then any almost essentially surjective functor is
essentially surjective. An essentially surjective and almost fully faithful functor is fully
faithful.
Proof. Assumption 2.8 says that a map that is locally a cover is a cover, so an almost
essentially surjective functor is essentially surjective.

The fibre product G0×F 0,H0,rH1 always exists because r is a cover. If F is essentially sur-
jective, then s : G0×F 0,H0,rH1 � H0 is a cover, so the fibre product (G0×F 0,H0,rH1)×s,H0,F 0 G0

exists. Let q : Y � H0 be a cover such that q∗(F ) is fully faithful. The projection

pr234 : Y ×q,H0,F 0 G0 ×F 0,H0,r H1 ×s,H0,F 0 G0 ×F 0,H0,q Y → G0 ×F 0,H0,r H1 ×s,H0,F 0 G0

is a cover because q is a cover. The pull-back of the map (12) for the functor F along this
cover gives the map (12) for the functor q∗(F ), which is assumed to be an isomorphism.
Since being an isomorphism is a local property by Proposition 2.5, the functor F is
fully faithful if q∗(F ) is fully faithful. (This conclusion holds whenever the fibre product
G0 ×F 0,H0,r H1 ×s,H0,F 0 G0 exists.)

3.35. Theorem. Let (X, p, F ) be an anafunctor from G to H. Then the following are
equivalent:

(1) (X, p, F ) is an anafunctor equivalence;

(2) the functor F : G(X)→ H is almost fully faithful and almost essentially surjective;

(3) (X, p, F ) lifts to an ana-isomorphism.

If Assumption 2.8 holds, then we may replace (2) by the condition that F is fully faithful
and essentially surjective – the usual definition of a weak equivalence.

The proof of the theorem will occupy the remainder of this subsection. The last state-
ment about replacing (2) is Lemma 3.34. We will show the implications (1)⇒(2)⇒(3)⇒(1).

We start with the easiest implication: (3)⇒(1). The main point here is the following
example:
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3.36. Example. Let G be a groupoid in (C, T ) and let p : X � G0 be a cover. The hy-
percover p∗ : G(X) → G is an anafunctor equivalence. Its quasi-inverse is the anafunctor
(X, p, idG(X)) from G to G(X). The composite functor G → G(X) → G is the anafunc-
tor (X, p, p∗). The unit section X → G(X)1 gives an anafunctor natural transformation
between (X, p, p∗) and the identity anafunctor (G0, idG0 , idG) on G. The other composite
functor G(X)→ G→ G(X) is the anafunctor (X ×G0 X, pr1, (pr2)∗). It is naturally equiv-
alent to the identity on G(X) because the functors (pr2)∗ and (pr1)∗ from G(X ×G0 X)
to G(X) are naturally equivalent.

If F ∼= q∗ ◦ F̄ for a cover q : X � H0 and an isomorphism F̄ , then the functors
F : G(X) → H and p∗ : G(X) → G are anafunctor equivalences by Example 3.36. Since
(X, p, F )◦p∗ ' F : G(X)→ H, we have (X, p, F ) ' F ◦(p∗)−1, so (X, p, F ) is an anafunctor
equivalence as well; here ' denotes equivalence of anafunctors. Thus (3) implies (1) in
Theorem 3.35.

Now we show (2)⇒(3). The following lemma explains why (almost) fully faithful
functors are related to hypercovers.

3.37. Lemma. Let F : G(X)→ H be a functor. The following are equivalent:

(1) F is isomorphic to a hypercover;

(2) F is fully faithful and F 0 : X � H0 is a cover;

(3) F is almost fully faithful and F 0 : X � H0 is a cover.

Here “isomorphic” means that there is an isomorphism G(X) ∼= q∗(H) intertwining F
and the hypercover q∗ : q∗(H)→ H.
Proof. If F 0 is a cover, then F is essentially surjective, so F is almost fully faithful if
and only if F is fully faithful by Lemma 3.34. Thus we only need to show the equivalence
between (1) and (2).

Assume (2). The map (r, F 1, s) : G(X)1 ∼→ X ×F 0,H0,r H1 ×s,H0,F 0 X is an isomorphism
because F is fully faithful. This isomorphism together with the identity map on X is
a groupoid isomorphism from G(X) to (F 0)∗(H) that intertwines F and q∗, giving (1).
Conversely, assume (1). If F ∼= q∗, then F is fully faithful and F 0 is a cover because q is
one.

Now assume that F : G(X)→ H is almost fully faithful and almost essentially surjec-
tive. Then there is a cover q : Y � H0 such that the map

pr3 : XHY := X ×F 0,H0,r H1 ×s,H0,q Y � Y

is a cover. Then so is q ◦ pr3 : XHY � H0. The projection pr1 : XHY � X is a cover
because q and r are covers. Hence the anafunctor (X, p, F ) is equivalent to (XHY, p◦pr1, F◦
(pr1)∗). The functor F◦(pr1)∗ maps (x, h, y) 7→ F 0(x) on objects and (x1, h1, y1, g, x2, h2, y2)
7→ F 1(x1, g, x2) on arrows. It is equivalent to the functor E given by

E0(x, h, y) := q(y) = s(h), E1(x1, h1, y1, g, x2, h2, y2) := h−1
1 · F 1(x1, g, x2) · h2;
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the natural transformation E ⇒ F ◦ (pr1)∗ is (x, h, y) 7→ h. Thus (X, p, F ) is equivalent
to (XHY, p ◦ pr1, E). The map E0 = q ◦ pr3 : XHY � H0 is a cover.

3.38. Lemma. The functor E is almost fully faithful.
Proof. By assumption, there is a cover r : Z � H0 such that r∗(F ) is fully faithful; that
is, the map

Z ×r,H0,F 0 X ×p,G0,r G1 ×s,G0,p X ×F 0,H0,r Z

→ Z ×r,H0,F 0 X ×F 0,H0,r H1 ×s,H0,F 0 X ×F 0,H0,r Z,

(z1, x1, g, x2, z2) 7→ (z1, x1, F
1(x1, g, x2), x2, z2),

is an isomorphism. Adding extra variables y1, y2 ∈ Y , h1, h2 ∈ H1 with (xi, hi, yi) ∈ XHY
for i = 1, 2 gives an isomorphism

(z1, x1, h1, y1, g, x2, h2, y2, z2) 7→ (z1, x1, h1, y1, F
1(x1, g, x2), x2, h2, y2, z2)

between the resulting fibre products. The conjugation map

(z1, x1, h1, y1, h, x2, h2, y2, z2) 7→ (z1, x1, h1, y1, h
−1
1 hh2, x2, h2, y2, z2)

is an isomorphism between suitable fibre products as well, with inverse

(z1, x1, h1, y1, h, x2, h2, y2, z2) 7→ (z1, x1, h1, y1, h1hh
−1
2 , x2, h2, y2, z2).

Composing these isomorphisms gives the map

(z1, x1, h1, y1, g, x2, h2, y2, z2)
7→ (z1, x1, h1, y1, E

1(x1, h1, y1, g, x2, h2, y2), x2, h2, y2, z2).

Since this is an isomorphism, E is almost fully faithful.
Since E is almost fully faithful and E0 is a cover, E is isomorphic to a hypercover by

Lemma 3.37. Thus (X, p, F ) lifts to an ana-isomorphism. This finishes the proof that
(2)⇒(3) in Theorem 3.35.

Finally, we show that (1) implies (2) in Theorem 3.35; this is the most difficult part
of the theorem. An anafunctor equivalence is given by anafunctors (X, p, F ) : G →
H and (Y, q, E) : H → G and natural transformations Ψ: (X, p, F ) ◦ (Y, q, E) ⇒ idH
and Φ: (Y, q, E) ◦ (X, p, F ) ⇒ idG, which are automatically invertible. More explicitly,
Ψ: Y ×E0,G0,p X → H1 is an anafunctor natural transformation from F ◦ p∗E to idH;
that is, Ψ(y, x) ∈ H1 is defined for all y ∈ Y , x ∈ X with E0(y) = p(x) and is an ar-
row in H1 with s(Ψ(y, x)) = F 0(x) and r(Ψ(y, x)) = q(y); and for all (x1, y1, h, y2, x2) ∈
X ×p,G0,E0 Y ×q,H0,r H1 ×s,H0,q Y ×E0,G0,p X,

Ψ(y1, x1) · F 1(x1, E
1(y1, h, y2), x2) = h ·Ψ(y2, x2); (13)
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and Φ: X ×F 0,H0,q Y → G1 is a natural transformation from E ◦ q∗F to idG, that is,
Φ(x, y) ∈ G1 is defined for all x ∈ X, y ∈ Y with F 0(x) = q(y) and is an arrow in G1

with s(Ψ(x, y)) = E0(y) and r(Ψ(x, y)) = p(x); and for all (y1, x1, g, x2, y2) ∈ Y ×q,H0,F 0

X ×p,G0,r G1 ×s,G0,p X ×F 0,H0,q Y ,

Φ(x1, y1) · E1(y1, F
1(x1, g, x2), y2) = g · Φ(x2, y2). (14)

3.39. Lemma. There is a unique map a : X ×F 0,H0,r H1 ×s,H0,q Y → G1 with

a(x1, h, y2) = Φ(x1, y1) · E1(y1, h, y2) (15)

for all x1 ∈ X, h ∈ H1, y1, y2 ∈ Y with F 0(x1) = r(h) = q(y1), s(h) = q(y2).
The following map is an isomorphism:

(pr1, a, pr3) : X ×F 0,H0,r H1 ×s,H0,q Y
∼→ X ×p,G0,r G1 ×s,G0,E0 Y.

Proof. The fibre products X×F 0,H0,rH1×s,H0,qY and Y ×q,H0,F 0X×F 0,H0,rH1×s,H0,qY exist
because r and q are covers. The fibre product X×p,G0,r G1×s,G0,E0 Y exists because p and s
are covers. Equation (15) defines a map â : Y ×q,H0,F 0 X ×F 0,H0,r H1 ×s,H0,q Y → G1. We
must check that â factors through the projection pr234. Since q is a cover, so is pr234. Since
our pretopology is subcanonical, â factors through this cover if and only if â ◦π1 = â ◦π2,
where π1, π2 are the two canonical projections

(Y ×q,H0,F 0 X ×F 0,H0,r H1 ×s,H0,q Y )×pr234,pr234 (Y ×q,H0,F 0 X ×F 0,H0,r H1 ×s,H0,q Y )
⇒ Y ×q,H0,F 0 X ×F 0,H0,r H1 ×s,H0,q Y.

We may identify π1, π2 with the two coordinate projections

pr2345, pr1345 : Y ×q,H0,q Y ×q,H0,F 0 X ×F 0,H0,r H1 ×s,H0,q Y

⇒ Y ×q,H0,F 0 X ×F 0,H0,r H1 ×s,H0,q Y.

Hence â factors through pr234 if and only if â(y1, x1, h, y2) = â(y′1, x1, h, y2) for all y1, y
′
1, y2 ∈

Y , x1 ∈ X, h ∈ H1 with q(y1) = q(y′1) = F 0(x1) = r(h), s(h) = q(y2). Equivalently,

Φ(x1, y1) · E1(y1, h, y2) = Φ(x1, y
′
1) · E1(y′1, h, y2)

for y1, y
′
1, x1, h, y2 as above. Since E1(y′1, h, y2) = E1(y′1, 1q(y1), y1) · E1(y1, h, y2), and

q(y1) = q(y′1) = F 0(x1), this is equivalent to

Φ(x1, y1) = Φ(x1, y
′
1) · E1(y′1, 1q(y1), y1) = Φ(x1, y

′
1) · E1(y′1, F 1(x1, 1p(x1), x1), y1).

This equation is a special case of the naturality condition (14) for Φ. This finishes the proof
that â factors through a unique map a : X×F 0,H0,rH1×s,H0,qY → G1. Since r(a(x1, h, y2)) =
r(Φ(x1, y2)) = p(x1) and s(a(x1, h, y2)) = s(E1(y1, h, y2)) = E0(y2), the map (pr1, a, pr3)
maps X ×F 0,H0,r H1 ×s,H0,q Y to X ×p,G0,r G1 ×s,G0,E0 Y .
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The property of being an isomorphism is local by Proposition 2.5. Thus the map
(pr1, a, pr3) is an isomorphism if and only if the following pull-back along a cover induced
by q is an isomorphism:

(pr1, pr2, â, pr4) : Y ×q,H0,F 0 X ×F 0,H0,r H1 ×s,H0,q Y

→ Y ×q,H0,F 0 X ×p,G0,r G1 ×s,G0,E0 Y.

Here we have simplified the pull-back using the construction of a through â. Actually, to
construct a map in the opposite direction, we add even more variables and study the map

β : X ×p,H0,E0 Y ×q,H0,F 0 X ×F 0,H0,r H1 ×s,H0,q Y ×E0,G0,p X ×F 0,H0,q Y

→ X ×p,H0,E0 Y ×q,H0,F 0 X ×p,G0,r G1 ×s,G0,E0 Y ×E0,G0,p X ×F 0,H0,q Y,

(x3, y1, x1, h, y2, x2, y3) 7→ (x3, y1, x1,Φ(x1, y1) · E1(y1, h, y2), y2, x2, y3).

Since p and q are covers, the fibre products above exist and β is a pull-back of (pr1, a, pr3)
along a cover. By Proposition 2.5, it suffices to prove that β is invertible.

In the opposite direction, we have the map defined elementwise by

γ(x3, y1, x1, g, y2, x2, y3) := (x3, y1, x1, F
1(x1, g, x2) ·Ψ(y2, x2)−1, y2, x2, y3);

the product in the fourth entry is well-defined because s(F 1(x1, g, x2)) = F 0(x2) =
s(Ψ(y2, x2)), and it has range and source

r(F 1(x1, g, x2)) = F 0(x1), r(Ψ(y2, x2)) = q(y2),

respectively, so (x3, y1, x1, F
1(x1, g, x2) ·Ψ(y2, x2)−1, y2, x2, y3) belongs to the domain of β.

In the following computations, we only consider the fourth entry for simplicity because
this is the only one that is touched by β. We compute

pr4 ◦ β ◦ γ(x3, y1, x1, g, y2, x2, y3)
= Φ(x1, y1) · E1(y1, F

1(x1, g, x2) ·Ψ−1(y2, x2), y2)
= Φ(x1, y1) · E1(y1, F

1(x1, g, x2), y3) · E1(y3,Ψ(y2, x2)−1, y2)
= g · Φ(x2, y3) · E1(y3,Ψ(y2, x2)−1, y2),

pr4 ◦ γ ◦ β(x3, y1, x1, h, y2, x2, y3)
= F 1(x1,Φ(x1, y1) · E1(y1, h, y2), x2) ·Ψ(y2, x2)−1

= F 1(x1,Φ(x1, y1), x3) · F 1(x3, E
1(y1, h, y2), x2) ·Ψ(y2, x2)−1

= F 1(x1,Φ(x1, y1), x3) ·Ψ(y1, x3)−1 · h.

The first map multiplies g from the right with some complicated element ξ of G1 with
r(ξ) = s(ξ) = s(g); the crucial point is that ξ does not depend on g, so the map g 7→ g·ξ−1 is
a well-defined inverse for β◦γ. Similarly, the map γ◦β is invertible because it multiplies h
on the left with some element η of H1 with s(η) = r(η) = r(h) that does not depend on h.
Thus β is both left and right invertible, so it is invertible.
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3.40. Lemma. The projection pr3 : XHY := X ×F 0,H0,r H1 ×s,H0,q Y → Y is a cover.
Proof. The isomorphism in Lemma 3.39 allows us to replace pr3 : XHY → Y by pr3 : XGY
:= X ×p,G0,r G1 ×s,G0,E0 Y → Y . Since p : X � G0 and s : G1 � G0 are covers, so are
the induced maps pr23 : XGY � GY and pr2 : GY � Y . Hence so is their composite
pr3 : XGY � Y .

3.41. Lemma. The functor F : G(X)→ H is almost essentially surjective.
Proof. We consider the following diagram

X ×F 0,H0,r H1 ×s,H,q Y Y

X ×F 0,G0,r H1 H0

prY

s ◦ prH1

pr12 q

Lemma 3.40 shows that prY is a cover. The map q is a cover by assumption. Thus s◦prH1

is locally a cover, meaning that F is almost essentially surjective.

3.42. Lemma. The functor F : G(X)→ H is almost fully faithful.
Proof. We claim that q∗(F ) is fully faithful for the given cover q : Y � H0, that is, the
map

δ : Y ×q,H0,F 0 X ×p,G0,r G1 ×s,G0,p X ×F 0,H0,q Y

→ Y ×q,H0,F 0 X ×F 0,H0,r H1 ×s,H0,q Y ×q,H0,F 0 X,

(y1, x1, g, x2, y2) 7→ (y1, x1, F
1(x1, g, x2), y2, x2),

is an isomorphism. The fibre product on the right exists by Lemma 3.40. An element of
the codomain of δ is given by y1, y2 ∈ Y , x1, x2 ∈ X, h ∈ H1 with q(y1) = F 0(x1) = r(h),
q(y2) = F 0(x2) = s(h). Hence E1(y1, h, y2), Φ(x1, y1) and Φ(x2, y2) are well-defined arrows
in G1, and their ranges and sources match so that

ε(y1, x1, h, x2, y2) := Φ(x1, y1) · E1(y1, h, y2) · Φ(x2, y2)−1 ∈ G1

is well-defined and has range r(Φ(x1, y1)) = p(x1) and source s(Φ(x2, y2)) = p(x2). We get
a map

ε̄ : Y ×q,H0,F 0 X ×F 0,H0,r H1 ×s,H0,F 0 X ×F 0,H0,q Y

→ Y ×q,H0,F 0 X ×p,G0,r G1 ×s,G0,p X ×F 0,H0,q Y,

(y1, x1, h, x2, y2) 7→ (y1, x1, ε(y1, x1, h, x2, y2), x2, y2).

The map ε̄◦δ is the identity on Y ×q,H0,F 0X×p,G0,r G1×s,G0,pX×F 0,H0,q Y by the naturality
condition (14). We are going to show that the composite δ ◦ ε̄ is invertible (and hence



1934 RALF MEYER AND CHENCHANG ZHU

the identity because ε̄ ◦ δ is the identity). Elementwise, δ ◦ ε̄ maps (y1, x1, h, x2, y2) to
(y1, x1, η(y1, x1, h, x2, y2), x2, y2) with

η(y1, x1, h, x2, y2) = F 1(x1,Φ(x1, y1) · E1(y1, h, y2) · Φ(x2, y2)−1, x2).
To show that δ ◦ ε̄ is an isomorphism, we pull δ ◦ ε̄ back to the map on

X ×p,G0,E0 Y ×q,H0,F 0 X ×F 0,H0,r H1 ×s,H0,F 0 X ×F 0,H0,q Y ×E0,G0,p X

that sends (x3, y1, x1, h, x2, y2, x4) to (x3, y1, x1, η(y1, x1, h, x2, y2), x2, y2, x4). Since p : X →
G0 is a cover, Proposition 2.5 shows that δ ◦ ε̄ is an isomorphism if and only if this new
map is an isomorphism. Using the extra variables x3, x4, we may simplify η:

η(y1, x1, h, x2, y2) = F 1(x1,Φ(x1, y1) · E1(y1, h, y2) · Φ(x2, y2)−1, x2)
= F 1(x1,Φ(x1, y1), x3) · F 1(x3, E

1(y1, h, y2), x4) · F 1(x4,Φ(x2, y2)−1, x2)
= F 1(x1,Φ(x1, y1), x3) ·Ψ(y1, x3)−1 · h ·Ψ(y2, x4) · F 1(x4,Φ(x2, y2)−1, x2).

This map is invertible because η multiplies h on the left and right by expressions that do
not depend on h: the inverse maps (x3, y1, x1, h, x2, y2, x4) to

(x3, y1, x1,Ψ(y1, x3) · F 1(x1,Φ(x1, y1), x3)−1 · h
× F 1(x2,Φ(x2, y2), x4) ·Ψ(y2, x4)−1, x2, y2, x4).

Thus δ ◦ ε̄ is invertible. It follows that δ is invertible, so that F is almost fully faithful.
This finishes the proof that (1) implies (2) in Theorem 3.35, and hence the proof of

the theorem.

4. Groupoid actions
Let C be a category with coproducts and T a subcanonical pretopology on C.

4.1. Definition and Lemma. Let G = (G0,G1, r, s,m) be a groupoid in (C, T ). A (right)
G-action in C is X ∈∈ C with s ∈ C(X,G0) ( anchor) and m ∈ C(X ×s,G0,r G1,X) ( action),
denoted multiplicatively as ·, such that

(1) s(x · g) = s(g) for all x ∈ X, g ∈ G1 with s(x) = r(g);

(2) (x · g1) · g2 = x · (g1 · g2) for all x ∈ X, g1, g2 ∈ G1 with s(x) = r(g1), s(g1) = r(g2);

(3) x · 1s(x) = x for all x ∈ X.
This definition does not depend on T . In the presence of (1) and (2), the third condition
is equivalent to
(3′) m : X ×s,G0,r G1 → X is an epimorphism;

(3′′) m : X ×s,G0,r G1 → X is a cover;

(3′′′) (m, pr2) : X ×s,G0,r G1 → X ×s,G0,s G1, (x, g) 7→ (x · g, g), is invertible.
An action where the anchor map is a cover is called a sheaf over G.
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Proof. Conditions (1)–(3) imply (x · g−1) · g = x · (g−1 · g) = x · 1s(x) = x for all x ∈ X,
g ∈ G1 with s(x) = s(g) and (x · g) · g−1 = x for x ∈ X, g ∈ G1 with s(x) = r(g). Hence
the elementwise formula (x, g) 7→ (x · g−1, g) gives an inverse for the map in (3′′′). Thus
(3) implies (3′′′) in the presence of (1) and (2).

Assume (3′′′). The map pr1 : X ×s,G0,s G1 � X is a cover because s : G1 � G0 is a
cover. Composing with the isomorphism in (3′′′) shows that m is a cover. Covers are
epimorphisms because the pretopology is subcanonical. Thus

(1)–(3)⇒ (3′′′)⇒ (3′′)⇒ (3′).

Since (x · g) · 1s(g) = x · (g · 1s(g)) = x · g for all x ∈ X, g ∈ G1 with s(x) = r(g), the map
f : X→ X, x 7→ x · 1s(x), satisfies f ◦m = m. If m is an epimorphism, this implies f = idX.
Thus (3′) implies (3).

4.2. Remark. Sheaves over a Lie groupoid are equivalent to groupoid actions with an
étale anchor map (see [33, Section 3.1]). Sheaf theory only works well for étale groupoids,
however. If we work in the category of smooth manifolds with étale maps as covers, then
the above definition of a sheaf is an equivalent way of defining the concept of a sheaf
via local sections [33, Section 3.1]. We also require the anchor map to be surjective,
which restricts to sheaves for which all stalks are non-empty; this seems a rather mild
restriction. We have not yet tried to carry over the usual constructions with sheaves to
non-étale groupoids using the above definition.

The class of groupoid actions with a cover as anchor map certainly deserves special
consideration, but it is not a good idea to require this for all actions. Then we would
also have to require this for bibundles and, in particular, for bibundle functors. Hence we
could only treat covering bibundle functors, where both anchor maps are covers. But the
bibundle functor associated to a functor need not be covering: this happens if and only if
the functor is essentially surjective. As a result, anafunctors and bibundle functors would
no longer be equivalent.

4.3. Definition. Let X and Y be right G-actions. A G-equivariant map or briefly G-map
X → Y is f ∈ C(X,Y) with s(f(x)) = s(x) for all x ∈ X and f(x · g) = f(x) · g for all
x ∈ X, g ∈ G1 with s(x) = r(g).

The G-actions and G-maps form a category, which we denote by C(G). Let CT (G) ⊆
C(G) be the full subcategory of G-sheaves.

4.4. Definition. Let X be a G-action and Z ∈∈ C. A map f ∈ C(X,Z) is G-invariant if
f(x · g) = f(x) for all x ∈ X, g ∈ G1 with s(x) = r(g).

4.5. Examples.

4.6. Example. Any groupoid G acts on G0 by s = idG0 and r(g) · g = s(g) for all g ∈ G1.

4.7. Proposition. G0 is a final object in C(G) and CT (G).
Proof. For any G-action X, the source map s is a G-map, and it is the only G-map
X→ G0. Since identity maps are covers, G0 belongs to CT (G).
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4.8. Example. View Y ∈∈ C as a groupoid as in Example 3.11. A Y-action on X is
equivalent to a map X→ Y, namely, the anchor map of the action; the multiplication map
X ×Y Y → X must be the canonical isomorphism. A Y-map between actions si : Xi → Y,
i = 1, 2, of Y is a map f : X1 → X2 with s2 ◦ f = s1. Thus C(Y) is the slice category C ↓ Y
of objects in C over Y.

4.9. Example. Let G be a group in (C, T ), that is, G0 is a final object in C. Then there
is a unique map X → G0 for any X ∈∈ C. Since this unique map is the only choice for
the anchor map, a G-action is given by the multiplication map X × G1 → X alone. This
defines a group action if and only if (x · g1) · g2 = x · (g1 · g2) for all x ∈ X, g1, g2 ∈ G1, and
x · 1 = x for all x ∈ X; the unit element 1 is defined in Example 3.14.

4.10. Transformation groupoids.

4.11. Definition and Lemma. Let X be a right G-action. The transformation groupoid
X o G in (C, T ) is the groupoid with objects X, arrows X ×s,G0,r G1, range pr1, source m,
and multiplication defined by

(x1, g1) · (x2, g2) := (x1, g1 · g2)

for all x1, x2 ∈ X, g1, g2 ∈ G1 with s(x1) = r(g1), s(x2) = r(g2), and x1 · g1 = x2, that is,
s(x1, g1) = r(x2, g2) in X; then s(x1) = r(g1 · g2), so that (x1, g1 · g2) ∈ X ×s,G0,r G1.

This is a groupoid in (C, T ) with unit map and inversion given by 1x := (x, 1s(x)) and
(x, g)−1 := (x · g, g−1). It acts on X with anchor map s = idX : X→ X, by x · (x, g) := x · g
for all x ∈ X, g ∈ G1 with s(x) = r(g).
Proof. The range map pr1 : X ×s,G0,r G1 � X of X o G is a cover because r : G1 � G0

is a cover; Lemma 4.1 shows that the source map m of X o G is a cover as well. The
remaining properties are routine computations. The action of XoG on X is a special case
of Example 4.6.

4.12. Proposition. Let X be a G-action. An action of the transformation groupoid XoG
on an object Y ∈∈ C is equivalent to an action of G on Y together with a G-map f : Y → X.
Furthermore, the following two groupoids are isomorphic:

Y o (X o G) ∼= Y o G.

A map Y → Z is X o G-invariant if and only if it is G-invariant, and a map between two
X o G-actions is X o G-equivariant if and only if it is G-equivariant and over X.
Proof. An action of XoG on Y is given by an anchor map f : Y → X and a multiplication
map

Y ×f,X,pr1 (X ×s,G0,r G1)→ Y.
We compose f with sX : X → G0 to get an anchor map sY : Y → G0, and we compose the
multiplication map with the canonical isomorphism

Y ×sY,G0,r G1 ∼→ Y ×f,X,pr1 (X ×sX,G0,r G1) (16)
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to get a G-action on Y: y · g := y · (f(y), g) for all y ∈ Y, g ∈ G1 with sY(y) = r(g). It is
routine to check that this is an action of G. The map f is G-equivariant: sX ◦ f = sY by
construction, and f(y · g) = sXoG(f(y), g) = f(y) · g.

Conversely, given a G-action on Y and a G-equivariant map f : X → Y, we define an
action of X o G by taking f as the anchor map and y · (x, g) := y · g for all y ∈ Y,
x ∈ X, g ∈ G1 with f(y) = x, s(x) = r(g). These two processes are inverse to each other.
Since both constructions are natural, a map is X o G-equivariant if and only if it is both
G-equivariant and a map over X.

The transformation groupoids Y o (X o G) and Y o G have the same objects Y, and
isomorphic arrows by (16). This isomorphism also intertwines their range, source and
multiplication maps, so both transformation groupoids for Y are isomorphic. The isomor-
phism (16) also implies that X o G- and G-invariance are equivalent.

4.13. Left actions and several commuting actions. Left G-actions and G-maps
between them are defined like right actions; but we denote anchor maps for left actions
by r : X→ G0 instead of s.

4.14. Lemma. The categories of left and right G-actions are isomorphic.
Proof. We turn a right G-action (s,m) on X into a left G-action by r = s and g ·x := x·g−1

for g ∈ G1, x ∈ X with r(g−1) = s(g) = r(x). A left G-action gives a right one by s = r
and x · g := g−1 · x for x ∈ X, g ∈ G1 with s(x) = r(g) = s(g−1). A map is equivariant
for left actions if and only if it is equivariant for the corresponding right actions, so this
is an isomorphism of categories.

4.15. Definition. Let G and H be groupoids in (C, T ). A G,H-bibundle is X ∈∈ C
with a left G-action and a right H-action such that s(g · x) = s(x), r(x · h) = r(x), and
(g · x) · h = g · (x · h) for all g ∈ G1, x ∈ X, h ∈ H1 with s(g) = r(x), s(x) = r(h). Let
C(G,H) be the category with G,H-bibundles as objects and G,H-maps – maps X→ Y that
are equivariant for both actions – as arrows.

A G,H-bibundle also has a transformation groupoid G n X o H with objects X and
arrows

(G n X o H)1 := G1 ×s,G0,r X ×s,H0,r H1;
r(g, x, h) := g · x, s(g, x, h) := x · h, and

(g1, x1, h1) · (g2, x2, h2) := (g1 · g2, g
−1
2 · x1, h1 · h2) = (g1 · g2, x2 · h−1

1 , h1 · h2)

for all g1, g2 ∈ G1, x1, x2 ∈ X, h1, h2 ∈ H1 with s(gi) = r(xi), s(xi) = r(hi) for i = 1, 2 and
x1 · h1 = g2 · x2, so that g−1

2 · x1 = x2 · h−1
1 .

4.16. Remark. Assume Assumption 2.10. Then the product of two groupoids in (C, T )
is again a groupoid in (C, T ); the range and source maps are again covers by Lemma 2.11.
The category C(G,H) is isomorphic to C(G× H): actions of G and H determine an action
of G×H by x · (g, h) := g−1 · x · h for x ∈ X, g ∈ G1, h ∈ H1 with r(g) = s(x), r(x) = s(h).
Here we use that (g, h) ∈ G1×H1 is equivalent to g ∈ G1 and h ∈ H1. The transformation
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groupoid G n X o H is naturally isomorphic to the transformation groupoid X o (G× H)
via (g, x, h) 7→ (g · x, g−1, h).

More generally, we may consider an object of C with several groupoids acting on the
left and several on the right, with all actions commuting. We single out G,H-bibundles
because they are the basis of several bicategories of groupoids.

4.17. Fibre products of groupoid actions. Let X1, X2 and Y be G-actions and let
fi : Xi → Y for i = 1, 2 be G-maps. Assume that the fibre product X := X1 ×f1,Y,f2 X2
exists in C (this happens, for instance, if f1 or f2 is a cover).

4.18. Lemma. There is a unique G-action on X for which both coordinate projections
pri : X → Xi, i = 1, 2, are equivariant. With this G-action, X becomes a fibre product in
the category of G-actions.
Proof. We define a G-action on X as follows. The anchor map s : X→ G0 is defined by

s(x1, x2) := s(x1) = s(f1(x1)) = s(f2(x2)) = s(x2),

the multiplication by (x1, x2) · g := (x1 · g, x2 · g) for all x1, x2 ∈ X1, g ∈ G1 with f1(x1) =
f2(x2) and s(x1, x2) = r(g). This elementwise formula defines a map (X1×f1,Y,f2 X2)×s,G0,r
G1 → X1×f1,Y,f2 X2 by taking ? = (X1×f1,Y,f2 X2)×s,G0,rG1 and x1, x2, g the three coordinate
projections on ?.

Routine computations show that this defines a G-action on X. The coordinate projec-
tions X → Xi for i = 1, 2 are G-equivariant by construction, and the above formulas are
clearly the only ones that make this happen. Finally, a map h : W→ X is a G-map if and
only if hi := pri ◦ h for i = 1, 2 are G-maps, and two G-maps hi : W → Xi combine to a
G-map W→ X if and only if f1 ◦ h1 = f2 ◦ h2. Thus X has the property of a fibre product
in the category C(G).

4.19. Actors: another category of groupoids. A functor G → H between two
groupoids does not induce a functor C(H) → C(G). (The only general result is Proposi-
tion 7.8, which gives a functor CT (H) → C(G) on the subcategory of sheaves.) Here we
introduce actors, a different type of groupoid morphisms that are equivalent to functors
C(H) → C(G) with some extra properties. In the context of locally compact groupoids,
these were studied by Buneci (see [7,8]) because they induce morphisms between groupoid
C∗-algebras. In the context of Lie groupoids and Lie algebroids, these were studied under
the name of comorphisms (see [13], [29, Definition 4.3.16] and the references there). Our
notion of “actor” is unrelated to the one in [41, A.2].

4.20. Definition. Let G and H be groupoids in (C, T ). An actor from G to H is a left
G-action on H1 that commutes with the right multiplication action of H on H1.

Other authors exchange left and right in the above definition. The following generalises
[9, Lemma 4.3]:
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4.21. Proposition. An actor from G to H is equivalent to a pair consisting of a left
action of G on H0 and a functor G n H0 → H that is the identity on objects.
Proof. Let rG0 : H1 → G0 and m : G1 ×s,G0,r H1 → H1 define an actor from G to H. Since
the left and right actions on H1 commute, we have rG0(h1 ·h2) = rG0(h1) for all h1, h2 ∈ H1

with s(h1) = rH0(h2). Thus rG0(h) = rG0(h ·h−1) = rG0(1rH0 (h)). With the map r0 : H0 → G0

defined by r0(x) := rG0(1x) for x ∈ H0, this becomes rG0 = r0 ◦ rH0 .
The map r0 is the anchor map of a G-action on H0. The action G1 ×s,G0,r0 H0 → H0 is

defined elementwise by g · x := rH0(g · 1x). We have r0(g · x) = rG0(1g·x) = rG0(1rH0 (g·1x)) =
rG0(g ·1x) = r(g) and 1r0(x) ·x = x for all x ∈ H0. Furthermore, rH0(g ·h) = rH0(g ·h ·h−1) =
g · rH0(h) for all g ∈ G1, h ∈ H1 with s(g) = rG0(h). Hence (g1 · g2) · x = g1 · (g2 · x) for all
g1, g2 ∈ G1, x ∈ H0 with s(g1) = r(g2), s(g2)(x) = r0(x).

The map
F 1 : G1 ×s,G0,r0 H0 → H1, (g, x) 7→ g · 1x,

together with the identity map on H0 is a functor F : GnH0 → H. This functor determines
the actor because g · h = (g · 1rH0 (h)) · h = F (g, rH0(h)) · h for all g ∈ G1, h ∈ H1 with
s(g) = rG0(h).

Conversely, a left G-action on H0 and a functor F : GnH0 → H yield an actor by taking
the anchor map r0 ◦ rH0 : H1 → H0 → G0 and the multiplication g · h := F (g, rH0(h)) · h.

Proposition 4.21 shows that actors G → H are usually not functors G → H, and vice
versa. The intersection of both types of morphisms is described in the following example:

4.22. Example. Let F : G → H be a functor with invertible F 0 ∈ C(G0,H0). Then we
define an associated actor by rG : H1 → G0, g 7→ (F 0)−1(rH(g)), and g ·h := F 1(g) ·h for all
g ∈ G1, h ∈ H1 with r(h) = s(F 1(g)) = F 0(s(g)). Conversely, if an actor has the property
that the associated anchor map r : H0 → G0 is invertible, then we may identify G with the
transformation groupoid GnH0 and get a functor G→ H by Proposition 4.21. The actor
associated to this functor is the one we started with.

4.23. Proposition. An actor from G to H induces a functor C(H)→ C(G) that does not
change the underlying objects in C, that is, we have a commutative diagram

C(H) C(G),

C
FGFH

where FG and FH are the functors forgetting the G- and H-actions, respectively. Further-
more, H-invariant maps are also G-invariant. Any functor C(H)→ C(G) with these extra
properties comes from an actor. Thus groupoids as objects and actors as arrows form a
category, and G 7→ C(G) is a contravariant functor on this category.
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Proof. We use categories of left actions during the proof. Describe an actor as in Proposi-
tion 4.21 as a right G-action on H0 with a functor F : H0oG→ H. Let X be a left H-action.
Then we define a left G-action on X by taking the anchor map r0 ◦ r : X → H0 → G0 and
the multiplication g · x := F 1(g, r(x)) · x for all g ∈ G1, x ∈ X with s(g) = r0(r(x)). This
action is the unique one with rG0(h · x) = rG0(h) and g · (h · x) = (g · h) · x for all g ∈ G1,
h ∈ H1, x ∈ X with s(g) = rG0(h), s(h) = r(x).

Routine computations show that the above formulas define a G-action on X in a natural
way so as to give a functor C(H) → C(G), and that H-invariant maps f : X → Z remain
G-invariant.

Conversely, let F : C(H) → C(G) be a functor that does not change the underlying
object of C and that preserves invariant maps. That is, F equips any left H-action X
with a left G-action, such that H-maps remain G-maps and H-invariant maps remain
G-invariant. When we apply F to the left multiplication action on H1, we get a left
G-action on H1. We claim that this commutes with the right multiplication action of H1,
so that we have an actor, and that this actor induces the functor F .

Let X be any left H-action. Let H act on HX := H1×s,H0,r X by h1 · (h2, x) := (h1 ·h2, x)
for all h1, h2 ∈ H1, x ∈ X with s(h1) = r(h2), s(h2) = r(x). Equip HX with the G-action
from F (HX). Routine computations show that the maps pr1 : HX → H1 and m : HX → X
are H-equivariant and the map pr2 : HX→ X is H-invariant. By assumption, pr1 and m are
G-equivariant and pr2 is G-invariant. The statements for pr1 and pr2 mean that g · (h, x) =
(g ·h, x) for all g ∈ G1, h ∈ H1, x ∈ X with s(g) = rG0(h), s(h) = r(x). The G-equivariance
of m gives g · m(h, x) = m(g · (h, x)) = m(g · h, x) or briefly g · (h · x) = (g · h) · x
for g, h, x as above. For X = H1, this says that the left G-action on G1 commutes with
the right H-action by multiplication, so that we have an actor. For general X, we get
g · x = g · (1r(x) · x) = (g · 1r(x)) · x, so the G-action given by F is the one from this actor.
We also see that the functor F determines the actor uniquely.

Since the composite of two functors C(H) → C(G) and C(K) → C(H) that does not
change the underlying object of C and preserves invariant maps again has the same prop-
erties, it must come from an actor. Thus actors may be composed. More explicitly, given
actors G→ H and H→ K, there is a unique right G-action on K1 with (g ·h) ·k = g · (h ·k)
for all k ∈ K1, h ∈ H1, g ∈ G1 with s(g) = rG0(h) and s(h) = rH0(k). This left action gives
the actor from G to K that corresponds to the composite functor C(K)→ C(G).

4.24. Proposition. An actor G → H is invertible if and only if it comes from an iso-
morphism between G and H.
Proof. The anchor maps H0 → G0 are composed when we compose actors. Since this an-
chor map is the identity for the identity actor, the anchor map H0 → G0 for an invertible
actor must be invertible in C. The identification between actors G → H with invert-
ible anchor map H0 → G0 and functors acting identically on objects in Example 4.22 is
compatible with the compositions on both sides. Thus invertible actors are the same as
invertible functors, that is, isomorphisms of groupoids.
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In order to enrich actors to a 2-category, we study automorphisms of H1 that preserve
the right H-action:

4.25. Proposition. The right H-maps ϕ : H1 → H1 are exactly the maps of the form
h 7→ Φ(r(h)) · h for a section Φ: H0 → H1 of s. This map is invertible if and only if Φ is
a bisection.
Proof. In the following, “section” always means a section of s. It is clear that left
multiplication with a section defines an H-map. Furthermore, the map from sections to
H-maps is a homomorphism for the horizontal product (8) of sections, so a bisection gives
an invertible map on H1. It remains to prove the converse. Let ϕ : H1 → H1 be an H-map
and let h ∈ H1. Then s(ϕ(h)) = s(h), so Lemma 3.5 gives a unique ωh with ϕ(h) = ωh ·h.
This defines a map ω : H1 → H1 with s ◦ ω = r and ω(h) · h = ϕ(h) for all h ∈ H1. Since
ϕ(h1 · h2) = ϕ(h1) · h2 for all h1, h2 ∈ H1 with s(h1) = r(h2), we get ω(h1 · h2) = ω(h1).
This implies ω = Φ ◦ r for a map Φ: H0 → H1, compare the proof of Proposition 3.9. We
have s ◦Φ = idH0 , so Φ is a section, and ϕ(h) = Φ(r(h)) · h for all h ∈ H1 by construction.
The section Φ is uniquely determined by ϕ.

If ϕ is invertible, its inverse is also an H-map and hence associated to some section Ψ.
Since the map Φ 7→ ϕ is injective, Φ is invertible in the monoid of sections, hence it is a
bisection by Lemma 3.21.

Let m1,m2 be two actors from G to H, that is, left actions of G on H1 that commute
with the right multiplication action. A 2-arrow from m1 to m2 is a G,H-bibundle map
(H1,m1)→ (H1,m2). By Proposition 4.25, this is the same as a section Φ of H with

Φ(r(g ·1 h)) · (g ·1 h) = g ·2 (Φ(r(h)) ·1 h)

for all g ∈ G1, h ∈ H1 with s(g) = rG,1(r(h)), where ·1 and ·2 come from m1 and m2,
respectively. Composing the G,H-maps associated to sections Φ1 and Φ2 gives the G,H-
map associated to the section Φ1 ◦ Φ2 defined in (8).

4.26. Proposition. There is a strict 2-category with groupoids in (C, T ) as objects,
actors as arrows, sections Φ as above as 2-arrows, the usual composition of actors and the
usual unit actors, and with the product ◦ for sections as vertical product. The equivalences
in this 2-category are precisely the isomorphisms of groupoids in (C, T ).
Proof. It remains to construct the horizontal product. Let G, H and K be groupoids,
let m1,m2 : G ⇒ H and m′1,m′2 : H ⇒ K be actors, let Φ: H0 → H1 and Ψ: K0 → K1 be
sections with

Φ(r(g ·1 h)) · (g ·1 h) = g ·2 (Φ(r(h)) ·1 h), Ψ(r(h ·1 k)) · (h ·1 k) = h ·2 (Ψ(r(k)) ·1 k)

for all g ∈ G1, h ∈ H1, k ∈ K1 with s(g) = rG,1(r(h)) and s(h) = rH,1(r(k)), respectively.
Then Ψ •Φ: K0 → K1, x 7→ Φ(rH,1(x)) ·Ψ(x), is a section for K that gives a 2-arrow from
the composite m′1 ◦m1 to m′2 ◦m2.
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An equivalence α : G → H in this 2-category has a quasi-inverse β : H → G and
invertible 2-arrows idG ⇒ β ◦ α and idH ⇒ α ◦ β. Being invertible, they correspond to
bisections. Then it follows that the actors β ◦α and α◦β come from inner automorphisms
of G and H, respectively, as in Example 4.22. Thus β ◦ α and α ◦ β are isomorphisms
in the 1-category of actors. This implies that α is an isomorphism in the 1-category of
actors. Now Proposition 4.24 shows that α is an isomorphism of categories.

5. Principal bundles
5.1. Definition. Let G be a groupoid in (C, T ). A G-bundle (over Z) is a G-action
(X, s,m) with a G-invariant map p : X → Z (bundle projection). A G-bundle is principal
if

(1) p is a cover;

(2) the following map is an isomorphism:

(pr1,m) : X ×s,G0,r G1 ∼→ X ×p,Z,p X, (x, g) 7→ (x, x · g). (17)

The isomorphism (17) is equivalent to the elementwise statement that for x1, x2 ∈ X
with p(x1) = p(x2), there is a unique g ∈ G1 with s(x1) = r(g) and x1 · g = x2; this
translation is proved like Lemma 3.5.

5.2. Definition. Let G be a groupoid and X a G-action in (C, T ). The orbit space
projection πX : X→ X/G is the coequaliser of the two maps pr1,m : X ×s,G0,r G1 ⇒ X.

While the coequaliser need not exist in C, it always exists in the category of presheaves
over C.

5.3. Lemma. Let X with bundle projection p : X � Z be a principal G-action. Then p is
equivalent to the orbit space projection X→ X/G, which therefore exists in C and is a cover.
The orbit space projection is always G-invariant, and condition (3′′) in Definition 4.1
follows from (17).
Proof. Since the pretopology is subcanonical, the cover p : X � Z is the coequaliser of
pr1, pr2 : X×p,Z,p X ⇒ X, and these two maps are covers. By the isomorphism (17), p is the
coequaliser of pr1,m : X×s,G0,r G1 ⇒ X as well, and both pr1 and m are covers. Thus p is an
orbit space projection and m is automatically a cover; the latter is Definition 4.1.(3′′).

5.4. Examples.

5.5. Example. Let Y be a 0-groupoid (see Example 3.11), let X→ Y be a Y-action, and
let p = idX. This is a principal Y-bundle.
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5.6. Example. Let p : X � Z be a cover and let G be its Čech groupoid (see Exam-
ple 3.12). The canonical action of G on its objects X is given by s = idX and x1 ·(x1, x2) :=
x2 for all x1, x2 ∈ X with p(x1) = p(x2) (see Example 4.6). Together with the bundle pro-
jection p : X � Z, this is a principal bundle: the map X×idX,X,pr1 (X×p,Z,p X)→ X×p,Z,p X
defined elementwise by (x1, (x1, x2)) 7→ (x1, x2) is an isomorphism.

5.7. Pull-backs of principal bundles.

5.8. Proposition. Let f : Z̃→ Z be a map in C and let (X, s, p,m) be a principal G-bundle
over Z. Then there is a principal G-bundle (X̃, s̃, p̃, m̃) over Z̃ with a G-map f̂ : X̃ → X
with p ◦ f̂ = f ◦ p̃. These are unique in the following sense: for any principal G-bundle
(X̃′, s̃′, p̃′, m̃′) over Z̃ and G-map f̂ ′ : X̃ → X, there is a unique isomorphism of principal
G-bundles ϕ : X̃ ∼→ X̃′ with f̂ ′ ◦ ϕ = f̂ .

This principal G-bundle is called the pull-back of (X, s, p,m) along f .
Proof. Let X̃ := Z̃ ×f,Z,p X, s̃ := s ◦ pr2 : X̃ → G0 and p̃ := pr1 : X̃ → Z̃. The fibre
product X̃ exists and p̃ is a cover because p is a cover. Let

m̃ : X̃ ×s̃,G0,r G1 = Z̃×f,Z,p X ×s,G0,r G1 idZ̃×f,Zm
−−−−−→ Z̃×f,Z,p X = X̃;

this map is well-defined because p ◦m = p ◦ pr1.
Routine computations show that (X̃, s̃, m̃) is a G-action and that p̃ ◦ m̃ = p̃ ◦ pr1. The

map (17) with tildes is the pull-back along f of the same map without tildes, where we use
the canonical maps from both sides to Z. Since pull-backs of isomorphisms remain isomor-
phisms, (X̃, Z̃, s̃, m̃, p̃) is a principal G-bundle over Z. The second coordinate projection
f̂ : X̃→ X is a G-map with p ◦ f̂ = f ◦ p̃.

Let (X̃′, s̃′, p̃′, m̃′) be another principal G-bundle over Z̃ with a G-map f̂ ′ : X̃′ → X with
p ◦ f̂ ′ = f ◦ p̃′. Then ϕ := (p̃′, f̂ ′) : X̃′ → X̃ is a G-map with p̃ ◦ ϕ = p̃′, and it is the
only G-map with this extra property. The proof will be finished by showing that ϕ is an
isomorphism.

Since p̃′ : X̃′ � Z̃ is a cover, so is its pull-back along p̃ : X̃→ Z̃. Identifying X̃′×p̃′,Z̃,p̃X̃ ∼=
X̃′ ×f◦p̃′,Z,p X, this cover becomes the map

p̃′ ×Z idX : X̃′ ×f p̃′,Z,p X � X̃ = Z̃×f,Z,p X, (x1, x2) 7→ (p̃′(x1), x2).

Since p̃′ ×Z idX is a cover, the fibre product of the following two maps exists:

X̃′ ×f p̃′,Z,p X p̃′×ZidX−−−−→ X̃ ϕ←− X̃′.

An element of this fibre product is a triple x1 ∈ X̃′, x2 ∈ X, x3 ∈ X̃′ with f(p̃′(x1)) = p(x2),
f̂ ′(x3) = x2, p̃′(x3) = p̃′(x1). Then p(x2) = p(f̂ ′(x3)) = f(p̃′(x3)) = f(p̃′(x1)) = p(f̂ ′(x1)).
Since X is a principal G-bundle over Z, there is a unique g ∈ G with s(x2) = r(g) and
f̂ ′(x1) = x2 · g. Since X̃′ is a principal G-bundle over Z̃ and p̃′(x3) = p̃′(x1), there is also
a unique g′ ∈ G1 with s̃′(x1) = r(g′) and x1 · g′ = x3. Then x2 = f̂ ′(x3) = f̂ ′(x1 · g′) =
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f̂ ′(x1) · g′, so g = g′. Thus x3 = f̂ ′(x1) · g is uniquely determined by x1 and x2. That is,
the pull-back of ϕ along the cover p̃′ ×Z idX is an isomorphism. This implies that ϕ is an
isomorphism by Proposition 2.5.

5.9. Proposition. Let X1 and X2 be principal G-bundles over Z1 and Z2, respectively.
Then a G-map f : X1 → X2 induces a map f/G : Z1 → Z2. The map f is an isomorphism
if and only if f/G is. If f/G is a cover, so is f . Conversely, under Assumption 2.8, f is
a cover if and only if f/G is.
Proof. Since Zi is the orbit space of Xi and orbit spaces are constructed naturally, the
G-map f induces a map f/G : Z1 → Z2. Since p2 ◦ f = f/G ◦ p1, X1 must be the pull-back
of X2 along f/G by Proposition 5.8. That is, the diagram

X1 X2

Z1 Z2

f

f/G
p1 p2

is a fibre-product diagram. Proposition 2.5 shows that f is an isomorphism if and only
if f/G is one. By the pretopology axioms, f is a cover if f/G is, and the converse holds
under Assumption 2.8.

5.10. Proposition. Consider a commuting square of G-maps between principal G-bundles
Xi and the corresponding maps between their base spaces Zi:

X1 X2

X3 X4

γ3 δ2

γ2

δ3

Z1 Z2

Z3 Z4

β2

α3

β3 α2

The first square is a fibre-product square if and only if the second one is.
Proof. Assume first that the square of Zi is a fibre-product square. Let x2 ∈ X2, x3 ∈ X3
satisfy x4 := δ2(x2) = δ3(x3). We must show that there is a unique x1 ∈ X1 with γi(x1) =
xi for i = 2, 3. Let zi := pi(xi) ∈ Zi, then α2(z2) = p4(δ2(x2)) = p4(δ3(x3)) = α3(z3).
Since Z1 is the pull-back of α2, α3 by assumption, we get a unique z1 ∈ Z1 with βi(z1) = zi
for i = 2, 3. Proposition 5.8 shows that X1 � Z1 is the pull-back of X4 � Z4 along
αi ◦ βi : Z1 → Z4, and similarly for Xi � Zi for i = 2, 3. Thus x4 ∈ X4 and z1 ∈ X1
determine a unique element x1 ∈ X1 with p1(x1) = z1 and δiγi(x1) = x4 for i = 2, 3. We
claim that this is the unique element of X1 with γi(x1) = xi for i = 2, 3.

Any element of X1 with γi(x1) = xi for i = 2, 3 will also satisfy p1(x1) = z1 and
δiγi(x1) = x4 for i = 2, 3, so uniqueness is clear. Since Xi � Zi is the pull-back of
X4 � Z4 for i = 2, 3, the element xi ∈ Xi is uniquely determined by zi = pi(xi) and
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x4 = δi(xi). Since pi(γi(x1)) = βip1(x1) = βi(z1) = zi = pi(xi) and δi(γi(x1)) = x4 =
δi(xi), we get xi = γi(x1) as desired. Hence we get a bijection between x1 ∈ X1 and pairs
x2 ∈ X2, x3 ∈ X3 with δ2(x2) = δ3(x3). This is the elementwise statement corresponding
to X1 ∼= X2 ×X4 X3.

Now assume, conversely, that X1 ∼= X2×X4X3. We are going to show that Z1 ∼= Z2×Z4Z3.
This means that, for all ? ∈∈ C, the map

C(?,Z1)→ {(z2, z3) ∈ C(?,Z2)× C(?,Z3) | α2z2 = α3z3}

is a bijection. Let zi : ? → Zi for i = 2, 3, 4 with α2z2 = z4 = α3z3 be given. The
G-maps Xi → X4 for i = 2, 3 give isomorphisms between Xi � Zi and the pull-back of
X4 � Z4 along αi. Pulling back further along the maps zi shows that the three pull-backs
of the principal G-bundles Xi � Zi along zi for i = 2, 3, 4 are canonically isomorphic
principal G-bundles over ?. Let ?? � ? be this unique principal G-bundle over ?. By
Proposition 5.8, the maps zi for i = 2, 3, 4 lift uniquely to xi : ??→ Xi. These liftings still
satisfy γ2x2 = x4 = γ3x3 because the lifting of z4 is unique.

Since X1 ∼= X2 ×X4 X3 is a fibre product in the category of G-actions by Lemma 4.18,
the unique map x1 : ??→ X1 with δix1 = xi for i = 2, 3 is a G-map. Thus it induces a map
z1 : ? → Z1 by Proposition 5.9. The naturality of this construction implies βiz1 = zi for
i = 2, 3. Any map z′1 : ?→ Z1 with βiz′1 = zi for i = 2, 3 lifts to a map x′1 = (z′1, xi) : ??→
Z1 ×Zi

Xi ∼= X1 with δix
′
1 = xi for i = 2, 3 by Proposition 5.8. Since X1 ∼= X2 ×X4 X3, we

must have x′1 = x1, which gives z′1 = z1. Hence there is a unique map z1 : ? → Z1 with
βiz1 = zi for i = 2, 3, as desired.

5.11. Locality of principal bundles. We formulate now what it means for principal
bundles to be a “local” notion. Let G be a groupoid in (C, T ). Let X,Z ∈∈ C and let
s : X → G0, p : X → Z, and m : X ×s,G0,r G1 → X be maps. We pull back this data along a
cover f : Z̃ � Z as follows. Let X̃ := Z̃×f,Z,p X, s̃ := s ◦ pr2 : X̃→ G0, p̃ := pr1 : X̃→ Z̃ and

m̃ : X̃ ×s̃,G0,r G1 = Z̃×f,Z,p X ×s,G0,r G1 idZ̃×f,Zm
−−−−−→ Z̃×f,Z,p X = X̃;

this map is well-defined if p ◦m = p ◦ pr1.

5.12. Proposition. The data (X̃, Z̃, s̃, m̃, p̃) is a well-defined principal G-bundle over Z̃
if and only if (X,Z, s,m, p) is a principal G-bundle over Z.

Put in a nutshell, principality for G-bundles is a local property.
Proof. If (X, s,m, p) is a principal G-bundle over Z, then Proposition 5.8 shows that
(X̃, s̃, m̃, p̃) is a principal G-bundle over Z̃.

Now assume that (X̃, s̃, m̃, p̃) is a well-defined principal G-bundle over Z̃. We are going
to show that (X, s,m, p) is a principal G-bundle over Z. For m̃ to be well-defined, we need
p ◦m = p ◦ pr1 or p(x · g) = p(x) for all x ∈ X, g ∈ G1 with s(x) = r(g). Since f is a cover,
so is the map X̃×s,G0,r G1 � X×s,G0,r G1 it induces. Since T is subcanonical, this map is an
epimorphism. Now we get s ◦m = s ◦ pr2 : X×s,G0,r G1 → G0 because composing s ◦m and
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s◦pr2 with the cover X̃×s,G0,r G1 � X×s,G0,r G1 gives the same map s̃◦m = s̃◦pr2. A similar,
more complicated argument shows that m is associative because m̃ is associative and both
multiplications are intertwined by covers X̃×s,G0,r G1×s,G0,r G1 � X×s,G0,r G1×s,G0,r G1 and
X̃ � X. Similarly, we get the unitality condition for the multiplication, so (X, s,m) is a
G-action.

It remains to verify that the map

(m, pr1) : X ×s,G0,r G1 → X ×p,Z,p X

is an isomorphism. Since the coordinate projection X̃ � X is a cover, so is the induced
map X ×p,Z,f◦p̃ X̃ � X ×p,Z,p X. The pull-back of (m, pr1) along this map is equivalent to
the map

(m̃, pr1) : X̃ ×s̃,G0,r G1 → X̃ ×p̃,Z̃,p̃ X̃, (18)

where we identify

X̃ ×p̃,Z̃,p̃ X̃ ∼= X ×p,Z̃,f◦p̃ X̃,
(X ×s,G0,r G1)×X×p,Z,pX (X ×p,Z,f◦p̃ X̃) ∼= X̃ ×s̃,G0,r G1

in the obvious way. The map (18) is an isomorphism because X̃ is principal. This implies
that (m, pr1) is an isomorphism because the property of being an isomorphism is local by
Proposition 2.5.

5.13. Basic actions and Čech groupoids.

5.14. Definition. A groupoid action or sheaf that, together with some bundle projection,
is part of a principal bundle is called basic. A groupoid is called basic if its canonical
action on G0 in Example 4.6 is basic.

We call such actions “basic” because they have a well-behaved base and because “prin-
cipal groupoid” already has a different meaning for topological groupoids (it means that
the action on G0 is free).

5.15. Proposition. A G-action X is basic if and only if the transformation groupoid
X o G is isomorphic to a Čech groupoid of a certain cover p : X � Z.
Proof. Let X be basic with bundle projection p : X � Z. Then (17) provides an isomor-
phism (XoG)1 ∼→ X×p,Z,p X. Together with the identity on objects, this is an isomorphism
of groupoids from X o G to the Čech groupoid of p. Conversely, let X o G be isomorphic
to a Čech groupoid. We may assume that the isomorphism is the identity on objects,
so that the cover whose Čech groupoid we take is a map p : X � Z. Since the maps pr1
and m in (17) are the range and source maps of XoG, the isomorphism of groupoids from
X o G to the Čech groupoid of p must be given by (x, g) 7→ (x, x · g) on arrows; thus (17)
is an isomorphism.
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5.16. Corollary. A G-action on X is basic if and only if its transformation groupoid
X o G is basic.
Proof. The criterion in Proposition 5.15 depends only on X o G.

5.17. Corollary. An action of a transformation groupoid X o G is basic if and only if
the restriction of the action to G is basic.
Proof. Proposition 4.12 shows that Y o (X o G) ∼= Y o G, so the assertion follows from
Corollary 5.16.

5.18. Lemma. Let Y carry an action of a transformation groupoid X o G, equip it with
the resulting G-action. Then Y/(X o G) ∼= Y/G.
Proof. Proposition 4.12 shows that the invariant maps for both actions are the same,
hence so are the orbit spaces.

6. Bibundle functors, actors, and equivalences
Let G and H be groupoids in (C, T ). We describe several important classes of G,H-bibundles:

6.1. Definition. A bibundle equivalence from G to H is a G,H-bibundle X such that
both the left and right actions are principal bundles with bundle projections s : X � H0

and r : X � G0, respectively. We call G and H equivalent if there is a bibundle equivalence
from G to H.

A bibundle functor from G to H is a G,H-bibundle X such that the right H-action is a
principal bundle with bundle projection r : X � G0. A bibundle functor is covering if the
anchor map s : X � H0 is a cover.

A bibundle actor from G to H is a G,H-bibundle X such that the right H-action is basic
and a sheaf, that is, s : X � H0 is a cover.

Bibundle functors are also called generalised morphisms[33, Section 2.5] or Hilsum–
Skandalis morphisms [35], and bibundle equivalences just equivalences or Morita equiv-
alences. We will show later that for sufficiently nice pretopologies, bibundle functors
and actors are precisely the products of bibundle equivalences with functors and actors,
respectively (see Sections 6.10 and 7.19). This justifies the names above.

The anchor map r : X � G0 of a bibundle functor is always a cover because it is
the bundle projection of a principal action. For an equivalence X, both anchor maps
r : X � G0 and s : X � H0 are covers for the same reason. Thus bibundle equivalences are
covering bibundle functors. A bibundle functor is a bibundle actor as well if and only if



1948 RALF MEYER AND CHENCHANG ZHU

it is covering. The following diagram illustrates the relations between these notions:

bibundle equivalence
covering bibundle functor

bibundle functor

bibundle actor

6.2. Example. Let G be a groupoid in (C, T ). Then G acts on G1 on the left and right
by multiplication. These actions turn G1 into a bibundle equivalence from G to itself,
so equivalence of groupoids is a reflexive relation. First, the two actions commute by
associativity, so they form a G,G-bibundle; secondly, the right multiplication action gives
a principal G-bundle with bundle projection s : G1 � G0 by (5); thirdly, the left action
gives a principal G-bundle with bundle projection r : G1 � G0 by (6).

The assumptions that r and s be covers and the conditions (5) and (6) in the definition
of a groupoid are necessary and sufficient for this unit bibundle equivalence to work.

Left and right actions of groupoids are equivalent by Lemma 4.14. Left and right
principal bundles are also equivalent in the same way. Thus a G,H-bibundle X gives an
H,G-bibundle X∗, which is the same object of C with the two anchor maps exchanged
and h · x · g := g−1 · x · h−1; this is a bibundle equivalence if and only if X is one. Thus
equivalence of groupoids is a symmetric relation. Transitivity seems to require an extra
assumption in order to compose bibundle equivalences, see Section 7.

6.3. Example. Let p : X � Z be a cover in (C, T ). View Z as a groupoid with only
identity arrows and let G be the Čech groupoid of p. Then G and Z are equivalent.

The equivalence bibundle is X, with the canonical right action of G on its object space
and with the left Z-action given by the anchor map p. The right G-action on X with p as
bundle projection gives a principal G-bundle by Example 5.6. The left Z-action is given
simply by its anchor map p, and any such action gives a principal bundle with the identity
map X→ X as bundle projection; the identity is also the right anchor map.

Conversely, if X is a bibundle equivalence from a groupoid G to a 0-groupoid Z, then G
is isomorphic to the Čech groupoid of the anchor map p : X � Z.

6.4. Example. More generally, let pi : Xi � Z for i = 1, 2 be two covers and let G1
and G2 be their Čech groupoids. Let X := X1 ×p1,Z,p2 X2, r := pr1 : X � X1 = G0

1 and
s := pr2 : X � X2 = G0

2, and define the multiplication maps by (x1, y1) · (y1, y2) := (x1, y2),
(x1, x2) · (x2, y2) := (x1, y2) for x1, y1 ∈ X1, x2, y2 ∈ X2 with p1(x1) = p1(y1) = p2(x2) =
p2(y2). Then X is a bibundle equivalence from G1 to G2. This shows that equivalence of
groupoids is a transitive relation among Čech groupoids.

6.5. Example. Let Y be an object of C viewed as a groupoid. An action of Y is the same
as a map to Y by Example 4.8. Thus a G,Y-bibundle is the same as a (left) G-action X
with a G-invariant map f : X→ Y.



GROUPOIDS IN CATEGORIES WITH PRETOPOLOGY 1949

A bibundle functor G → Y is, up to isomorphism, the same as a G-invariant map
G0 → Y because of the assumption that r induces an isomorphism X = X/Y ∼→ G0. A
bibundle functor Y → G is the same as a principal G-bundle over Y.

A bibundle actor G→ Y is the same as a G-action X with a G-invariant cover X � Y.
A bibundle actor Y → G is the same as a principal G-bundle X over some space Z with a
map Z→ Y, such that the anchor map s : X � G0 is a cover.

Let Y1 and Y2 be two objects of C viewed as groupoids. Then a Y1,Y2-bibundle is a
span Y1 ← X→ Y2 in C. This is

• a bibundle functor if and only if the map Y1 ← X is invertible;

• a bibundle equivalence if and only if both maps Y1 ← X→ Y2 are isomorphisms;

• a bibundle actor if and only if the map X � Y2 is a cover.

Example 6.3 shows that a groupoid is equivalent to a 0-groupoid if and only if it is
basic. By Proposition 5.15, a groupoid is basic if and only if it is isomorphic to a Čech
groupoid.

6.6. From functors to bibundle functors. Let G and H be groupoids in (C, T )
and let F : G → H be a functor, given by F i ∈ C(Gi,Hi) for i = 0, 1. We are going to
define an associated bibundle functor XF from G to H (see also [33]).

Since r : H1 � H0 is a cover, the fibre product XF = X := G0 ×F 0,H0,r H1 exists and
the coordinate projection pr1 : X � G0 is a cover. This map is the anchor map for a
left G-action on X defined elementwise by g · (x, h) := (r(g), F 1(g) · h) for all g ∈ G1,
x ∈ G0, h ∈ H1 with s(g) = x, r(h) = F 0(x) = F 0(s(g)) = s(F 1(g)). The map s : X→ H0,
(x, h) 7→ s(h), for x ∈ G0, h ∈ H1 with F 0(x) = r(h) is the anchor map for a right
H-action defined elementwise by (x, h1) · h2 := (x, h1 · h2) for all x ∈ G0, h1, h2 ∈ H1 with
F 0(x) = r(h1) and s(h1) = r(h2).

6.7. Lemma. The G,H-bibundle X is a bibundle functor.
Proof. The left and right actions on X commute. For x ∈ G0, h1, h2, y ∈ H1 with
F 0(x) = r(h1) = r(h2) we have s(h1) = r(y) and (x, h1) · y = (x, h2) if and only if
y = h−1

1 · h2. Hence there is a unique such y, proving the isomorphism (17) for the
H-bundle r : X → G0. Since r : X � G0 is a cover as well, the right H-action together
with r is a principal H-bundle.

We may generalise the construction above as follows. Let F : G → H be a functor
and let Y be a bibundle functor from H to K. We may then construct a bibundle functor
F ∗(Y) from G to K. The bibundle functor XF is the special case where Y = H1 is the
identity bibundle functor on H. The only change in the construction is to replace H1 by Y
everywhere. Thus the underlying object of C is F ∗(Y) := G0 ×F 0,H0,r Y; this exists in C
and the coordinate projection pr1 = s : F ∗(Y) � G0 is a cover because r : Y � H0 is a
cover.
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The same formulas as above define a left G-action and a right K-action on Y. The
right K-action together with pr1 : F ∗(Y) � G0 is a principal K-bundle because for x ∈ G0,
y1, y2 ∈ Y, k ∈ K1 with F 0(x) = r(y1) = r(y2), we have s(y1) = r(k) and (x, y1) ·k = (x, y2)
if and only if s(y1) = r(k) and y1 · k = y2, and this has a unique solution if r(y1) = r(y2)
because Y is a bibundle functor.

6.8. Proposition. The bibundle functor associated to a functor F is covering if and only
if F is essentially surjective, and an equivalence bibundle if and only if F is essentially
surjective and fully faithful.
Proof. The right anchor map of XF is given by (x, h) 7→ s(h) for x ∈ G0, h ∈ H1 with
F 0(x) = r(h); this is exactly the map that is required to be a cover in order for F to be
essentially surjective. The bibundle XF is a bibundle equivalence if and only if the right
anchor map is a cover and the following map is invertible:

ϕ : G1 ×s,G0,r XF → XF ×s,H0,s XF , (g, x) 7→ (g · x, x).

The domain and codomain of ϕ are naturally isomorphic to G1×F 0◦s,H0,r H1 and G0×F 0,H0,r
H1×s,H0,s H1×r,H0,F 0 G0, respectively, and ϕ is given elementwise by ϕ(g, h) = (r(g), F 1(g) ·
h, h, s(g)) for all g ∈ G1, h ∈ H1 with F 0(s(g)) = r(h). If ϕ is invertible, then the first
component of ϕ−1 applied to (x1, h, 1s(h), x2) for x1, x2 ∈ G0, h ∈ H1 with F 0(x1) = r(h),
F 0(x2) = s(h), gives an inverse to the map ψ in (12). Conversely, if ψ is invertible, then
so is ϕ with ϕ−1(x1, h1, h2, x2) = (ψ−1(x1, h1 · h−1

2 , x2), h2).

6.9. Example. Let p : X � G0 be a cover. The hypercover p∗ : G(X)→ G is an equiva-
lence functor.

6.10. From bibundle functors to anafunctors. Let X be a bibundle functor
between two groupoids G and H in (C, T ). We are going to turn it into an anafunctor
G → H. We take r : X � G0 as the cover that is part of an anafunctor. It remains to
define a functor F : G(X)→ H using the G,H-bibundle X.

6.11. Proposition. Let X be a bibundle functor G→ H. There is a natural isomorphism
of groupoids G(X) ∼= G n X o H that acts identically on objects.
Proof. Both groupoids GnXoH and G(X) have object space X. Their arrow spaces are
G1 ×s,G0,r X ×s,H0,r H1 and X ×r,G0,r G1 ×s,G0,r X, respectively. We define

F 1 : G1 ×s,G0,r X ×s,H0,r H1 → X ×r,G0,r G1 ×s,G0,r X

elementwise by F 1(g, x, h) := (g ·x, g, x ·h) for all g ∈ G1, x ∈ X, h ∈ H1 with s(g) = r(x),
s(x) = r(h); this is well-defined because then g · x and x · h are defined and r(g · x) = r(g)
and s(g) = r(x) = r(x · h). Furthermore, r(F 1(g, x, h)) = g · x = r(g, x, h), s(F 1(g, x, h)) =
x · h = s(g, x, h) and

F 1(g1, x1, h1) · F 1(g2, x2, h2) = (g1 · x1, g1 · g2, x2 · h2) = F 1(g1 · g2, g
−1
2 · x1, h1 · h2)
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for all g1, g2 ∈ G1, x1, x2 ∈ X, h1, h2 ∈ H1 with s(gi) = r(xi), s(xi) = r(hi) and x1 · h1 =
g2 · x2. Thus F 1 together with the identity on arrows is a functor. It remains to show
that F 1 is an invertible map in C.

Let x1, x2 ∈ X, g ∈ G1 satisfy r(x1) = r(g), s(g) = r(x2). Then x := g−1 · x1 is well-
defined and r(x) = s(g) = r(x2). Since X with bundle projection r is a principal H-bundle,
there is a unique h ∈ H1 with s(x) = r(h) and x2 = x · h. Thus F 1(g, x, h) = (x1, g, x2).
Furthermore, the element (g, x, h) is unique with this property, so F 1 is invertible by the
Yoneda Lemma.

We compose the isomorphism G(X) ∼→ GnXoH in Proposition 6.11 with the functor

G n X o H→ H

that is s : X → H on objects and the coordinate projection pr3 : (G n X o H)1 → H1

on arrows. This yields a functor FX : G(X) → H, given on G(X)0 = X by s and on
G(X)1 = X ×r,G0,r G1 ×s,G0,r X by

F 1
X(g · x, g, x · h) := h

for all g ∈ G1, x ∈ X, h ∈ H1 with s(g) = r(x), s(x) = r(h); Proposition 6.11 says that
any (x1, g, x2) ∈ X×r,G0,r G1 ×s,G0,r X may be rewritten as x1 = g · x, x2 = x · h for unique
g, x, h as above.

The triple (X, r, FX) is an anafunctor from G to H.

6.12. Corollary. An equivalence bibundle X from G to H induces an isomorphism
G(X) ∼→ H(X), that is, an ana-isomorphism between G and H.
Proof. If X is an equivalence bibundle from G to H, then we may exchange left and
right and get another equivalence bibundle X∗ from H to G. Proposition 6.11 applied to
X and X∗ gives groupoid isomorphisms

r∗(G) = G(X) ∼→ G n X o H ∼→ H(X) = s∗(H).

6.13. Lemma. Let F : G → H be a functor. This gives rise first to a bibundle functor
XF : G → H, secondly to an anafunctor (XF , rF , F̃ ) from G to H, where rF : XF � G0 is
the left anchor map of XF . This anafunctor is equivalent to (G0, idG0 , F ), that is, to F
viewed as an anafunctor.
Proof. We have XF = G0 ×F 0,H0,r H1 with rF = pr1. The functor F̃ : G(XF )→ H is given
elementwise by

F̃ 0(x, h) := s(h), F̃ 1
(
(x1, h1), g, (x2, h2)

)
= h−1

1 · F 1(g) · h2
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for all x, x1, x2 ∈ G0, h, h1, h2 ∈ H1, g ∈ G1 with F 0(x) = r(h), F 0(x1) = r(h1), F 0(x2) =
r(h2), x1 = r(g), x2 = s(g). The map Φ: XF → H1, (x, h) 7→ h, is a natural transformation
F̃ ⇒ F because of the following commuting diagram in H1:

r(h2) F 0(x2) F 0(s(g)) F 0(r(g)) F 0(x1) r(h1)

s(h2) s(h1)

F 1(g)

F̃ 1
(
(x1, h1), g, (x2, h2)

)
= h−1

1 · F 1(g) · h2

h2 h1

7. Composition of bibundles
The composition of bibundle functors and actors requires an extra assumption on the
pretopology. We first formulate this assumption in several closely related ways and then
use it to compose the various types of bibundles.

7.1. Assumptions on Čech groupoid actions. Let T be a subcanonical pretopology
on C.

7.2. Assumption. Any action of a Čech groupoid of a cover in (C, T ) is basic.

7.3. Assumption. Any sheaf over a Čech groupoid of a cover in (C, T ) is basic.
Assumption 7.2 is obviously stronger than Assumption 7.3. We will use Assumptions

2.8 and 7.3 to compose bibundle functors and equivalences. The stronger Assumptions
2.9 and 7.2 are necessary and sufficient to compose bibundle actors.

The following two lemmas reformulate the assumptions above. Recall that C(G) and
CT (G) are the categories of G-actions and G-sheaves for a groupoid G in (C, T ).

7.4. Proposition. The following are equivalent:
(1) Let G be a groupoid, X1 and X2 G-actions and f : X1 → X2 a G-map. If X2 is basic,

then so is X1.

(2) Any action of a basic groupoid is basic.

(3) Any action of a Čech groupoid is basic.

(4) Let p : X→ Z be a cover, let G be its Čech groupoid, and let Y be a G-action. Then
there are Z̃ ∈∈ C and a map f : Z̃ → Z such that Y ∼= Z̃ ×f,Z,p X with G acting on
Z̃×f,Z,p X by (z, x1) · (x1, x2) := (z, x2), as in Proposition 5.8.

(5) Let p : X → Z be a cover and let G be its Čech groupoid. Then the functor C(Z) →
C(G) induced by the equivalence bibundle X between G and the 0-groupoid Z is an
equivalence of categories.
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Proof. (1)⇒(2): Let G be a basic groupoid and let X be a G-action. Let X2 = G0 and
let f = s : X→ X2 be the anchor map. Since f is a G-map and the G-action on G0 is basic
by assumption, (1) gives that the G-action on X is also basic.

(2) implies (3) because Čech groupoids are basic (Example 5.6).
(3) implies (1): the G-action on X1 and the map f combine to an action of X2oG on X1.

The groupoid X2 o G is isomorphic to a Čech groupoid of a cover by Proposition 5.15.
Hence its action on X1 is basic by (3). Corollary 5.17 shows that the action of G on X1 is
basic as well.

(4)⇐⇒ (3): The action of the Čech groupoid of p on X is basic by Example 5.6. Hence
its pull-back along f : Z̃→ Z remains a basic action by Proposition 5.8. Thus the actions
described in (4) are basic, so (4) implies (3). Conversely, let X̃ be a basic G-action for the
Čech groupoid of p : X � Z. Let p̃ : X̃ → Z̃ be the bundle projection. The anchor map
f̂ := s̃ : X̃→ X = G0 of the G-action on X̃ is a G-map. It induces a map f = f̂/G : Z̃→ Z
by Proposition 5.9. Proposition 5.8 shows that X̃ is isomorphic to Z̃ ×f,Z,p X with the
canonical action. Thus (3) implies (4).

A Z-action is the same as a map Z̃→ Z. The Čech groupoid G of p : X→ Z is equivalent
to the 0-groupoid Z by Example 6.3. The functor C(Z)→ C(G) induced by this equivalence
is, by definition, the pull-back construction described in (4). (This is indeed a special case
of the composition of bibundle equivalences with actions defined below.) Propositions 5.8
and 5.9 yield a bijection between maps Z̃1 → Z̃2 and G-maps Z̃1 ×Z X → Z̃2 ×Z X.
This means that the functor C(Z) → C(G) is fully faithful. Condition (4) means that
it is essentially surjective. A fully faithful functor is an equivalence if and only if it is
essentially surjective.

Proposition 7.4.(5) shows that we need Assumption 7.2 if we want equivalent groupoids
to have equivalent action categories.

7.5. Proposition. The following are equivalent:

(1) Let G be a groupoid, X1 and X2 G-actions and f : X1 � X2 a cover that is also a
G-map. If X2 is basic, then so is X1.

(2) Any sheaf over a basic groupoid is basic.

(3) Any sheaf over a Čech groupoid is basic.

(4) Let p : X � Z be a cover, let G be its Čech groupoid. Let Y be a G-sheaf. Then there
are Z̃ ∈∈ C and a map f : Z̃→ Z such that Y ∼= Z̃×f,Z,p X with G acting on Z̃×f,Z,p X
by (z, x1) · (x1, x2) := (z, x2), as in Proposition 5.8.

Assumption 2.8 is equivalent to the statement that the map f in (4) is automatically a
cover.
Proof. The proof is the same as for Proposition 7.4. Assumption 2.8 is necessary and
sufficient for the map f in (4) to be a cover because each fibre-product situation (2) in
which g is a cover gives rise to a situation as in (4).
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Let p : X � Z be a cover and let G be its Čech groupoid. Then the equivalence X
induces a functor CT (Z) → CT (G) between the 0-groupoid Z and G. By Proposition 7.5,
Assumptions 2.8 and 2.9 together are equivalent to the statement that this functor
CT (Z)→ CT (G) is an equivalence of categories.

7.6. Proposition. Let T and T ′ be pretopologies on C with T ⊆ T ′. If T ′ is sub-
canonical, then so is T . If T ′ satisfies Assumption 7.2, then so does T . If T ′ satisfies
Assumption 7.3, then so does T .
Proof. Let p : X � Z be a cover in T and let G be its Čech groupoid. Let Y be a G-action.
Since T ⊆ T ′, p is also a cover in T ′. Proposition 7.4.(4) for the pretopology T ′ shows that
there is a map f : Z̃→ Z such that Y ∼= Z̃×f,Z,pX with G acting by (z, x1)·(x1, x2) := (z, x2).
This action is basic also in (C, T ). The proof of the second statement is similar.

Often a category admits many different pretopologies. Proposition 7.6 shows that we
do not have to check Assumptions 7.2 and 7.3 for all pretopologies, it suffices to look at
a maximal one among the interesting pretopologies.

7.7. Composition of bibundle functors and actors.

7.8. Proposition. Let G and H be groupoids in (C, T ). Under Assumption 7.2, a bibun-
dle actor X from G to H induces a functor

C(H)→ C(G), Y 7→ X ×H Y.

Under Assumption 7.3, a G,H-bibundle X with basic action of H induces a functor

CT (H)→ C(G), Y 7→ X ×H Y.

Both constructions above are natural in X, that is, a G,H-map X1 → X2 induces a
natural G-map X1×H Y → X2×H Y. Assume Assumption 2.8. If the G,H-map f : X1 � X2
and the H-map g : Y1 � Y2 are covers, then so is the induced map f ×H g : X1 ×H Y1 →
X2 ×H Y2.

If Assumptions 7.3 and 2.9 hold, then X×H Y ∈∈ CT (G) if X is a G,H-bibundle functor
and Y ∈∈ CT (H).
Proof. The proofs for bibundle functors and actors are almost the same. The first
difference is that the fibre product

XY := X ×s,H0,s Y

exists in C for different reasons: if X is a bibundle actor, then s : X � H0 is a cover, and
otherwise Y ∈∈ CT (H) means that s : Y � H0 is a cover.

There is an obvious left action of G on XY with anchor map rXY := r ◦prX : XY → X→
G0 and multiplication map

G1 ×s,G0,rXY XY → XY
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given elementwise by g · (x, y) := (g · x, y) for g ∈ G1, x ∈ X, y ∈ Y with s(g) = r(x),
s(x) = s(y). We equip XY with the unique right H-action for which the coordinate
projections prX : XY → X and prY : XY → Y are H-maps (see Lemma 4.18). Elementwise,
we have s(x, y) = s(x) = s(y) and (x, y) ·h = (x ·h, y ·h) for all x ∈ X, y ∈ Y, h ∈ H1 with
s(x) = s(y) = r(h).

The actions of G and H on XY clearly commute, and the map on objects

C(G,H)× C(H)→ C(G,H), X,Y 7→ XY,

is part of a bifunctor; that is, a G,H-map X1 → X2 and an H-map Y1 → Y2 induce a
G,H-map X1Y1 → X2Y2.

The coordinate projection prX : XY → X is an H-map and X is a basic H-action by
assumption. In the first case, Proposition 7.4.(1) shows that XY is a basic H-action.
In the second case, the map prX : XY � X is a cover because s : Y � H0 is one; thus
Proposition 7.5.(1) shows that XY is a basic H-action. Let p : XY � Z be the bundle
projection of this basic action. We also write Z = X ×H Y.

Recall that a G,H-map f : X1 → X2 and an H-map g : Y1 → Y2 induce a G,H-map
f ×H0 g : X1Y1 → X2Y2. By Proposition 5.9, this induces a map f ×H g : X1 ×H Y1 →
X2×H Y2. Thus the construction of X×H Y is bifunctorial. If f and g are covers, then so is
the induced map f ×H0 g; this is a general property of pretopologies. By Proposition 5.9,
the map f ×H g induced by this on the base spaces of principal bundles is a cover as well
if Assumption 2.8 holds.

It remains to push the G-action on XY down to a natural G-action on Z. Let W := X/H.
The anchor map s : X → G0 descends to a map sW : W → G0 because it is H-invariant.
Proposition 5.9 gives a unique map prX/H : Z → W, which we compose with sW to get a
map rZ : Z→ G0. This is the anchor map of the desired action on Z. It is the unique map
with rX ◦ prX = rZ ◦ p : XY → G0.

Pulling back the principal H-bundle XY � Z along pr2 : G1 ×s,G0,rZ Z � Z gives

G1 ×s,G0,rZ Z×Z XY ∼= G1 ×s,G0,r XY

with its usual H-action. This is a principal bundle over G1×s,G0,rZ Z by Proposition 5.8. By
Proposition 5.9, the left G1-action G1×s,G0,r XY → XY induces a map mZ : G1×s,G0,rZ Z→ Z
on the bases of these principal bundles. It is routine to see that rZ and mZ define a
left G-action on Z, using the corresponding facts for XY and passing to orbit spaces by
Proposition 5.9. Thus X×H Y carries a left G-action. This G-action is natural in the sense
that the maps f ×H g defined above are G-equivariant.

If X is a G,H-bibundle functor and Y ∈∈ CT (H), then prX : XY � X is a cover because
s : Y � H0 is one. Since r : X � G0 for bibundle functors, the composite map XY � G0

is a cover as well. The map XY � X ×H Y is a cover as the bundle projection of a
principal bundle. Assumption 2.9 shows that the induced map X ×H Y → G0 is a cover,
so X ×H Y ∈∈ CT (G).
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7.9. Proposition. The quotient X/H for a G,H-bibundle X with basic action of H in-
herits a natural G-action. If X carries an action of a third groupoid K that commutes with
the actions of G and H, then the induced actions of G and K on X/H commute.
Proof. The first assertion is shown during the proof of Proposition 7.8. We are dealing
with the special case Y = H0, where XY ∼= X, so that X×HH0 ∼= X/H. No extra assumption
about actions of Čech groupoids is needed in this particular case. A (left or right) action
of K commuting with those of G and H induces an action on X/H for the same reasons as
for the action of G. The proof that the induced actions of G and K on X/H still commute
is routine and omitted. We only remark that, under Assumption 2.10, we could replace
a pair of commuting actions of G and K by a single action of G× K, which would clearly
still commute with the action of H. This action of G× K descends to X/H and may then
be turned back into two commuting actions of G and K on X/H.

7.10. Proposition. Assume Assumptions 7.3 and 2.8.
Let G, H and K be groupoids in (C, T ). Let X and Y be bibundle functors from G to H

and from H to K, respectively. Then X×H Y is a bibundle functor from G to K in a natural
way with respect to G,H-maps X1 → X2 and H,K-maps Y1 → Y2. If both X and Y are
bibundle equivalences, then so is X ×H Y.

Under Assumption 2.9, if both bibundle functors X and Y are covering, so is X ×H Y.
Assume Assumptions 7.2 and 2.9. Let X and Y be bibundle actors from G to H and

from H to K, respectively. Then X×H Y is a bibundle actor from G to K in a natural way
with respect to G,H-maps X1 → X2 and H,K-maps Y1 → Y2.
Proof. Since right and left actions of H are equivalent, Proposition 7.8 also works for a
left H-action on Y. All cases of composition considered fall into one of the two cases of
Proposition 7.8, which provides X ×H Y ∈∈ C with a natural G-action.

A right K-action on X ×H Y is constructed like the left G-action in the proof of
Proposition 7.8. First, XY carries a right K-action that commutes with the actions
of G and H: the anchor map is s ◦ prY : XY → Y → K0 and the multiplication is
idX ×s,H0 mY : XY ×s◦prY,K0,r K1 → XY. Proposition 7.9 shows that this K-action descends
from XY to an action on X ×H Y that commutes with the induced action of G.

It remains to show that the G,K-bibundle X ×H Y is a bibundle functor, bibundle
equivalence, covering bibundle functor, or bibundle actor if both X and Y are, under
appropriate assumptions on (C, T ). We consider the case of bibundle functors first. We
must show that r : X ×H Y → G0 is a principal K-bundle.

It is clear that the anchor map r : X ×H Y → G0 is K-invariant. We claim that it is a
cover. The map prX : XY � X is a cover because r : Y � H0 is one. Hence so is the induced
map prX/H : X×H Y � X/H ∼= G0 by Proposition 5.9; here we need Assumption 2.8. This
map is the anchor map r : X ×H Y → G0.

We must also show that the map

(m, pr1) : (X ×H Y)×s,K0,r K1 → (X ×H Y)×r,G0,r (X ×H Y) (19)



GROUPOIDS IN CATEGORIES WITH PRETOPOLOGY 1957

is an isomorphism. Since r : Y � H0 is a principal K-bundle, its pull-back along s : X � H0

is a principal K-bundle prX : XY � X. This means that the map

XY ×s,K0,r K1 (m,pr1)−−−−→ XY ×prX,X,prX XY (20)

is an isomorphism.
Pulling XY � X×HY back along r : K1 � K0 gives a principal H-bundle XY×s,K0,rK1 �

(X ×H Y)×s,K0,r K1. Proposition 5.10 shows that XY ×prX,X,prX XY is a principal H-bundle
over (X ×H Y)×r,G0,r (X ×H Y). Hence (19) is the map on the base spaces induced by the
H-equivariant isomorphism (20). Thus (19) is an isomorphism as well by Proposition 5.9.
This finishes the proof that X ×H Y is a bibundle functor if X and Y are. We have used
Assumptions 7.3 and 2.8.

If both X and Y are bibundle equivalences, then the same arguments as above for the
right K-action apply to the left G-action on X ×H Y. They show that s : X ×H Y � K0

is a principal G-bundle. Thus X ×H Y is a bibundle equivalence if X and Y are, under
Assumptions 7.3 and 2.8.

Assume now that s : X � H0 and s : Y � K0 are covers. Then so are prY : XY � Y and
the composite map XY � Y � K0. Since the bundle projection XY � X×H Y is a cover as
well, Assumption 2.9 gives that the anchor map X×H Y → K0 is a cover. Thus a product
of covering bibundle functors is again a covering bibundle functor, under Assumptions
2.9 and 7.3. Furthermore, the right anchor map for a product of two bibundle actors is a
cover. It remains to show that the right action on the product of two bibundle actors is
basic.

Since the K-action on Y is basic, we may form its base W ∼= Y/K and get a principal
K-bundle p : Y � W. Proposition 7.9 shows that the H-action on Y descends to W.

Now we may also form X×H W, and the cover p induces a cover q : X×H Y � X×H W
by Proposition 7.8; here we only need Assumption 2.8. The map

(m, pr1) : XY ×s,K0,r K1 → XY ×XW XY (21)

is an isomorphism because p : Y � W is a principal K-bundle, which we have pulled back
to XW. The spaces in (21) are total spaces of principal H-bundles over (X×H Y)×s,K0,r K1

and (X×H Y)×X×HW (X×H Y), respectively. Proposition 7.8 shows that the induced map
(m, pr1) : (X×HY)×s,K0,rK1 → (X×HY)×X×HW(X×HY) on the bases is also an isomorphism.
Hence the induced K-action on X ×H Y is basic with bundle projection q.

7.11. Remark. The proof above shows that (X ×H Y)/K ∼= X ×H (Y/K) whenever the
actions of H on X and of K on Y are basic and suitable assumptions about (C, T ) ensure
that X ×H Y and X ×H (Y/K) exist and q : X ×H Y → X ×H (Y/K) is a cover.

7.12. Proposition. The compositions defined above under suitable assumptions are as-
sociative in the following sense:

(1) For bibundle functors or bibundle actors X : G→ H, Y : H→ K, and Z : K→ L, there
is a natural bibundle isomorphism (X×H Y)×K Z ∼→ X×H (Y×K Z); these associators
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for four composable bibundle functors or actors make the usual pentagon diagram
commute.

(2) For bibundle actors X : G→ H and Y : H→ K, and a K-action Z, there is a natural
G-equivariant isomorphism (X ×H Y)×K Z ∼→ X ×H (Y ×K Z).

Proof. Literally the same argument proves both statements. The usual fibre product
XYZ := X ×s,H0,r Y ×s,K0,r Z is associative up to very canonical isomorphisms, which we
drop from our notation to simplify. This space carries commuting actions of H and K by
(x, y, z) · h = (x · h, h−1 · y, z) and (x, y, z) · k = (x, y · k, k−1 · z) for x ∈ X, y ∈ Y, z ∈ Z,
h ∈ H1, k ∈ K1 with s(x) = r(y) = r(h), s(y) = r(z) = r(k). We get X ×H (Y ×K Z) from
XYZ by first taking the base space X×H0 (Y×K Z) for the basic K-action on XYZ and then
taking the base space of the resulting basic H-action on X ×H0 (Y ×K Z). Remark 7.11
implies that X×H (Y×K Z) is naturally isomorphic to (X×H (Y×K0 Z))/K. The latter is,
in turn, naturally isomorphic to ((X×H Y)×K0 Z)/K, which is (X×H Y)×K Z by definition.
This provides the desired associator.

The associator is characterised uniquely by the statement that it is lifted by the
associator (X×s,H0,r Y)×s,K0,r Z→ X×s,H0,r (Y×s,K0,r Z). Since the latter associators clearly
make the associator pentagon commute, the same holds for the induced maps on the
quotients.

7.13. Remark. Assume Assumption 2.10 about a final object ?. Then a left G-action X is
the same as a bibundle actor from G to ?. The functor C(H)→ C(G) defined by a bibundle
actor X from G to H in Proposition 7.8 is equivalent to the composition of bibundle actors
G → H → ? under this identification. Thus the second statement in Proposition 7.12
becomes a special case of the first one under Assumption 2.10.

7.14. Proposition. The bibundle equivalence G1 from G to itself is a unit both for the
composition of bibundle functors and bibundle actors, up to natural isomorphisms X ×G
G1 ∼= X and G1 ×G Y ∼= Y for a bibundle functor or actor X to G and a bibundle functor
or actor Y out of G. The functor C(G) → C(G) induced by the bibundle equivalence G1

is naturally isomorphic to the identity functor. It is routine to check that this natural
construction is also equivariant with respect to the appropriate left or right actions.
Proof. The bibundle equivalence G1 is constructed in Example 6.2. Pulling the principal
left G-bundle s : G1 � G0 back along the anchor map s : X � G0 gives a principal left
G-bundle X ×s,G0,s G1 � X; here the action of G is by g1 · (x, g2) := (x, g1 · g2). The
map X ×s,G0,s G1 → X ×s,G0,r G1, (x, g) 7→ (x · g−1, g), is an isomorphism with inverse
(x, g) 7→ (x·g, g). It intertwines the G-action on X×s,G0,sG1 with the G-action on X×s,G0,rG1

by g1 · (x, g2) := (x ·g−1
1 , g1 ·g2). These isomorphic G-actions have isomorphic orbit spaces,

and the orbit space for the latter is X×GG1. Hence the multiplication map X×s,G0,rG1 → X,
(x, g) 7→ x · g, induces an isomorphism X ×G G1 ∼→ X. Similarly, the multiplication map
G1 ×s,G0,r Y → Y, (g, y) 7→ g · y, induces an isomorphism G1 ×G Y ∼→ Y.
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Putting together the results above gives the following theorem:

7.15. Theorem. Assume Assumptions 2.8 and 7.2. Then there is a bicategory with
groupoids in (C, T ) as objects, bibundle functors from G to H as arrows, maps of G,H-
bibundles as 2-arrows between arrows G→ H, ×G in reverse order as composition, G1 as
unit arrow on G, the associator and unitors from Propositions 7.12 and 7.14, and composi-
tion of maps as vertical product of 2-arrows; the horizontal product of 2-arrows f : X1 ⇒ X2
for X1,X2 : G ⇒ H and g : Y1 ⇒ Y2 for Y1,Y2 : H ⇒ K is f ×H g : X1 ×H Y1 → X2 ×H Y2.
All 2-arrows in this bicategory are invertible.

Assume Assumptions 2.9 and 7.2. Then almost all of the above holds for bibundle ac-
tors, except that 2-arrows need no longer be invertible. Furthermore, the covering bibundle
functors form a sub-bicategory of both.
Proof. It is a direct consequence of the propositions above that bibundle functors, bi-
bundle equivalences, bibundle actors, and covering bibundle functors are the arrows in
bicategories, with the 2-arrows and compositions as asserted.

We show that 2-arrows between bibundle functors are equivalences. Let X1 and X2 be
bibundle functors from G to H and let f : X1 ⇒ X2 be a G,H-map. Then the induced map
f/H : X1/H→ X2/H is the identity map on G0 by G-equivariance and because Xi/H ∼= G0

by assumption. Since f/H is an isomorphism, so is f by Proposition 5.9. This argument
fails for bibundle actors because their definition does not determine Xi/G.

7.16. Remark. Assume Assumption 2.10. Then Assumptions 7.2 and 2.9 are necessary
to compose bibundle actors.

By Remark 7.13, we may identify C(G) for a groupoid G with the category of bibundle
actors G → ? and 2-arrows between them. Let p : X � Z be a cover and let G be its
Čech groupoid. The functor C(Z) → C(G), Y 7→ Y ×Z X, in Proposition 7.4.5 composes
with the bibundle equivalence X from Z to G. Exchanging left and right in X gives
a bibundle equivalence X∗ from G to Z, such that X∗ ×Z X ∼= G1 and X ×G X∗ ∼= Z.
That is, X∗ is inverse to X. If we can compose bibundle actors, we can compose them
with bibundle equivalences as well, and the latter composition must be an equivalence.
Hence the existence of a composition of bibundle actors implies Proposition 7.4.5 and
thus Assumption 7.2.

Now consider also a map f : Z → Y such that f ◦ p : X � Y is a cover. Then X with
its usual left action of G and right action of Y by f ◦ p is a covering bibundle functor
from G to Y, and hence a bibundle actor. Composing it with the equivalence X∗ gives the
bibundle functor Z→ G→ Y from the map f . This is a bibundle actor if and only if it is
a covering bibundle functor if and only if f is a cover. Thus Assumption 2.9 is necessary
for composites of bibundle actors to exist, and also for composites of covering bibundle
functors to remain covering bibundle functors.

7.17. Bibundle functors versus anafunctors.
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7.18. Theorem. The construction of anafunctors from bibundle functors in Section 6.10
is part of an equivalence from the bicategory of bibundle functors to the bicategory of
anafunctors; this equivalence is the identity on objects.

This theorem requires Assumptions 2.8 and 7.3 in order for the bicategory of bibundle
functors to be defined. Related results for Lie groupoids and topological groupoids (with
suitable covers) are proved by Pronk [42] and Carchedi [11], see also [33]. Pronk develops
a general calculus of fractions in bicategories for such purposes.
Proof. Let G and H be groupoids in (C, T ). We show first that the groupoid of anafunc-
tors from G to H with natural transformations of anafunctors as arrows is equivalent to
the groupoid of bibundle functors from G to H with G,H-maps between them as arrows.
Secondly, we check that this equivalence is compatible with the composition of arrows in
the appropriate weak sense.

The anafunctor associated to a bibundle functor X from G to H is (X, r, FX), where
F 0

X := s : X → H0 on objects and F 1
X : X ×r,G0,r G1 ×s,G0,r X → H1 is determined by the

elementwise formula F 1
X(g · x, g, x · h) = h for all x ∈ X, g ∈ G1, h ∈ H1 with s(g) = r(x),

s(x) = r(h) (see the proof of Proposition 6.11).
Conversely, let (X, p, F ) be an anafunctor from G to H. We have built bibundle functors

from functors in Section 6.6. In particular, p∗ : G(X) → G gives a bibundle functor
X ×p,G0,r G1 from G(X) to G, and F : G(X) → H gives a bibundle functor X ×F 0,H0,r
H1 from G(X) to H. The bibundle functor X ×p,G0,r G1 from G(X) to G is a bibundle
equivalence (Example 6.9); exchanging the left and right actions on X ×p,G0,r G1 gives a
quasi-inverse bibundle functor (X ×p,G0,r G1)∗ from G to G(X). We map the anafunctor
(X, p, F ) to the bibundle functor

β(X, p, F ) := (X ×p,G0,r G1)∗ ×G(X) (X ×F 0,H0,r H1).

This is the orbit space of the right action of G(X) on the fibre product

(X ×p,G0,r G1)∗ ×X (X ×F 0,H0,r H1) ∼= G1 ×s,G0,p X ×F 0,H0,r H1

with anchor map s(g, x, h) := x and

(g1, x1, h) · (x1, g2, x2) := (g1 · g2, x2, F
1(x1, g2, x2)−1 · h)

for all g1, g2 ∈ G1, x1, x2 ∈ X, h ∈ H1 with s(g1) = p(x1) = r(g2), F 0(x1) = r(h),
p(x2) = s(g2); the isomorphism above involves the inversion in G1, which exchanges the
source and range maps. The G,H-action on β(X, p, F ) is induced by the obvious G,H-
action

g1 · (g2, x, h1) · h2 := (g1 · g2, x, h1 · h2)

on G1 ×s,G0,p X ×F 0,H0,r H1.
We claim that these two maps between bibundle functors and anafunctors are inverse

to each other up to natural 2-arrows. First we start with a bibundle functor X, turn it
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into an anafunctor (X, r, FX) and then turn that into a bibundle functor (G1×s,G0,r X×s,H0,r
H1)/G(X). We claim that the map

G1 ×s,G0,r X ×s,H0,r H1 → X, (g, x, h) 7→ g · x · h,

descends to an isomorphism β(X, r, FX) ∼→ X; it is clear that this isomorphism is a G,H-
map. We must show that (g1, x1, h1), (g2, x2, h2) ∈ G1×s,G0,r X×s,H0,r H1 satisfy g1 ·x1 ·h1 =
g2 · x2 · h2 if and only if there is (x3, g3, x4) ∈ G(X)1 with s(g1, x1, h1) = r(x3, g3, x4)
and (g1, x1, h1) · (x3, g3, x4) = (g2, x2, h2). First, s(gi, xi, hi) = xi, r(x3, g3, x4) = x3 and
s((g1, x1, h1) · (x3, g3, x4)) = s(x3, g3, x4) = x4, so we must have x1 = x3 and x2 = x4.
Moreover, the G1-entry in (g1, x1, h1) · (x3, g3, x4) is g1 · g3, so we must have g3 = g−1

1 · g2.
Since s(g−1

1 ) = r(g1) = r(g1 · x1 · h1) and r(g2) = r(g2 · x2 · h2), this product is well-defined
if g1 · x1 · h1 = g2 · x2 · h2. Furthermore, r(g−1

1 · g2) = s(g1) = r(x1) and s(g−1
1 · g2) =

s(g2) = r(x2), so that (x1, g
−1
1 · g2, x2) ∈ G(X)1. Unravelling the definition of FX, we see

that (g1, x1, h1) · (x1, g
−1
1 · g2, x2) = (g2, x2, h2) if and only if g1 · x1 · h1 = g2 · x2 · h2. This

proves the natural isomorphism of bibundle functors β(X, r, FX) ∼= X.
Next we start with an anafunctor (X, p, F ), take the associated bibundle functor

Y := (G1 ×s,G0,p X ×F 0,H0,r H1)/G(X),

and construct an anafunctor from that. This anafunctor contains the cover q : Y �
G0 induced by the map G1 ×s,G0,p X ×F 0,H0,r H1 → G0, (g, x, h) 7→ r(g), and a functor
E : G(Y) → H. This functor is described elementwise by E0([g, x, h]) = s(h) for g ∈ G1,
h ∈ H1, x ∈ X with s(g) = p(x), F 0(x) = r(h) and

E1([g1, x1, h1], g, [g2, x2, h2]) := h−1
1 · F 1(x1, g

−1
1 · g · g2, x2) · h2

for g, g1, g2 ∈ G1, h1, h2 ∈ H1, x1, x2 ∈ X with s(gi) = p(xi), F 0(xi) = r(hi) for i = 1, 2
and r(g) = r(g1), s(g) = r(g2); here [g, x, h] stands for the image of (g, x, h) ∈ G1 ×s,G0,p

X ×F 0,H0,r H1 under the quotient map to Y. The constructions above show that there is
a unique functor E with these properties.

We describe a canonical natural transformation Ψ from (Y, q, E) to (X, p, F ); this is
a map from X ×p,G0,q Y to H1 with suitable properties. Elementwise, Ψ is determined
uniquely by

Ψ(x̃, [g, x, h]) = F 1(x̃, g, x) · h : s(h) h−→ r(h) = F 0(x) F 1(x̃,g,x)−−−−−→ F 0(x̃)

for x̃, x ∈ X, g ∈ G1, h ∈ H1 with s(g) = p(x), F 0(x) = r(h), p(x̃) = r(g). We must check
that this is well-defined and that it gives a natural transformation.

For well-definedness, we use that X ×p,G0,q Y is the orbit space of the G(X)-action on
X×p,G0,r G1×s,G0,pX×F 0,H0,r H1 on the last three legs; this follows as in the construction of
the left G-action on X×G Y in the proof of Proposition 7.8. It is clear that Ψ is well-defined
as a map X ×p,G0,r G1 ×s,G0,p X ×F 0,H0,r H1 → H1. This map is G(X)-invariant because

F 1(x̃, g1 · g2, x2) · F 1(x1, g2, x2)−1 · h = F 1(x̃, g1, x1) · h
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for x̃, x1, x2 ∈ X, g1, g2 ∈ G1, h ∈ H1 with p(x̃) = r(g1), s(g1) = p(x1) = r(g2), F 0(x1) =
r(h), s(g2) = p(x2), so that (x1, g2, x2) ∈ G(X) and (x̃, g1, x1, h) ∈ X ×p,G0,r G1 ×s,G0,p

X ×F 0,H0,r H1.
Naturality of Ψ follows because for (x̃i, gi, xi, hi) ∈ X×p,G0,r G1×s,G0,pX×F 0,H0,r H1 for

i = 1, 2, g ∈ G1, with r(g) = p(x̃1), s(g) = p(x̃2), the following diagram in H commutes:

s(h1) r(h1) F 0(x1) F 0(x̃1)

s(h2) r(h2) F 0(x2) F 0(x̃2)

h1

h2

F 1(x̃1, g1, x1)

F 1(x̃2, g2, x2)

h−1
1 F 1(x1, g

−1
1 gg2, x2)h2 F 1(x1, g

−1
1 gg2, x2) F 1(x̃1, g, x̃2)

the two rows give Ψ and the left and right vertical maps give E1 and F 1 for an arrow in
G(X ×G0 Y).

We have now constructed an equivalence between the groupoids of bibundle functors
and anafunctors from G to H. To check that we have an equivalence of bicategories,
it remains to show that the map from anafunctors to bibundle functors is compatible
with composition of anafunctors up to natural G,H-maps. The identity (ana)functor on
a groupoid G is clearly mapped to the unit bibundle functor on G.

The first step is to show that the composition of bibundle functors gives the usual
composition for ordinary functors. Let F2 : G→ H and F1 : H→ K be functors. Let β(F2)
and β(F1) be the associated bibundle functors. We claim that β(F1 ◦ F2) is naturally
isomorphic to β(F2)×Hβ(F1) as a G,K-action. The underlying objects are G0×F 0

1 ◦F
0
2 ,K0,rK1

for β(F1 ◦ F2) and
(G0 ×F 0

2 ,H0,r H1)×H (H0 ×F 0
1 ,K0,r K1)

for β(F2)×H β(F1); the latter is the orbit space of a canonical H-action on

(G0 ×F 0
2 ,H0,r H1)×H0 (H0 ×F 0

1 ,K0,r K1) ∼= G0 ×F 0
2 ,H0,r H1 ×F 0

1 ◦s,K0,r K1.

The isomorphism is induced by the map

α : G0 ×F 0
2 ,H0,r H1 ×F 0

1 ◦s,K0,r K1 → G0 ×F 0
1 ◦F

0
2 ,K0,r K1, (x, h, k) 7→ (x, F 1

1 (h) · k),

for x ∈ G0, h ∈ H1, k ∈ K1 with F 0
2 (x) = r(h), F 0

1 (s(h)) = s(F 1
1 (h)) = r(k). Since

r : H1 � H0 is a cover, so is the coordinate projection G0 ×F 0
2 ,H0,r H1 � G0. The pull-back

of this cover along the coordinate projection G0 ×F 0
1 ◦F

0
2 ,K0,r K1 → G0 is a cover as well,

and this pull-back is exactly α. Thus α is a cover. We must also show that α induces an
isomorphism

(G0 ×F 0
2 ,H0,r H1)×H (H0 ×F 0

1 ,K0,r K1)→ G0 ×F 0
1 ◦F

0
2 ,K0,r K1.

We show that α is the bundle projection of a principal H-bundle. This means that if
(xi, hi, ki) ∈ G0 ×F 0

2 ,H0,r H1 ×F 0
1 ◦s,K0,r K1 for i = 1, 2, then there is h ∈ H1 with

(x2, h2, k2) = (x1, h1, k1) · h := (x1, h1 · h, F 1
1 (h)−1 · k1)
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if and only if α(x1, h1, k1) = α(x2, h2, k2). Indeed, the only possible choice is h = h−1
1 · h2,

and this does the trick if and only if x1 = x2 and F 1
1 (h1) · k1 = F 1

1 (h2) · k2. This provides
an isomorphism

β(F2)×H β(F1) ∼= β(F1 ◦ F2) (22)

for two functors F1 and F2.
It is straightforward to see that the isomorphisms (22) turn β into a homomorphism

from the bicategory of functors to the bicategory of bibundle functors (see [28] for the def-
inition of homomorphisms between bicategories). Theorem 3.29 implies that β extends
to a homomorphism from the bicategory of anafunctors to the bicategory of bibundle
functors. This homomorphism acts on arrows and 2-arrows by the equivalences described
above, so these are part of a homomorphism. Thus we have got an equivalence of bicate-
gories.

7.19. Decomposing bibundle actors. Let G and H be groupoids and let X be a
bibundle actor from G to H. We will decompose X into an ordinary actor from G to an
auxiliary groupoid K and a bibundle equivalence from K to H:

7.20. Proposition. Assume Assumptions 2.8 and 7.3. Any bibundle actor is a composite
of an actor and a bibundle equivalence.

The groupoid K is defined using only the right H-action on X, in such a way that X
is a bibundle equivalence from K to G. The construction goes back to Ehresmann; for
locally compact groupoids, this construction is contained in [36, p. 5].
Proof. The fibre product X ×s,H0,s X exists and the coordinate projections

pr1, pr2 : X ×s,H0,s X ⇒ X

are covers because s : X � H0 is a cover by assumption. We let K0 := X/H and K1 :=
(X×s,H0,s X)/H, where H acts diagonally on X×s,H0,s X, that is, (x1, x2) ·h := (x1 ·h, x2 ·h)
if x1, x2 ∈ X, h ∈ H1 with s(x1) = s(x2) = r(h). Assumption 7.3 ensures that this action
is basic because pr1 and pr2 are H-maps and the H-action on X is basic. The range and
source maps r, s : K1 ⇒ K0 are induced by the coordinate projections pr1 and pr2 above
and are covers by Proposition 5.9; here we need Assumption 2.8. Using Proposition 5.10,
we may identify

K1 ×s,K0,r K1 ∼= ((X ×s,H0,s X)×X (X ×s,H0,s X))/H
∼= (X ×s,H0,s X ×s,H0,s X)/H.

The multiplication map of K1 is the map on the base induced by the H-map

(pr1, pr3) : X ×s,H0,s X ×s,H0,s X→ X ×s,H0,s X.

Proposition 5.10 also implies the isomorphisms (5) and (6) for K, so that K is a groupoid
in (C, T ).
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We are going to construct a canonical actor from G to K. Let the groupoid G act
on X ×s,H0,s X by g · (x1, x2) := (g · x1, x2) for all g ∈ G1, x1, x2 ∈ X with s(g) = r(x1)
and s(x1) = s(x2); this is well-defined because s(g · x1) = s(x1). This G-action commutes
with the diagonal H-action and hence descends to a G-action on the H-orbit space K1 by
Proposition 7.9. The resulting G-action on K1 commutes with the right multiplication
action because g · [x1, x3] = [g · x1, x3] = (g · [x1, x2]) · [x2, x3] for all g ∈ G1, x1, x2, x3 ∈ X
with s(g) = r(x1), s(x1) = s(x2) = s(x3).

We are going to construct a left K-action on X such that X becomes a bibundle equiv-
alence from K to H. Its anchor map is the bundle projection p : X � X/H. The ac-
tion (X ×s,H0,s X)/H ×p,X/H,p X → X is induced by the map X ×s,H0,s X ×p,X/H,p X → X
that is given elementwise by (x1, x2) · (x2 · h) := x1 · h for all x1, x2 ∈ X, h ∈ H1

with s(x1) = s(x2) = r(h); this defines a map on X ×s,H0,s X ×p,X/H,p X because there
is h ∈ H1 with x3 = x2 · h whenever x2, x3 ∈ X satisfy p(x2) = p(x3). We have
(X×s,H0,s X)/H×p,X/H,p X ∼= (X×s,H0,s X×p,X/H,p X)/H, where H acts on X×s,H0,s X×p,X/H,p X
by (x1, x2, x3) ·h := (x1 ·h, x2 ·h, x3). The multiplication map defined above is H-invariant
for this action, hence it descends to a map K1 ×s,X/H,p X→ X.

Let H act on K1 ×s,K0,p X by (k, x) · h := (k, x · h). This action is basic with

(K1 ×s,K0,p X)/H ∼= K1 ×s,K0,p (X/H) ∼= K1,

by Remark 7.11. Thus the H-map

K1 ×s,K0,p X→ X ×s,H0,s X, (k, x) 7→ (k · x, x), (23)

induces an isomorphism (K1 ×s,K0,p X)/H ∼= (X ×s,H0,s X)/H on the bases of principal
H-bundles. Hence the map in (23) is an isomorphism as well by Proposition 5.9. Thus
s : X � H0 and the K-action on X form a principal K-bundle. Thus we have turned X into
a bibundle equivalence from K to H.

The actor from G to K is also a bibundle actor. Its composite with the bibundle
equivalence X from K to H is X as a right H-action because K1×K X ∼= X for any bibundle
actor X from K to H. The induced action of G on the composite is the given one because
g · [x, x] · x = [g · x, x] · x = g · x for all g ∈ G1, x ∈ X, where we interpret [x, x] ∈ K1.
This shows that the actor and the bibundle equivalence constructed above compose to
the given bibundle actor X.

We conclude that the category of bibundle actors is the smallest one that contains
both bibundle equivalences and actors and where the composition is given by ×H.

Now let X be a covering bibundle functor. Equivalently, X is a bibundle actor and the
range map induces an isomorphism X/H ∼→ G0. In the above construction, this means
that K0 = G0, so that the actor from G to K acts identically on objects. Such actors are
exactly the ones that are also functors, by Proposition 4.21.

7.21. The symmetric imprimitivity theorem.
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7.22. Theorem. Let G and H be groupoids and X a G,H-bibundle with basic actions of
G and H. This induces a left action of G on X/H and a right action of H on G\X, and X
becomes a bibundle equivalence from G n (X/H) to (G\X) o H.
Proof. The induced G-action on X/H exists by Proposition 7.9. The bundle projection
s′ : X � X/H is a G-map. Hence the G-action on X and s′ combine to a left action of
G n (X/H) on X with anchor map s′ by Proposition 4.12. This left action is basic with
the same orbit space G\X by Corollary 5.17 and Lemma 5.18 because the G-action on X
is basic. Exchanging left and right, the same arguments give an H-action on G\X and a
basic right action of (G\X)oH on X with anchor map r′ : X � G\X and orbit space X/H.
The actions of G n (X/H) and (G\X) o H on X commute because the actions of G and H
commute, s′ is H-invariant, and r′ is G-invariant. Hence they form a bibundle equivalence.

This theorem generalises the symmetric imprimitivity theorem for actions of locally
compact groups by Green and Rieffel [43] and provides many important examples of
bibundle equivalences between transformation groupoids.

7.23. Example. Assume Assumption 2.10 and let G be a group in C. Let H ↪→ G
and K ↪→ G be “closed subgroups” of G; we mean by this that the restrictions of the
multiplication actions on G to H and K are basic. Since the left and right multiplication
actions commute, G is an H,K-bibundle. We get an induced bibundle equivalence H n
(G/K) ∼ (H\G) o K.

7.24. Characterising composites of bibundle functors.

7.25. Proposition. Let G, H, K be groupoids in C. Let X : G → H, Y : H → K, and
W : G → K be bibundle functors. Then isomorphisms X ×H Y ∼→ W are in canonical
bijection with G,K-maps m : X ×s,H0,r Y → W with m(x · h, y) = m(x, h · y) for all x ∈ X,
h ∈ H1, y ∈ Y with s(x) = r(h), s(h) = r(y). If m is such a map, then m is a cover and
the following map is an isomorphism:

(pr1,m) : X ×s,H0,r Y → X ×r,G0,r W, (x, y) 7→ (x,m(x, y)). (24)

Proof. Any G,K-map X ×H Y → W is an isomorphism by Theorem 7.15. Since X ×H Y
is the orbit space of an H-action on X ×s,H0,r Y, a G,K-map X ×H Y → W is equivalent
to an H-invariant G,K-map X ×s,H0,r Y → W. It remains to show that (24) is always an
isomorphism.

Since X is a principal H-bundle over G0, its pull-back X ×r,G0,r W along r : W � G0 is
a principal H-bundle over W with bundle projection pr2 by Proposition 5.8; here H acts
on X ×r,G0,r W by s(x,w) = s(x) and (x,w) · h := (x · h,w) for all x ∈ X, w ∈ W, h ∈ H1

with r(x) = r(w), s(x) = r(h). By definition of the composition, X ×s,H0,r Y � X ×H Y is
a principal H-bundle as well. We compute that (pr1,m) is an H-map:

(pr1,m)((x, y) · h) = (pr1,m)(x · h, h−1 · y)
= (x · h,m(x · h, h−1 · y)) = (x · h,m(x, y)) = (x,m(x, y)) · h
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for all x ∈ X, y ∈ Y, h ∈ H1 with s(x) = r(y) = r(h). Proposition 5.9 shows that (24) is
an isomorphism if and only if the induced map X ×H Y → W is an isomorphism.

Since r : X � G0 is a cover, so is the induced map pr2 : X ×r,G0,r W � W. Composing
this with the isomorphism (24) shows that m is a cover.

We have seen some special cases of the isomorphism (24) before. First, the condition
(6) in the definition of a groupoid is equivalent to G1×G G1 ∼= G1. Secondly, the condition
(17) for a principal bundle is equivalent to X ×G G1 ∼= X for a principal G-bundle X � Z
viewed as a bibundle functor from Z to G. We will use this similarity to simplify the
description of the quasi-category of groupoids and bibundle functors in Section 8.

Condition (3′′′) in Definition 4.1 is also similar and corresponds to a variant of Propo-
sition 7.25 where we characterise the composite of a covering bibundle functor with a
groupoid action. This variant is also true, and the isomorphism in (3′′′) in Definition 4.1
is equivalent to G1 ×G X ∼= X for any left G-action X.

7.26. Remark. The proof of Proposition 7.25 does not use Assumption 7.2. For any
subcanonical pretopology (C, T ), if G, H, K are groupoids, X : G → H, Y : H → K and
W : G → K bibundle functors, and m : X ×s,H0,r Y → W an H-invariant G,K-map and a
cover such that (24) is an isomorphism, then m is the bundle projection of a principal
H-bundle, so that X ×H Y exists and is isomorphic to W.

7.27. Locality of basic actions. We now reformulate Assumption 7.2 in a way
similar to the locality of principal bundles in Proposition 5.12.

Let G be a groupoid, X a right G-action, f : Z̃ � Z a cover, Z, Z̃ ∈∈ C, and let
ϕ : X → Z be some G-invariant map. Then we may pull back X along f to a G-action X̃:
let X̃ := Z̃ ×f,Z,ϕ X (this exists because f is a cover) and define the G-action on X̃ by
s(z, x) := s(x) and (z, x) · g := (z, x · g) for all z ∈ Z̃, x ∈ X, g ∈ G1 with f(z) = ϕ(x),
s(x) = r(g).

7.28. Proposition. In the above situation, if X is a basic G-action, then so is X̃. Under
Assumption 2.9, Assumption 7.2 is equivalent to the following converse statement: in the
above situation, X is basic if X̃ is.
Proof. If X is a basic G-action, let Z0 be its base and p : X � Z0 its bundle projection.
There is a unique map ϕ0 : Z0 → Z with ϕ0 ◦ p = ϕ because ϕ is G-invariant and p is
the orbit space projection by Lemma 5.3. Let Z̃0 := Z̃ ×f,Z,ϕ0 Z0. Then X̃ is naturally
isomorphic to the pull-back Z̃0×pr2,Z0,p X. The induced G-action on this together with the
projection to Z̃0 is a principal bundle by Proposition 5.8. Thus X̃ is basic if X is.

Conversely, assume that X̃ is a basic G-action. First, we also assume that Assumptions
2.9 and 7.2 hold. Since f is a cover, so is pr2 : X̃ � X. The map pr2 is a G-map as well, so
the G-action and pr2 give a right X o G-action on X̃ by Proposition 4.12. This action is
basic by Corollary 5.17 and because the G-action on X̃ is assumed basic. The advantage
of the right X o G-action over the right G-action is that its anchor map pr2 is a cover.

Let H be the Čech groupoid of f . It acts on X̃ on the left with anchor map pr1 and
action (z1, z2) · (z2, x) := (z1, x) for all z1, z2 ∈ Z̃, x ∈ X with f(z1) = f(z2) = ϕ(x). This
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action commutes with the right X o G-action. Thus X̃ is a bibundle actor from H to G.
Proposition 7.10 allows us to compose bibundle actors. In particular, we may compose X̃
with the bibundle equivalence Z̃ from Z to H (see Example 6.3). The composite is H\X̃ ∼= X
because the pull-back of the principal H-bundle Z̃ � Z along ϕ gives a principal H-bundle
X̃ � X.

Since the isomorphism is the coordinate projection, the induced XoG-action on X̃ � X
is the one we started with. Since this composite of bibundle actors is again a bibundle
actor from Z to X o G, we conclude that X is a basic right X o G-action. Hence it is a
basic right G-action by Corollary 5.17. Thus being basic is a local property of groupoid
actions.

Now assume that basic actions are local. Let f : Z̃ � Z be a cover and let G be
its Čech groupoid. Let X be a G-action. We want to show that X is basic as well, by
proving that it is locally basic. Composing the anchor map s : X → Z̃ with f gives a
G-invariant map ϕ := f ◦ s : X → Z. The pull-back of the G-action X along f gives
X̃ := X×ϕ,Z,f Z̃ with G-action by (x, z) · (z1, z2) = (x · (z1, z2), z) for all x ∈ X, z, z1, z2 ∈ Z̃
with ϕ(x) = f(z) = f(z1) = f(z2), z1 = s(x).

The multiplication m : X×s,G0,r G1 � X is a cover by (3′′) in Definition 4.1. Identifying

X ×s,G0,r G1 := X ×s,Z̃,pr1
(Z̃×f,Z,f Z̃) ∼= X ×f◦s,Z,f Z̃,

this cover becomes q : X̃ � X, (x, z) 7→ x·(s(x), z). We claim that q is the bundle projection
of a principal G-bundle. If (x1, z1), (x2, z2) ∈ X̃ with x1 · (s(x1), z1) = x2 · (s(x2), z2), then
f(s(x1)) = f(z1), f(s(x2)) = f(z2), and z1 = s(x1 · (s(x1), z1)) = s(x2 · (s(x2), z2)) = z2.
Thus

(x1, z1) · (s(x1), s(x2)) = (x1, z1) · (s(x1), z1) · (z2, s(x2))
= (x2, z2) · (s(x2), z2) · (z2, s(x2)) = (x2, z2).

Furthermore, if (x1, z1) ·(z3, z4) = (x2, z2), then z3 = s(x1) and z4 = s(x2), so (s(x1), s(x2))
is the unique element of G1 with this property. Thus the map (17) is an isomorphism
and X̃ � X is a principal G-bundle. Since X̃ is the pull-back of the G-action X along the
cover f , any G-action is locally basic. Therefore, if all locally basic actions are basic, then
Assumption 7.2 follows.

7.29. Equivalences in bibundle functors and actors.

7.30. Proposition. Let G and H be groupoids and let X : G → H be a bibundle equiva-
lence in (C, T ). Then there are canonical isomorphisms of bibundle equivalences X×HX∗ ∼=
G1 and/ X∗ ×G X ∼= H1.
Proof. Since r : X � H0 is a left principal G-bundle, the map G1 ×s,G0,r X → X ×s,H0,s X,
(g, x) 7→ (x, g ·x), is an isomorphism. The inverse is of the form (x1, x2) 7→ (x1,m(x1, x2))
for a map m : X ×s,H0,s X → G1. Identifying X ×s,H0,s X ∼= X ×s,H0,r X∗, the criterion of
Proposition 7.25 applied to m shows that X ×H X∗ ∼= G1. Explicitly, the isomorphism is
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induced by m, so it maps the class of (x1, x2) ∈ X ×s,H0,r X∗ to the unique g ∈ G1 with
g · x2 = x1.

The same reasoning for X∗ instead of X gives X∗ ×G X ∼= H1.

7.31. Theorem. The equivalences in the bicategory of bibundle functors and bibundle
actors are exactly the bibundle equivalences. Furthermore, if Y : H → G is quasi-inverse
to X : G→ H, then Y ∼= X∗ is obtained from X by exchanging left and right actions.

We require Assumptions 2.8 and 7.3 for the bibundle functor case and Assumptions
2.9 and 7.2 for the bibundle actor case because otherwise the bicategories in question need
not be defined (Theorem 7.15).
Proof. The bicategories of bibundle functors and anafunctors are equivalent by Theo-
rem 7.18. By Theorem 3.35, the equivalences in the bicategory of anafunctors are exactly
those anafunctors that lift to ana-isomorphisms. Since the equivalence to bibundle func-
tors maps ana-isomorphisms to bibundle equivalences, the equivalences in the bicategory
of bibundle functors are exactly the bibundle equivalences.

Without Assumption 2.8 something goes wrong at this point because a fully faith-
ful functor that is only almost essentially surjective but not essentially surjective is an
equivalence in the bicategory of anafunctors, but the associated bibundle functor is not a
bibundle equivalence by Proposition 6.8.

It is clear that bibundle equivalences are equivalences in the bicategory of bibundle
actors. Conversely, let X be an equivalence in this bicategory. Proposition 7.20 decom-
poses X as a composite of a bibundle equivalence and an actor. Thus it suffices to show
that an actor that is an equivalence in the bicategory of bibundle actors is already an
isomorphism of categories.

Let m : G1 ×s,G0,rG H1 → H1 be an actor that is an equivalence in the bicategory of
bibundle actors. We write mH1 for the bibundle actor described by m. Let Y be its quasi-
inverse. Thus mH1 ×H Y ∼= G1 as G,G-bibundles. Since there is a natural isomorphism of
right G-actions H1×H Y ∼= Y, we get Y ∼= G1 as a right G-action. Thus Y is an actor. When
we view actors as bibundle actors, the 2-arrows are exactly the G,H-maps H1 → H1. These
are the same 2-arrows that we already used in the bicategory of actors. Any equivalence
in this bicategory is an isomorphism of categories by Proposition 4.26. Since the 2-arrows
are the same in both bicategories, we conclude that our original actor is an isomorphism
of categories.

8. The quasi-category of bibundle functors
Let C be a category with a pretopology T that satisfies Assumptions 2.8 and 7.3. Theo-
rem 7.15 shows that groupoids in (C, T ) with bibundle functors as arrows and G,H-maps
as 2-arrows form a bicategory with invertible 2-arrows, that is, a (2, 1)-category. Its nerve
is a quasi-category (an (∞, 1)-category) in the sense of Boardman–Vogt [3] and André
Joyal [25], that is, a simplicial set satisfying all inner Kan conditions; furthermore, coming
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from a bicategory, it satisfies inner unique Kan conditions in dimensions above 3. This
quasi-category contains essentially the same information as the bicategory.

We are going to describe this quasi-category in a more elementary way, without men-
tioning groupoids and bibundle functors. The main point is the similarity between the
conditions (17), (6) and (24) in the definitions of groupoids, principal bundles, and the
composition of bibundle functors. An n-simplex in Gr consists of

• Xi ∈∈ C for 0 ≤ i ≤ n;

• Xij ∈∈ C for 0 ≤ i ≤ j ≤ n;

• rij ∈ C(Xij, Xi) and sij ∈ C(Xij, Xj) for 0 ≤ i ≤ j ≤ n;

• mijk ∈ C(Xij ×sij ,Xj ,rjk
Xjk, Xik) for 0 ≤ i ≤ j ≤ k ≤ n;

such that the following conditions hold:

(1) rij is a cover for all 0 ≤ i ≤ j ≤ n; hence the domain Xij ×sij ,Xj ,rjk
Xjk of mijk is

well-defined;

(2) sii is a cover for all 0 ≤ i ≤ n;

(3) rik ◦mijk = rij ◦pr1 and sik ◦mijk = sjk ◦pr2 on Xij×Xj
Xjk for all 0 ≤ i ≤ j ≤ k ≤ n;

briefly, r(x · y) = r(x) and s(x · y) = s(y);

(4) (associativity) for 0 ≤ i ≤ j ≤ k ≤ l ≤ n, the following diagram commutes:

Xij ×Xj
Xjk ×Xk

Xkl Xij ×Xj
Xjl

Xik ×Xk
Xkl Xil

idXij
×Xj

mjkl

mijk ×Xk
idXkl

mikl

mijl

briefly, (x · y) · z = x · (y · z);

(5) the following maps are isomorphisms for all 0 ≤ i ≤ j ≤ k ≤ n with i = j or j = k:

(pr1,mijk) : Xij ×sij ,Xj ,rjk
Xjk → Xij ×rij ,Xi,rik

Xik, (x, y) 7→ (x, x · y),

(6) the following maps are isomorphisms if 0 ≤ i = j = k ≤ n:

(mijk, pr2) : Xij ×sij ,Xj ,rjk
Xjk → Xik ×sik,Xk,sjk

Xjk, (x, y) 7→ (x · y, y).
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An order-preserving map ϕ : {0, . . . , n} → {0, . . . ,m} induces ϕ∗ : Grm → Grn: take
Xϕ(i), Xϕ(i)ϕ(j), rϕ(i)ϕ(j), sϕ(i)ϕ(j), mϕ(i)ϕ(j)ϕ(k). Thus Gr• is a simplicial set.

Why is this the nerve of the bicategory of bibundle functors?
To begin with, for each 0 ≤ i ≤ n, there is a groupoid Gi with objects Xi and

arrows Xii, range rii, source sii, and multiplication miii. The conditions above for equal
indices amount to the conditions of Definition 3.4.

Next, Xil with left anchor map ril : Xil → Xi, right anchor map sil : Xil → Xl, left
action miil and right action mill is a Gi,Gl-bibundle; the associativity condition (4) for
i = j = k ≤ l says that the left action is associative, the one for i ≤ j = k = l says
that the right action is associative, the one for i = j ≤ k = l says that both actions
commute; (5) for i = j ≤ k says that the left Gi-action satisfies (3′′′) in Definition 4.1;
(5) for i ≤ j = k implies that the right Gj-action satisfies condition (3′′) in Definition 4.1,
compare the proof of Lemma 5.3.

The conditions (1) for i ≤ k and (5) for i ≤ j = k say that the right Gk-action on Xik

with bundle projection rik : Xik � Xi is a principal bundle; thus Xik is a bibundle functor
from Gi to Gk. By construction, Xii is the identity bibundle functor on Gi.

The associativity conditions (4) for 0 ≤ i = j ≤ k ≤ l ≤ n, 0 ≤ i ≤ j = k ≤ l ≤ n,
and 0 ≤ i ≤ j ≤ k = l ≤ n and (3) say that the maps mijk : Xij ×Xj

Xjk → Xik are
Gj-invariant Gi,Gk-maps. Hence they induce isomorphisms of Gi,Gk-bibundles

ṁijk : Xij ×Gj
Xjk

∼→ Xik

by Proposition 7.25. Proposition 7.25 also shows that the maps mijk are covers for all
0 ≤ i ≤ j ≤ k ≤ n and that the map in (5) is an isomorphism also for i < j < k.

By construction, ṁiik : G1
i ×Gi

Xik → Xik and ṁikk : Xik×Gk
G1
k → Xik are the canonical

isomorphisms. Finally, for 0 ≤ i ≤ j ≤ k ≤ l ≤ n, the associativity condition (4) is
equivalent to the following commutative diagram of isomorphisms of bibundle functors:

Xij ×Gj
Xjk ×Gk

Xkl Xij ×Gj
Xjl

Xij ×Gj
Xjl Xil

idXij
×Gj

ṁjkl

ṁijk ×Gk
idXkl

ṁikl

ṁijl

Rewriting our n-simplices in terms of the groupoids Gi, bibundle functors Xij : Gi → Gj

and isomorphisms of bibundle functors ṁijk : Xij ×Gj
Xjk → Xik gives us precisely the

definition of the nerve of the bicategory of bibundle functors. It is well-known that the
nerve of a bicategory satisfies the Kan condition Kan(2, 1) and the unique Kan conditions
Kan!(n, j) for n ≥ 3 and 1 ≤ j ≤ n − 1 (and also for n ≥ 5 and j = 0 or j = n). Of
course, this only holds under Assumptions 2.8 and 7.2 because otherwise we do not have
a bicategory.

The quasi-category associated to the sub-bicategory of covering bibundle functors is
defined similarly; in addition, we require the maps sij to be covers for all 0 ≤ i ≤ j ≤ n.
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The quasi-category associated to the sub-bicategory of bibundle equivalences is defined
similarly, with the following extra conditions:

• the maps sij should be covers for all 0 ≤ i ≤ j ≤ n;

• the maps in (5) and (6) should be isomorphisms if 0 ≤ i ≤ j ≤ k ≤ n and i = j or
j = k.

With this symmetric form of the above axioms, we may reverse the order of 0, . . . , n and
thus show that sij : Xij � Xj is a principal Gi-bundle.

Proposition 7.25 shows that the maps in (5) and (6) are automatically isomorphisms
if 0 ≤ i < j < k ≤ n if this is assumed for i = j or j = k. So for the quasi-category
of bibundle equivalences, we may require (5) and (6) for all 0 ≤ i ≤ j ≤ k ≤ n. This
stronger condition is less technical and provides a very satisfactory description of the quasi-
category of groupoids in (C, T ) with bibundle equivalences. Since bibundle equivalences
are invertible up to 2-arrows, this is a weak 2-groupoid. Thus the corresponding quasi-
category also satisfies the outer Kan conditions Kan(2, j) for j = 0, 2 and Kan!(n, j) for
n ≥ 3, j = 0, n.

9. Examples of categories with pretopology
In this section, we discuss pretopologies on different categories and check whether they
satisfy our extra assumptions. We also describe basic actions in each case. We begin with
a trivial pretopology on an arbitrary category.

9.1. Example. Let C be any category and let T be the class of all isomorphisms in C.
This is a subcanonical pretopology satisfying Assumptions 2.8 and 2.9. All groupoids in
(C, T ) are 0-groupoids by Example 3.11, so there are no interesting examples of groupoids.
Assumptions 7.2 and 7.3 are trivial. Assumption 2.10 on final objects usually fails.

In this section, unlike the previous ones, elementwise statements are meant naively,
with elements of sets in the usual sense. Since all our examples are concrete categories,
these naive elements suffice.

9.2. Sets and surjections. Let Sets be the category of sets.

9.3. Proposition. The class Tsurj of surjective maps in Sets is a subcanonical, saturated
pretopology satisfying Assumptions 2.8, 2.9, 7.2, and 7.3. The subcategory of non-empty
sets satisfies the same assumptions and also Assumption 2.10.

Thus all the theory developed above applies to groupoids in (Sets, Tsurj). We are going
to prove this and characterise basic actions in (Sets, Tsurj).

The category Sets is complete and therefore closed under fibre products. In the fibre-
product situation (2), if g : U � X is surjective, then so is the induced map pr1 : Y ×f,X,g
U � Y . The isomorphisms in Sets are the bijections and belong to Tsurj. Let f1 : X → Y
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and f2 : Y → Z be composable maps. If f1 and f2 are surjective, then so is f2 ◦ f1. Thus
surjective maps in Sets form a pretopology.

If f2 ◦ f1 is surjective, then so is f2. Hence the pretopology Tsurj is saturated, and
Assumptions 2.9 and 2.8 follow. A map in Sets is a coequaliser if and only if it is surjective.
Thus the pretopology Tsurj is subcanonical, and it is the largest subcanonical pretopology
on Sets. Any set with a single element is a final object, and any map to it from a non-
empty set is surjective, hence a cover. Hence Assumption 2.10 holds for non-empty sets,
but not if we include the empty set. Since a fibre-product of non-empty sets along a
surjective map is never empty, surjections still form a pretopology on the subcategory of
non-empty sets, and it still satisfies the same assumptions. Since Assumption 2.10 does
not play an important role for our theory, it is a matter of taste whether one should
remove the empty set or not.

A groupoid in (Sets, Tsurj) is just a groupoid in the usual sense; the surjectivity of
the range and source maps is no condition because the unit map is a one-sided inverse.
Since Sets has arbitrary colimits, any G-action X has an orbit set X/G (Definition 5.2).
The canonical map X � X/G is always surjective.

9.4. Definition. A groupoid action in Sets is free if for each x ∈ X, the only g ∈ G1

with s(x) = r(g) and x · g = x is g = 1s(x).

9.5. Proposition. A groupoid action in (Sets, Tsurj) is basic if and only if it is free.
Proof. Let G be a groupoid and X a G-action in (Sets, Tsurj). The canonical map p : X �
X/G is a cover. We have p(x1) = p(x2) for x1, x2 ∈ X if and only if there is g ∈ G1 with
s(x1) = r(g) and x1 · g = x2. Thus the map X ×s,G0,r G1 → X ×p,X/G,p X is surjective. It is
injective if and only if the action is free.

Hence a groupoid G in (Sets, Tsurj) is basic if and only if all g ∈ G1 with s(g) = r(g)
are units. Equivalently, G is an equivalence relation on G0.

We may now finish the proof of Proposition 9.3 by showing that any action of a Čech
groupoid in Sets is basic. Let G be a Čech groupoid and let X be a G-action. If x ∈ X,
g ∈ G1 satisfy s(x) = r(g) and x · g = x, then s(g) = s(x · g) = s(x) = r(g). Then g = 1s(x)

because G is a Čech groupoid. Thus the G-action X is free; it is basic by Proposition 9.5.
This verifies Assumptions 7.2 and 7.3 for (Sets, Tsurj).

9.6. Pretopologies on the category of topological spaces. Let Top be the
category of topological spaces and continuous maps. This category is complete and co-
complete. In particular, all fibre products exist and any groupoid action has an orbit
space. There are several classes of maps in Top that give candidates for pretopologies:

(1) quotient maps

(2) biquotient maps (also called limit lifting maps)

(3) maps with global continuous sections
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(4) maps with local continuous sections

(5) maps with local continuous sections and partitions of unity

(6) closed surjections

(7) proper surjections

(8) open surjections

(9) surjections with many continuous local sections

(10) étale surjections

We shall see that quotient maps and closed surjections do not form pretopologies. The
other classes of maps all give subcanonical pretopologies that satisfy Assumptions 2.8
and 2.9. Assumption 2.10 about final objects fails for proper maps and étale maps and
holds for the remaining pretopologies, if we remove the empty topological space. The
pretopologies (2)–(5) are saturated, (7)–(10) are not saturated. Assumption 7.2 and
hence also Assumption 7.3 hold in cases (3)–(5) and (8)–(10). Assumption 7.2 fails for
biquotient maps; we do not know whether Assumption 7.3 holds for biquotient maps.
Quotient maps.

9.7. Lemma. A continuous map f : X → Y is a coequaliser in Top if and only if it is a
quotient map, that is, f is surjective and A ⊆ Y is open if and only if f−1(A) is open.
Proof. Let g1, g2 : Z ⇒ X be two maps. Let∼ be the equivalence relation onX generated
by g1(z) ∼ g2(z) for all z ∈ Z. Equip X/∼ with the quotient topology. The coequaliser of
g1, g2 is the canonical map X → X/∼. Thus coequalisers are quotient maps. Conversely,
let f : X → Y be a quotient map and define an equivalence relation ∼ on X by x1 ∼ x2
if and only if f(x1) = f(x2). Since f is a quotient map, the induced map X/∼ → Y is
a homeomorphism. Viewed as a subset of X ×X, we have ∼ = X ×f,Y,f X. Thus f is a
coequaliser of pr1, pr2 : X ×f,Y,f X ⇒ X.

There are a quotient map f : X → Y and a topological space Z such that f× idZ is no
longer a quotient map, see [30, Example 8.4]. Thus the pull-back of f along the quotient
map pr1 : Y ×Z → Y is not a quotient map any more. This shows that quotient maps do
not form a pretopology on Top. The spaces in [30, Example 8.4] are Hausdorff spaces, so
it does not help to restrict from Top to the full subcategory Haus-Top of Hausdorff spaces.
Biquotient maps.

9.8. Definition. [30] Let f : X → Y be a continuous surjection. It is a biquotient map
if for every y ∈ Y and every open covering U of f−1(y) in X, there are finitely many
U ∈ U for which the subsets f(U) cover some neighbourhood of y in Y .
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9.9. Definition. [[19,20]] The map f is limit lifting if every convergent net in Y lifts to
a convergent net in X. More precisely, let (I,≤) be a directed set and let (yi)i∈I be a net
in Y converging to some y ∈ Y . A lifting of this convergent net is a directed set (J,≤)
with a surjective order-preserving map ϕ : J → I and a net (xj)j∈J in X with f(xj) = yϕ(j)
for all j ∈ J , converging to some x ∈ X with f(x) = y.

9.10. Proposition. [30] Biquotient maps are the same as limit lifting maps.
We will use both characterisations of these maps where convenient.

9.11. Proposition. The biquotient maps Tbiqu form a subcanonical, saturated pretopol-
ogy that satisfies Assumptions 2.8, 2.9, but not Assumption 7.2. It satisfies Assump-
tion 2.10 if we remove the empty space from the category.
Proof. It is clear that isomorphisms are limit lifting. Let f1 : X → Y and f2 : Y → Z be
composable maps. If f1 and f2 are limit lifting, then so is f2 ◦ f1 by lifting in two steps;
and if f2 ◦ f1 is limit lifting, then so is f2 by first lifting a convergent net along f2 ◦ f1
and then applying the continuous map f1. Thus we have a saturated pretopology, and
Assumptions 2.8 and 2.9 follow.

Next we claim that pull-backs inherit the property of being limit lifting. In the fibre-
product situation (2), assume that g : U � X is limit lifting. Let (yi)i∈I be a net in Y that
converges to some y ∈ Y . Then f(yi) converges to f(y) in X. Since g is limit lifting, there
is an order-preserving surjection ϕ : J → I and a net (uj)j∈J in U with g(uj) = f(yϕ(j))
for all j ∈ J , converging to some u ∈ U with g(u) = f(y). Then (yϕ(j), uj) is a net in
Y ×f,X,g U that converges towards (y, u). Thus pr1 : Y ×f,X,g U � Y is limit lifting. This
completes the proof that Tbiqu is a pretopology. Limit lifting maps are quotient maps,
hence coequalisers, so this pretopology is subcanonical.

A space with a single element is a final object in Top, and any map from a non-empty
space to it is limit lifting. Thus Assumption 2.10 holds if we exclude the empty space. The
following counterexample to Assumption 7.2 will finish the proof of Proposition 9.11.

9.12. Example. We first recall [30, Example 8.4]. Let X be the disjoint union of X1 =
(0, 1) and X2 = {0, 1

2 ,
1
3 ,

1
4 , . . .}. Let τ1 be the obvious topology on X: X1 and X2 are open

and carry the subspace topologies from R. We will later introduce another topology τ2
on X.

Let Y be the quotient space of X by the relation that identifies 1
n

in X1 and X2, and
let f : X → Y be the quotient map. This is a quotient map that is not limit lifting. As a
set, Y = [0, 1). The topology on Y is the usual one on the subset (0, 1); a subset U of Y
with 0 ∈ U is a neighbourhood of 0 if and only if there are n0 ∈ N and εn > 0 for n ≥ n0
with ⋃n≥n0( 1

n
− εn, 1

n
+ εn) ⊆ U .

We now define another topology τ2 on X for which the map f : (X, τ2) → Y is limit
lifting. The subset X1 tX2 \ {0} is open in both topologies τ1 and τ2, and both restrict
to the same topology on X1 t X2 \ {0}. A subset U ⊆ X is a τ2-neighbourhood of 0 if
U ∩X2 is a neighbourhood of 0 and there are n0 ∈ N and εn > 0 for all n ≥ n0 such that⋃
n≥n0

(
1
n
− εn, 1

n
+ εn

)
\
{

1
n

}
⊆ U . This uniquely determines the topology τ2.
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On the open subset (0, 1) ⊆ Y , the inclusion of X1 into X gives a continuous section
for f |f−1(0,1); hence a net in Y that converges to some element of (0, 1) lifts to a net
in X1 ⊆ X that converges in both (X, τ1) and (X, τ2). Let now (yi)i∈I be a net in Y
converging to 0. We lift it to a net in X by lifting yi to yi ∈ X2 if yi ∈ X2, and to yi ∈ X1
if yi /∈ X2. This net in X converges to 0 ∈ X2 in the topology τ2.

The topology τ1 is finer than τ2, that is, the identity map on X is a continuous map
(X, τ1)→ (X, τ2). We claim that the identity map

(X, τ1)×f,Y,f (X, τ1)→ (X, τ1)×f,Y,f (X, τ2) (25)

is a homeomorphism. That is, the topologies τ1 and τ2 pull back to the same topology on
(X, τ1)×f,Y,f X along the quotient map f : (X, τ1)→ Y . This also shows that the locality
of isomorphisms, Proposition 2.5, fails for quotient maps in Top; this is okay because they
do not form a pretopology.

To prove that the map in (25) is a homeomorphism, we show that any net in X ×f,Y,f
X ⊆ X ×X that converges for τ1 × τ2 also converges for the topology τ1 × τ1. A net in
X ×Y X is a pair of nets (x1i) and (x2i) with f(x1i) = f(x2i). We assume that (x1i, x2i) is
τ1 × τ2-convergent to (x1, x2). Equivalently, x1i has τ1-limit x1 and (x2i) has τ2-limit x2.
We must show that x2i also converges to x2 in the topology τ1. This is clear if x2 6= 0 ∈ X2
because the topologies τ1 and τ2 agree away from 0. Thus we may assume x1 = x2 = 0.
Since X2 is τ1-open, we have x1i ∈ X2 for almost all i; hence also f(x2i) = f(x1i) ∈ X2.
Since the points 1

n
in X1 are excluded from the τ2-neighbourhoods of 0 and x2i converges

to 0 in τ2, this implies x2i ∈ X2 for almost all i as well. Since f |X2 is injective, we get
x1i = x2i for almost all i, so (x2i) converges in τ1.

Now let G be the Čech groupoid of the limit lifting map (X, τ2) → Y . The action
of G on its orbit space (X, τ2) is basic in (Top, Tbiqu) by Example 5.6. The same action
on (X, τ1) is still a continuous action: the anchor map (X, τ1) → (X, τ2) is continuous,
and the action map

(X, τ1)×f,X,f (X, τ2) ∼= (X, τ1)×X
(
(X, τ2)×f,X,f (X, τ2)

) pr3−→ (X, τ1)

is continuous because of the homeomorphism (25). This action is, however, not basic
because the orbit space projection (X, τ1)→ (X, τ1)/G ∼= Y is not in Tbiqu. If this action
were basic, it would contradict Proposition 5.9 because the G-actions on (X, τ1) and (X, τ2)
have the same orbit space Y .

We do not know whether Assumption 7.3 holds for (Top, Tbiqu). A counterexam-
ple would have to be of different nature because a continuous bijection that is also a
(bi)quotient map is already a homeomorphism.

9.13. Proposition. The pretopology of biquotient maps is the largest subcanonical pre-
topology on Top.
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Proof. We claim that a continuous map f : X → Y is biquotient if and only if pr1 : Z×g,Y,f
X → Z is a quotient map for any map g : Z → Y . We have already seen that biquotient
maps form a pretopology; in particular, if f is biquotient, then pr1 : Z ×g,Y,f X → Z is
biquotient and thus quotient. The converse remains to be proved. It implies the proposi-
tion because the covers of a subcanonical pretopology on Top must be quotient maps by
Lemma 9.7, hence biquotient by our claim.

Assume that pr1 is a quotient map for any map g : Z → Y , although f is not biquo-
tient; we want to arrive at a contradiction. By assumption, there are y∞ ∈ Y and an
open covering U of f−1(y∞) such that for any finite set F ⊆ U , ⋃U∈F f(U) is not a
neighbourhood of y∞. Let I be the set of pairs (F, V ) for a finite subset F ⊆ U and an
open neighbourhood V of y∞ in Y . We order I by (F1, V1) ≤ (F2, V2) if F1 ⊆ F2 and
V1 ⊇ V2; this gives a directed set. By assumption, V \ ⋃U∈F f(U) 6= ∅ for all (F, V ) ∈ I;
we choose yF,V in this difference. Since yF,V ∈ V , lim yF,V = y∞.

Let I+ := I t {∞}, topologised so that any subset of I is open and a subset W
containing ∞ is open if and only if there is i ∈ I with j ∈ W for all j ≥ i. Let

Z := {(i, y) ∈ I+ × Y | y = yi}

be the graph of the function I+ 3 i 7→ yi ∈ Y , equipped with the subspace topology; let
g : Z → Y be the second coordinate projection. We identify

Z ×g,Y,f X ∼= {(i, x) ∈ I+ ×X | f(x) = yi}, (i, y, x) 7→ (i, x),

for (i, y) ∈ Z, x ∈ X with f(x) = g(i, y) = y. This bijection is a homeomorphism for the
subspace topologies from Z ×X ⊆ I+ × Y ×X and I+ ×X.

The subset S := Z \ {(∞, y∞)} in Z is not closed because limi∈I(i, yi) = (∞, y∞).
Since the coordinate projection Z ×g,Y,f X → Z is assumed to be a quotient map, the
preimage Ŝ of S is not closed in Z ×g,Y,f X. Hence there is a net (ij, xj)j∈J in Ŝ that
converges in Z ×g,Y,f X towards some point in the complement of Ŝ, that is, of the form
(∞, x∞) with x∞ ∈ X such that f(x∞) = y∞. That is, lim ij =∞ in I+ and lim xj = x∞
in X. We have f(xj) = yij because (ij, xj) ∈ Z ×g,Y,f X.

Since U is an open covering of f−1(y∞) and f(x∞) = y∞, there is U ∈ U with x∞ ∈ U .
Then also xj ∈ U for sufficiently large j ∈ J . Since ij → ∞, there is j0 ∈ J with
ij ≥ ({U}, Y ) for all j ≥ j0; thus yij /∈ f(U) for j ≥ j0. Then xj /∈ U for j ≥ j0, a
contradiction. Hence the coordinate projection Z ×g,Y,f X → Z cannot be a quotient
map.

9.14. Remark. There are several other notions of improved quotient maps, such as
triquotient maps (see [15, 32]). Triquotient maps also form a subcanonical pretopology
satisfying Assumptions 2.8 and 2.9. The biquotient map (X, τ2)→ Y is a triquotient map
as well, however. Thus the same counterexample as above shows that Assumption 7.2
fails for the pretopology of triquotient maps. The surjective open maps form the largest
pretopology on Top for which we know Assumption 7.2.
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Now we consider groupoids in (Top, Tbiqu). Any map with a continuous section is limit
lifting. Since the unit map is a section for the range and source maps in a groupoid, the
condition that r and s be limit lifting is redundant in the first definition of a groupoid. In
the second definition of a groupoid, it is enough to assume that r and s are both quotient
maps: this suffices to construct a continuous unit map, which then implies that r and s
are limit lifting.

The category Top has arbitrary colimits, so X/G exists for any G-action X; it is the
set of orbits X/G with the quotient topology.

9.15. Proposition. Let T be any subcanonical pretopology on Top. Let G be a groupoid
and X a G-action in (Top, T ).

The G-action X is basic if and only if it satisfies the following conditions:

(1) the G-action X is free;

(2) the map X ×p,X/G,p X → G1 that maps x1, x2 ∈ X in the same orbit to the unique
g ∈ G1 with s(x1) = r(g) and x1 · g = x2 is continuous;

(3) the orbit space projection X→ X/G is in T .

The first two conditions hold for any G-action of a Čech groupoid of a cover in (Top, T ).
Proof. By Lemma 5.3, the bundle projection for a basic action must be the orbit space
projection p : X � X/G. For a basic action, this must be a cover. The continuous map
X ×s,G0,r G1 → X ×p,X/G,p X, (x, g) 7→ (x, x · g), is surjective by the definition of X/G. It is
bijective if and only if it is injective if and only if the action is free (see Proposition 9.5).
In this case, the inverse map sends (x1, x2) ∈ X2 with p(x1) = p(x2) to (x1, g) for the
unique g ∈ G1 with s(x1) = r(g) and x1 · g = x2. This inverse map is continuous if and
only if the map (x1, x2) 7→ g in (2) is continuous. Hence the action is basic if and only if
(1)–(3) hold.

Let G be the Čech groupoid of a cover f : Y → Z. Let (x1, x2) ∈ X be in the same
G-orbit. Then any g ∈ G1 with s(x1) = r(g) and x1 · g = x2 will satisfy s(g) = s(x1 · g) =
s(x2), hence g = (s(x1), s(x2)). This is unique and depends continuously on x1, x2, giving
(1) and (2) above.

Hence the only way that Čech groupoid actions in (Top, T ) may fail to be basic is by
the orbit space projection not being a cover.

9.16. Example. We construct a free groupoid action in (Top, Tbiqu) that satisfies (3) in
Proposition 9.15, but not (2). Let Rd be R with the discrete topology. The translation
action of Rd on R with the usual topology is free. Its orbit space has only one point, so
the map R→ R/Rd is a cover. Condition (2) is violated, so the action is not basic.

The transformation groupoid of the non-basic action in Example 9.12 satisfies (1)
and (2) in Proposition 9.15, but not (3).
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Hausdorff orbit spaces. We now replace Top by its full subcategory Haus-Top of
Hausdorff topological spaces. The proof of Proposition 9.13 still works in this subcategory,
showing that the biquotient maps form the largest subcanonical pretopology on Haus-Top.
A groupoid in (Haus-Top, Tbiqu) is the same as a groupoid in (Top, Tbiqu) with Hausdorff
spaces G0 and G1. A G-action for a Hausdorff groupoid on a Hausdorff space is basic in
(Haus-Top, Tbiqu) if and only if it is basic in (Top, Tbiqu) and the orbit space is Hausdorff.
This is not automatic:

9.17. Example. Let X := [0, 1]t[0, 1] and let Y be the quotient of X by the relation that
identifies the two copies of (0, 1]. This is a non-Hausdorff, locally Hausdorff space. The
quotient map X → Y is open and hence biquotient. Therefore, its Čech groupoid is basic
in (Top, Tbiqu) (Example 5.6). This Čech groupoid is also a groupoid in (Haus-Top, Tbiqu)
because its object space G0 = X and arrow space G1 = X ×Y X ⊆ X × X are both
Hausdorff. Since its orbit space is non-Hausdorff, it is not basic in (Haus-Top, Tbiqu).

9.18. Proposition. Let f : X → Y be a biquotient map. The space Y is Hausdorff if
and only if the subset X ×f,Y,f X ⊆ X ×X is closed.
Proof. If Y is Hausdorff and f : X → Y is continuous, then

X ×f,Y,f X = {(x1, x2) ∈ X ×X | f(x1) = f(x2)}

is closed: if (x1, x2) ∈ X × X with f(x1) 6= f(x2), then there are neighbourhoods Ui of
f(xi) in Y for i = 1, 2 with U1 ∩ U2 = ∅ because Y is Hausdorff; then f−1(U1)× f−1(U2)
is a neighbourhood of (x1, x2) in X ×X that does not intersect X ×f,Y,f X.

It remains to show that Y is Hausdorff if X ×f,Y,f X is closed in X × X and f is
biquotient. We choose y, y′ ∈ Y with y 6= y′ and try to separate them by neighbourhoods.
If x, x′ ∈ X satisfy f(x) = y and f(x′) = y′, then (x, x′) /∈ X ×f,Y,f X, so there are
open neighbourhoods Ux,x′ and U ′x,x′ of x and x′, respectively, with Ux,x′ ×U ′x,x′ ∩X×f,Y,f
X = ∅; that is, f(Ux,x′) ∩ f(U ′x,x′) = ∅. Choose such neighbourhoods for all (x, x′) ∈
f−1(y)× f−1(y′). For fixed x, the open sets U ′x,x′ for x′ ∈ f−1(y′) cover f−1(y′). Since f
is biquotient, there is a finite set Ax ⊆ f−1(y′) such that Vx := ⋃

x′∈Ax
f(U ′x,x′) is a

neighbourhood of y′ in Y .
Let Ux := ⋂

x′∈Ax
Ux,x′ . This is an open neighbourhood of x because Ax is finite.

We have f(Ux) ∩ f(U ′x,x′) = ∅ for all x′ ∈ Ax and hence f(Ux) ∩ Vx = ∅. Since f is
biquotient and the open subsets Ux cover f−1(y), there is a finite subset B ⊆ f−1(y)
such that ⋃x∈B f(Ux) is a neighbourhood of y in Y . The finite intersection ⋂

x∈B Vx is a
neighbourhood of y′ in Y . These two neighbourhoods separate y and y′.

9.19. Corollary. A topological space X is Hausdorff if and only if the diagonal is a
closed subset in X ×X.
Proof. Apply Proposition 9.18 to the identity map.
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The following definitions are needed to characterise when the orbit space of a basic
action in (Top, Tbiqu) is Hausdorff.

9.20. Definition. [4, I.10.1], “application propre” A map f : X → Y of topological
spaces is proper if f × idZ : X × Z → Y × Z is closed for any topological space Z.

9.21. Definition. An action of a topological groupoid G on a topological space X is
proper if the map

X ×s,G0,r G1 → X × X, (x, g) 7→ (x, x · g), (26)

is proper. A groupoid G is proper if its canonical action on G0 is proper, that is, the map
(r, s) : G1 → G0 × G0 is proper.

A map from a Hausdorff space X to a Hausdorff, locally compact space Y is proper if
and only if preimages of compact subsets are compact ([4, Proposition 7 in I.10.3]).

9.22. Proposition. Let T be any subcanonical pretopology on Haus-Top. Let G be a
groupoid and X a G-action in (Haus-Top, T ). The G-action X is basic in (Haus-Top, T ) if
and only if it satisfies the following conditions:

(1) the G-action X is free;

(2) the G-action X is proper;

(3) the orbit space projection X→ X/G belongs to T .

The first two conditions hold for any action of a Čech groupoid in (Haus-Top, T ).
Proof. Since Tbiqu is the largest subcanonical pretopology on Haus-Top, all covers in T
are biquotient. Thus a basic G-action in (Haus-Top, T ) is still basic in (Top, Tbiqu); fur-
thermore, its orbit space X/G is Hausdorff, and the orbit space projection p : X→ X/G is
in T . Conversely, these three conditions imply that the action is basic in (Haus-Top, T ).

Proposition 9.15 describes when the action is basic in (Top, Tbiqu). An injective con-
tinuous map is proper if and only if it is closed, if and only if it is a homeomorphism
onto a closed subset (see [4, I.10.1, Proposition 2]). Thus a free action is proper if and
only if the bijection X ×s,G0,r G1 → X ×p,X/G,p X is a homeomorphism and X ×p,X/G,p X is
closed in X×X. The first part of this is the second condition in Proposition 9.15, and the
closedness of X×p,G0,p X in X×X is equivalent to X/G being Hausdorff by Proposition 9.18
because p is biquotient. Now it is routine to see that (1)–(3) above characterise basic
actions in (Haus-Top, T ).

The first two conditions in Proposition 9.15 are automatic for actions of Čech groupoids
in (Top, Tbiqu). It remains to show that X×p,X/G,p X is closed in X× X for any action of a
Čech groupoid in (Haus-Top, Tbiqu). Let Y and Z be Hausdorff spaces and let f : Y � Z

be a biquotient map with Čech groupoid G. Thus Y = G0 and the anchor map on X is a
map s : X→ Y . Since Z is Hausdorff,

X ×Z X = {(x1, x2) ∈ X × X | f(s(x1)) = f(s(x2))}
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is a closed subset of X × X. If (x1, x2) ∈ X ×Z X, then (s(x1), s(x2)) ∈ G1, so x′2 :=
x1 · (s(x1), s(x2)) ∈ X is defined. This is the unique element in the orbit of x1 with
s(x′2) = s(x2). Thus

X ×X/G X = {(x1, x2) ∈ X ×Z X | x1 · (s(x1), s(x2)) = x2}.

Since X is Hausdorff and the two maps sending (x1, x2) to x1 · (s(x1), s(x2)) and x2 are
continuous, this subset is closed in X ×Z X and hence in X × X.

We may also restrict to other subcategories of topological spaces, still with biquotient
maps as covers:

9.23. Proposition. Let f : X → Y be biquotient. The following properties are inherited
by Y if X has them:

(1) locally quasi-compact;

(2) having a countable base;

(3) sequential: a subset A is closed if and only if it is closed under taking limits of
convergent sequences in A;

(4) Fréchet: the closure of a subset A is the set of all points that are limits of convergent
sequences in A;

(5) k-space: a subset is closed if and only if A ∩K is relatively compact in K for any
quasi-compact subset K.

Proof. That biquotient images inherit the first two properties is stated in [30, Propo-
sition 3.4]. The remaining statements follow from [31], which characterises the images
of various classes of “nice” spaces under five classes of “quotient maps.” If a property P
characterises the biquotient images of some particular class of “nice” spaces, then P is
inherited by biquotient images because composites of biquotient maps are again biquo-
tient. Composites of biquotient maps with quotient, hereditarily quotient, or countably
biquotient maps are also again of the same sort. Hence all the properties in rows 3–6 of
the table in [31, p. 93] are preserved under biquotient images. This includes the properties
of being sequential, Fréchet, or a k-space given above, and many less familiar properties.

The classes of spaces in the first row in the table in [31, p. 93] are, however, not
closed under biquotient images. This includes the class of locally compact, paracompact
spaces and the class of metrisable spaces. [31] shows that any locally compact space is
a biquotient image of a locally compact paracompact space (it is a biquotient image of
the disjoint union of its compact subsets), while any “bisequential” space is a biquotient
image of a metrisable space.

Since orbit space projections of basic actions in (Top, T ) are biquotient, the orbit
space X/G of a basic action in (Top, T ) will inherit the properties listed in Proposition 9.23
from X. Let C ⊆ Top be the full subcategory described by this property, say, the full
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subcategory of k-spaces, and let T be some pretopology on Top. It follows that a groupoid
action in (C, T ∩C) is basic if and only if it is basic in (Top, T ); the latter is characterised by
Proposition 9.15. If we add Hausdorffness, then a groupoid action in (C ∩ Haus-Top, T ∩
C ∩ Haus-Top) is basic if and only if it is basic in (Haus-Top, T ∩ Haus-Top), which is
characterised by Proposition 9.22.

What if we want to restrict to a subcategory that is not closed under biquotient images,
say, the category of metrisable topological spaces? An action of a metrisable topological
groupoid on a metrisable topological space is basic with respect to a pretopology T
contained in Tbiqu if and only if it satisfies the conditions in Proposition 9.22 or 9.15 and,
in addition, X/G is metrisable.

9.24. Example. Let Y be bisequential and not metrisable. Let f : X � Y be a biquo-
tient map with X metrisable. Then X ×f,Y,f X ⊆ X ×X is again metrisable. Hence the
Čech groupoid of f is a groupoid in the category of metrisable topological spaces with
biquotient maps as covers. It is not basic in the category of metrisable spaces, however,
because its orbit space is not metrisable.
Covers defined by continuous sections. Let f : X → Y be a continuous map.

9.25. Definition. A global continuous section for f is a continuous map σ : Y → X
with f ◦ σ = idY . Let Tsplit be the class of all continuous maps with a global continuous
section.

A local continuous section for f at y ∈ Y is a pair (U, σ) consisting of a neighbour-
hood U of y and a continuous map σ : U → X with f ◦ σ = idU . We call f locally split
if such local continuous sections exist at all y ∈ Y . Let Tloc.split be the class of all locally
split continuous maps.

We call f numerably split if there is a numerable open covering U of Y with local
sections defined on all elements of U ; an open covering is numerable if it has a subordinate
partition of unity (see [16]). Let Tnum.split be the class of numerably split maps.

By definition,
Tsplit ⊆ Tnum.split ⊆ Tloc.split.

A local continuous section σ : U → X for f : X → Y at y ∈ Y is determined by its
image S := σ(U) ⊆ X. This is a subset on which f restricts to a homeomorphism onto
a neighbourhood of y in Y , and any such subset gives a unique local continuous section
for f near y. The subset S is also called a slice.

9.26. Proposition. Tsplit, Tnum.split and Tloc.split are subcanonical, saturated pretopologies
on Top and Haus-Top satisfying Assumptions 2.8, 2.9, 7.2, and 7.3. They satisfy 2.10 if
we exclude the empty topological space.
Proof. Let f : Y → X be a continuous map and let g : U � X belong to Tsplit, Tnum.split or
Tloc.split, respectively. Let W ⊆ X be the domain of a local continuous section σ : W → U
for g. Then (id, σ ◦f) : f−1(W )→ Y ×X U is a local continuous section for the coordinate
projection pr1 : Y ×X U � Y . If W = X, then we get a global continuous section. If the
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domains of such local sections cover X, then the subsets f−1(W ) cover Y . If (ψW )W∈U is
a partition of unity on X subordinate to a cover by domains of local continuous sections,
then (ψW ◦ f)W∈U provides such a partition of unity for the domains of the induced local
continuous sections for pr1 : Y ×X U � Y . Thus the map pr1 belongs to Tsplit, Tnum.split or
Tloc.split, respectively, if g does.

It is clear that homeomorphisms are in Tloc.split and hence in the other classes as well. If
f2◦f1 is defined and belongs to Tloc.split, then we may get local sections for f2 by composing
local sections for f2◦f1 with the continuous map f1. Since this does not change the domain,
we may use the same partition of unity for f2 as for f2 ◦ f1 in the numerably split case.
Hence all three pretopologies are saturated, which implies Assumptions 2.8 and 2.9. It is
also clear that the constant map from any non-empty space to the one-point space has
global continuous sections, which gives Assumption 2.10 for all three pretopologies if we
exclude the empty space. A map with local continuous sections must be surjective, and
we may use local continuous sections to lift convergent nets. Hence Tloc.split ⊆ Tbiqu, so
that the pretopologies are subcanonical.

Let f : X � Z be a cover in one of our three pretopologies, let G be its Čech groupoid,
and let Y be a G-action. Let p : Y → Y/G be the orbit space projection. By Proposi-
tion 9.15, the G-action is basic if and only if p is a cover. The anchor map s : Y → X of
the G-action induces a continuous map s/G : Y/G→ X/G = Z.

Let U be an open cover of Z by domains of local sections σU : U → X for U ∈ U ; in
the case of the pretopology Tnum.split, we assume a partition of unity (ψU)U∈U subordinate
to this cover, and in the case of the pretopology Tsplit, we assume U = {Z}. The subsets
s−1(U) for U ∈ U form an open cover s∗(U) of Y/G because s/G is continuous; in the
case of Tnum.split, (ψU ◦ (s/G))U∈U is a partition of unity on Y/G subordinate to s∗(U), and
in the case of Tsplit, s∗(U) = {Y/G}. It remains to construct local continuous sections
σ′U : s−1(U)→ Y for U ∈ U .

Let y ∈ Y represent [y] ∈ s−1(U) ⊆ Y/G. Then s(y) ∈ f−1(U) ⊆ X and gy :=
(s(y), σU(f(s(y)))) ∈ G1 has r(gy) = s(y), so that y · gy is defined in Y. This is the unique
element in the G-orbit of y with s(y ·gy) ∈ σU(U). Hence y ·gy depends only on [y] ∈ Y/G,
so that we get a continuous map σ′U : s−1(U) → Y, [y] 7→ y · gy. This is a continuous
section for p on s−1(U) as needed.

Thus our whole theory applies to groupoids in Top for the three pretopologies above.
The range and source maps of a groupoid are automatically in Tsplit because the unit map
provides a global continuous section. Hence our pretopologies do not restrict the class
of topological groupoids. They give different notions of principal bundles, however, and
thus different bicategories of bibundle functors, equivalences, and actors.

Let G be a topological groupoid (without condition on the range and source maps)
and let X be a G-action that satisfies (1) and (2) in Proposition 9.15. Let p : X → X/G
be its orbit space projection. This is a principal G-bundle for T if and only if p ∈ T . We
now discuss what this means.

9.27. Lemma. The map p is in Tsplit if and only if X is isomorphic to a pull-back of the
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principal G-bundle r : G1 � G0 along some map X/G→ G0.
Proof. By definition, p ∈ Tsplit if and only if it has a global continuous section σ : X/G→
X. We claim that the map

X/G×s◦σ,G0,r G1 → X, ([x], g) 7→ σ[x] · g, (27)

is a homeomorphism; it is clearly a continuous bijection, and the inverse map sends y ∈ X
to ([y], g) where g is the unique element of G1 with s(σ[y]) = r(g) and σ[y] · g = y; the
map y 7→ ([y], g) is continuous by (2) in Proposition 9.15.

The homeomorphism (27) is G-equivariant for the G-action on X/G×s◦σ,G0,r G1 defined
by ([x], g1) · g2 = ([x], g1 · g2). Hence the principal G-bundle X � X/G is isomorphic to the
pull-back of the principal G-bundle r : G1 � G0 along the continuous map s◦σ : X/G→ G0

(Proposition 5.8). Conversely, such pull-backs are principal G-bundles in (Top, Tsplit)
because r : G1 � G0 is a principal G-bundle in (Top, Tsplit).

Thus the principal G-bundles in (Top, Tsplit) are precisely the trivial G-bundles in the
following sense:

9.28. Definition. A G-bundle p : X � Z is trivial if it is isomorphic to a pull-back of
the G-bundle r : G1 � G0 along some map Z→ G0.

A G-bundle p : X � Z is locally trivial if there is an open covering U of Z such that
the restriction p|U : p−1(U) � U is a trivial G-bundle for each U ∈ U .

If T = Tloc.split, then there is an open covering U of X/G such that trivialisations as
in (27) are defined on the G-invariant subsets p−1(U) for U ∈ U . Lemma 9.27 shows that
the principal G-bundles in (Top, Tloc.split) are precisely the locally trivial G-bundles.

Let p : X � Z be a locally trivial bundle. We have an open covering U of Z and
continuous maps ϕU : U → G0 and local trivialisations τU : p−1(U) → U ×ϕU ,G0,r G1 for
all U ∈ U . These local trivialisations are not unique and therefore do not agree on
intersections U1 ∩ U2 for U1, U2 ∈ U . Since any G-map between fibres of r : G1 � G0 is
given by left multiplication with some g ∈ G1, we get continuous maps gU1,U2 : U1∩U2 → G1

with ϕU2(z) = r(gU1,U2(z)), ϕU1(z) = s(gU1,U2(z)), and τU2 ◦ τ−1
U1 (z, g) = (z, gU1,U2(z) · g) for

all (z, g) ∈ (U1 ∩ U2)×ϕU1 ,G0,r G1. These maps gU1,U2 satisfy the usual cocycle conditions.

9.29. Remark. If T = Tnum.split, then principal bundles are locally trivial and, in addi-
tion, the open covering by trivialisation charts is numerable. This suffices to construct
a continuous classifying map ϕ : X/G → BG such that X � X/G is the pull-back of the
universal principal bundle EG � BG along ϕ, even if the base space X/G is not para-
compact. Classifying spaces for topological groupoids were introduced by Haefliger [18],
following Segal [45]; Bracho [6] proves that G-principal bundles over locally compact topo-
logical spaces are classified by continuous maps to BG. The local compactness assumption
should not be needed here, as shown by the example of principal bundles over topological
groups, but we have not found a proof of this in the literature.



1984 RALF MEYER AND CHENCHANG ZHU

If X is Hausdorff, then continuous local sections for the orbit space projection X→ X/G
imply that X/G is locally Hausdorff, that is, every point has a Hausdorff open neighbour-
hood; but it does not yet imply that X/G is Hausdorff. Indeed, Example 9.17 is also a
basic groupoid in (Top, Tloc.split).
Closed and proper maps. A map between topological spaces is closed if it maps
closed subsets to closed subsets. A map f : X → Y is proper if and only if it is closed
and f−1(y) ⊆ X is quasi-compact for all y ∈ Y ; this is shown in [4, I.10.2, Théorème
1]. In particular, there are closed maps that are not proper. Thus closed maps are not
hereditary for pull-backs and do not form a pretopology.

9.30. Proposition. The proper maps form a subcanonical pretopology Tprop on Top. It
satisfies Assumptions 2.8 and 2.9, but not Assumption 2.10.
Proof. It is clear that homeomorphisms are proper and that composites of proper or
closed maps are again proper or closed, respectively. Let g : U → X be proper and let
f : Y → X be any map. Let Z be another topological space. Then g∗ := idY × g ×
idZ : Y × U × Z → Y × X × Z is closed. So is its restriction to any subset of the form
g−1
∗ (S) for S ⊆ Y × X × Z. If S is the product of the graph of f and Z, then this

restriction is the map pr1 × idZ : Y ×f,X,g U ×Z → Y ×Z. Since this is closed for any Z,
pr1 : Y ×f,X,g U → Y is proper.

Proper surjections are biquotient maps by [30, Proposition 3.2]. Hence they are co-
equalisers, so the pretopology of proper maps is subcanonical.

Let f1 : X → Y and f2 : Y → Z be continuous surjections. If f2 ◦ f1 is closed, then
so is f2: for a closed subset S ⊆ Y , f2(S) = (f2 ◦ f1)f−1

1 (S) because f1 is surjective, and
this is closed because f1 is continuous and f2 ◦f1 is closed. Hence the proper maps satisfy
Assumption 2.9 and thus Assumption 2.8. The map from a space X to the one-point
space is proper if and only if X is quasi-compact. Hence Assumption 2.10 fails even if we
exclude the empty space.

For a groupoid in (Top, Tprop), the source and range maps must be proper. This
restriction is so strong that we seem to get a rather useless class of groupoids. In particular,
proper topological groupoids need not be groupoids in (Top, Tprop).
Open surjections. This pretopology is used for topological groupoids in [42], and is
implicitly used by most of the literature on groupoid C∗-algebras for locally compact
groupoids.

A map between topological spaces is open if it maps open subsets to open subsets.
The following criterion for open maps is similar to but subtly different from the definition
of limit lifting maps:

9.31. Proposition. [46, Proposition 1.15] A continuous surjection f : X → Y between
topological spaces is open if and only if, for any x ∈ X, a convergent net (yi) in Y with
lim yi = f(x) lifts to a net in X converging to x.
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9.32. Proposition. The class Topen of surjective, open maps in Top is a subcanonical
pretopology that satisfies Assumptions 2.8, 2.9, 7.2 and 7.3, but it is not saturated. It
satisfies Assumption 2.10 if we exclude the empty space.

The proof that Topen is a subcanonical pretopology satisfying Assumptions 2.8, 2.9
and 2.10 is similar to the proof for Tbiqu, using Proposition 9.31, and left to the reader.
The following simple counterexample shows that it is not saturated:

9.33. Example. Let f : X → Y be a continuous map that is not open. Let f2 :=
(f, idX) : X t Y → Y and let f1 : Y → X t Y be the inclusion map. Then f2 ◦ f1 is the
identity map on Y , hence open. But f2 is not open because f is not open. Hence the
pretopology Topen is not saturated.

Groupoids in (Top, Topen) must have open range and source maps. This is no serious
restriction for operator algebraists because they need Haar systems to construct groupoid
C∗-algebras, and Haar systems cannot exist unless the range and source maps are open.
The benefit of this assumption is that it forces the orbit space projections X → X/G for
all G-actions to be open:

9.34. Proposition. Let G be a groupoid and X a G-action in (Top, Topen). The orbit
space projection p : X → X/G is open. All actions of Čech groupoids in (Top, Topen) are
basic.
Proof. Let U ⊆ X be open. Then p−1(p(U)) is the set of all x · g with x ∈ U , g ∈ G1,
s(x) = r(g). This is m

(
(U × G1) ∩ (X ×s,G0,r G1)

)
, which is open because (U × G1) ∩

(X×s,G0,r G1) is open in X×s,G0,r G1 and m is a cover (open surjection) by Proposition 3.9.
Thus p(U) is open in X/G, and p is open. Proposition 9.15 characterises basic actions by
three conditions, of which two are automatic for actions of Čech groupoids. The third
condition is that p should be a cover, which is automatic for the pretopology Topen. Thus
all Čech groupoid actions in (Top, Topen) are basic, verifying Assumptions 7.2 and 7.3.

This finishes the proof of Proposition 9.32.

9.35. Corollary. Let G be a groupoid and X a G-action in (Top, Topen). The following
are equivalent:

(1) the action is basic with Hausdorff base space X/G;

(2) the action is free and proper.

Proof. This follows from the proof of Proposition 9.22, which still works even if G or X
are non-Hausdorff.
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The proof of Proposition 9.22 shows that an action is free and proper if and only if it
satisfies the first two conditions in Proposition 9.15 and X ×p,X/G,p X is closed in X × X.
This is exactly how Henri Cartan defines principal fibre bundles for a topological group G
in [12, condition (FP) on page 6-05]:

Un espace fibré principal E est un espace topologique E, où opère un
groupe topologique G (appelé groupe structural), de manière que soit rempli
l’axiome suivant :

(FP) : le graphe C de la relation d’équivalence définie par G est une partie
fermée de E × E ; pour chaque point (x, y) ∈ C il existe un s ∈ G et un seul
tel que x · s = y ; en outre, en désignant par u l’application de C dans G ainsi
définie, on suppose que u est une fonction continue.

Thus our notion of principal bundle in (Top, Topen) is the same as Henri Cartan’s. Palais [40]
and later authors ([14, 23]) call a locally compact group(oid) action Cartan if it satisfies
a condition that, for free actions, is equivalent to the continuity of the map (x, x · g) 7→ g,
allowing non-Hausdorff orbit spaces. Cartan himself, however, requires the orbit space
to be Hausdorff because he requires the orbit equivalence relation to be closed (Proposi-
tion 9.18).
Covers with many local continuous sections.

9.36. Definition. A continuous map f : X → Y has many local continuous sections if
it is surjective and for all x ∈ X there is an open neighbourhood U ⊆ Y of f(x) and a
continuous map σ : U → X with σ(f(x)) = x and f(σ(y)) = y for all y ∈ U . Let Tloc.sect.
be the class of continuous maps with many local continuous sections.

The difference between this pretopology and Tloc.split is that we require local sections
with a given x ∈ X in the image. This forces the map f to be open, so Tloc.sect. ⊆ Topen,
whereas Tloc.split 6⊆ Topen.

9.37. Proposition. The class Tloc.sect. is a subcanonical pretopology on Top that satisfies
Assumptions 2.8, 2.9, 7.2, and 7.3, but is not saturated. It satisfies Assumption 2.10 if
we exclude the empty space.
Proof. The proof is very similar to the proof for the pretopology Tloc.split (Proposi-
tion 9.26) and therefore left to the reader. The idea of Example 9.33 also shows that Tloc.sect.
is not saturated. Since Tloc.sect. is contained both in Tloc.split and Topen and both are sub-
canonical and have the property that actions of Čech groupoids are basic, Assumptions
7.2 and hence 7.3 follow from Proposition 7.6.

The topological groupoids in (Top, Tloc.sect.) are those topological groupoids for which r
or, equivalently, s has many local continuous sections. This happens for both maps once
it happens for one because of the continuous inversion on G1.

9.38. Proposition. Let G be a groupoid and X a G-action in (Top, Tloc.sect.). Then X is
basic in (Top, Tloc.sect.) if and only if it is basic in (Top, Tloc.split).
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Proof. Since r : G1 � G0 is a principal G-bundle in (Top, Tloc.sect.), so are its pull-
backs, that is, all trivial bundles. Since the existence of many local continuous sec-
tions is a local condition, this extends to locally trivial G-bundles. Since the principal
G-bundle in (Top, Tloc.split) are precisely the locally trivial G-bundles, they are principal
in (Top, Tloc.sect.) as well. The same then holds for basic actions.

Roughly speaking, if the map r : G1 � G0 has many local continuous sections, then we
may shift local continuous sections for the quotient map X → X/G so that a particular
point in a fibre is in the image of the local section.

Proposition 9.38 implies that the bicategories of bibundle functors, equivalences, and
actors for (Top, Tloc.sect.) are full sub-bicategories of the corresponding bicategories for
(Top, Tloc.split); we only restrict from all topological groupoids to those where the range
and source maps have many local continuous sections.
Étale surjections. A continuous map f : X → Y is called étale (or local homeomor-
phism) if for all x ∈ X there is an open neighbourhood U such that f(U) is open and
f |U : U → f(U) is a homeomorphism for the subspace topologies on U and f(U) from X
and Y , respectively. This implies that f is open. Let Tét be the class of étale surjections.

9.39. Proposition. The class Tét is a subcanonical pretopology on Top that satisfies
Assumptions 2.8, 2.9, 7.2 and 7.3; it is not saturated and Assumption 2.10 fails.
Proof. The proof is very similar to that of Proposition 9.26 and therefore left to the
reader. Unless X is discrete, the constant map from X to a point is not étale, so As-
sumption 2.10 fails for Tét even if we exclude the empty space. The idea of Example 9.33
shows that Tét is not saturated.

The groupoids in (Top, Tét) are precisely the étale topological groupoids.

9.40. Proposition. An action of an étale topological groupoid is basic in (Top, Tét) if
and only if it satisfies the first two conditions in Proposition 9.15. A groupoid action
in (Haus-Top, Tét) is basic if and only if it is free and proper.
Proof. Let G be an étale topological groupoid and let X be a G-action in Top that
satisfies the first two conditions in Proposition 9.15. We must prove that the canonical
map p : X→ X/G is étale, that is, the third condition in Proposition 9.15 is automatic for
the pretopology Tét. The characterisation of basic actions in (Haus-Top, Tét) then follows
from Proposition 9.22.

The first two conditions in Proposition 9.15 say that the map

X ×s,G0,r G1 → X ×p,X/G,p X, (x, g) 7→ (x, x · g),

is a homeomorphism. Since G is étale, the set of units u(G0) is open in G1. Its image in
X ×p,X/G,p X is the diagonal {(x1, x2) ∈ X × X | x1 = x2}. Hence any x ∈ X has an open
neighbourhood U ⊆ X such that (U ×U)∩ (X×p,X/G,p X) is the diagonal in U . This means
that for x1, x2 ∈ U , p(x1) = p(x2) only if x1 = x2. Thus p is injective on the open subset
U ⊆ X. Since G is an étale groupoid, its range and source maps are open. Hence p is
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open by Proposition 9.34. Its restriction to U is injective, open and continuous, hence a
homeomorphism onto an open subset of X/G.

9.41. Smooth manifolds of finite and infinite dimension. We consider the fol-
lowing categories of smooth manifolds of increasing generality:

Mfdfin finite-dimensional manifolds;
MfdHil Hilbert manifolds;
MfdBan Banach manifolds;
MfdFré Fréchet manifolds;
Mfdlcs locally convex manifolds.

Such manifolds are Hausdorff topological spaces that are locally homeomorphic to finite-
dimensional vector spaces, Hilbert spaces, Banach spaces, Fréchet spaces, or locally con-
vex topological vector spaces, respectively. Paracompactness is a standard assumption for
finite-dimensional manifolds, but not for infinite-dimensional ones. The morphisms be-
tween all these types of manifolds are smooth maps, meaning maps given in local charts
by smooth maps between topological vector spaces. Banach manifolds are treated in
Lang’s textbook [27], Fréchet manifolds in [21, Section I.4], and locally convex manifolds
in [37, Appendix A] and [47, Appendix B]. The covers are, in each case, the surjective
submersions in the following sense:

9.42. Definition. [see [21, Definition 4.4.8] and [37, Appendix A]] Let X and Y be
locally convex manifolds. A smooth map is a submersion if for each x ∈ X, there is
an open neighbourhood V of x in X such that U := f(V ) is open in Y , and there are
a smooth manifold W and a diffeomorphism V ∼= U × W that intertwines f and the
coordinate projection pr1 : U ×W → U .

Choosing U small enough, we may achieve that V , U and W are locally convex topo-
logical vector spaces. So submersions are maps that locally look like projections onto
direct summands in locally convex topological vector spaces.

9.43. Proposition. Surjective submersions form a subcanonical pretopology on Mfdlcs,
MfdFré, MfdBan, MfdHil and Mfdfin. In each case, Assumptions 2.8 and 7.3 hold, and
Assumption 2.10 holds if we exclude the empty manifold. The pretopology is not saturated.
Proof. That surjective submersions form a pretopology on locally convex manifolds is
shown in [37,47]. We briefly recall the argument below. It also works in the subcategories
Mfdfin, MfdHil, MfdBan, and MfdFré; more generally, we may use manifolds based on any
class C of topological vector spaces (not necessarily locally convex) that is closed under
taking finite products and closed subspaces (this ensures that fibre products of manifolds
locally modelled on topological vector spaces in C still have local models in C).

It is routine to check that isomorphisms are surjective submersions and that composites
of surjective submersions are again surjective submersions. If fi : Mi → N for i = 1, 2
are smooth maps and f1 is a submersion, then the fibre-product M1 ×N M2 is a smooth
submanifold of M1 ×M2, which satisfies the universal property of a fibre product. With
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our definition of smooth submersion, the proof is rather trivial, see [21, Theorem 4.4.10]
for the case of Fréchet manifolds and [37, Proposition A.3] for the general case. The proof
also shows that pr2 : M1×NM2 →M2 is a (surjective) submersion if f1 is one, so Tsubm is a
pretopology. Our categories of smooth manifolds do not admit fibre products in general,
so we must be careful about their representability.

Next we show that Tsubm is subcanonical. A submersion f : X → Y is open because
it is locally open. So our covers are open surjections and hence quotient maps of the
underlying topological spaces, since open surjections form a subcanonical pretopology by
Proposition 9.32. Thus any smooth map X → Z that equalises the coordinate projections
X ×Y X ⇒ X factors through a continuous map f ′ : Y → Z. Since any submersion f
admits smooth local sections, this map f ′ is smooth if and only if f is smooth. Hence f is
the equaliser of the coordinate projections X ×Y X ⇒ X also in the category of smooth
manifolds, so the pretopology Tsubm is subcanonical.

The final object is the zero-dimensional one-point manifold, and any map to it from
a non-empty manifold is a surjective submersion. So Assumption 2.10 is trivial for all
our categories of smooth manifolds if we exclude the empty manifold. The idea of Exam-
ple 9.33 shows that Tsubm is not saturated on any of our categories.

Now we check Assumption 2.8. Let f : X � U be a surjective submersion and let
g : Y → U be a smooth map. We have already shown that surjective submersions form a
pretopology. So the fibre product W := X×f,U,g Y exists and the projection pr2 : W � Y
is a surjective submersion. Assume that pr1 : W � X is a surjective submersion as well.
We are going to show that g is a surjective submersion.

It is clear that g is surjective. The submersion condition is local, so we must check
it near some y ∈ Y . Since f is surjective, there is some x ∈ X with f(x) = g(y),
that is, (x, y) ∈ W . Since f is a submersion, there are neighbourhoods X0 of x in X
and U0 of f(x) in U , a smooth manifold Ξ0, and a diffeomorphism α : Ξ0 × U0

∼→ X0
such that f ◦ α(ξ, u) = u for all ξ ∈ Ξ0, u ∈ U0. Let (ξ0, u0) = α−1(x). The preimage
W0 := pr−1

1 (X0) in W is an open submanifold. It is diffeomorphic to the fibre product
(Ξ0×U0)×U0Y

∼= Ξ0×Y0 with Y0 := g−1(U0) because W is a fibre product. The restriction
of pr1 to W0 is still a surjective submersion W0 → X0 because pr1 is one and the condition
for submersions is local. Hence we have improved our original fibre-product situation to
one where f is the projection map pr1 : Ξ0×U0 → U0. Thus W0 = Ξ0× Y0 is an ordinary
product and pr1 : W0 → X0 becomes the map

id× g0 : Ξ0 × Y0 → Ξ0 × U0, (ξ, y0) 7→ (ξ, g0(y0)),

where g0 : Y0 → U0 is the restriction of g.
The map id× g0 is a submersion by assumption. Hence there are neighbourhoods W1

around (ξ0, y0) in Ξ0 × Y0 and X1 around (ξ0, u0) in Ξ0 × U0, a smooth manifold Ω1,
and a diffeomorphism β : W1

∼→ Ω1 × X1 that intertwines id × g0 and the coordinate
projection Ω1 ×X1 → X1. We may shrink X1 to be of product type: X1 = Ξ1 × U1 for
open submanifolds Ξ1 ⊆ Ξ0 and U1 ⊆ U0 and replace W1 by the preimage of Ω1 times
the new X1, so we may assume without loss of generality that X1 is of product type. If
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(ξ1, y1) ∈ W1, then
β(ξ1, y1) = (ω1(ξ1, y1), ξ1, g0(y1))

for some function ω1 : W1 → Ω1: the second two components of β are id× g0 by construc-
tion. The subset

Y1 := {y ∈ Y0 | (ξ0, y) ∈ W1}

is open in Y0. We claim that γ(y1) := (ω1(ξ0, y1), g0(y1)) defines a diffeomorphism from Y1
onto Ω1 × U1; indeed, if (ω1, u1) ∈ Ω1 × U1, then β−1(ω1, ξ0, u1) must be of the form
(ξ0, y1) for some y1 ∈ Y0 with (ξ0, y1) ∈ W1 because the Ξ0-component of β(ξ1, y1) is ξ1.
Hence the smooth map β−1|Ω1×{ξ0}×U1 is inverse to γ. The restriction of g0 to Y1 becomes
the coordinate projection Ω1 × U1 → U1 by construction. Hence g : Y → U satisfies the
submersion condition near y. This finishes the proof that Assumption 2.8 holds for Tsubm.

Now we check Assumption 7.3. Let p : X � Z be a surjective submersion. Let G
be its Čech groupoid. Let Y be a sheaf over G, that is, a G-action that has a surjective
submersion s : Y � X as anchor map. We claim that the G-action on Y is basic. That
is, the orbit space Y/G is a smooth manifold, the orbit space projection Y → Y/G is a
surjective submersion, and the shear map Y ×s,G0,r G1 → Y ×Y/G Y , (y, g) 7→ (y, y · g), is
a diffeomorphism. Since surjective submersions are open, G becomes a Čech groupoid in
(Haus-Top, Topen). We know that Assumption 7.2 holds in that case, so Y/G is a Hausdorff
topological space, the orbit space projection Y → Y/G is a continuous open surjection,
and the shear map is a homeomorphism.

Since p and s are covers, so is p◦s, so the fibre product Y ×ZY is a smooth submanifold
of Y . If (y1, y2) ∈ Y ×Z Y , then (s(y1), s(y2)) ∈ X ×Z X = G1, with range and source
s(y1) and s(y2), respectively. Thus there is a well-defined smooth map

ψ : Y ×Z Y → Y ×X G1, (y1, y2) 7→ (y1, (s(y1), s(y2))).

Composing it with the shear map gives the map

ϕ : Y ×Z Y → Y ×Z Y, (y1, y2) 7→ (y1, y1 · (s(y1), s(y2))).

Since s(y1 · (s(y1), s(y2))) = s(y1) and (s(y1), s(y1)) is an identity arrow, we get ϕ2 = ϕ.
If y1, y2 are in the same G-orbit, that is, y1 · g = y2 for some g ∈ G1 = X ×Z X, then
r(g) = s(y1) and s(g) = s(y2), so g = (s(y1), s(y2)). Thus p(s(y1)) = p(s(y2)) is necessary
for y1 and y2 to have the same orbit (we write y1G = y2G). If this necessary condition is
satisfied, then the only arrow in G that has a chance to map y1 to y2 is (s(y1), s(y2)), so
y1G = y2G if and only if y1 · (s(y1), s(y2)) = y2. This is equivalent to ϕ(y1, y2) = (y1, y2).
Thus the image of ϕ is the subspace Y ×Y/G Y of Y ×Z Y , and the restriction of ψ
to Y ×Y/G Y is a smooth inverse for the shear map. More precisely, this is a smooth
inverse once we know that Y ×Y/G Y is a smooth submanifold of Y × Y and hence a
smooth submanifold of Y ×Z Y . Thus the condition on the shear map is automatic in our
case, and we only have to construct a smooth structure on Y/G such that the projection
π : Y → Y/G is a submersion.
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We first restrict to small open subsets where p and s are of product type. Fix y ∈ Y .
We may choose neighbourhoods Y0 of y in Y , X0 of s(y) in X and Z0 of p(s(y)) in Z,
smooth manifolds Ω0 and Ξ0, and diffeomorphisms Y0 ∼= Ω0 × X0, X0 ∼= Ξ0 × Z0, such
that the maps s and p become the projections to the second coordinate, respectively.
We identify Y0 = Ω0 × Ξ0 × Z0 and X0 = Ξ0 × Z0, so that s(ω0, ξ0, z0) = (ξ0, z0) and
p(ξ0, z0) = z0 for all ω0 ∈ Ω0, ξ0 ∈ Ξ0, z0 ∈ Z0. Let (ω, ξ, z) be the coordinates of the
chosen point y ∈ Y .

What happens to the G-action on Y in these coordinates? Let (ω0, ξ0, z0) ∈ Y0.
Then s(ω0, ξ0, z0) = (ξ0, z0). An arrow in G ∩ (X0 ×Z0 X0) with range (ξ0, z0) is a pair
((ξ0, z0), (ξ1, z0)), which we identify with the triple (ξ0, z0, ξ1). If ξ1 is sufficiently close
to ξ0, then (ω0, ξ0, z0) · (ξ0, z0, ξ1) belongs to Y0 and may be written in our coordinates.
Since s((ω0, ξ0, z0) · (ξ0, z0, ξ1)) = (ξ1, z0), we get

(ω0, ξ0, z0) · (ξ0, z0, ξ1) = (ϕ(ω0, ξ0, z0, ξ1), ξ1, z0)

for a smooth function ϕ defined on some neighbourhood W1 of (ω0, ξ0, z0, ξ0) in Ω0×Ξ0×
Z0 × Ξ0. Let Y1 := {y ∈ Y0 | (ω0, ξ0, z0, ξ) ∈ W1}, where ξ is the Ξ0-coordinate of our
chosen point y. Define

α : Y1 → Ω0 × Ξ0 × Z0, (ω0, ξ0, z0) 7→ (ϕ(ω0, ξ0, z0, ξ), ξ0, z0).

In other words, α(ω0, ξ0, z0) takes the original Ξ0-coordinate and takes the other coordi-
nates from (ω0, ξ0, z0) · (ξ0, z0, ξ). Since (ξ1, z0, ξ2) · (ξ2, z0, ξ1) = (ξ1, z0, ξ1) is a unit arrow
and thus acts identically on Y for any ξ1, ξ2 ∈ Ξ0, z0 ∈ Z0, we get

α−1(ω0, ξ0, z0) = (ϕ(ω0, ξ, z0, ξ0), ξ0, z0)

on some neighbourhood of (ω, ξ, z). Thus α is a diffeomorphism from some neighbour-
hood Y1 of y in Y0 onto a neighbourhood Ω1×Ξ1×Z1 of α(y) = (ω, ξ, z) in Ω0×Ξ0×Z0.

When are y1, y2 ∈ Y1 in the same G-orbit? Write α(yi) = (ωi, ξi, zi). Then s(yi) =
(ξi, zi) and ps(yi) = zi in local coordinates. Since ps(y1) = ps(y2) is necessary for y1G =
y2G, we have z1 = z2 if y1G = y2G. Assume this, then (s(y1), s(y2)) ∈ X ×Z X = G1, so
we have y1G = y2G if and only if y1 · (s(y1), s(y2)) = y2 by the discussion above. This is
equivalent to z1 = z2 and

y1 · (s(y1), (z1, ξ)) = y2 · (s(y2), (z2, ξ)),

where ξ is the Ξ0-coordinate of our fixed point y. And this is equivalent to pr13 ◦ α(y1) =
pr13 ◦ α(y2).

As a consequence, the restriction of the quotient map Y → Y/G to α−1(Ω1×{ξ}×U1)
is a homeomorphism onto its image; this image is the same as the image of Y1, which
is an open subset in Y/G because Y1 is open and the quotient map Y → Y/G is open.
Furthermore, with this coordinate chart, the restriction of the projection Y → Y/G to Y1
becomes the coordinate projection pr13 : Ω1 × Ξ1 × Z1 → Ω1 × Z1. Doing the above
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construction for all y ∈ Y , we get a covering of Y by open subsets like our Y1 with
corresponding charts on π(Y1). We claim that these local charts on Y/G have smooth
coordinate change maps. Thus Y/G becomes a smooth manifold. The charts are defined
in such a way that the projection π : Y → Y/G is a smooth submersion. We have already
seen above that the shear map is a diffeomorphism. Hence the proof that the G-action
on Y is basic will be finished once we show that coordinate change maps between our
local charts on Y/G are smooth.

The charts on Y/G are defined in such a way that the projection map π : Y → Y/G
is smooth for each chart and there are smooth sections Y/G ⊇ Ω1 × U1 → Y on the
chart neighbourhoods, defined by (ω1, u1) 7→ (ω1, ξ, u1) in local coordinates. Now take
two overlapping charts on Y/G defined on open subsets W1,W2 ⊆ Y/G with their smooth
local sections σi : Wi → Y . If w ∈ W1∩W2, then σ1(w) and σ2(w) are two representatives
of the same G-orbit. By the discussion above, this means that ps(σ1(w)) = ps(σ2(w)) and
σ2(w) = σ1(w) · (s(σ1(w)), s(σ2(w))). Thus the coordinate change map from W1 to W2 is
of the form

w 7→ π
(
σ1(w) · (s(σ1(w)), s(σ2(w)))

)
.

Since the maps π, σi and s are all smooth in our local coordinates, so is the composite
map. This finishes the proof that Assumption 7.3 holds for Tsubm. The proof works for
all our categories of infinite-dimensional manifolds.

It is unclear whether Assumptions 2.9 and 7.2 hold for Fréchet and locally convex
manifolds. The problem is that we lack a general implicit function theorem. Such a theo-
rem is available for Banach manifolds and gives the following equivalent characterisations
of submersions:

9.44. Proposition. Let X and Y be Banach manifolds and let f : X → Y be a smooth
map. The following are equivalent:

(1) f is a submersion in the sense of Definition 9.42;

(2) f has many smooth local sections, that is, for each x ∈ X, there is an open neigh-
bourhood U of f(x) and a smooth map σ : U → X with σ(f(x)) = x and f ◦σ = idU ;

(3) for each x ∈ X, the derivative Dxf : TxX → Tf(x)Y is split surjective, that is, there
is a continuous linear map s : Tf(x)Y → TxX with Dxf ◦ s = idTf(x)Y .

If X and Y are Hilbert manifolds, then (3) is equivalent to Dxf being surjective.
Proof. It is trivial that (1) implies (2). Using Df(x)σ as continuous linear section for Dxf ,
we see that (2) implies (3). The implication from (3) to (1) is [27, Proposition 2.2 in
Chapter II]. If X and Y are Fréchet manifolds, then the derivative Dxf is open once it is
surjective by the Open Mapping Theorem. If Dxf is surjective and X and Y are Hilbert
manifolds, then the orthogonal projection onto kerDxf splits X ∼= ker(Dxf)⊕Df(x)Y , so
(3) follows if Dxf is surjective and X and Y are Hilbert manifolds.
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9.45. Proposition. On the categories MfdBan, MfdHil and Mfdfin, the pretopology Tsubm
also satisfies Assumption 2.9.
Proof. Since we are working with Banach manifolds or smaller categories, we may use
Proposition 9.44 to redefine our covers as surjective smooth maps with many smooth
local sections. With this alternative definition of our covers, Assumption 2.9 holds for the
same reason as for the pretopology of continuous surjections with many continuous local
sections on the category of topological spaces. Let X, Y and Z be Banach manifolds and
let f : X → Y and g : Y → Z be smooth maps. We assume that g ◦f and f are surjective
submersions and want to show that g is so to. Of course, g must be surjective if g ◦ f is.
Given y ∈ Y , there is x ∈ X with f(x) = y because g is surjective, and there is a smooth
local section σ for g ◦ f near g(y) with σ(g(y)) = x. Then f ◦ σ is a smooth local section
for g with f ◦ σ(g(y)) = y.

If we redefined submersions of locally convex or Fréchet manifolds using one of the
alternative criteria in Proposition 9.44, then the existence of pull-backs along submersions
would become unclear.

The next lemma is needed to verify Assumption 7.2 for Banach manifolds.

9.46. Lemma. Let Y be a Banach manifold and let ϕ : Y → Y be a smooth map with
ϕ2 = ϕ. The image im(ϕ) is a closed submanifold of Y and ϕ : Y → im(ϕ) is a surjective
submersion.
Proof. The image is closed because Y is Hausdorff and

im(ϕ) = {x ∈ Y | ϕ(x) = x}.

We need a submanifold chart for im(ϕ) near y ∈ im(ϕ). We use a chart γ : TyY → Y ,
that is, γ is a diffeomorphism onto an open neighbourhood of y in Y whose derivative
at 0 is the identity map on the Banach space TyY . It suffices to find a submanifold chart
for ϕ′ := γ−1 ◦ϕ◦γ, which is an idempotent smooth map on a neighbourhood of 0 in TyY
with ϕ′(0) = 0. Let D : TyY → TyY be the derivative of ϕ′ at 0, which is a linear map
with D2 = D. We may assume that ϕ′ is defined on all of TyY to simplify notation.

Let X = im(D), W = ker(D). The map

Ψ: X ⊕W → TyY, (ξ, η) 7→ ϕ′(ξ) + η,

has the identity map as derivative near (0, 0). By the Implicit Function Theorem for
Banach manifolds, Ψ is a diffeomorphism between suitable open neighbourhoods of 0
in X ⊕W and TyY . We have Ψ(ξ, 0) = ϕ′(ξ) ∈ im(ϕ′) for all ξ ∈ X, and

ϕ′(Ψ(ξ, η))−Ψ(ξ, η) = ϕ′(ϕ′(ξ) + η)− ϕ′(ξ)− η
= D(Dξ + η)−Dξ − η +O(‖ξ‖2 + ‖η‖2) = −η +O(‖ξ‖2 + ‖η‖2).

This is non-zero if η 6= 0 and η, ξ are small enough. Hence, for sufficiently small ξ, η, we
have Ψ(ξ, η) ∈ im(ϕ′) if and only if η = 0. Thus Ψ is a submanifold chart for im(ϕ′)
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near 0. Its composite with γ gives the required submanifold chart for im(ϕ) near y. It
is clear from the construction that the map ϕ : Y → im(ϕ) has surjective derivative at y,
hence it is a smooth submersion by Proposition 9.44.

9.47. Proposition. Every action of a Čech groupoid of a cover in (MfdBan, Tsubm) is
basic.
Proof. Let p : M → N be a surjective submersion and let G = (M ×p,N,pM ⇒ N) be its
Čech groupoid (see Example 3.12). Let G act on a smooth manifold Y with anchor map
s : Y → G0.

Since p has many smooth local sections, we may cover N by open subsets Ui, i ∈ I,
for which there are smooth local sections σi : Ui → M with p ◦ σi = idUi

. Then Yi :=
(ps)−1(Ui) ⊆ Y is open (and thus an open submanifold of Y ) and G-invariant.

The map
ϕi : Yi → Yi, y 7→ y ·

(
s(y), σi ◦ p ◦ s(y)

)
,

is smooth and maps y to a point y′ in the same G-orbit with s(y′) ∈ σi(Ui). If y′ and y′′

belong to the same G-orbit, then s(y′) = s(y′′) implies y′ = y′′ because the only element
of G that may map y′ to y′′ is (s(y′), s(y′′)). Thus ϕi(y) is the unique element in the
G-orbit of y that belongs to s−1(σi(Ui)). Thus ϕ2

i = ϕi. By Lemma 9.46, im(ϕ) is a
smooth submanifold of Y and ϕi : Yi → im(ϕi) is a surjective submersion.

If y1, y2 ∈ Yi satisfy ϕi(y1) = ϕi(y2), then y2 = y1 · (s(y1), s(y2)). Hence the map
Yi ×s,M,pr1 (M ×N M)→ Yi ×ϕi,Yi,ϕi

Yi, (y, (m1,m2)) 7→ (y, y · (m1,m2)),
is a diffeomorphism with inverse (y1, y2) 7→ (y1, (s(y1), s(y2))). As a consequence, the
restriction of the G-action to Yi with the bundle projection ϕi : Yi → im(ϕi) is a principal
bundle.

It remains to glue together these local constructions. Let Y/G be the quotient space
with the quotient topology. The quotient map π : Y → Y/G is open by Proposition 9.34
and because submersions are open. Thus the subsets π(Yi) form an open cover of Y/G.
The above argument shows that π restricts to a homeomorphism from im(ϕi) onto π(Yi).
We claim that there is a unique smooth manifold structure on Y/G for which the maps
π : im(ϕi) → Y/G become diffeomorphisms onto open subsets of Y/G. We only have to
check that the coordinate change maps on Y/G from im(ϕi) to im(ϕj) are smooth maps.
This is so because the map

Yi ∩ im(ϕj)→ im(ϕi) ∩ Yj, y 7→ y · (σi ◦ s(y), σj ◦ s(y)),
is a diffeomorphism between submanifolds of Yi, with inverse given by a similar formula.
The orbit space projection Y → Y/G is a surjective submersion for this smooth manifold
structure on Y/G because this holds locally on each Yi. The same argument as above
shows that the map

Y ×s,M,pr1 (M ×N M)→ Y ×Y/G Y, (y, (m1,m2)) 7→ (y, y · (m1,m2)),
is a diffeomorphism with inverse (y1, y2) 7→ (y1, (s(y1), s(y2))). Hence Y � Y/G is a
principal G-bundle.
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As a result, most of our theory works for locally convex manifolds with surjective
submersions as covers. This includes the bicategories of anafunctors, bibundle functors
and bibundle equivalences, but not the bicategories of covering bibundle functors and
bibundle actors. We only know that these bicategories exist for Banach, Hilbert and
finite-dimensional manifolds.

9.48. Remark. An action is basic in the category of finite-dimensional manifolds if and
only if it is basic in the category of Hausdorff spaces, if and only if it is free and proper
(see Proposition 9.22). This remains true for Hilbert manifolds. For group actions, this is
the main result of [24]; groupoid actions may be reduced to group actions using the proof
of [49, Lemma 3.11].

For Banach manifolds and, even more generally, for locally convex manifolds, it re-
mains true that basic actions are free and proper, but the converse fails. Here is a
counterexample (see also [5, Chapter 3]). Let E be a Banach space and let F be a closed
subspace without complement, for instance, c0(N) ⊂ `∞(N). Let F act on E by inclusion
and linear addition. This action is free and proper, and the orbit space projection is the
quotient map E → E/F . The derivative of this map is the same map E → E/F , which
has no linear section by assumption. Hence the orbit space projection is not a cover, so
the action is not basic.
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de Lie libres. Chapitre III: Groupes de Lie, Hermann, Paris, 1972. MR 0573068

[6] Javier Bracho, Haefliger structures and linear homotopy, Trans. Amer. Math. Soc. 282 (1984), no. 2,
529–538, doi: 10.2307/1999250. MR 732104
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R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


	1 Introduction
	2 Pretopologies
	3 Groupoids in a category with pretopology
	4 Groupoid actions
	5 Principal bundles
	6 Bibundle functors, actors, and equivalences
	7 Composition of bibundles
	8 The quasi-category of bibundle functors
	9 Examples of categories with pretopology

