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ON BIADJOINT TRIANGLES

FERNANDO LUCATELLI NUNES

Abstract. We prove a biadjoint triangle theorem and its strict version, which are
2-dimensional analogues of the adjoint triangle theorem of Dubuc. Similarly to the
1-dimensional case, we demonstrate how we can apply our results to get the pseu-
domonadicity characterization (due to Le Creurer, Marmolejo and Vitale).

Furthermore, we study applications of our main theorems in the context of the 2-monadic
approach to coherence. As a direct consequence of our strict biadjoint triangle theorem,
we give the construction (due to Lack) of the left 2-adjoint to the inclusion of the strict
algebras into the pseudoalgebras.

In the last section, we give two brief applications on lifting biadjunctions and pseudo-Kan
extensions.

Introduction

Assume that E : A→ C, J : A→ B, L : B→ C are functors such that there is a natural
isomorphism

A
J //

E ��

B

L��
C

∼=

Dubuc [2] proved that if L : B → C is precomonadic, E : A → C has a right adjoint
and A has some needed equalizers, then J has a right adjoint. In this paper, we give a 2-
dimensional version of this theorem, called the biadjoint triangle theorem. More precisely,
let A, B and C be 2-categories and assume that

E : A→ C, J : A→ B, L : B→ C

are pseudofunctors such that L is pseudoprecomonadic and E has a right biadjoint. We
prove that, if we have the pseudonatural equivalence below, then J has a right biadjoint
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G, provided that A has some needed descent objects.

A
J //

E ��

B

L��
C

'

We also give sufficient conditions under which the unit and the counit of the obtained
biadjunction are pseudonatural equivalences, provided that E and L induce the same
pseudocomonad. Moreover, we prove a strict version of our main theorem on biadjoint
triangles. That is to say, we show that, under suitable conditions, it is possible to construct
(strict) right 2-adjoints.

Similarly to the 1-dimensional case [2], the biadjoint triangle theorem can be applied
to get the pseudo(co)monadicity theorem due to Le Creurer, Marmolejo and Vitale [13].
Also, some of the constructions of biadjunctions related to two-dimensional monad theory
given by Blackwell, Kelly and Power [1] are particular cases of the biadjoint triangle
theorem.

Furthermore, Lack [12] proved what may be called a general coherence result: his
theorem states that the inclusion of the strict algebras into the pseudoalgebras of a given
2-monad T on a 2-category C has a left 2-adjoint and the unit of this 2-adjunction is a
pseudonatural equivalence, provided that C has and T preserves strict codescent objects.
This coherence result is also a consequence of the biadjoint triangle theorems proved in
Section 4.

Actually, although the motivation and ideas of the biadjoint triangle theorems came
from the original adjoint triangle theorem [2, 20] and its enriched version stated in Section
1, Theorem 4.3 may be seen as a generalization of the construction, given in [12], of the
right biadjoint to the inclusion of the 2-category of strict coalgebras into the 2-category
of pseudocoalgebras.

In Section 1, we give a slight generalization of Dubuc’s theorem, in its enriched version
(Proposition 1.1). This version gives the 2-adjoint triangle theorem for 2-pre(co)monadicity,
but it lacks applicability for biadjoint triangles and pseudopre(co)monadicity. Then, in
Section 2 we change our setting: we recall some definitions and results of the tricategory
2-CAT of 2-categories, pseudofunctors, pseudonatural transformations and modifications.
Most of them can be found in Street’s articles [18, 19].

Section 3 gives definitions and results related to descent objects [18, 19], which is a
very important type of 2-categorical limit in 2-dimensional universal algebra. Within our
established setting, in Section 4 we prove our main theorems (Theorem 4.3 and Theorem
4.6) on biadjoint triangles, while, in Section 5, we give consequences of such results in
terms of pseudoprecomonadicity (Corollary 5.10), using the characterization of pseudo-
precomonadic pseudofunctors given by Proposition 5.7, that is to say, Corollary 5.9.

In Section 6, we give results (Theorem 6.3 and Theorem 6.5) on the counit and unit
of the obtained biadjunction J a G in the context of biadjoint triangles, provided that
E and L induce the same pseudocomonad. Moreover, we demonstrate the pseudopre-
comonadicity characterization of [13] as a consequence of our Corollary 5.9.
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In Section 7, we show how we can apply our main theorem to get the pseudocomonadic-
ity characterization [8, 13] and we give a corollary of Theorem 6.5 on the counit of the
biadjunction J a G in this context. Furthermore, in Section 8 we show that the theorem
of [12] on the inclusion T -CoAlg

s
→ Ps-T -CoAlg is a direct consequence of the theorems

presented herein, giving a brief discussion on consequences of the biadjoint triangle the-
orems in the context of the 2-(co)monadic approach to coherence. Finally, we discuss a
straightforward application on lifting biadjunctions in Section 9.

Since our main application in Section 9 is about construction of right biadjoints, we
prove theorems for pseudoprecomonadic functors instead of proving theorems on pseudo-
premonadic functors. But, for instance, to apply the results of this work in the original
setting of [1], or to get the construction of the left biadjoint given in [12], we should, of
course, consider the dual version: the Biadjoint Triangle Theorem 4.4.

I wish to thank my supervisor Maria Manuel Clementino for her support, attention
and useful feedback during the preparation of this work, realized in the course of my PhD
program at University of Coimbra.

1. Enriched Adjoint Triangles

Consider a cocomplete, complete and symmetric monoidal closed category V . Assume
that L : B→ C is a V -functor and (L a U, η, ε) is a V -adjunction. We denote by

χ : C(L−,−) ∼= B(−, U−)

its associated V -natural isomorphism, that is to say, for every object X of B and every
object Z of C, χ

(X,Z)
= B(η

X
, UZ) ◦ U

LX,Z
.

1.1. Proposition. [Enriched Adjoint Triangle Theorem] Let (L a U, η, ε), (E a R, ρ, µ)
be V -adjunctions such that

A J //

E ��

B

L��
C

is a commutative triangle of V -functors. Assume that, for each pair of objects (A ∈
A, Y ∈ B), the induced diagram

B(JA, Y )
L
JA,Y // C(EA,LY )

C(EA,L(η
Y
))

//

L
JA,ULY

◦ χ
(JA,LY ) //

C(EA,LULY )

is an equalizer in V . The V -functor J has a right V -adjoint G if and only if, for each
object Y of B, the V -equalizer of

RLY
RL(U(µ

LY
)η
JRLY

)ρ
RLY //

RL(η
Y
)

// RLULY

exists in the V -category A. In this case, this equalizer gives the value of GY .
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Proof. For each pair of objects (A ∈ A, Y ∈ B), the V -natural isomorphism C(E−,−) ∼=
A(−, R−) gives the components of the natural isomorphism

B(JA, Y )
L
JA,Y // C(EA,LY )

∼=

��

C(EA,L(η
Y
))

//

L
JA,ULY

◦ χ
(JA,LY ) //

C(EA,LULY )

∼=

��
B(JA, Y ) // A(A,RLY )

A(A,rY ) //

A(A,qY )
// A(A,RLULY )

in which qY = RL(η
Y

) and rY = RL(U(µ
LY

)η
JRLY

)ρ
RLY

. Thereby, since, by hypothesis,
the top row is an equalizer, B(JA, Y ) is the equalizer of (A(A, qY ),A(A, rY )).

Assuming that the pair (qY , rY ) has a V -equalizer GY in A for every Y of B, we have
that A(A,GY ) is also an equalizer of (A(A, qY ),A(A, rY )). Therefore we get a V -natural
isomorphism A(−, GY ) ∼= B(J−, Y ).

Reciprocally, if G is right V -adjoint to J , since A(−, GY ) ∼= B(J−, Y ) is an equalizer
of (A(−, qY ),A(−, rY )), GY is the V -equalizer of (qY , rY ). This completes the proof that
the V -equalizers of qY , rY are also necessary.

The results on (co)monadicity in V -CAT are similar to those of the classical context
of CAT (see, for instance, [3, 16]). Actually, some of those results of the enriched context
can be seen as consequences of the classical theorems because of Street’s work [16].

Our main interest is in Beck’s theorem for V -precomonadicity. More precisely, it is
known that the 2-category V -CAT admits construction of coalgebras [16]. Therefore every
left V -adjoint L : B→ C comes with the corresponding Eilenberg-Moore factorization.

B φ //

L ""

CoAlg

��
C

If V = Set, Beck’s theorem asserts that φ is fully faithful if and only if the diagram below
is an equalizer for every object Y of B. In this case, we say that L is precomonadic.

Y
η
Y // ULY

UL(η
Y
)
//

η
ULY //

ULULY

With due adaptations, this theorem also holds for enriched categories. That is to say, φ
is V -fully faithful if and only if the diagram above is a V -equalizer for every object Y of
B. This result gives what we need to prove Corollary 1.2, which is the enriched version
for Dubuc’s theorem [2].
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1.2. Corollary. Let (L a U, η, ε), (E a R, ρ, µ) be V -adjunctions and J be a V -functor
such that

A J //

E ��

B

L��
C

commutes and L is V -precomonadic. The V -functor J has a right V -adjoint G if and
only if, for each object Y of B, the V -equalizer of

RLY
RL(U(µ

LY
)η
JRLY

)ρ
RLY //

RL(η
Y
)

// RLULY

exists in the V -category A. In this case, these equalizers give the value of the right adjoint
G.

Proof. The isomorphisms induced by the V -natural isomorphism χ : C(L−,−) ∼=
B(−, U−) are the components of the natural isomorphism

B(JA, Y )
L
JA,Y // C(EA,LY )

χ
(JA,LY )

��

C(EA,L(η
Y
))

//

L
JA,ULY

◦ χ
(JA,LY ) //

C(EA,LULY )

χ
(JA,LULY )

��
B(JA, Y )

B(JA,η
Y
)
// B(JA,ULY )

B(JA,η
ULY

)
//

B(JA,UL(η
Y
))

// B(JA,ULULY )

Since L is V -precomonadic, by the previous observations, the top row of the diagram above
is an equalizer. Thereby, for every object A of A and every object Y of B, the bottom
row, which is the diagram DJA

Y , is an equalizer. By Proposition 1.1, this completes the
proof.

Proposition 1.1 applies to the case of CAT-enriched category theory. But it does not
give results about pseudomonad theory. For instance, the construction above does not
give the right biadjoint constructed in [1, 12]

Ps-T -CoAlg→ T -CoAlg
s
.

Thereby, to study pseudomonad theory properly, we study biadjoint triangles, which
cannot be dealt with only CAT-enriched category theory. Yet, a 2-dimensional version of
the perspective given by Proposition 1.1 is what enables us to give the construction of
(strict) right 2-adjoint functors in Subsection 4.5.
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2. Bilimits

We denote by 2-CAT the tricategory of 2-categories, pseudofunctors (homomorphisms),
pseudonatural transformations (strong transformations) and modifications. Since this is
our main setting, we recall some results and concepts related to 2-CAT. Most of them can
be found in [18], and a few of them are direct consequences of results given there.

Firstly, to fix notation, we set the tricategory 2-CAT, defining pseudofunctors, pseudo-
natural transformations and modifications. Henceforth, in a given 2-category, we always
denote by · the vertical composition of 2-cells and by ∗ their horizontal composition.

2.1. Definition. [Pseudofunctor] Let B,C be 2-categories. A pseudofunctor L : B→ C
is a pair (L, l) with the following data:

• Function L : obj(B)→ obj(C);

• For each pair (X, Y ) of objects in B, functors L
X,Y

: B(X, Y )→ C(LX,LY );

• For each pair g : X → Y, h : Y → Z of 1-cells in B, an invertible 2-cell of C:

l
hg

: L(h)L(g)⇒ L(hg);

• For each object X of B, an invertible 2-cell in C:

l
X

: id
LX
⇒ L(id

X
);

such that, if ĝ, g : X → Y, ĥ, h : Y → Z, f : W → X are 1-cells of B, and x : g ⇒ ĝ, y :
h⇒ ĥ are 2-cells of B, the following equations hold:

1. Associativity:

LW
L(f) //

L(hgf)

��

L(gf)

  

LX

L(g)

��

l
gf⇐===

LW
L(f) //

L(hgf)

��

l
(hg)f
⇐=====

LX

L(g)

��

L(hg)

~~

=

LZ

l
h(gf)
⇐=====

LY
L(h)

oo LZ LY
L(h)

oo

l
hg⇐===

2. Identity:

LW
L(f) //

L(id
X
f)

��

LX

L(id
X

)

��

l
X⇐==

id
LX

��

LW

L(fid
W

)

��

LW

L(id
W

)

��

l
W⇐===

id
LW

��

LW

L(f)

��

=L(f)

��

l
id
X
f

⇐=====
=

l
fid

W⇐=====
=

LX LX LX LW
L(f)

oo LX
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3. Naturality:

LX

L(ĥĝ)

��

LX

L(ĝ)

��

LX

L(g)

��

LX

L(ĥĝ)

��

LX
L(g) //

L(hg)

��

LY

L(h)

��

L(x)
⇐===

LY
l
ĥĝ⇐===

L(ĥ)

��

LY

L(h)

��

= L(y∗x)
⇐=====

l
hg⇐=====

L(y)
⇐===

LZ LZ LZ LZ LZ LZ

The composition of pseudofunctors is easily defined. Namely, if (J, j) : A→ B, (L, l) :
B → C are pseudofunctors, we define the composition by L ◦ J := (LJ, (lj)), in which
(lj)

hg
:= L(j

hg
) · l

J(h)J(g)
and (lj)

X
:= L(j

X
) · l

JX
. This composition is associative and it has

trivial identities.
Furthermore, recall that a 2-functor L : B→ C is just a pseudofunctor (L, l) such that

its invertible 2-cells l
f

(for every morphism f) and l
X

(for every object X) are identities.

2.2. Definition. [Pseudonatural transformation] If L,E : B → C are pseudofunctors,
a pseudonatural transformation α : L −→ E is defined by:

• For each object X of B, a 1-cell α
X

: LX → EX of C;

• For each 1-cell g : X → Y of B, an invertible 2-cell αg : E(g)α
X
⇒ α

Y
L(g) of C;

such that, if g, ĝ : X → Y, f : W → X are 1-cells of A, and x : g ⇒ ĝ is a 2-cell of A, the
following equations hold:

1. Associativity:

LW

L(gf)

��

LW
α
W //

L(f)

��

EW

E(f)

��

LW

L(gf)

��

α
W // EW

E(f) //

E(gf)

��

EX

E(g)

��

α
f⇐==

LXl
gf⇐===

L(g)

��

α
X

// EX

E(g)

��

=
α
gf⇐===

e
gf⇐=====

αg⇐==

LY LY
α
Y

// EY LY
α
Y

// EY EY
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2. Identity:

LW

L(id
W

)

��

l
W⇐===

id
LW

��

α
W // EW

id
EW

��

LW
α
W //

L(id
W

)

��

EW

E(id
W

)

��

e
W⇐===

id
EW

��

= =
α

id
W⇐=====

LW
α
W

// EW LW
α
W

// EW

3. Naturality:

LX

L(ĝ)

��

L(x)
⇐===

L(g)

��

α
X // EX

E(g)

��

LX
α
X //

L(ĝ)

��

EX

E(ĝ)

��

E(x)
⇐===

E(g)

��

αg⇐=== =
α
ĝ⇐===

LY
α
Y

// EY LY
α
Y

// EY

Firstly, we define the vertical composition, denoted by βα, of two pseudonatural trans-
formations α : L −→ E, β : E −→ U by

(βα)
W

:= β
W
α
W

LW
β
W
α
W //

L(f)

��
(βα)

f⇐=====

UW

:=U(f)

��

LW
α
W //

L(f)

��
α
f⇐==

EW

E(f)

��

β
W //

β
f⇐==

UW

U(f)

��
LX

β
X
α
X

// UX LX
α
X

// EX
β
X

// UX

Secondly, assume that L,E : B→ C and G, J : A→ B are pseudofunctors. We define
the horizontal composition of two pseudonatural transformations α : L −→ E, λ : G −→ J
by (α ∗ λ) := (αJ)(Lλ), in which αJ is trivially defined and (Lλ) is defined below

(Lλ)
W

:= L(λ
W

) (Lλ)
f

:=
(
l
λ
X
G(f)

)−1
· L(λ

f
) · l

J(f)λ
W

Also, recall that a 2-natural transformation is just a pseudonatural transformation
α : L −→ E such that its components αg : E(g)α

X
⇒ α

Y
L(g) are identities (for all

morphisms g).

2.3. Definition. [Modification] Let L,E : B→ C be pseudofunctors. If α, β : L −→ E
are pseudonatural transformations, a modification Γ : α =⇒ β is defined by the following
data:

• For each object X of B, a 2-cell Γ
X

: α
X
⇒ β

X
of C;
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such that: if f : W → X is a 1-cell of B, the equation below holds.

LW

α
W

��

Γ
W===⇒

β
W

��

L(f) // LX

β
X

��

LW
L(f) //

α
W

��

LX

α
X

��

Γ
X===⇒

β
X

��

β
f

===⇒ =
α
f

===⇒

EW
E(f)

// EX EW
E(f)

// EX

The three types of compositions of modifications are defined in the obvious way.
Thereby, it is straightforward to verify that, indeed, 2-CAT is a tricategory, lacking
strictness/2-functoriality of the whiskering. In particular, we denote by [A,B]PS the
2-category of pseudofunctors A→ B, pseudonatural transformations and modifications.

The bicategorical Yoneda Lemma [18] says that there is a pseudonatural equivalence

[S,CAT]PS(S(a,−),D) ' Da

given by the evaluation at the identity.

2.4. Lemma. [Yoneda Embedding [18]] The Yoneda 2-functor Y : A → [Aop,CAT]PS is
locally an equivalence (i.e. it induces equivalences between the hom-categories).

Considering pseudofunctors L : B → C and U : C → B, we say that U is right
biadjoint to L if we have a pseudonatural equivalence C(L−,−) ' B(−, U−). This
concept can be also defined in terms of unit and counit as it is done at Definition 2.5.

2.5. Definition. Let U : C→ B, L : B→ C be pseudofunctors. L is left biadjoint to U
if there exist

1. pseudonatural transformations η : IdB −→ UL and ε : LU −→ IdC

2. invertible modifications s : idL =⇒ (εL)(Lη) and t : (Uε)(ηU) =⇒ idU

such that the following 2-cells are identities [6]:

IdB
η //

η

��

UL

ηUL

��

tL
=⇒

LU

l−1
U

(Lt)l
(Uε)(ηU)

==========⇒LηU

##

sU
=⇒

η(η)
===⇒ LULU

LUε //

εLU

��

LU

ε

��

UL
ULη

//

u−1
(Lη)(εL)

(Us)u
L

==========⇒

ULUL

UεL

##

ε(ε)
==⇒

UL LU ε
// IdC
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2.6. Remark. By definition, if a pseudofunctor L is left biadjoint to U , there is at least
one associated data (L a U, η, ε, s, t) as described above. Such associated data is called a
biadjunction.

Also, every biadjunction (L a U, η, ε, s, t) has an associated pseudonatural equivalence
χ : C(L−,−) ' B(−, U−), in which

χ
(X,Z)

: C(LX,Z) → B(X,UZ)

f 7→ U(f)ηX
m 7→ U(m) ∗ idη

X

(
χ

(g,h)

)
f

:=
(
u

(hf)Lg
∗ idη

X

)
·
(
u
hf
∗ η−1

g

)
Reciprocally, such a pseudonatural equivalence induces a biadjunction (L a U, η, ε, s, t).

2.7. Remark. Similarly to the 1-dimensional case, if (L a U, η, ε, s, t) is a biadjunction,
the counit ε : LU −→ idC is a pseudonatural equivalence if and only if, for every pair
(X, Y ) of objects of C, U

X,Y
: C(X, Y )→ B(UX,UY ) is an equivalence (that is to say, U

is locally an equivalence).
The proof is also analogous to the 1-dimensional case. Indeed, given a pair (X, Y ) of

objects in B, the composition of functors

B(X, Y )
B(ε

X
,Y )
//B(LUX, Y )

χ
(UX,Y )//B(LX,LY )

is obviously isomorphic to U
X,Y

: C(X, Y )→ B(UX,UY ). Since χ
(UX,Y )

is an equivalence,
ε
X

is an equivalence for every object X (that is to say, it is a pseudonatural equivalence)
if and only if U is locally an equivalence. Dually, the unit of this biadjunction is a
pseudonatural equivalence if and only if L is locally an equivalence.

2.8. Remark. Recall that, if the modifications s, t of a biadjunction (L a U, η, ε, s, t)
are identities, L,U are 2-functors and η, ε are 2-natural transformations, then L is left
2-adjoint to U and (L a U, η, ε) is a 2-adjunction.

If it exists, a birepresentation of a pseudofunctor U : C→ CAT is an object X of C en-
dowed with a pseudonatural equivalence C(X,−) ' U . When U has a birepresentation, we
say that U is birepresentable. Moreover, in this case, by Lemma 2.4, its birepresentation
is unique up to equivalence.

2.9. Lemma. [18] Assume that U : C → [Bop,CAT]PS is a pseudofunctor such that, for
each object X of C, UX has a birepresentation eX : UX ' B(−, UX). Then there is
a pseudofunctor U : C → B such that the pseudonatural equivalences eX are the com-
ponents of a pseudonatural equivalence U ' B(−, U−), in which B(−, U−) denotes the
pseudofunctor

C→ [Bop,CAT]PS : X 7→ B(−, UX)
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As a consequence, a pseudofunctor L : B → C has a right biadjoint if and only
if, for each object X of C, the pseudofunctor C(L−, X) is birepresentable. Id est, for
each object X, there is an object UX of B endowed with a pseudonatural equivalence
C(L−, X) ' B(−, UX).

The natural notion of limit in our context is that of (weighted) bilimit [18, 19]. Namely,
assuming that S is a small 2-category, if W : S→ CAT,D : S→ A are pseudofunctors,
the (weighted) bilimit, denoted herein by {W ,D}bi, when it exists, is a birepresentation
of the 2-functor

Aop → CAT : X 7→ [S,CAT]PS(W ,A(X,D−)).

Since, by the (bicategorical) Yoneda Lemma, {W ,D}bi is unique up to equivalence, we
sometimes refer to it as the (weighted) bilimit.

Finally, if W and D are 2-functors, recall that the (strict) weighted limit {W ,D}
is, when it exists, a 2-representation of the 2-functor X 7→ [S,CAT](W ,A(X,D−)), in
which [S,CAT] is the 2-category of 2-functors S → CAT, 2-natural transformations and
modifications [17].

It is easy to see that CAT is bicategorically complete. More precisely, ifW : S→ CAT
and D : S→ CAT are pseudofunctors, then

{W ,D}bi ' [S,CAT]PS(W ,D).

Moreover, from the bicategorical Yoneda Lemma of [18], we get the (strong) bicategorical
Yoneda Lemma.

2.10. Lemma. [(Strong) Yoneda Lemma] Let D : S → A be a pseudofunctor between
2-categories. There is a pseudonatural equivalence {S(a,−),D}bi ' Da.

Proof. By the bicategorical Yoneda Lemma, we have a pseudonatural equivalence (in X
and a)

[S,CAT]PS(S(a,−),A(X,D−)) ' A(X,Da).

Therefore Da is the bilimit {S(a,−),D}bi.

Recall that the usual (enriched) Yoneda embedding A → [Aop,CAT] preserves and
reflects weighted limits. In the 2-dimensional case, we get a similar result.

2.11. Lemma. The Yoneda embedding Y : A → [Aop,CAT]PS preserves and reflects
weighted bilimits.

Proof. By definition, a weighted bilimit {W ,D}bi exists if and only if, for each object
X of A,

A(X, {W ,D}bi) ' [A,CAT]PS (W ,A(X,D−)) ' {W ,A(X,D−)}bi .

By the pointwise construction of weighted bilimits, this means that {W ,D}bi exists if and
only if Y {W ,D}bi ' {W ,Y ◦ D}bi. This proves that Y reflects and preserves weighted
bilimits.
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2.12. Remark. Let S be a small 2-category and D : S → A be a pseudofunctor.
Consider the pseudofunctor

[S,C]PS → [Aop,CAT]PS : W 7→ DW

in which the 2-functor DW is given by X 7→ [S,CAT]PS(W ,A(X,D−)). By Lemma 2.9,
we conclude that it is possible to get a pseudofunctor {−,D}bi defined in a full sub-2-
category of [S,CAT]PS of weights W : S→ CAT such that A has the bilimit {W ,D}bi.

3. Descent Objects

In this section, we describe the 2-categorical limits called descent objects. We need both
constructions, strict descent objects and descent objects [19]. Our domain 2-category,
denoted by ∆, is the dual of that defined at Definition 2.1 in [13].

3.1. Definition. We denote by ∆̇ the 2-category generated by the diagram

0 d // 1
d0

//

d1
//
2s0oo

∂0
//

∂1 //

∂2
//
3

with the invertible 2-cells:

σik : ∂kdi ∼= ∂idk−1, if i < k

n0 : s0d0 ∼= id1

n1 : id1
∼= s0d1

ϑ : d1d ∼= d0d

satisfying the equations below:

• Associativity:

0
d //

d
��

ϑ
=⇒

1

d0

��

d0
//

σ01==⇒

2

∂0

��
=

3

σ02==⇒

2
∂0
oo

ϑ
=⇒

2

1 d1 //

d1

��
σ12==⇒

2 ∂1 // 3

id3
��

2

ϑ
=⇒

∂2

OO

1d0oo

d1

OO

2
∂2

// 3 1

d1

OO

0
d
oo

d

OO

d
// 1

d0

OO
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• Identity:

0
d //

d

��

1

d1

��

n1⇐=

0

d

��

= d

��

ϑ⇐= =

1
d0

//

n0⇐=

2

s0

��
1 1

The 2-category ∆ is, herein, the full sub-2-category of ∆̇ with objects 1, 2, 3. We denote
the inclusion by j : ∆→ ∆̇.

3.2. Remark. In fact, the 2-category ∆̇ is the locally preordered 2-category freely gen-
erated by the diagram and 2-cells described above. Moreover, ∆ is the 2-category freely
generated by the corresponding diagram and the 2-cells σ01, σ02, σ12, n0, n1.

Let A be a 2-category and A : ∆ → A be a 2-functor. If the weighted bilimit{
∆̇(0, j−),A

}
bi

exists, we say that
{

∆̇(0, j−),A
}

bi
is the descent object of A. Analo-

gously, when it exists, we call the (strict) weighted 2-limit
{

∆̇(0, j−),A
}

the strict descent

object of A.
Assuming that D : ∆̇ → A is a pseudofunctor, we have a pseudonatural transfor-

mation ∆̇(0, j−) −→ A(D0,D ◦ j−) given by the evaluation of D. By the definition of
weighted bilimit, if D ◦ j has a descent object, this pseudonatural transformation induces
a comparison 1-cell

D0→
{

∆̇(0, j−),D ◦ j
}

bi
.

Analogously, if D is a 2-functor, we get a comparison D0 →
{

∆̇(0, j−),D ◦ j
}

, provided

that the strict descent object of D ◦ j exists.

3.3. Definition. [Effective Descent Diagrams] We say that a 2-functor D : ∆̇ → A
is of effective descent if A has the descent object of D ◦ j and the comparison D0 →{

∆̇(0, j−),D ◦ j
}

bi
is an equivalence.

We say that D is of strict descent if A has the strict descent object of D ◦ j and the

comparison D0→
{

∆̇(0, j−),D ◦ j
}

is an isomorphism.

3.4. Lemma. Strict descent objects are descent objects. Thereby, strict descent diagrams
are of effective descent as well.

Also, if A has strict descent objects, a 2-functor D : ∆̇ → A is of effective descent if

and only if the comparison D0→
{

∆̇(0, j−),D ◦ j
}

is an equivalence.
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3.5. Lemma. Assume that A,B,D : ∆̇ → A are 2-functors. If there are a 2-natural
isomorphism A −→ B and a pseudonatural equivalence B −→ D, then

• A is of strict descent if and only if B is of strict descent;

• B is of effective descent if and only if D is of effective descent.

We say that an effective descent diagram D : ∆̇→ B is preserved by a pseudofunctor
L : B → C if L ◦ D is of effective descent. Also, D : ∆̇ → B is said to be an absolute
effective descent diagram if L ◦ D is of effective descent for any pseudofunctor L.

In this setting, a pseudofunctor L : B→ C is said to reflect absolute effective descent
diagrams if, whenever a 2-functor D : ∆̇ → B is such that L ◦ D is an absolute effective
descent diagram, D is of effective descent. Moreover, we say herein that a pseudofunctor
L : B → C creates absolute effective descent diagrams if L reflects absolute effective
descent diagrams and, whenever a diagram A : ∆ → B is such that L ◦ A ' D ◦ j for
some absolute effective descent diagram D : ∆̇→ C, there is a diagram B : ∆̇→ B such
that L ◦ B ' D and B ◦ j = A.

Recall that right 2-adjoints preserve strict descent diagrams and right biadjoints pre-
serve effective descent diagrams. Also, the usual (enriched) Yoneda embedding A →
[Aop,CAT] preserves and reflects strict descent diagrams, and, from Lemma 2.11, we get:

3.6. Lemma. The Yoneda embedding Y : A → [Aop,CAT]PS preserves and reflects effec-
tive descent diagrams.

3.7. Remark. The dual notion of descent object is that of codescent object, described
by Lack [12] and Le Creurer, Marmolejo, Vitale [13]. It is, of course, the descent object
in the opposite 2-category.

3.8. Remark. The 2-category CAT is CAT-complete. In particular, CAT has strict de-
scent objects. More precisely, if A : ∆→ CAT is a 2-functor, then{

∆̇(0,−),A
}
∼= [∆,CAT]

(
∆̇(0,−),A

)
.

Thereby, we can describe the strict descent object of A : ∆→ CAT explicitly as follows:

1. Objects are 2-natural transformations f : ∆̇(0,−) −→ A. We have a bijective
correspondence between such 2-natural transformations and pairs (f, %

f
) in which f

is an object of A1 and %
f

: A(d1)f → A(d0)f is an isomorphism in A2 satisfying
the following equations:

• Associativity:(
A(∂0)(%

f
)
) (
A(σ02)

f

) (
A(∂2)(%

f
)
) (
A(σ12)−1

f

)
=
(
A(σ01)

f

) (
A(∂1)(%

f
)
)

• Identity: (
A(n0)f

) (
A(s0)(%

f
)
) (
A(n1)f

)
= id

f
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If f : ∆̇(0,−) −→ A is a 2-natural transformation, we get such pair by the corre-
spondence f 7→ (f1(d), f2(ϑ)).

2. The morphisms are modifications. In other words, a morphism m : f → h is deter-
mined by a morphism m : f → h such that A(d0)(m)%

f
= %

h
A(d1)(m).

4. Biadjoint Triangles

In this section, we give our main theorem on biadjoint triangles, Theorem 4.3, and its
strict version, Theorem 4.6. Let L : B → C and U : C → B be pseudofunctors, and
(L a U, η, ε, s, t) be a biadjunction. We denote by χ : C(L−,−) ' B(−, U−) its associated
pseudonatural equivalence as described in Remark 2.6.

4.1. Definition. In this setting, for every pair (X, Y ) of objects of B, we have an
induced diagram DXY : ∆̇→ CAT

B(X,Y )

L
X,Y

��
C(LX,LY )

C(LX,L(η
Y
))
//

L
X,ULY

◦ χ
(X,LY ) //

C(LX,LULY )C(LX,ε
LY

)oo

C(LX,LUL(η
Y
))

//
C(LX,L(η

ULY
)) //

L
X,(UL)2Y

◦ χ
(X,LULY )

//

C(LX,L(UL)2Y )

(DXY )

in which the images of the 2-cells of ∆̇ by DXY : ∆̇→ CAT are defined as:

DXY (ϑ)g :=L
(
η−1
g

)
· lη

Y
g

DXY (σ12)f := (Lη)
η
Y

∗ id
f

DXY (n1)f :=s
Y
∗ id

f

DXY (σ01)f :=l
UL(U(f)η

X
)η
X
· (Lη)−1

U(f)η
X

DXY (σ02)f :=L
(
u
L(η

Y
)f
∗ idη

X

)
· l
UL(η

Y
)L(U(f)η

X
)

DXY (n0)f :=
(
id
f
∗ s−1

X

)
·
(
ε−1
f
∗ idη

X

)
·
(

idε
LY
∗ l−1

U(f)η
X

)
We claim that DXY is well defined. In fact, by the axioms of naturality and associativity

of Definition 2.2 (of pseudonatural transformation), for every morphism g ∈ B(X, Y ), we
have the equality

LX

L(η
X
)
��

L(g) //

γ⇐=

LY

L(η
Y
)

��

L(η
Y
)

''

LX

L(η
X
)
��

L(g) //

L(η
X
)
''

γ⇐=
(Lη)−1

η
X⇐====

LY
L(η

Y
)

''
LULX

LUL(g)
//

LUL(η
X
) ''

L̂U(γ)⇐===

LULY

LUL(η
Y
)
''

(Lη)−1
η
Y⇐====

LULY

L(η
ULY

)
��

= LULX

LUL(η
X
) ''

LULX

L(η
ULX

)
��

LUL(g) //

(Lη)−1
UL(g)⇐======

LULY

L(η
ULY

)
��

LULULX
LULUL(g)

// LULULY LULULX
LULUL(g)

// LULULY

in which

γ := l−1
UL(g)η

X
· DXY (ϑ)g = (Lη)−1

g L̂U(γ) := (lu)−1
LUL(g)L(η

X
)
· LU(γ) · (lu)

L(η
X

)L(g)
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By the definition of DXY given above, this is the same as saying that the equation

DXY 3

DXY (σ12)−1

==========⇒

DXY 3

DXY (σ02)
=======⇒

DXY 2

DXY (ϑ)
=====⇒

DXY (∂0)oo DXY 2

=

DXY 0
DXY (d) //

DXY (d)

��

DXY (ϑ)
=====⇒

DXY 1

DXY (d0)

��

DXY (d0) //

DXY (σ01)
=======⇒

DXY 2

DXY (∂0)

��

DXY 2

DXY (ϑ)
=====⇒

DXY (∂2)

OO

DXY 1
DXY (d0)

oo

DXY (d1)

OO

DXY 2

DXY (∂1)

OO

DXY 1
DXY (d1)

oo

DXY (d1)

OO

DXY 0
DXY (d)

oo

DXY (d)

OO

DXY (d)

// DXY 1

DXY (d0)

OO

DXY 1
DXY (d1)

// DXY 2
DXY (∂1)

// DXY 3

holds, which is equivalent to the usual equation of associativity given in Definition 3.1.
Also, by the naturality of the modification s : idL =⇒ (εL)(Lη) (see Definition 2.3), for
every morphism g ∈ B(X, Y ), the pasting of 2-cells

LX
L(g) //

L(η
X
)
$$

LY

L(η
Y
)

zz
LULXs−1

X⇐== LUL(g) //

ε
LX

zz

(Lη)−1
g⇐====

(εL)−1
g⇐====

LULY s
Y⇐=

ε
LY

$$
LX

L(g)
// LY

is equal to the identity L(g)⇒ L(g) in C. This is equivalent to say that

DXY 0
DXY (d) //

DXY (d)

��

DXY 1

DXY (d1)

��
DXY (n1)
⇐======

DXY 0

DXY (d)

��

= DXY (d)

��

DXY (ϑ)
⇐====== =

DXY 1 DXY (d0) //

DXY (n0)
⇐======

DXY 2

DXY (s0)

""
DXY 1 DXY 1

holds, which is the usual identity equation of Definition 3.1. Thereby it completes the
proof that indeed DXY is well defined.

As in the enriched case, we also need to consider another special 2-functor induced by
a biadjoint triangle.

4.2. Definition. Let (E a R, ρ, µ, v, w) and (L a U, η, ε, s, t) be biadjunctions such that
the triangle

A
J //

E ��

B

L��
C
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is commutative. In this setting, for each object Y of B, we define the 2-functor AY : ∆→
A

RLY

RL(η
Y
)

//

RL(U(µ
LY

)η
JRLY

)ρ
RLY //

RLULYR(ε
LY

)oo

RLUL(η
Y
)

//
RL(η

ULY
) //

RL(U(µ
LULY

)η
JRLULY

)ρ
RLULY //

RLULULY (AY )

in which

AY (σ12) := (RLη)η
Y

AY (n1) := r−1
ε
LY

L(η
Y

)
R(sY ) · rLY

AY (n0) := (wLY )

·
(

id
R(µ

LY
)
∗
(
r−1
ERLY

·R(s−1
JRLY

) · r
ε
ERLY

L(η
JRLY

)

)
· idρ

RLY

)
·
(

(Rε)−1
µ
LY
∗ id

RL(η
JRLY

)ρ
RLY

)
·
(

id
R(ε

LY
)
∗ (rl)−1

U(µ
LY

)η
JRLY

∗ idρ
RLY

)
AY (σ02) :=

(
(rl)

U(µ
RLULY

)η
JRLULY

∗ id
ρ
RLULY

RL(η
Y

)

)
· ((RLUµL) (RLηJRL) (ρRL))

η
Y

·
(

id
RLUL(η

Y
)
∗ (rl)−1

U(µ
LY

)η
JRLY

∗ idρ
RLY

)
AY (σ01) :=

(
(rl)

U(µ
LULY

)η
JRLULY

∗ ρ
RL(U(µ

LY
)η
JRLY

)
∗ idρ

RLY

)
·
(

((RLUµL)(RLηJRL))
U(µ

LY
)η
JRLY

∗ ρρ
RLY

)
·
(

id
RLUL(U(µ

LY
)η
JRLY

)RLU(µ
ERLY

)
∗ (RLηJ)

ρ
RLY
∗ idρ

RLY

)
·
(

id
RLUL(U(µ

LY
)η
JRLY

)
∗
(

(rlu)−1
µ
ERLY

E(ρ
RLY

)
·RLU(vRLY ) · (rlu)ERLY

)
∗ id

RL(η
JRLY

)ρ
RLY

)
·
(

(RLη)−1
U(µ

LY
)η
JRLY

∗ idρ
RLY

)
4.3. Theorem. [Biadjoint Triangle] Let (E a R, ρ, µ, v, w) and (L a U, η, ε, s, t) be biad-
junctions such that

A
J //

E ��

B

L��
C

is a commutative triangle of pseudofunctors. Assume that, for each pair of objects (Y ∈
B, A ∈ A), the 2-functor

B(JA, Y )

L
JA,Y

��
C(LJA,LY )

C(LJA,L(η
Y
))

//

L
JA,ULY

◦ χ
(JA,LY ) //

C(LJA,LULY )C(LJA,ε
LY

)oo

C(LJA,LUL(η
Y
))
//

C(LJA,L(η
ULY

)) //

L
JA,(UL)2Y

◦ χ
(JA,LULY )

//

C(LJA,L(UL)2Y )

(DJAY )
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is of effective descent. The pseudofunctor J has a right biadjoint if and only if, for every
object Y of B, the descent object of the diagram AY : ∆→ A exists in A. In this case, J

is left biadjoint to G, defined by GY :=
{

∆̇(0, j−),AY
}

bi
.

Proof. We denote by ξ : C(E−,−) ' A(−, R−) the pseudonatural equivalence associ-
ated to the biadjunction (E a R, ρ, µ, v, w) (see Remark 2.6). For each object A of A and
each object Y of B, the components of ξ induce a pseudonatural equivalence

ψ : DJAY ◦ j −→ A(A,AY−)

in which

ψ1 := ξ
(A,LY )

: C(EA,LY )→ A(A,RLY )

ψ2 := ξ
(A,LULY )

: C(EA,LULY )→ A(A,RLULY )

ψ3 := ξ
(A,LULULY )

: C(EA,LULULY )→ A(A,RLULULY )(
ψ
s0

)
f

:= r
ε
LY

f
∗ idρ

A(
ψ
d1

)
f

:= r
L(η

Y
)f
∗ idρ

A

(
ψ
∂1

)
f

:= r
L(η

ULY
)f
∗ idρ

A(
ψ
∂2

)
f

:= r
LUL(η

Y
)f
∗ idρ

A

(
ψ
d0

)
f

:=
(

(rl)
U(f)η

JA
∗ idρ

A

)
·
(

id
RLU(f)

∗
(

(rlu)−1
EA
·RLU(v−1

A
) · (rlu)

µ
EA

E(ρ
A

)

)
∗ id

RLU(η
JA

)ρ
A

)
·
(

id
RLU(f)RL(µ

EA)
∗ ((RLηJ)ρ)−1

ρ
A

)
·
(

((RLUµ)(RLηJR)(ρR))−1
f
∗ idρ

A

)
·
(

(rl)−1
U(µ

LY )η
JRLY

∗ id
ρ
RLY

R(f)ρ
A

)
(
ψ
∂0

)
f

:=
(

(rl)
U(f)η

JA
∗ idρ

A

)
·
(

id
RLU(f)

∗
(

(rlu)−1
EA
·RLU(v−1

A
) · (rlu)

µ
EA

E(ρ
A

)

)
∗ id

RLU(η
JA

)ρ
A

)
·
(

id
RLU(f)RL(µ

EA)
∗ ((RLηJ)ρ)−1

ρ
A

)
·
(

((RLUµ)(RLηJR)(ρR))−1
f
∗ idρ

A

)
·
(

(rl)−1
U(µ

LULY )η
JRLULY

∗ id
ρ
RLULY

R(f)ρ
A

)
First of all, we assume that DJAY is of effective descent for every object A of A and every
object Y of B. Then the descent object of DJAY ◦ j ' A(A,AY−) is DJAY 0. Moreover,
since this is true for all objects A of A, we conclude that the descent object of Y ◦ AY is
C(J−, Y ) : Aop → CAT.

If, furthermore, A has the descent object of AY , we get that Y
{

∆̇(0, j−),AY
}

bi
is

also a descent object of Y ◦ AY . Therefore we get a pseudonatural equivalence

C (J−, Y ) ' A
(
−,
{

∆̇(0, j−),AY
}

bi

)
.
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This proves that J is left biadjoint to G, provided that the descent object of AY exists
for every object Y of B.

Reciprocally, if J is left biadjoint to a pseudofunctor G, since C(−, GY ) ' C(J−, Y )
is the descent object of A(−,AY−), we conclude that GY is the descent object of AY .

We establish below the obvious dual version of Theorem 4.3, which is the relevant
theorem to the usual context of pseudopremonadicity [13]. For being able to give such
dual version, we have to employ the observations given in Remark 3.7 on codescent objects.
Also, if (L a U, η, ε, s, t) is a biadjunction, we need to consider its associated pseudonatural
equivalence τ : C(−, U−)→ B(L−,−). In particular,

τ
(X,Z)

: C(X,UZ)→ B(LX,Z) : f 7→ ε
Z
L(f); m 7→ idε

Z
∗ L(m)

4.4. Theorem. [Biadjoint Triangle] Let (E a R, ρ, µ, v, w) and (L a U, η, ε, s, t) be biad-
junctions such that

A
J //

R ��

B

U��
C

is a commutative triangle of pseudofunctors. Assume that, for each pair of objects (Y ∈
B, A ∈ A), the 2-functor

∆̇→ CAT

B(Y, JA)

U
Y,JA

��
C(UY,UJA)

C(U(ε
A
),UJA)

//

U
LUY,JA

◦ τ
(UY,JA)

//
C(ULUY,UJA)C(η

UY
,UJA)oo

C(ULU(ε
Y
),UJA)

//
C(U(ε

LUY
),UJA) //

U
(LU)2Y,JA

◦ τ
(ULUY,JA)

//
C(U(LU)2Y, UJA)

(with omitted 2-cells) is of effective descent. We have that J has a left biadjoint if and
only if, for every object Y of B, A has the codescent object of the diagram (with the
obvious 2-cells)

∆op → A

EUY E(η
UY

) // EULUY

EU(ε
Y
)

oo

EU(L(ρ
UY

)ε
JEUY

)µ
EUY

oo
EULULUY

EULU(ε
Y
)

oo
EU(ε

LUY
)oo

EU(L(ρ
ULUY

)ε
JEULUY

)µ
EULUY

oo

4.5. Strict Version. The techniques employed to prove strict versions of Theorem 4.3
are virtually the same. We just need to repeat the same constructions, but, now, by
means of strict descent objects and 2-adjoints. For instance, we have:
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4.6. Theorem. [Strict Biadjoint Triangle] Let (L a U, η, ε, s, t) be a biadjunction between
2-functors and (E a R, ρ, µ) be a 2-adjunction such that the triangle of 2-functors

A
J //

E ��

B

L��
C

commutes and (ηJ) : J −→ UE is a 2-natural transformation. We assume that, for every
pair of objects (A ∈ A, Y ∈ B), the diagram DJAY : ∆̇→ CAT induced by (L a U, η, ε, s, t)
is of strict descent. The 2-functor J has a right 2-adjoint if and only if, for every object
Y of B, the strict descent object of AY : ∆→ A exists in A.

Proof. In particular, we have the setting of Theorem 4.3. Therefore, again, we can
define ψ : DJAY ◦ j −→ A(A,AY−) as it was done in the proof of Theorem 4.3. However,
since (E a R, ρ, µ) is a 2-adjunction, J,E,R, L, U are 2-functors and (ηJ) is a 2-natural
transformation, the components ψ

d0
, ψ

d1
, ψ

s0
, ψ

∂0 , ψ
∂1 , ψ

∂2 are identities. Thereby ψ is a
2-natural transformation. Moreover, since (E a R, ρ, µ) is a 2-adjunction, ψ is a pointwise
isomorphism. Thus it is a 2-natural isomorphism.

Firstly, we assume that DJAY is of strict descent for every object A of A and every
object Y of B. Then the strict descent object of A(A,AY−) is DJAY 0.

If, furthermore, A has the strict descent object of AY , we get a 2-natural isomorphism

C (J−, Y ) ∼= A
(
−,
{

∆̇(0, j−),AY
})

.

This proves that J is left 2-adjoint, provided that the strict descent object of AY exists
for every object Y of B.

Reciprocally, if J is left 2-adjoint to a 2-functor G, since C(−, GY ) ∼= C(J−, Y ) is the
strict descent object of A(−,AY−), we conclude that GY is the strict descent object of
AY .

5. Pseudoprecomonadicity

A pseudomonad [11, 14] is the same as a doctrine, whose definition can be found in page
123 of [18], while a pseudocomonad is the dual notion. Similarly to the 1-dimensional
case, for each pseudocomonad T on a 2-category C, there is an associated right biadjoint
to the forgetful 2-functor L : Ps-T -CoAlg → C, in which Ps-T -CoAlg is the 2-category of
pseudocoalgebras [11] of Definition 5.2. Also, every biadjunction (L a U, η, ε, s, t) induces
a comparison pseudofunctor and an Eilenberg-Moore factorization [13]

B
K //

L
%%

Ps-T -CoAlg

��
C
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in which T denotes the induced pseudocomonad. Before proving Corollary 5.10 which is
a consequence of Theorem 4.3 in the context of pseudocomonads, we sketch some basic
definitions and known results needed to fix notation and show Lemma 5.6. Some of them
are related to the formal theory of pseudo(co)monads developed by Lack [11]. There, it is
employed the coherence result of tricategories [4] (and, hence, with due adaptations, the
formal theory developed therein works for any tricategory).

5.1. Definition. [Pseudocomonad] A pseudocomonad T = (T , $, ε,Λ, δ, s) on a 2-
category C is a pseudofunctor (T , t) : C→ C with

1. Pseudonatural transformations:

$ : T −→ T 2 ε : T −→ id
C

2. Invertible modifications:

Λ : ($T )($) =⇒ (T $)($)

s : (εT )($) =⇒ idT
δ : idT =⇒ (T ε)($)

such that the following equations hold:

• Associativity:

T
$
��

$ //

Λ⇐=

T 2

$T
��

$T

!!

T
$
��

$ //

$
!!

Λ⇐=
Λ⇐=

T 2

$T

!!
T 2

T$
//

T$ !!
T̂ Λ⇐==

T 3

T$T
!!

ΛT⇐== T 3

$T 2

��

= T 2

T$ !!

T 2

$T
��

T$ //

$−1
$⇐==

T 3

$T 2

��
T 3

T 2$
// T 4 T 3

T 2$
// T 4

• Identity:
T

$

}}

$

!!
Λ⇐=

T
$
��

T 2

T$ !!

T 2

$T}}

T 2

T$
}}

$T
!!

T 3

T εT
��

= T 3 δT⇐=

T εT
!!

T 3

T εT
}}

T̂ s⇐=

T 2 T 2

in which T̂ s, T̂ Λ denote “corrections” of domain and codomain given by the isomorphisms
induced by the pseudofunctor T . That is to say,

T̂ s := t−1
(εT )($)

(T s)t
T 2 T̂ Λ := t−1

(T$)($)
(T Λ)t

($T )($)
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5.2. Definition. [Pseudocoalgebras] Let T = (T , $, ε,Λ, δ, s) be a pseudocomonad in C.
We define the objects, 1-cells and 2-cells of the 2-category Ps-T -CoAlg as follows:

1. Objects: pseudocoalgebras are defined by z = (Z, %z , ςz ,Ωz) in which %z : Z → T Z is
a morphism in C and

ςz : id
Z
⇒ ε

Z
%z Ωz : $

Z
%z ⇒ T (%z)%z

are invertible 2-cells of C such that the equations

Z

%z
��

%z //

Ωz⇐=

T Z
$
Z

��

$
Z

##

Z

%z
��

%z //

%z
##

Ωz⇐=
Ωz⇐=

T Z
$
Z

##
T Z

T (%z )
//

T (%z ) ##
T̂ (Ωz )⇐===

T 2Z

(T$)
Z
##

Λ
Z⇐= T 2Z

$T Z
��

= T Z

T (%z ) ##

T Z
$
Z
��

T (%z ) //

$−1
%z⇐==

T 2Z

$T Z
��

T 2Z
T 2(%z )

// T 3Z T 2Z
T 2(%z )

// T 3Z

Z
%z

{{

%z

##
Ωz⇐=

Z

%z
��

T Z

T (%z ) ##

T Z

$
Z{{

T Z
T (%z )
{{

$
Z

##
T 2Z

(T ε)
Z

��

= T 2Z T̂ (ςz )⇐===
(T ε)

Z

##

T 2Z

(T ε)
Z

{{

δ
Z⇐=

T Z T Z

are satisfied, in which

T̂ (ςz) := t−1
ε
Z
%z
T (ςz)tZ T̂ (Ωz) := t−1

$
Z
%z
T (Ωz)tT (%z )%z

2. Morphisms: T -pseudomorphisms f : x→ z are pairs f = (f, %−1
f

) in which f : X →
Z is a morphism in C and %

f
: T (f)%x ⇒ %zf is an invertible 2-cell of C such that,

defining T̂ (%−1
f

) := t−1
T (f)%x

T (%−1
f

)t
%zf

,

X

%x
��

f //

%−1
f⇐==

Z

%z
��

%z

$$

X

%x
��

f //

%x
##
%−1
f⇐==

Ωx⇐=

Z
%z

$$
T X

T (f)
//

T (%x ) ##
̂T (%−1

f
)

⇐====

T Z
T (%z )

##

Ωz⇐= T Z
$
Z

��

= T X

T (%x ) ##

T X
$
X
��

T (f) //

$−1
f⇐==

T Z
$
Z

��
T 2X

T 2(f)
// T 2Z T 2X

T 2(f)
// T 2Z
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holds and the 2-cell below is the identity.

X f //

%x
!!

Z

%z
}}

T Xςx⇐= T (f) //

ε
X

}}

%
f⇐=

(ε)−1
f⇐===

T Z ς−1
z⇐==
ε
Z

!!
X f // Y

3. 2-cells: a T -transformation between T -pseudomorphisms m : f ⇒ h is a 2-cell
m : f ⇒ h in C such that the equation below holds.

X

f

��

m
=⇒ h

��

%x // TX

T (h)

��

X
%x //

f

��

TX

T (f)

��

T (m)
====⇒ T (h)

��

%
h===⇒ =

%
f

===⇒

Z
%z

// T Z Z
%z

// T Z

5.3. Remark. If T = (T , $, ε,Λ, δ, s) is a pseudocomonad on C, then T induces a
biadjunction (L a U, %, ε, s, t) in which L,U are defined by

L : Ps-T -CoAlg→ C

z = (Z, %z , ςz ,Ωz) 7→ Z

f = (f, %−1
f

) 7→ f

m 7→ m

U : C→ Ps-T -CoAlg

Z 7→ (T (Z), $Z , sZ ,ΛZ )

f 7→
(
T (f), $−1

f

)
m 7→ T (m)

Reciprocally, we know that each biadjunction (L a U, η, ε, s, t) induces a pseudocomonad

T = (LU,LηU, ε, (Lη)−1
η
U
, (̂Lt), sU)

Lemma 5.4 gives some further aspects of these constructions (which follows from calcula-
tions on the formal theory of pseudocomonads in 2-CAT).

5.4. Lemma. Let L : B→ C be a pseudofunctor. A biadjunction (L a U, η, ε, s, t) induces
commutative triangles

B
K //

L
%%

Ps-T -CoAlg

L
��

C
U //

U %%

B

K
��

C Ps-T -CoAlg

in which T = (T , $, ε,Λ, δ, s) is the pseudocomonad induced by (L a U, η, ε, s, t), (L a
U, %, ε, s, t) is the biadjunction induced by T and K : B → Ps-T -CoAlg is the unique
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(up to pseudonatural isomorphism) comparison pseudofunctor making the triangles above
commutative. Namely,

K : B → Ps-T -CoAlg

Y 7→
(
LY,L(ηY ), s−1

Y
, (Lη)−1

η
Y

)
g 7→

(
L(g), (Lη)−1

g

)
m 7→ L(m)

Furthermore, we have the obvious equalities

L(ηY ) = %KY $LY = (LηU)LY .

5.5. Proposition. Let T = (T , $, ε,Λ, δ, s) be a pseudocomonad on C. Given T -
pseudocoalgebras

x = (X, %x , ςx ,Ωx), z = (Z, %z , ςz ,Ωz),

the category Ps-T -CoAlg(x, z) is the strict descent object of the diagram Tx
z : ∆→ CAT

C(Lx, Lz)

C(Lx,%z )
//

C(%x ,T Lz)◦ T(Lx,Lz) //

C(Lx, T Lz)C(Lx,ε
Lz
)oo

C(Lx,T (%z ))
//

C(Lx,$
Lz
) //

C(%x ,T Lz)◦ T(Lx,T Lz) //

C(Lx, T 2Lz) (Tx
z)

such that

Tx
z(σ02)f :=

(
t
%zf

id%x

)
Tx
z(σ12)f :=

(
Ω−1

z
∗ id

f

)
Tx
z(n1)f :=

(
ς−1
z
∗ id

f

)
Tx
z(σ01)f :=

(
tT (f)%x

∗ id%x

)
·
(

id
T 2(f)

∗ Ωx

)
·
(
$−1
f
∗ id%x

)
Tx
z(n0)f :=

(
id
f
∗ ςx
)
·
(
ε−1
f
∗ id%x

)
Proof. It follows from Definition 5.2 and Remark 3.8.

Recall that every biadjunction induces diagramsDXY : ∆̇→ CAT (Definition 4.1). Also,
for every pseudocomonad T and objects x, z of Ps-T -CoAlg, we defined in Proposition 5.5
a diagram Tx

z : ∆ → CAT whose strict descent object is Ps-T -CoAlg(x, z). Now, we give
the relation between these two diagrams.

5.6. Lemma. Let L : B→ C be a pseudofunctor, (L a U, η, ε, s, t) be a biadjunction and
T = (T , $, ε,Λ, δ, s) be the induced pseudocomonad. For each pair (X, Y ) of objects in B,
(L a U, η, ε, s, t) induces the diagram DXY : ∆̇ → CAT and T induces the diagram TKXKY :
∆ → CAT defined in Proposition 5.5, in which K : B → Ps-T -CoAlg is the comparison
pseudofunctor. In this setting, there is a pseudonatural isomorphism β : DXY ◦ j −→ TKXKY
for every such pair (X, Y ) of objects in B. Moreover, if L is a 2-functor, β is actually a
2-natural isomorphism.
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Proof. We can write TKXKY : ∆→ CAT as follows

C(LX,LY )

C(LX,L(η
Y
))

//

C(L(η
X
),LULY )◦ (LU)

LX,LY//

C(LX,LULY )C(LX,ε
LY

)oo

C(LX,LUL(η
Y
))

//
C(LX,L(η

LY
)) //

C(L(η
X
),LULY )◦ (LU)

LX,LULY//

C(LX,LULULY )

Furthermore, by Lemma 5.4 and the observations given in this section, we can define a
pseudonatural isomorphism

β : DXY ◦ j −→ TKXKY
such that β1 , β2 , β3 are identity functors, β

d1
, β

∂1 , β∂2 , βs0 are identity natural transforma-

tions,
(
β
d0

)
f

:= l
U(f)η

X
and

(
β
∂0

)
f

:= l
U(f)η

X
. This completes the proof.

Let (L a U, η, ε, s, t) be a biadjunction and T be the induced pseudocomonad. By
Lemma 3.4, Proposition 5.5 and Lemma 5.6, Ps-T -CoAlg(KX,KY ) is a descent ob-
ject of DXY ◦ j for every pair of objects (X, Y ) of B. Moreover, K

X,Y
: B(X, Y ) →

Ps-T -CoAlg(KX,KY ) is the comparison DXY 0→
{

∆̇(0, j−),DXY ◦ j
}

. Thereby we get:

5.7. Proposition. Let (L a U, η, ε, s, t) be a biadjunction, T be the induced pseudo-
comonad and K : B → Ps-T -CoAlg be the comparison pseudofunctor. For each pair of
objects (X, Y ) in B, DXY : ∆̇→ CAT is of effective descent if and only if

K
X,Y

: B(X, Y )→ Ps-T -CoAlg(KX,KY )

is an equivalence. Furthermore, if L is a 2-functor, DXY is of strict descent if and only if
K
X,Y

is an isomorphism.

5.8. Biadjoint Triangles. In this subsection, we reexamine the results of Section 4
in the context of pseudocomonad theory. More precisely, we prove Corollary 5.10 of our
main theorems in Section 4, Theorem 4.3 and Theorem 4.6.

Let (L,U, η, ε, s, t) be a biadjunction and T be its induced pseudocomonad. We say
that L : B → C is pseudoprecomonadic, if its induced comparison pseudofunctor K :
B → Ps-T -CoAlg is locally an equivalence. As a consequence of Proposition 5.7, we get
a characterization of pseudoprecomonadic pseudofunctors.

5.9. Corollary. [Pseudoprecomonadic] Let (L a U, η, ε, s, t) be a biadjunction. The
pseudofunctor L : B → C is pseudoprecomonadic if and only if DXY : ∆̇ → CAT is of
effective descent for every pair of objects (X, Y ) of B.

By Corollary 5.9, assuming that (L a U, η, ε, s, t) is a biadjunction and J : A→ B is a
pseudofunctor, if L : B→ C is pseudoprecomonadic, then, in particular, DJAY : ∆̇→ CAT
is of effective descent for every object A of A and every object Y of B. Thereby, as a
consequence of Theorem 4.3, Theorem 4.6 and Proposition 5.7, we get:
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5.10. Corollary. [Biadjoint Triangle Theorem] Assume that (E a R, ρ, µ, v, w), (L a
U, η, ε, s, t) are biadjunctions such that the triangle of pseudofunctors

A
J //

E ��

B

L��
C

is commutative and L is pseudoprecomonadic. Then J has a right biadjoint if and only
if, for every object Y of B, A has the descent object of the diagram AY : ∆→ A. In this

case, J is left biadjoint to GY :=
{

∆̇(0, j−),AY
}

bi
.

If, furthermore, E,R, J, L, U are 2-functors, (E a R, ρ, µ) is a 2-adjunction, (ηJ) is
a 2-natural transformation and the comparison 2-functor K : B → Ps-T -CoAlg induced
by the biadjunction L a U is locally an isomorphism, then J is left 2-adjoint if and
only if the strict descent object of AY exists for every object Y of B. In this case,

GY :=
{

∆̇(0, j−),AY
}

defines the right 2-adjoint to J .

6. Unit and Counit

In this section, we show that the pseudoprecomonadicity characterization given in The-
orem 3.5 of [13] is a consequence of Corollary 5.9. Secondly, we study again biadjoint
triangles. Namely, in the context of Corollary 5.10, we give necessary and sufficient con-
ditions under which the unit and the counit of the obtained biadjunction J a G are
pseudonatural equivalences, provided that E and L induce the same pseudocomonad. In
other words, we prove the appropriate analogous versions of Corollary 1 and Corollary 2
of page 76 in [2] within our context of biadjoint triangles.

Again, we need to consider another type of 2-functors induced by biadjunctions. The
definition below is given in Theorem 3.5 of [13].

6.1. Definition. Assume that L : B → C is a pseudofunctor and (L a U, η, ε, s, t) is a
biadjunction. For each object Y of B, we get the 2-functor VY : ∆̇→ B

Y
η
Y // ULY

UL(η
Y
)

//

η
ULY //

ULULYU(ε
LY

)oo

ULUL(η
Y
)

//
UL(η

ULY
) //

η
ULULY //

ULULULY (VY )

in which VY (ϑ) :=
(
ηη
Y

: UL(η
Y

)η
Y
∼= η

ULY
η
Y

)
is the invertible 2-cell component of the

unit η at the morphism η
Y

. Analogously, the images of the 2-cells σik, n0, n1 are defined
below.

VY (σ01) := ηη
ULY

VY (σ02) := η
UL(η

Y
)

VY (σ12) := (ULη)η
Y

VY (n0) := tLY

VY (n1) :=
(
u
ε
LY

,L(η
Y

)

)−1
· U(sY ) · uULY
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We verify below that VY is well defined. That is to say, we have to prove that VY
satisfies the equations given in Definition 3.1. Firstly, the associativity and naturality
equations of Definition 2.2 give the following equality

VY 0 VY (d) //

VY (d)
��

VY (d)

ww

VY (ϑ)⇐===

VY 1

VY (d1)
��

=

VY 0 VY (d) //

VY (ϑ)⇐===VY (d)
��

VY 1

VY (d1)
��

VY (d1)

''
VY 1 VY (ϑ)⇐===

VY (d0)

''

VY 1 VY (d0) //

VY (d1)
��

VY (σ02)⇐=====

VY 2

VY (∂2)
��

VY 1 VY (d0) //

VY (d0)
��

VY (σ01)⇐=====

VY 2 VY (σ12)⇐=====

VY (∂1)
��

VY 2

VY (∂2)

ww
VY 2 VY (∂0) // VY 3 VY 2 VY (∂0) // VY 3

which is the associativity equation of Definition 3.1. Furthermore, by Definition 2.5 of
biadjunction, we have that

VY 0
VY (d)=η

Y //

VY (d)=η
Y

��

VY 1

VY (d1)=UL(η
Y
)

��

VY (n1)⇐====

VY 0

VY (d)

��

= VY (d)

��

VY (ϑ)⇐=== =

VY 1)
VY (d0)=η

ULY

//

VY (n0)⇐====

VY 2

VY (s0)

""
VY 1 VY 1

which proves that VY satisfies the identity equation of Definition 3.1.
As mentioned before, Corollary 6.2 is Theorem 3.5 of [13]. Below, it is proved as a

consequence of Corollary 5.9.

6.2. Corollary. [13] Let (L a U, η, ε, s, t) be a biadjunction. The pseudofunctor L is
pseudoprecomonadic if and only if, for every object Y of B, the 2-functor VY : ∆̇→ B is
of effective descent.

Proof. On one hand, by Corollary 5.9, L is pseudoprecomonadic if and only if DXY : ∆̇→
CAT is of effective descent for every pair (X, Y ) of objects in B. On the other hand, by
Lemma 3.6, VY is of effective descent if and only if B(X,VY−) : ∆̇→ CAT is of effective
descent for every object X in B.

Therefore, by Lemma 3.5, to complete our proof, we just need to verify that DXY '
B(X,VY−). Indeed, there is a pseudonatural equivalence

ι : DXY −→ B(X,VY−)
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induced by χ : C(L−,−) ' B(−, U−) such that

ι0 := Id
B(X,Y )

ι1 := χ
(X,LY )

: C(LX,LY )→ B(X,ULY )

ψ2 := χ
(X,LULY )

: C(LX,LULY )→ B(X,ULULY )

ψ3 := χ
(X,LULULY )

: C(LX,LULULY )→ B(X,ULULULY )

(ι
d
)
f

:= η−1
f(

ι
d0

)
f

:= η−1
U(f)η

X(
ι
d1

)
f

:= u
L(η

Y
)f
∗ idη

X

(
ι
∂0

)
f

:= η−1
U(f)η

X(
ι
∂1

)
f

:= u
L(η

ULY
)f
∗ idη

X

(
ι
∂2

)
f

:= u
LUL(η

Y
)f
∗ idη

X(
ι
s0

)
f

:= u
ε
LY

f
∗ idη

X

We assume the existence of a biadjunction J a G in the commutative triangles below
and study its counit and unit, provided that the biadjunctions (E a R, ρ, µ, v, w), (L a
U, η, ε, s, t) induce the same pseudocomonad. We start with the unit.

6.3. Theorem. [Unit] Assume that (E a R, ρ, µ, v, w), (L a U, η, ε, s, t), (J a G, η̄, ε̄, s̄, t̄)
are biadjunctions such that the triangles

A
J //

E ��

B

L��

A
J //B

C C
R

__

U

??

are commutative. If (E a R, ρ, µ, v, w), (L a U, η, ε, s, t) induce the same pseudocomonad
T , then the following statements are equivalent:

1. The unit η : Id
A
−→ GJ is a pseudonatural equivalence;

2. E is pseudoprecomonadic;

3. The following 2-functor is of effective descent for every pair of objects (A,B) in A

D̂AB : ∆̇→ CAT

A(A,B)

E
A,B

��
C(EA,EB)

C(EA,E(ρ
B
))

//

E
A,REB

◦ ξ
(A,EB) //

C(EA,EREB)C(EA,µ
EB

)oo

C(EA,ERE(ρ
B
))

//
C(EA,E(ρ

REB
)) //

E
A,(RE)2B

◦ ξ
(A,EREB)

//

C(EA,E(RE)2B)

in which ξ : C(E−,−) ' A(−, R−) is the pseudonatural equivalence induced by the
biadjunction (E a R, ρ, µ, v, w) described in Remark 2.6.
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4. For each object B of A, the following diagram is of effective descent.

V̂
B

: ∆̇→ A

B
ρ
B // REB

RE(ρ
B
)

//

ρ
REB //

REREYR(µ
EB

)oo

RERE(ρ
B
)

//
RE(ρ

REB
) //

ρ
REREB //

REREREB

Proof. By Remark 2.7, the unit η̄ is a pseudonatural equivalence if and only if J is
locally an equivalence. Moreover, by the hypothesis and the universal property of the
2-category of pseudocoalgebras, we have the following diagram

A J //

K̃
##

∼=

E

))

B K //

L

%%

Ps-T -CoAlg

L
��
C

such that K̃,K are the comparison pseudofunctors.
Since, by hypothesis, we know that K is locally an equivalence, we conclude that J is

locally an equivalence if and only if K̃ is locally an equivalence. Thereby, to conclude, we
just need to apply the characterizations of pseudoprecomonadic pseudofunctors: that is
to say, Corollary 5.9 and Corollary 6.2.

Before studying the counit, for future reference, we need the following result about
the diagram VY : ∆̇→ B in the context of biadjoint triangles.

6.4. Lemma. Let
A

J //

E ��

B

L��

A
J //B

C C
R

__

U

??

be commutative triangles of pseudofunctors so that we have biadjunctions (E a R, ρ, ε, v, w)
and (L a U, η, ε, s, t) inducing the same pseudocomonad T = (T , $, ε,Λ, δ, s). We con-
sider the diagram AY : ∆ → A. Then, for each object Y of B, there is a pseudonatural
isomorphism

ζ
Y

: J ◦ AY −→ VY ◦ j.

Proof. Again, we have the same diagram of the proof of Theorem 6.3. In particular, for
each object Y of B, there is an invertible 2-cell y

Y
: J(ρ

RLY
) ⇒ η

ULY
. Thereby, we can

define ζ
Y

: J ◦ AY −→ VY ◦ j such that the components ζ1 , ζ2 , ζ3 are identity 1-cells, the

components ζ
Y

d1
, ζ

Y

s0
, ζ

Y

∂1
, ζ

Y

∂2
are identity 2-cells and

(
ζ
Y

d0

)
:= yY · J

((
(rl)−1

LY
·RL(tLY )

)
∗ idρ

RLY

)
;
(
ζ
Y

∂0

)
:= yULY · J

((
(rl)−1

LULY
·RL(tLY )

)
∗ idρ

RLULY

)
.
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6.5. Theorem. [Counit] Let (E a R, ρ, ε, v, w) and (L a U, η, ε, s, t) be biadjunctions
inducing the same pseudocomonad T = (T , $, ε,Λ, δ, s) such that the triangles of pseud-
ofunctors

A
J //

E ��

B

L��

A
J //B

C C
R

__

U

??

commute. We assume that (J a G, η̄, ε̄, s̄, t̄) is a biadjunction and L is pseudopre-

comonadic. We consider the diagram AY : ∆ → A. Then J
{

∆̇(0, j−),AY
}

bi
is the

descent object of J ◦ AY for every object Y of B if and only if the counit ε : JG −→ Id
B

is a pseudonatural equivalence.

Proof. Actually, this is a corollary of Lemma 6.4, Corollary 5.10 and Corollary 6.2. More
precisely, by Lemma 6.4, J◦AY ' VY ◦j. By Corollary 6.2, since L is pseudoprecomonadic,
VY is of effective descent. Moreover, by the constructions of Theorem 4.3 (which proves
Corollary 5.10), the counit is pointwise defined by the comparison 1-cells

J
{

∆̇(0, j−),AY
}

bi
→ Y = VY 0 '

{
∆̇(0, j−),VY ◦ j

}
.

This completes the proof.

7. Pseudocomonadicity

Similarly to the 1-dimensional case, to prove the characterization of pseudocomonadic
pseudofunctors employing the biadjoint triangle theorems, we need two results: Lemma
7.1 and Proposition 7.2, which are proved in [13] in Lemma 2.3 and Proposition 3.2
respectively.

We start with Lemma 7.1, which is a basic and known property of the diagram VY . It
follows from explicit calculations using the definition of descent objects: we give a sketch
of the proof below.

7.1. Lemma. [13] Let (L a U, η, ε, s, t) be a biadjunction. For each object Y of B, the
diagram L ◦ VY is of absolute effective descent.

Proof. Trivially, given a pseudofunctor F : C→ Z, we can see F ◦L ◦VY as a 2-functor,
taking, if necessary, the obvious pseudonaturally equivalent version of F ◦ L ◦ VY . Then,
for each objects Z of Z, by Remark 3.8, we can consider the strict descent object of the
2-functor explicitly

Z(Z,F ◦ L ◦ VY ◦ j−) : ∆→ CAT

Z(Z,FLULY )

Z(Z,FLUL(η
Y
))
//

Z(Z,FL(η
ULY

))
//

Z(Z,FLULULY )Z(Z,FLU(ε
LY

))oo

Z(Z,FLULUL(η
Y
))
//

Z(Z,FLUL(η
ULY

)) //

Z(Z,FL(η
ULULY

))
//

Z(Z,FLULULULY )
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Thereby, by straightforward calculations, taking Remark 3.8 into account, we conclude
that

Z(Z,FLY ) →
{

∆̇(0, j−),Z(Z,F ◦ L ◦ VY ◦ j−)
}

f 7→ (FL(ηY )f, (FLη)η
Y
∗ id

f
)

m 7→ id
FL(η

Y
)
∗m

gives an equivalence of categories (and it is the comparison functor). This completes the
proof.

7.2. Proposition. [13] Let T = (T , $, ε,Λ, δ, s) be a pseudocomonad on C. The forgetful
pseudofunctor L : Ps-T -CoAlg→ C creates absolute effective descent diagrams.

In this section, henceforth we work within the following setting (and notation): given
a biadjunction (E a R, ρ, µ, v, w), recall that, by Lemma 5.4, it induces a biadjunction,
herein denoted by (L a U, η, ε, s, t). We also get commutative triangles

A
K //

E
%%

Ps-T -CoAlg

L
��

C
R //

U %%

A

K
��

C Ps-T -CoAlg

in which, clearly, the biadjunctions E a R, L a U induce the same pseudocomonad
T . In this context, if the comparison pseudofunctor K is a biequivalence, we say that
E is pseudocomonadic. In other words, we say that E is pseudocomonadic if there is a
pseudofunctor G : Ps-T -CoAlg→ A such that G ◦ K ' Id

A
and K ◦G ' Id

Ps-T -CoAlg
.

Of course, in the triangle above, the forgetful pseudofunctor L is always pseudo-
comonadic. In particular, L is always pseudoprecomonadic. Therefore the triangle satis-
fies the basic hypothesis of Corollary 5.10.

Observe that, to verify the pseudocomonadicity of a left biadjoint pseudofunctor L,
we can do it in three steps:

1. Verify whether K has a right biadjoint via Corollary 5.10;

2. If it does, the next step would be to verify whether the counit of the biadjunction
K a G is a pseudonatural equivalence via Theorem 6.5;

3. The final step would be to verify whether the unit of the biadjunction K a G is a
pseudonatural equivalences via Theorem 6.3.

These are precisely the steps used below.

7.3. Theorem. [Pseudocomonadicity [13]] A left biadjoint pseudofunctor E : A → C is
pseudocomonadic if and only if it creates absolute effective descent diagrams.
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Proof. By Proposition 7.2, pseudocomonadic pseudofunctors create absolute effective
descent diagrams. Reciprocally, assume that E creates absolute effective descent dia-
grams.

1. K has a right biadjoint G:

In this proof, we take a biadjunction (E a R, ρ, ε, v, w) and assume that T is its
induced pseudocomonad. Also, we denote by (L a U, η, ε, s, t) the biadjunction induced
by T (as described above).

On one hand, by Lemma 6.4 and Lemma 7.1, for each object z of Ps-T -CoAlg, the
diagram Az : ∆ → A is such that E ◦ Az ' L ◦ Vz ◦ j is an absolute effective descent
diagram, in which Vz : ∆̇→ Ps-T -CoAlg is induced by the biadjunction L a U .

Therefore, since E creates absolute effective diagrams, we conclude that there is an
effective descent diagram Bz such that Az = Bz ◦ j and E ◦Bz ' L◦Vz. Thus, by Corollary
5.10, we conclude that K has a right biadjoint G.

2. The counit of the biadjunction K a G is a pseudonatural equivalence:

Since L ◦ K ◦ Bz = E ◦ Bz ' L ◦ Vz is of absolute effective descent and L creates absolute
effective descent diagrams, we conclude that K ◦ Bz is of effective descent. By Theorem
6.5, it completes this second step.

3. The unit of the biadjunction K a G is a pseudonatural equivalence:

By Lemma 7.1, for every object A of A, E ◦ V̂A : ∆̇ → C is of absolute effective descent,
in which V̂A is induced by the biadjunction E a R. Since E creates absolute effective
descent diagrams, we get that V̂A is of effective descent. Therefore, by Corollary 6.2, E
is pseudoprecomonadic. By Theorem 6.3, it completes the proof of the final step.

As a consequence of Theorem 7.3, within the setting of Theorem 4.3, if J has a right
biadjoint and E is pseudocomonadic, then J is pseudocomonadic as well. Furthermore,
it is worth to point out that the second step of the proof of Theorem 7.3 follows directly
from the fact that E preserves the effective descent diagrams Bz and from the pseudo-
comonadicity of L. More precisely, as direct consequence of Lemma 7.1, Theorem 6.5 and
Proposition 7.2, we get:

7.4. Corollary. [Counit] Let (E a R, ρ, µ, v, w), (L a U, η, ε, s, t) be biadjunctions in-
ducing the same pseudocomonad T = (T , $, ε,Λ, δ, s) such that

A
J //

E ��

B

L��
C

commutes. Assume that L is pseudocomonadic, J ◦ R = U and (J,G, ε, η, s, t) is a biad-
junction. The counit ε : JG −→ Id

B
is a pseudonatural equivalence if and only if, for

every object Y of B, E preserves the descent object of AY : ∆→ A.
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Proof. By Corollary 5.10, since J is left biadjoint, for each object Y of B, there is an
effective descent diagram BY : ∆̇ → A such that BY ◦ j ' AY . By the commutativity of
the triangles L ◦ J = E and J ◦ R = U , since (E a R, ρ, µ) and (L a U, η, ε, s, t) induce
the same pseudocomonad, our setting satisfies the hypotheses of Lemma 6.4. Thus, for
each object Y of B, there is a pseudonatural equivalence

J ◦ BY ◦ j ' J ◦ AY ' VY ◦ j.

By Theorem 6.5, to complete this proof, it is enough to show that J ◦BY is of effective
descent if and only if E ◦ BY is of effective descent.

Firstly, we assume that J◦BY is of effective descent. In this case, since J◦BY ◦j ' VY ◦j
and VY is of effective descent, we conclude that VY ' J ◦ BY . Thus, by Lemma 7.1,

L ◦ VY ' L ◦ J ◦ BY = E ◦ BY

is, in particular, of effective descent.
Reciprocally, we assume that E ◦ BY is of effective descent. Again, since E ◦ BY ◦ j '

L ◦ VY ◦ j and L ◦ VY is of absolute effective descent, we conclude that E ◦ BY ' L ◦ VY is
of absolute effective descent. Therefore, since L is pseudocomonadic, by Proposition 7.2,
we conclude that J ◦ BY is of effective descent.

8. Coherence

A 2-(co)monadic approach to coherence consists of studying the inclusion of the 2-category
of strict (co)algebras into the 2-category of pseudo(co)algebras of a given 2-(co)monad
to get general coherence results [1, 12, 15]. More precisely, one is interested, firstly, to
understand whether the inclusion of the 2-category of strict coalgebras into the 2-category
of pseudocoalgebras has a right 2-adjoint G (what is called a “coherence theorem of
the first type” in [12]). Secondly, if there is such a right 2-adjoint, one is interested in
investigating whether every pseudocoalgebra z is equivalent to the strict replacement G(z)
(what is called a “coherence theorem of the second type” in [12]).

We fix the notation of this section as follows: we have a 2-comonad T = (T , $, ε)
on a 2-category C. We denote by T -CoAlg

s
the 2-category of strict coalgebras, strict

morphisms and T -transformations, that is to say, the usual CAT-enriched category of
coalgebras of the CAT-comonad T . The 2-adjunction E a R : T -CoAlg

s
→ C induces the

Eilenberg-Moore factorization w.r.t. the pseudocoalgebras:

T -CoAlg
s

J //

E ''

Ps-T -CoAlg

L
��
C

in which J : T -CoAlg
s
→ Ps-T -CoAlg is the usual inclusion.
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Firstly, Corollary 5.10 gives, in particular, necessary and sufficient conditions for which
a 2-comonad satisfies the “coherence theorem of the first type” and a weaker version of
it, that is to say, it also studies when J has a right biadjoint G. Secondly, Corollary 7.4
gives necessary and sufficient conditions for getting a stronger version of the “coherence
theorem of the second type”, that is to say, it studies when the counit of the obtained
biadjunction/2-adjunction is a pseudonatural equivalence.

8.1. Corollary. [Coherence Theorem] Let T = (T , $, ε) be a 2-comonad on a 2-
category C. It induces a 2-adjunction (E a R, ρ, ε) and a biadjunction (L a U, η, ε, s, t)
such that

T -CoAlg
s

J //

E ''

Ps-T -CoAlg

L
��
C

commutes. The inclusion J : T -CoAlg
s
→ Ps-T -CoAlg has a right biadjoint if and only if

T -CoAlg
s

has the descent object of

RLz

RL(ηz )
//

ρ
RLz //

RT LzR(ε
Lz

)oo

RT L(ηz )
//

RL(η
ULz

) //

ρ
RT Lz //

RT 2Lz (Az)

for every pseudocoalgebra z of Ps-T -CoAlg. In this case, J is left biadjoint to G, given

by Gz :=
{

∆̇(0, j−),Az

}
bi

. Moreover, assuming the existence of the biadjunction (J a
G, ε, η, s, t), the counit ε : JG −→ id

B
is a pseudonatural equivalence if and only if E

preserves the descent object of Az for every pseudocoalgebra z.
Furthermore, J has a genuine right 2-adjoint G if and only if T -CoAlg

s
admits the

strict descent object of Az for every T -pseudocoalgebra z. In this case, the right 2-adjoint

is given by Gz :=
{

∆̇(0, j−),Az

}
.

Proof. Since (E a R, ρ, ε) and (L a U, η, ε, s, t) induce the same pseudocomonad and
(ηJ) = (Jρ) is a 2-natural transformation, it is enough to apply Corollary 7.4 and Corol-
lary 5.10 to the triangle L ◦ J = E.

We say that a 2-comonad T satisfies the main coherence theorem if there is a right
2-adjoint Ps-T -CoAlg→ T -CoAlg

s
to the inclusion and the counit of such 2-adjunction is

a pseudonatural equivalence.
To get the original statement of [12], we have to employ the following well known

result (which is a consequence of a more general result on enriched comonads):
Let T be a 2-comonad on C. The forgetful 2-functor T -CoAlg

s
→ C creates all those

strict descent objects which exist in C and are preserved by T and T 2.
Employing this result and Corollary 8.1, we prove Theorem 3.2 and Theorem 4.4 of

[12]. For instance, we get:
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8.2. Corollary. [12] Let T be a 2-comonad on a 2-category C. If C has and T preserves
strict descent objects, then T satisfies the main coherence theorem.

9. On lifting biadjunctions

One of the most elementary corollaries of the adjoint triangle theorem [2] is about lifting
adjunctions to adjunctions between the Eilenberg-Moore categories. In our case, let T :
A→ A and S : C→ C be 2-comonads (with omitted comultiplications and counits), if

T -CoAlg
s

L̂
��

J // S-CoAlg
s

L
��

A
E

// C

is a commutative diagram, such that E has a right 2-adjoint R, then Proposition 1.1 gives
necessary and sufficient conditions to construct a right 2-adjoint to J . Also, of course, as
a consequence of Corollary 5.10, we have the analogous version for pseudocomonads.

9.1. Corollary. Let T : A→ A and S : C→ C be pseudocomonads. If the diagram

Ps-T -CoAlg

L̂
��

J // Ps-S-CoAlg

L
��

A
E

// C

commutes and E has a right biadjoint, then J has a right biadjoint provided that Ps-T -CoAlg
has descent objects.

Recall that Ps-T -CoAlg has descent objects if A has and T preserves descent objects.
Therefore the pseudofunctor J of the last result has a right biadjoint in this case.

9.2. On pseudo-Kan extensions. One simple application of Corollary 9.1 is about
pseudo-Kan extensions. In the tricategory 2-CAT, the natural notion of Kan extension is
that of pseudo-Kan extension. More precisely, a right pseudo-Kan extension of a pseud-
ofunctor D : S → A along a pseudofunctor h : S → Ṡ, denoted by Ps-RanhD, is (if it
exists) a birepresentation of the pseudofunctor W 7→ [S,A]PS(W ◦ h,D). Recall that
birepresentations are unique up to equivalence and, therefore, right pseudo-Kan extensions
are unique up to pseudonatural equivalence.

Assuming that h : S → Ṡ is a pseudofunctor between small 2-categories, in the set-
ting described above, the following are natural problems on pseudo-Kan extensions: (1)
investigating the left biadjointness of the pseudofunctor W →W ◦ h, namely, investigat-
ing whether all right pseudo-Kan extensions along h exist; (2) understanding pointwise
pseudo-Kan extensions (that is to say, proving the existence of right pseudo-Kan exten-
sions provided that A has all bilimits).
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It is shown in [1] that, if S0 denotes the discrete 2-category of the objects of S,
the restriction [S,A] → [S0,A] is 2-comonadic, provided that [S,A] → [S0,A] has a
right 2-adjoint RanS→S0 . It is also shown there that the 2-category of pseudocoalgebras
of the induced 2-comonad is [S,A]PS. It actually works more generally: [S,A]PS →
[S0,A]PS = [S0,A] is pseudocomonadic whenever there is a right biadjoint Ps-RanS0→S :
[S0,A]PS → [S,A]PS because existing bilimits of A are constructed objectwise in [S,A]PS
(and, therefore, the hypotheses of the pseudocomonadicity theorem [13] are satisfied).
Thus, we get the following commutative square:

[Ṡ,A]PS

��

[h,A]PS// [S,A]PS

��
[Ṡ0,A]

[h,A]PS

// [S0,A]

Thereby, Corollary 9.1 gives a way to study pseudo-Kan extensions, even in the absence
of strict 2-limits. That is to say, on one hand, if the 2-category A is complete, our results
give pseudo-Kan extensions as descent objects of strict 2-limits. On the other hand, in the
absence of strict 2-limits and, in particular, assuming that A is bicategorically complete,
we can construct the following pseudo-Kan extensions:

Ps-Ran
S0→Ṡ0

: [S0,A] → [Ṡ0,A]PS

D 7→ Ps-Ran
S0→Ṡ0

D :

x 7→ ∏
h(a)=x

Da


Ps-Ran

Ṡ0→Ṡ
: [Ṡ0,A] → [Ṡ,A]PS

D 7→ Ps-Ran
Ṡ0→Ṡ
D :

x 7→ ∏
y∈Ṡ0

Ṡ(x, y) t Dy


Ps-Ran

S0→S
: [S0,A] → [S,A]PS

D 7→ Ps-Ran
S0→S
D :

(
a 7→

∏
b∈S0

S(a, b) t Db

)

in which
∏

and t denote the bilimit versions of the product and cotensor product, respec-
tively. Thereby, by Corollary 9.1, the pseudo-Kan extension Ps-Ranh can be constructed
pointwise as descent objects of a diagram obtained from the pseudo-Kan extensions above.
Namely, Ps-RanhDx is the descent object of a diagram

a0
//

// a1
oo

//
//
// a2
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in which, by Theorem 4.3 and the last observations,

a0 =
∏
y∈Ṡ0

Ṡ(x, y) t
∏

h(a)=y

Da

 ' ∏
a∈S0

(
Ṡ(x,h(a)) t Da

)

a1 =

Ṡ(x, y) t
∏

h(a)=y

∏
b∈S0

S(a, b) t Db


'

∏
a∈S0

Ṡ(x,h(a)) t

∏
b∈S0

S(a, b) t Db


'

∏
(a,b)∈S0×S0

((
S(a, b)× Ṡ(x,h(a))

)
t Db

)
a2 '

∏
(a,b,c)∈S0×S0×S0

((
S(b, c)×S(a, b)× Ṡ(x,h(a))

)
t Dc

)
This implies that, indeed, if A is bicategorically complete, then Ps-RanhD exists and,
once we assume the results of [19] related to the construction of weighted bilimits via
descent objects, we conclude that:

9.3. Proposition. [Pointwise pseudo-Kan extension] Let S, Ṡ be small 2-categories and
A be a bicategorically complete 2-category. If h : S→ Ṡ is a pseudofunctor, then

Ps-RanhDx =
{
Ṡ(x, h−),D

}
bi

9.4. Corollary. If A : ∆ → A is a pseudofunctor and A has the descent object of A,
then Ps-RanjA0 is the descent object of A.

Moreover, by the bicategorical Yoneda Lemma, we get:

9.5. Corollary. If h : S → Ṡ is locally an equivalence and there is a biadjunction
[h,A] a Ps-Ranh, its counit is a pseudonatural equivalence.

Finally, let A be a 2-category with all descent objects and T be a pseudocomonad on
A. Recall that, if T preserves all effective descent diagrams, Ps-T -CoAlg has all descent
objects. Therefore, if h : S → Ṡ is a pseudofunctor, in this setting, the commutative
diagram below satisfies the hypotheses of Corollary 9.1 (and, thereby, it can be used to
lift pseudo-Kan extensions to pseudocoalgebras).

[Ṡ,Ps-T -CoAlg]PS

��

// [S,Ps-T -CoAlg]PS

��
[Ṡ,A]PS // [S,A]PS
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9.6. Remark. Assume that h : S → Ṡ is a pseudofunctor, in which S, Ṡ are small 2-
categories. There is another way of proving Proposition 9.3. Firstly, we define the bilimit
version of end. That is to say, if T : S×Sop → CAT is a pseudofunctor, we define∫

S
T := [A× Aop,CAT]PS (A(−,−), T )

From this definition, it follows Fubini’s theorem (up to equivalence). And, if B,D : S→ A
are pseudofunctors, the following equivalence holds:∫

S
A(Ba,Da) ' [S,A]PS (B,D)

Therefore, if h : S→ Ṡ is a pseudofunctor and we define PsRanhDx =
{
Ṡ(x, h−),D

}
bi

,

we have the pseudonatural equivalences (analogous to the enriched case [9])[
Ṡ,A

]
PS

(W,PsRanhD) '
∫
Ṡ
A(Wx,PsRanhDx)

'
∫
Ṡ
A(Wx,

{
Ṡ(x,h−),D

}
bi

)

'
∫
Ṡ

[S,CAT]PS (Ṡ(x,h−),A(Wx,D−))

'
∫
Ṡ

∫
S
CAT(Ṡ(x,h(a)),A(Wx,Da))

'
∫
S

∫
Ṡ
CAT(Ṡ(x,h(a)),A(Wx,Da))

'
∫
S

[
Ṡop,CAT

]
PS

(Ṡ(−,h(a)),A(W−,Da))

'
∫
S
A(W ◦ h(a),Da)

' [S,A]PS (W ◦ h,D)

This completes the proof that if the pointwise right pseudo-Kan extension PsRanh exists,
it is a right pseudo-Kan extension. Within this setting and assuming this result, the origi-
nal argument used to prove Proposition 9.3 using biadjoint triangles gets the construction
via descent objects of weighted bilimits originally given in [19].
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Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
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Myles Tierney, Université du Québec à Montréal : tierney.myles4@gmail.com
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


	Enriched Adjoint Triangles
	Bilimits
	Descent Objects
	Biadjoint Triangles
	Pseudoprecomonadicity
	Unit and Counit
	Pseudocomonadicity
	Coherence
	On lifting biadjunctions

