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CLASSIFIERS FOR MONAD MORPHISMS AND ADJUNCTION
MORPHISMS

DIMITRI ZAGANIDIS

Abstract. We provide an explicit model for the free 2-category containing n compos-
able adjunction morphisms, comparable to the Schanuel and Street model for the free
adjunction. We can extract from it an explicit model for the free 2-category containing
n composable lax monad morphisms. A careful proof is given, which goes through pre-
sentations of the hom-categories of our model. We use one of these hom-categories as an
indexing category to construct an extended Artin-Mazur codiagonal, whose underlying
bisimplicial set has the classical Artin-Mazur codiagonal as its first column.

1. Introduction

Riehl and Verity initiated a new approach to (∞, 1)-category theory, where the definitions
and proofs are 2-categorical in nature. Following these authors, a good context for (∞, 1)-
category theory is an ∞-cosmos, which is essentially a category enriched over quasi-
categories with some additional properties (see [17]).

Most of the usual models for (∞, 1)-categories do form an∞-cosmos, such as the sim-
plicially enriched categories of quasi-categories, Segal categories, complete Segal spaces,
marked simplicial sets and iterated complete Segal spaces, as Riehl and Verity prove in
their article [17]. The 2-category of small categories is also an∞-cosmos, and many mod-
els for (∞, n)-categories are as well. In a series of articles, [14, 16, 15, 17, 18], Riehl and
Verity showed that much of category theory can be done in a general ∞-cosmos, and in
particular in its 2-category.

One of the key ideas is to encode homotopy coherent diagrams in a simplicial category
K as simplicial functors C → K, where C is a well chosen simplicial category. This idea
goes back at least to Cordier and Porter [5] and originated in earlier work of Vogt [22] on
homotopy coherent diagrams. For instance, the homotopy coherent nerve is constructed
in this way. In Riehl and Verity’s paper [16], C is the universal 2-category containing
the object of study, either a monad or an adjunction, and K is the underlying ∞-cosmos.
Constructions of such universal 2-categories can generally be given by a presentation by
a computad [21]. Nevertheless, some of Riehl and Verity’s arguments are combinatorial
in nature and thus rely heavily on the use of a very concrete description of the universal
monad and the universal adjunction. The universal adjunction was described explicitly
partially by Auderset in [2] and by Schanuel and Street in [19].
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Lax monad morphisms are the general notion of morphisms between monads in a 2-
category. They were introduced by Street in his paper [20]. However, the readily available
notion of morphisms between the homotopy coherent monads of Riehl and Verity is that
of simplicial natural transformations, which correspond to strict monad morphisms in the
2-categorical case.

The main goal of this paper is to provide an explicit description of the universal 2-
category containing n composable lax monad morphisms, which we call Mnd[n]. This is
a prerequisite to studying lax monad morphisms in the context of an ∞-cosmos. Based
on the construction of Mnd[n], the author has been able to provide explicit descriptions
of the universal 2-category Mndhc[n] containing a homotopy coherent diagram of shape
[n] constituted of monads, lax monad morphisms and monad transformations. This is a
part of the author’s thesis and will be explained in a forthcoming paper.

In the first part of this paper, we review the definitions of adjunction and monad and
their morphisms in a 2-category. We show that if Adj[n] is the free 2-category containing
n composable adjunction morphisms, there is an embedding Mnd[n]→ Adj[n].

The second part of the paper consists of the construction of an explicit model for
Adj[n] and a detailed proof of its 2-universal property. The proof of the result is car-
ried out in three steps. First, we give a presentation of the hom-categories of Adj[n]
(Theorem 3.3.2). In the second step, we show that the generators and relations of the
hom-categories are actually 2-categorically generated by the adjunction data and adjunc-
tion morphism data (Propositions 3.3.4, 3.3.6, 3.3.7 and 3.3.8). In the last step, we prove
that these relations are verified by any sequence of adjunction morphisms.

In the last part, we provide evidence that these hom-categories can be of interest to the
homotopy theorist. First, all the hom-categories of Adj[n] are in fact Reedy categories.
As an easy application of the 2-universal property of Adj[n], we provide an extended bar
construction in the presence of a lax morphism of monads. We also study the extended
Artin-Mazur codiagonal and show that the realization of its underlying bisimplicial set is
weakly equivalent to that of the Artin-Mazur codiagonal. This provides new homotopical
models for the realization of a bisimplicial set, for instance by iterating the extended
Artin-Mazur codiagonal.

1.1. Notations. For a category C , |C | denotes its class of objects. If A,B ∈ |C |,
C (A,B) denotes the set of morphisms from A to B in C .

For a natural number n, we will write n instead when we consider it as an ordinal.
That is, we set 0 = ∅ and n = {0, . . . ,n− 1}.

The category ∆+ is the category of finite ordinals and order preserving maps. Among
those maps, it is well known that the cofaces di : n− 1 → n and codegeneracies sj :
n + 1 → n for 0 ≤ i, j < n generate this category. The coface di is the only order-
preserving injective map not containing i in its image, while sj : n + 1 → n is the only
order-preserving surjective map such that j is the image of two elements of n + 1. More
precisely, for k ∈ n− 1 and l ∈ n + 1,

di(k) =

{
k : k < i

k + 1 : k ≥ i
, sj(l) =

{
l : l ≤ i

l − 1 : l > i
.
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Remark that the more common notation [n] = {0, . . . , n} for the objects of ∆ is such
that n = [n−1]. This change of notation is more convenient when considering the ordinal
sum, because [n]+[m] = [n+m−1], whereas the ordinal sum n+m is exactly the ordinal
with n+m elements and is also denoted by n + m.

1.2. Acknowledgments. I would like to thank Emily Riehl for helpful discussions, my
advisor Kathryn Hess for her continuous support, careful reading and suggestions, and
an anonymous referee for his valuable input.

2. The relation between monads and adjunctions

In this section, we review the classical correspondence between monads and adjunctions
(see Mac Lane [12]), but in the general context of monads in a 2-category that is suf-
ficiently complete. We investigate a parallel correspondence between monad morphisms
and adjunction morphisms. The theorems are phrased in term of an enriched right Kan
extension (see [9]).

2.1. Monads and their Eilenberg-Moore objects of algebras. In this part,
we recall briefly the definition of monad and monad morphisms in a 2-category, together
with the Eilenberg-Moore object of algebras.

2.1.1. Definition. A monad over an object B in a 2-category C , is a quadruple T =
(B, T, µ, η), where

• B ∈ |C |;

• T : B −→ B is a 1-cell;

• µ : T 2 −→ T is a 2-cell;

• η : idB −→ T is a 2-cell;

satisfying the following properties:

• µ ◦ Tµ = µ ◦ µT ,

• µ ◦ Tη = 1T = µ ◦ ηT .

Street introduced morphisms between monads under the name monad functors in [20]
and later used the name monad morphisms with Lack in [11]. Some authors call them
lax monad morphisms. In this paper, all monad morphisms will be lax unless otherwise
mentioned, thus we will drop the adjective lax, and add the adjective strict instead when
necessary.
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2.1.2. Definition. Let T = (B, T, µ, η) and S = (C, S, ρ, ι) be two monads in a 2-
category C . A monad morphism T −→ S is a couple (f, γ), where

• f : B −→ C is a 1-cell of C ;

• γ : Sf −→ fT is a 2-cell of C ;

such that the following diagrams are commutative.

•
S2f

ρf

��

Sγ // SfT
γT // fT 2

fµ

��
Sf

γ // fT

•
f

ιf //

fη ��

Sf

γ

��
fT

A monad morphism is said to be strict when its 2-cell is an identity.

Monad morphisms deserve special attention for several reasons. First, they are the
only sensible morphisms to use when the base category is fixed. Second, they are the
1-cells of a 2-category Mnd(C ) of monads in C , introduced by Street in [20]. Given
two monads T and S on the same object of a 2-category C , Street also explains that a
2-cell λ : TS → ST is a distributive law if and only if (S, λ) is a lax monad morphism
T → T and the multiplication and unit of S are respectively monad transformations
(S, λ)2 → (S, λ) and 1→ (S, λ) in Mnd(C ).

We will now define the Eilenberg-Moore object of algebras associated to a monad. Let
T = (B, T, µ, η) be a monad in a 2-category C . For any X ∈ |C |, since C (X,−) is a
2-functor,

T∗(X) = (C (X,B),C (X,T ),C (X,µ),C (X, η))

is a monad in Cat. Moreover, any 1-cell f : X ′ −→ X induces a strict monad mor-
phism C (f,B) : T∗(X) −→ T∗(X ′) and thus a functor C (X,B)T∗(X) −→ C (X ′, B)T∗(X

′)

between the categories of algebras. Also, one can check that any 2-cell induces a natural
transformation between these functors. This defines a 2-functor

C (−, B)T∗(−) : C op −→ Cat. (1)
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2.1.3. Definition. Let T = (B, T, µ, η) be a monad in a 2-category C . The Eilenberg-
Moore object of algebras of T , if it exists, is a representing object BT of the 2-functor
(1).

The universal 2-category containing a monad, also called the free monad by Schanuel
and Street in [19], is a 2-category Mnd such that there is a natural bijection between the
monads in a 2-category C and the 2-functors Mnd → C . Remark that by the Yoneda
lemma, this property determines Mnd up to isomorphism. Its existence can be derived by
constructing it by generators and relations, using presentations by computads as in [21].
A short introduction to computads is provided in Appendix A and coequalizer (3) below
will provide an example of such a construction.

As in category theory, an adjunction in a 2-category induces a monad. Thus, there
is a 2-functor i : Mnd → Adj, where Adj is the universal 2-category containing an
adjunction, also called the free adjunction by Schanuel and Street in [19]. Let us denote
by B the domain of the left adjoint in Adj and A its codomain. These two objects
are distinct and the only objects of Adj. Auderset in [2, Proposition 2.2] showed that
i is actually fully faithful. The 2-category Mnd can thus be described as the full sub
2-category of Adj generated by B. Moreover, in [2, Theorem 4.4], Auderset shows the
following.

2.1.4. Proposition. Let T be a monad over B in a 2-category C and T : Mnd −→ C
the corresponding 2-functor. When C is complete, the enriched right Kan extension of
the 2-functor T : Mnd −→ C along i : Mnd −→ Adj exists and is the free forgetful
adjunction in C :

B
f // BT .
u

oo (2)

It follows that BT can be expressed as the weighted limit {Adj(A, i(−)),T}.

Remark that the assumption of C being complete is made only to ensure the existence
of any enriched right Kan extension with target C , and is stronger than needed. It can
be weakened to the existence of only those limits needed to construct that particular
right Kan extension. We will not explore this aspect, but finitely complete is a sufficient
hypothesis (see [10, page 92] for instance).

2.1.5. Example. Let C = Cat and let B
L // A
R
oo be an adjunction with L a R, unit

η and counit ε. This determines a 2-functor A : Adj → Cat, and thus also a monad
A ◦ i : Mnd→ Cat, which is T = (B, RL,RεL, η).

The object of algebras BT is the usual category of algebras over T , and the adjunc-
tion (2) is the usual free-forgetful adjunction. Let us describe the 2-natural transformation

Adj
A ,,

Rani(A◦i)
22α �� Cat given by the universal property of the enriched right Kan extension. It

is given by αB = idB and αA = CanA : A → BT on the other object, where CanA is
defined by
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• CanA(A) = (RA,Rε) for all A ∈ |A |;

• CanA(f) = Rf for all f ∈ Mor A .

2.2. Relations between monad morphisms and adjunction morphisms. Our
goal is to generalize the results of the previous section so as to include monad morphisms
in the picture. We introduce the following definitions.

2.2.1. Definition. The 2-category Mnd[n] is the universal 2-category containing n com-
posable monad morphisms (with Mnd[0] = Mnd).

2.2.2. Definition. An adjunction morphism from an adjunction B
l //
⊥ A
r
oo to an ad-

junction B′
l′ //
⊥ A′

r′
oo in a 2-category C is a pair of 1-cells b : B −→ B′ and a : A −→ A′

such that br = r′a.

2.2.3. Definition. The 2-category Adj[n] is the universal 2-category containing n com-
posable adjunction morphisms (with Adj[0] = Adj).

As before, by Yoneda’s lemma, Mnd[n] and Adj[n] are determined up to isomor-
phism by their 2-universal property. Their existence can be proven using presentation
by computads. For instance, the coequalizer ADJ [n] displayed in (3) below satisfies the
universal property of Adj[n]. We notationally distinguish this coequalizer from the ex-
plicit model that we build in Section 3.2, which we denote by Adj[n]. We prove in
Theorem 3.3.9 that ADJ [n] ∼= Adj[n]. Hence, this is just a notational convenience made
for the proof of Theorem 3.3.9. Observe that sequences of n + 1 monads in C together
with n composable monad morphisms between them are in bijective correspondence with
functors [n] → Lax(Mnd,C ), where Lax(Mnd,C ) denotes the category whose objects
are 2-functors Mnd→ C and whose morphisms are lax natural transformations. A short
introduction to lax natural transformations is provided in Appendix B.

This implies that
Mnd[n] ∼= Mnd⊗Lax [n],

where ⊗Lax denotes the lax Gray tensor product on 2-Cat, as defined in [7]. This follows
from the Yoneda lemma and the bijection

2-Cat(Mnd⊗Lax [n],C ) ∼= 2-Cat([n],Lax(Mnd,C )).

On the other hand, Adj[n] cannot be expressed as Adj ⊗Lax [n], because in Adj[n]
the squares involving the right adjoints commute on the nose rather than up to a 2-cell
isomorphism.

We construct now the 2-category ADJ [n] using a presentation by a computad. A
similar construction can be performed to obtain Mnd[n]. A reader not familiar with
presentations by computads can consult Appendix A.

We define a computad Adj[n] as follows. Its graph GrAdj[n] is given by
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(B, n)
Ln //

Bn
��

(A, n)
Rn

oo

An
��

(B, n− 1)

Bn−1��

Ln−1 // (A, n− 1)
Rn−1

oo

An−1��
...

B1

��

...

A1

��
(B, 0)

L0 // (A, 0)
R0

oo

and non-trivial graphs Adj[n](X, Y ) are given by Adj[n]((B, i), (B, i)) = (B, i)
∅ ,,

RiLi

22ηi �� (B, i)

and Adj[n]((A, i), (A, i)) = (A, i)
LiRi ,,

∅
22εi �� (A, i) . The computad Rel[n] has underlying graph

(B, n)
Ln //

Bn
��

(A, n)
Rn

oo

An
��Cnww

(B, n− 1)

Bn−1��

Ln−1 // (A, n− 1)
Rn−1

oo

An−1��Cn−1

xx...

B1

��

...

A1

��C1xx
(B, 0)

L0 // (A, 0)
R0

oo

and non-trivial graphs Rel[n](X, Y ) are given by Rel[n]((B, i), (A, i)) = (B, i)
Li ,,

Li

22λi �� (A, i)

and Rel[n]((A, i), (B, i)) = (A, i)
Ri ,,

Ri

22ρi �� (B, i) .

We define two 2-functors M,N : F(Rel[n])→ F(Adj[n]) that are identities on objects,
by M(S) = N(S) = S for S ∈ {Li, Ri, Ai, Bi}, M(Ci) = Bi · Ri, N(Ci) = Ri−1 · Ai,
M(ρi) = (εiRi) ◦ (Riηi), N(ρi) = 1Ri , M(λi) = (Liεi) ◦ (ηiLi), N(λi) = 1Li .

The 2-category ADJ [n] is the coequalizer (in 2-Cat) in the diagram

F(Rel[n])
M //
N

// F(Adj[n]) // ADJ [n]. (3)
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The universal properties of the free 2-category on a computad and of the coequalizer
imply that ADJ [n] satisfies the 2-universal property we were looking for.

2.2.4. Proposition. An adjunction morphism between two adjunctions induces a monad
morphism between the induced monads.

Proof. Let b : B −→ B′ and a : A −→ A′ form an adjunction morphism from an

adjunction B
l //
⊥ A
r
oo to an adjunction B′

l′ //
⊥ A′

r′
oo .

Let β be the mate of the identity br → r′a, that is, the composite

B l //

1 ��

η ;CA
a //

r
��

A′

r′

��

1

!!
9Aε′

B
b
// B′

l′
// A′.

We claim that (b, r′β) is a monad morphism (rl, rεl, η)→ (r′l′, r′ε′l′, η′).
Remark first that r′β : r′l′b −→ r′al = brl, as desired. The compatibility with the

unit is given by the triangle identity of the second adjunction and the interchange law

B
l //

1 ��

η ;CA
a //

r
��

A′

r′

��

1

  
:Bε′

B
b
// B′ l′ //

1   

η′ :B
A′

r′

��
B′

=

B l //

1 ��

η ;CA
a //

r
��

A′

r′

��
B

b
// B′.

The compatibility condition with the multiplication is given by the triangle identity
of the first adjunction and the interchange law

B

l
��

1 //

η

��

B b // B′

l′

��
A

r
��

a //
r

>>

1

##

ks ε

A′

r′
>>

1 //
�	 ε′

A′

r′

��
B

1 //

η

��
l
��

B
b // B′

l′

��
A

r

>>

a //

r
��

A′

r′
>>

1 //
�	 ε′

A′

r′

��
B

b
// B′

=

B

l
��

1 //

η

��

B
b // B′

l′

��
A

a //
r

>>

A′

r′
==

1 //
�	 ε′

A′

r′

��
1

((

ks ε′ B′

l′

��
A′

r′

��
B′.

Proposition 2.2.4 implies that there is an induced 2-functor j : Mnd[n] → Adj[n],
which satisfies the following important property.
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2.2.5. Proposition. Let T : Mnd[n] −→ Cat be the 2-functor induced by the n com-

posable morphisms of monads Tn
(Bn,γn)// . . .

(B1,γ1)// T0 where Ti is a monad (Ti, µi, ηi) on a
category Bi. There is a diagram

Bn

Fn //

Bn

��

BTnn
Un

oo

(Bn,γn)
��

Bn−1

Fn−1 //

��

BTn−1

n−1
Un−1

oo

��
...

B1

��

...

(B1,γ1)

��

B0

F0 //BT00
U0

oo

which determines a 2-functor A : Adj[n] −→ Cat. Moreover, this 2-functor is the en-
riched right Kan extension of T along j : Mnd[n] → Adj[n] and Aj = T (the natural
transformation is the identity).

Proof. Let 0 < i ≤ n be an integer. Recall that if (X,m) is a Ti-algebra, then

(Bi, γi)(X,m) = (BiX,Bi(m) ◦ (γi)X),

and for f a morphism of algebras, (Bi, γi)(f) = Bi(f), thus the squares involving the right
adjoints commute on the nose. This determines n composable adjunction morphisms and
thus a 2-functor A : Adj[n] −→ Cat.

We compute now the monad morphism (Bi, γ̃i) induced by the morphism of adjunction

Bi

Fi //

Bi

��

BTii
Ui

oo

(Bi,γi)
��

Bi−1

Fi−1 //B
Ti−1

i−1 .
Ui−1

oo

Let us recall the unit and counit of the free forgetful adjunction on level i.

• The unit is ηi : 1Bi
→ UiFi = Ti.

• The counit εi is given on the Ti-algebra (X,m) by ε(X,m) = m : TiX → X.

Thus, the 2-cell γ̃i that makes (Bi, γ̃i) the associated monad morphism Ti → Ti−1 at
the object X ∈ Bi is the composite

Ti−1Bi(X)
(Ti−1Biηi)X // Ti−1Bi(TiX)

(γiTi)X// BiT
2
i X

(Biµi)X// BiTiX.



CLASSIFIERS FOR MONAD MORPHISMS AND ADJUNCTION MORPHISMS 1059

Since (Bi, γi) is a monad morphism, the unit condition implies that this is equal to the
composite

Ti−1Bi(X)
(Ti−1ηi−1Bi)X// T 2

i−1Bi(X)
(Ti−1γi)X // Ti−1Bi(TiX)

(γiTi)X// BiT
2
i X

(Biµi)X// BiTiX.

Now the compatibility with the multiplications implies that this is equal to

Ti−1Bi(X)
(Ti−1ηi−1Bi)X// T 2

i−1Bi(X)
(µi−1Bi)X // Ti−1Bi(X)

(γi)X // BiTiX

and thus γ̃i = γi. This shows that Aj = T.
We are going to use the fact that the enriched right Kan extension can be recognized

by its universal property. Its existence is a consequence of Cat being complete as a
2-category. Let

Ci

Li //

Ci
��

Di
Ri

oo

Di
��

Ci−1

Li−1 // Di−1
Ri−1

oo

be a morphism of adjunctions for all i = 1, . . . , n where the adjunction Li a Ri has unit
η̃i and counit ε̃i. The adjunction Li a Ri determines a 2-functor Bi : Adj → Cat. The
whole structure determines a 2-functor B : Adj[n] −→ Cat. Let Pi be the monad on Ci

induced by the adjunction Li a Ri. By 2.2.4, the monad morphism Pi → Pi−1 induced
by the adjunction morphism (Ci, Di) is (Ci, δi), where

δi = Ri−1((ε̃i−1DiLi) ◦ (Li−1Ciη̃i)).

Let ψ : Bj −→ T be a 2-natural transformation. We thus have functors ψi : Ci −→ Bi

such that

(i) ψiRiLi = Tiψi and ψiη̃i = ηiψi, ψiRiε̃iLi = µiψi;

(ii) ψi−1Ci = Biψi and γiψi = ψi−1Ri−1((ε̃i−1DiLi) ◦ (Li−1Ciη̃i)).

We need to show that there is a unique 2-natural transformation ω : B −→ A such
that ωj = ψ. Said differently, we have to show that ψ extends uniquely to a 2-natural
transformation B −→ A.

The relations (i) above show that ψi is a strict monad morphism from the monad to
the monad Ti and thus induces a functor (Ci)

Pi −→ (Bi)
Ti . Precomposing with CanBi :

Di −→ (Ci)
Pi (see Example 2.1.5) yields ρi : Di −→ (Bi)

Ti .
We are now going to show that the 2-transformation ω : B → A given on level i by

ψi, ρi is 2-natural. It is enough to check naturality with respect to the generating 1-cells
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and 2-cells. To deal with naturality with respect to 1-cells, it is enough to show that in
the diagram

Bi

Fi //

Bi

��

BTii
Ui

oo

(Bi,γi)

��

Ci

ψi
<<

Li //

Ci

��

Di
Ri

oo

Di

��

ρi
;;

Bi−1

Fi−1 //B
Ti−1

i−1 ,
Ui−1

oo

Ci−1

ψi−1

<<

Li−1 // Di−1
Ri−1

oo

ρi−1

;;

all squares other than the front and back squares are commutative. Example 2.1.5 implies
that the top and bottom squares are commutative, while the left square is commutative
by definition. For the right square, relation (ii) implies that (ψi−1, 1) ◦ (Ci, δi) = (Bi, γi) ◦
(ψi, 1), and thus the right square of the diagram

Di

Di

��

ρi

((CanBi // C Pii
(ψi,1) //

(Ci,δi)
��

BTii

(Bi,γi)
��

Di−1

CanBi−1 //

ρi−1

55C
Pi−1

i−1

(ψi−1,1) //B
Ti−1

i−1

is commutative. The triangle identity of the adjunction Li a Ri implies that the left
square commutes also. Finally, we need to check naturality with respect to the counits.
Recall that the counit εi of the free-forgetful adjunction is given by (εi)(Bi,mi) = mi. Thus,

εiρi = ψiRiε̃i = Uiρiε̃i = ρiε̃i.

Remark that the equation Uiρi = Riψi determines the underlying object of the Ti−1-
algebra ρi(D) for allD ∈ |Di|, and also how ρi acts on morphisms. The equation εiρi = ρiε̃i
determines the multiplication of ρi(D), establishing uniqueness.

The proposition below is a general result of enriched category theory. One can find it
in a slightly different form together with its proof in [9, Paragraph 1.10].

2.2.6. Proposition. Let V be a symmetric monoidal category and let X ,C be V -
categories. Let F : X → [C op,V ] be a V -functor such that its image is contained in the
essential image of the Yoneda embedding Y : C → [C op,V ]. For each X ∈ |X |, choose a
representation of F (X), αX : C (−, KX)→ F (X) (αX is a V -natural isomorphism).

Then, there exists a unique V -functor K : X → C such that

α : Y K → F

is V -natural.
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2.2.7. Definition. Let F : X → [C op,V ] be a V -functor such that its image is con-
tained in the essential image of the Yoneda embedding Y : C → [C op,V ]. A representation
of F is defined to be the choice of a V -functor K : X → C together with a V -isomorphism
Y K → F .

2.2.8. Theorem. Let C be a complete 2-category and T : Mnd[n] −→ C a 2-functor

corresponding to n composable morphisms of monads Tn
(bn,γn)// . . .

(b1,γ1)// T0 where Ti is a
monad (Ti, µi, ηi) on an object Bi.

Then, the enriched right Kan extension of T along j is given by a representation of
the diagram

C (−, Bn)
C(−,fn) //

C(−,bn)

��

C (−, Bn)Tn∗(−)

C(−,un)
oo

C(−,bn),C(−,γn)
��

C (−, Bn−1)
C(−,fn−1)//

��

C (−, Bn−1)Tn−1∗(−)

C(−,un−1)
oo

��
...

��

...

��

C (−, B0)
C(−,f0) // C (−, B0)T0∗(−)

C(−,u0)
oo

(4)

which can be chosen to be

Bn

fn //

bn

��

BTnnun
oo

��

Bn−1

��

fn−1 // B
Tn−1

n−1un−1

oo

��
...

��

...

��

B0

f0 // BT00 .u0
oo

The lemma below is the key of the proof of Theorem 2.2.8.

2.2.9. Lemma. Let A F //

J
��

[C op,V ]

B

be a diagram of V -functors. The enriched right

Kan extension of F along J can be obtained as the adjunct of the composite

C op // [A ,V ]
RanJ // [B,V ].
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Proof of lemma 2.2.9. Consider the diagram

[A , [C op,V ]]

RanJ
��

∼= // [C op, [A ,V ]]oo

[1,RanJ ]

��
[B, [C op,V ]]

J∗

OO

∼= // [C op, [B,V ]]oo

[1,J∗]

OO

Since the diagram of left adjoints commutes, the diagram of right adjoints commutes up
to isomorphism.

Proof of theorem 2.2.8. Let RanjT : Adj[n] → C be the enriched right Kan ex-
tension. Since the Yoneda embedding Y : C → [C op,Cat] preserves weighted limits,
Y RanjT ∼= Ranj(Y T). By the uniqueness statement of Proposition 2.2.6, we only have
to show that for X ∈ |Adj[n]|, Ranj(Y T)(X) : C op → Cat is the corresponding repre-
sentable.

By the previous lemma, Ranj(Y T) is isomorphic to the adjunct of the composite

C op C (−,T(−)) // [Mnd[n],Cat]
Ranj // [Adj[n],Cat],

which we denote by ad1(Ranj ◦C (−,T(−))). We also denote by ad2(Ranj ◦C (−,T(−)))
its adjunct C op ×Adj[n]→ Cat.

By Proposition 2.2.5 and its proof, we can describe

Ranj : [Mnd[n],Cat]→ [Adj[n],Cat].

To a 2-functor X : Mnd[n]→ Cat, it associates its enriched right Kan extension given by
morphisms of adjunctions induced by the monad morphisms, between the corresponding
free-forgetful adjunctions.

To a 2-natural transformation α : X ⇒ X′, it associates the 2-natural transformation
Ranjα : RanjX⇒ RanjX′ determined by the universal property of RanjX′ applied to the
couple (RanjX, α · j). From the proof, this extension of α is given by the induced (strict)
morphisms of monads.

For a modification χ : α→ α′, its extension Ranjχ : Ranjα→ Ranjα
′ is given on the

algebras object by the same natural transformation as on the base object. This is the
only possible choice because of the relation it must satisfy with respect to the forgetful
functor, and thus a valid choice.

As a consequence,

ad2(Ranj ◦ C (−,T(−))) : C op ×Adj[n]→ Cat

is the diagram (4).
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2.2.10. Remark. The theorem above can be interpreted with target category C op,C co

and C coop instead of C . In the first case, it gives the morphism between the Kleisli
objects induced by an oplax monad morphism. In the second case, it gives the morphism
between the Eilenberg-Moore coalgebra objects induced by an oplax comonad morphism.
The last case gives the morphism between the co-Kleisli objects induced by a lax comonad
morphism.

2.2.11. Corollary. The 2-functor j : Mnd[n] −→ Adj[n] is fully faithful.

Proof. This is a consequence of the previous proposition and the dual of [9, Proposition
4.23].

3. An explicit description of the 2-category Adj[n]

The goal of this section is to construct an explicit model for the 2-category Adj[n], and
thus derive one for Mnd[n], thanks to Corollary 2.2.11.

Let us first review the combinatorial model of Adj provided by Auderset, Schanuel
and Street, because we are going to build on top of this construction.

3.1. Review of the explicit model of Adj. In [2], Auderset defines Adj up to
isomorphism by its universal property, computes half of the hom-categories, and shows
that the other half are duals of the computed ones. The 2-category Adj has exactly two
objects, A and B, and Auderset provided a quotient-free description of the hom-categories,
which are

• Adj(B,B) = ∆+, the category of possibly empty finite ordinals with non-decreasing
maps;

• Adj(B,A) = ∆−∞, the category of non-empty finite ordinals with non-decreasing
maps that preserve the minimal element;

• Adj(A,B) = ∆op
−∞;

• Adj(A,A) = ∆op
+ .

Unfortunately, the composition maps are not easy to express from this point of view,
for instance ∆op

−∞ ×∆+ −→ ∆op
−∞ is not clear in Auderset’s article.

There is a well-known isomorphism dual : ∆op
+ −→ ∆−∞,+∞, (that one can call Stone

duality for intervals, following for instance Andrade’s thesis [1, page 206]) where the
codomain is the category of non-empty finite ordinals with non-decreasing maps that
preserve the minimal and maximal elements. Another name for this correspondence is
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interval representation, because one can have the following picture in mind.

In [19], Schanuel and Street use Stone duality for intervals and express Adj in the following
way.

• Adj(B,B) and Adj(B,A) are as before;

• Adj(A,B) = ∆+∞, the category of non-empty finite ordinals with non-decreasing
maps that preserves the maximal element;

• Adj(A,A) = ∆−∞,+∞;

• the composition Adj(Y, Z) × Adj(X, Y ) −→ Adj(X,Z) is given by ordinal sum
when Y = B. When Y = A, it is given by a quotient of the ordinal sum, where the
minimal element of an object of Adj(X, Y ) is identified with the maximal element
of the object of Adj(Y, Z) in the ordinal sum. One can picture an example of such
a composition in the following way,

where on the right the dark grey region is considered as a point.

The adjunction data is given as follows:

• the left adjoint is 1 ∈ Adj(B,A) while the right adjoint is 1 ∈ Adj(A,B);

• the unit of the adjunction is the unique map idB = 0→ 1;

• the counit of the adjunction is the unique map 2→ 1 = idA.
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3.2. Adj[n], the explicit construction. In order to build an explicit model, we will
use lax comma objects. A brief introduction to them can be found in Appendix B.

Let TOFS be the full sub 2-category of Cat generated by the Totally Ordered Finite
Sets. The 1-cells are non-decreasing maps whereas the 2-cells are given by the order on
the 1-cells, as follows. For f, g : S → T , f ≤ g if and only if for all s ∈ S, f(s) ≤ g(s).

Let TOFS+∞ be the locally full sub 2-category containing all objects but the empty
set and only the 1-cells that preserve the maximal element.

For X, Y ∈ |Adj|, we define categories TOFSX,Y by setting

TOFSX,Y =

{
TOFS X 6= A;

TOFS+∞ X = A.

Remark that we have an inclusion iX,Y : Adj(X, Y ) → TOFSX,Y . We write ·Adj for
the horizontal composition in Adj. For two integers y ≤ x, we write [y, x] for the set
[y, x] = {y, y + 1, . . . x}, which is naturally ordered.

Let us now introduce our explicit model for Adj[n].

• The set of objects is {(X, k) : X ∈ |Adj|, k ∈ {0, . . . , n}}.

• For the hom-categories, we set Adj[n]((X, x), (Y, y)) = ∅ if x < y. For x ≥ y, we
define

Adj[n]((X, x), (Y, y)) = iX,Y ↓l [y, x],

where [y, x] denotes the inclusion ∗ → TOFSX,Y hitting that object. (Note that
we keep only the underlying category of this 2-category: objects and 1-cells, which
become respectively 1-cells and 2-cells of Adj[n]).

More explicitly, a 1-cell from (X, x)→ (Y, y) is a non-decreasing map µ : m→ [y, x],
preserving the maximal element if X = A. One can think of it as a colored ordinal,
with colors belonging to the set [y, x]. For instance, the picture below shows a
coloring of 5.

0 1 2 3 4

A 2-cell from µ : m→ [y, x] to µ′ : m′ → [y, x] is a non-decreasing map f : m→m′

verifying some minimal/maximal element preservation condition depending on X
and Y , and such that µ ≤ µ′f .

m
f //

µ

��

2: m
′

µ′||
[y, x] 0 1 2 3 4

0 1 2 3
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• The composition is defined as follows. If X, Y, Z ∈ |Adj| and x ≥ y ≥ z, we define
the composition

CX,x,Y,y,Z,z : Adj[n]((Y, y), (Z, z))×Adj[n]((X, x), (Y, y)) −→ Adj[n]((X, x), (Z, z))

using Proposition B.5 and the diagram

Adj[n]((Y, y), (Z, z))×Adj[n]((X, x), (Y, y))

ss
**Adj(X,Z)

iX,Z ++

θ
+3 ∗

[z,x]tt
TOFSX,Z

where the top left morphism is given by projection onto the underlying Adj cat-
egories and composition in Adj. A lax natural transformation θ fitting into the
diagram is just a collection of 1-cells θ(m,µ),(m′,µ) : m ·Adj m

′ −→ [z, x] indexed by
objects of the top category of the diagram, that is, pairs of objects µ : m → [z, y],
µ′ : m′ → [y, x] satisfying a maximal-element-preserving condition depending re-
spectively on Y and X. The 2-cells don’t have to be specified, because there is
either one or no 2-cells between two 1-cell in TOFS. The 2-cells, if they exist,
can be defined in only one way, and all diagram will be automatically commu-
tative. Thus, in this particular case, 2-cells are equivalent to a condition on the
1-cells, which is that for all 1-cells f : (l, λ)→ (l′, λ′) ∈ Adj[n]((Y, y), (Z, z)) and
g : (m, µ)→ (m′, µ′) ∈ Adj[n]((X, x), (Y, y)),

θ(l′,λ′),(m′,µ′)(f ·Adj g) ≥ θ(l,λ),(m,µ).

We define θ(l,λ),(m,µ) to be the composite

l ·Adj m
(dl−1)δY A // l + m

λ+µ // [z, x] = [z, y] ∪ [y, x].

By δY A, we denote the Kronecker delta. Its value is 1 if Y = A and 0 otherwise. As
the notation suggests, we let (dl−1)1 = dl−1 and (dl−1)0 = id. To check the condition
when Y = A, one can draw the following diagram

l + m− 1 dl−1
//

f ·Adjg

((

l + m
λ+µ //

f+g
��

[z, x]
ow

l′ + m′

sl
′−1

��

λ′+µ′

88

l′ + m′ − 1

dl
′−1

OO
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and remark that id ≤ dl
′−1sl

′−1. One can consider the right triangle of the same
diagram when Y = B.

We provide below some examples of how 1-cells compose, first when Y = B and
then when Y = A.

The composition is basically given by ordinal sum, with the exception that the
crossed point is discarded and the two points in the dark grey region are identified.
The 2-cells compose exactly as in Adj.

• The identities are 1(B,k) = 0→ {k} and 1(A,k) = 1→ {k}, for all k ∈ {0, . . . , n}.

3.2.1. Proposition. The 2-category Adj[n] is well defined: its composition is associa-
tive.

Proof. Let (X, x), (Y, y), (Z, z) and (W,w) be objects of Adj[n] with x ≥ y ≥ z ≥ w.
Remark that the lax natural transformation associated to the 2-functor

Adj[n]((Z, z), (W,w))×Adj[n]((Y, y), (Z, z))×Adj[n]((X, x), (Y, y))

��
Adj[n]((Z, z), (W,w))×Adj[n]((X, x), (Z, z))

��
Adj[n]((X, x), (W,w))
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has value on a triple of objects ρ : r → [w, z] µ : m → [z, y] π : p → [y, x] given by the
composite

r ·Adj (m ·Adj p)
(dr−1)δZA // r + m ·Adj p

ρ+(µ·π)// [w, z] ∪ [z, x] = [w, x].

which can be further decomposed into

r ·Adj (m ·Adj p)
(dr−1)δZA // r + m ·Adj p

(dr+m−1)δY A // r + m + p
ν+µ+π// [w, x].

On the other hand, the lax natural transformation associated to the 2-functor

Adj[n]((Z, z), (W,w))×Adj[n]((Y, y), (Z, z))×Adj[n]((X, x), (Y, y))

��
Adj[n]((Y, y), (W,w))×Adj[n]((X, x), (Y, y))

��
Adj[n]((X, x), (W,w))

has value on the same triple of objects given by the composite

(r ·Adj m) ·Adj p
(d
r·Adjm−1

)δY A// (r ·Adj m) + p
(ρ·µ)+π// [w, y] ∪ [y, x] = [w, x].

which can be further decomposed in

(r ·Adj m) ·Adj p
(d
r·Adjm−1

)δY A// (r ·Adj m) + p
(dr−1)δZA // r + m + p

ρ+µ+π// [w, x].

It is now an easy consequence of the cosimplicial identities that the lax natural transfor-
mations are equal, and thus from the universal property we deduce that the two 2-functors
are equal.

3.3. Proof of the 2-universal property of Adj[n]. Remark that the full sub 2-
category of Adj[n] generated by the objects (A, k) and (B, k) is isomorphic to Adj for
all k ∈ {0, . . . n}. Indeed, 1-cells (X, k) → (Y, k) are maps n → [k, k] = {k}, with n ∈
Adj(X, Y ). Since {k} is a terminal object in TOFS, Adj[n]((X, k), (Y, k)) ∼= Adj(X, Y ).
We denote by lk : (B, k)→ (A, k) and rk : (A, k)→ (B, k) the 1-cells given by the unique
map 1 → {k}. They are respectively the left and right adjoint of the adjunction on
level k. Moreover, we have bk : (B, k) → (B, k − 1) and ak : (A, k) → (A, k − 1),
respectively given by the unique 1-cells 0→ [k−1, k] and 1→ [k−1, k] (ak must preserve
the maximal element). Remark that precomposing bk with the right adjoint rk yield
1→ [k− 1, k] : (A, k)→ (B, k− 1) which is also the result of post-composing ak with the
right adjoint rk−1. We thus have a chain of n adjunctions morphisms in our 2-category,
as expected.
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The next step is to show that they generate all data in Adj[n] (together with the
adjunctions) and that the relations that they satisfy are also satisfied by all such data in
any 2-category. For this, let us take a closer look at the 1-category

Adj[n]((X, x), (Y, y)) = iX,Y ↓l [y, x].

The first observation is that it admits two interesting sub 2-categories. The first one,
which we denote by iX,Y ↓lic [y, x], is generated by the 1-cells of the form

m 1 //

µ
��

m

µ′

��
[y, x] 1 //

θ 2:

[y, x]

that is with the 1-cell component being an identity. The subscript ic stands for “identity
component”. The second one, which we denote by iX,Y ↓ls [y, x] is generated by the 1-cells
of the form

m
f //

µ

��

m′

µ′

��
[y, x] 1 // [y, x].

The subscript s stands for “strict”. Any map

m
f //

µ

��

m′

µ′

��
[y, x] 1 //

θ 3;

[y, x]

can be uniquely factored as the composite of a morphism in iX,Y ↓lic [y, x] followed by a
morphism in iX,Y ↓ls [y, x].

m 1 //

µ

��

m

µ′f
��

f //m′

µ′

��
[y, x] 1 //

θ 3;

[y, x] 1 // [y, x]

(5)

Actually, (Mor iX,Y ↓lic [y, x],Mor iX,Y ↓ls [y, x]) is an orthogonal factorization system.
Indeed, we showed that any morphism can be factored uniquely.

Since the 2-category TOFSX,Y is locally a finite poset, the category iX,Y ↓lic [y, x] is
a poset, thus all diagrams commute, and it is generated by pairs of consecutive elements.
Recall that two elements p1 < p2 are said to be consecutive in a poset P if the subset
{p ∈ P : p1 < p < p2} is empty.
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Let us have a closer look at this poset. Its elements are non-decreasing functions
µ : m → [y, x], preserving the maximal element if X = A. Functions are comparable
only if they have the same domain, and µ ≤ µ′ if and only if µ(k) ≤ µ′(k) for all k in the
domain. Thus, the poset is a disjoint union

iX,Y ↓lic [y, x] =
∐

m∈Adj(X,Y )

Pm,

where Pm = {µ : m→ [y, x]}. Each set Pm also admits a metric, given by

d(µ, µ′) =
∑
i∈m

|µ(i)− µ′(i)|.

If µ ≤ µ′ ≤ µ′′ then d(µ, µ′) + d(µ′, µ′′) = d(µ, µ′′). Remark that this implies that if
d(µ, µ′) = 1, then µ and µ′ are consecutive. The converse statement is also true. This
means that iX,Y ↓lic [y, x] is generated by the morphisms

m 1 //

pi(µ)
��

m

µ
��

[y, x] 1 //

2:

[y, x]

for y < i ≤ x and µ−1(i) 6= ∅, and where pi(µ)(k) = µ(k)− δminµ−1(i),k for all k ∈m. The
object pi(µ) can be thought of as the predecessor of µ obtained by moving the minimal
member of the i-th fiber to the i− 1-th fiber. Let us name this morphism τ iµ : pi(µ)→ µ.
Since pi(µ) and µ are at distance one, they are consecutive. All pairs of consecutive
elements are of this form, and thus iX,Y ↓lic [y, x] is generated by these elements.

Let us focus now on iX,Y ↓ls [y, x]. Since the 2-cells are identities there, the square

m
f //

µ

��

m′

µ′

��
[y, x] 1 // [y, x]

commutes on the nose. Thus, the domain object is determined by f and the codomain.
We denote this morphism by fµ′ : (m, µ′f) → (m′, µ′). Generators of iX,Y ↓ls [y, x] are
given by maps diµ : (m− 1, µdi) → (m, µ) and sjµ : (m + 1, µsj)→ (m, µ) for i, j such
that δY A ≤ i < m− δXA and 0 ≤ j ≤ m− 1. The conditions express that the morphisms
may have to preserve the minimal or maximal element or both, depending on X and Y .

The fact that the maps listed above generate iX,Y ↓ls [y, x] is a consequence of the
decomposition lemma of Gabriel and Zisman [6, Lemma 2.2 page 24]. This lemma explains
that a non-decreasing map between ordinals can be uniquely factored as a sequence of
codegeneracies followed by cofaces, when one sets appropriate constraints on their indices.
It can be generalized as follows.



CLASSIFIERS FOR MONAD MORPHISMS AND ADJUNCTION MORPHISMS 1071

3.3.1. Theorem. A morphism f : (l, λ)→ (m, µ) in the category Adj[n](X, x)(Y, y) can
be written in a unique way as a composition(

l
λ

)
τ
λ(l−1)+1
• // . . . // . . .

τ
µf(l−1)
• //

(
l

µf −
∑l−2

i=0 kiδix

)
1

// . . . // . . . // . . . // . . .
1

//

(
l

µf − k0δ0x

)
τ
λ(0)+1
• // . . . //

(
l

µf − δ0x

)
τ
µf(0)
µf //

(
l
µf

)
1

//

(
l
µf

)
s
j1
• // . . . //

(
m− s + 1
µdis · · · di1sjt

)
s
jt
• //

(
m− s

µdis · · · di1

)
1

//

(
m− s

µdis · · · di1

)
d
i1

µdis ···di2 // . . .
d
is−1

µdis //

(
m− 1
µdis

)
disµ //

(
m
µ

)
with

(i) m− δXA > is > . . . > i1 ≥ δY A;

(ii) 0 ≤ jt < . . . < j1 < n;

(iii) n− t+ s = m;

(iv) ki = µf(i)− λ(i).

and where the • are place holders for indices easily determined but unpleasant to write
down.

Proof. We already stated that f can be decomposed in a unique way as the composition
of a morphism in iX,Y ↓lic [y, x] followed by a morphisms of iX,Y ↓ls [y, x]. Remark that the
decomposition of a morphism as a composite of generators in iX,Y ↓lic [y, x] is determined
by the objects of the sequence, since it is a poset. The uniqueness of the decomposition
in iX,Y ↓ls [y, x] follows from the Gabriel-Zisman lemma [6, Lemma 2.2 page 24].

Let us now describe relations between the τ iµ and the diµ, s
j
µ. Let µ : m → [y, x] and

y < j ≤ x be such that µ−1j 6= ∅. Said differently, µ is such that τ jµ is a well defined
morphism of Adj[n]((X, x), (Y, y)). Let w = minµ−1(j).

Let us consider first pj(µ) ◦ f , when f : l→m. Remark that for all k ∈ l,

[pj(µ) ◦ f ](k) = µ ◦ f(k)− χf−1(w)(k),
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where χA denotes the characteristic function of the subset A. If f−1(w) = ∅, remark that
pj(µ)f = µf . In particular, if i = w, one obtains

diµ = τ jµ ◦ dipj(µ).

If f−1(w) 6= ∅, then min(µ ◦ f)−1(j) = min f−1(w). Thus, pj(µ ◦ f) exists. Moreover,
for all k ∈ l, pj(µ ◦ f)(k) = µ ◦ f(k)− δmin f−1(w),k. As a consequence, if f−1(w) contains a
unique element, then pj(µ)◦f = pj(µ◦f), which implies that the two following composites
are equal.

(l, pj(µf))
τ jµf // (l, µf)

fµ // (m, µ)

l 1 //

pj(µf)
��

l

µf
��

f //m

µ

��
[y, x] 1 //

4<

[y, x] 1 // [y, x]

=

(l, pj(µ) ◦ f)
f
pj(µ) // (m, pj(µ))

τ jµ // (m, µ)

l
f //

pj(µ)◦f
��

m

pj(µ)
��

1 //m

µ

��
[y, x] 1 // [y, x]

4<

1 // [y, x]

This is in particular true when f = di, si with minµ−1(j) 6= i, and thus we have

• siµ ◦ τ
j
µsi

= τ jµ ◦ sipj(µ);

• diµ ◦ τ
j
µdi

= τ jµ ◦ dipj(µ).

If min f−1(w) = k0 and k0 + 1 ∈ f−1(w), then pj(µf)(k0) = j− 1 and pj(µf)(k0 + 1) = j.
Thus, pj(pj(µf)) is defined, and, for all k ∈ l,

pj(pj(µf))(k) = µf(k)− δk0,k − δk0+1,k.

Thus, if f−1(w) contains exactly two elements, pj(pj(µf)) = pj(µ) ◦ f . As a consequence,
when f = si and i = w, the diagram

pj(pj(µsi))
τ j
pj(µsi) //

si
pj(µ)
��

pj(µsi)
τ j
µsi // µsi

siµ

��
pj(µ)

τ jµ // µ

(6)

is commutative. Remark also that if y < i ≤ x, then

pj(µ)−1(i) =
(
µ−1(i) \ {minµ−1(j)}

)
∪
(
{minµ−1(j)} ∩ µ−1(i+ 1)

)
Thus, if j 6= i, i+ 1, pipj(µ) exists if and only if µ−1(i) 6= ∅ 6= µ−1(j) and for k ∈m,

pi(pj(µ))(k) = µ(k)− δminµ−1(i),k − δminµ−1(j),k.
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Remark that pipi+1(µ) exists if and only if µ−1(i+ 1) 6= ∅. If also µ−1(i) 6= ∅, then

pi(pi+1(µ))(k) = µ(k)− δminµ−1(i),k − δminµ−1(i+1),k.

Thus, when τ iµ and τ jµ both exist, we have the following equality:

τ iµ ◦ τ
j
pi(µ)

= τ jµ ◦ τ ipj(µ).

We have now almost proved the following theorem.

3.3.2. Theorem. The category Adj[n]((X, x)(Y, y)) admits the following presentation.

(i) Objects are non-decreasing maps m → [y, x] that preserve the maximal element if
X = A.

(ii) Generating maps are given as follows.

cofaces: diµ : (m− 1, µdi)→ (m, µ) for δY A ≤ i < m− δXA and all objects (m, µ)
with m− 1 ∈ |Adj(X, Y )|;

codegeneracies: siµ : (m + 1, µsi)→ (m, µ) for 0 ≤ i < m and all objects (m, µ);

transfers: τ iµ : (m, pi(µ)) → (m, µ), for all objects (m, µ) and y < i ≤ x with
µ−1(i) 6= ∅ and minµ−1(i) 6= m− 1 if X = A.

(iii) The relations are given by requiring all the diagrams below to commute, under the
condition that all generators exist in the category.

• For i < j,

(m− 2, µdjdi)
di
µdj //

dj−1

µdi

��

(m− 1, µdj)

djµ
��

(m + 2, µsisj)
sj
µsi //

si
µsj−1

��

(m + 1, µsi)

siµ
��

(m− 1, µdi)
diµ

// (m, µ) (m + 1, µsj−1)
sj−1
µ

// (m, µ)

.

(7)

(m, µsjdi)
di
µsj //

sj−1

µdi

��

(m + 1, µsj)

sjµ
��

(m + 1, µdi)
diµ

// (m, µ)

.

(8)

• For i > j + 1

(m, µsjdi)
di
µsj //

sj
µdi−1

��

(m + 1, µsj)

sjµ
��

(m + 1, µdi−1)
di−1
µ

// (m, µ)

.

(9)
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•

(m + 1, µsi)

siµ &&

(m, µ)
di+1

µsioo
di
µsi//

1
��

(m + 1, µsi)

siµxx
(m, µ)

(10)

•

(m, pipj(µ))
τ j
pi(µ) //

τ i
pj(µ)
��

(m, pi(µ))

τ iµ
��

(m, pj(µ))
τ jµ // (m, µ)

(11)

• If i 6= minµ−1(j),

(m + 1, pj(µsi))
τ j
µsi //

si
pj(µ)

��

(m + 1, µsi)

siµ
��

(m− 1, pj(µdi))
τ j
µdi //

di
pj(µ)

��

(m− 1, µdi)

diµ
��

(m, µpj(µ))
τ jµ

// (m, µ) (m, µpj(µ))
τ jµ

// (m, µ)

.

(12)

• If i = minµ−1(j),

(m− 1, µdi)

diµ
��

di
pj(µ) // (m, pj(µ))

τ jµuu
(m, µ)

(13)

(m + 1, pj(pj(µsi)))
τ j
pj(µsi) //

si
pj(µ)
��

(m + 1, pj(µsi))
τ j
µsi // (m + 1, µsi)

siµ
��

(m, pj(µ))
τ jµ // (m, µ)

(14)

3.3.3. Remark.

• The first five diagrams of the statement of the Theorem 3.3.2 are the obvious gen-
eralizations of the cosimplicial identities. The last two identities should remind the
reader of the relations satisfied by monad morphisms.

• One can think of Adj[n]((X, x)(Y, y)) as consisting essentially of a product of
|[y, x]| = y − x+ 1 copies of ∆+, which are related by the transfers.

• The presentation of Adj[1]((B, 1)(B, 0)) given in Theorem 3.3.2 is leveraged in
Proposition 4.2.2 to describe functors (∆ ↓l 2)op → Set as biaugmented bisimplicial
sets with more structure.
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Proof of theorem 3.3.2. Let us write F for the free category generated by the
objects and generators above, and ∼ for the congruence generated by the relations.
Since the relations are verified in Adj[n]((X, x)(Y, y)) there is a functor T : F/∼ →
Adj[n]((X, x)(Y, y)). The functor T is full since the second category is generated by
those morphisms as well.

Let us show that the relations (11) imply that the subcategory generated by the
transfers in F/∼ is a poset. Recall that there is a natural order on the objects, given by
µ ≤ µ′ if and only if µ and µ′ have the same domain m and µ(i) ≤ µ′(i) for all i ∈ m.
We will show that this subcategory is exactly the category associated to this poset. We
thus consider the subcategory Cm of F/∼ generated by the objects µ : m → [y, x] for a
fixed m and the transfers between them. Recall that there is also a metric given by

d(µ, µ′) =
∑
i∈m

|µ(i)− µ′(i)|.

Recall also that if µ ≤ µ′ ≤ µ′′ then d(µ, µ′) + d(µ′, µ′′) = d(µ, µ′′). Remark that by
construction, there is a transfer µ → µ′ in Cm if and only if µ ≤ µ′ and d(µ, µ′) = 1 and
furthermore this transfer is unique. By 3.3.1, there is a map µ→ µ′ in Cm if and only if
µ ≤ µ′.

Let f, g : µ → µ′ be two morphisms in Cm. We prove by induction on d(µ, µ′) that
f = g. The case d(µ, µ′) = 2 is a direct consequence of the commutativity of (11). We
suppose that the result is proved for 2 ≤ d(µ, µ′) < n, and we prove it for d(µ, µ′) = n.

Let us consider a decomposition of f, g into generators, and name them f = fn · · · f1,
g = gn · · · g1. Remark that the number of generators is the same as the distance from µ to
µ′. Now, consider f1 : µ → µ̂, and g1 : µ → µ̌. If f1 = g1, then the induction hypothesis
implies that fn · f2 = gn · · · g2 and thus f = g. If not, then µ̂ and µ̌ are not comparable.

Consider a diagram µ̂
i // sup(µ̂, µ̌) µ̌

joo . Consider also a map k : sup(µ̂, µ̌) → µ′.
By the induction hypothesis, fn · · · f2 = k · i and gn · · · g2 = k · j. By the case n = 2, and
since d(µ, sup(µ̂, µ̌)) = 2, if1 = jg1.

We are now ready to show that T is also faithful. Indeed, suppose that w,w′ ∈ F
are morphisms such that T (w) = T (w′). The relations given above are enough to find
other morphisms v, v′ ∈ F , with v ∼ w and v′ ∼ w′ such that v, v′ are words in the same
form as in Theorem 3.3.1. By uniqueness, T (v) = T (v′) if and only if v = v′. Thus,
T (w) = T (w′)⇒ w ∼ w′.

We are now going to show that the objects, generators and relations of Theorem 3.3.2,
which are respectively 1-cells, 2-cells and their relations in Adj[n], are 2-categorically
generated by the adjunctions and the commutative squares involving the right adjoints
in Adj[n]. Let us write lk a rk; εk, ηk for the data corresponding to the k-th adjunction,
and ak : (A, k) → (A, k − 1), bk : (B, k) → (B, k − 1) for the adjunction morphism from
the k-th adjunction to the (k − 1)-st. The next proposition describes how the 1-cells
rk, lk, ai, bi for 0 ≤ k ≤ n and 1 ≤ i ≤ n generate all 1-cells of Adj[n].

3.3.4. Proposition. Let µ : m→ [y, x] be a 1-cell (X, x)→ (Y, y), and let kl = |µ−1(l)|
for all y ≤ l ≤ x.
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(i) If X = Y = B,

µ = (B, x)

(rxlx)kx

��
bx // (B, x− 1)

(rx−1lx−1)kx−1

��
// . . .

by+1// (B, y).

(ryly)ky

��
(15)

(ii) If X = B, Y = A, there exists t ∈ [y, x] such that kt > 0, since m > 0 in this case.
Then,

µ = (B, x)

(rxlx)kx

��
bx // (B, x− 1)

(rx−1lx−1)kx−1

��
// . . .

bt+1 // (B, t)

(rtlt)kt−1

��

lt
��

(A, t)
at // (A, t− 1)

(lt−1rt−1)kt−1

BB
// . . .

ay+1 // (A, y).

(lyry)ky

BB

(16)

(iii) If X = A, we have

µ = (B, y).

(A, x)

(lxrx)kx−1

BB
ax // (A, x− 1)

(lx−1rx−1)kx−1

BB
// . . .

ay+1 // (A, y)

(lyry)ky

BB

r
δY B
y

OO
(17)

Proof. We leave the proofs of equations (15) and (17) to the reader, as a good exercise
to become familiar with the composition. We prove now equation (16).

Define v to be the minimum of µ−1[t, x] and consider the map λ : m− v − 1→ [t, x]
induced by the restriction of µ to the set {v + 1, . . . ,m − 1}. We consider λ as a 1-cell
(B, x)→ (B, t). Since |λ−1(l)| = kl for l > t and |λ−1(t)| = kt − 1, equation (15) implies
that

λ = (rtlt)
kt−1bt+1 · · · bx · (rxlx)kx .

Also, atlt : 1 → [t − 1, t] is the map which contains t in its image (direct computation).
As a consequence,

atltλ = atlt(rtlt)
kt−1bt+1 · · · bx · (rxlx)kx

is the map m− v → [t − 1, x] induced by the restriction of µ to the set {v, . . . ,m − 1}.
It is a 1-cell (B, x)→ (A, t− 1). Let ρ : v + 1→ [y, t− 1] be defined by ρ(w) = µ(w) for
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w < v and ρ(v) = t− 1. We consider it as a 1-cell (A, t− 1)→ (A, y). Since |ρ−1(l)| = kl
for l < t− 1 and |ρ−1(t− 1)| = kt−1 + 1, equation (17) implies that

ρ = (lyry)
ky · ay+1 · · · at−1 · (lt−1rt−1)kt−1 .

Now, µ = ρ · λ, since we are composing at (A, t− 1).

3.3.5. Corollary. The underlying category of Adj[n] admits the following presentation.

• Objects are pairs (X, k), k ∈ {0, . . . , n}, X ∈ {A,B}.

• Generators are lk : (B, k)→ (A, k), rk : (A, k)→ (B, k), for all k ∈ {0, . . . , n} and
ak : (A, k)→ (A, k − 1), bk : (B, k)→ (B, k − 1), for all k ∈ {1, . . . , n}.

• Relations are given by bk−1rk = rk−1ak for all k ∈ {1, . . . , n}.

Proof. Let F be the category generated by the objects and generators above, and ∼
the congruence relation generated by the relations above. Since the corresponding 1-
cells in the underlying category of Adj[n] verify the relations, there is a unique functor
T : F/∼ → Adj[n] which is bijective on objects. By Proposition 3.3.4, T is full: all 1-cells
are the image of a composite of the generators.

Let w be a morphism in F((X, x), (Y, y)). Remark that the relations enables us to
find C(w) ∈ F((X, x), (Y, y)) with C(w) ∼ w where C(w) is of the form of the right-hand
side of one of the equations (15), (16), (17).

If w,w′ are two morphisms in F((X, j), (Y, i)) such that T (w) = T (w′), then TC(w) =
TC(w′). Equations (15), (16), (17) imply that C(w) = C(w′), and thus w ∼ w′. As a
consequence, T is faithful and an isomorphism of categories.

We provide in the following two propositions explicit formulas for the codegeneracies
and cofaces in the different hom-categories of Adj[n].

3.3.6. Proposition. Let µ : m → [y, x] be a 1-cell (X, x) → (Y, y) and 0 ≤ j < m.
Let t = µ(j), kl = |µ−1(l)| for l ∈ [y, x], k0

t = |{u ∈ m : µ(u) = t, u < j}| and
k1
t = |{u ∈m : µ(u) = t, u > j}|.

(i) If X = Y = B,

sjµ = (B, x)

(rxlx)kx

��
bx // . . .

bt+1 // (B, t)

(rtlt)
k1t

�� (rtlt)2 ++

rtlt

33�� rtεtlt (B, t)

(rtlt)
k0t

��
bt // . . .

by+1// (B, y).

(ryly)ky

��
(18)



1078 DIMITRI ZAGANIDIS

(ii) If X = B, Y = A,

sjµ = (B, x)

(rxlx)kx

��
bx // . . .

bt+1 // (B, t)

lt
��

(A, t)

(ltrt)
k1t

BB

ltrt ++

1

33�� εt (A, t)

(ltrt)
k0t

BB
at // . . .

ay+1 // (A, y).

(lyry)ky

BB

(19)

(iii) If X = A,

sjµ = (B, y).

(A, x)

(lxrx)kx−1

BB
ax // . . .

at+1// (A, t)

(ltrt)
1+k1t

BB

ltrt ++

1

33�� εt (A, t)

(ltrt)
k0t

BB
at // . . .

ay+1// (A, y)

(lyry)ky

BB

r
δY B
y

OO
(20)

Proof. We prove (18) and leave the other verifications to the reader. By (15), the 1-cell
(ryly)

ky · by+1 · · · bt · (rtlt)k
0
t : (B, t)→ (B, y) is the unique non-decreasing map

ν : ky + . . .+ kt−1 + k0
t → [y, t]

such that |ν−1(l)| = kl, for y ≤ l < t and |ν−1(t)| = k0
t . Similarly, by (15) the 1-cell

(rtlt)
k1t · bt+1 · · · bx · (rxlx)kx : (B, x)→ (B, t) is the unique non-decreasing map

ν ′ : k1
t + kt+1 + . . .+ kx → [t, x]

such that |ν ′−1(l)| = kl, for t < l ≤ x and |ν ′−1(t)| = k1
t . Remark also by direct

computation that (rtεtlt) is the unique map

(s0, id) : (2→ {t})→ (1→ {t}).

As a consequence, the 2-cell of the proposition is

ν · (s0, id) · ν ′ = s
∑t−1
l kl+k

0
t :

(
x∑
l=y

kl + 1→ [y, x]

)
→

(
x∑
l=y

kl → [y, x]

)

where the second 1-cell is µ. The last step is to check that j =
∑t−1

l kl + k0
t .
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3.3.7. Proposition. Let µ : m → [y, x] be a 1-cell (X, x) → (Y, y) and 0 ≤ j < m.
Let t = µ(j), kl = |µ−1(l)| for l ∈ [y, x], and define k0

t = |{u ∈ m : µ(u) = t, u < j}|,
k1
t = |{u ∈m : µ(u) = t, u > j}|.

(i) If X = Y = B, we have

djµ = (B, x)

(rxlx)kx

��
bx // . . .

bt+1 // (B, t)

(rtlt)
k1t

�� 1 ++

rtlt

33�� ηt (B, t)

(rtlt)
k0t

��
bt // . . .

by+1// (B, y).

(ryly)ky

��

(ii) If X = B, Y = A, let s = µ(j − 1). We have

djµ = (B, x)

(rxlx)kx

��
bx // . . .

bt+1 // (B, t)

(rtlt)
k1t

�� 1 ++

rtlt
33��

ηt (B, t)

(rtlt)
k0t

��
bt // . . . // (B, s)

(rsls)ks−1

��

ls
��

(A, t)
at // . . .

ay+1 // (A, y).

(lyry)ky

BB

(iii) If X = A, let s =

{
µ(j − 1) Y = A

y Y = B
. We have

djµ = (B, t)
1 ++

rtlt
33��

ηt (B, t)

(rtlt)
k0t

��
bt // . . .

bs+1// (B, s)

(rsls)ks−1

��

ls
��

(B, y).

(A, x)

(lxrx)kx−1

BB
ax // . . .

at+1// (A, t)

(rtlt)
k1t

BB

rt

OO

(A, s) // . . .
ay+1// (A, y)

(lyry)ky

BB

r
δY B
y

OO

Proof. Left to the reader.

We describe now how the transfers are generated. For this, compute the mate of the
identity map biri ⇒ ri−1ai, that is (εi−1aili) ◦ (li−1biηi) : li−1bi ⇒ aili. The result is the
map : (di : 1→ [i− 1, i])⇒ (di−1 : 1→ [i− 1, i]) where the first map hits i− 1 and the
second i. This is the transfer τ idi−1 ∈ Adj[n]((B, k)(A, k−1)). Let us call mi : li−1bi ⇒ aili
the mate of the identity map biri ⇒ ri−1ai.

All the other transfers can be obtained by pre or post composing this 2-cell with
appropriate 1-cells, as the following proposition shows.
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3.3.8. Proposition. Let µ : m → [y, x] be a 1-cell (X, x) → (Y, y) and y < t ≤ x. Let
kl = |µ−1(l)| for l ∈ [y, x].

(i) If X = Y = B, τ tµ =

(B, x)

(rxlx)kx

��
bx // . . .

bt+1// (B, t)

(rtlt)kt−1

��
1 //

lt
��

ηt

��

(B, t)

=

bt // (B, t− 1)

lt−1

��

(B, t− 1)

(rt−1lt−1)kt−1

��
bt−1 // . . .

by+1// (B, y).

(ryly)ky

��

(A, t)

rt

::

at// (A, t− 1)

rt−1

99

1
//

εt

~� (A, t− 1)

rt−1

99

(ii) If X = B, Y = A, We have

τ tµ = (B, x)

(rxlx)kx

��
bx // . . .

bt+1// (B, t)

(rtlt)kt−1

��
1 //

lt
��

ηt

��

(B, t)

=

bt // (B, t− 1)

lt−1

��
(A, t)

rt

::

at // (A, t− 1)

rt−1

88

1
//

εt

}� (A, t− 1)

(lt−1rt−1)kt−1

BB

at−1 // . . .
ay+1 // (A, y).

(lyry)ky

BB

(21)

(iii) If X = A,

(B, t) 1 //

lt
��

ηt

��

(B, t)

=

bt // (B, t− 1)

lt−1

��

(B, y).

(A, x)

(lxrx)kx−1

BB
ax // . . .

at+1// (A, t)

(ltrt)kt−1

BB

rt
==

(A, t)

rt

::

at// (A, t− 1)

rt−1

99

1
//

εt

~� (A, t− 1)

(lt−1rt−1)kt−1

BB

at−1 // . . .
ay+1// (A, y)

(lyry)ky

BB

(ry)δY B

OO

(22)

Proof. It is enough to check that the domain and codomain are as expected, since the
subcategory iX,Y ↓lic [y, x] is a poset. One can compute the domain and codomain from
Proposition 3.3.4.

3.3.9. Theorem. The 2-functors Adj[n] → C are in bijective correspondence with se-
quences of n composable adjunctions morphisms in C .

Proof. Let ADJ [n] be the 2-category presented by computads as in coequalizer (3). Let
us denote l̃i = [Li], r̃i = [Ri], ãi = [Ai] and b̃i = [Bi] the generating 1-cells of ADJ [n]. Let
also ε̃i and η̃i be the counit and unit of l̃i a r̃i respectively. We denote by m̃i : l̃i−1b̃i ⇒ ãil̃i
the mate of the identity b̃ir̃i ⇒ r̃i−1ãi.
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Since Adj[n] has n composable adjunction morphisms, this determines a unique 2-
functor sending the adjunction l̃i a r̃i, (ε̃i, η̃i) to the adjunction li a ri(εi, ηi), b̃i to bi and
ãi to ai. We denote this 2-functor by

T : ADJ [n] −→ Adj[n].

Remark that by the Corollary 3.3.5, and the fact that the underlying category functor
2-Cat→ Cat preserves colimits (it is a left adjoint), T is bijective on objects and 1-cells.

To prove that it is locally full and faithful, we are going to show that T has an inverse
locally. To do so, we use Theorem 3.3.2 and Propositions 3.3.6, 3.3.7 and 3.3.8. More
precisely for (X, x), (Y, y) objects of Adj[n], we use the formulas of the propositions to
determine S(X,x)(Y,y) : Adj[n]((X, x)(Y, y)) → ADJ [n]((X, x)(Y, y)) on the objects and
generators, such that T(X,x)(Y,y)S(X,y)(Y,y) = 1Adj[n]((X,x),(Y,y)).

To prove that S extends to a functor, we need to show that the images of the generators
of Adj[n]((X, x)(Y, y)) in ADJ [n] satisfy the relations of 3.3.2.

• The cosimplicial identities (7), (8), (9) are satisfied by the images of the correspond-
ing generators in ADJ [n] because the interchange law holds in ADJ [n].

Identity (7) Let i < j. The case µ(i) = µ(j) is well known. Let µ(i) = s < t =
µ(j). The interchange law of the pasting diagram

(B, t)

(r̃t l̃t)
k1t

�� 1 ++

r̃t l̃t

33�� η̃t (B, t)

(r̃t l̃t)
k0t

��
bt // . . .

bs+1 // (B, s)

(r̃s l̃s)k
1
s

�� 1 ++

r̃s l̃s

33�� η̃s (B, s)

(r̃s l̃s)k
0
s

��

implies the commutativity of the first diagram in all cases. The interchange
law of the pasting diagram

(A, t)

(l̃tr̃t)
k1t

�� l̃tr̃t ++

1
33�� ε̃t (A, t)

(l̃tr̃t)
k0t

��
at // . . .

as+1// (A, s)

(l̃sr̃s)k
1
s

�� l̃sr̃s ++

1
33�� ε̃s (A, s)

(l̃sr̃s)k
0
s

��

implies the commutativity of the second diagram in all cases.

Identity (8) Let i < j. The case µ(i) = µ(j) is well known. Let µ(j) = s > t =
µ(i). The interchange law of the pasting diagram

(B, t)
1 ++

r̃t l̃t

33�� η̃t (B, t)

(r̃t l̃t)
k0t

��

(A, s)

(l̃sr̃s)k
1
s

BB

l̃sr̃s ++

1
33�� ε̃s (A, s)

(l̃sr̃s)k
0
s

BB
as // . . .

at+1 // (A, t)

(l̃tr̃t)
k1t

BB

r̃t

OO
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implies the commutativity of said diagram in all cases.

Identity (9) Let i − 1 > j. The case µ(i − 1) = µ(j) is well known. Let µ(j) =
s < t = µ(i− 1). The interchange law of the pasting diagram

(B, t)

(r̃t l̃t)
k1t

�� 1 ++

r̃t l̃t

33�� η̃t (B, t)

(r̃t l̃t)
k0t

��
bt // . . .

bs+1 // (B, s)

(r̃s l̃s)k
1
s

��

l̃s
��

(A, s)
l̃sr̃s ++

1
33�� ε̃s (A, s)

(l̃sr̃s)k
0
s

��

implies the commutativity of said diagram in all cases.

• Relations (11) and (12) are also satisfied in ADJ [n] because the interchange law
holds. We leave it to the reader to write down the corresponding pasting diagram
as above.

• The cosimplicial identity (10) is satisfied as a consequence of the triangle identities
for the adjoints in ADJ [n].

• Relation (13) is a consequence of the commutativity of the diagram

b̃i
η̃i−1b̃i //

b̃iη̃i
��

r̃i−1l̃i−1b̃i

r̃i−1m̃i
��

b̃ir̃il̃i r̃i−1ãil̃i

and the interchange law. The previous diagram itself is commutative because of the
following equality.

(B, i) 1 //

l̃i
��

ηi

�	

(̃B, i)
b̃i // (B, i− 1)

l̃i−1

��

1 //

η̃i−1

��

(B, i− 1)

(A, i)

r̃i

<<

ãi
// (A, i− 1)

ri−1

::

1 //
}�
ε̃i−1

(A, i− 1)

r̃i−1

::

=

(B, i) 1 //

l̃i
��

η̃i

�	

(B, i)
b̃i // (B, i− 1)

(A, i)

r̃i

;;

ãi
// (A, i− 1)

r̃i−1

99

• Relation (14) is satisfied because the diagram

l̃i−1r̃i−1l̃i−1b̃i
l̃i−1r̃i−1m̃i //

ε̃i−1 l̃i−1b̃i
��

l̃i−1r̃i−1ãil̃i l̃i−1b̃ir̃il̃i
m̃i l̃ir̃i // ãil̃ir̃il̃i

ãiε̃i l̃i
��

l̃i−1b̃i
m̃i // ãil̃i
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commutes and the interchange law holds. The diagram is commutative since we
have the following equality.

(B, i)

l̃i
��

1 //

η̃i

��

(B, i)
b̃i // (B, i− 1)

l̃i−1

��
(A, i)

r̃i
��

ãi //
r̃i

::

1

!!

ks ε̃i

(A, i− 1)

r̃i−1

88

1 //
{� ε̃i−1

(A, i− 1)

r̃i−1

��
(B, i) 1 //

η̃i

��
l̃i
��

(B, i)
b̃i // (B, i− 1)

l̃i−1

��
(A, i)

r̃i

::

ãi // (A, i− 1)

r̃i−1

88

1 //
{� ε̃i−1

(A, i− 1)

=

(B, i)

l̃i
��

1 //

η̃i

��

(B, i)
b̃i // (B, i− 1)

l̃i−1

��
(A, i)

ãi //
r̃i

::

(A, i− 1)

r̃i−1

88

1 //
{� ε̃i−1

(A, i− 1)

r̃i−1

��
1

&&

ks ε̃i−1
(A, i− 1)

l̃i−1

��
(B, i− 1)

Note the similarity with the proof of Proposition 2.2.4, except that the codomain is
changed!

A consequence of the existence of S(X,x),(Y,y) is that T(X,x),(Y,y) is full. To show that
T(X,x),(Y,y) is faithful, it is enough to check that S(X,x),(Y,y) is full. Remark that by construc-
tion, generators of ADJ [n]((X, x), (Y, y)) are given by (equivalence classes) of diagrams

(X, x)
f // (Z, z)

g
--

h

11α �� (W,w) k // (Y, y) , where f, k are morphisms generated by

the 1-cells, and α : g ⇒ h is a generating 2-cell, that is, a unit or a counit. First,
from 3.3.8 we conclude that by construction, all morphisms of the previous form with
α = m̃i for 1 ≤ i ≤ n are in the image of S(X,x),(Y,y). Proposition 3.3.6 shows that the gen-

erator (X, x)
f // (A, t)

l̃tr̃t ,,

1

22ε̃t �� (A, t) k // (Y, y) is in the image of S(X,x),(Y,y) when

f = l̃t · f ′. If f = ãt+1f
′, remark that the generator is actually equal to the composite

(X, x)
f ′ // (A, t+ 1)

r̃t+1 // (B, t+ 1)
l̃tb̃t+1

,,

ãt+1 l̃t+1

22m̃t+1 �� (A, t) k // (Y, y)

◦

(X, x)
f ′ // (A, t+ 1)

l̃t+1r̃t+1 --

1
11ε̃t+1 �� (A, t+ 1)

ãt+1 // (A, t) k // (Y, y)

Since Proposition 3.3.6 also permits to conclude the case εn, by induction all generators
with α a counit are in the image of S(X,x),(Y,y). Proposition 3.3.7 shows that the generator

(X, x)
f // (B, t)

1 ,,

r̃t l̃t

22η̃t �� (B, t) k // (Y, y) is in the image of S(X,x),(Y,y).
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4. Some homotopically interesting observations

In this part, we provide some evidence that the hom-categories of Adj[n] can be of interest
to the homotopy theorist. We start by showing that they are Reedy categories.

4.1. The hom-categories of Adj[n] are Reedy. Let D = Adj[n]((X, x), (Y, y))
with x ≥ y. We show here that D is a Reedy category (in the sense of Hovey, [8, p.124]).
Let D− be the subcategory containing all objects and maps

m
f //

µ

��

2: m
′

µ′||
[y, x]

where f is surjective, and D+ the subcategory containing all objects and strict injec-
tive maps. That (D−,D+) is a factorization system follows from the combination of the
factorization system (Mor iX,Y ↓lic [y, x],Mor iX,Y ↓ls [y, x]) (see factorization (5)) with
the more classical factorization system ({surjective strict map}, {injective strict map}) of
iX,Y ↓ls [y, x]. This can also be recovered from the double factorization system (as defined
in [13]), also called ternary factorization system, consisting of the following three sets of
maps

(Mor iX,Y ↓lic [y, x], {strict surjective maps}, {strict injective maps}).

For each n, the poset of morphisms Pn = {n→ [y, x]} is finite. It is a classical result
that one can extend any poset to a total order using some finite choices. We apply this
to the dual of Pn to get a functor λn : Pop

n → |Pn|. More explicitly, if Pn has N elements,
λn is an order-reversing bijection Pn → {0, . . . , N − 1}. We define the degree function
d : |D | → N× N by

d(ν : n→ [y, x]) = (n, λn(ν))

where the product is endowed with the lexicographical order.
Let f : (n, ν)→ (m, µ) be a strict injective map. Then, either n < m or n = m. The

first case readily implies that d(n, ν) < d(m, µ), while in the second case, the strictness of
f implies that ν = µ and thus f is the identity. This shows that non-identity morphisms
in D+ raise the degree.

Let g : (n, ν) → (m, µ) be a surjective map. Then, either n > m or n = m. In the
first case, n > m already implies d(n, ν) > d(m, µ). In the second case, either ν < µ or
g is an an identity morphism. But then λn(ν) > λn(µ), and thus d(n, ν) > d(m, µ), as
expected. We thus have proven the desired result.

4.1.1. Proposition. For all X, Y ∈ {A,B}, n ∈ N and n ≥ x ≥ y ≥ 0, the hom-
category Adj[n]((X, x), (Y, y)) is a Reedy category.

4.2. The extended bar construction. Let (∆ × ∆)+ be the full subcategory of
∆+ × ∆+ containing all objects but (0,0). A biaugmented bisimplicial set is a functor
(∆×∆)op

+ → Set. We use standard notation for bisimplicial sets, which we recall below.
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4.2.1. Notation.

• If X is a biaugmented bisimplicial set, Xn,m := X(n + 1,m + 1).

• If X is a biaugmented bisimplicial set, dhi := X(di × 1) : Xn0+1,n1 → Xn0,n1 and
dvi = X(1 × di) : Xn0,n1+1 → Xn0,n1 . Likewise, shj := X(sj × 1) : Xn0,n1 → Xn0+1,n1

and svj = X(1× sj) : Xn0,n1 → Xn0,n1+1.

• We denote by ∆[n,m] the functor (∆×∆)op
+ → Set represented by (n + 1,m + 1).

A biaugmented simplicial set looks like

...

���� ����

...

���� ����

...

���� ����

...

���� ����

. .
.

X−1,2

��

OO

����

OO OO

X0,2

��

OO

����

OO OO

oo // X1,2

��

OO

����

OO OO

oo
oo //

// X2,2

��

OO

����

OO OO

oo
oo
oo //

//
// . . .oo

oo
oo

oo

X−1,1

����

OO OO

X0,1

����

OO OO

oo // X1,1

����

OO OO

oo
oo //

// X2,1

����

OO OO

oo
oo
oo //

//
// . . .oo

oo
oo

oo

X−1,0

OO

X0,0

��

OO

oo // X1,0

��

OO

oo
oo //

// X2,0

��

OO

oo
oo
oo //

//
// . . .oo

oo
oo

oo

X0,−1
// X1,−1oo

oo //
// X2,−1oo

oo
oo //

//
// . . . .oo

oo
oo

oo

Let us consider the category ∆+ ↓l 2 = Mnd[1]((B, 1), (B, 0)). There is faithful
functor j : ∆+ ×∆+ → ∆+ ↓l 2 that is bijective on objects and given by the ordinal sum
j(n,m) = (n → 1) + (m → 1) for all n,m ∈ ∆+. It is similarly defined on maps. The
image of this functor is ∆+ ↓ls 2, the subcategory of strict maps. The functor j restricts
to a functor

j : (∆×∆)+ → ∆ ↓l 2

whose image is still the subcategory of strict maps. We thus have a category isomorphism
j : (∆×∆)+ → ∆ ↓ls 2. For convenience, we will write (n,m) to denote j(n,m) and use
the notation for bisimplicial sets for vertical and horizontal faces and degeneracies.

4.2.2. Proposition. A functor
(
∆ ↓l 2

)op → Set is a biaugmented bisimplicial set X
together with maps τ ∗ : Xk,l+1 → Xk+1,l such that the following diagram are commutative

• For 0 ≤ i ≤ k

Xk,l

dhi
��

τ∗ // Xk+1,l−1

dhi
��

Xk−1,l
τ∗ // Xk,l−1

Xk,l

shi
��

τ∗ // Xk+1,l−1

shi
��

Xk+1,l
τ∗ // Xk+2,l−1
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...

���� ����

...

���� ����

...

���� ����

...

���� ����

. .
.

X−1,2

τ∗

##��

OO

����

OO OO

X0,2

τ∗

##��

OO

����

OO OO

oo // X1,2

τ∗

##��

OO

����

OO OO

oo
oo //

// X2,2

��

OO

����

OO OO

oo
oo
oo //

//
// . . .oo

oo
oo

oo

X−1,1

τ∗

##����

OO OO

X0,1

����

OO OO

oo //

τ∗

##

X1,1

τ∗

##����

OO OO

oo
oo //

// X2,1

����

OO OO

oo
oo
oo //

//
// . . .oo

oo
oo

oo

X−1,0

OO

τ∗

##

X0,0

��

OO

oo //

τ∗

##

X1,0

τ∗

##��

OO

oo
oo //

// X2,0

��

OO

oo
oo
oo //

//
// . . .oo

oo
oo

oo

X0,−1
// X1,−1oo

oo //
// X2,−1oo

oo
oo //

//
// . . .oo

oo
oo

oo

Figure 1: Picture of a functor
(
∆ ↓l 2

)op → Set

•
Xk,l

dv0

$$

τ∗ // Xk+1,l−1

dhk+1

��
Xk,l−1

Xk,l

sv0
��

τ∗ // Xk+1,l−1

shk+1

��
Xk,l+1

τ∗ // Xk+1,l
τ∗ // Xk+2,l−1

• For 0 ≤ i ≤ l − 1

Xk,l

dvi+1

��

τ∗ // Xk+1,l−1

dvi
��

Xk,l−1
τ∗ // Xk+1,l−2

Xk,l

svi+1

��

τ∗ // Xk+1,l−1

svi
��

Xk,l+1
τ∗ // Xk+1,l

Proof. Theorem 3.3.2 provides us with a presentation of the category ∆ ↓l 2 which
corresponds exactly with the statement of the proposition after identification of µ → 2
with (µ−1(0), µ−1(1)) and dualization.

Thus, representing only the images of the generators, a functor
(
∆ ↓l 2

)op → C can
be pictured as in Figure 1. We will now provide explicitly a functor indexed by (∆ ↓l 2)op

associated to a morphism of adjunctions.
Remark that by its universal property, Adj[n]coop ∼= Adj[n]. This isomorphism inter-

changes the objects (A, x) and (B, n− x) and thus determines an isomorphism

Adj[n]((A, x), (B, y))op ∼= Adj[n]((A, n− y), (B, n− x)).

Observe that Adj[n]((A, n − y), (B, n − x)) ∼= Adj[n]((A, x), (B, y)), and thus it also
determines an isomorphism

Adj[n]((A, x), (B, y))op ∼= Adj[n]((A, x), (B, y)).
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As a particular case of Theorem 3.3.9, given an adjunction morphism in Cat,

B
L

))

R

ii ⊥

F
��

A

G
��

B′
L′

**

R′
jj ⊥ A ′

there is a functor Adj[1]((A, 1), (B, 0))→ Cat(A ,B′). If we fix an object X ∈ |A |, we
can further compose this functor, so as to get a functor

Adj[n]((B, 1), (B, 0))op
r∗1 //Adj[n]((A, 1), (B, 0))op

∼= //Adj[n]((A, 1), (B, 0)) //B′.

If we write T = RL and T ′ = R′L′ for the monads associated to the adjunctions, the
diagram is given as follows.

...

���� ����

...

���� ����

...

���� ����

...

���� ����

. .
.

T ′3F (RX)

τ∗

''��

OO

����

OO OO

T ′3FT (RX)

τ∗

((��

OO

����

OO OO

oo // T ′3FT 2(RX)

τ∗

((��

OO

����

OO OO

oo
oo //

// T ′3FT 3(RX)

��

OO

����

OO OO

oo
oo
oo //

//
// . . .oo

oo
oo

oo

T ′2F (RX)

τ∗

''����

OO OO

T ′2FT (RX)

����

OO OO

oo //

τ∗

((

T ′2FT 2(RX)

τ∗

((����

OO OO

oo
oo //

// T ′2FT 3(RX)

����

OO OO

oo
oo
oo //

//
// . . .oo

oo
oo

oo

T ′F (RX)

��

OO

τ∗

''

T ′FT (RX)

��

OO

oo //

τ∗

((

T ′FT 2(RX)

τ∗

((��

OO

oo
oo //

// T ′FT 3(RX)

��

OO

oo
oo
oo //

//
// . . .oo

oo
oo

oo

FRX FT (RX) //oo FT 2(RX)oo
oo //

// FT 3(RX)oo
oo
oo //

//
// . . .oo

oo
oo

oo

The i-th row is obtained by applying (T ′)i+1F to the bar construction of the T -algebra
(RX,RεX). The codiagonal maps are instances of the natural transformation which is
part of the monad morphism induced by the adjunction morphism. The j-th column
is the bar construction of the T ′-algebra obtained from the T -algebra T j+1RX through
the monad morphism. An easy observation (and consequence of 4.3.4 below) is that the
diagonal of this biaugmented bisimplicial object is also a simplicial resolution of FRX as
a T ′-algebra which is weakly equivalent to the classical bar construction of FRX.

4.3. The extended Artin-Mazur codiagonal. The composite

(∆×∆)+
j // ∆ ↓l 2 p // ∆

is ordinal sum, and thus there is a diagram

Set∆op
p∗ //
⊥ Set(∆↓l2)op
oo

//
⊥

Ranp
oo

j∗ //
Set(∆×∆)op+

Ranj
oo
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in which the composition Ranp ◦ Ranj is isomorphic to the Artin-Mazur codiagonal Tot,
which is by definition Ran+. Let us call Ranj the extended Artin-Mazur codiagonal and
write Tot := Ranj. We describe in more detail the right Kan extensions Ranp and Tot.
The first one is quite easy to describe. Indeed, if ∆[n] := ∆(−,n + 1) : ∆op → Set is the
simplicial set represented by [n] = n + 1, and (m0 + 1,m1 + 1) is an object of ∆ ↓l 2,
p∗∆[n]m0,m1 = ∆(m0 + m1 + 2,n + 1). Remark that

p∗∆[n]m0,m1 ⊆
(
∆ ↓l 2

)
((m0 + 1,m1 + 1), (0,n + 1)).

As a consequence, if X ∈ Set(∆↓l2)op , a natural transformation φ : p∗∆[n] → X
is uniquely determined by φ−1,n(idn+1) ∈ X−1,n, and moreover this correspondence is
bijective. This shows that Ranp(X)• = X−1,•. As a consequence, Tot−1,• ∼= Tot. In
order to compute Tot, we generalize slightly a lemma by Cegarra and Remedios [4, (12)].
Denote by (∆ ↓l 2)[n0, n1] the functor (∆ ↓l 2)op → Set represented by (n0 + 1,n1 + 1) =
([n0], [n1]).

4.3.1. Lemma. Let [n] = [n0] + [n1] with n1 ≥ 0. There is a coequalizer in Set(∆×∆)op+

n−1∐
p=n0+1

∆[p, n− p− 1]
dp+1×1//

1×d0
//

n∐
p=n0+1

∆[p, n− p]
∑
p xp // j∗(∆ ↓l 2)[n0, n1].

Proof. Let [m] = [m0]+ [m1] and f ∈ j∗(∆ ↓l 2)[n0, n1]m0,m1 . The map f : [m]→ [n] is a
non-decreasing map with the extra condition (when m1 6= −1) that f(m0 + 1) ≥ n0 + 1.d

Define f̃ : [m] → [n + 1] by f̃(x) =

{
f(x) x ≤ m0

df(x) + 1 x > m0d
and let p = f(m0 + 1) (or

p = n if m1 = −1). Remark that f̃ : (m0 + 1,m1 + 1) → (p + 1,n− p + 1) is a strict
map, and thus belongs to (∆×∆)+.Since p = f(m0 + 1) ≥ n0 + 1,

sp : [n+ 1]→ [n] ∈ j∗(∆ ↓l 2)[n0, n1]p,n−p.

Observe that spf̃ = f . Let the natural transformation xp : ∆[p, n−p]→ j∗(∆ ↓l 2)[n0, n1]
be represented by sp. The previous argument shows that

∑
p

xp :
n+1∐

p=n0+1

∆[p, n− p]→ j∗(∆ ↓l 2)[n0, n1]

is surjective. Suppose now that f = xp1(f1) and f = xp2(f2) and observe that

f(m0) ≤ p1, p2 ≤ f(m0 + 1).

• If p = p1 = p2, f1(x) = f2(x) for all x 6∈ f−1(p). Let x ∈ f−1(p). If x ≤ m0

then f(m0) = p and thus p ≤ fi(x) ≤ fi(m0) = p, since fi is strict. Similarly, if
x ≥ m0 + 1, then p+ 1 ≤ fi(x) ≤ p+ 1. This shows that f1 = f2.
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• If p2 = p1 + 1, then f(m0) 6= f(m1) and p1 < f(m0 + 1). Up to modifying the
splitting of the codomain, f is a strict map

f : (m0 + 1,m1 + 1)→ (p1 + 1,n− p1)

Post-composing by dp1+1 yields two maps

(m0 + 1,m1 + 1)
f // (p1 + 1,n− p1)

dp1+1=1×d0// (p1 + 1,n− p1 + 1)

(m0 + 1,m1 + 1)
f // (p1 + 1,n− p1)

dp1+1=dp1+1×1// (p1 + 2,n− p1).

The first point implies that f1 is the first composite and f2 the second one.

• If p1 < p2, we can iterate the previous point to finish the proof.

4.3.2. Lemma. For every n0, j∗(∆ ↓l 2)[n0,−1] ∼= ∆[n0,−1].

Proof. Since (n0 + 1,0) corresponds to the minimal map n0 + 1 → 2, all maps to it
must be strict.

4.3.3. Corollary. Let X ∈ Set(∆×∆)op+ . Its extended Artin-Mazur codiagonal is given
explicitly as follows.

• For n0, n1 ≥ 0

Tot(X)n0−1,n1 =

{
(xn0 , . . . xn0+n1) ∈

n0+n1∏
p=n0

Xp,n0+n1−p : dhp+1(xp+1) = dv0(xp)

}
.

• Tot(X)n0,−1 = Xn0,−1.

• For x = (xn0 , . . . xn0+n1) ∈ Tot(X)n0−1,n1,

dvj (x) = (dvj (xn0), d
v
j−1(xn0+1), . . . , dv1(xn0+j−1), dhj+n0

(xn0+j+1), . . . dhj+n0
(xn0+n1)),

svj (x) = (svj (xn0), s
v
j−1(xn0+1), . . . , sv0(xn0+j), s

h
j+n0

(xn0+j), . . . s
h
j+n0

(xn0+n1)),

dhj (x) = (dhj (xn0), . . . , d
h
j (xn0+n1)),

shj (x) = (shj (xn0), . . . , s
h
j (xn0+n1)),

τ ∗(x) = (xn0+1, . . . , xn0+n1).

Proof. Remark that Lemma 4.3.1 together with the description of Dec∆[n] given in
Cegarra and Remedios’s lemma [4, (12)] implies that Totn0−1,n1 = Tot(Xn0+•,•). One can
also derive the result directly from Lemma 4.3.1 using Yoneda’s lemma.
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4.3.4. Proposition. Let X ∈ Set(∆↓l2)op. Then, for all n ≥ 0 the augmentation dh0 :
X•,n → X−1,n of the n-th row admits a vertical extra degeneracy given by

sk+1 := τ ∗ ◦ sv0 : Xk,n → Xk+1,n.

Proof. We should check that three identities are verified.

(i)

dhk+1 ◦ sk+1 = dhk+1 ◦ τ ∗ ◦ sv0
= dv0 ◦ sv0
= id.

(ii) For 0 ≤ j ≤ k

dhj ◦ sk+1 = dhj ◦ τ ∗ ◦ sv0
= τ ∗dhj ◦ sv0
= sk ◦ dhj .

(iii) For 0 ≤ j ≤ k

shj ◦ sk+1 = shj ◦ τ ∗ ◦ sv0
= τ ∗shj ◦ sv0
= sk+2 ◦ shj .

and when j = k + 1,

shk+1 ◦ sk+1 = shk+1 ◦ τ ∗ ◦ sv0
= (τ ∗)2 ◦ sv0 ◦ sv0
= (τ ∗)2 ◦ sv1 ◦ sv0
= τ ∗ ◦ sv0 ◦ τ ∗ ◦ sv0
= sk+2 ◦ sk+1.

4.3.5. Corollary. Let X ∈ Set(∆↓l2)op. There is a weak equivalence Tot(j∗X) ' X−1,•.

Proof. By Proposition 4.3.4, all rows of j∗X are homotopically discrete with π0(X•,n) =
X−1,n. Let ∆h

X−1,•
denote the bisimplicial set that is constant in the horizontal direction

with value X−1,• in the vertical direction. The bisimplicial set map d0 : j∗X → ∆h
X−1,•

is row-wise a weak equivalence. As a consequence, its diagonal and thus its Artin-Mazur
codiagonal are weak equivalences as well, since the diagonal and the Artin-Mazur codi-
agonal are weakly equivalent ([3, Theorem 1.1]). Since X−1,• is constant in each row,
Tot(X−1,•) = X−1,•. Thus, our map is a weak equivalence.
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As a result, we get several new homotopical models for the diagonal of a bisimplicial
set. For instance dTot(X) ' TotTot(X) ' Tot(X)−1,• = Tot(X). One can also keep
iterating the extended codiagonal.

A. Presentation of a 2-category by a computad

We want to construct an analogue of a free category on a graph, but for 2-categories.
Computads will play the role of graphs. Since 2-categories are categories enriched in
categories, computads will be graphs enriched in graphs. The material of this Appendix
is taken from [21].

A.1. Definition. A computad G is a graph GrG together with, for each pair of vertices
A,B of GrG , another graph G (A,B) whose vertex set is a subset of the set of paths in
the graph GrG from A to B.

Any small 2-category C can be seen as a computad U(C ) by defining GrU(C ) to be
the underlying graph of the underlying category of C and with graphs U(C )(A,B) given
by U(C )(A,B)

(
(f1, . . . , fn), (g1, . . . , gm)

)
= UC (A,B)(f1 ◦ . . . ◦ fn, g1 ◦ . . . ◦ gm). This

underlying functor also has a left adjoint, which is given in the following definition.

A.2. Definition. For a computad G , the 2-category FG is constructed as follows.

• The set of objects is the vertex set of GrG .

• For A,B two vertices, we define a pair of graphs D2G (A,B), D1G (A,B) as follows.
The vertex sets of both graphs are the set of paths in GrG which start at A and

end at B. A diagram A
f //W

))
55α �� X

g // Y
))
55β �� Z

h // B , where f, g, h are

paths in |G | and α, β are arrows in G (W,X) and G (Y, Z) respectively, is an arrow
of D2G (A,B), from the top path to the bottom one. On the other hand, a diagram

A
f //W

))
55α �� X

g // B of a similar form is an arrow in D1G (A,B) from the

top path to the bottom one.

The category FG (A,B) is the coequalizer in Cat of the diagram

F(D2G (A,B)) //// F(D1G (A,B)) // FG (A,B)

where the two arrows correspond to decomposing a diagram

A
f //W

a0 ))

a1
55α �� X

g // Y
b0 ))

b1

55β �� Z h // B
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either as the composite

A
f //W

a0 ))

a1
55α �� X

g // Y
b0 // Z

h // B

◦

A
f //W

a1 // X
g // Y

b0 ))

b1

55β �� Z
h // B

or

A
f //W

a0 // X
g // Y

b0 ))

b1

55β �� Z
h // B

◦

A
f //W

a0 ))

a1
55α �� X

g // Y
b1 // Z

h // B.

More generally, the 2-cells in FG can be thought of as being built up from the ones
in G , by the operation of pasting (see [21]). For instance, the diagram

A2

f2 **
⇓α1

f3

44

⇓α2

A3
f6 //

⇓α3

A4

f7

  
A1

f1
>>

f4

@@

f5
// A5

represents the composite

A1
f1 // A2 ⇓α1

f2 **

f3

44 A3
f7f6 // A5

◦

A1
∅ // A1 ⇓α2

f3f1 **

f4

44 A3
f7f6 // A5

◦

A1
∅ // A1 ⇓α3

f7f6f4 **

f5

44 A5
∅ // A5.

The category of V -categories is cocomplete as long as V is cocomplete, as first estab-
lished in [23]. This implies in particular that 2-Cat is cocomplete. We describe now a
very particular kind of coequalizer in this category.

A.3. Definition. A presentation of a 2-category C by computads is a pair of computads

G ,H with same object set and a coequalizer FG
F //
G
// FH // C in 2-Cat, where F,G

are identities on objects.
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Remark that in the conditions of the definition above, C (X, Y ) is always generated
by the image of FH (X, Y ).

B. The lax comma category

Let us recall some definitions that go back at least to John Gray [7].

B.1. Definition. Let F,G : C → D be two 2-functors. A lax natural transformation
(α, a) : F → G is a collection αC : F (C) → G(C) of 1-cells of D , indexed by objects
C ∈ |C |, together with a collection af : G(f)αC ⇒ αC′F (f) of 2-cells of D , indexed by
1-cells f : C → C ′ ∈ C , as pictured in the following diagram.

FC
Ff //

αC
��

FC ′

αC′
��

GC
Gf

//

af 3;

GC ′.

This data is subject to the following axioms.

Naturality of a: For all C,C ′, a is a natural transformation

D(FC, FC ′)
(αC′ )∗

((
C (C,C ′)

FCC′
77

GCC′ ''

D(FC,GC ′).

D(GC,GC ′)

a

KS

(αC)∗

66

More explicitly, for φ : f ⇒ f ′ a 2-cell in C (C,C ′), the following diagram of 2-cells
commutes.

FC

Ff

''

Ff ′
99

Fφ ��

αC

��

FC ′

αC′

��
GC

Gf ''

Gf ′

99Gφ
��

af ,4

af ′

DL

GC ′.

Composition: If C
f // C ′

f ′ // C ′′ is a diagram of 1-cells in C , there is an equality
of 2-cells



1094 DIMITRI ZAGANIDIS

FC
Ff //

αC
��

FC ′

αC′
��

Ff ′ // FC ′′

αC′′
��

GC
Gf

//

af 3;

GC ′
Gf ′

//

af ′ 3;

GC ′′

=

FC
F (f ′f) //

αC
��

FC ′′

αC′′
��

GC
G(f ′f)

//

af ′f 3;

GC ′′.

Unit: a1C = 1αC .

B.2. Definition. Given two lax natural transformations C

F

""

G

<<(α,a)

��
(β,b)

��
D from the 2-

functor F to the 2-functor G, a modification (α, a) M *4(β, b) is a collection of 2-cells of
D , MC : αC → βC for all C ∈ |C |, such that the following diagram of 2-cells commutes
for all f : C → C ′ ∈ C .

FC

αC

��

βC

��

MC +3

// FC ′

αC′

��

βC′

��

MC′ +3

GC //

af ,4

bf

GO

GC ′

B.3. Definition. We define the 2-category Lax(C ,D) by letting the objects be the 2-
functors C → D , the 1-cells be the lax natural transformations between 2-functors and
the 2-cells be the modifications between such lax natural transformations.

We introduce now lax comma 2-categories, which Gray called 2-comma categories.
Since one can form strict, pseudo and oplax versions of these constructions, we prefer to
add the adjective lax.

B.4. Definition. Given two 2-functors A F // C BGoo , we define the lax comma
2-category F ↓l G as follows.

• An object is a pair of objects A ∈ |A | and B ∈ |B| together with a 1-cell f : FA −→
GB.

• A morphism from f : FA→ GB to f ′ : FA′ → GB′ is a pair of 1-cells a : A→ A′,
b : B → B′ together with a 2-cell θ : G(b)f ⇒ f ′F (a);

FA
Fa //

f
��

FA′

f ′

��
GB

Gb //

θ 3;

GB′
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• A 2-cell (a, b, θ)⇒ (a′, b′, θ′) is a pair of 2-cells α : a⇒ a′, β : b⇒ b′ such that the
following diagram of 2-cells is commutative.

FA

Fa

''

Fa′
99

F (α) ��

f

��

FA′

f ′

��
GB

Gb ''

Gb′

99G(β)
��

θ ,4

θ′

DL

GB′.

That is, f ′F (α) ◦ θ = θ′ ◦G(β)f .

• Composition is given by pasting such diagrams.

These 2-categories satisfy a 2-universal property. This 2-universal property was al-
ready known by Gray, [7, Proposition I.5.1, page 102].

B.5. Proposition. Let X be a 2-category and A F // C BGoo a diagram of 2-
functors, and consider

Lax(X ,A )
F∗ // Lax(X ,C ) Lax(X ,B)

G∗oo

There is an isomorphism of 2-categories

Lax(X , F ↓l G) ∼= F∗ ↓l G∗

which is natural in X .
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R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


	Introduction
	The relation between monads and adjunctions
	An explicit description of the 2-category Adj[n]
	Some homotopically interesting observations
	Presentation of a 2-category by a computad
	The lax comma category

