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TOPOLOGICAL PROPERTIES OF NON-ARCHIMEDEAN
APPROACH SPACES

EVA COLEBUNDERS AND KAREN VAN OPDENBOSCH

Abstract. In this paper we give an isomorphic description of the category of non-
Archimedian approach spaces as a category of lax algebras for the ultrafilter monad and
an appropriate quantale. Non-Archimedean approach spaces are characterised as those
approach spaces having a tower consisting of topologies. We study topological properties
p, for p compactness and Hausdorff separation along with low-separation properties,
regularity, normality and extremal disconnectedness and link these properties to the
condition that all or some of the level topologies in the tower have p. A compactification
technique is developed based on Shanin’s method.

1. Introduction

In monoidal topology [Hofmann, Seal, Tholen (eds.), 2014] starting from the quantale
P+ =

(
[0,∞]op,+, 0

)
where the natural order ≤ of the extended real halfline [0,∞] is

reversed so that 0 = > and ∞ =⊥, based on Lawvere’s description of quasi-metric
spaces as categories enriched over the extended real line [Lawvere 1973], one obtains
an isomorphism between the category qMet of extended quasi-metric spaces with non-
expansive maps and P+-Cat, the category of P+-spaces (X, a), where X is a set and a :
X−→7 X is a transitive and reflexive P+-relation, meaning it is a map a : X × X → P+
satisfying a(x, y) ≤ a(x, z) + a(z, y) and a(x, x) = 0 for all x, y, z in X, with morphisms
f : (X, a)→ (Y, b) of P+-Cat, maps satisfying b(f(x), f(x′)) ≤ a(x, x′) for all x, x′ in X.

Our interest goes to the larger category App of approach spaces and contractions, which
contains qMet as coreflectively embedded full subcategory and which is better behaved
than qMet with respect to products of underlying topologies. A comprehensive source
on approach spaces and their vast field of applications is [Lowen, 2015] in which several
equivalent descriptions of approach spaces are formulated in terms of (among others)
distances, limit operators, towers and gauges. A first lax-algebraic description of approach
spaces was established by Clementino and Hofmann in [Clementino, Hofmann, 2003]. The
construction involves the ultrafilter monad � = (β,m, e), the quantale P+ and an extension
of the ultrafilter monad to P+-relations. The so constructed category (�,P+)-Cat and its
isomorphic description App became an important example in the development of monoidal
topology [Hofmann, Seal, Tholen (eds.), 2014]. More details on the construction will be
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recalled in section 2.
In this paper we consider the non-Archimedian counterparts of the previous well known

constructions. These are obtained by switching the quantale to P∨ . As before we consider
the extended real halfline [0,∞] as a complete lattice with respect to the natural order
≤ and we reverse its order, so that 0 = > is the top and ∞ =⊥ is the bottom element.
Since [0,∞]op is a chain, it is a frame, and we may consider it a quantale with its meet
operation which, according to our conventions on the reversed order, is the supremum
with respect to the natural order of [0,∞] and as in approach theory this operation will
be denoted by ∨ (note that here we deviate from the notation in [Hofmann, Seal, Tholen
(eds.), 2014]). As stated in exercise III.2.B of [Hofmann, Seal, Tholen (eds.), 2014] the
category P∨-Cat is isomorphic to the category qMetu of extended quasi-ultrametric spaces
(X, d) with non-expansive maps, where an extended quasi-metric is called an extended
quasi-ultrametric if it satisfies the strong triangular inequality d(x, z) ≤ d(x, y) ∨ d(y, z),
for all x, y, z ∈ X.

In section 2, using the ultrafilter monad � = (β,m, e), with P∨ as quantale and an
extension of the ultrafilter monad to P∨-relations we show that the category of associated
lax algebras (�,P∨)-Cat is isomorphic to the reflectively embedded full subcategory NA-App
of App, the objects of which are called non-Archimedean approach spaces. In section 3 we
give equivalent descriptions of non-Archimedean approach spaces in terms of distances,
limit operators, towers and gauges. The characterization in terms of towers can be easily
expressed: an approach space is non-Archimedean if and only if its tower (Tε)ε∈R+ consists
of topologies. We show that NA-App can be generated as the concretely reflective hull by
one particular extended quasi-ultrametric.

Following the general philosophy to consider lax algebras as spaces, it is our main
purpose in this paper to study topological properties p like compactness and Hausdorff
separation, along with low-separation properties, regularity, normality and extremal dis-
connectedness for non-Archimedean approach spaces. In section 6 we introduce these
properties (�,P∨)-p as an application to (�,P∨)-Cat of the corresponding (T,V)-properties
for arbitrary (T,V)-Cat as developed in V.1 and V.2 of [Hofmann, Seal, Tholen (eds.),
2014]. For each of the properties p we characterise (�,P∨)-p in the context of NA-App.
On the other hand we make use of the well known meaning of these properties in the
setting of Top and for a non-Archimedean approach space X with tower of topologies
(Tε)ε∈R+ we compare the property (�,P∨)-p to the properties X has p at level 0, meaning
the topological space (X, T0) has p in Top, X almost strongly has p, meaning (X, Tε) has
p in Top for every ε ∈ R+

0 and X strongly has p, meaning (X, Tε) has p in Top for every
ε ∈ R+. For p the Hausdorff property, low separation properties or regularity the condi-
tions strongly p, almost strongly p and (�,P∨)-p are all equivalent and different from p at
level 0. For p compactness strongly p is equivalent to p at level 0, and almost strongly p
is equivalent to (�,P∨)-p. For p normality or extremal disconnectedness strongly p implies
almost strongly p which implies (�,P∨)-p. Moreover strongly p implies p at level 0. We
give counterexamples showing that there are no other valid implications.

In the last sections of the paper we develop a compactification technique and prove
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that every non-Archimedean approach space X given by its tower of topologies (Tε)ε∈R+

can be densely embedded in a compact (at level 0) non-Archimedean approach space
Y given by its tower of topologies (Sε)ε∈R+ in such a way that at level 0 the compact
space (Y,S0) is the Shanin compactification of (X, T0). We give necessary and sufficient
conditions for the compactification to be Hausdorff at level 0 and we prove that a space
X that is Hausdorff at level 0, (�,P∨)-regular and (�,P∨)-normal has such a Hausdorff
compactification.

2. P∨-Cat and (�,P∨)-Cat

We follow definitions and notations from [Hofmann, Seal, Tholen (eds.), 2014], unless
stated otherwise. In this section we adapt the constructions of P+-Cat and (�,P+)-Cat
in [Hofmann, Seal, Tholen (eds.), 2014] to the quantale P∨ . Consider the extended real
halfline [0,∞] which is a complete lattice with respect to the natural order ≤. We reverse
its order, so that 0 = > is the top and∞ =⊥ is the bottom element. When working with
([0,∞]op,≤op) and forming infima or suprema we will denote these by infop,

∧op, supop or∨op. It means that we will deviate from the conventions made in [Hofmann, Seal, Tholen
(eds.), 2014] since we will use both the symbols inf and

∧
when forming infima and sup

and
∨

when forming suprema, referring to the natural order on ([0,∞],≤).
Since [0,∞]op is a chain, it is a frame, and we may consider it a quantale P∨ =(

[0,∞]op,∨, 0
)

with its meet operation (which, according to our conventions, is the supre-
mum with respect to the natural order of [0,∞] and will be denoted by ∨).
The map a ∨ (−) : P∨ −→ P∨ is left adjoint to the map a−•(−) : P∨ −→ P∨ defined by

a−•b = inf{v ∈ [0,∞] | b ≤ a ∨ v} =

{
0 a ≥ b,
b a < b.

The category P∨-Rel has sets as objects and P∨-relations as morphisms. A P∨-relation
r : X−→7 Y from X to Y is represented by a map r : X × Y → P∨ . Two P∨-relations
r : X−→7 Y and s : Y−→7 Z can be composed in the following way

(s · r)(x, z) = inf
{
r(x, y) ∨ s(y, z) | y ∈ Y

}
.

2.1. Definition. P∨-Cat is the category of P∨-spaces (X, a), where X is a set and a :
X−→7 X is transitive and reflexive P∨-relation, meaning it is a map a : X × X → P∨
satisfying

a(x, y) ≤ a(x, z) ∨ a(z, y) and a(x, x) = 0

for all x, y, z in X. A morphism f : (X, a) → (Y, b) of P∨-Cat is a map satisfying
b(f(x1), f(x2)) ≤ a(x1, x2) for all x1, x2 in X.

The map ϕ : P∨ −→ P+ with ϕ(v) = v, for all v ∈ P∨ , is a lax homomorphisms of
quantales. This induces a lax-functor ϕ : P∨-Rel −→ P+-Rel, which leaves objects unaltered
and sends r : X × Y −→ P∨ to ϕ · r : X × Y −→ P+ . Obviously ϕ is compatible with the
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identical lax extension of the identity monad I to P∨-Rel and P+-Rel. Hence, this lax-functor
induces a change-of-base functor Bϕ : P∨-Cat −→ P+-Cat. Moreover, this change-of-base
functor is an embedding. Whereas P+-Cat ∼= qMet, the category of extended quasi-metric
spaces and non-expansive maps, it is known that P∨-Cat ∼= qMetu, the category of quasi-
ultrametric spaces. An early systematic study of ultrametric spaces can be found in the
work of Monna [Monna] and of de Groot [de Groot] in the 50’s, but ever since the amount
of literature has become extensive as (quasi)-ultrametrics became important tools in a
wide range of fields, like combinatorics, domain theory, linguistics, solid state physics,
taxonomy and evolutionary tree constructions, to name only a few.

For a set X let βX be the set of all ultrafilters on X and for a map f : X −→ Y , let
βf : βX −→ βY : U 7→ {B ⊆ Y | f−1(B) ∈ U}. Then β : Set −→ Set is a functor. To
avoid overloaded notations, we will often write f(U) instead of βf(U). Now consider the
ultrafilter monad � = (β,m, e) on Set with components mX : ββX → βX defined by the
Kowalsky sum of X ∈ ββX

mXX = ΣX =
{
A ⊆ X | {U ∈ βX | A ∈ U} ∈ X

}
,

and eX : X −→ βX defined by eX(x) = ẋ = {A ⊆ X | x ∈ A} for x ∈ X.
Analogous to the P+ situation, for a P∨-relation r : X−→7 Y and α ∈ [0,∞], we

can define the relation rα : X−→7 Y by x rα y ⇔ r(x, y) ≤ α. For A ⊆ X we put
rα(A) = {y ∈ Y | ∃x ∈ A : x rα y}, and for A ⊆ P(X) we let rα(A) = {rα(A) | A ∈ A}.
Recall that β : Set→ Set can be extended to a 2-functor β : Rel→ Rel where for any sets
X and Y , any relation r : X−→7 Y and ultrafilters U ∈ βX and W ∈ βY we have

U (βr) W ⇔ r(U) ⊆ W .

Then, for r : X−→7 Y a P∨-relation, we let

βr(U ,W) = inf{α ∈ [0,∞] | Uβ(rα)W},

for U ∈ βX and W ∈ βY. Analogous to the P+ situation, the extension of the ultrafilter
monad � is a flat and associative lax extension to P∨-Rel, which we again denote by � =
(β,m, e).

2.2. Definition. Let (�,P∨)-Cat be the category of lax algebras (X, a) for the P∨-Rel-
extension of the ultrafilter monad, where X is a set and a : βX−→7 X is a P∨-relation that
is a map a : βX ×X → P∨ that is reflexive, meaning

a(ẋ, x) = 0

for all x ∈ X and transitive, meaning

a(mX(X), x) ≤ βa(X,U) ∨ a(U , x)

for all X ∈ ββX, for all U ∈ βX and for all x ∈ X.
A morphism f : (X, a)→ (Y, b) of (�,P∨)-Cat is a map satisfying

b(f(U), f(x)) ≤ a(U , x)
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for all x in X and U ∈ βX.

It is clear that the lax-homomorphism of quantales ϕ : P∨ −→ P+ is compatible with the
lax-extension of the ultrafilter monad � to P∨-Rel and P+-Rel. Hence, this induces another
change-of-base functor

Cϕ : (�,P∨)-Cat −→ (�,P+)-Cat.

Again, this change-of-base functor is an embedding. The category (�,P+)-Cat is known
to be isomorphic to App . This result was first shown in [Clementino, Hofmann, 2003]
and can be found in section III.2.4 in [Hofmann, Seal, Tholen (eds.), 2014]. Both proofs
go via distances. We will proceed by giving an isomorphic description of the category
(�,P∨)-Cat and in order to do so we introduce the concept of non-Archimedean approach
spaces by strengthening axiom (LU*) in [Lowen, 2015].

2.3. Definition. Let NA-App be the full subcategory of App consisting of approach spaces
(X,λ), with a limit operator λ : βX → PX∨ satisfying the strong inequality

(Lβ∗∨) For any set J , for any ψ : J −→ X, for any σ : J −→ βX and for any U ∈ βJ

λΣσ(U) ≤ λψ(U) ∨ sup
U∈U

inf
j∈U

λσ(j)
(
ψ(j)

)
.

We will call these objects non-Archimedean approach spaces and the structure λ will be
called a non-Archimedean limit operator.

Most of the time we will be working with ultrafilters. However we should mention
that one can equivalently define NA-App as a full subcategory of App by strengthening
axiom (L*) in [Lowen, 2015] for a limit operator on the set FX of all filters on X, again
by replacing the + on the righthand side of the inequality by ∨. In terms of filters the
condition can be proven to be equivalent to property [Fs] in [Brock, Kent, 1998].

2.4. Theorem. The category (�,P∨)-Cat of lax algebras for the P∨-Rel-extension of the
ultrafilter monad is isomorphic to NA-App.

Proof. The isomorphism directly links an approach space (X,λ) with λ : βX → PX∨
to (X, a) where a is the corresponding map a : βX × X → P∨ and vice versa. As
NA-App is a subcategory of App, the limit operator λ satisfies λ(ẋ)(x) = 0, for all x ∈ X.
So this corresponds to reflexivity of a. In order to show that the axiom (Lβ∗∨) for λ
corresponds to transitivity of a, we can use similar techniques as in the proof of theorem
12.7, (�,P+)-Cat ∼= App, which can be found in [Lowen, 2015]. Finally that through
the identification of lax algebraic structures and non-Archimedean limit operators, also
morphisms in both categories coincide, follows from the characterization of contractions
in App via ultrafilters.
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3. Equivalent descriptions of non-Archimedean approach spaces

In this section we define various equivalent characterizations for non-Archimedean ap-
proach spaces, in terms of distances, towers and gauges.

3.1. Non-Archimedean distances. First we associate to a limit operator λ of an
approach space X, its unambiguously defined distance δ : X × 2X −→ [0,∞]. This
operator provides us with a notion of distance between points and sets. The smaller
the value of δ(x,A) the closer the point x is to the set A. When starting with a non-
Archimedean limit operator, we get a non-Archimedean distance, i.e. a distance which
satisfies a stronger triangular inequality. Since the proof of the next proposition is a
modification of the proof in [Lowen, 2015], replacing + by ∨ and since an analogous
result for [Fs] appears in [Brock, Kent, 1998], we omit it here.

3.2. Proposition. If λ : βX −→ PX∨ is the limit operator of a non-Archimedean ap-
proach space X, then the associated distance, given by

δ : X × 2X −→ P∨ : (x,A) 7→ inf
U∈βA

λU(x),

satisfies the strong triangular inequality (D4∨)

δ(x,A) ≤ δ
(
x,A(ε)

)
∨ ε,

for all x ∈ X, A ⊆ X and ε ∈ P∨, with A(ε) := {x ∈ X | δ(x,A) ≤ ε}.
If δ : X × 2X −→ P∨ is a distance of an approach space X satisfying the strong

triangular inequality (D4∨), then the associated limit operator, given by

λ : βX −→ PX∨ : U 7→ sup
U∈U

δU ,

is a non-Archimedean limit operator.

Distances satisfying the strong triangular inequality (D4∨) are called non-Archimedean
distances. The following inequality will be useful later on and has a straightforward proof.

3.3. Proposition. If δ : X× 2X −→ P∨ is a non-Archimedean distance, then the follow-
ing inequality holds.

δ(x,A) ≤ δ(x,B) ∨ sup
b∈B

δ(b, A),

for all x ∈ X and A,B ⊆ X.

We give an example of a non-Archimedean approach space on P∨ which will play an
important role later on in Section 5.
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3.4. Example. Define δP∨ : P∨ × 2P∨ −→ P∨ by

δP∨ (x,A) :=

{
supA−•x A 6= ∅,
∞ A = ∅.

=


0 A 6= ∅ and x ≤ supA,
x A 6= ∅ and x > supA,
∞ A = ∅.

Then δP∨ is a non-Archimedean distance on P∨ . The associated non-Archimedean limit
operator is determined as follows. Given an ultrafilter U on P∨ and an element x ∈ X,
then

λP∨U(x) = supU∈U(supU−•x)

=

{
0 ∀U ∈ U : x ≤ supU,
x ∃U ∈ U : x > supU.

3.5. Non-Archimedean towers. To a distance of an approach space X, we now as-
sociate its unambiguously defined tower (tε)ε∈R+ of closure operators. Linking the limit
operator on filters satisfying [Fs] to the tower, an analogous result appears in [Brock,
Kent, 1998], so here we omit the proof.

3.6. Proposition. If δ : X × 2X −→ P∨ is the distance of a non-Archimedean approach
space X, then all levels of the associated tower (tε)ε∈R+ , with

tε(A) = A(ε), ∀A ⊂ X, ∀ε ∈ R+,

are topological closure operators.
If (tε)ε∈R+ is the tower of an approach space X, where all levels are topological closure

operators, then the associated distance

δ : X × 2X −→ P∨ : (x,A) 7→ inf{ε ∈ R+ | x ∈ tε(A)}

is a non-Archimedean distance on X.

Towers of approach spaces that satisfy the stronger condition of the previous propo-
sition are called non-Archimedean towers. At each level the closure operator tε defines a
topology Tε, so we will denote the structure also by (Tε)ε∈R+ , when working with open
sets at each level, or (Cε)ε∈R+ , when using closed sets.

From the characterisation of approach spaces in terms of towers given in [Lowen, 2015]
we now have the following.
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3.7. Corollary. A collection (Tε)ε∈R+ of topologies on a set X defines a tower for some
non-Archimedean approach space if and only if it satisfies the coherence condition

Tε =
∨
γ>ε

Tγ,

where the supremum is taken in Top.

We include more examples of non-Archimedean approach spaces that will be useful
in section 6. The construction of the non-Archimedean approach spaces in the following
examples is based on 3.7.

3.8. Example. Let X be a set and S a given topology on X. Let (Tε)ε∈R+ be defined by

Tε =


P(X) whenever 0 ≤ ε < 1
S whenever 1 ≤ ε < 2
{X, ∅} whenever 2 ≤ ε

Clearly the coherence condition is satisfied and so (X, (Tε)ε∈R+) defines a non-Archimedean
approach space which we will denote by XS .

3.9. Example. Let X =]0,∞[, endowed with a topology T with neighborhood filters
(V(x))x∈X and assume T is finer than the right order topology. We define (Tε)ε∈R+ with
T0 = T and Tε at level 0 < ε having a neighborhood filter

Vε(x) =

{
{X} whenever x ≤ ε
V(x) whenever ε < x

at x ∈ X. For a fixed level ε and ε < x the set {G ∈ T | x ∈ G,G ⊆]ε,∞[} is an open
base of Vε(x). So clearly (Tε)ε∈R+ is a decending chain of topologies. To check the other
inclusion of the coherence condition, let 0 ≤ ε and x ∈]0,∞[. Either x ≤ ε and then
Vε(x) = {X} ⊆ Vγ(x) for every γ. Or ε < x, then choose γ with ε < γ < x. We have
Vε(x) = Vγ(x) = V(x). So (X, (Tε)ε∈R+) defines a non-Archimedean approach space.

3.10. Non-Archimedean gauges. Finally, we look at the gauges. To a distance oper-
ator δ of an approach space X, we associate its unambiguously defined gauge

G = {d ∈ qMet(X) | ∀A ⊆ X, ∀x ∈ X : inf
a∈A

d(x, a) ≤ δ(x,A)},

where qMet(X) is the collection of all extended quasi-metrics on X. Moreover the distance
can be recovered from the gauge by the formula

δ(x,A) = sup
d∈G

inf
a∈A

d(x, a).

When the approach space X is given by its tower of closure operators (tε)ε∈R+ the
gauge can also be described as

G = {d ∈ qMet(X) | ∀ε ≥ 0 : tε ≤ tdε},
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where (tdε)ε≥0 is the tower of the approach space (X, δd).
We recall a few definitions from approach theory [Lowen, 2015]. Given a collection

H ⊆ qMet(X) and a quasi-metric d ∈ qMet(X) we say that d is locally dominated by H if
for all x ∈ X, ε > 0 and ω <∞ there exists a dε,ωx ∈ H such that

d(x, ·) ∧ ω ≤ dε,ωx (x, ·) + ε. (1)

A subset H of qMet(X) is called locally directed if for any H0 ⊆ H finite, we have that
supd∈H0

d is locally dominated by H. Given a subset H ⊆ qMet(X) we define

Ĥ := {d ∈ qMet(X) | D locally dominates d}.

Given an approach space X and G its gauge, H ⊆ qMet(X) is called a basis for the gauge

G if Ĥ = G. If H is locally directed, then Ĥ is a gauge of an approach space with H as a
basis.

3.11. Theorem. Consider a non-Archimedean approach space X with tower of topologies
(Tε)ε∈R+. Then the associated gauge has a basis consisting of quasi-ultrametrics.

Proof. For n ∈ N0 we consider { k
n
| k = 0, · · · , k = n2} on [0, n]. At level k

n
we

choose a finite T k
n
-open cover C k

n
in such a way that for k > 0 the finite T k−1

n
-open cover

C k−1
n

is a refinement of C k
n
. The following notations are frequently used in the setting of

quasi-uniform spaces. For x ∈ X and k = 0, · · · , k = n2

AxC k
n

=
⋂
{C | C ∈ C k

n
, x ∈ C}

and
UC k

n

=
⋃
x∈X

{x} × AxC k
n

.

We employ a standard technique as used with developments in [Lowen, 2015] to construct
a function depending on n and on the choice C 1

n
, · · · , Cn2

n

by letting

pn =
n2

inf
k=1

(
k − 1

n
+ θUC k

n

) ∧ n, (2)

where for Z ⊆ X, we use the notation

θZ : X → [0,∞] : x 7→

{
0 x ∈ Z
∞ x 6∈ Z.

Clearly for k ∈ {1, · · · , n2} we have UC k−1
n

⊆ UC k
n

and every UC k
n

is a preorder. This

implies that pn is a quasi-ultrametric on X.
Next we show that each pn belongs to the gauge G. Fix ε ≥ 0 and α > ε. Either

ε ≥ n and then the open ball Bp(x, α) = X ∈ Tε, or ε ∈ [k−1
n
, k
n
[ for some k ∈ {1, · · · , n2}.
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Then for y ∈ AxC k
n

we have (x, y) ∈ UC k
n

which implies pn(x, y) ≤ k−1
n
≤ ε < α. So

AxC k
n

⊆ Bp(x, α) and again Bp(x, α) ∈ Tε.
Let H be the collection of all quasi-ultrametrics pn, for arbitrary choices of n and

C 1
n
, · · · , Cn2

n

. We prove that H is a basis for the gauge G. Let d ∈ G, x ∈ X and n ∈ N0.

Consider { k
n
| k = 0, · · · , k = n2} on [0, n] and at level k

n
choose the cover

C k
n

= {Bd(x,
k

n
+

1

2n
), X}.

Since d ∈ G the inclusion T dk
n

⊆ T k
n

holds, so the cover C k
n

is T k
n
-open for every k. Moreover

clearly at each level C k−1
n

refines C k
n
. Let pn be the associated quasi-ultrametric as in (2).

We show that

d(x, ·) ∧ n ≤ pn(x, ·) +
2

n
. (3)

Let y ∈ X. Either pn(x, y) + 2
n
≥ n and then we are done, or pn(x, y) + 2

n
= α ∈ [ k

n
, k+1

n
[

for some k. In this case pn(x, y) = α − 2
n
∈ [k−2

n
, k−1

n
[ which implies (x, y) ∈ UC k−1

n

. So

we have y ∈ Bd(x,
k−1
n

+ 1
2n

), by which d(x, y) < k−1
n

+ 1
2n
< k

n
≤ α. Since (3) holds for

every n ∈ N0 it now follows that also (1) is fulfilled for every ε > 0 and ω <∞, so we can

conclude that Ĥ = G.

3.12. Theorem. Consider an approach space X with gauge G, having a basisH consisting
of quasi-ultrametrics. Then the associated distance is a non-Archimedean distance.

Proof. The distance δ associated with the gauge G can be derived directly from the basis
H by

δ(x,A) = sup
d∈H

inf
a∈A

d(x, a).

We only have to show that this distance satisfies (D4∨). Take x ∈ X,A ⊆ X and ε ∈ P∨
arbitrary. Then, for any b ∈ A(ε), d ∈ H and θ > 0, there exists ad ∈ A such that
d(b, ad) < ε+θ. Consequently, d(x, ad) ≤ d(x, b)∨d(b, ad) ≤ d(x, b)∨ (ε+θ), which proves
that infa∈A d(x, a) ≤ infb∈A(ε) d(x, b) ∨ (ε + θ). Since this holds for all d ∈ H, it follows
that δ(x,A) ≤ δ

(
x,A(ε)

)
∨ ε.

A gauge with a basis consisting of quasi-ultrametrics will be called a non-Archimedean
gauge.

Based on the characterisation of non-Archimedean approach spaces in terms of non-
Archimedean gauges, we can come back to the embedding of NA-App in App corresponding
to the change of base functor Cϕ : (�,P∨)-Cat −→ (�,P+)-Cat.

3.13. Theorem. NA-App is a concretely reflective subcategory of App. If X is an ap-
proach space with gauge G, then its NA-App-reflection 1X : X → Xu is given by the
approach space Xu having G ∩ qMetu(X) as basis for its gauge.
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Proof. Since G ∩ qMetu(X) is stable under finite suprema, it is locally directed and

therefore Ĝ∩qMetu(X) defines a gauge. LetXu be the associated approach space. Suppose
f : X → Y is a contraction with Y in NA-App with a basis H consisting of quasi-
ultrametrics. Then d ∈ H clearly implies d◦f×f ∈ G∩qMetu(X). By the characterization
of a contraction in terms of a gauge basis, we have that f : Xu → Y is contractive.

4. The embeddings qMetu ↪→ App and Top ↪→ App.

Restricting the coreflector App→ qMet from [Lowen, 2015] to NA-App, a non-Archimedean
approach space X with limit operator λ (distance δ) is sent to its underlying quasi-
ultrametric space (X, dλ) ((X, dδ)) given by

dλ(x, y) = λ(ẏ)(x) = δ(x, {y}) = dδ(x, y)

for x, y in X. Moreover restricting the embedding qMet ↪→ App from [Lowen, 2015] to
qMetu, a quasi-ultrametric space (X, d) is mapped to a non-Archimedean approach space
X with limit operator defined by

λd(U)(x) = sup
U∈U

inf
u∈U

d(x, u),

for all U ∈ βX and x ∈ X and distance

δd(x,A) = inf
a∈A

d(x, a)

for all A ⊆ X and x ∈ X. We can conclude that qMetu is concretely coreflectively
embedded in NA-App and the coreflector is the restriction of the well known coreflector
App→ qMet.

Considering the lax extension � to P∨-Rel, the lax extension of the identity monad I to
P∨-Rel and the associated morphism (I, I)→ (β, β) of lax extensions, the induced algebraic
functor

(�,P∨)-Cat −→ P∨-Cat,

sends a (�,P∨)-algebra (X, a) to its underlying P∨-algebra (X, a · eX), as introduced in
section III.3.4 of [Hofmann, Seal, Tholen (eds.), 2014]. Using the isomorphisms described
in section 2 and in Theorem 2.4, this functor sends a (�,P∨)-algebra (X, a), corresponding
to a non-Archimedean approach space X with limit operator λ, to its underlying quasi-
ultrametric space (X, d−λ ). This functor has a left adjoint P∨-Cat ↪→ (�,P∨)-Cat, which
associates to a P∨-algebra (X, d), the (�,P∨)-algebra corresponding to (X,λd−).

Next consider the lax homomorphism ι : 2 −→ P∨ , sending > to 0 and ⊥ to ∞,
which is compatible with the lax extensions of the ultrafilter monad to Rel and P∨-Rel.
Analogous to the situation for P+ [Hofmann, Seal, Tholen (eds.), 2014] the change-of-base
functor associated to the lax homomorphism ι constitutes an embedding (�, 2)-Cat ↪→
(�,P∨)-Cat. Using the isomorphisms described in section 2, Theorem 2.4, and the well
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known isomorphism (�, 2)-Cat ∼= Top [Barr, 1970] or [Hofmann, Seal, Tholen (eds.), 2014],
this gives an embedding of Top in NA-App.
In terms of the limit operator or the distance the embedding Top ↪→ NA-App associates
the limit operator λT (distance δT ) to a topological space (X, T ) by λT U(x) = 0 if U
converges to x in (X, T ) (δT (x,A) = 0 if x ∈ A) and with values ∞ in all other cases,
for U ∈ βX,A ⊆ X, x ∈ X. Later on we will also make use of the embedding of Top
described in terms of the tower. All levels of the approach tower (X, (tε)ε≥0) associated to
a topological space (X, T ) coincide, so we have Tε = T for all ε ≥ 0. These formulations
of the embedding Top ↪→ NA-App are the codomain restrictions of the embedding of Top
in App as described in [Lowen, 2015].

ι has a right adjoint p : P∨ −→ 2, where p(0) = > and p(v) =⊥ otherwise, that is
again a quantale homomorphism. p is also compatible with the lax extensions of the
ultrafilter monad � to Rel and P∨-Rel and provides the embedding with a right adjoint
(�,P∨)-Cat −→ (�, 2)-Cat. This functor can also be obtained by restricting the coreflector
T : App −→ Top, as described in [Lowen, 2015] to NA-App and we will continue in
using the notation T. This coreflector sends a non-Archimedean approach space X to a
topological space T(X) in which an ultrafilter U converges to a point x precisely when
λU(x) = 0 or in which a point x is in the closure of a set A precisely when δ(x,A) = 0.
In terms of the tower (Tε)ε≥0 the topological space T(X) is precisely (X, T0).

Now define the map o : P∨ −→ 2 by o(v) = > if and only if v <∞. Analogous to the
situation of P+ in [Hofmann, Seal, Tholen (eds.), 2014] the map o is a lax homomorphism,
however it is not compatible with the ultrafilter lax extensions. Nevertheless, given a
(�,P∨)-algebra (X, a), one can still consider the pair (X, oa), where oa : βX−→7 X is
defined by U oa x precisely when a(U , x) <∞. This structure satisfies the reflexivity but
not the transitivity condition. In other words, (X, oa) is a pseudotopological space. Now
we can apply the left adjoint of the full reflective embedding Top ↪→ PsTop to (X, oa)
to obtain a topological space and thereby a left adjoint (�,P∨)-Cat −→ (�, 2)-Cat to the
embedding (�, 2)-Cat ↪→ (�,P∨)-Cat. This functor can also be obtained by restricting the
reflector App −→ Top, as described in [Lowen, 2015] to NA-App, where the Top-reflection of
a non-Archimedean approach space (X, δ) is determined by the non-Archimedean distance
associated with the topological reflection of the pretopological closure operator cl, defined
by cl(A) := {x ∈ A | δ(x,A) <∞}.

The results in this section can be summarized in the following diagram.
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NA-App ∼= (�,P∨)-Cat

App ∼= (�,P+)-Cat

?�

r

OO

Top ∼= (�, 2)-Cat

NA-App ∼= (�,P∨)-Cat

/�

r& c

??

qMetu ∼= P∨-Cat

NA-App ∼= (�,P∨)-Cat

/ O

c

__

qMetu ∼= P∨-Cat

qMet ∼= P+-Cat

/�

r

??
qMet ∼= P+-Cat

App ∼= (�,P+)-Cat

T4

c

gg

5. Initially dense objects in NA-App

At this point, we can introduce two new examples of non-Archimedean approach spaces.

5.1. Example. Consider the quasi-ultrametrics dP∨ and d−P∨ on P∨ defined by

dP∨ : P∨ × P∨ → P∨ : (x, y) 7→ x−•y,

and
d−P∨ : P∨ × P∨ → P∨ : (x, y) 7→ y−•x.

The first quasi-ultrametric space is a special case of a V-structure on V as introduced
in [Hofmann, Seal, Tholen (eds.), 2014]. In this section we show that each of the non-
Archimedean approach spaces (P∨ , δP∨ ) of 3.4 and (P∨ , dP∨ ) and (P∨ , d

−
P∨

), as introduced

above, are initially dense objects in NA-App. Recall that for a source (fi : X → (Xi, λi))i∈I
where (Xi, λi) are given approach spaces in terms of their limit operator, the initial lift
on X is described by the limit operator

λinU(x) = sup
i∈I

λifi(U)(fi(x))

for U ∈ βX and x ∈ X.

5.2. Proposition. For any non-Archimedean approach space X with distance δ and for
A ⊆ X, the distance functional

δA : (X, δ) −→ (P∨ , δP∨ ) : x 7→ δ(x,A)

is a contraction.

Proof. Let x ∈ X and B ⊆ X. By application of 3.3 for B 6= ∅ and A 6= ∅ , we have

δP∨
(
δA(x), δA(B)

)
= sup

b∈B
δ(b, A)−•δ(x,A)

≤ sup
b∈B

δ(b, A)−•
(
δ(x,B) ∨ sup

b∈B
δ(b, A)

)
≤ δ(x,B).
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5.3. Theorem. (P∨ , δP∨ ) is initially dense in NA-App. More precisely, for any non-
Archimedean approach space X, the source(

δA : X −→ (P∨ , δP∨ )
)
A∈2X

is initial.

Proof. If λin stands for the initial non-Archimedean limit operator on X, then we already
know by Proposition 5.2 that λin ≤ λ. Conversely, take U ∈ βX and x ∈ X. Then

λinU(x) = sup
A∈2X

λP∨
(
δA(U)

)(
δA(x)

)
= sup

A∈2X
sup
U∈U

δP∨
(
δA(x), δA(U)

)
≥ sup

U∈U
δP∨
(
δU(x), δU(U)

)
= sup

U∈U
δP∨ (δU(x), {0})

= sup
U∈U

δ(x, U)

= λU(x).

5.4. Theorem. Both (P∨ , dP∨ ) and (P∨ , d
−
P∨

) are initially dense objects in NA-App.

Proof. Since we already know that (P∨ , δP∨ ) is initially dense in NA-App, it suffices to
show that we can obtain it via an initial lift of sources of either of the two objects above.
First of all, consider the following source(

gα : (P∨ , δP∨ ) −→ (P∨ , δdP∨ )
)
α∈R+ ,

where gα is defined as follows:

gα : (P∨ , δP∨ ) −→ (P∨ , δdP∨ ) : x 7→
{

0 x > α,
α x ≤ α.

To show that gα is a contraction, for any α ∈ R+, take x ∈ P∨ and B ⊆ P∨ arbitrary. For
B 6= ∅, we consider two cases. First suppose x ≤ α, then

δdP∨

(
gα(x), gα(B)

)
= inf

b∈B
gα(x)−•gα(b) = inf

b∈B
α−•gα(b) = 0.

In case x > α, we have

δdP∨

(
gα(x), gα(B)

)
= inf

b∈B
gα(x)−•gα(b) = inf

b∈B
0−•gα(b).

If there exists b ∈ B such that b > α, then δdP∨

(
gα(x), gα(B)

)
= 0 ≤ δP∨ (x,B). If for all

b ∈ B we have that b ≤ α then supB ≤ α < x, and thus δdP∨

(
gα(x), gα(B)

)
= α < x =

δP∨ (x,B).
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It remains to show that the source (gα)α∈R+ is initial. Let λin stands for the initial
limit operator on P∨ , then we know that λin ≤ λP∨ . To prove the other inequality, take
U ∈ βP∨ and x ∈ P∨ arbitrary. If λP∨U(x) = 0, then the inequality is clear. In case
λP∨U(x) = x there exists A ∈ U such that x > supA. Take α arbitrary in the interval
[supA, x[. Then

λdP∨ gα(U)
(
gα(x)

)
= sup

U∈U
inf
y∈U

dP∨
(
gα(x), gα(y)

)
≥ inf

y∈A
dP∨
(
gα(x), gα(y)

)
= 0−•α = α.

Hence λinU(x) = supα∈R+ λdP∨ gα(U)
(
gα(x)

)
≥ supα∈[supA,x[ α = x = λP∨U(x). So we can

conclude that the source is initial.
In a similar way, we can prove that the source(

fα : (P∨ , δP∨ ) −→ (P∨ , δd−P∨
)
)
α∈R+ ,

with

fα : (P∨ , δP∨ ) −→ (P∨ , δd−P∨
) : x 7→

{
α x > α,
0 x ≤ α,

is initial as well.

6. Topological properties on (�,P∨)-Cat

In this section we explore topological properties in (�,P∨)-Cat, following the relational
calculus, developed in V.1 and V.2 of [Hofmann, Seal, Tholen (eds.), 2014] for (T,V)-
properties. We introduce low separation properties, Hausdorffness, compactness, regu-
larity, normality and extremal disconnectedness as an application to (�,P∨)-Cat of the
corresponding (T,V)-properties for arbitrary (T,V)-Cat. For each of the properties p we
characterise the property (�,P∨)-p in the context NA-App. On the other hand we make
use of the well known meaning of these properties in the setting of Top ∼= (�, 2)-Cat. For
a non-Archimedean approach space X with tower of topologies (Tε)ε∈R+ we compare the
property (�,P∨)-p to the properties:

• X has p at level 0: meaning (X, T0) has p in Top

• X strongly has p: meaning (X, Tε) has p in Top for every ε ∈ R+.

• X almost strongly has p: meaning (X, Tε) has p in Top for every ε ∈ R+
0 .

6.1. Low separation properties and Hausdorffness. We recall the definition of
(�,P∨)-p for p the Hausdorff, T1 and T0 properties in (�,P∨)-Cat by giving the pointwise
interpretation through the isomorphism in 2.4 in terms of the limit operator. For a study
of low separation properties in App we refer to [Lowen, Sioen 2003].
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6.2. Definition. A non-Archimedean approach space X is

1. (�,P∨)-Hausdorff if λU(x) < ∞ & λU(y) < ∞ ⇒ x = y, for every U ∈ βX and all
x, y ∈ X.

2. X is (�,P∨)-T1 if λẋ(y) <∞⇒ x = y, for all x, y ∈ X

3. X is (�,P∨)-T0 if λẋ(y) <∞ & λẏ(x) <∞⇒ x = y, for all x, y ∈ X.

Remark that (�,P∨)-Hausdorff ((�,P∨)-T1, (�,P∨)-T0) is equivalent to (�,P+)-Hausdorff
((�,P+)-T1, (�,P+)-T0) as described in [Hofmann, Seal, Tholen (eds.), 2014]

6.3. Theorem. For a non-Archimedean approach space X the following properties are
equivalent

1. X is strongly Hausdorff (strongly T1, strongly T0 respectively).

2. X is almost strongly Hausdorff (almost strongly T1, almost strongly T0 respectively).

3. X is (�,P∨)-Hausdorff ((�,P∨)-T1, (�,P∨)-T0)

and imply that X is Hausdorff (T1, T0 respectively) at level 0.

Proof. (1) ⇔ (2) This is straightforward.
(1) ⇔ (3) is based on

λU(x) <∞⇔ ∃ε ∈ R+, λU(x) ≤ ε⇔ ∃ε ∈ R+,U → x in Tε,

for U ∈ βX and x ∈ X.
The proofs of the other cases follow analogously.

That (�,P∨)-Hausdorff ((�,P∨)-T1, (�,P∨)-T0) is not equivalent to the Hausdorff (T1,
T0 ) property at level 0 follows from example XS in 3.8 with S = {X, ∅}.

6.4. Compactness. The next property we consider is (�,P∨)-compactness. We recall
the definition of (�,P∨)-compactness in (�,P∨)-Cat by giving the pointwise interpretation
through the isomorphism in 2.4 in terms of the limit operator.

6.5. Definition. A non-Archimedean approach space X is (�,P∨)-compact if

inf
x∈X

λU(x) = 0,

for all U ∈ βX.

This condition coincides with (�,P+)-compactness studied in (�,P+)-Cat ∼= App [Hof-
mann, Seal, Tholen (eds.), 2014] and is equivalent to what is called 0-compactness in
[Lowen, 2015]. The proofs of the following results are straightforward.
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6.6. Theorem. For a non-Archimedean approach space X the following equivalences
hold:

1. (�,P∨)-compact ⇔ almost strongly compact

2. compact at level 0 ⇔ strongly compact

That (�,P∨)-compactness does not imply compactness at level 0 is well known in the
setting of App [Lowen, 2015]. That this is neither the case in the setting of NA-App follows
from the following example.

6.7. Example. Consider the example in 3.9 on ]0,∞[ with T the right order topology.
Clearly T is not compact, whereas the topologies at strictly positive levels are all compact.

6.8. Proposition. Let X be a non-Archimedean approach space. If X is (�,P∨)-compact
and (�,P∨)-Hausdorff, then it is a compact Hausdorff topological space.

Proof. Suppose that the non-Archimedean approach space X is both (�,P∨)-compact
and (�,P∨)-Hausdorff. Then (X, Tε) is a compact Hausdorff topological space, for every
ε > 0. By the coherence condition of the non-Archimedean tower, we have Tγ ⊆ Tε for
ε ≤ γ and therefore Tγ = Tε, for every γ, ε > 0. Moreover, since T0 =

∨
γ>0 Tγ, all levels

of the non-Archimedean tower are equal. This implies that X is topological.

6.9. Regularity. Next we investigate the notion of regularity. We recall the definition
of (�,P∨)-p for p the regularity property in (�,P∨)-Cat, by giving the pointwise interpre-
tation through the isomorphism in 2.4 in terms of the limit operator.

6.10. Definition. A non-Archimedean approach space X is (�,P∨)-regular if

λU(x) ≤ λmX(X)(x) ∨ sup
A∈X,B∈U

inf
W∈A,b∈B

λW(b),

for all X ∈ ββX,U ∈ βX and x ∈ X.

A strong version of regularity was introduced in [Brock, Kent, 1998]. In terms of
arbitrary filters it states that λF (γ) ≤ λF ∨ γ, for every F ∈ FX and x ∈ X and in
that paper it was shown to be equivalent to regularity at each level. In more generality
this condition was also considered in [Colebunders, Mynard, Trott, 2014] in the context
of contractive extensions.

The following result gives a characterisation of (�,P∨)-regular in terms of the level
topologies.

6.11. Theorem. For a non-Archimedean approach space X the following are equivalent:

1. X is strongly regular

2. X is almost strongly regular

3. For all U ,W ∈ βX and for all γ ≥ 0: W(γ) ⊆ U ⇒ λU ≤ λW ∨ γ.

4. X is (�,P∨)-regular
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Proof. (1)⇔ (2) is clear from the fact that
⋃
ε>0 Cε is a closed basis for the topology T0.

(1) ⇔ (3) is essentially known from [Brock, Kent, 1998].
(3) ⇒ (4). Take X ∈ ββX, U ∈ βX and x ∈ X. Put γ = λmX(X)(x) and ε =
supA∈X,B∈U infW∈A,b∈B λW(b). It is sufficient to assume that both γ and ε are finite. Let
0 < ρ <∞ be arbitrary and consider

S := {(G, y) | λG(y) ≤ ε+ ρ} ⊆ βX ×X.
Clearly the filterbasis X×U has a trace on S, so we can choose R ∈ βS refining this trace.
For A ∈ mX(X) and U ∈ U there exist R1 ∈ R and R2 ∈ R such that A ∈

⋂
z∈R1

π1z
and U = π2R2, with π1 and π2 the projections restricted to S. For z ∈ R1 ∩ R2 we have
λ(π1z, π2z) ≤ ε+ γ and π2z ∈ A(ε+γ) ∩ U . Finally we can conclude that mX(X)(ε+γ) ⊆ U
w! which implies

λU(x) ≤ λmX(X)(x) ∨ (ε+ ρ) ≤ γ ∨ (ε+ ρ).

By arbitrariness of ρ our conclusion follows.
(4) ⇒ (1). We use a technique similar to the one used in the proof of Theorem 9 in
[Brock, Kent, 1998]. Let W be an ultrafilter converging to x ∈ X in Tγ for γ ≥ 0 and
let U ∈ βX, such that W(γ) ⊆ U . We may assume that γ is finite. Let 0 < ρ < ∞ be
arbitrary. Consider

S = {(G, y) | λG(y) ≤ γ + ρ} ⊆ βX ×X
and {SW | W ∈ W} with SW = {(G, y) ∈ S | W ∈ G} whenever W ∈ W which is a
filterbasis on S. Let SW be the filter generated. Using the restrictions π1 and π2 of the
projections to S, we observe the following facts:

i) π2SW ⊆ W (γ): This follows from the fact that y ∈ W (γ) implies the existence of
G ∈ βX with W ∈ G and λG(y) ≤ γ + ρ.

ii) There exists R ∈ βS satisfying SW ⊆ R and π2R = U : Suppose the contrary, i.e.
for every R ∈ βS with SW ⊆ R there exists UR and R ∈ R such that UR∩π2R = ∅.
We can select a finite number of these sets with URi

∩ π2Ri = ∅ and such that⋃
iRi ∈ SW . In view of i) there exists an index j such that π2Rj ∈ U which is a

contradiction.

iii) With X = π1R we have mX(X) =W since W ∈ W implies W ∈
⋂
G∈π1SW

G.
Combining these results, we now have:

λU(x) ≤ λmX(X)(x) ∨ sup
A∈X,B∈U

inf
V∈A,b∈B

λV(b)

= λW(x) ∨ sup
R∈R,R′∈R

inf
V∈π1R,b∈π2R′

λV(b)

≤ γ ∨ sup
R∈R

inf
V∈π1R,b∈π2R

λV(b)

≤ γ ∨ sup
R∈R

inf
z∈R

λπ1(z)(π2(z))

≤ γ ∨ (γ + ρ).

By arbitrariness of ρ > 0, we can conclude that U converges to x in Tγ.
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Recall that in (�,P+)-Cat ∼= App the notion (�,P+)-regularity as described in [Hofmann,
Seal, Tholen (eds.), 2014] is equivalent to an approach form of regularity considered in
[Robeys, 1992] and [Lowen, 2015] meaning λF (γ) ≤ λF+γ, for every F ∈ FX and x ∈ X.
Other forms of regularity obtained by describing the objects of App as relational algebras
were studied in [Colebunders, Lowen, Van Opdenbosch, 2016].
Clearly for non-Archimedean approach spaces we have

(�,P∨)-regular ⇒ (�,P+)-regular ⇒ regular at level 0

The following examples based on the construction in 3.8 show that none of the impli-
cations is reversible.

6.12. Example. (1) Let X = {0, 1} and S the Sierpinski topology on X with {1} open.
The approach space XS is not (�,P+)-regular. This can be seen by taking F = 1̇ and
γ = 1. For this choice we have F (γ) = {X} and λ{X}(1) = 2 6≤ λ1̇(1) + 1. However T0 is
discrete and hence regular.
(2) Let X be infinite and S the cofinite topology on X. The approach space XS is not
(�,P∨)-regular. However it is (�,P+)-regular. To see this let 1 ≤ γ < 2. A filter F on
X either contains a finite set and then F (γ) = F and λF (γ) ≤ λF + γ. Or F does not
contain a finite set. In that case we have F (γ) = {X} and λF (γ) = 2 ≤ λF +γ. For γ < 1
or 2 ≤ γ the condition λF (γ) ≤ λF + γ is clearly also fulfilled.

6.13. Normality. Next we investigate normality. We recall the definition of normality
in (�,P∨)-Cat, by giving the pointwise interpretation in terms of the limit operator.

6.14. Definition. A non-Archimedean approach space X is (�,P∨)-normal if

â(U ,A) ∨ â(U ,B) ≥ inf{â(A,W) ∨ â(B,W) | W ∈ βX},

for all ultrafilters U ,A,B on X, with â(U ,A) = inf{u ∈ [0,∞] | U (u) ⊆ A}.

Turning the ∨ in the formula into + we have (�,P+)-normality as studied in [Hofmann,
Seal, Tholen (eds.), 2014]. In case X is a topological (approach) space both notions
coincide with

U ⊆ A & U ⊆ B ⇒ ∃W ∈ βX,A ⊆ W & B ⊆ W

for all ultrafilters U ,A,B on X. As is shown in [Hofmann, Seal, Tholen (eds.), 2014]
this condition coincides with the usual notion of normality on the topological (approach)
space.
An ultrametric approach space is (�,P∨)-normal, since by symmetry of the metric the ul-
trafilterW can be taken to be equal to U . Without symmetry we will encounter examples
of quasi-ultrametric approach spaces that are (�,P∨)-normal and others that are not.

Next we give some useful characterisations of (�,P∨)-normality.
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6.15. Proposition. For a non-Archimedean approach space X, the following properties
are equivalent:

1. X is (�,P∨)-normal

2. â(U ,A) < v & â(U ,B) < v ⇒ ∃W ∈ βX, â(A,W) < v & â(B,W) < v
for all U ,A,B ultrafilters on X and v > 0

3. A(v) ∩B(v) = ∅ ⇒ ∀u < v, ∃C ⊆ X,A(u) ∩ C(u) = ∅ & (X \ C)(u) ∩B(u) = ∅
for all A,B ⊆ X and v > 0

Proof. That (1) and (2) are equivalent is straightforward.
To show that (2) implies (3), let that A(v) ∩ B(v) = ∅ with A,B ⊆ X for some v > 0
and let u < v arbitrary. Suppose on the contrary that for all C ⊆ X,A(u) ∩ C(u) 6= ∅ or
(X \ C)(u) ∩ B(u) 6= ∅. By Lemma V.2.5.1 in [Hofmann, Seal, Tholen (eds.), 2014] there
exist ultrafilters U ,A,B on X satisfying

∀U ∈ U : A(u) ∩ U (u) ∈ A & B(u) ∩ U (u) ∈ B.

It follows that â(U ,A) ≤ u < v and â(U ,B) ≤ u < v. By (2) there exists W ∈ βX with

â(A,W) < v & â(B,W) < v. Since A(v) ⊆ W , A(u) ∈ A and A(u)(v) ⊆ A(v)(v) = A(v) we
have A(v) ∈ W . In the same way we have B(v) ∈ W which contradicts A(v) ∩B(v) = ∅.
Next we show that (3) implies (2). Let U ,A,B be ultrafilters on X, and v > 0 with
â(U ,A) < v & â(U ,B) < v. Choose ε, δ satisfying â(U ,A) < ε < δ < v & â(U ,B) < ε <
δ < v. Let A ∈ A and B ∈ B. We claim that for all C ⊆ X :

A(ε) ∩ C(ε) 6= ∅ or B(ε) ∩ (X \ C)(ε) 6= ∅.

Indeed, in view of U (ε) ⊆ A and U (ε) ⊆ B, the assertion ∃C ⊆ X with A(ε) ∩ C(ε) =
∅ & B(ε) ∩ (X \ C)(ε) = ∅ would imply C 6∈ U and X \ C 6∈ U , which is impossible.
By (3) we have A(δ) ∩B(δ) 6= ∅. So there exists an ultrafilter W on X refining

{A(δ) ∩B(δ) | A ∈ A, B ∈ B}.

Clearly W satisfies A(δ) ⊆ W and B(δ) ⊆ W . So we can conclude that
â(A,W) < v & â(B,W) < v.

Remark that for a given approach space X, condition (2) in 6.15 implies condition (ii)
in Theorem V.2.5.2 of [Hofmann, Seal, Tholen (eds.), 2014] and therefore also (iii) which
in [Van Olmen 2005] was shown to be equivalent to approach frame normality of the lower
regular function frame of X.

6.16. Theorem. For a non-Archimedean approach space X with tower (Tε)ε≥0, consider
the following properties

1. X is strongly normal
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2. X is almost strongly normal

3. X is (�,P∨)-normal

4. X is normal at level 0

The following implications hold: (1)⇒ (4) and (1)⇒ (2)⇒ (3).

Proof. (1)⇒ (4) and (1)⇒ (2) are straightforward. We show that (2)⇒ (3). Suppose
(X, Tu) is normal, for every u > 0 and let â(U ,A) < v & â(U ,B) < v for some v > 0. Take
u such that â(U ,A) < u < v & â(U ,B) < u < v. Then for the topological space (X, Tu) we
have U (u) ⊆ A and U (u) ⊆ B. By the normality of (X, Tu) there exists W ∈ βX satisfying
A(u) ⊆ W and B(u) ⊆ W . It follows that â(A,W) ≤ u < v and â(B,W) ≤ u < v.

There are no other valid implications between the properties considered in the previous
theorem. This is shown by the next examples.

6.17. Example. On X =]0,∞[, we consider an approach space as in 3.9. We make a
particular choice for the topology

T = {Bc | B ⊆]0,∞[, bounded } ∪ {∅},

on X which is finer than the right order topology and consider the approach space
(X, (Tε)ε∈R+). The topology T0 is not normal since there are no non-empty distinct and
disjoint open subsets, although disjoint non-empty closed subsets do exist. So X is not
strongly normal either.
Let ε > 0 and consider the topological space (X, Tε). It is a normal topological space
since for x ≤ ε we have x ∈ A(ε) for every non-empty subset A. So (2) and hence (3) from
Theorem 6.16 are satisfied.

6.18. Example. Let X =]0,∞[ and let (Tε)ε≥0 the tower as defined in 6.17 starting from
T = {Bc | B ⊆]0,∞[, bounded }∪{∅}. We define another tower (Sγ)γ≥0 on X as follows.

Sγ =

{
P(X) whenever 0 ≤ γ < 1
Tγ−1 whenever 1 ≤ γ.

Clearly the tower (Sγ)γ≥0 defines a non-Archimedean approach space on X. For the
topology at level 0 we have T0 = P(X) is normal, but the topological space (X,S1) =
(X, T ) is not normal. So (1) and (2) from Theorem 6.16 do not hold. However the
approach space is (�,P∨)-normal. Let A and B be non-empty subsets with A(v)∩B(v) = ∅
for some v > 0 and let u < v. Clearly v ≤ 1. In that case the level topology for u is
discrete. It follows that C = B satisfies the condition in (3) 6.15.
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6.19. Example. Consider example (2) in Remark V.2.5.3 in [Hofmann, Seal, Tholen
(eds.), 2014]. X = ({x, y, z, w}, d) where d is the quasi-ultrametric structure d(x, z) =
d(y, z) = d(w, z) = 1, d(w, x) = d(w, y) = 3, d(x′, x′) = 0 for any x′ ∈ X and d(x′, y′) =∞
elsewhere. The topology T0 is discrete and hence normal. However X = ({x, y, z, w}, d)
is not (�,P∨)-normal. Let U = ż,A = ẋ and B = ẏ. Then â(U ,A) = d(x, z) = 1 and
â(U ,B) = d(y, z) = 1. For W = ẇ we have â(A,W) = d(w, x) = 3 and â(B,W) =
d(w, y) = 3 and for all other choices of W we obtain values ∞. So the space X =
({x, y, z, w}, d) does not satisfy (1) or (2) from 6.16 either.

Next we prove that the notions (�,P∨)-normal and (�,P+)-normal are unrelated. Again
this can be shown by looking at finite non-Archimedean approach spaces that are therefore
structured by some quasi-ultrametric.

6.20. Example. Let X = {x, y, z} endowed with the quasi-ultrametric d defined by
d(y, x) = 2, d(x, z) = 1, d(y, z) = 1 and d(x′, x′) = 0 for all x′ ∈ X and d(x′, y′) = ∞
elsewhere. Clearly the only inequality that has to be checked is d(x, z) + d(y, z) = 2 ≥
d(y, x) which is no longer valid when + is changed into ∨. The space is (�,P+)-normal
but not (�,P∨)-normal.

6.21. Example. Let X = {x, y, z, w} endowed with the quasi-ultrametric d defined by
d(x, z) = 1, d(y, z) = 2, d(w, z) = 2, d(w, y) = 2, d(w, x) = 2 and d(x′, x′) = 0 for all
x′ ∈ X and d(x′, y′) = ∞ elsewhere. The space is not (�,P+)-normal since d(y, z) +
d(x, z) = 3 < 4 = d(w, y) + d(w, x). However X is strongly normal, and therefore (�,P∨)-
normal. To see this observe that the level topologies for 0 ≤ ε < 1 are discrete and
hence normal. For levels 1 ≤ ε < 2 all points are isolated except x for which the smallest
neighborhood is {x, z}. This topology is normal since all closed sets are open. For levels
2 ≤ ε we have smallest neighborhoods Vw = X, Vy = {y, z}, Vz = {z} and Vx = {x, z}.
These levels are normal too since there are no disjoint non-empty closed sets.

6.22. Extremal disconnectedness. Next we investigate extremal disconnectedness.
We recall the definition of extremal disconnectedness in (�,P∨)-Cat, by giving the pointwise
interpretation in terms of the limit operator.

6.23. Definition. A non-Archimedean approach space X is (�,P∨)-extremally discon-
nected if

â(A,U) ∨ â(B,U) ≥ inf{â(W ,A) ∨ â(W ,B) | W ∈ βX},

for all ultrafilters U ,A,B on X, with â(U ,A) = inf{u ∈ [0,∞] | U (u) ⊆ A}.

Turning the ∨ in the formula into + we have (�,P+)-extremal disconnectedness as
studied in [Hofmann, Seal, Tholen (eds.), 2014]. In case X is a topological (approach)
space both notions coincide with

A ⊆ U & B ⊆ U ⇒ ∃W ∈ βX,W ⊆ A & W ⊆ B
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for all ultrafilters U ,A,B on X. As is shown in [Hofmann, Seal, Tholen (eds.), 2014] this
condition coincides with the usual notion of extremal disconnectedness on the topological
(approach) space.
An ultrametric approach space is (�,P∨)-extremally disconnected, since by symmetry of
the metric the ultrafilter W can be taken to be equal to U . Without symmetry we
will encounter examples of quasi-ultrametric approach spaces that are (�,P∨)-extremally
disconnected and others that are not.

6.24. Proposition. For a non-Archimedean approach space X with tower (Tε)ε≥0, the
following properties are equivalent:

1. X is (�,P∨)-extremally disconnected

2. â(A,U) < v & â(B,U) < v ⇒ ∃W ∈ βX, â(W ,A) < v & â(W ,B) < v
for all U ,A,B ultrafilters on X and v > 0

3. A ∩B = ∅ with A,B ∈ Tv ⇒ ∀u < v,A(u) ∩B(u) = ∅
for all A,B ⊆ X and v > 0.

Proof. The equivalence of (1) and (2) is straightforward.
Next we prove that (2) implies (3). If (3) does not hold then there exists v > 0 and
A,B ∈ Tv with A ∩ B = ∅ and u < v such that A(u) ∩ B(u) 6= ∅.Take an ultrafilter U
containing both A(u) and B(u). Let UTu be the filter generated by the Tu-open sets in U .
Then clearly UTu ∨ {A} is a proper filter.

We claim that there exists an A ∈ βX, UTu ∨ {A} ⊆ A with A(u) ⊆ U .
Suppose on the contrary that for every such Ai ∈ βX with UTu ∨ {A} ⊆ Ai there exists

A′i ∈ Ai with A
′(u)
i 6∈ U . A finite subcollection of ultrafilters {Aj | j ∈ J} exists, for

which the corresponding sets A′j ∈ Aj satisfy ∪j∈JA′j ∈ UTu ∨{A}. Let U ∈ UTu such that

U ∩ A(u) ⊆ ∪j∈JA′j. From A(u) ∈ U we deduce that (U ∩ A)(u) and hence also ∪j∈JA′j
belongs to U . A contradiction follows.
In the same way there exists an B ∈ βX, UTu ∨ {B} ⊆ B with B(u) ⊆ U . By (2) there
exists W ∈ βX, W(v) ⊆ A and W(v) ⊆ B. For every W ∈ W we have W (v) ∩ A ∈ A
and W (v) ∩ B ∈ B. By Lemma V.2.5.1 in [Hofmann, Seal, Tholen (eds.), 2014] we get
A ∩ C(v) = A ∩ C 6= ∅ or B ∩ (X \ C)(v) = B ∩ (X \ C) 6= ∅ which is impossible. Hence
we have (3).

Next we prove (3) implies (2). Let A,B,U ∈ βX with â(A,U) < γ & â(B,U) < γ and
choose u, v > 0 such that â(A,U) < u < v < γ & â(B,U) < u < v < γ. For A ∈ A ∩ Tv
and B ∈ B ∩ Tv we have A(u) ∩B(u) 6= ∅. By (3) we have A ∩B 6= ∅. So

{A ∩B | A ∈ A ∩ Tv, B ∈ B ∩ Tv}

is a filter basis and a finer ultraflter exists. Applying the second equivalence used in the
proof of (ii) ⇔ (iii) in V.2.4.4 of [Hofmann, Seal, Tholen (eds.), 2014] to the topology
Tv we obtain a W ∈ βX satisfying W(v) ⊆ A and W(v) ⊆ B. So we can conclude that
â(W ,A) ≤ v < γ & â(W ,B) ≤ v < γ.
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6.25. Theorem. For a non-Archimedean approach space X with tower (Tε)ε≥0, consider
the following properties

1. X is strongly extremally disconnected

2. X is almost strongly extremally disconnected

3. X is (�,P∨)-extremally disconnected

4. X is extremally disconnected at level 0

The following implications hold: (1)⇒ (2)⇒ (3) and (1)⇒ (4).

Proof. (1) ⇒ (4) and (1) ⇒ (2) are straightforward. We show that (2) ⇒ (3) using
characterisation (3) in 6.24. Suppose A ∩ B = ∅ with A,B ∈ Tv and let u < v. since
(X, Tv) is extremally disconnected we have A(v)∩B(v) = ∅ and since Tv ⊆ Tu the conclusion
follows.

There are no other valid implications between the properties considered in the previous
theorem. This is shown by the next examples.

6.26. Example. We use the ultrametric space X = ([0,∞], dM) that played a crucial role
in the development of the Banaschewski compactification in [Colebunders, Sioen, 2017].
On [0,∞] let dM be defined by

dM(x, y) :=

{
x ∨ y x 6= y,

0 x = y.

X clearly is an ultrametric space. When it is considered as an approach space it has a
tower (Rε)ε of zero dimensional topologies. Since dM is symmetric the space ([0,∞], dM)
is (�,P∨)-extremally disconnected. The topology T0 is discrete in all points x 6= 0 and has
the usual neighborhood filter in 0. The set A = {1/n | n ≥ 1} is open in TX but its
closure is A ∪ {0} which clearly is not open. So T0 is not extremally disconnected and
hence X is not strongly extremally disconnected.
Let ε > 0 and consider the level topology ([0,∞],Rε). Consider the open set
A = {ε + 1/n | n ≥ 1}, then its closure A(ε) = A ∪ [0, ε] which is not open at level ε. So
although (3) is fulfilled, none of the other conditions in 6.25 hold.

6.27. Example. Let X = [0,∞[, endowed with the topology T with neighborhood filters
(V(x))x∈X where V(0) is the usual neighborhood filter in the Euclidean topology, and
V(x) = ẋ whenever x 6= 0, so at level 0 we use the same topology as in the previous
example 6.26. We define (Tε)ε∈R+ with T0 = T and Tε at level 0 < ε having a neighborhood
filter

Vε(x) =

{
stack{[0, x]} whenever 0 < x ≤ ε
V(x) whenever ε < x or x = 0

at x ∈ X. The topology at level 0 is ([0,∞[, T ). As we know from 6.26 it is not extremally
disconnected.
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Next we consider level ε > 0 and ([0,∞[, Tε). Let A ∈ Tε then either there is x ≤ ε with
x ∈ A. In this case A(ε) = [0, ε] ∪ (A∩]ε,∞[) which is open, or there is no x ≤ ε with
x ∈ A. In this case we have A(ε) = A open. X is extremally disconnected at every strictly
positive level, so (2) and (3) from 6.25 are satisfied whereas (1) and (4) are not.

6.28. Example. Let (X, d) be as is 6.19 and now consider (X, d−). Then we have a
space with T0 extremally disconnected which is not (�,P∨)-extremally disconnected, so it
satisfies (4), but none of the other conditions in 6.25.

To see that the notions (�,P∨)-extremally disconnected and (�,P+)-extremally discon-
nected are unrelated we can consider examples (X, d−) for each of the spaces described
in 6.20 and 6.21.

6.29. Topological properties of the initially dense objects. We come back
to the examples in 3.4 and 5.1 and investigate their topological properties.

6.30. Example. First we consider X = (P∨ , δP∨ ). Clearly the limit operator satisfies
λU(0) = 0, for any U ∈ βP∨ . Thus the space is compact at level 0.
P∨ is T0 since λẋ(y) = 0 = λẏ(x) implies x = y. However, the space is not (�,P∨)-T0. To
see this, take x, y ∈ [0,∞[ such that x < y. Then λẋ(y) = y and λẏ(x) = 0. Hence both
λẋ(y) and λẏ(x) are finite, but x 6= y.
Since δP∨ (0, A) = 0 for every nonempty subset A, we have 0 ∈ clA in the topology T0. So
clearly T0 is neither T1 nor regular. Therefore (P∨ , δP∨ ) is not (�,P∨)-T1 nor (�,P∨)-regular.
P∨ is strongly normal and strongly extremally disconnected. This follows from the fact
that at level 0 (and hence at all other levels) all non-empty closed sets contain 0. We
conclude that all levels are normal. On the other hand there are no non-empty disjoint
open sets at level 0 since A∩A′ = ∅ and ∞ ∈ P∨ \A implies P∨ ⊆ P∨ \A. So all levels are
extremally disconnected.

6.31. Example. Next we consider the examples (P∨ , dP∨ ) and (P∨ , d
−
P∨

) as described in 5.1.

For X = (P∨ , dP∨ ) and for any U ∈ βP∨ , we have that λdP∨U(∞) = infU∈U supy∈U dP∨ (∞, y)
= 0, so we get that (P∨ , dP∨ ) is compact at level 0.
For x, y ∈ P∨ arbitrary, we have that λdP∨ ẋ(y) = 0 if and only if x ≤ y. This proves that
(P∨ , dP∨ ) is T0. However (P∨ , dP∨ ) is not (�,P∨)-T0. To see this, take x, y ∈ [0,∞[ such that
x < y. Then λdP∨ ẋ(y) = 0, and λdP∨ ẏ(x) = y <∞.
Since dP∨ (∞, z) = 0 for every z ∈ P∨ we have ∞ ∈ clA in the topology T0 for every
nonempty subset A. So clearly T0 is not T1. Therefore (P∨ , δP∨ ) is not (�,P∨)-T1.
X = (P∨ , dP∨ ) is not (�,P+)-regular, since the quasi-ultrametric is not symmetric. Moreover
as ∞ ∈ clA for every subset A, the topology T0 is not regular either.
X = (P∨ , dP∨ ) is strongly normal and strongly extremally disconnected. To see this, take
A ⊆ P∨ non-empty. We notice that at level 0 (and hence at all other levels) ∞ ∈ cl(A).
So all non-empty closed sets contain ∞. We conclude that all levels are normal. On the
other hand all non-empty open sets contain 0. So all levels are extremally disconnected.
The results for (P∨ , d

−
P∨

) follow analogously.
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7. Compact Hausdorff non-Archimedean approach spaces

In the previous section in 6.8 we proved that a non-Archimedean approach space X that
is at the same time (�,P∨)-compact and (�,P∨)-Hausdorff is topological. In this section for
a space X we consider the axioms compact at level 0 in combination with Hausdorff at
level 0, in the sense that the topology T0 is both compact and Hausdorff. In [Lowen, 2015]
these conditions are called compact and Hausdorff and in sections 7 and 8 we will use this
simplified terminology. We consider NA-App2, the full subcategory of NA-App consisting
of all Hausdorff non-Archimedean approach spaces and NA-Appc2 the full subcategory
of NA-App2 consisting of all compact Hausdorff non-Archimedean approach spaces. For
terminology used in sections 7 and 8 we refer to [Adámek, Herrlich, Strecker, 1990].

NA-App2 is epireflective in NA-App and is closed under the construction of finer struc-
tures, hence it is a quotient reflective subcategory of NA-App. So NA-App2 is monotopo-
logical, i.e. for any family (Xi)i∈I of Hausdorff non-Archimedean approach spaces and
any point-separating source (fi : X //Xi)i∈I there exists a unique initial lift on X. Our
next aim in this section is to determine the epimorphisms and extremal monomorphisms
in this category.

7.1. Theorem. A contraction f : X −→ Y in NA-App2 is an epimorphism in NA-App2,
if and only if f(X) is TY -dense.

Proof. One implication is straightforward. If f : X −→ Y is a contraction in NA-App2
and f(X) is TY -dense then f : TX −→ TY is an epimorphism in Haus. This implies f
is an epimorphism in NA-App2 since for any two contractions u, v : Y −→ Z in NA-App2
with u · f = v · f, also Tu · T f = T v · T f in Haus.
In order to prove the converse, suppose f : TX −→ TY is a contraction in NA-App2
with f(X) not TY -dense. Set M = clTY

(
f(X)

)
. We use a technique based on the

amalgamation, for which we refer to [Dikranjan, Giuli, Tozzi, 1988]. Assume Y has gauge
basis H consisting of quasi-ultrametrics. The gauge basis of the amalgamation Y

∐
M Y

is given by
HY

∐
M Y = {ugd | d ∈ H} ↓,

where

ugd(xi, yj) =

{
infm∈M d(x,m) ∨ d(m, y) i 6= j;x, y /∈M,
d(x, y) elsewhere.

Moreover since M is clTY -closed in Y , the space Y
∐

M Y is Hausdorff. Both statements
follow analogously to the construction and results in [Claes, Colebunders, Gerlo, 2007].
Now, consider the diagram

X
f−−−−→ Y

j1 //
j2
// Y
∐

Y
ϕ−−−−→ Y

∐
MY.

Let u = ϕ · j1 and v = ϕ · j2. Then u ·f = v ·f , but u 6= v. Hence f is not an epimorphism
in NA-App2.
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We proceed by determining the extremal monomorphisms in NA-App2. Since clT
is idempotent and weakly hereditary, NA-App2 is an (EclT ,MclT)-category, where EclT =
Epi(NA-App2). The following theorem determines the extremal monomorphisms in NA-App2.

7.2. Theorem. The following classes of morphisms in NA-App2 coincide:

1. The class of all regular monomorphisms;

2. The class of all extremal monomorphisms;

3. The class of all clT-closed embeddings.

Proof. To prove that extremal monomorphisms are clT-closed embeddings, take EclT
the class of all clT-dense contractions and MclT the class of all clT-closed embeddings.
By the Theorem in section 2.4 in [Dikranjan, Tholen, 1995], we have that NA-App2 is
an (EclT ,MclT)-category. Since by 7.1 we have EclT = Epi(NA-App2), it follows that
ExtrMono(NA-App2) ⊆MclT [Adámek, Herrlich, Strecker, 1990].

In order to prove that every clT-closed embedding is a regular monomorphism, take
f : X −→ Y a clTY -closed embedding in NA-App2. Consider the construction of the
amalgamation of Y with respect to f(X).

X
f−−−−→ Y

j1 //
j2
// Y
∐

Y
ϕ−−−−→ Y

∐
f(X)Y.

Since f(X) is clTY -closed, the amalgamation is Hausdorff. f is the equalizer of the pair
(ϕ · j1, ϕ · j2). Hence f is a regular monomorphism.

We recall the following definitions from section 8.1 in [Dikranjan, Tholen, 1995]. Con-
sider a functor F : X −→ Y. For an object Y ∈ Y, let F−1Y := {X ∈ X | FX = Y } be

the class of objects of the fibre of F at Y , and let F̃−1Y := {X ∈ X | FX ∼= Y } be its

replete closure in Y. F is called transportable if for every B ∈ F̃−1Y , there is A ∈ F−1Y
with A ∼= B.

7.3. Proposition. The restriction of the coreflector T : NA-App2 −→ Haus is trans-
portable.

Proof. Take (Y, T ) an arbitrary object in Haus. Take
(
X, (Sε)ε∈R+

)
∈ T̃−1(Y, T ) arbi-

trary. There exists an isomorphism f : (X,S0) −→ (Y, T ) in Haus. For any ε > 0, define
the topology on Y by transportation of the topology on X by putting Tε = {f(A) | A ∈
Sε} and let T0 = T . Then (Tε)ε∈R+ is a non-Archimedean tower on Y in the fibre of (Y, T )
and f :

(
X, (Sε)ε∈R+

)
−→

(
Y, Tε)ε∈R+

)
is an isomorphism in NA-App2.

Now we can conclude the following.

7.4. Theorem. NA-App2 is cowellpowered.

Proof. By Theorem 7.1 we have T
(

Epi(NA-App2)
)
⊆ Epi(Haus). Since T is fibre small

and transportable 7.3, the Theorem from section 8.1 in [Dikranjan, Tholen, 1995] implies
cowellpoweredness of NA-App2.
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7.5. Theorem. NA-Appc2 is an epireflective subcategory of NA-App2.

Proof. By 3.13 NA-App is closed in App under the formation of products and subspaces.
Since the class of compact Hausdorff approach spaces is known to be closed under the
formation of products and closed subspaces in App [Lowen, 2015] we can conclude that
NA-Appc2 is closed under formation of products and closed subspaces in NA-App2. Since
by 7.2 and 7.4 NA-App2 is a cowellpowered (Epi, Extremal mono)-category, NA-Appc2 is
epireflective in NA-App2.

8. Non-Archimedean Hausdorff Compactifications

Due to the foregoing theorem 7.5, there is a categorical construction of an epireflector
E : NA-App2 → NA-Appc2 with epireflection morphisms eX : X −→ KX, for every X in
NA-App2. The question remains whether the epireflection morphisms eX are embeddings.
The following proposition shows that in general, this is not the case.

8.1. Proposition. A Hausdorff non-Archimedean approach space X that can be embed-
ded in a compact Hausdorff non-Archimedean approach space Y has a topological coreflec-
tion TX that is a Tychonoff space.

Proof. If f : X −→ Y is an embedding with Y ∈ NA-Appc2, then T f : TX −→ TY
is an embedding in Top with TY compact Hausdorff topological. So TX is a Tychonoff
space.

In theorem 8.3 below we will formulate sufficient conditions on a Hausdorff non-
Archimedean approach space X, to ensure that there exists an embedding into a compact
Hausdorff non-Archimedean approach space. Our construction is based on Shanin’s com-
pactification of topological spaces.

Given S, a collection of closed sets of a topological space X satisfying the conditions
(i) ∅, X ∈ S and (ii) G1, G2 ∈ S ⇒ G1 ∪ G2 ∈ S, a S-family is a non-empty collection
of sets belonging to S satisfying the finite intersection property (f.i.p.). A S-family F
is called vanishing if

⋂
F∈F F = ∅. A maximal S-family is a S-family which is not

contained in any S-family as a proper subcollection. If S moreover is a closed basis of
X, then a compact topological space σ(X,S) = (S,S) in which X is densely embedded
is constructed in [Nagata, 1968] on the set S = X ∪ X ′ with X ′ the set of all maximal
vanishing S-families. S is endowed with the topology S with {S(G) | G ∈ S} as a closed
basis, where S(G) = G ∪ {p ∈ X ′ | G ∈ p}.

Given a non-Archimedean approach space X we will construct an extension of X by
first considering a special closed base S for TX and constructing σ(TX,S).

8.2. Theorem. Any non-Archimedean approach space X, given by its tower of topological
spaces (Tε)ε∈R+ and tower of closed sets (Cε)ε∈R+ , can be densely embedded in a compact
non-Archimedean approach space Σ(X,S), constructed from the closed basis S =

⋃
ε>0 Cε

of TX and such that the topological coreflection T Σ(X,S) is the Shanin compactification
σ(TX,S) of the topological coreflection TX.
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Proof. Let X be a non-Archimedean approach space given by its tower of topological
spaces (Tε)ε∈R+ and tower of closed sets (Cε)ε∈R+ , and take S =

⋃
ε>0 Cε. By the coherence

condition of the non-Archimedean tower, S is a closed basis for the topological space
TX = (X, T0) and moreover S clearly satisfies the assumptions (i) and (ii) made above.
Let σ(TX,S) = (S,S) be Shanin’s compactification.

For every ε ∈ R+ the collection {S(G) | G ∈ Cε} is a basis for the closed sets Dε of
a topology Rε on S. However for (Rε)ε∈R+ the coherence condition from 3.7 need not
be satisfied. In order to force the coherence condition we define the following tower of
topologies on S; for α ∈ R+, let

Sα =
∨
β>α

Rβ,

with the supremum taken in Top. The set S endowed with the tower (Sε)ε∈R+ defines a
non-Archimedean approach space which we denote by Σ(X,S).

Next we investigate its topological coreflection T Σ(X,S) = (S,S0). By definition, the
collection

⋃
β>0Dβ is a closed basis for (S,S0) and therefore the collection

{S(G) | G ∈ Cε, for some ε > 0} = {S(G) | G ∈ S}

is a basis for its closed sets too. It follows that (S,S0) = σ(TX,S), so Σ(X,S) is a
compact non-Archimedean approach space.

Let j : X → S be the canonical injection. By construction, for ε ∈ R+ the map
j : (X, Tε)→ (S,Rε) is an embedding in Top. Since Tε =

∨
γ>ε Tγ the source

(j : (X, Tε) → (S,Rγ))γ>ε is initial in Top which then implies that j : (X, Tε) → (S,Sε)
is initial too. So finally we have that j :

(
X, (Tε)ε∈R+

)
−→

(
Y, (Sε)ε∈R+

)
is an embedding

in NA-App. That the embedding j is dense follows already from the result at level 0.

In general, this compactification is not Hausdorff. To ensure the Hausdorff property,
we need stronger conditions on X.

8.3. Theorem. Let X be a non-Archimedean approach space given by its tower of closed
sets (Cε)ε∈R+ . The compactification described in Theorem 8.2 is Hausdorff if and only if
the following conditions are fulfilled

i) X is Hausdorff,

ii) ∀ε > 0 : ∀G ∈ Cε,∀x /∈ G : ∃ 0 < γ ≤ ε, ∃H ∈ Cγ such that x ∈ H and H ∩G = ∅,

iii) ∀ε > 0 : ∀F,G ∈ Cε, F ∩ G = ∅ : ∃ 0 < γ ≤ ε,∃H,K ∈ Cγ such that F ∩ H =
∅, G ∩K = ∅, H ∪K = X.

Proof. Remark that the collection S =
⋃
ε>0 Cε used in the construction of 8.2 is closed

under finite intersections. Using this fact, condition (ii) is equivalent to condition C)
and (iii) is equivalent to condition D) in [Nagata, 1968]. So Theorem IV.3 C) and D) in
[Nagata, 1968] can be applied.
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8.4. Corollary. For a non-Archimedean approach space X that is Hausdorff, (�,P∨)-
regular and (�,P∨)-normal, the compactification described in Theorem 8.2 is Hausdorff.

Proof. Condition (i) in 8.3 is fulfilled. By 6.11 all strictly positive level topologies are
regular, so in (ii) of 8.3 we can take γ = ε. In order to see that also (iii) is fulfilled let
ε > 0 and F,G ∈ Cε. Let 0 < γ < ε be arbitrary. Since X is (�,P∨)-normal, by 6.15
there exists C ⊆ X with F ∩ C(γ) = ∅ and (X \ C)(γ) ∩ G = ∅. Then H = C(γ) and
K = (X \ C)(γ), satisfy the conditions needed in (iii).

Remark that in the previous corollary the condition (�,P∨)-normal can be weakened
to Van Olmen’s normality, condition V.2.5.2(iii) in [Hofmann, Seal, Tholen (eds.), 2014].
Note that if X is a topological (non-Archimedean approach) space, Tε = T0 and Cε = C0,
for every ε > 0. In this case condition iii) is equivalent to X being a normal topological
space.

We get the following corollary.

8.5. Corollary. Let X be a non-Archimedean approach space such that the conditions
from theorem 8.3 are fulfilled. Then the topological coreflection TX is Tychonoff.

Proof. The conditions from Theorem 8.3 imply that X can be embedded in a compact
non-Archimedean approach space Σ(X,S), with T Σ(X,S) the Shanin compactification
of TX, a compact Hausdorff topological space.

As the Shanin compactification need not be an reflection, we end this section by
noting that in general the dense embedding j : X → Σ(X,S) constructed above, is not a
reflection.
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