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A CHARACTERIZATION OF THE HUQ COMMUTATOR

VAINO TUHAFENI SHAUMBWA

Abstract. We study a categorical commutator, introduced by Huq, defined for a
pair of coterminal morphisms. We show that in a normal unital category C with finite
colimits, the normal closure of the regular image of the Huq commutator of a pair
of subobjects under an arbitrary morphism is the same as the Huq commutator of
their respective regular images. Then we use this property to characterize the Huq
commutator as the largest commutator satisfying certain properties

1. Introduction

The concept of the commutator of subgroups of a given group has been generalized in
various ways from groups to various categorical contexts. In the present paper, we study
the concept of commutator in the sense of [Huq, 1986], which is derived from the notion of
commuting morphisms introduced by [Huq, 1986] and developed further by several other
mathematicians working in categorical algebra.
The commutator introduced by [Smith, 1976] for congruences in a Mal’tsev variety and
later on defined categorically for internal equivalence relations by [Pedicchio, 1995], had
been characterized by [Hagemann, Herrmann, 1979] as the largest commutator defined
on congruence lattices satisfying certain properties. In the present paper, we characterize
the Huq commutator as the largest commutator defined for subobjects satisfying certain
properties; a result that could be thought of as a Huq commutator version of Herrmann
and Hagemann characterization of Smith commutator.
In Section 2 we recall the notion of commuting morphisms, as well as the construction
of the Huq commutator of a pair of coterminal morphisms in a normal unital category
with finite colimits. Furthermore, we recall (in a slightly weaker context) the categorical
definition of the Higgins commutator as formulated by [Mantovani, Metere, 2010] for a
pair of subobjects in an ideal-determined category [G. Janelidze et al., 2010]. Relating
these two commutators (Huq and Higgins), we prove (in Proposition 2.2) that in a nor-
mal unital category C with finite colimits, the Huq commutator is the normal closure of
the Higgins commutator. This result was initially proven for an ideal-determined unital
category in [Mantovani, Metere, 2010, Proposition 5.7].
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In Section 3 we show (in Theorem 3.2) that in a normal unital category C with finite
colimits, the normal closure of the regular image of the Huq commutator of a pair of
subobjects under an arbitrary morphism is the same as the Huq commutator of their
respective regular images.
In the last section we prove (in Theorem 4.5) that in a normal unital category C with
finite colimits, the Huq commutator is the largest commutator defined for subobjects sat-
isfying certain properties.

2. Preliminaries

Recall that a unital category C [Bourn, 1996] is a pointed finitely complete category with
the property that for each pair of objects X and Y, the morphisms 〈1, 0〉 : X −→ X × Y
and 〈0, 1〉 : Y −→ X × Y are jointly strongly-epimorphic. Following [Z. Janelidze, 2010],
we define a normal category to be a pointed regular category where every regular epimor-
phism is a normal epimorphism. In this paper we will call a subobject h : H � X normal
if h is the kernel of some morphism.

Commuting morphisms [Huq, 1986] A pair of coterminal morphisms f : X −→ Y
and g : Z −→ Y in a unital category C commutes when there exists a (necessarily
unique) morphism ϕ : X × Z → Y making the diagram

X

YX × Z

Z

f〈
1, 0

〉

g
〈
0, 1

〉
ϕ

commute. Following [Bourn, 2002], we will call ϕ the cooperator of f and g.

Note that in the category of groups, a pair of inclusions of subgroups H ↪→ G and K ↪→ G
commutes in the above sense if and only if the subgroups commute element-wise in G.
In a regular unital category C, given a diagram as

X ′ X Z Y Y ′,
f gf ′ g′

where f ′ and g′ are regular epimorphisms, f ◦ f ′ and g ◦ g′ commute if and only if f and
g commute (see [Borceux, Bourn, 2004, Proposition 1.6.4]). For this reason, we will only
define the Huq commutator for subobjects.
In this paper, for a morphism t : V −→ W in a regular category, by “regular epimorphism-
monomorphism factorization of t” we will mean the factorization of t as a regular epimor-
phism followed by a monomorphism.
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For a pair of subobjects h : H � X and k : K � X of X in a normal unital category C
with finite colimits, we will denote by κH,K : H �K � H +K the kernel of the canonical
morphism [

1 0
0 1

]
: H +K −→ H ×K

(which is a normal epimorphism in a normal unital category with finite colimits). The
object H �K is the co-smash product of H and K.

Huq commutator [Huq, 1986] For a pair of subobjects h : H � X and k : K � X
of X in a normal unital category C with finite colimits, the Huq commutator [H,K]Q
of h : H � X and k : K � X is the smallest normal subobject of X for which the
composites q ◦ k and q ◦ h in the diagram

H X X/[H,K]Q

X

K

h

k

q

q

where q is the cokernel of [H,K]Q� X, commute.
The Huq commutator of a pair of subobjects h : H � X and k : K � X of X in a
normal unital category C with finite colimits always exists, and can be constructed as the
kernel of q in the diagram

H

XH ×K

K

Q [H,K]Q

h

k

〈
1, 0

〉

〈
0, 1

〉
ker(q)ϕ q

where Q is the colimit of the solid arrows (see [Bourn, 2004]). Or equivalently (see e.g
[Mantovani, Metere, 2010, Proposition 5.5]) as the kernel of q in the following pushout

H +K

Q.

X

p
H ×K

[H,K]Q

ϕ

[h, k] ker(q)

[
1 0
0 1

]
q
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The morphism q is the universal arrow for which the composites q ◦h and q ◦ k commute,
and is clearly a normal epimorphism (being the pushout of a normal epimorphism) in a
normal unital category with finite colimits.

Higgins commutator [Higgins, 1956] [Mantovani, Metere, 2010] Let h : H � X
and k : K � X be a pair of subobjects of X in a normal unital category C with
finite colimits. The Higgins commutator [H,K]H of h : H � X and k : K � X is
obtained as the regular image of the kernel κH,K : H �K � H +K under the morphism
[h, k] : H +K −→ X (see the diagram below)

H +K

[H,K]H

X.

H �K

[h, k]

κH,K

Ideal-determined categories [G. Janelidze et al., 2010] A category C with finite
colimits is called ideal-determined if it is normal and regular images of kernels under reg-
ular epimorphisms are kernels.
For a subobject h : H � X of X in a normal category C with finite colimits, the normal
closure of h in X is given by the kernel of the cokernel of h. In an ideal-determined
unital category, the Huq commutator is the normal closure of the Higgins commutator
[Mantovani, Metere, 2010, Proposition 5.7]. We will prove this result in a normal unital
category with finite colimits.

Let’s first recall the following:

2.1. Lemma. Let C be a pointed category with finite colimits. For each commutative
diagram as below

A B C

X Y Z

(1)

k g

f

s r

coker(f)

e

where e is an epimorphism, the diagram (1) is a pushout if g is the cokernel of k.

2.2. Proposition. In a normal unital category C with finite colimits, the Huq commu-
tator is the normal closure of the Higgins commutator.
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Proof. Let h : H � X and k : K � X be a pair of subobjects of X in a normal unital
category C with finite colimits. Consider the commutative diagram

[H,K]H X Q

H �K H +K H ×K

(1)[h, k] ϕ

m

κH,K

e

[
1 0
0 1

]

coker(m)

in which the morphism ϕ is given by the universal property of cokernels. According to
Lemma 2.1 the diagram (1) is a pushout. Therefore the kernel of coker(m), which, as
explained above is the Huq commutator [H,K]Q, is the normal closure of the Higgins
commutator [H,K]H .

3. Preservation of the Huq commutator by the normal closure of the regular
image.

In a unital category C with finite coproducts it can be seen that a pair of coterminal
morphisms f : X −→ Z and g : Y −→ Z commutes if and only if there exists a (necessarily
unique) morphism ϕ making the diagram

X × Y

X + Y Z

ϕ

[f, g]

[
1 0
0 1

]

commute.

3.1. Lemma. For a pair of regular epimorphisms r : R� X and s : S � Y in a regular
unital category C with finite coproducts, the square

R× S X × Y

R + S X + Y

[
1 0
0 1

] [
1 0
0 1

]

r + s

r × s



A CHARACTERIZATION OF THE HUQ COMMUTATOR 1593

is a pushout.

Proof. If u : R × S −→ T and v : X + Y −→ T are a pair of morphisms making the
outer diagram

R× S X × Y

R + S X + Y

T

r × s

r + s

[
1 0
0 1

][
1 0
0 1

]
v = [v1, v2]

u

α

commute, then by precomposing with the coproduct inclusions into R+S, it can be seen
that the composites v1 ◦r and v2 ◦s commute with cooperator u. Since r and s are regular
epimorphisms and the composites v1 ◦ r and v2 ◦ s commute, it follows (see e.g [Borceux,
Bourn, 2004, Proposition 1.6.4]) that the morphisms v1 and v2 also commute. Therefore,
as said above, there is a unique morphism α : X × Y −→ T such that

α ◦
[

1 0
0 1

]
= [v1, v2].

Moreover, since the canonical morphism from R+ S to R× S is a (regular) epimorphism
it can be seen that the lower triangle commutes, and clearly α is the unique morphism
making the two triangles commute.

Before we state the main result of this section, let’s observe the following:

Given a morphism f : X −→ Y and a normal epimorphism q : X � Q in a normal
category C with finite colimits, if t ◦ r is the regular epimorphism-monomorphism fac-
torization of f ◦ ker(q) where ker(q) is the kernel of q, then, applying Lemma 2.1 to the
commutative diagram

f(Ker(q)) Y Coker(t)

Ker(q) X Q

(1)f

coker(t)

q

r α

ker(q)

t

in which the morphism α is given by the universal property of cokernels, it follows that
the diagram (1) is a pushout.
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3.2. Theorem. Let h : H � X and k : K � X be a pair of subobjects of X and
f : X −→ Y a morphism in a normal unital category C with finite colimits. Then,

[f(H), f(K)]Q = f([H,K]Q).

Proof. Let h′ ◦ u and k′ ◦ v be the regular epimorphism-monomorphism factorizations
of f ◦ h and f ◦ k respectively. Consider the diagram

Q

Coker(t)

Y

XH +K

H ×K

f(H) + f(K)

f(H)× f(K)

p

p

ϕ

f

[h′, k′]

[h, k]

u×
v

u+
v

[
1 0
0 1

]

[
1 0
0 1

]

q

coker(t)

α

β

in which the front face is a pushout. As explained above, the right hand face of the
cube in which t is the regular image of [H,K]Q� X (the kernel of q) under f and α is the
unique morphism given by the universal property of cokernels, is a pushout. Furthermore,
since the left hand face of the cube is a pushout by Lemma 3.1, and the whole diagram
commutes, there exists a unique morphism β making the back face of the cube commute.
The composite of a pushout with another is a pushout, therefore the outer rectangle of
the diagram

H ×K f(H)× f(K) Coker(t)

H +K f(H) + f(K) Y

p

u× v

u+ v

[
1 0
0 1

] [
1 0
0 1

]
coker(t)

β

[h′, k′]
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is a pushout, and hence the square

f(H)× f(K) Coker(t)

f(H) + f(K) Y

β

[h′, k′]

coker(t)

[
1 0
0 1

]

is a pushout. Since the subobject f([H,K]Q) � Y is the kernel of coker(t), it follows

that [f(H), f(K)]Q = f([H,K]Q).

Recall that each morphism f : X −→ Y in a regular category C induces a Galois con-
nection between the posets of subobjects Sub(X) and Sub(Y ) of X and Y respectively,
i.e. a pair of maps f∗ : Sub(X) −→ Sub(Y ) and f ∗ : Sub(Y ) −→ Sub(X) defined (respec-
tively) by taking regular images of subobjects of X under f and pulling back subobjects
of Y along f , such that f∗f

∗(L) ≤ L and H ≤ f ∗f∗(H) for all subobjects h : H � X and
l : L� Y of X and Y respectively.

3.3. Lemma. For a subobject h : H � X of X and a morphism f : X −→ Y in a normal
category C with finite colimits, one has

f(H) = f(H).

Proof. It is clear that f(H) ≤ f(H). On the other hand, f(H) ≤ f(H) if f(H) ≤ f(H)

or equivalently f∗(H) ≤ f∗(H), since f(H) is a normal subobject of Y and f(H) is the

smallest normal subobject of Y such that f(H) ≤ f(H). By the Galois connection above,
f∗(H) ≤ f∗(H) implies H ≤ f ∗(f∗(H)). Hence, H ≤ f ∗(f∗(H)) since f ∗(f∗(H)) is normal
in X, and thus f∗(H) ≤ f∗(H) follows.

For a morphism f : X −→ Y and a pair of subobjects h : H � X and k : K � X
of X in a normal unital category C with finite colimits, since the Huq commutator is the
normal closure of the Higgins commutator, by the previous lemma it immediately follows
that f([H,K]H) = f([H,K]Q). We further observe that

[f(H), f(K)]H ≤ [f(H), f(K)]H
= [f(H), f(K)]Q

= f([H,K]Q)

= f([H,K]H)

= f([H,K]H).

(1)
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The following result seems to be known and can be deduced from [Mantovani, Metere,
2010, Lemma 5.11], however we insert a proof to make the paper more self-contained.

3.4. Lemma. For a pair of subobjects h : H � X and k : K � X of X and a morphism
f : X −→ Y in an ideal-determined unital category C, f([H,K]H) = [f(H), f(K)]H .

Proof. Let h′ ◦ u and k′ ◦ v be the regular epimorphism-monomorphism factorizations
of f ◦ h and f ◦ k respectively. Consider the diagram

f(H) � f(K) f(H) + f(K) f(H)× f(K)

H �K H +K H ×K

(i) (ii)e u+ v u× v

[
1 0
0 1

]

[
1 0
0 1

]

m

κH,K

where m ◦ e is the regular epimorphism-monomorphism factorization of (u + v) ◦
κH,K . Using Lemma 3.1 the square (ii) is a pushout. Therefore, since u + v is a regular
epimorphism and C is an ideal-determined unital category, it follows (see for instance
[Mantovani, Metere, 2010, Lemma 4.1]) that the regular image m of the kernel κH,K
under u+ v is the kernel of the canonical morphism from f(H) + f(K) to f(H)× f(K).
Hence f([H,K]H) = [f(H), f(K)]H follows by the uniqueness of regular images.

In the next remark we will see that Theorem 3.2 has a much simpler proof in an
ideal-determined unital category.

3.5. Remark. From the previous lemma, f([H,K]H) = [f(H), f(K)]H for a morphism
f : X −→ Y and a pair of subobjects h : H � X and k : K � X of X in an ideal-
determined unital category C. Now since the Huq commutator is the normal closure of

the Higgins commutator and f([H,K]H) = f([H,K]H), then

[f(H), f(K)]Q = [f(H), f(K)]H

= f([H,K]H)

= f([H,K]H)

= f([H,K]Q).

(2)
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4. A characterization of the Huq commutator.

Let C be a normal unital category with finite colimits. For a pair of subobjects h : H � X
and k : K � X of X in C, it is easy to check that [H,K]Q ≤ H ∧K. Furthermore, for

a morphism f : X −→ Y in C, f([H,K]Q) = [f(H), f(K)]Q (see Theorem 3.2); in

particular, [f(H), f(K)]Q ≤ f([H,K]Q). One can also check that the Huq commutator
satisfies the monotonicity condition i.e. if H ′ ≤ H and K ′ ≤ K for subobjects h′ : H ′�
X, h : H � X, k′ : K ′ � X and k : K � X of X, then [H ′, K ′]Q ≤ [H,K]Q. In this
section we will characterize the Huq commutator as the largest commutator defined for
subobjects in a normal unital category C with finite colimits, satisfying the monotonicity
condition as well as the following two conditions:

A1 [H,K] ≤ H ∧K;

A2 [f(H), f(K)] ≤ f([H,K]).

In contrast with the Huq commutator, we will provide an example of a commutator of
subobjects in a normal unital category C with finite colimits satisfying all the conditions
above, in which the condition A2 does not necessarily imply [f(H), f(K)] = f([H,K]).

4.1. Example. The Higgins commutator is monotone and satisfies A1. Moreover, as
explained in equation (1) above, the Higgins commutator satisfies A2 in a normal unital
category with finite colimits. Since in general the Higgins commutator is not always
normal (see e.g [Cigoli, 2009, Example 5.3.9]), then [f(H), f(K)]H ≤ f([H,K]H) does
not necessarily imply [f(H), f(K)]H = f([H,K]H). For example if f is the inclusion
of the alternating group A5 into S5 then for the two subgroups H = 〈(1 2)(3 4)〉 and
K = 〈(1 2)(4 5)〉 of A5, we have [f(H), f(K)]H = 〈(345)〉 and f([H,K]H) = A5.

For a pair of objects H and K in a normal unital category C with finite colimits,
we will denote the Huq commutator of the coproduct inclusions i1 : H −→ H + K and
i2 : K −→ H + K by [i1(H), i2(K)]Q. The morphisms ker[1, 0] : H[K � H + K and
ker[0, 1] : K[H � H+K will be the kernels of the induced morphisms [1, 0] : H+K −→ H
and [0, 1] : H+K −→ K respectively. It is easy to check that the co-smash product H �K
of H and K is the meet of K[H and H[K (see for instance [Mantovani, Metere, 2010]).
In the next lemma we will observe that the co-smash product of H and K coincides with
the Huq commutator of the coproduct inclusions i1 : H −→ H+K and i2 : K −→ H+K.

4.2. Lemma. Let H and K be objects in a normal unital category C with finite colimits.
Then H �K = [i1(H), i2(K)]Q.

Proof. Since the square
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H ×K H ×K

H +K H +K

[
1 0
0 1

][
1 0
0 1

]

is a pushout, it follows that the kernel κH,K : H �K � H+K of the canonical morphism
from H+K to H×K, is the Huq commutator of the coproduct inclusions i1 : H −→ H+K
and i2 : K −→ H +K.

4.3. Lemma. Let h : H � X and k : K � X be a pair of subobjects of X in a normal
unital category C with finite colimits. Then

[K[H,H[K]Q = [i1(H), i2(K)]Q.

Proof. We see that [K[H,H[K]Q ≤ (K[H) ∧ (H[K) = H � K = [i1(H), i2(K)]Q. On
the other hand, since H ≤ K[H, K ≤ H[K and the Huq commutator is monotone, it
follows that [i1(H), i2(K)]Q ≤ [K[H,H[K]Q. Hence, [K[H,H[K]Q = [i1(H), i2(K)]Q.

4.4. Proposition. For each pair of subobjects h : H � X and k : K � X of X in a
normal unital category C with finite colimits,

[[h, k](K[H), [h, k](H[K)]Q = [H,K]Q.

Proof. Applying Theorem 3.2 and then the previous lemma, we get

[[h, k](K[H), [h, k](H[K)]Q = [h, k]([K[H,H[K]Q)

= [h, k]([i1(H), i2(K)]Q)

= [H,K]Q.

(3)

Note that the last equality holds since [h, k]([i1(H), i2(K)]Q) is the Higgins commutator
[H,K]H , and in a normal unital category with finite colimits the Huq commutator is the
normal closure of the Higgins commutator (see Proposition 2.2).

For a pair of subobjects h : H � X and k : K � X of X in a normal category C
with finite coproducts, since in particular H ≤ K[H in H +K, we see that the diagram

K[H

H +K

[h, k](K[H)

H X
[h, k]i1

h

commutes and this implies that H ≤ [h, k](K[H) in X. Similarly, K ≤ [h, k](H[K) in
X.

Now we are ready to state our main result.
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4.5. Theorem. In a normal unital category C with finite colimits, the Huq commutator
is the largest monotone commutator defined for subobjects satisfying the conditions A1
and A2.

Proof. Suppose there is a monotone commutator [|−,−|] defined for subobjects, sat-
isfying the conditions A1 and A2. Let h : H � X and k : K � X be a pair of
subobjects of X. Since [|K[H,H[K|] ≤ K[H ∧ H[K and K[H ∧ H[K = H � K =
[K[H,H[K]Q, then [h, k]([|K[H,H[K|]) ≤ [h, k]([K[H,H[K]Q). Since H ≤ [h, k](K[H)
and K ≤ [h, k](H[K), applying the monotonicity condition, the condition A2, Theorem
3.2 and Proposition 4.4, we get

[|H,K|] ≤ [|[h, k](K[H), [h, k](H[K)|]
≤ [h, k]([|K[H,H[K|])
≤ [h, k]([K[H,H[K]Q)

= [[h, k](K[H), [h, k](H[K)]Q

= [H,K]Q.

(4)
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