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LAX PULLBACK COMPLEMENTS AND PULLBACKS OF SPANS

SEYED NASER HOSSEINI, WALTER THOLEN, AND LEILA YEGANEH

Abstract. The formation of the “strict” span category Span(C) of a category C with
pullbacks is a standard organizational tool of category theory. Unfortunately, limits or
colimits in Span(C) are not easily computed in terms of constructions in C. This paper
shows how to form the pullback in Span(C) for many, but not all, pairs of spans, given
the existence of some specific so-called lax pullback complements in C of the “left legs”
of at least one of the two given spans. For some types of spans we require the ambient
category to be adhesive to be able to form at least a weak pullback in Span(C). The
existence of all lax pullback complements in C along a given morphism is equivalent
to the exponentiability of that morphism. Since exponentiability is a rather restrictive
property of a morphism, the paper first develops a comprehensive framework of rules for
individual lax pullback complement diagrams, which resembles the set of pasting and
cancellation rules for pullback diagrams, including their behaviour under pullback. We
also present examples of lax pullback complements along non-exponentiable morphisms,
obtained via lifting along a fibration.

1. Introduction

Completing a given diagram U
u // S

s // A to a pullback square

U

s′

��

u // S

s
��

P p
// A

in a (co)universal manner was described in [Tholen, 1983] as finding a pullback complement
(pbc) of u along s. There has been interest in pbcs for almost four decades, especially
by theoretical computer scientists; see, for example, [Ehrig, Kreowski, 1979] for an early
contribution, and [Shir Ali Nasab, Hosseini, 2015] for a fairly recent account. Of particular
interest are pbcs when u is the projection

Y × S // S
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along some object Y , in which case (P, p) is called a partial product of Y over s. First
considered in [Pasynkov, 1965], the universal property of a partial product was indicated
in [Dyckhoff, 1984] in its original topological context, before being put into a categorical
setting in [Tholen, 1983]. A fundamental example of [Pasynkov, 1965] is the recursive
presentation of the n-sphere Sn as a partial product of the 2-point discrete space over the
embedding In \ Sn−1 ↪→ In, with In denoting the n-dimensional cube.

For the given morphism s, [Dyckhoff, Tholen, 1987] characterized the existence of
all partial products over s as the exponentiability of s in its ambient category. This
powerful categorical property had been systematically explored in [Niefield, 1982], where
the characterization of exponentiable topological spaces of [Day, Kelly, 1970] was extended
to a characterization of exponentiable continuous maps (see also [Niefield, 2002, Richter,
2002, Richter, Tholen, 2001]). The more restrictive condition whereby, given s, the pbc of
u along s exists for all morphisms u (not just for the product projections onto S) was also
characterized in [Dyckhoff, Tholen, 1987]: s must be an exponentiable monomorphism.

These characterizations, as well as the proofs of the stability properties of exponen-
tiable morphisms under composition and pullback as established in [Niefield, 1982], rely on
well-known composition and cancellation arguments for adjoint functors and thereby pre-
sume the existence of partial products of all objects Y over s, or of pbcs of all morphisms
u composable with s. This approach, however, leaves open the question whether, similarly
to the composition and cancellation rules for pullback diagrams, there is a “calculus” for
individually given partial products or pullback complements which, as a secondary conse-
quence, is sufficiently strong to yield the desired stability properties, after quantification
over all objects Y or morphisms u.

When s is monic, [Tholen, 1986] provided an account of such a calculus for pbcs. The
first goal of this paper is the provision of a more comprehensive calculus, under minimal
restrictions on s. To this end we extend the notion of pbc of u along s to that of a
lax pullback complement (lax pbc) of u along s. While this notion just “rephrases” the
(co)universal property of exponentiability in an easy diagrammatic way, it still provides
the opportunity to paste individual diagrams and explore to which extent a lax pbc is
being preserved under diagram pasting or cancellation, or under pullback. Having recalled
the standard functorial presentation of exponentiable morphisms in Section 2, we present
such an exploration in the first half of this paper (Sections 3-5). The most intricate
result in this context is given by Theorem 5.2; it explains how to form the lax pbc along
the pullback t of some morphism s, given the existence of a couple of partial products
over s. Through quantification the Theorem then gives the known pullback stability of
exponentiable morphisms in a finitely complete category.

The second part of the paper is devoted to the construction of pullbacks in the “strict”
span category Span(C) of spans (= pairs of morphisms with common domain) in C, and to
the discussion of some characteristic examples. Originally introduced in [Bénabou, 1967]
as an example of a bicategory and studied extensively ever since (see in particular [Dawson,
Paré, Pronk, 2004, Dawson, Paré, Pronk, 2010]), little seems to be known about the
existence of limits (or, by selfduality, of colimits) in the one-dimensional category Span(C),
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with the exception of the rather easily established fact that, when C is (finitely) lextensive
(see [Carboni, Lack, Walters, 1993]), Span(C) has (finite) products and coproducts. Our
principal result for spans (Theorem 6.1) guarantees the existence of pullbacks of total
spans (= spans whose left leg is iso) along spans whose left leg admits a certain lax
pullback complement in C and, hence, along spans with exponentiable left leg. When C is
adhesive (see [Lack, Sobociński, 2005, Garner, Lack, 2012]), using a pullback complement
we can also construct weak pullbacks of cototal spans (= spans whose right leg is iso):
see Theorem 7.3. In Section 8 we present some known and new examples of lax pullback
complements, taking advantage of a “lifting result” for lax pullback complements along
fibrations (Theorem 8.2), which allows us to construct lax pbcs in V-Cat (in the context
of [G.M. Kelly, 1982]) and (T,V)-Cat (in the context of [Hofmann, Seal, Tholen, 2014].
Section 9 gives an alternative categorical description of lax pullback complements as
coreflections.

2. Short review of exponentiable morphisms

Recall that an object A in a category C that has all products with A is exponentiable if the
endofunctor (−)× A of C has a right adjoint. A morphism s : S // A in C, such that
all pullbacks along s exist in C, is exponentiable if it is exponentiable when considered as
an object in the comma category C/A. There are various equivalent functorial ways of
expressing the exponentiability of s; for that, consider the following commutative diagram
of functors:

C/A
(−)×s

�� (−)×AS

**

s∗ // C/S

s!
tt

domS

��
C/A

domA

// C

Here, s∗ is pulling back along s; its (trivially existing) left adjoint s! is given by composition
with s, so that s!s

∗ = (−)× s becomes the product-with-s functor in the comma category
C/A; domS and domA denote the respective domain (or forgetful) functors to C.

For C finitely complete, exponentiability of s is known to be equivalently described
by the left adjointness of each of the three functors departing from the upper left-hand
corner of the above diagram (see [Niefield, 1982]). For the sake of completeness and ease
of subsequent reference, we sketch the main arguments of the proof.

2.1. Proposition. In a finitely complete category C, each of the following statements
characterizes the morphism s : S // A as exponentiable in C:

(i) s∗ : C/A // C/S has a right adjoint;

(ii) (−)× s : C/A // C/A has a right adjoint;

(iii) (−)×A S : C/A // C has a right adjoint.
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Proof. (i) ⇒ (ii): The composition of the adjunctions s! a s∗ and s∗ a s∗ gives the
adjunction (−) × s = s!s

∗ a s∗s∗. (ii) ⇒ (iii): The functor domA has a trivial right
adjoint which assigns to an object B the projection B × A // A ; its composition with
(−)×s gives the functor (−)×AS. (iii)⇒ (i): Since domS (like domA) has a trivial right
adjoint, and since domSs

∗ = (−) ×A S, the assertion of (i) follows from a Dubuc-style
adjoint-triangle argument, as laid out in [Niefield, 1982], which we recall next.

2.2. Lemma. For a category A with equalizers, a functor F : A // C/S has a right

adjoint if the composite functor domSF : A // C has a right adjoint.

Proof. The to-be-constructed right adjoint G : C/S // A of F assigns to every C-
morphism u : U // S , considered as an object of C/S, the domain of the equalizer

G(u) // JU
Ju //
σJU

// JS ;

here J is the given right adjoint of domSF , and σ : 1A //4JS is the natural transfor-

mation corresponding to κF : domSF //4S by adjunction, with κ : domS
//4S

the “structure transformation” given by κu = u.

2.3. Remark. As observed in [Dyckhoff, Tholen, 1987], for s exponentiable, the right
adjoint s∗ of s∗ is fully faithful if, and only if, s is a monomorphism. This is clear
because, by general adjunction rules, the right adjoint s∗ of s∗ is fully faithful precisely
when the (trivially existing) left adjoint s! of s∗ is fully faithful, and it is elementary to
show that that is the case precisely when s is monic.

The following consequence is again taken from [Niefield, 1982]:

2.4. Corollary. The class of exponentiable morphisms in a finitely complete category
contains all isomorphisms and is closed under composition and stable under pullback.

Proof. Exponentiability of isomorphisms holds trivially. Closure under composition
follows from pullback pasting: (r · s)∗ ' s∗r∗. Finally, for a pullback diagram

U

t
��

u // S

s
��

B
h
// A

pullback pasting also shows that, up to isomorphism, (−)×B U is the composite functor

C/B h! // C/A (−)×AS // C.

Hence, with Lemma 2.2, exponentiability of s implies exponentiability of t.
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3. Lax pullback complements and partial products

Given a morphism s : S // A in a category C, such that all pullbacks along s exist
in C, we now embark on a diagrammatic description of co-universal arrows with respect
to the functors s∗ and (−) ×A S, which leads us to generalizing the notion of pullback
complement and revisiting the categorical notion of partial product of [Tholen, 1983].

3.1. Definition.

1. For a morphism u : U // S in C, one calls a morphism p : P // A in C a
lax pullback complement (lax pbc) of u along s, writing p ∼= s∗(u), if there is a
morphism e with s∗(p) ∼= u · e, so that one has a pullback diagram

P ×A S
s′

��

e // U
u // S

s

��
P p

// A ,

(1)

satisfying the following universal property: for any morphisms q : Q // A and d
in C with s∗(q) ∼= u · d, so that one has a pullback diagram

Q×A S
s′′

��

d // U
u // S

s

��
Q q

// A ,

(2)

there is a unique morphism h : Q // P with p · h = q and e · (h × 1S) = d. We
also say that diagram (1) is a lax pbc diagram in this situation.

2. A lax pullback complement of u along s is a pullback complement (pbc) of u along
s, if the morphism e in diagram (1) may be chosen to be an isomorphism; that is:
p ∼= s∗(u) and s∗(p) ∼= u. We also say that diagram (1) is a pbc diagram in this
case.

3. For an object Y in C one calls (P, p : P // A ), or just p, a partial product of

Y over s, if there is a morphism e : P ×A S // Y such that, for any morphisms

q : Q // A and d : Q×A S // Y , there is a unique morphism h : Q // P
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rendering the diagram

P ×A S
e

{{
s′

��

ff
h×1S

// S;;

s

��

Y oo
d

Q×A S

��

P ff

h

p // A;;
q

Q

(3)

commutative.

3.2. Remark.

(1) The morphisms p and e of diagram (1) are (up to isomorphism) uniquely determined
by s and u. In fact, the properties stated say exactly that e is an s∗-couniversal
arrow for u ∈ ob(C/S):

pOO
h

q

s∗(p)
�

OO

s∗(h)

e // u

s∗(q)

d

88

We use the notation e ∼= εsu, thus emphasizing the role of e as a counit when s∗ has
a right adjoint.

(2) A lax pullback complement along a monomorphism s is, in fact, a pullback comple-
ment, as we show in Proposition 3.4 below. The condition that s be monic becomes
necessary for a lax pbc along s to be a pbc along s if sufficiently many lax pbcs
exist; see Remark 2.3.

(3) The morphism e : P ×A S // Y of diagram (3) giving a partial product of Y over
s is precisely a ((−)×A S)-couniversal arrow for Y :

POO

h

Q

P ×A S
�

OO

h×1S

e // Y

Q×A S
d

77

In conjunction with Proposition 2.1, Remark 3.2 extends the characterization of expo-
nentiability in terms (lax) pullback complements and partial products given in [Dyckhoff,
Tholen, 1987], as follows:
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3.3. Corollary. In a finitely complete category C, the following statements for a mor-
phism s : S // A are equivalent:

(i) s is exponentiable;

(ii) the lax pullback complement of u along s exists for every morphism u precomposable
with s;

(iii) the partial product of Y over s exists for every object Y .

Furthermore, lax pullback complements along the exponentiable morphism s are pullback
complements if, and only if, s is a monomorphism.

We now turn to the “pointwise” version of this Corollary, investigating the relation-
ship between individually given lax pbcs and partial products, as well as the question
of conditions that can produce pbcs from lax pbcs. With respect to the last question,
making good on Remark 3.2(2), we can state more comprehensively:

3.4. Proposition. In a category with pullbacks along s, if p is a lax pullback complement
of u along s, such that at least one of s, u or εsu is monic, then p is a pullback complement
of u · εsu along s; that is: if p ∼= s∗(u) with s, u or εsu monic, then p ∼= s∗(u · εsu). When s
is monic, εsu is actually an isomorphism, making the lax pbc diagram (1) a pbc diagram.

Proof. In order to check the required universal property for proving p ∼= s∗(u · e), given
that p ∼= s∗(u) and e ∼= εsu, we consider the diagram

Q×A S
s′′

��

g // P ×A S
s′

��

u·e // S

s

��
Q

q

77P p
// A

whose outer part is a pullback diagram, and obtain a unique morphism h : Q // P
with p · h = q and e · (h × 1S) = e · g. We must now show h × 1S = g or, equivalently,
h · s′′ = s′ · g. When e is monic, this is immediate. In the case that u is monic, we
first consider the following diagram on the left, with all new squares being pullbacks (of
pullbacks of s):

·
s̄
��

g′ // ·
r

��

t // P ×A S
s′

��

u·e // S

s

��
Q×A S

q·s′′

66g
// P ×A S

s′
// P p

// A

·
s̄
��

g′′ // ·
s′′

��

h×1S // P ×A S
s′

��

u·e // S

s

��
Q×A S

q·s′′

88
s′′
// Q

h
// P p

// A
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Since

s · u · e · t · g′ = p · s′ · g · s̄ = s · u · e · g · s̄ = s · u · e · (h× 1S) · s̄
= p · s′ · (h× 1S) · s̄ = p · h · s′′ · s̄ = q · s′′ · s̄,

there is a unique morphism g′′ making the diagram on the right commute and its upper
horizontal composite arrow coincide with the corresponding composite arrow of the left
diagram. Now this last property implies e · (h× 1S) · g′′ = e · t · g′ since u is monic, which
enables us to conclude the desired equality h · s′′ = s′ · g, thanks to the universal property
of diagram (1):

P ×A S

s′

��

e // U u // S

s

��
s̄

��

(h×1S)·g′′ ::

t·g′

::

e·(h×1S)·g′′

33

P
p // A

h·s′′
::

s′·g

::

q·s′′

22

Finally, in the case that s is a monomorphism, exploiting the universal property of diagram
(1) with the pullback diagram

U

1U
��

u // S

s
��

U s·u
// A

one routinely shows that e must be an isomorphism.

For a “pointwise” version of the equivalence (ii) ⇔ (iii) of Corollary 3.3, we now
clarify how individual lax pbcs are being constructed from specific partial products, and
conversely.

3.5. Proposition. Let s : S // A be a morphism in the category C that has all pull-
backs along s.

(1) For an object Y such that the product Y ×S exists, a partial product of Y over s exists
if, and only if, a lax pullback complement of p2 along s exists, with p2 : Y × S // S
the second product projection.

(2) For a morphism u : U // S , a lax pullback complement of u along s may be
constructed from partial products of U and of S over s, provided that C has equalizers.
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Proof. (1) is easy (and well known, [Tholen, 1983]): with the trivial observation that ar-
rows P ×A S // Y × S correspond to pairs of arrows P ×A S // Y , P ×A S // S ,
of which the latter factors as

P ×A S // Y × S p2 // S ,

one sees immediately that this composite serves as the upper arrow in diagram (1) if,
and only if, the pair of arrows belongs to diagram (3), with each satisfying the respective
universal properties.

The proof of (2) requires a “pointwise” version of Lemma 2.2, which we provide next;
in there, one simply considers A = C/A and F = s∗ to obtain the assertion of (2).

3.6. Lemma. Let A be a category with equalizers and F : A // C/S be a functor. For

the morphism u : U // S in C, with given domSF -couniversal arrows for U and S in
C, there exists an F -couniversal arrow for u when u is considered as an object in C/S.

Proof. In what follows, for a morphism g : u // v in C/S, we will denote its domS-

image again by g and write g : domSu // domSv in C. Now, let αU : domSFC // U

and αS : domSFD // S be the given domSF -couniversal arrows for U and S, respec-

tively, with objects C,D in A. Then there is a unique morphism f : C // D in A
such that αS · Ff = u · αU . There is also a unique morphism σC : C // D such that

αS ·FσC = κFC , with κ : domS
//4S denoting the “structure transformation” already

mentioned in the proof of Lemma 2.2. Now form the equalizer diagram

E
e // C

f //
σC

// D

in A and consider the composite morphism

domSFE
Fe // domSFC

αU // U

in C. By naturality of κ, one has

u · αU · Fe = αS · Ff · Fe = αS · FσC · Fe = κFC · Fe = κFE,

in C, so that the composite FE
αU ·Fe // u is actually a morphism in C/S; we show

that it serves as an F -couniversal arrow for u.
Indeed, for a morphism x : FA // u in C/S with A inA, one has a unique morphism

y : A // C in A making

domSFC
αU // U

domSFA

Fy

OO

x

66
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commute in C. The naturality of κ implies

αS · F (f · y) = αS · Ff · Fy = u · αU · Fy = u · x = κFA, and

αS · F (σC · y) = αS · FσC · Fy = κFC · Fy = κFA,

which, by couniversality of αS, implies f · y = σC · y. Now the equalizer gives us a unique
morphism z : A // E in A with e · z = y, and we obtain the desired commutative
diagram in C/S:

FE
αU ·Fe // u

FA

Fz

OO

x

77 (4)

Finally, if z′ : A // E is another morphism making diagram (4) commute, then
αU · F (e · z′) = x = αU · Fy, and so e · z′ = y. Therefore, z′ = z.

4. A first calculus of lax pullback complements

In this section we prove some stability and cancellation properties for lax pullback com-
plement diagrams under vertical and horizontal pasting, and under pullback; these gen-
eralize known properties for pullback complement diagrams, as established in [Tholen,
1986]. Since adjoints compose, so that the class of exponentiable morphisms in a cate-
gory C with sufficiently many pullbacks is closed under composition (Corollary 2.4), it is
not surprising that any existing vertically pasted lax pbc diagrams give again a lax pbc
diagram. But one also has a cancellation property; more precisely:

4.1. Proposition. (Vertical Pasting) Consider the commutative diagram

P ×A T
(c)1P×t

��

e′ // U ×S T
t′

��
(b)

d // V v // T

t
��

P ×A S
s′

��
(a)

e // U
u // S

s
��

P p
// A

(5)

in which (a), (b), (c) are all pullback diagrams. Let (d) denote the horizontal pasting of
(b) with (c), and (e) its vertical pasting with (a), i.e., (e) denotes the outer rectangle of
diagram (5). Then:

(1) If (a) and (b) are lax pbc diagrams, then (e) is also a lax pbc diagram; that is: if
p ∼= s∗(u) and u ∼= t∗(v), then p ∼= (s · t)∗(v).

(2) If (a) and (e) are lax pbc diagrams, and if s monic, then (b) is also a lax pbc diagram;
that is: s∗(u) ∼= (s · t)∗(v) with u monic implies u ∼= t∗(v).
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Proof. (1) As indicated above, this statement follows from the two-step procedure to
finding a co-universal arrow with respect to the composite of two functors, namely s∗ and
t∗.

(2) Since s is monic, the morphism e of the lax pbc diagram (a) must be an iso-
morphism and therefore make the pullback (c) collapse. Consequently, (a) is actually a
pbc diagram, and the statement to be proved represents only a slight generalization of
the corresponding statement of [Tholen, 1986] where also (e) was assumed to be a pbc
diagram. We can therefore leave the routine proof of the generalized statement to the
reader.

We now turn to the horizontal pasting of lax pbc diagrams and their cancellation
properties.

4.2. Proposition. (Horizontal Pasting) Consider the diagram

Q×P (P ×A S)

s′′

��

(b)

d // (P ×A S)×U V
(c)

e′ //

j′ **

V
j

))P ×A S
s′

��
(a)

e // U
u // S

s

��
Q q

// P p
// A

(6)

formed by the pullback diagrams (a), (b), (c), and let (d) be their pasting, i.e., the pullback
diagram formed by the peripheral arrows of diagram (6).

(1) If (a) and (b) are lax pbc diagrams, then (d) is also a lax pbc diagram; that is:
p ∼= s∗(u) and q ∼= s′∗(j

′) implies p · q ∼= s∗(u · j).

(2) Conversely, if (d) is a lax pbc diagram, either with p monic, or with e′ monic and
(a) a lax pbc diagram, then (b) is also a lax pbc diagram.

Proof. We just prove (1); for (2) one proceeds similarly. Let

P̃ ×A S

s̃
��

g // V
u·j // S

s

��
P̃

p̃
// A

be a pullback diagram. The lax pbc diagram (a) gives a unique morphism h such that
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P ×A S

s′

��

e // U
u // S

s

��

P̃ ×A S

s̃

��

h×1S
99

j·g

33

P
p // A

P̃

h

88

p̃

22

commutes. With i the morphism rendering

P̃ ×A S g

&&

h×A1S

))

i
''

(P ×A S)×U V
j′

��

e′ // V

j

��
P ×A S e

// U

commutative, the lax pbc diagram (b) gives a unique morphism h̄ making

Q×P (P ×A S)

s′′

��

d // (P ×A S)×U V
j′ // P ×A S

s′

��

P̃ ×A S

s̃

��

h̄×1S
77

i

22

Q
q // P

P̃

h̄

66

h

11

(7)

commute. So, we have p · q · h̄ = p · h = p̃ and e′ · d · (h̄× 1S) = e′ · i = g, and it is now a
routine exercise to check that h̄ is uniquely determined by these two equations.

Finally, let us show that pullbacks of lax pbc diagrams are lax pbc diagrams, a prop-
erty that must not be confused with the pullback stability of the class of exponentiable
morphisms, which we consider in generalized form in Section 5 below.

4.3. Proposition. (Pulling Back) Every pullback of a lax pullback complement diagram
is a lax pullback complement diagram; that is: if the back face of the commutative diagram
(8) is a lax pbc diagram, with the right, bottom and both top faces being pullbacks, then
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its front face is also a lax pbc diagram.

E

s′

��

>>
l′′

e // U>>
l′

u // S

s

��

??
l

E ′

t′

��

e′ // U ′
u′ // T

t

��

P>>
h′

p // A??

h

P ′
p′

// B

(8)

Proof. By hypothesis, one has E ∼= P ×A S, and the standard pasting and cancellation
properties of pullback diagrams make also the front face a pullback diagram, so that
E ′ ∼= P ′ ×B T ∼= P ′ ×A S. Now let

Q′

t̄
��

g // U ′
u′ // T

t
��

Q q
// B

be a pullback diagram. Then Q′ ∼= Q ×A S, and the back face of (8) being a lax pbc
diagram gives a unique morphism r making the following diagram commute:

P ×A S

s′

��

e // U
u // S

s

��

Q×A S

t̄

��

r̄=r×1S
88

l′·g

33

P
p // A

Q

r

88

hq

22

(9)

We then have the unique morphisms j and j̄ rendering commutative the diagrams

Q′ r̄

��

g

""

j̄
  
E ′

e′

��

l′′ // E

e
��

U ′
l′
// U

Q r

��

q

""

j
��
P ′

p′

��

h′ // P

p

��
B

h
// A

Q′ rt̄

��

qt̄

""

jt̄

  t′j̄   
P ′

p′

��

h′ // P

p

��
B

h
// A

(10)
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Consequently, also the diagram

P ′ ×B T

t′

��

e′ // U ′
u′ // T

t

��

Q×B T

t̄

��

j̄=j×1T
88

g

33

P ′
p′ // B

Q

j

88

q

22

(11)

commutes, and it is easy to verify that j is the only morphism rendering it commutative.

4.4. Corollary. (Pulling Back Partial Products) Let the category C have pullbacks along
h : B // A , as well as the product Y ×S. Then, if (P, p) is a partial product of Y over

s : S // A , then (P×AB, h∗(p)) is a partial product of Y over h∗(s) : B ×A S // B .

Proof. According to Proposition 3.5(1), in diagram (8) we consider for u the projection
Y × S // S . Then u′ is the projection Y × T // T , with the existence of the prod-
uct guaranteed as a pullback of Y × S along h, and Proposition 4.3 applies.

4.5. Corollary. Consider the commutative diagram

P ×A S
(c)t′

��

e // V
j // U

(a)t
��

u // S

s

��

Q

(b)h′

��

q // B
h

��
P p

// A

(12)

in which (a) and (b) are pullback diagrams, and let (d) denote the outer pullback diagram
of (12). Then, if (d) is a lax pbc diagram and u is monic, then (c) is also a lax pbc
diagram, that is: if p ∼= s∗(u · j) with u monic, then q ∼= t∗(j).

Proof. One can re-draw Diagram (12) as
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P ×A S

h′·t′

��

88
1P×AS

e // V??
1V

u·j // S

s

��

??

u

P ×A S

t′

��

e // V
j // U

t

��

P88
h′

p // A??

h

Q q
// B

Now Proposition 4.3 implies that, under the given hypotheses, (c) is a lax pbc diagram.

5. Pullback stability

Throughout this section, let

U

t
��

u // S

s
��

B
h
// A

(13)

be a pullback diagram in C. For any morphism j : V // U , we would like to construct
a lax pbc of j along t, given the existence of certain lax pbcs along s. In Proposition 4.3
we did so in the particular case that j is obtained as a pullback of a morphism whose lax
pbc along s exists. Before addressing this question in full generality, we first note that,
when u is monic, Proposition 4.3 actually covers the general case, as follows.

5.1. Proposition. If, in the pullback diagram (13), u is monic, then a lax pbc of j
along t is obtained by pulling back along h the given lax pbc of u · j along s; that is:
t∗(j) ∼= h∗(s∗(u · j)).

Proof. Since u is monic, any morphism j is a pullback of u · j along u. Proposition 4.3
may therefore be applied to the diagram

P ×A S

s′

��

88
1P×AS

e // V??
1V

u·j // S

s

��

??
u

P ×A S

t′

��

e // V
j // U

t

��

P88
h′

p // A??

h

P ×A B
p′

// B
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We now turn to the question which lax pbcs along s are needed for us to be able to
construct a lax pbc of a morphism j : V // U along t, without assuming u to be monic?
Analyzing the arguments proving Corollary 2.4, we can prove the following “pointwise”
version of the pullback stability of exponentiable morphisms, keeping in mind the diagram

C/B
∼=t∗

��

h! // C/A

s∗

��
C/U

domU !!

u!
// C/S

domS~~
C

5.2. Theorem. For the pullback diagram (13) in the finitely complete category C, the lax
pullback complement of a morphism j : V // U along t exists if the partial products
p and q of, respectively, U and V over s exist in C, and it may then be presented as
t∗(j) ∼= h∗(q) · e, for some regular monomorphism e.

Proof. According to Proposition 3.5(2), one starts by constructing the partial products
of U and V over t which, by Corollary 4.4, may be obtained by pulling back along h the
given partial products (P, p = s∗(p2)) and (Q, q = s∗(q2)) of, respectively, U and V over
s. In the largely self-explanatory diagram

V × S22
εsq2

q1

��

j×1S %%

q2

))Q×A S

s′′

��

AA

u′′

j̄×1S

// P ×A S

s′

��

εsp2 // U × S

p1

��

p2
// SEE

u

s

��

V
j

%%
E ×A U

t′′′

��

e×1U // Q×A U

t′′

��

q1·εsq2 ·u
′′

11

j̄×1U //
σ×1U

// P ×A U

t′

��

u′

AA

t∗(h∗(p)) // U

t

��

Q??

h′′

j̄ // P??

h′

p // ADD

h

E
e // Q×A B

j̄×1B //
σ

// P ×A B
h∗(p) // B

with product projections p1, p2, q1, q2, the morphisms s′, s′′, t′, t′′, t′′′ and h′, h′′ are all itera-
tively obtained as pullbacks of s, t and h, respectively, and with the morphisms u′, u′′ then
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induced by the pullback property. Note that, while generally u · p1 6= p2, all other parts
of the diagram commute to the extent one expects them to do when forming equalizers,
with the morphisms j̄, σ and e defined as prescribed by the proof of Lemma 3.6. Specifi-

cally, the morphism j̄ : Q // P is induced by the C/S-morphism j × 1S : q2
// p2 ,

satisfying
p · j̄ = q, εsp2 · (j̄ × 1S) = (j × 1S) · εsq2 .

The morphism σ : Q×A B // P ×A B satisfies

h∗(p) · σ = h∗(q), t∗(h∗(p)) · (σ × 1U) = t∗(h∗(q)),

and e is the equalizer of j̄ × 1B and σ. Now Lemma 3.6 confirms that the morphism

h∗(q) · e = h∗(p) · σ · e : E // B

serves as a lax pbc of j along t, showing t∗(j) ∼= h∗(q) · e, as in the lax pbc diagram

E ×B U
t′′′

��

q1·εsq2 ·u
′′·(e×1U )

// V
j // U

t
��

E
h∗(q)·e

// B .

6. Pullbacks of total morphisms in the “strict” span category

For a category C with pullbacks, we consider the (ordinary) “strict” span category Span(C),
having the same objects as C; morphisms [g, f ] : A // B are isomorphism classes of

pairs of C-morphisms with common domain, with (g, f) ∼= (g′, f ′) referring to the exis-
tence of an isomorphism i with g = g′ · i and f = f ′ · i. The composite of the morphisms

A
[g,f ] // B

[k,h] // C in Span(C) is, of course, given by pullback:

[k, h] · [g, f ] = [g · f ∗(k), h · k∗(f)].

We say that the morphism [g, f ] is total if g is an isomorphism in C; without loss of
generality, one may then assume g = 1. We show that the existence of their pullbacks in
Span(C) depends on the existence of certain lax pullback complements in C, as follows.

6.1. Theorem. The pullback of a total morphism [1C , t] : C // B along a morphism

[g, f ] : A // B exists in Span(C) if, and only if, the lax pullback complement

p ∼= g∗(f
∗(t)) : P // A of f ∗(t) along g exists in C, and in that case the Span(C)-

pullback is described by

[g, f ]∗([1C , t]) ∼= [1P , p] and [1C , t]
∗([g, f ]) ∼= [p∗(g), t∗(f) · εt∗(f)

g ].
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Proof. For the “if”-part, we can assume p ∼= g∗(t
′), with t′ ∼= f ∗(t), as in the diagram

P

p lax pbc

��

oo g′

P ×A D
e=εt

′
g

��
D ×B C

pbt′

��

f ′ // C

t
��

A oo g D
f

// B

We will show that this diagram actually represents a pullback diagram in Span(C); that
is: [g, f ]∗([1C , t]) ∼= [1P , p]. First, with the pullback diagrams

P ×A D
pbg′

��

t′·e // D

g

��

f // B

P

1P
��

p
// A

P

P ×A D
pb1P×AD

��

f ′·e // C

1C
��

t // B

P ×A D
g′

��

f ′·e
// C

P

and t · f ′ · e = f · t′ · e, we obtain [g, f ] · [1P , p] = [1C , t] · [g′, f ′ · e]. Next, let [r, s] and
[u, v] be any morphisms in Span(C) with [1C , t] · [u, v] = [g, f ] · [r, s], so that we have the
pullback diagrams

X ×A D
pbs∗(g)

��

g∗(s) // D

g

��

f // B

X

r
��

s
// A

Z

Y

1Y
��

pb

v // C

1C
��

t // B

Y

u
��

v
// C

Z

where, without loss of generality, we may assume Y = X ×A D, t · v = f · g∗(s) and
r · s∗(g) = u. Let i be the unique morphism making

Y v

""

g∗(s)

%%

i
$$

D ×B C
t′

��

f ′ // C

t
��

D
f

// B

commutative. The lax pbc now produces a unique morphism h rendering the diagram
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P ×A D

g′

��

e // D ×B C t′ // D

g

��

X ×A D

s∗(g)

��

h×1D
88

i

33

P p
// A

X

h

88

s

22

commutative. We have therefore established the commutative Span(C)-diagram

Z [u,v]

""

[r,s]

""

[r,h]
��
P

[1P ,p]
��

[g′,f ′·e] // C

[1C ,t]
��

A
[g,f ]

// B

(14)

Finally, suppose that [l, k] : Z // P is another Span(C)-morphism rendering diagram

(14) commutative in lieu of [r, h]. We may then assume p · k = s and l = r, so that only
k = h remains to be shown, and for that it suffices to confirm the equality e · (k×1D) = i.
But considering the diagram

X ×A D
s∗(g)

��

g∗(s)

%%k×1D // P ×A D
g′

��

t′·e // D

g

��
X

s

::k
// P p

// A

we first derive t′ · e · (k × 1D) = g∗(s), and from [g′, f ′ · e] · [r, k] = [u, v] we obtain
f ′ · e · (k × 1D) = v. Hence, e · (k × 1D) satisfies the defining equalities of i, so that these
morphisms must indeed coincide.
For the “only if” part of the assertion of the Theorem, we suppose to be given the pullback
diagram

P

[1P ,p]
��

[g′,f ′′] // C

[1C ,t]
��

A
[g,f ]

// B
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in Span(C) where, by Remark 6.4(1) below, we may indeed assume that the pullback of
[1, t] along [g, f ] is total. The commutativity of the diagram implies f · g∗(p) = t · f ′′.
Hence, the pullback diagram

D ×B C
t′

��

f ′ // C

t
��

D
f

// B

in C gives us a unique morphism e : P ×A D // D ×B C such that f ′ · e = f ′′ and
t′ · e = g∗(p). Now, the confirmation that

P ×A D
g′

��

e // D ×B C t′ // D

g

��
P p

// A

is a lax pbc diagram in C can be safely left to the reader.

We formulate some immediate consequences of Theorem 6.1.

6.2. Corollary. In the diagram

E

pbct̄
��

oo t̄∗(g)
D×BC

pbf∗(t)
��

t∗(f) // C

t
��

A oo g D
f

// B

let t̄ be a pullback complement of f ∗(t) along g in C. Then

[1C , t]
∗([g, f ]) ∼= [t̄∗(g), t∗(f)]

in Span(C).

Should [g, f ] be cototal, so that f is an isomorphism and, therefore, [g, f ] ∼= [g, 1B],
the above formula shows that also [1C , t]

∗([g, 1B]) must be cototal.

6.3. Corollary. For every morphism [g, f ] in Span(C) with g exponentiable in C, the
pullback of any total morphism [1C , t] along [g, f ] exists in Span(C) and is total again.
Should [g, f ] be cototal with g an exponentiable monomorphism, its pullback along [1C , t]
exists and is cototal again.
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6.4. Remark.

(1) Unlike the stability statement for cototal morphisms, the assertion of the Corollary
that the pullback of a total morphism in Span(C) (once its existence has been

secured) is total again cannot surprise. In fact, since any morphism [s, t] : E // B

in Span(C) factors trivially as [s, t] = [1C , t] · [s, 1C ], that is, as a cototal morphism
followed by a total morphism, and since the orthogonality condition holds quite
trivially as well, (cotal, total) is an orthogonal factorization system in Span(C).
Therefore, the class of total morphisms must be stable under pullback (and, in fact,
under all existing limits) in Span(C).

(2) With the (cototal, total)-factorization, in order to construct a pullback of a partial
morphism [s, t] (that is, of a span [s, t] with s monic in C) along [g, h], after the
construction of a pullback of [1C , t] along [g, h] as in Theorem 6.1 it suffices to
construct a pullback of [s, 1C ] along

[1C , t]
∗([g, f ]) ∼= [p∗(g), t∗(f) · εt∗(f)

g ] =: [ǧ, f̌ ] = [1Ď, f̌ ] · [ǧ, 1Ď],

where (in the notation of Theorem 6.1) Ď = P ×A D. For that one may first apply
Theorem 6.1 again and construct the pullback of the cototal morphism [s, 1C ] along
the total morphism [1Ď, f̌ ] and obtain the cototal morphism [š, 1Ď] := [1Ď, f̌ ]∗([s, 1C ]),
and it is then clear by pullback composition and cancellation laws that the pullback
[g, f ]∗([s, t]) exists if, and only if, the pullback [ǧ, 1Ď]∗([š, 1Ď]) exists in Span(C).

With Remark 6.4(2) we obtain:

6.5. Corollary. For C finitely complete, the following are equivalent:

(i) for every morphism [g, f ] in Span(C) with g exponentiable in C, the pullback of every
partial morphism [s, t] along [g, f ] with s exponentiable exists in Span(C);

(ii) for every cototal morphism [g, 1B] in Span(C) with g exponentiable in C, the pullback
of every cototal partial morphism [s, 1B] along [g, 1B] exists in Span(C).

7. Weak pullbacks of cototal morphisms in the span category

Unfortunately, condition (ii) of Corollary 6.5 turns out to be non-trivial. In what fol-
lows, we succeed in constructing only weak pullbacks of cototal morphisms, and even for
that we need additional provisions on the category, which we provide first. (As usual, a
weak pullback satisfies the universal property of a pullback diagram only weakly, so that
factoring arrows will always exist but may not be uniquely determined.)

Recall that a category C with pullbacks is adhesive (see [Lack, Sobociński, 2005]) if it
has pushouts of monomorphisms and if such pushout diagrams are van Kampen squares;
this means in particular that the pushout of a monomorphism is monic again, and that
any pullback of such a pushout square is again a pushout square. Moreover, when forming
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the pushout of a monomorphism, the resulting square is both a pushout and a pullback
diagram. In fact, a stronger result holds, as stated in [Shir Ali Nasab, Hosseini, 2015]
with reference to [Shir Ali Nasab, 2009]; we supply a proof here:

7.1. Proposition. For a pushout square

·
f

��

m // ·
g

��
· n

// ·

(15)

in an adhesive category C with m monic, n is a pullback complement of m along g.

Proof. Since C is adhesive, the pushout square is a pullback. Given any pullback square

·
l
��

k // ·
g

��
·

h
// ·

with the same right arrow g, such that k factors as k = m · e, one trivially has m∗(k) ∼= e
and k∗(m) ∼= 1, since m is monic. Furthermore, pulling back n along h gives a unique
morphism l′ with h∗(n) · l′ = l and n∗(h) · l′ = f · e. In this way we present the square

·
l′

��

1 // ·
l
��

·
h∗(n)

// ·

(16)

as a pullback of (15) along h, and adhesiveness makes it a pushout square. Consequently,
h∗(n) is an isomorphism, and x := n∗(h) · (h∗(n))−1 provides the desired factorization
n · x = h, x · l = f · e.

7.2. Corollary. For a span [g′, f ′], assume that f ′ is the pullback of some morphism f
along the monomorphism m in the adhesive category C. Then there is a morphism g in C
such that [g′, f ′] is the pullback of [g, f ] along the monomorphism [1,m] in Span(C).

Proof. With g the pushout of g′ along m′ ∼= f ∗(m) in C, we obtain the diagram

C

pon
��

oo g
′

F

pbm′

��

f ′ // D

m
��

A oo g E
f
// B,

in which n is a pullback complement of m′ along g, by Proposition 7.1. Now Corollary
6.2 implies that [g′, f ′] ∼= [1C ,m]∗([g, f ]).
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7.3. Theorem. In an adhesive category C, let the pullback complement of f along the
monomorphism s exist. Then, for any morphism g with the same domain as f , a weak
pullback of [g, f ] along [s, 1] exists in Span(C).

Proof. By hypothesis, we can form the pullback complement f̄ of f along s and then
the pushout s̃ of the monomorphism s̄ := f ∗(s) along g. Denoting by g̃ the pushout of g
along s̄, we obtain the front-face squares of the diagram

· ^^
t

TT

u

kk
w

·OO

ŝ

v̂ ��

oo
ĝ

·OO

s′

v̄

��

z

++·OO

s̃

oo g̃ ·OO

s̄

f̄
// ·OO

s·

v

��

v

��

oo g′ ·
z′

++

v′

��
v′

��

·
1
��

oo g ·
1
��

f
// ·

1
��

· oo g ·
f

// ·

both of which are pullback diagrams, by adhesiveness of C. Trivially then,

[g, f ] · [s̃, 1] = [s, 1] · [g̃, f̄ ],

and we claim that the corresponding square in Span(C) is a weak pullback diagram.
Indeed, given [u, v], [w, z] with [g, f ] · [u, v] = [s, 1] · [w, z], we obtain pullbacks v′ :=
g∗(v), g′ := v∗(g) and z′ := s∗(z), s′ := z∗(s) with the same domain, satisfying u ·g′ = w ·s′
and f · v′ = z′. Therefore, the pbc f̄ of f and the pullback diagram

·
s′

��

z′ // ·
s

��
· z

// ·

give the arrow v̄ with f̄ · v̄ = z and v̄ ·s′ = s̄ ·v′, where s′ ∼= v̄∗(s̄), by pullback cancellation.
We can now form the pushout ŝ of s′ along g′. The ensuing pushout diagram

·
s′

��

g′ // ·
ŝ
��

·
ĝ
// ·

gives us morphisms t and v̂ determined by

t · ŝ = u, t · ĝ = w and v̂ · ŝ = s̃ · v, v̂ · ĝ = g̃ · v̄,
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respectively. By adhesiveness of C, the last two equalities frame two pullback diagrams,
showing that [u, v] and [w, z] factor as

[s̃, 1] · [t, v̂] = [u, v] and [g̃, f̄ ] · [t, v̂] = [w, z],

as desired.

With Remark 6.4(2) we conclude:

7.4. Corollary. In a finitely complete and adhesive category C, any two Span(C)-
morphisms [g, h], [s, t] with common codomain, s monic and both, g and s, exponentiable
in C, allow for the formation of a weak pullback diagram

·
[š,ť]

��

[ǧ,f̌ ] // ·
[s,t]

��
·

[g,f ]
// ·

in Span(C), with š monic in C.

7.5. Remark. For existence criteria for pullbacks in the (non-full) subcategory Par(C)
of Span(C) given by the partial morphisms in C we refer the reader to [Shir Ali Nasab,
Hosseini, 2017]. In a forthcoming paper, we plan to extend the methods used there and
by [Cockett, Lack, 2002] from partial morphisms to spans.

8. Examples, lifting lax pullback complements along fibrations

By definition, in a locally cartesian closed category C, every morphism s is exponentiable
and therefore guarantees the existence of a lax pullback complement along s of any mor-
phism u precomposable with s. This applies in particular to every (quasi)topos and,
therefore, to every presheaf category C = SetD

op

, for any small category D, including the
category Set itself. If C fails to be locally Cartesian closed, the task of characterizing
the exponentiable morphisms usually becomes challenging. But even when character-
izations are known (for which we refer to the extensive literature, including [Niefield,
1982, Johnstone, 1993, Mantovani, 1988, Tholen, 2000, Niefield, 2001, Richter, Tholen,
2001, Niefield, 2002, Richter, 2002]), the effective construction of lax pbcs may remain
cumbersome. Hence, our list of examples concentrates on this aspect, rather than on mere
existence statements.

Let us also point out that, although referred to here only in the ordinary sense, the
constructions given are known to carry over to the 2-categorical context when the ambient
category is considered as a 2-category in a natural fashion.
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8.1. Example.

(1) The lax pbc diagram (1) of u : U // S along s : S // A in Set may be described
as

P = {(x, k) |x ∈ A, k : s−1x // U , u · k = ( s−1x �
� // S )}, p(x, k) = x,

P×AS ∼= {(y, k) | y ∈ S, (s(y), k) ∈ P}, e(y, k) = k(y), s′(y, k) = (s(y), k).

(2) When extending the presentation of lax pbcs from Set to SetD
op

, it is convenient to
use the fact that the slices of presheaf categories are presheaf categories themselves.
Thus, for A : Dop // Set we use the category equivalence

SetD
op

/A // Set(
∫
D A)op , ( s : S // A ) 7−→ (s∗ : (i, x) 7→ s−1

i x ),

where
∫
D A is the element category of A; it has objects (i, x) with i ∈ obD and

x ∈ Ai, and a morphism δ : (j, z) // (i, x) is a D-morphism δ : j // i with

(Aδ)(x) = z. The category equivalence assigns to a morphism u : t // s in

SetD
op

/A the natural transformation ũ : t∗ // s∗ , with ũ(i,x) : t−1
i x // s−1

i x de-

noting the restriction of the map ui. For u : U // S and s : S // A in SetD
op

,

considering u as a morphism s · u // s in SetD
op

/A, so that ũ : (s · u)∗ // s∗ ,

we may now describe the lax pbc diagram (1), as follows:

Pi ={(x, κ) |x ∈ Ai, κ : (
∫
D A)(-, (i, x))×s∗ // (s · u)∗ , ũ· κ = pr2}, pi(x, κ) = x,

(P ×AS)i ∼= {(y, κ) | y ∈ Si, (si(y), κ) ∈ Pi}, ei(y, κ)=κ(i,x)(x, 1(i,x)), s
′
i(y, κ)=(x, κ),

where x = si(y).

(3) As a special case of (2) we consider the category Gph of directed graphs, that is: the

category SetD
op

, where D is the category { 0
d //
c
// 1 }. Presenting its objects in the

form A = ( A1

dA //
cA
// A0 ), we describe the set of vertices of the domain P of the lax

pbc p : P // A of u : U // S along s : S // A as in Set by

P0 = {(x, k0) |x ∈ A0, k0 : s−1
0 x // U0 , u0 · k0 = ( s−1

0 x �
� // S0 )};

the edges of P are quadruples (a, k1, kd, kc) with a ∈ A1 and maps

k1 : s−1
1 a // U1 , kd : s−1

0 (dAa) // U0 , kc : s−1
0 (cAa) // U0 ,

satisfying dU · k1 = kd · d̃S, cU · k1 = kc · c̃S (with d̃S, c̃S restrictions of dS, cS), and

u1 ·k1 =(s−1
1 a �

� // S1 ), u0 ·kd= (s−1
0 (dAa) �

� // S0 ), u0 ·kc= (s−1
0 (cAa) �

� // S0 ).

The domain and codomain maps dP , cP : P1
// P0 assign to the edge (a, k1, kd, kc)

the vertices (dAa, kd), (cAa, kc), respectively.
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(4) In the category Ord of (pre)ordered sets, a monotone map s : S // A is exponen-
tiable if it has the interpolation lifting property (also known as being convex), that
is: whenever y ≤ z in S and s(y) ≤ b ≤ s(z) in A, there must exist a ∈ S with
y ≤ a ≤ z and s(a) = b. The lax pbc p : P // A of u : S // A along s may
be constructed as in Set, except that for P one considers only those pairs (x, k) for
which the map k is monotone; they are ordered componentwise by

(x, k) ≤ (x′, k′)⇐⇒ x ≤ x′ and ∀y ∈ s−1x, y′ ∈ s′−1
x′ (y ≤ y′ ⇒ ky ≤ k′y′).

The construction may be restricted to the category Pos of separated objects in Ord
(known as partially ordered sets), and it may be extended to the category Cat of small
categories and their functors. The characterization of exponentiable morphisms in
Cat goes back to [Giraud, 1964]; being rediscovered in [Conduché, 1972], they are
commonly known as Conduché fibrations.

(5) For the characterization of exponentiable morphisms s : S // A in the category
Top of topological spaces we refer to [Niefield, 2002]. These maps include all perfect
(= proper and separated) maps, all local homeomorphisms, all continuous maps
with locally compact domain S and Hausdorff codomain A, and all locally closed
embeddings (= inclusion maps for which S is the intersection of an open set and a
closed set of A). For such maps, we may again construct a lax pbc p : P // A of

u : U // S along s as in Set, except that we must consider for P only the pairs
(x, k) for which k is continuous. The topology of P is generated by the sets

〈W,H〉 = {(x, k) ∈ P | k−1(Wx) ∈ Hx},

where W is an open subset of U , Wx = W ∩ (s · u)−1(x), H ⊂
⋃
x∈AO(s−1(x)) and

Hx = H ∩O(s−1(x)), subject to the conditions that Hx be Scott open for all x ∈ A,
and that for all V ∈ O(S) the set {x ∈ A |Vx ∈ Hx} be open in A.

Rather than restricting the choice of morphisms s, next we give a construction of
lax pullback complements which, while restricting the choice of morphisms u, puts no
restriction on s. Specifically, we show that a fibred category C over B with well-behaved
pullbacks, although usually quite far from being locally Cartesian closed even for a “good”
base category B, still allows for the formation of lax pbcs of all Cartesian morphisms u
along any morphism s. In fact, without any hypotheses on the category B one can prove:

8.2. Theorem. Let F : C // B be a fibration and s : S // A be a morphism in C,
such that C has all pullbacks of s which are being preserved by F . Then, for every F -
Cartesian morphism u : U // S in C, if a lax pullback complement of Fu along Fs
exists in B, also a lax pullback complement of u along s exists in C and is preserved by F .
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Proof. By hypothesis, we have the lax pbc diagram

R×FA FS
b
��

a // FU
Fu // FS

Fs
��

R r
// FA

(17)

in B. With p : P // A an F -Cartesian lifting of r we can form the pullback diagram

P ×A S
s′

��

p′ // S

s
��

P p
// A

(18)

in C and assume, without loss of generality, that F maps it to (17), so that Fs′ = b, Fp′ =
Fu · a. The F -Cartesian morphism u then determines a morphism e : P ×S A // U
with Fe = a, u · e = p′. We claim that, with this factorization of p′, (18) becomes a lax
pbc diagram in C.

Indeed, given any pullback diagram (2), the lax pbc diagram (17) determines a mor-
phism k : FQ // FP with Fp · k = Fq, k · Fs′′ = Fs′ · (k ×FA 1FS) which, by F -

Cartesianness of p, lifts to a morphism h : Q // P with Fh = k, p · h = q, and then
h · s′′ = s′ · (h × 1S), e · (h × 1S) = d follows. A routine check shows that h is uniquely
determined by the last three equations.

For the principal application of the Theorem we consider a monoidal category V with
pullbacks and let C = V-Cat be the (ordinary) category of small V-categories and their
V-functors. Then V-Cat has pullbacks whose object sets are formed by pullback in Set
and whose hom-objects are formed by pullback in V . Consequently, the functor

ob : V-Cat // Set

preserves pullbacks, and quite trivially, ob is a fibration, with the ob-Cartesian morphisms
characterized as the fully faithful V-functors. Hence, we obtain:

8.3. Corollary. For a monoidal category V with pullbacks and composable V-functors
u and s, where u is fully faithful, a lax pullback complement of u along s exists in V-Cat,
and the functor ob preserves it.

8.4. Example.

(1) Choosing V to be Set with its Cartesian product, or AbGrp with its tensor product
over Z, one obtains lax pbcs in the categories Cat and AddCat of small (additive)
categories for all fully faithful (additive) functors along any other (additive) functor.
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(2) Choosing for V a quantale, such as the two-element chain 2 or the Lawvere interval
[0,∞], the Corollary gives lax pbcs in the categories Ord and Met of pre-ordered sets
and generalized metric spaces for all morphisms u leaving the respective structure
invariant (“order isomorphisms” and “isometries”, respectively).

(3) If, in addition to a quantale V, we are given a monad T on Set that comes with
a lax extension to the category V-Rel of sets and their V-valued relations, then, as
in [Hofmann, Seal, Tholen, 2014], one can form the category (T,V)-Cat of small
(T,V)-categories and their (T,V)-functors. Being topological, the forgetful functor

ob : (T,V)-Cat // Set certainly satisfies the conditions of Theorem 8.2, which

guarantees the existence of lax pbcs for all ob-Cartesian (T,V)-functors. In partic-
ular, for V = 2 or [0,∞] and T the ultrafilter monad of Set with its appropriate
lax extension to Rel, thus producing the categories Top and App of topological and
approach spaces, respectively, we obtain lax pbcs for all morphisms u : U // S
for which U carries the initial (=“weak”) structure induced by S.

9. Lax pullback complements as coreflections

We finally note that there is an alternative universal characterization of lax pullback
complements, as follows. Let S be a class of morphisms in a category C containing all
isomorphisms. We consider S as a full subcategory of the category C2 of morphisms of
C and assume that all pullbacks of morphisms in S exist in C and belong to S again.
Consequently, the codomain functor

cod : S // C

is a fibration whose right adjoint embeds C fully into the category S. The cod-Cartesian
morphisms (p, q) : t // s in S are given by pullback diagrams

T

t
��

q // S

s
��

B p
// A

in C, with vertical arrows in the class S. We denote by Cart(S) the (non-full) subcategory
of S formed by all such pullback diagrams; it contains C as a full reflective subcategory.

In turn, the category Cart(S) gets fully and reflectively embedded into the category
Fact(S) whose objects are composable pairs (s, u) in C with s in the class S, and whose

morphisms (p, q, r) : (t, v) // (s, u) are commutative diagrams
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V

v
��

r // U

u
��

T

t
��

q // S

s
��

B p
// A

such that the lower part is a pullback diagram in C. The full embedding

E : Cart(S) // Fact(S), s � // (s, 1),

is right adjoint to the obvious forgetful functor (which, like cod, is a fibration, provided
that C has all pullbacks). One can now prove (see also [Tholen, 1983]):

9.1. Proposition. A lax pullback complement of u along s ∈ S exists in C if, and only
if, the Fact(S)-object (s, u), has a coreflection into Cart(S). Consequently, all morphisms
in the class S are exponentiable in C if, and only if, Cart(S) lies (not only reflectively but
also) coreflectively in Fact(S).

Proof. Let diagram (1) describe a lax pullback complement, so that we have the com-
mutative diagram

P ×A S
1P×AS

��

e // U

u

��
P ×A S
s′

��

u·e // S

s
��

P p
// A

(19)

We show that (p, u · e, e) : E(s′) // (s, u) is a coreflection. Indeed, given any morphism

(q, q′, d) : E(s′′) // (s, u) , there is a unique morphism h such that

P ×A S

s′

��

e // U
u // S

s

��

Q×A S

h×1S
88

s′′

��

d

33

P
p // A

Q

h

88

q

22

(20)

is commutative. Thus, (p, u·e, e)·E(h) = (q, q′, d) with E(h) = (h, h×1S, h×1S). Clearly,
h is uniquely determined.

Conversely, for a coreflection (p, p′, e) : E(s′) // (s, u) of (s, u) into Cart(S), one

necessarily has p′ = u · e and confirms that p is a lax pbc of u along s, as above.
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