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REGULARITY VS. CONSTRUCTIVE COMPLETE
(CO)DISTRIBUTIVITY

HONGLIANG LAI AND LILI SHEN

Abstract. It is well known that a relation ϕ between sets is regular if, and only if,
Kϕ is completely distributive (cd), where Kϕ is the complete lattice consisting of fixed
points of the Kan adjunction induced by ϕ. For a small quantaloid Q, we investigate
the Q-enriched version of this classical result, i.e., the regularity of Q-distributors versus
the constructive complete distributivity (ccd) of Q-categories, and prove that “the dual
of Kϕ is (ccd) =⇒ ϕ is regular =⇒ Kϕ is (ccd)” for any Q-distributor ϕ. Although
the converse implications do not hold in general, in the case that Q is a commutative
integral quantale, we show that these three statements are equivalent for any ϕ if, and
only if, Q is a Girard quantale.

1. Introduction

The notion of regularity was first introduced by von Neumann [41] for rings. It was
later adapted to the context of semigroups by Green in his influential paper [13], which
initiated the study of regular semigroups for decades [8, 19]. More generally, one may
consider regular arrows in an arbitrary category C; that is, an arrow f : X −→ Y in C
such that there exists an arrow g : Y −→ X with f ◦ g ◦ f = f (see [23, Exercise I.5.7]).

Constructive complete distributivity (or (ccd) for short) was introduced by Fawcett and
Wood in [10]. Explicitly, a complete lattice A is (ccd) if sup : PA −→ A, the monotone
map sending each down set of A (here PA denotes the set of down sets of A, ordered
by inclusion) to its supremum, admits a left adjoint in Ord. It is well known that (ccd)
and (cd), i.e., complete distributivity, are equivalent notions if one assumes the axiom of
choice [10, 43]. Moreover, as one may describe a (ccd) lattice precisely by the existence
of a string of adjunctions

T a sup a Y : A −→ PA
in Ord, where Y is the (2-enriched) Yoneda embedding that sends each x ∈ A to the
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principal down set ↓ x, the notion of (ccd) can be extended to any (locally small) category;
see [22, 24, 28] for discussions of such categories (called totally distributive categories
there).

The motivation of this paper originates from a famous theorem in the theory of semi-
groups that reveals the closed relationship between regular relations (i.e., regular arrows
in the category Rel of sets and relations) and (cd) lattices. Explicitly, each relation
ϕ : A //◦ B between sets induces a Kan adjunction [35]

ϕ∗ a ϕ∗ : 2A −→ 2B

between the powersets of A and B, with

ϕ∗V = {x ∈ A | ∃y ∈ V : xϕy} and ϕ∗U = {y ∈ B | ∀x ∈ A : xϕy =⇒ x ∈ U}

for V ⊆ B, U ⊆ A, whose fixed points constitute a complete lattice

Kϕ := Fix(ϕ∗ϕ
∗) = {V ⊆ B | ϕ∗ϕ∗V = V }.

The following theorem was first discovered by Zareckĭı in the case B = A [48] (see also
[1, 32, 46] for related discussions), and was extended to arbitrary relations by Xu and Liu
[44, 45]:

1.1. Theorem. A relation ϕ : A //◦ B between sets is regular if, and only if, Kϕ is (cd).

Since distributors [2, 3, 5, 6] (also known as profunctors or bimodules) generalize
relations as functors generalize maps, it is natural to consider the possibility of establishing
Theorem 1.1 in the framework of category theory, with distributors and (ccd) in lieu of
relations and (cd), respectively. The aim of this paper is to investigate this problem
in a special case, i.e., for distributors between categories enriched in a small quantaloid
Q [15, 31, 33, 36, 38], which is interesting enough to reveal that it is a coincidence for
Theorem 1.1 to have such an elegant form — its validity relies on the fact that (ccd) and
op(ccd), i.e., constructive complete codistributivity, are equivalent notions when Q = 2!

For a small quantaloid Q, a Q-distributor ϕ : A //◦ B between Q-categories may
be thought of as a multi-typed and multi-valued relation that respects Q-categorical
structures in its domain and codomain, and regular Q-distributors are precisely regular
arrows in the category Q-Dist of Q-categories and Q-distributors. Each ϕ : A //◦ B
induces a Kan adjunction [35]

ϕ∗ a ϕ∗ : PA −→ PB

between the presheaf Q-categories of A and B, whose fixed points constitute a complete
Q-category Kϕ. Moreover, A Q-category A is (ccd) if one has a string of adjoint Q-
functors

T a sup a Y : A −→ PA,
where Y is the (Q-enriched) Yoneda embedding. Dually, A is op(ccd) if Aop is a (ccd)
Qop-category.
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With necessary preparations in Sections 2 and 3, we prove in Section 4 that Kϕ is
(ccd) whenever ϕ is a regular Q-distributor (see Theorem 4.5). Furthermore, in Section
5 we show that Theorem 4.5 gives rise to a (dual) equivalence of categories (see Theorem
5.5)

D(Q-Dist)opreg ' (Q-Sup)ccd. (1.i)

Here D(Q-Dist)reg is the full subcategory of D(Q-Dist), the category of diagonals in
Q-Dist (also known as the Freyd completion of Q-Dist, see Grandis [11, 12]), with
objects restricting to regular Q-distributors; while (Q-Sup)ccd is the category of (ccd) Q-
categories and sup-preserving Q-functors. The equivalence (1.i) extends Stubbe’s result
that the split-idempotent completion of Q-Dist is dually equivalent to (Q-Sup)ccd [39],
whose prototype comes from the work of Rosebrugh and Wood [27] when Q = 2.

Unfortunately, the converse statement of Theorem 4.5 is not true as the counterex-
ample given in 6.1 shows. In fact, the regularity of ϕ necessarily follows if one assumes
Kϕ to be op(ccd)! This observation is stated in Theorem 6.3, whose proof is the most
challenging one in this paper. Hence, the chain of logic is essentially as follows:

Kϕ is op(ccd) =⇒ ϕ is regular =⇒ Kϕ is (ccd). (1.ii)

Although both the implications in (1.ii) are proper when quantified over ϕ and Q as
one could easily see from Examples 6.1 and 6.9, in Section 7 it is shown that (ccd) and
op(ccd) are equivalent notions when Q is a Girard quantaloid [30], which leads to

Kϕ is op(ccd) ⇐⇒ ϕ is regular ⇐⇒ Kϕ is (ccd) (1.iii)

in this case (see Theorem 7.5). In particular, since 2 is a Girard quantale (i.e., a one-
object Girard quantaloid), Theorem 1.1 becomes a special case of Theorem 7.5; in this
sense we indeed give a new proof for the following version of Theorem 1.1 which does not
require the axiom of choice:

1.2. Theorem. A relation ϕ : A //◦ B between sets is regular if, and only if, Kϕ is
(ccd).

Finally, we wish to find the minimal requirement for Q to establish the equivalences
(1.iii). Some partial results are obtained in Section 8, where Q is assumed to be a
commutative integral quantale, and we show that the equivalences (1.iii) hold for any ϕ
enriched in such Q if, and only if, Q is a Girard quantale (see Theorem 8.2).

2. Regular arrows in a quantaloid

A quantaloid [31] Q is a category enriched in the symmetric monoidal closed category
Sup of complete lattices and join-preserving maps. Explicitly, Q is a locally ordered
2-category whose hom-sets are complete lattices such that the composition ◦ of Q-arrows
preserves joins on both sides, with the induced adjoints

− ◦ f a − ↙ f : Q(X,Z) −→ Q(Y, Z) and g ◦ − a g ↘ − : Q(X,Z) −→ Q(X, Y )
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satisfying
g ◦ f ≤ h ⇐⇒ g ≤ h↙ f ⇐⇒ f ≤ g ↘ h

for all Q-arrows f : X −→ Y , g : Y −→ Z, h : X −→ Z.
A Q-arrow f : X −→ Y is regular [23] if there exists a Q-arrow g : Y −→ X such

that f ◦ g ◦ f = f . Note that for any Q-arrow f : X −→ Y ,

←−
f := (f ↘ f)↙ f : Y −→ X

is the greatest Q-arrow g : Y −→ X with f ◦ g ◦ f ≤ f . This observation makes it easy
to verify the following characterization of regular Q-arrows:

2.1. Proposition. For any Q-arrow f , the following statements are equivalent:

(i) f is regular.

(ii) f = f ◦
←−
f ◦ f .

(iii) f ≤ f ◦
←−
f ◦ f .

2.2. Example.

(1) Any Q-arrow f : X −→ Y that admits a left or right adjoint in the 2-category Q is
regular.

(2) The category Rel is in fact a quantaloid under the inclusion order of relations.
For any relation ϕ : X //◦ Y , it is straightforward to check that ←−ϕ : Y //◦ X is
precisely the relation ϕ≤ defined by Erné in [9, Section 4]; that is, the greatest
relation ψ : Y //◦ X with ϕ ◦ ψ ◦ ϕ ⊆ ϕ.

(3) Sup is itself a quantaloid, in which a join-preserving map f : X −→ Y between
(ccd) lattices is regular if, and only if, the image of f , Imf = {f(x) | x ∈ X}, is a
(ccd) lattice (see [18, Theorem 3.1]).

Each quantaloid Q induces an arrow category Arr(Q) of Q with Q-arrows as objects
and pairs of Q-arrows (u : X1 −→ X2, v : Y1 −→ Y2) satisfying

g ◦ u = v ◦ f

Y1 Y2v
//

X1

Y1

f

��

X1 X2
u // X2

Y2

g

��

as arrows from f : X1 −→ Y1 to g : X2 −→ Y2. Arr(Q) is again a quantaloid with the
componentwise local order inherited from Q.
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For arrows (u, v), (u′, v′) : f −→ g in Arr(Q), denote by (u, v) ∼ (u′, v′) if the com-
mutative squares

Y1 Y2v
//

X1

Y1

f

��

X1 X2
u // X2

Y2

g

��

Y1 Y2
v′

//

X1

Y1

f

��

X1 X2
u′ // X2

Y2

g

��

X1

Y2
��

X1

Y2
��

have the same diagonal ; that is, if

g ◦ u = v ◦ f = g ◦ u′ = v′ ◦ f.

“∼” gives rise to a congruence on Arr(Q), and the induced quotient quantaloid, denoted
by D(Q), is called the quantaloid of diagonals in Q (see [40, Example 2.14]). The under-
lying category of D(Q) is also known as the Freyd completion of Q, which makes sense
for an arbitrary category instead of a quantaloid (see [11, 12]).

By restricting the objects of D(Q) on regular Q-arrows one has a full subquantaloid
D(Q)reg of D(Q). Again, D(Q)reg has a full subquantaloid D(Q)idm [37] whose objects
are idempotent Q-arrows, which is known as the split-idempotent completion of Q.1

2.3. Proposition. D(Q)reg is equivalent to its full subquantaloid D(Q)idm.

Proof. For any regular Q-arrow f : X −→ Y , it is clear that
←−
f ◦ f : X −→ X is an

idempotent Q-arrow. It suffices to verify that f and
←−
f ◦ f are isomorphic objects in

D(Q)reg, which is easy since

(
←−
f ◦ f,

←−
f ) : f −→

←−
f ◦ f and (1X , f) :

←−
f ◦ f −→ f

satisfy

(
←−
f ◦ f,

←−
f ) ◦ (1X , f) ∼ (1X , 1Y ) : f −→ f

and
(1X , f) ◦ (

←−
f ◦ f,

←−
f ) ∼ (1X , 1X) :

←−
f ◦ f −→

←−
f ◦ f,

establishing an isomorphism in D(Q)reg.

3. Q-categories and Kan adjunctions

From now on, let Q be a small quantaloid. We shall use the same notations of Q-
categories, Q-distributors and Q-functors as fixed in [34, Subsection 3.1], and here is a
brief summary of the basic notions.

1Arrows from an idempotent e : X −→ X to an idempotent f : Y −→ Y in D(Q)idm can be
equivalently described as Q-arrows u : X −→ Y with u ◦ e = u = f ◦ u.
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A (small) Q-category A is determined by a set A0 of objects, a type map t : A0 −→
obQ, and hom-arrows A(x, y) ∈ Q(tx, ty) with 1tx ≤ A(x, x) and A(y, z) ◦ A(x, y) ≤
A(x, z) for all x, y, z ∈ A0.

A Q-distributor ϕ : A //◦ B between Q-categories is a map that assigns to each pair
(x, y) ∈ A0 × B0 a Q-arrow ϕ(x, y) ∈ Q(tx, ty), such that B(y, y′) ◦ ϕ(x, y) ◦ A(x′, x) ≤
ϕ(x′, y′) for all x, x′ ∈ A0, y, y

′ ∈ B0. Q-categories and Q-distributors constitute a
quantaloid Q-Dist with the pointwise local order inherited from Q.

A Q-functor (resp. fully faithful Q-functor) F : A −→ B between Q-categories is
a map F : A0 −→ B0 with tx = t(Fx) and A(x, y) ≤ B(Fx, Fy) (resp. A(x, y) =
B(Fx, Fy)) for all x, y ∈ A0. Q-categories and Q-functors are organized into a 2-category
Q-Cat with 2-cells given by the pointwise underlying order

F ≤ G : A −→ B ⇐⇒ ∀x ∈ A0 : Fx ≤ Gx in B0

⇐⇒ ∀x ∈ A0 : 1tx ≤ B(Fx,Gx).

Each Q-functor F : A −→ B induces an adjunction F\ a F \ in Q-Dist with

F\ = B(F−,−) : A //◦ B, and F \ = B(−, F−) : B //◦ A,

called respectively the graph and cograph of F , which are both 2-functorial as

(−)\ : Q-Cat −→ (Q-Dist)co, (−)\ : Q-Cat −→ (Q-Dist)op,

where “co” refers to the dualization of 2-cells.
A presheaf with type X on a Q-category A is a Q-distributor µ : A //◦ ?X , where

?X is the Q-category with only one object of type X. Presheaves on A constitute a Q-
category PA with PA(µ, µ′) = µ′ ↙ µ for all µ, µ′ ∈ PA. Dually, the Q-category P†A
of copresheaves on A consists of Q-distributors λ : ?X //◦ A as objects with type X and
P†A(λ, λ′) = λ′ ↘ λ for all λ, λ′ ∈ P†A.

3.1. Remark. For any Q-category A, it follows from the definition that the underlying
order on PA coincides with the local order in Q-Dist, while the underlying order on P†A
is the reverse local order in Q-Dist, i.e.,

λ ≤ λ′ in P†A ⇐⇒ λ′ ≤ λ in Q-Dist.

In order to get rid of the confusion about the symbol ≤, we make the convention that
the symbol ≤ between Q-distributors always refers to the local order in Q-Dist unless
otherwise specified.

A Q-category A is complete if each µ ∈ PA has a supremum supµ ∈ A0 of type tµ
such that

A(supµ,−) = A↙ µ; (3.i)

or equivalently, if the Yoneda embedding Y : A −→ PA has a left adjoint sup : PA −→ A
in Q-Cat. It is well known that A is a complete Q-category if, and only if, Aop is a
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complete Qop-category2 [36], where the completeness of Aop may be translated as each
λ ∈ P†A admitting an infimum inf λ ∈ A0 of type tλ such that

A(−, inf λ) = λ↘ A; (3.ii)

or equivalently, the co-Yoneda embedding Y† : A //◦ P†A, x 7→ A(x,−) admitting a right
adjoint inf : P†A −→ A in Q-Cat.

3.2. Lemma. [Yoneda] (See [36].) For any Q-category A and µ ∈ PA, λ ∈ P†A,

µ = PA(YA−, µ) = (YA)\(−, µ), λ = P†A(λ,Y†A−) = (Y†A)\(λ,−).

3.3. Theorem. (See [38].) A Q-category A is complete if, and only if,

(1) A is tensored in the sense that for any x ∈ A0 and f ∈ P(tx)3, there exists f⊗x ∈ A0

of type cod f with A(f ⊗ x,−) = A(x,−)↙ f ;

(2) A is cotensored in the sense that the for any x ∈ A0 and g ∈ P†(tx), there exists
g � x ∈ A0 of type dom g with A(−, g � x) = g ↘ A(−, x);

(3) A is order-complete in the sense that each AX , the Q-subcategory of A consisting
of all objects of type X ∈ obQ, admits all joins in the underlying order.

3.4. Proposition. (See [35, 36].) For any Q-category A, PA and P†A are both complete
Q-categories in which

(1) f ⊗PA µ = f ◦ µ, g �PA µ = g ↘ µ for all µ ∈ PA, f ∈ P(tµ), g ∈ P†(tµ),

(2) f ⊗P†A λ = λ↙ f , g �P†A λ = λ ◦ g for all λ ∈ P†A, f ∈ P(tλ), g ∈ P†(tλ),

(3) supPAΘ = Θ ◦ (YA)\ =
∨
µ∈PA

Θ(µ) ◦ µ for all Θ ∈ PPA,

(4) infPAΛ = Λ↘ (YA)\ =
∧
µ∈PA

Λ(µ)↘ µ for all Λ ∈ P†PA,

(5) supP†AΘ = (Y†A)\ ↙ Θ =
∧

λ∈P†A

λ↙ Θ(λ) for all Θ ∈ PP†A, and

(6) infP†AΛ = (Y†A)\ ◦ Λ =
∨

λ∈P†A

λ ◦ Λ(λ) for all Λ ∈ P†P†A.

2The dual of aQ-category A, denoted by Aop, is aQop-category with Aop
0 = A0 and Aop(x, y) = A(y, x)

for all x, y ∈ A0.
3f ∈ P(tx) := P?tx is essentially a Q-arrow with domain tx. Similarly, g ∈ P†(tx) := P†?tx is

precisely a Q-arrow with codomain tx.
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3.5. Proposition. (See [35].) Suppose F : A −→ A is a Q-monad (resp. Q-comonad)
on a skeletal4 Q-category A; that is, 1A ≤ F (resp. F ≤ 1A) and FF = F . Let

Fix(F ) := {x ∈ A0 | Fx = x} = {Fx | x ∈ A0}

be the Q-subcategory of A consisting of the fixed points of F . Then

(1) the inclusion Q-functor Fix(F ) �
�
// A is right (resp. left) adjoint to the codomain

restriction F : A −→ Fix(F );

(2) Fix(F ) is a complete Q-category provided so is A.

If B = Fix(F ) for a Q-monad F : A −→ A, suprema in B are given by supBµ =
F supA(µ ◦ I\) for all µ ∈ PB. In particular, for all x, xi ∈ B0 (i ∈ I), f ∈ P(tx),

f ⊗B x = F (f ⊗A x),
⊔
i∈I

xi = F
(∨
i∈I

xi

)
, (3.iii)

where
⊔

and
∨

respectively denote the underlying joins in B and A.
Each Q-distributor ϕ : A //◦ B induces a Kan adjunction [35] ϕ∗ a ϕ∗ in Q-Cat given

by

ϕ∗ : PB −→ PA, λ 7→ λ ◦ ϕ,
ϕ∗ : PA −→ PB, µ 7→ µ↙ ϕ

and a dual Kan adjunction [33] ϕ† a ϕ† given by

ϕ† : P†B −→ P†A, λ 7→ ϕ↘ λ,

ϕ† : P†A −→ P†B, µ 7→ ϕ ◦ µ.

The fixed points of the Q-monad ϕ∗ϕ
∗ : PB −→ PB and the Q-comonad ϕ∗ϕ∗ :

PA −→ PA induced by the Kan adjunction ϕ∗ a ϕ∗ : PA −→ PB,

Kϕ := Fix(ϕ∗ϕ
∗) = {λ ∈ PB | ϕ∗ϕ∗λ = λ} and

Kϕ := Fix(ϕ∗ϕ∗) = {µ ∈ PA | ϕ∗ϕ∗µ = µ},

are both complete Q-categories by Proposition 3.5(2) since so are PB and PA. It is
obvious that Kϕ and Kϕ are isomorphic Q-categories with the isomorphisms given by

ϕ∗ : Kϕ −→ Kϕ and ϕ∗ : Kϕ −→ Kϕ.

3.6. Example. For the identity Q-distributor A : A //◦ A on a Q-category A, KA =
KA = PA is precisely the presheaf Q-category of A.

4A Q-category A is skeletal if x ∼= y (i.e., x ≤ y and y ≤ x) in the underlying order of A necessarily
forces x = y.
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3.7. Proposition. (See [15].) (−)∗ : (Q-Dist)op −→ Q-Cat and (−)† : (Q-Dist)co −→
Q-Cat are both 2-functorial, and one has two pairs of adjoint 2-functors

(−)\ a (−)∗ : (Q-Dist)op −→ Q-Cat and (−)\ a (−)† : (Q-Dist)co −→ Q-Cat.

The adjunctions (−)\ a (−)∗ and (−)\ a (−)† : (Q-Dist)co −→ Q-Cat give rise to
isomorphisms

(Q-Cat)co(A,P†B) ∼= Q-Dist(A,B) ∼= Q-Cat(B,PA)

for all Q-categories A, B. We denote by

ϕ̃ : B −→ PA, ϕ̃y = ϕ(−, y) = ϕ∗YBy, (3.iv)

ϕ̂ : A −→ P†B, ϕ̂x = ϕ(x,−) = ϕ†Y†Ax (3.v)

for the transposes of each Q-distributor ϕ : A //◦ B, which are determined by

ϕ = (Y†B)\ ◦ ϕ̂\ = ϕ̃\ ◦ (YA)\. (3.vi)

Each Q-functor F : A −→ B gives rise to four Q-functors between the Q-categories of
presheaves and copresheaves on A, B:

F→ := (F \)∗ : PA −→ PB, F← := (F\)
∗ = (F \)∗ : PB −→ PA,

F−7→ := (F\)
† : P†A −→ P†B, F←7− := (F \)† = (F\)† : P†B −→ P†A. (3.vii)

As special cases of (dual) Kan adjunctions one immediately has F→ a F← and F←7− a F−7→
in Q-Cat.

3.8. Proposition. (See [36].) Let F : A −→ B be a Q-functor, with A complete. Then
the following statements are equivalent:

(i) F is a left (resp. right) adjoint in Q-Cat.

(ii) F is sup-preserving (resp. inf-preserving) in the sense that F supA = supB F
→

(resp. F infA = infB F
−7→).

(iii) F is a left (resp. right) adjoint between the underlying ordered sets of A, B, and
preserves tensors (resp. cotensors) in the sense that F (f ⊗A x) = f ⊗B Fx (resp.
F (f �A x) = f �B Fx) for all choices of f and x.

Therefore, left adjoint Q-functors between complete Q-categories are precisely sup-
preserving Q-functors, and we denote by Q-Sup the category of skeletal complete Q-
categories and sup-preserving Q-functors5, which is in fact a quantaloid with pointwise
local order inherited from Q-Cat. Dually, complete Q-categories and inf-preserving Q-
functors (or equivalently, right adjoint Q-functors) constitute a 2-subcategory Q-Inf of
Q-Cat; however, it should be careful that (Q-Inf)co (rather than Q-Inf itself) is a quan-
taloid. It is not difficult to verify the following isomorphisms of quantaloids:

5Q-Sup is written as Q-CCat in [33, 34, 35].
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3.9. Proposition. Q-Sup ∼= (Q-Inf)coop ∼= (Qop-Sup)op ∼= (Qop-Inf)co.

4. Regularity implies (ccd)

Q-distributor ϕ : A //◦ B is regular if ϕ is a regular arrow in the quantaloid Q-Dist; that
is, if the Q-distributor

←−ϕ = (ϕ↘ ϕ)↙ ϕ : B //◦ A

satisfies ϕ = ϕ ◦←−ϕ ◦ ϕ (see Proposition 2.1).

4.1. Example. The graph F\ : A //◦ B and the cograph F \ : B //◦ A of any Q-functor
F : A −→ B are regular Q-distributors since F\ a F \ in Q-Dist.

A Q-category A is constructively completely distributive, or (ccd) for short, if it is
complete and supA : PA −→ A admits a left adjoint TA : A −→ PA in Q-Cat; that is, if
there exists a string of adjoint Q-functors

TA a supA a YA : A −→ PA.

4.2. Example. For any Q-category A, PA is a (ccd) Q-category. Indeed, from (3.vii)
and Proposition 3.4(3) one sees that supPA = Y←A : PPA −→ PA has a left adjoint
Y→A : PA −→ PPA in Q-Cat.

4.3. Proposition. (See [26].) A retract6 of a (ccd) Q-category in Q-Sup is (ccd).

Proof. Let A be a (ccd) Q-category with TA a supA : PA −→ A. If a pair of left adjoint

Q-functors B
F //
oo
G

A satisfies GF = 1B, in order to prove that B is (ccd), it suffices to verify

G→TAF a supB : PB −→ B. This is easy since from Proposition 3.8(ii) one immediately
has

supBG
→TAF = GsupATAF ≥ GF = 1B,

G→TAF supB = G→TAsupAF
→ ≤ G→F→ = (GF )→ = 1PB,

and the conclusion thus follows.

4.4. Proposition. If θ : A //◦ A is an idempotent Q-distributor, then Kθ is a (ccd)
Q-category.

Proof. Since Kθ ∼= Kθ, we show that Kθ is (ccd). Indeed, the inclusion Q-functor
J : Kθ −→ PA is a left adjoint in Q-Cat by Proposition 3.5(1), and so is the codomain
restriction θ∗ : PA −→ Kθ, whose composition θ∗J = 1Kθ since θ is idempotent. Thus the
conclusion follows from Proposition 4.3.

6In any category C, an object X is a retract of an object Y if there are C-arrows f : X −→ Y and
g : Y −→ X such that g ◦ f = 1X (see [5, Definition 1.7.3]).
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4.5. Theorem. If ϕ is a regular Q-distributor, then Kϕ is a (ccd) Q-category. Con-
versely, every skeletal (ccd) Q-category is isomorphic to Kϕ for some regular Q-distributor
ϕ.

Proof. Each regular Q-distributor ϕ : A //◦ B induces an idempotent Q-distributor
ϕ ◦ ←−ϕ : B //◦ B. To show that Kϕ is (ccd), by Proposition 4.4 it suffices to prove
Kϕ = K(ϕ ◦←−ϕ ). On one hand, λ ∈ Kϕ implies

λ = ϕ∗ϕ
∗λ = (ϕ ◦←−ϕ ◦ ϕ)∗ϕ

∗λ = (ϕ ◦←−ϕ )∗ϕ∗ϕ
∗λ = (ϕ ◦←−ϕ )∗λ ∈ K(ϕ ◦←−ϕ ).

On the other hand, λ ∈ K(ϕ ◦ ←−ϕ ) implies λ = (ϕ ◦ ←−ϕ )∗λ
′ for some λ′ ∈ PB, and

consequently
λ = (ϕ ◦←−ϕ )∗λ

′ = ϕ∗(
←−ϕ ∗λ′) ∈ Kϕ.

Conversely, each skeletal (ccd) Q-category A induces a Q-distributor θA : A //◦ A
whose transpose (see (3.iv))

θ̃A = TA : A −→ PA

is the left adjoint of supA : PA −→ A. We show that θA is a regular Q-distributor and
A ∼= KθA.

First, θA is idempotent, thus regular. Indeed,

θA(−, x) = TAx (Equation (3.iv))

= TAsupATAx (TA a supA)

= supPAT
→
A TAx (Proposition 3.8(ii))

= (TAx) ◦ T \A ◦ (YA)\ ((3.vii) and Proposition 3.4(3))

= θA(−, x) ◦ θA (Equation (3.vi))

for all x ∈ A0, showing that θA ◦ θA = θA.
Second, A ∼= KθA. Since it is easy to see A ∼= ImYA, where ImYA = {YAx | x ∈ A0} is

a Q-subcategory of PA, it remains to prove KθA = ImYA. On one hand, µ ∈ KθA implies
µ = µ′ ↙ θA for some µ′ ∈ PA, and consequently

µ = µ′ ↙ θA = PA(TA−, µ′) = A(−, supAµ
′) = YAsupAµ

′ ∈ ImYA.

On the other hand, YAx ∈ KθA for any x ∈ A0 since TA a supA a YA implies

1A ≤ supATA = supATAsupAYA ≤ supAYA = 1A;

that is, 1A = supATA. It follows that

(θA)∗(θA)∗YAx = θA(−, x)↙ θA = PA(TA−, TAx) = A(−, supATAx) = A(−, x) = YAx,

which completes the proof.
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5. D(Q-Dist)reg is dually equivalent to (Q-Sup)ccd

In this section we show that Theorem 4.5 can be enhanced to a (dual) equivalence of
categories, with regular Q-distributors and (ccd) Q-categories as objects, respectively. To
this end, first we establish the (contravariant) functoriality of the assignment ϕ 7→ Kϕ by
sending each commutative square

B B′η
//

A

B

ϕ

��

A A′ζ
// A′

B′

ψ

��

◦

◦

◦ ◦

in Q-Dist to the left adjoint Q-functor

K(ζ, η) := (Kψ � � // PB′ η∗
// PB ϕ∗ϕ∗

//Kϕ).

5.1. Proposition. K : Arr(Q-Dist)op −→ Q-Sup is a quantaloid homomorphism.

Proof. Step 1. η∗ψ∗ψ
∗ ≤ ϕ∗ϕ

∗η∗. Consider the following diagram:

PB PA
ϕ∗

//

PB′

PB

η∗

��

PB′ PA′ψ∗
// PA′

PA

ζ∗

��

PA PBϕ∗
//

PA′

PA

PA′ PB′ψ∗
// PB′

PB

η∗

��

{�

Note that the commutativity of the left square follows trivially from the functoriality of
(−)∗ : (Q-Dist)op −→ Q-Cat, and thus it suffices to check η∗ψ∗ ≤ ϕ∗ζ

∗. Indeed, for all
µ′ ∈ PA′,

η∗ψ∗µ
′ = (µ′ ↙ ψ) ◦ η
≤ ((µ′ ↙ ψ) ◦ η ◦ ϕ)↙ ϕ

= ((µ′ ↙ ψ) ◦ ψ ◦ ζ)↙ ϕ

≤ (µ′ ◦ ζ)↙ ϕ

= ϕ∗ζ
∗µ′,

as desired.
Step 2. K(ζ, η) : Kψ −→ Kϕ is a left adjoint Q-functor. For this, note that η∗ :

PB −→ PB′ can be restricted as a Q-functor η∗ : Kϕ −→ Kψ. Indeed, from η∗ a η∗ :
PB −→ PB′ and Step 1 one has ψ∗ψ

∗ ≤ η∗ϕ∗ϕ
∗η∗, which implies

ψ∗ψ
∗η∗λ ≤ η∗ϕ∗ϕ

∗η∗η∗λ ≤ η∗ϕ∗ϕ
∗λ = η∗λ,
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and consequently η∗λ ∈ Kψ for all λ ∈ Kϕ. Now it remains to prove K(ζ, η) a η∗ :
Kϕ −→ Kψ. Since ϕ∗ϕ

∗ is a Q-monad on PB, it holds that

PB(η∗λ′, λ) ≤ PB(ϕ∗ϕ
∗η∗λ′, ϕ∗ϕ

∗λ) = PB(ϕ∗ϕ
∗η∗λ′, λ) ≤ PB(η∗λ′, λ)

for all λ′ ∈ Kψ, λ ∈ Kϕ. Hence

Kϕ(K(ζ, η)λ′, λ) = PB(ϕ∗ϕ
∗η∗λ′, λ) = PB(η∗λ′, λ) = PB′(λ′, η∗λ) = Kψ(λ′, η∗λ),

showing that K(ζ, η) a η∗ : Kϕ −→ Kψ.
Step 3. K : Arr(Q-Dist)op −→ Q-Sup is a functor. For this one must prove

K(ζ, η)K(ζ ′, η′) = K(ζ ′ ◦ ζ, η′ ◦ η) : Kξ −→ Kϕ

for any arrows (ζ, η) : ϕ −→ ψ and (ζ ′, η′) : ψ −→ ξ in Arr(Q-Dist). It suffices to check
that

ϕ∗ϕ
∗η∗ψ∗ψ

∗η′∗ = ϕ∗ϕ
∗η∗η′∗. (5.i)

On one hand, Step 1 implies ϕ∗ϕ
∗η∗ψ∗ψ

∗η′∗ ≤ ϕ∗ϕ
∗ϕ∗ϕ

∗η∗η′∗ = ϕ∗ϕ
∗η∗η′∗ since ϕ∗ϕ

∗ is
idempotent. On the other hand, ϕ∗ϕ

∗η∗η′∗ ≤ ϕ∗ϕ
∗η∗ψ∗ψ

∗η′∗ holds trivially since 1PB′ ≤
ψ∗ψ

∗.
Step 4. K : Arr(Q-Dist)op −→ Q-Sup is a quantaloid homomorphism. To show

that K preserves joins of arrows in Arr(Q-Dist), let {(ζi, ηi)}i∈I be a family of arrows
from ϕ : A //◦ B to ψ : A′ //◦ B′ in Arr(Q-Dist), and one needs to verify

K
(∨
i∈I

ζi,
∨
i∈I

ηi

)
=
⊔
i∈I

K(ζi, ηi) : Kψ −→ Kϕ,

where
⊔

denotes the pointwise join in Q-Sup(Kψ,Kϕ) inherited from Kϕ. Indeed, since
ϕ∗ϕ

∗ : PB −→ Kϕ is a left adjoint Q-functor by Proposition 3.5(1), one has

K
(∨
i∈I

ζi,
∨
i∈I

ηi

)
λ′ = ϕ∗ϕ

∗
(∨
i∈I

ηi

)∗
λ′

= ϕ∗ϕ
∗
(
λ′ ◦

∨
i∈I

ηi

)
= ϕ∗ϕ

∗
(∨
i∈I

λ′ ◦ ηi
)

=
⊔
i∈I

ϕ∗ϕ
∗(λ′ ◦ ηi) (Proposition 3.8(iii))

=
⊔
i∈I

ϕ∗ϕ
∗η∗i λ

′

=
⊔
i∈I

K(ζi, ηi)λ
′

for all λ′ ∈ Kψ. This completes the proof.
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5.2. Remark. A Chu transform (called an infomorphism in [33, 35])

(F,G) : (ϕ : A //◦ B) −→ (ψ : A′ //◦ B′)

between Q-distributors is a pair of Q-functors F : A −→ A′ and G : B′ −→ B such
that ψ(F−,−) = ϕ(−, G−); or equivalently, ψ ◦ F\ = G\ ◦ ϕ. Q-distributors and Chu
transforms constitute a category Q-Chu (denoted by Q-Info in [33, 35]), and one has a
natural functor

(�\,�
\) : Q-Chu −→ Arr(Q-Dist), (F,G) 7→ (F\, G

\).

It should be pointed out that the composite of K : Arr(Q-Dist)op −→ Q-Sup with the
functor (�\,�\)op : (Q-Chu)op −→ Arr(Q-Dist)op is exactly the functor K : (Q-Chu)op

−→ Q-Sup obtained in [35]. So, the functor K given in Proposition 5.1 is an extension
of the functor K : (Q-Chu)op −→ Q-Sup in [35].

5.3. Proposition. For arrows (ζ, η), (ζ ′, η′) : (ϕ : A //◦ B) −→ (ψ : A′ //◦ B′) in
Arr(Q-Dist),

(ζ, η) ∼ (ζ ′, η′) ⇐⇒ K(ζ, η) = K(ζ ′, η′) : Kψ −→ Kϕ.

Therefore, K factors uniquely through the quotient homomorphism Arr(Q-Dist)op −→
D(Q-Dist)op via a unique faithful quantaloid homomorphism Kd : D(Q-Dist)op −→
Q-Sup.

Arr(Q-Dist)op D(Q-Dist)op//Arr(Q-Dist)op

Q-Sup

K
**

D(Q-Dist)op

Q-Sup

Kd

��

Proof. If (ζ, η) ∼ (ζ ′, η′), then η ◦ ϕ = η′ ◦ ϕ, and thus the functoriality of (−)∗ :
(Q-Dist)op −→ Q-Cat implies

K(ζ, η)λ′ = ϕ∗ϕ
∗η∗λ′ = ϕ∗ϕ

∗η′∗λ′ = K(ζ ′, η′)λ′

for all λ′ ∈ Kψ. Conversely, suppose K(ζ, η) = K(ζ ′, η′), one needs to show that η ◦ ϕ =
η′ ◦ ϕ. Indeed,

η(−, y′) ◦ ϕ = ϕ∗η∗YB′y
′ (Equation (3.iv))

= ϕ∗ϕ∗ϕ
∗η∗YB′y

′ (ϕ∗ a ϕ∗)
= ϕ∗ϕ∗ϕ

∗η∗ψ∗ψ
∗YB′y

′ (similar to the proof of Equation (5.i))

= ϕ∗K(ζ, η)ψ∗ψ
∗YB′y

′

= ϕ∗K(ζ ′, η′)ψ∗ψ
∗YB′y

′ (K(ζ, η) = K(ζ ′, η′))

= η′(−, y′) ◦ ϕ (repeating the above steps)

for all y′ ∈ B′0, as desired.
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Let Arr(Q-Dist)reg and (Q-Sup)ccd denote the full subquantaloids of Arr(Q-Dist)
and Q-Sup, respectively, with objects restricting to regular Q-distributors and (ccd) Q-
categories. Then K sends objects in Arr(Q-Dist)reg to those in (Q-Sup)ccd by Theorem
4.5, and furthermore:

5.4. Proposition. If ψ is a regular Q-distributor, then the map

K : Arr(Q-Dist)(ϕ, ψ) −→ Q-Sup(Kψ,Kϕ)

is full. Hence, the restriction Arr(Q-Dist)opreg −→ (Q-Sup)ccd of K : Arr(Q-Dist)op −→
Q-Sup is a full quantaloid homomorphism.

Proof. Given a left adjointQ-functor F : Kψ −→ Kϕ, define aQ-distributor ξ : B //◦ B′
through its transpose as

ξ̃ := (B′
YB′ // PB′ ψ∗ψ∗

//Kψ F //Kϕ � � // PB). (5.ii)

Since the square

B B′
η:=ψ◦

←−
ψ ◦ξ

//

A

B

ϕ

��

A A′ζ:=
←−
ψ ◦ξ◦ϕ

// A′

B′

ψ

��

◦

◦ ◦

◦

is clearly commutative, i.e., (ζ, η) ∈ Arr(Q-Dist)(ϕ, ψ), it now remains to proveK(ζ, η) =
F .

First, it follows from Proposition 3.4(1) and Equation (3.iii) that tensors in Kϕ are
given by

f ⊗ λ = ϕ∗ϕ
∗(f ◦ µ) (5.iii)

for all µ ∈ Kϕ, f ∈ P(tµ).
Second, ϕ∗ϕ

∗ : PA −→ Kϕ and ψ∗ψ
∗ : PA′ −→ Kψ are both left adjoint Q-functors

(see Proposition 3.5(1)), and thus so is the composite Fψ∗ψ
∗ : PA′ −→ Kϕ. Hence, for
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all λ′ ∈ Kψ one has

K(ζ, η)λ′ = ϕ∗ϕ
∗η∗λ′

= ϕ∗ϕ
∗(λ′ ◦ ψ ◦

←−
ψ ◦ ξ) (η = ψ ◦

←−
ψ ◦ ξ)

= ϕ∗ϕ
∗
( ∨
y′∈B′0

(λ′ ◦ ψ ◦
←−
ψ )(y′) ◦ ξ̃y′

)
= ϕ∗ϕ

∗
( ∨
y′∈B′0

(λ′ ◦ ψ ◦
←−
ψ )(y′) ◦ (Fψ∗ψ

∗YB′y
′)
)

(Equation (5.ii))

=
⊔
y′∈B′0

ϕ∗ϕ
∗((λ′ ◦ ψ ◦

←−
ψ )(y′) ◦ (Fψ∗ψ

∗YB′y
′)) (Proposition 3.8(iii))

=
⊔
y′∈B′0

(λ′ ◦ ψ ◦
←−
ψ )(y′)⊗ (Fψ∗ψ

∗YB′y
′) (Equation (5.iii))

= Fψ∗ψ
∗
( ∨
y′∈B′0

(λ′ ◦ ψ ◦
←−
ψ )(y′) ◦ (YB′y

′)
)

(Proposition 3.8(iii))

= Fψ∗ψ
∗(λ′ ◦ ψ ◦

←−
ψ )

= Fψ∗(ψ ◦
←−
ψ ◦ ψ)∗λ′

= Fψ∗ψ
∗λ′ (ψ is regular)

= Fλ′, (λ′ ∈ Kψ)

where
∨

and
⊔

respectively denote the underlying joins in PB and Kϕ, completing the
proof.

With D(Q-Dist)reg denoting the full subquantaloid of D(Q-Dist) consisting of regular
Q-distributors, the combination of Propositions 5.3 and 5.4 shows that the restriction of
Kd : D(Q-Dist)op −→ Q-Sup on D(Q-Dist)opreg, which we denote by

Kreg : D(Q-Dist)opreg −→ (Q-Sup)ccd,

is a fully faithful quantaloid homomorphism. It is moreover essentially surjective as the
second part of Theorem 4.5 claims, and thus the following conclusion arises as an imme-
diate consequence:

5.5. Theorem. Kreg : D(Q-Dist)opreg −→ (Q-Sup)ccd is an equivalence of quantaloids.
Hence, D(Q-Dist)reg and (Q-Sup)ccd are dually equivalent quantaloids.

5.6. Remark. The combination of Proposition 2.3 and Theorem 5.5 in fact reproduces
the dual equivalence

D(Q-Dist)opidm ' (Q-Sup)ccd

which was revealed by Stubbe in [39]; that is, the split-idempotent completion of Q-Dist
is dually equivalent to (Q-Sup)ccd. In particular, the above equivalence reduces to the
classical result

D(Rel)idm ' Supccd (5.iv)
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of Rosebrugh and Wood by setting Q = 2 [27]; just note that D(2-Dist)idm is equivalent
to its full subquantaloid D(Rel)idm and Supccd is self-dual. We also refer to Hofmann’s
work [16] for another extensive study of the equivalence (5.iv) in the context of (T,V)-
categories.

We point out that one cannot establish Proposition 5.4 without assuming the regularity
of ψ:

5.7. Example. Let Q = ([0,∞]op,+) be Lawvere’s quantale [21] with the internal hom
given by x → y = max{0, y − x}7 for all x, y ∈ Q. A Q-distributor ϕ : ? //◦ ? between
singleton Q-categories is precisely an element ϕ ∈ [0,∞], and it is not difficult to observe
the following facts:

(1) ϕ is regular if and only if either ϕ = 0 or ϕ =∞.

(2) Kϕ = Q for all ϕ ∈ [0,∞), where Q is equipped the standard Q-category structure
given by the internal hom →.

We claim that the map

K : Arr(Q-Dist)((0 : ? //◦ ?), (ψ : ? //◦ ?)) −→ Q-Sup(Q,Q)

is not full for any ψ ∈ (0,∞). Indeed, K sends each (ζ, η) : (0 : ? //◦ ?) −→ (ψ : ? //◦ ?)
to the left adjoint Q-functor

η∗ : Q −→ Q, x 7→ η + x.

Taking any η ∈ (0, ψ), η∗ : Q −→ Q defined as above is a left adjoint Q-functor, but
there exists no ζ : ? //◦ ? such that (ζ, η) : (0 : ? //◦ ?) −→ (ψ : ? //◦ ?) is an arrow
in Arr(Q-Dist): one must have ζ = η − ψ to get a commutative square in Q-Dist as
illustrated below, which cannot be achieved when η < ψ.

? ?η
//

?

?

0

��

? ?
ζ=η−ψ

// ?

?

ψ

��

◦

◦

◦ ◦

6. op(ccd) implies regularity

Theorem 4.5 asserts that Kϕ is a (ccd) Q-category if ϕ is a regular Q-distributor, and
the converse statement is known to be true when Q = 2 (see Theorem 1.2). It is natural
to ask whether one can establish Theorem 1.2 in the general setting. Unfortunately, the
following counterexample gives a negative answer:

7To avoid confusion, the symbols max, ≤, etc. between (extended) real numbers always refer to the
standard order, although the quantale ([0,∞]op,+) is equipped with the reverse order of real numbers.
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6.1. Example. For Lawvere’s quantale Q = ([0,∞]op,+) considered in Example 5.7, any
ϕ : ? //◦ ? with ϕ ∈ (0,∞) is a non-regular Q-distributor, but Kϕ = Q = P? is always a
(ccd) Q-category.

In fact, it is the constructive complete codistributivity (instead of constructive com-
plete distributivity) of Kϕ that necessarily implies the regularity of ϕ, which fails to reveal
itself in the case Q = 2 since these two notions are equivalent there. This observation
will be demonstrated in Theorem 6.3 below.

A Q-category A is constructively completely codistributive, or op(ccd) for short, if Aop

is a (ccd) Qop-category. Explicitly, A is op(ccd) if it is complete and infA : P†A −→ A
admits a right adjoint SA : A −→ P†A in Q-Cat; or equivalently, if there exists a string
of adjoint Q-functors

Y†A a infA a SA : A −→ P†A.

6.2. Example. For any Q-category A, P†A is an op(ccd) Q-category since (P†A)op ∼=
PAop is a (ccd) Qop-category. Indeed, from (3.vii) and Proposition 3.4(6) one sees that
infP†A = (Y†A)←7− : P†P†A −→ P†A has a right adjoint (Y†A)−7→ : P†A −→ P†P†A in Q-Cat.

The main result of this section is:

6.3. Theorem. If Kϕ is op(ccd), then ϕ is regular.

Before proving this theorem, we need some preparations. Each set A equipped with a
type map t : A −→ obQ (called a Q-typed set) may be viewed as a discrete Q-category
with

A(x, y) =

{
1tx if x = y,

⊥tx,ty else.

A Q-relation (also Q-matrix [4, 15]) between Q-typed sets is exactly a Q-distributor
between discrete Q-categories, and we write |ϕ| : |A| //◦ |B| for the underlying Q-relation
of a Q-distributor ϕ : A //◦ B. It is easy to verify the following lemma:

6.4. Lemma. For Q-categories A, B and any Q-relation ϕ : |A| //◦ |B|, the following
statements are equivalent:

(1) ϕ : A //◦ B is a Q-distributor.

(2) ϕ ◦ A ≤ ϕ and B ◦ ϕ ≤ ϕ.

(3) A ≤ ϕ↘ ϕ and B ≤ ϕ↙ ϕ.

6.5. Lemma. Kϕ = K|ϕ|.
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Proof. It suffices to prove that λ ∈ K|ϕ| implies λ ∈ PB for any λ ∈ P|B|. Indeed,

λ ◦ B = ((λ ◦ |ϕ|)↙ |ϕ|) ◦ B (λ ∈ K|ϕ|)
≤ ((λ ◦ |ϕ|)↙ |ϕ|) ◦ (|ϕ| ↙ |ϕ|) (Lemma 6.4(iii))

≤ ((λ ◦ |ϕ|)↙ |ϕ|)
= λ, (λ ∈ K|ϕ|)

showing that λ ∈ PB.

6.6. Lemma. If F is a Q-comonad on PA and B := Fix(F ), then

supBΘ = Θ ◦ γ and infBΛ = f(Λ↘ γ)

for all Θ ∈ PB, Λ ∈ P†B, where γ : A //◦ B is the codomain restriction of the graph of
the Yoneda embedding (YA)\ : A //◦ PA.

Proof. Let J : B −→ PA be the inclusion Q-functor, then

γ = (YA)\(−, J−) = PA(−, J−) ◦ (YA)\ = J \ ◦ (YA)\. (6.i)

Note that Θ ◦ J \ = J→Θ ∈ PPA, and thus

B(Θ ◦ γ, µ) = B(Θ ◦ J \ ◦ (YA)\, µ) (Equation (6.i))

= PA(Θ ◦ J \ ◦ (YA)\, µ)

= PA(supPAJ
→Θ, µ) (Proposition 3.4(3))

= PB(Θ, J←YPAµ) (supPAJ
→ a J←YPA : PA −→ PB)

= (PA(−, µ) ◦ J\)↙ Θ

= PA(J−, µ)↙ Θ

= B(−, µ)↙ Θ

for all µ ∈ B, which indicates Θ ◦ γ = supBΘ. The second identity may be verified
similarly.

Proof of Theorem 6.3. Let ϕ : A //◦ B be a Q-distributor. Note that (A0, ϕ↘ ϕ) is
also a Q-category whose underlying Q-typed set is A0 with hom-arrows given by

(ϕ↘ ϕ)(x, x′) = ϕ(x′,−)↘ ϕ(x,−) ∈ Q(tx, tx′)

for all x, x′ ∈ A0; so is (B0, ϕ↙ ϕ). Thus, from Lemma 6.4(iii) one sees that ϕ : (A0, ϕ↘
ϕ) //◦ (B0, ϕ↙ ϕ) is also a Q-distributor.

Moreover, Lemma 6.5 tells us that Kϕ is independent of the Q-categorical structures
of the domain and codomain of ϕ, which guarantees

K(ϕ : A //◦ B) = K(|ϕ| : |A| //◦ |B|) = K(ϕ : (A0, ϕ↘ ϕ) //◦ (B0, ϕ↙ ϕ)).
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Hence, without loss of generality one may assume the Q-distributor ϕ : A //◦ B to satisfy
A = ϕ ↘ ϕ and B = ϕ ↙ ϕ; otherwise one just needs to consider the Q-distributor
ϕ : (A0, ϕ↘ ϕ) //◦ (B0, ϕ↙ ϕ) instead, because the regularity of ϕ : A //◦ B obviously
follows from that of ϕ : (A0, ϕ↘ ϕ) //◦ (B0, ϕ↙ ϕ).

Since Kϕ(∼= Kϕ) is op(ccd), one has an adjunction

infKϕ a SKϕ : Kϕ −→ P†Kϕ

in Q-Cat. Thus infKϕ : P†Kϕ −→ Kϕ is sup-preserving (see Proposition 3.8(ii)) in the
sense that

infKϕsupP†KϕΨ = supKϕinf→KϕΨ (6.ii)

for all Ψ ∈ PP†Kϕ. We shall apply (6.ii) to the presheaf

Ψ = ϕ(−, b) ◦H\ : P†Kϕ //◦ A //◦ ?tb (6.iii)

on P†Kϕ for any b ∈ B0, where the Q-functor H : A −→ P†Kϕ is given by

H := (A YA // PA ϕ∗ϕ∗
// Kϕ

SKϕ
// P†Kϕ). (6.iv)

Step 1. Let γ : A //◦ Kϕ be the codomain restriction of (YA)\ : A //◦ PA. We claim

infKϕγ̂ = ϕ∗ϕ∗YA : A −→ Kϕ.

PA Kϕ
ϕ∗ϕ∗

//

A

PA

YA

��

A P†Kϕγ̂
// P†Kϕ

Kϕ

infKϕ

��

In fact, if one restricts the codomain of ϕ̃ : B −→ PA to Kϕ, then similar to Equation
(3.vi) one derives

ϕ = ϕ̃\ ◦ γ : A //◦ Kϕ //◦ B. (6.v)

It follows that
A ≤ γ ↘ γ ≤ (ϕ̃\ ◦ γ)↘ (ϕ̃\ ◦ γ) = ϕ↘ ϕ = A,

and consequently A = γ ↘ γ. Therefore, by Lemma 6.6 one soon has

infKϕγ̂x = ϕ∗ϕ∗(γ̂x↘ γ) = ϕ∗ϕ∗(γ(x,−)↘ γ) = ϕ∗ϕ∗(A(−, x)) = ϕ∗ϕ∗YAx

for all x ∈ A0, as desired.
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Step 2. supP†KϕΨ ≤ γ ↙ ϕ(−, b) in Q-Dist(?tb,Kϕ). Indeed,

supP†KϕΨ = (Y†Kϕ)\ ↙ Ψ (Proposition 3.4(5))

≤ ((Y†Kϕ)\ ◦ γ̂\)↙ (Ψ ◦ γ̂\)
= γ ↙ (Ψ ◦ γ̂\) (Equation (3.vi))

= γ ↙ (ϕ(−, b) ◦H\ ◦ γ̂\) (Equation (6.iii))

= γ ↙ (ϕ(−, b) ◦ (ϕ∗ϕ∗YA)\ ◦ S\Kϕ ◦ γ̂\) (Equation (6.iv))

= γ ↙ (ϕ(−, b) ◦ (ϕ∗ϕ∗YA)\ ◦ (infKϕ)\ ◦ γ̂\) (infKϕ a SKϕ)

= γ ↙ (ϕ(−, b) ◦ (ϕ∗ϕ∗YA)\ ◦ (ϕ∗ϕ∗YA)\) (Step 1)

≤ γ ↙ ϕ(−, b). ((ϕ∗ϕ∗YA)\ a (ϕ∗ϕ∗YA)\)

Step 3. infKϕsupP†KϕΨ ≥ ϕ(−, b). First, we prove

ϕ = (γ ↙ ϕ)↘ γ. (6.vi)

On one hand, if one restricts the codomain of ϕ̃ : B −→ PA to Kϕ, then

ϕ̃\ ◦ (γ ↙ ϕ) = (ϕ̃\ ◦ γ)↙ ϕ. (6.vii)

Indeed, from ϕ̃\ a ϕ̃\ one has

(ϕ̃\ ◦ γ)↙ ϕ ≤ ϕ̃\ ◦ ϕ̃\ ◦ ((ϕ̃\ ◦ γ)↙ ϕ)

≤ ϕ̃\ ◦ ((ϕ̃\ ◦ ϕ̃\ ◦ γ)↙ ϕ)

≤ ϕ̃\ ◦ (γ ↙ ϕ),

and the reverse inequality is trivial. Thus

(γ ↙ ϕ)↘ γ ≤ (ϕ̃\ ◦ (γ ↙ ϕ))↘ (ϕ̃\ ◦ γ)

= ((ϕ̃\ ◦ γ)↙ ϕ)↘ (ϕ̃\ ◦ γ) (Equation (6.vii))

= (ϕ↙ ϕ)↘ ϕ (Equation (6.v))

= B↘ ϕ (ϕ↙ ϕ = B)

= ϕ.

On the other hand, ϕ ≤ (γ ↙ ϕ)↘ γ is trivial, showing the validity of (6.vi).
Second, since it follows from supP†KϕΨ ≤ γ ↙ ϕ(−, b) in Q-Dist(?tb,Kϕ) that

supP†KϕΨ ≥ γ ↙ ϕ(−, b) in P†Kϕ (see Remark 3.1), it follows that

infKϕsupP†KϕΨ ≥ infKϕ(γ ↙ ϕ(−, b))
= ϕ∗ϕ∗((γ ↙ ϕ(−, b))↘ γ) (Lemma 6.6)

= ϕ∗ϕ∗(ϕ(−, b)) (Equation (6.vi))

= ϕ∗ϕ∗ϕ
∗YBb (Equation (3.iv))

= ϕ∗YBb (ϕ∗ a ϕ∗)
= ϕ(−, b). (Equation (3.iv))
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Step 4. supKϕinf→KϕΨ = ϕ(−, b) ◦ (A↙ ϕ) ◦ ϕ. First, infKϕSKϕ = 1Kϕ since

1Kϕ = infKϕY
†
Kϕ ≤ infKϕSKϕinfKϕY

†
Kϕ = infKϕSKϕ ≤ 1Kϕ

follows from Y†Kϕ a infKϕ a SKϕ : Kϕ −→ P†Kϕ.
Second,

(A↙ ϕ) ◦ ϕ = (ϕ∗ϕ∗YA)\ ◦ γ (6.viii)

since

(A(−, x)↙ ϕ) ◦ ϕ = ϕ∗ϕ∗YAx

= supKϕYKϕϕ
∗ϕ∗YAx (supKϕYKϕ = 1Kϕ)

= (YKϕϕ
∗ϕ∗YAx) ◦ γ (Lemma 6.6)

= Kϕ(−, ϕ∗ϕ∗YAx) ◦ γ
= (ϕ∗ϕ∗YA)\(−, x) ◦ γ.

for all x ∈ A0. Hence,

supKϕinf→KϕΨ = supKϕ(Ψ ◦ inf\Kϕ) (see (3.vii))

= supKϕ(ϕ(−, b) ◦ (ϕ∗ϕ∗YA)\ ◦ S\Kϕ ◦ inf\Kϕ) (Equations (6.iii) & (6.iv))

= supKϕ(ϕ(−, b) ◦ (ϕ∗ϕ∗YA)\) (infKϕSKϕ = 1Kϕ)

= ϕ(−, b) ◦ (ϕ∗ϕ∗YA)\ ◦ γ (Lemma 6.6)

= ϕ(−, b) ◦ (A↙ ϕ) ◦ ϕ. (Equation (6.viii))

Step 5. As b ∈ B0 is arbitrary, Step 3 and Step 4 in combination with Equation (6.ii)
lead to

ϕ ◦←−ϕ ◦ ϕ = ϕ ◦ ((ϕ↘ ϕ)↙ ϕ) ◦ ϕ = ϕ ◦ (A↙ ϕ) ◦ ϕ ≥ ϕ.

From Proposition 2.1 one concludes that ϕ is regular.

The following corollary is an immediate consequence of Theorems 4.5 and 6.3:

6.7. Corollary. For any Q-distributor ϕ, if Kϕ is op(ccd), then it is also (ccd).

6.8. Example. For any small quantaloid Q, the terminal object in Q-Cat is given by
(obQ,>) with >(X, Y ) = >X,Y : X −→ Y , the top element in Q(X, Y ). (obQ,>) is
both (ccd) and op(ccd) since

(obQ,>) = P∅ = P†∅,

where ∅ denotes the empty Q-category, i.e., the initial object in Q-Cat. Therefore:

(1) K∅(= P∅) is both (ccd) and op(ccd).
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(2) For any X, Y ∈ obQ, the bottom element ⊥X,Y ∈ Q(X, Y ) gives a Q-distributor
⊥X,Y : ?X //◦ ?Y . Then K⊥X,Y is a Q-subcategory of PY consisting of Q-arrows
>Y,Z (Z ∈ obQ). It is straightforward to verify K⊥X,Y ∼= (obQ,>) and, conse-
quently, K⊥X,Y is both (ccd) and op(ccd).

It should be reminded that for a general quantaloid Q, neither the converse statement
of Theorem 6.3 nor that of Corollary 6.7 is true:

6.9. Example. For the identity Q-distributor on any Q-category A (which is clearly
regular), KA = PA is (ccd) (see Examples 3.6 and 4.2) but in general not op(ccd).

However, one is able to reconcile the notions of regularity, (ccd) and op(ccd) when Q
is a Girard quantaloid as discussed in the next section.

7. Girard quantaloids reconcile regularity, (ccd) and op(ccd)

In a quantaloid Q, a family of Q-arrows {dX : X −→ X}X∈obQ is a cyclic family (resp.
dualizing family) if

dX ↙ f = f ↘ dY (resp. (dX ↙ f)↘ dX = f = dY ↙ (f ↘ dY ))

for all Q-arrows f : X −→ Y . A Girard quantaloid [30] is a quantaloid Q equipped with
a cyclic dualizing family of Q-arrows.

In a Girard quantaloid Q, each Q-arrow f : X −→ Y has a complement

¬f = dX ↙ f = f ↘ dY : Y −→ X,

which clearly satisfies ¬¬f = f . For each Q-category A,

(¬A)(y, x) = ¬A(x, y)

gives a Q-distributor ¬A : A //◦ A, and it is straightforward to check that

{¬A : A //◦ A}A∈ob(Q-Dist)

is a cyclic dualizing family of Q-Dist; this gives the “only if” part of the following
proposition. As for the “if” part, just note that Q can be fully faithfully embedded
in Q-Dist:

7.1. Proposition. (See [30].) A small quantaloid Q is a Girard quantaloid if, and only
if, Q-Dist is a Girard quantaloid.

Hence, with Q being Girard, each Q-distributor ϕ : A //◦ B has a complement

¬ϕ := ¬A↙ ϕ = ϕ↘ ¬B : B //◦ A.
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7.2. Example.

(1) Every Girard quantale [29, 47] is a one-object Girard quantaloid.

(2) Rel is a Girard quantaloid since it is a full subquantaloid of the Girard quantaloid
2-Dist, where 2-Dist being Girard follows from Proposition 7.1 and the fact that
2 is a Girard quantale.

(3) Each complete Boolean algebra (L,∧,∨,¬, 0, 1) induces a Girard quantaloid D(L)
[17, 25, 42] (i.e., the quantaloid of diagonals in the one-object quantaloid L) with
the following data:

• objects in D(L) are the elements of L;

• D(L)(X, Y ) = {f ∈ L : f ≤ X ∧ Y } with inherited order from L;

• the composition of D(L)-arrows f ∈ D(L)(X, Y ), g ∈ D(L)(Y, Z) is given by
g ◦ f = g ∧ f ;

• the identity D(L)-arrow in D(L)(X,X) is X itself.

It is straightforward to check that {0 : X −→ X}X∈L is a cyclic dualizing family in
D(L).

(4) Each quantaloid Q is embedded in a Girard quantaloid QG [34] with the following
data:

• objects in QG are the same as those in Q;

• QG(X, Y ) = Q(X, Y )×Q(Y,X) with∨
i∈I

(fi, f
′
i) =

(∨
i∈I

fi,
∧
i∈I

f ′i

)
for all {(fi, f ′i)}i∈I ⊆ QG(X, Y );

• the composition of QG-arrows (f, f ′) : X −→ Y , (g, g′) : Y −→ Z is given by

(g, g′) ◦ (f, f ′) = (g ◦ f, (f ′ ↙ g) ∧ (f ↘ g′));

• the identity QG-arrow in QG(X,X) is (1X ,>X,X) : X −→ X.

The most important property of Girard-quantaloid-enriched categories is that presheaf
Q-categories are isomorphic to copresheaf Q-categories:

7.3. Proposition. If Q is a small Girard quantaloid, then for any Q-category A,

¬ : PA −→ P†A

is an isomorphism in Q-Cat.
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Proof. Since {¬A}A∈ob(Q-Dist) is a cyclic dualizing family, one has

PA(µ, λ) = λ↙ µ = ((¬A↙ λ)↘ ¬A)↙ µ = (¬A↙ λ)↘ (¬A↙ µ) = P†A(¬µ,¬λ)

for all µ, λ ∈ PA. Thus ¬ : PA −→ P†A is a fully faithful Q-functor, and consequently
an isomorphism in Q-Cat since it is obviously surjective.

7.4. Proposition. If Q is a small Girard quantaloid, then a Q-category is (ccd) if and
only if it is op(ccd).

Proof. Suppose that A is a skeletal (ccd) Q-category. Then A is a retract of PA in

Q-Inf since A
YA //

oo
supA

PA satisfies supA YA = 1A and both supA, YA are right adjoints in

Q-Cat. As PA ∼= P†A by Proposition 7.3, PA is op(ccd); hence the dual of Proposition
4.3 implies that A is op(ccd). This proves the “only if” part, and the “if” part is precisely
the dual of the “only if” part.

Therefore, as an immediate consequence of Theorems 4.5, 6.3 and Proposition 7.4, one
has the following generalized version of Theorem 1.2:

7.5. Theorem. If Q is a small Girard quantaloid, then for any Q-distributor ϕ, the
following statements are equivalent:

(i) ϕ is regular.

(ii) Kϕ is (ccd).

(iii) Kϕ is op(ccd).

8. When Q is a commutative integral quantale

One may wonder whether Q being Girard is essential for Theorem 7.5 to be true; that is,
suppose that

ϕ is regular ⇐⇒ Kϕ is (ccd) ⇐⇒ Kϕ is op(ccd)

for all Q-distributors ϕ, is Q necessarily a Girard quantaloid? Although it is difficult to
answer this question for a general small quantaloid Q, we do have some partial results
when Q is a commutative integral quantale as the following Theorem 8.2 shows. As a
preparation, we explain the involved notions first.

An integral quantale (Q,&) is a one-object quantaloid in which the unit 1 of the
underlying monoid (Q,&) is the top element of the complete lattice Q. It is moreover
commutative if p&q = q&p for all p, q ∈ Q, and in this case we write

p→ q := q ↙ p = p↘ q

for the adjoints induced by the monoid multiplication &, which satisfies

p&q ≤ r ⇐⇒ p ≤ q → r
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for all p, q, r ∈ Q. The operation → makes Q itself a Q-category, which may also be
viewed as the presheaf Q-category of the singleton Q-category ?, i.e., Q = P?.

A Girard quantale [29, 47] is precisely a one-object Girard quantaloid. For a com-
mutative integral quantale (Q,&), the commutativity ensures that every element of Q is
cyclic, and the integrality forces a dualizing element in Q, whenever it exists, to be the
bottom element ⊥ of Q. Hence, a commutative integral quantale (Q,&) is Girard if, and
only if,

q = (q → ⊥)→ ⊥

for all q ∈ Q.

8.1. Example.

(1) Every frame is a commutative integral quantale, and Girard frames are precisely
complete Boolean algebras.

(2) Every complete BL-algebra [14] is a commutative integral quantale, and it is Girard
if and only if it is an MV-algebra [7]. In particular, the unit interval [0, 1] equipped
with a continuous t-norm [20] is a commutative integral quantale, and it becomes a
Girard quantale if and only if it is isomorphic to [0, 1] equipped with the  Lukasiewicz
t-norm.

(3) Lawvere’s quantaleQ = ([0,∞]op,+) (see Example 5.7) is commutative and integral,
but it is not Girard.

8.2. Theorem. 8 Let (Q,&) be a commutative integral quantale. Then the following
statements are equivalent:

(i) ⊥ is a dualizing element, hence Q is a Girard quantale.

(ii) A Q-category is (ccd) if and only if it is op(ccd).

(iii) For any Q-distributor ϕ, Kϕ is (ccd) if and only if it is op(ccd).

(iv) For any Q-distributor ϕ, ϕ is regular if and only if Kϕ is op(ccd).

(v) Q is an op(ccd) Q-category.

Proof. (i) =⇒ (ii): Proposition 7.4.
(ii) =⇒ (iii): Trivial.
(iii) =⇒ (iv): Theorems 4.5 and 6.3.
(iv) =⇒ (v): Since the identity Q-distributor on the singleton Q-category ? is regular,

from Example 3.6 one sees that Q = P? = K? is op(ccd).

8The authors are indebted to Professor Dexue Zhang for helpful discussions on this theorem.
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(v) =⇒ (i): Since Q is op(ccd), infQ : P†Q −→ Q is a left adjoint in Q-Cat. Let
λ be the bottom element in Q-Dist(?,Q), i.e., λ(p) = ⊥ for all p ∈ Q. Then for any
q ∈ Q = P?,

q = q&1

= q ⊗Q 1 (Proposition 3.4(1))

= q ⊗Q
∧
p∈Q

λ(p)→ p (λ(p) = ⊥)

= q ⊗Q infQλ (Proposition 3.4(4))

= infQ(q ⊗P†Q λ) (Proposition 3.8(iii))

= infQ(q → λ) (Proposition 3.4(2))

=
∧
p∈Q

(q → λ(p))→ p (Proposition 3.4(4))

=
∧
p∈Q

(q → ⊥)→ p (λ(p) = ⊥)

= (q → ⊥)→ ⊥,

which shows that ⊥ is a dualizing element, completing the proof.

9. Concluding remarks

Let ϕ be a Q-distributor. Consider the implications labelled in the following diagram:

Kϕ is op(ccd) ϕ is regular1© +3 ϕ is regular Kϕ is (ccd)2© +3 Kϕ is (ccd)Kϕ is op(ccd)

3©
px

ϕ is regularKϕ is op(ccd)

4©

ai
Kϕ is (ccd)ϕ is regular

5©

`h

• For any small quantaloid Q, 1© and 2© are always true (Theorems 4.5 and 6.3).

• If Q is a Girard quantaloid, then 1©- 5© are all true (Theorem 7.5).

• When Q is a commutative integral quantale, either 3© or 4© is true for all ϕ if, and
only if, Q is a Girard quantale (Theorem 8.2).

We end this paper with the following questions:

• When Q is a commutative integral quantale, what is the necessary and sufficient
condition for 5© to be true for all ϕ? We do not know the answer even in this special
case.

• For a general small quantaloid Q, what is the necessary and sufficient condition for
any (or all) of 3©, 4©, 5© to be true for all ϕ?
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