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HIGHER ISOTROPY

J. FUNK, P. HOFSTRA, AND S. KHAN

Abstract. This paper is about an invariant of small categories called isotropy. Every
small category C has associated with it a presheaf of groups on C , called its isotropy
group, which in a sense solves the problem of making the assignment C 7→ Aut(C)
functorial. Consequently, every category has a canonical congruence that annihilates
the isotropy; however, it turns out that the resulting quotient may itself have non-
trivial isotropy. This phenomenon, which we term higher order isotropy, is the subject
of our investigation. We show that with each category C we may associate a sequence
of groups called its higher isotropy groups, and that these give rise to a sequence of
quotients of C . This sequence leads us to an ordinal invariant for small categories, which
we call isotropy rank : the isotropy rank of a small category is the ordinal at which
the sequence of quotients stabilizes. Our main results state that each small category
has a well-defined isotropy rank, and moreover, that for each small ordinal one may
construct a small category with precisely that rank. It happens that isotropy rank of a
small category is an instance of the same concept for Grothendieck toposes, for which
corresponding statements hold. Most of the technical work in the paper is concerned
with the development of tools that allow us to compute (higher) isotropy groups of
categories in terms of those of certain suitable subcategories.

1. Introduction

If a small category C is a groupoid, then the assignment

Aut(−) : Cop → Grp ; C 7→ Aut(C) (1)

is functorial in a unique way. In fact, transition between isotropy groups

f ∗ : Aut(C)→ Aut(D) ; f ∗(α) = f−1αf
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along a morphism f : D → C of C must be given by conjugation with f , so that each
diagram

D
f∗(α) //

f
��

D

f
��

C α
// C

(2)

commutes. Without the assumption that C is a groupoid (1) fails to be a functor. The
basic idea of isotropy of small categories is to remedy this failure. The solution coincides
with (1) in the case of a groupoid; however, in general also it must account for the fact
that for some f : D → C and α ∈ Aut(C) there may not exist β ∈ Aut(D) for which
fβ = αf , that α may lift to various different β along the same f , and that even though
α may lift along each possible D → C it may not be possible to do this coherently.

Once we associate with a category C its isotropy group

Z : Cop → Grp

we may show that for each object C of C there is a canonical group homomorphism
Z(C)→ Aut(C), which is in general neither injective nor surjective. We then consider the
collection of those automorphisms α ∈ Aut(C) that are part of the isotropy group in the
sense that they are in the image of Z(C) → Aut(C) . The automorphisms in the image
generate a congruence I on C with associated quotient ψ : C → C/I , which we term the
isotropy quotient of C . Perhaps it is surprising that the quotient category may itself have
a non-trivial isotropy group: apparently the quotient has annihilated the obstructions
to some non-trivial automorphisms of C being part of isotropy, a phenomenon we call
higher isotropy. Therefore, it makes sense to continue the process of forming isotropy
quotients transfinitely many times if necessary. Our goal is to study this sequence of
iterated isotropy quotients of a category.

1.1. Objectives and main results. The sequence of iterated isotropy quotients of a
category raises several questions. Does the sequence stabilize, and if so, then how can we
tell when? Is the process of forming isotropy quotients functorial? Is the length of the
sequence an invariant of categories? Can we obtain categories for which the associated
sequence has an arbitrarily large prescribed length? We shall answer these questions and
more.

1. We develop the elementary theory of isotropy groups and isotropy quotients of small
categories, and discuss aspects of functoriality. We explain how the isotropy groups
of two categories C and D are related when the categories are related by a functor
D → C . We also present sufficient conditions on functors to behave well with
respect to (higher) isotropy.

2. We present a sequence of categories X[κ] for each small ordinal κ , with the property
that the isotropy quotient sequence of X[κ] stabilizes after exactly κ steps. This
shows that isotropy of arbitrarily high ordinal order is possible.
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3. Because the examples and proofs that exhibit the desired behaviour would be too
involved to construct and calculate by hand, we seek to develop methods for the
analysis of isotropy of a category. These are somewhat analogous to ideas from
algebraic topology where one seeks to describe invariants of a space in terms of suit-
able decompositions of that space. In our setting we obtain results about isotropy
of categories arising as sequential colimits of categories and as collages of certain
profunctors. (The collage of a profunctor P : C # D is the canonical cospan of
functors C P

F
//

G
oo D for which P ∼= G∗ ◦ F∗ [Bénabou, 2000].)

4. Isotropy theory for small categories is an instance of the same concept for toposes
[Funk et al., 2012]. Propositions 9.2 establishes the fact that the isotropy group of a
presheaf topos SetC

op

agrees with that of the category C. The phenomenon of higher
isotropy also occurs for Grothendieck toposes, so that each Grothendieck topos has
a well-defined isotropy rank: this is a new invariant of toposes. Moreover, for each
ordinal we may find a Grothendieck topos with exactly that isotropy rank.

1.2. Organization. In § 2 we present the basic definitions involving isotropy groups
and isotropy quotients. We also present some elementary results concerning the isotropy
congruence and isotropy quotients. § 3 turns to aspects of functoriality; it introduces
various notions of preservation of isotropy, and establishes some results concerning a class
of functors here called sieve inclusions. These play a central role in the construction of our
main examples. In § 4 we present a small category with second order isotropy. This key
ingredient, while relatively simple, is a building block for the more complicated examples
later on. Higher order isotropy is introduced and studied in § 5. Here we prove that
every small category has a well-defined isotropy rank, introduce higher isotropy groups,
and also develop some tools that help determine lower bounds for isotropy ranks. The
family of examples of categories X[κ] is constructed in § 6. After explaining the idea
behind the construction informally we turn to profunctors and their collages in order
to make things precise. The detailed analysis of the behaviour of isotropy under the
formation of collages in § 7 is the main technical work of the paper. § 8 analyzes isotropy
of colimits and establishes the central results of this paper. In § 9 we apply some of the
main results to the theory of Grothendieck toposes. Finally, we briefly discuss related
work and further directions for investigation in § 10. With the exception of § 9 the only
background knowledge required for this paper is basic category theory.

2. Basic isotropy

We present the basic theory of (first order) isotropy for small categories.

2.1. Definition of the isotropy group. Fix a small category C . For any object
C of C, we may consider the slice category C/C together with its projection functor
πC : C/C → C , which sends an object X → C to its domain X. We define

Z(C) =def Aut(πC : C/C → C) .
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Thus Z(C) is the group of natural automorphisms of the projection functor. An element
τ of Z(C) is a natural transformation from πC to πC all of whose components are isomor-
phisms. This means that for any object f : X → C of the slice C/C the component of τ
at f , written τf , is an automorphism of X . Naturality of τ amounts to the requirement
that for any commutative triangle

Y

g ��

k // X

f~~
C

the square

Y
τg //

k
��

Y

k
��

X τf
// X

(3)

commutes. We write τC for τ1C . In particular, the diagram

X
τf //

f
��

X

f
��

C τC
// C

(4)

commutes. Thus, we may regard the component τf as a lift of the automorphism τC
along f . Diagram (3) expresses that these lifts are coherent. The group Z(C) is called
the isotropy group of C at C . We refer to an element τ ∈ Z(C) as an element of isotropy
at C .

Whiskering makes Z into a contravariant functor on C . Indeed, consider the functor

C/D C/p //

πD
!!

C/C

πC
}}

C

(C/p)
(
X

f // D

)
=

(
X

f // D
p // C

)

associated with a morphism p : D → C of C . We may whisker an element τ ∈ Z(C) with
C/p providing a natural automorphism p∗(τ) of πD , also sometimes written Z(p)(τ) . The
component of p∗(τ) at an object f : X → D is τpf : X → X .

2.2. Definition. [Isotropy group of a category] The isotropy group of a small category
C is the presheaf of groups

ZC = Z : Cop → Grp ; Z(C) = Aut (πC : C/C → C) .
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2.3. Elementary theory and examples. We have seen that an element τ ∈ Z(C) of
isotropy specifies a coherent system of lifts of the automorphism τC : C → C along mor-
phisms f : X → C (4). Forgetting all these lifts and remembering only the automorphism
τC gives a group homomorphism

νC : Z(C)→ Aut(C) ; νC(τ) = τC . (5)

This comparison homomorphism partly makes precise the idea conveyed in the introduc-
tion that the isotropy group remedies the failure of Aut(−) to be functorial: we have
replaced the automorphism group with the functorial Z .

Generally, νC is neither injective nor surjective. Three simple examples help illustrate
this.

1. Let C denote the category with two objects C,D , with C(C,C) = {1, α} , so that α
is an automorphism of order 2, C(D,D) = 1 and C(D,C) = {f, αf} . This means
that there is no lift

D

f
��

? // D

f
��

C α
// C

of α along f . Hence, α is not in the image of νC .

2. Let C denote the category with again two objects C,D , but this time C(C,C) = 1 ,
C(D,D) = {1, β} and C(D,C) = {f} . This means that the following diagram
commutes:

D

f
��

β // D

f
��

C
1C
// C

Hence, there is a non-trivial lift of the identity along f , so that νC : Z(C) →
Aut(C) = 1 is not injective: the group Z(C) has two elements, namely the trivial
one (in which the identity lifts to the identity) and a non-trivial one, where the
identity lifts to f . We thus see that elements in the kernel of νC give rise to “deck
transformations” of D → C .

3. It is possible for νC to be neither injective nor surjective: take once more C with
objects C,D , let C(C,C) = {1, α}, C(D,D) = {1, β} and C(D,C) = {f, αf} .
This combines the previous two examples in that α does not lift along f , while the
identity lifts to β .

2.4. Definition. Let C be a category with isotropy group Z . We shall say that the
isotropy of C is:

(i) free if the maps νC are injective;
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(ii) effective if the maps νC are surjective;

(iii) trivial if Z = 1 , in which case we also say that C is anisotropic.

The typical example of a category with free and effective isotropy is a groupoid: in
that case, each possible lifting problem has a unique solution, presented by conjugation.
A rigid category, meaning that it has no non-trivial automorphisms, is another example.
Rigid categories are precisely those which have effective and trivial isotropy.

2.5. Isotropy quotient. We wish to form a quotient of a category C in which none
of the isotropy of C survives. We start by factoring the group homomorphisms Z(C) →
Aut(C) :

Z(C)

νC

44
qC // // I(C)

⊆ // Aut(C) .

Thus the group I(C) is the image of νC in Aut(C).

2.6. Definition. [Isotropy Maps, Isotropy Congruence] An automorphism of C is said
to be isotropy if it is in the image of νC. The isotropy congruence on C is the smallest
congruence ∼ for which α ∼ 1C for each isotropy automorphism α ∈ Aut(C) .

Thus, the isotropy congruence is the smallest equivalence relation on the hom-sets of
C containing α ∼ 1 , which is closed under pre- and postcomposition. It has the following
simple description.

2.7. Lemma. For any two maps f, g : C → D , we have

f ∼ g ⇐⇒ ∃α ∈ I(C) fα = g .

Proof. If f and g satisfy the statement (right hand side), then of course f ∼ g . For the
other implication, observe first that the statement holds for the generating cases α ∼ 1 ,
and that the statement is preserved by postcomposition. It thus remains to show that it
is preserved by precomposition. For that it suffices to show that the statement holds for
βf ∼ f , for β isotropy. However, since β ∈ Im(νD) we know that there is an element of
isotropy τ ∈ Z(D) for which τD = β . Thus, τf is an isotropy automorphism of C with
βf = fτf .

We shall write
ψ : C→ C/I

for the quotient map. We call it the isotropy quotient of C . It is the identity on objects,
and it sends an arrow to its ∼ equivalence class.

2.8. Lemma. The quotient map ψ : C→ C/I is conservative (reflects isomorphisms).

Proof. Suppose ψ(f) is an isomorphism with inverse ψ(g) . By Lemma 2.7 we have
isotropy isomorphisms α, β such that gf = α and fg = β . It follows that α−1g is a
two-sided inverse for f because gf = α gives α−1gf = α−1α = 1 , and so on.
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As a consequence we find that for each object C of C , the following square is a
pullback.

AutC(C)
ψ // //

��

AutC/I(C)

��
C(C,C)

ψ // // C/I(C,C)

2.9. Lemma. We have a short exact sequence

1 // I(C) // AutC(C)
ψ // // AutC/I(C) // 1 .

Therefore, the isotropy maps are the only automorphisms of C that get annihilated by the
quotient map.

Proof. I(C) is a normal subgroup of Aut(C) : suppose that α = τC for τ ∈ Z(C), and
let β ∈ Aut(C) . We deduce that β−1αβ ∈ I(C) because β−1αβ = qC(β∗τ) , which is so
because reindexing an element of isotropy along β is conjugation. Thus, the map ψ is in
fact the cokernel of νC .

The following facts, which we state for future reference, follow directly from the defi-
nitions.

2.10. Proposition. Let C be a category with isotropy quotient ψ : C→ C/I .

(i) The isotropy of C is effective if and only if C/I is rigid;

(ii) C is anisotropic if and only if ψ is an equivalence (equivalently, an isomorphism).

2.11. Universal actions. We conclude this section on basic isotropy of small categories
by considering the universal action on presheaves by the isotropy group. Let C be a small
category, and Z its isotropy group. For objects C,D of C , the group homomorphism
νC : Z(C)→ Aut(C) induces an action of Z(C) on C(C,D) :

C(C,D)× Z(C)→ C(C,D) ; (f, τ) 7→ fνC(τ) = fτC .

Varying the object C , we find that Z acts on the representable presheaf C(−, D) :

C(−, D)× Z→ C(−, D) .

When we also vary D we find that for a morphism f : D → D′ we obtain a commutative
square

C(−, D)× Z //

f×Z
��

C(−, D)

f

��
C(−, D′)× Z // C(−, D′).
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This canonical action of Z on representable presheaves is an instance of an action

θX : X × Z→ X

on arbitrary ones X via the formula

X(C)× Z(C)→ X(C) ; (x, τ) 7→ X(τC)(x) . (6)

Every morphism f : X → Y of presheaves is equivariant with respect to these canonical
actions in the sense that we have a commutative square

X × Z
θX //

f×Z
��

X

f
��

Y × Z
θY

// Y .

Also, θZ , the canonical action of the isotropy group on itself, is the conjugation action.
Moreover, there is a precise sense in which the isotropy group is universal with these
properties. We refer the reader to [Funk et al., 2012] for more details.

3. Functoriality

So far we have considered the isotropy group and the isotropy quotient of a fixed small
category C . We now investigate what happens when we vary C .

3.1. Comparison spans. Consider a functor F : D→ C . We may pull back the isotropy
group ZC of C along F to D :

F ∗ZC : Dop → Grp ; F ∗ZC(D) = ZC(FD) .

The following diagram shows how to compare this group with ZD .

D/D
πD
��

F/D // C/FD
πFD
��

D
F

// C

(7)

Generally, there is no reason why an automorphism of πD would factor through one of
πFD or vice versa. However, nothing stops us from considering compatible pairs

(σ, τ) ∈ ZD(D)× ZC(FD)

in the sense that Fσ = τ(F/D) . This amounts to

D/D
πD
��
⇒
σ πD
��

F/D // C/FD
πFD

��
⇒
τ πFD
��

D
F

// C

(8)
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being commutative. Let us write ZF (D) for the group of compatible pairs (σ, τ) as above.
We have a pullback diagram

ZF (D)
mD //

ρD
��

ZC(FD)

��
ZD(D) // Aut(D/D → D→ C)

ZF
m //

ρ

��

F ∗ZC

��
ZD // ZF

(9)

where the bottom and right-hand maps are given by whiskering with F and with F/D , re-
spectively. Everything is natural in D , so that we obtain a pullback diagram of presheaves
of groups on D above (right). We refer to the (jointly monic) span of groups (m, ρ) in (9)
as the isotropy span of F .

We sometimes need the following diagram associated with the isotropy span of F and
each object D of D .

ZF (D)
mD

''
ρD

xx
ZD(D)

νD
��

ZC(FD)

νFD
��

Aut(D)
F

// Aut(FD) .

(10)

The following proposition is not needed for the rest of the developments in this paper,
but we include it as it further elucidates the nature of the isotropy spans. Its statement
refers to the so-called Peiffer Identity which is part of the definition of a crossed module:
a group homomorphism d : M → G from a G-module M to G is said to satisfy the Peiffer
identity when h · d(k) = k−1hk.

3.2. Proposition. The isotropy span of a functor F : D→ C respects universal actions
(6) in the sense that for every presheaf X on C the following square (left) commutes.

F ∗X × ZF
F ∗X×m//

F ∗X×ρ
��

F ∗(X × ZC)

F ∗θX
��

F ∗X × ZD
θF∗X // F ∗X

ZF × ZF
conj

$$
ZF×ρ

��
ZF × ZD θZF

// ZF

Moreover, ρ satisfies the Peiffer identity in the sense that the diagram above (right) com-
mutes. Hence, ρ is a crossed C-module, and (F,m) is a morphism of crossed modules
([Funk et al., 2012]).

Proof. The instance X = ZC of F · ρ = θ ·m

F ∗ZC × ZF
F ∗ZC×m//

F ∗ZC×ρ
��

F ∗(ZC × ZC)

conj
��

F ∗ZC × ZD
θF∗ZC // F ∗ZC
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shows that for any (σ, τ) ∈ ZF and γ ∈ F ∗ZC we have

γ · σ = θ(γ, ρ(σ, τ)) = τ−1γτ .

Then for any (α, β) ∈ ZF we have

(α, γ) · ρ(σ, τ) = (α, γ) · σ = (α · σ, γ · σ) = (σ−1ασ, τ−1γτ) = (σ, τ)−1(α, γ)(σ, τ) .

This establishes the Peiffer identity.

It is interesting to analyze the behavior of isotropy spans with respect to composition
of functors, but we omit this aspect.

3.3. Preservation. Generally, the isotropy span associated with a functor is the best
we can do in terms of comparing the two isotropy groups. However, there are important
special cases where one, or both, of the legs of the span is a surjection, or even an
isomorphism. Since the isotropy span of a functor can be thought of as a relation between
the isotropy groups, we adopt some terminology from the calculus of relations.

3.4. Definition. Consider a functor F : D→ C with associated isotropy span (9). Then
the associated span is called

(i) total when ρ is an epimorphism;

(ii) functional when ρ is an isomorphism;

(iii) surjective when m is an epimorphism;

(iv) co-functional when m is an isomorphism;

When both legs of the span are isomorphisms we say that F is stable.

We are mostly interested in situations where F induces a well-behaved functor between
the quotient categories. Since the isotropy quotient of a category is defined purely in terms
of the image I(C) of νC (5) it makes sense to consider the following properties of functors.

3.5. Definition. A functor F : D→ C is said to:

(i) preserve isotropy if for any α ∈ Aut(D) , if α is isotropy then F (α) is isotropy;

(ii) reflect isotropy if for any β ∈ Aut(FD) , if β ∈ I(FD) then there exists an α ∈ I(D)
with F (α) = β .

We may characterize the first condition as follows:
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3.6. Proposition. For F : D→ C , the following are equivalent:

• F preserves isotropy;

• F descends to the isotropy quotient in the sense that there is a (necessarily unique)
functor F/I : D/I→ C/I making

D F //

ψD ����

C
ψC����

D/I
F/I
// C/I

commute.

• For each D , the map F : Aut(D)→ Aut(FD) restricts to a map I(D)→ I(FD) .

We now wish to relate properties of the isotropy span of F to its preservation proper-
ties. Our first observation is the following.

3.7. Lemma. Let F : D→ C be a functor with isotropy span (9). Then:

(i) F preserves isotropy if the span of F is total;

(ii) F reflects isotropy if the span of F is surjective.

Proof. (i) Consider

ZD(D)

qD
����

ZF (D)
mD //ρDoooo ZC(FD)

qFD
����

I(D)
��

iD
��

? // I(FD)
��

iFD
��

Aut(D)
F

// Aut(FD)

(11)

Commutativity of the outer diagram entails that iFD qFDmD coequalizes the kernel pair of
qD ρD , and since iFD is injective, so does qFDmD . Hence, it factors through the quotient
map qD ρD .

(ii) If mD is surjective, then any element of I(FD) lifts to ZF (D) , and then projects
to I(D) .
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3.8. Example. This example illustrates that a functor F may preserve isotropy but the
span of F may not be total. Let F : D→ C be the non-full inclusion

Y
f //α 77 X

h // D Y

f
((

g
66α 77 X

h // D

where we have fα = f , so that there is non-trivial isotropy at X and at D in D . In C we
impose hf = hg , but stipulate that gα 6= g . Thus, at D the identity can only lift along
hf = hg to the identity, and not to α . This makes the isotropy group of C at D trivial.
Thus, F preserves isotropy but not every element of isotropy of D can be extended to one
in C .

On the other hand, a functor may be stable (induce an isomorphism of isotropy
groups), but not give an isomorphism between automorphism groups.

3.9. Example. Let D be the category with two objects X,D , and with hom-sets

D(D,D) = {1, α} ; D(X,X) = {1, β} ,

so that both automorphism groups are isomorphic to Z2 , and D(X,D) = {f, αf} , where
αf = fβ . Let F : D→ C be the quotient by the least congruence identifying α with 1 .

X

f
��

β

��
FX

Ff
��

F (β)

��

D

α

EE FD

Fα=1

EE

D
F

// C

Then F is stable, but F identifies automorphisms of D .

Since it is important to understand under what conditions properties of F are inherited
by its quotient, we record the following result.

3.10. Lemma. Let F : D→ C preserve isotropy. Then if F is full, so is F/I . Moreover,
if F is faithful and its span is surjective, then F/I is faithful.

Proof. The first part is immediate. For the second part, suppose F/I[f ] = F/I[g] , i.e.,
Ff ∼ Fg . Then we have Ff β = Fg for some β ∈ I(FD) . By surjectivity there is
α ∈ I(D) such that Fα = β . This gives F (fα) = Fg . Since F is faithful it follows that
fα = g , whence [f ] = [g] .
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3.11. Sieves. For our purposes, the case of a full inclusion is particularly important. In
this section we collect a few elementary but useful results concerning the isotropy behavior
of such functors.

3.12. Proposition. Let F : D → C be a full and faithful functor. Then the span of F
is co-functional.

Proof. We may define an inverse to m as follows: an automorphism τ of πFD induces
by whiskering with F/D an automorphism of the composite

D/D F/D // C/FDπFD // C .

Because F is full and faithful this automorphism factors uniquely as

D/D
πD

((

πD

66⇓F ∗τ D F // C .

Thus, an element τ ∈ ZC(FD) induces a compatible element F ∗τ ∈ ZD(D) . It is easily
verified that this operation is inverse to mD .

For full and faithful F we identify ZF and F ∗ZC , and refer to ρ : F ∗ZC → ZD as the
canonical comparison map. Generally, ρ is neither injective nor surjective.

In general, we cannot expect a full inclusion to be stable. One situation where we
indeed have stability is when F : D→ C is a sieve, by which we mean F is a full inclusion
with the property that C(C,FD) = ∅ whenever C is not in the image of F .

3.13. Proposition. A sieve inclusion is stable.

Proof. Let F : C → D be a sieve inclusion. Then for any object D of D, the functor
F/D is an isomorphism. Therefore, whiskering with it is a bijective operation.

3.14. Lemma. If F : C → D is a sieve inclusion, then F/I exists and is also a sieve
inclusion.

Proof. It is immediate from Lemma 3.10 that F/I is full and faithful. The sieve property
is not changed by factoring out congruences.

In preparation for the technical work in § 8, we briefly consider transporting isotropy
along right adjoints. This has significant practical value for the computation of isotropy
groups. The pullback functor F ∗ associated with a functor F : D→ C of small categories
has a right adjoint

SetD
op

⊥
F∗

22 SetC
op

F ∗rr

that we denote F∗ (right Kan extension). Explicitly, given a presheaf B on D we have

F∗B (C) = RanFB (C) = lim
f :FD→C

B(D) ,
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where the limit is taken over the comma category F ↓C . This limit coincides with the
set of natural transformations

C(F ( ), C)→ B .

The unit η of the adjunction F ∗ a F∗ at a presheaf A on C has the form

ηA : A→ F∗F
∗(A) ; ηA,C : A(C)→ F∗F

∗(A)(C) ; y 7→ 〈f ∗(x)〉f :FD→C .

Applying this to the isotropy group ZC , and because right adjoints preserve group objects,
we obtain a group F∗F

∗ZC and a homomorphism

η : ZC → F∗F
∗(ZC) ; ηC(τ) = 〈f ∗τ〉f :FD→C .

3.15. Lemma. For a sieve inclusion F : D → C , the unit of F ∗ a F∗ at ZC may be
identified with the group homomorphism whose component at an object C of C is

ηC : ZC(C)→ lim
f :FD→C

ZD(D) .

Proof. If F is a sieve inclusion, then F ∗ZC ∼= ZD .

We think of the unit ηC as restricting an element of isotropy at C to a compatible
family of elements of isotropy at the objects of D . It is natural to wonder from what
additional data one may recover ZC from F∗ZD . This question is answered in § 7.1.

4. Key example

We present a key example of a category with higher order isotropy. We do this by hand
partly because we believe this is insightful, and partly to convince the reader that once
we seek to develop more complex examples, the combinatorics become so elaborate that
a more conceptual approach is justified.

4.1. The category X. We construct a category X with the following properties:

• X has non-trivial isotropy;

• X/I has non-trivial isotropy (second order isotropy);

• (X/I)/I is anisotropic (has trivial isotropy).

The category X is constructed as a non-full subcategory of Set on the objects

A = {0, 1}, B = {a, b, c, d}, C = {p, q, r, s} .

Let X(A,A) = {1, α} where α is the twist map. We set X(B,B) = {1, β} where β is the
permutation (ac)(bd) . Finally, X(C,C) = {1, γ, δ, γδ} where

γ = (pr)(qs), δ = (ps)(qr) .
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It follows that γδ = δδ = (pq)(rs) , and that X(C,C) ∼= Z2 × Z2 .
These are all the isomorphisms in X . We also add non-isomorphisms

f : B → A f(a) = f(b) = 0, f(c) = f(d) = 1
g : C → B g(p) = a, g(q) = b, g(r) = c, g(s) = d
h : C → B h(p) = b, h(q) = a, h(r) = c, h(s) = d

This gives the following picture:

C

γ

��

δ



g
++

h

33 B

β

��

f // A

α

��
C

g
++

h

33 B
f
// A

where the vertical maps are the (generating) automorphisms, while the horizontal maps
are the (generating) non-isomorphisms. Of course, adding these maps results in new
composites, which we exhaustively describe below. Observe that:

• fg = fh

• αf = fβ , so that β is a lift of α along f (and is unique with that property)

• βg = gγ , so that γ is a lift of β along g (and is unique with that property)

• βh = hδ , so that δ is a lift of β along h (and is unique with that property)

• βg 6= gδ and βh 6= hγ .

The last item is key as it implies that α cannot be isotropy: no possible choice of lift of
α along fg = fh is coherent with the (forced) lifts of β . Note that X(B,A) = {f, αf} .
Indeed, the maps f and αf are clearly different, and there are no other maps B → A
because every such map is a composite of a map in X(B,B) with f and a map in X(A,A),
and the only other non-trivial possibility is fβ = αf . We also verify by hand that

X(C,B) = {g, h, gγ, gδ, hγ, hδ, gγδ, hγδ}

and that X(C,A) = {fg, αfg} . It follows that these sets are closed under pre- and
postcomposition by automorphisms. This completes the description of X.

The maps g and h have the unique lifting property, but the composite fg = fh does
not because α lifts to both γ and δ; equivalently, the identity on A lifts to γδ .

4.2. Properties of X. We claim that X has the desired properties. We begin by
computing the isotropy of X.
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4.3. Lemma. For the category X we have

• I(C) = {1, γ, δ, γδ} = X(C,C)

• I(B) = {1, β} = X(B,B)

• I(A) = 1 .

Proof. All automorphisms of C are isotropy because X(C,C) is a group and because
there are no other maps with codomain C . As for β we have already indicated that it
lifts uniquely along g and h to give γ and δ, respectively. But then β lifts uniquely along
any map C → B because we can first lift along g (or h depending on the map), and then
conjugate with the remaining isomorphism.

Finally, we must show that α is not isotropy. But that is so because the only way to
lift α along f is to β , and β has two distinct lifts along g and h .

We may now describe the quotient category X/I . Its objects are of course the same as
those of X . We get X/I(C,C) = 1 , and X/I(B,B) = 1 because all endomorphisms of B
and of C are isotropy. Consequently, we have X/I(C,B) = {[g], [h]} . These two maps are
not identified because we don’t have g = hζ for any ζ . And we have X/I(A,A) = {1, [α]}
because α is not isotropy. We also have X/I(B,A) = {[f ]} because [αf ] = [fβ] = [f ][β] =
[f ] . Similarly, we have X/I(C,A) = {[fg]}.

4.4. Proposition. The map [α] is a non-trivial isotropy map in X/I .

Proof. The map [α] is not the identity because α is not isotropy in X . Along [f ] it lifts
to the identity, as it does along [fg] .

Note how the obstruction to α being isotropy in X , which is the fact that γ and δ are
different possible lifts along fg , is removed once we pass to the first isotropy quotient:
both γ and δ are identified with the identity. We may think of α being “isotropy up to
isotropy.” The picture for the isotropy quotient is therefore as follows.

C

[γ]=[δ]=1

��

[g]
++

[h]

33 B

[β]=1

��

[f ] // A

[α]

��
C

[g]
++

[h]

33 B
[f ]
// A

The quotient X/I has full isotropy as the only isotropy automorphism is [α] . Thus, the
second quotient (X/I)/I is rigid.

4.5. Remark. The category X is in a sense the smallest possible because its automor-
phism groups are based on Z2 . We may use any group G as a parameter in the construc-
tion; then we get X(A,A) ∼= X(B,B) ∼= G and X(C,C) ∼= G×G . The isotropy behavior
is then exactly the same.
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5. Isotropy rank

Having seen that it is possible for a category to have non-trivial higher order isotropy we
wish to study this phenomenon more systematically. Our main tool is what we call the
isotropy rank of a category.

5.1. Isotropy rank of a small category. Consider a small category C with its
isotropy quotient ψ : C→ C/I . The quotient C/I may itself have non-trivial isotropy.

C→ C/I→ (C/I)/I→ · · ·

To study this process we first define the following sequence of categories and congruences:

• C{0} = C , and I{0} = I (the isotropy congruence on C)

• C{γ+1} = C{γ}/I{γ} , and I{γ+1} is the isotropy congruence on C{γ+1}

• C{κ} = Colimλ<κC{λ} , where this colimit is taken in Cat . Then I{κ} is the isotropy
congruence on the colimit, or equivalently it is the union of the congruences I{λ} for
λ < κ .

We thus obtain a diagram, indexed by the ordinals, of which the first bit looks like

C = C{0} → C{1} → C{2} → · · · → C{ω} → C{ω+1} → · · ·

Our notation for the quotient functor is ψλ<κ : C{λ} → C{κ} , but when confusion is
unlikely to arise we simply write ψ, or even leave these quotient maps unnamed.

5.2. Notation. We denote the image of a morphism f : C → D of C under the quotient
ψ0<κ : C→ C{κ} by

ψ0<κ(f) = [f ]κ .

For an ordinal κ , we may describe C{κ} directly as the quotient of C under the con-
gruence ∼κ . This congruence is given by

• f ∼0 g ⇔ f = g

• f ∼λ+1 g ⇔ [f ]λ ∼ [g]λ , where ∼ is the isotropy congruence on C{λ}

• f ∼κ g ⇔ f ∼λ g for some λ < κ , where κ is a limit ordinal.

We turn to the question of stabilization of this chain.

5.3. Definition. The isotropy rank of a small category C is the least ordinal κ for which
the quotient map C{κ} → C{κ+1} is an equivalence. In this case, we write IR(C) = κ .

Any small category has an isotropy rank. Indeed, this follows from a simple cardinality
argument as each quotient of a small category C is induced by a congruence on C , and
there is only a small set of such congruences. However, we argue Cor. 5.6 in terms of the
following refinement.
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5.4. Definition. Let α : C → C be an automorphism of a small category C . The
isotropy rank of α is defined by:

IR(α) =


0 if α = 1
the least κ s.t. [α]κ = 1 if such κ exists
−∞ if no such κ exists.

Def. 5.4 formalizes the idea that every automorphism either becomes isotropy at some
(necessarily unique) stage, or never becomes isotropy. The isotropy rank of α is never a
limit ordinal: if α becomes the identity under C→ C{κ} where κ is a limit ordinal, then
α ∼κ 1 , whence α ∼λ 1 for some λ < κ . Thus α already becomes the identity under
C→ C{λ} and hence must have isotropy rank λ or less.

5.5. Proposition. We have IR(C) =
∨
{IR(α) | α ∈ Aut(C) , C ∈ Ob(C)} .

Proof. Denoting the supremum by κ we observe that C{κ} = C{κ+1} . Indeed, suppose
[α]κ is isotropy. Then because 0 ≤ IR(α) ≤ κ we have [α]κ = 1 , showing that C{κ} has no
isotropy. The ordinal κ is the least one for which C{κ} = C{κ+1} . In fact, if there were
λ < κ with this property, then for all automorphisms α we would have IR(α) ≤ λ . But
then κ would be below λ as well, which is a contradiction.

Of course, a small category has only a set of automorphisms. Therefore, we have the
following.

5.6. Corollary. Every small category has an isotropy rank.

5.7. Higher isotropy groups. The chain of quotients of C provides a sequence of
groups Zκ , called the higher order isotropy groups of C , defined by

Cop // // C{κ}op Z{κ} // Grp .

In other words, Zκ is the presheaf of groups on C obtained by pulling back the isotropy
group Z{κ} of C{κ} to C . Here and in what follows if N denotes a concept relating to a
category C , then N{κ} denotes the corresponding concept for C{κ} .

At an object C we have the canonical maps

ν
{κ}
C : Z{κ}(C)→ Aut{κ}(C)

with image I{κ}(C) . We may pull these groups back along the quotient Aut(C) →
Aut{κ}(C) as in

Z{κ}(C)

����
ν
{κ}
C

~~

Iκ(C)
��

��

// // I{κ}(C)
��

��

Aut(C) // // Aut{κ}(C)
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to get an increasing chain of subgroups of Aut(C) :

I(C) = I0(C) ⊆ I1(C) ⊆ · · · ⊆ Iλ(C) ⊆ Iλ+1(C) ⊆ · · · . (12)

Moreover, for each λ we have a short exact sequence

1 // Iλ(C) // // Aut(C) // // Aut{λ+1}(C) // 1 .

After we have developed some more tools in § 8 we will be in a position to give for
each ordinal κ an example of a small category with an object C such that each inclusion
Iλ(C) ⊆ Iλ+1(C) in the chain of subgroups (12) is strict, for λ < κ .

5.8. Definition. The preservation rank of a functor F : D → C is the largest ordinal
κ ≤ max{IR(C), IR(D)} such that for all λ < κ , the induced F {λ} : C{λ} → D{λ} preserves
isotropy. Moreover, this rank is said to be maximal when κ = max{IR(C), IR(D)}.

This definition is sensible because F {λ} preserving isotropy is equivalent to F {λ+1}

being well-defined. The statement that F has preservation rank κ means that for each
λ < κ and each object D of D we have a restriction of F as in

Iλ(D)
��

��

F // Iλ(FD)
��

��
Aut(D)

F
// Aut(FD) .

We may also consider stability properties of functors, the most important one being the
following.

5.9. Definition. The stability rank of a functor F : D → C is the largest ordinal
κ ≤ max{IR(C), IR(D)} such that for all λ < κ , the induced F {λ} : C{λ} → D{λ} is stable.
Moreover, this rank is said to be maximal when κ = max{IR(C), IR(D)} .

Our work in § 8 depends on the following result.

5.10. Theorem. A sieve inclusion has maximal stability rank.

Proof. Transfinite induction is valid because sieve inclusions are stable (Prop. 3.13), and
the quotient of a sieve inclusion is again a sieve inclusion (Lemma 3.14). Moreover, it is
easily seen that if every F {λ} is a sieve inclusion for λ < κ , then so is F {κ} .

5.11. Dense families. We are able to further reason about isotropy rank with a rel-
atively simple concept that helps in the proofs of the main results concerning isotropy
groups of collages of profunctors and of colimits of categories (7).
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5.12. Definition. Let A = {αi ∈ Aut(Xi) | i ∈ I} be a set of automorphisms of a
category C . Then A is said to be dense (for C) when the equation

IR(C) =
∨
i∈I

IR(αi)

holds.

By Prop. 5.5, the family of all automorphisms of C is dense. However, we are mostly
interested in finding more economical dense families. For example, if a category C has
only finitely many automorphisms, then one may simply choose an α with IR(C) = IR(α) ,
so that A = {α} is dense. For example, in the case of the category X (§ 4.1) the twist
automorphism α has rank 2 , which is maximal. Therefore {α} is a dense family in X .

5.13. Lemma. Let C be a category with isotropy rank κ, and suppose A = {αi | i ∈ I} is
dense.

(i) When κ is a successor ordinal there exists an automorphism i ∈ I such that {αi} is
dense.

(ii) When κ is a limit ordinal there exists a subset J ⊆ I with the property that A′ =
{αi | i ∈ J} is also dense, and IR(αi) = IR(αj) implies i = j .

Proof. (i) If C{κ} has non-trivial isotropy, then we may pick an automorphism α such
that α ∈ Iκ , i.e., IR(α) = κ+ 1 .

(ii) We know that for each λ < κ there must exist α with λ ≤ IR(α) < κ .

The main technical point about density that we wish to exploit later is the fact that
the image of a dense family under the iterated quotient maps is again dense.

5.14. Theorem. Let A = {αi | i ∈ I} be a dense family in C . Then for each λ, the
image of A under C→ C{λ} is dense in C{λ} .

Proof. We argue by transfinite induction on IR(C) . When C is anisotropic the result is
trivial (as when λ > κ). If IR(C) is a successor ordinal, then using Lemma 5.13 we may
pick i ∈ I for which IR(αi) = κ+ 1 . Then for each λ ≤ κ , αi is non-trivial and dense.

When IR(C) = κ is a limit ordinal, then we may assume by the induction hypothesis
that the result holds for all κ′ < κ . This means in particular that for all λ < κ , the image
of A under C → C{λ} is dense. It therefore remains to show this for λ = κ , but this is
trivial since C{κ} is anisotropic.

6. Construction

Thus far we have seen an example of a category with rank 2 , but it remains to be shown
that higher ranks, and even infinite rank, are indeed manifested. We shall construct
for every ordinal κ a category X[κ] with isotropy rank κ . It may help to first provide
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an intuitive idea behind the construction of X[3] without proofs. In order to make this
construction precise we may realize X[3] as the collage of a suitable profunctor. This
allows us to precisely define the other categories X[κ] as well. Finally, we isolate the
kind of profunctors being used here, and turn to the general question of how to compute
isotropy of categories arising from such profunctors. This analysis yields the desired
results about the categories X[κ] .

6.1. Informal sketch. An informal explanation of how to construct a category X[3]
with isotropy rank 3 follows. The category X (4.1) looks roughly as follows:

C

γ

��

δ



g
++

h

33 B

β

��

f // A

α

��
C

g
++

h

33 B
f
// A

where the horizontal morphisms are non-isomorphisms satisfying fg = fh , the vertical
maps are automorphisms, and α has isotropy rank 2 . The idea is to attach a copy of X
to itself, creating an obstruction for the isotropy maps in the second copy. We achieve
this by formally adding two new morphisms v, w from the object A in the first copy of
X to the object C in the second. The category X[3] looks something like this, where we
rename the objects and arrow in the second copy of X .

C

γ

��

δ



g
++

h

33 B

β

��

f // A

α

��

v
((

w
66 C
′

γ′

��

δ′



g′
++

h′
33 B

β′

��

f ′ // A′

α′

��
C

g
++

h

33 B
f
// A

v
((

w
66 C
′

g′
++

h′
33 B

f ′
// A′

We define X[3] in such a way that the two morphisms v, w create an obstruction for the
automorphisms of C ′ to be isotropy. This we do by imposing the relations

vγ′ = αv, wγ′ = w, wδ′ = αw, vδ′ = v

so that γ′ and δ′ must lift to a non-isotropy map and hence cannot be of rank lower than the
rank of α . This forces the following facts about the isotropy ranks of the automorphisms,
where we list only the generating maps and omit their composites.

• Rank 1: γ, δ (at the object C), and β (at the object B).

• Rank 2: α (at A), γ′, δ′ (at C ′), and β′ (at B′).

• Rank 3: α′ (at A′).
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In the first isotropy quotient, [α]1 is isotropy, and consequently so are [γ′]1 , [δ′]1 and [β′]1.
However, [α′]1 has rank 2 .

Passing to the next quotient we find that all automorphisms except for [α′]2 become
identities, while [α′]2 itself is isotropy. This implies that X[3] has isotropy rank 3 . It
is necessary to adjoin two morphisms, and not just a single morphism, because it is
impossible for a single morphism to satisfy lifting conditions which not only make γ′ ,
δ′ lift non-trivially, but also make their difference γ′δ′ lift non-trivially. The latter is
necessary because it is this difference which is the obstruction to α′ being isotropy, and
hence we must make sure that this difference does not vanish after one quotient.

Stacking copies of X onto itself can be repeated, producing categories X[n] with
isotropy rank n for any finite n . The colimit of the X[n] produces a category with
isotropy rank ω . We continue into the transfinite by stacking copies of X onto X[ω] .

6.2. Collages. We wish to make the above construction more formal and more general.
A profunctor P : C # D is a functor

P : Cop × D→ Set .

It has a corresponding two-sided discrete fibration
∫
P → C×D , where

∫
P denotes the

category of elements of the profunctor. By definition, the collage of P is the following
cocomma category. ∫

P

π
##

ρ
||

C

ι ##

⇒ D

υ{{
C ∗P D

When P is understood we sometimes simply write C∗D for the collage. Being a cocomma
category, the set of objects of the collage is the disjoint union of those of C and D . For
morphisms we have:

C ∗ D(C,C ′) = C(C,C ′) for C,C ′ in C
C ∗ D(D,D′) = D(D,D′) for D,D′ in D
C ∗ D(C,D) = P (C,D) for C in C, D in D.

An element of P(C,D) is realized as a morphism of C ∗D . We refer to such a morphism
as a heteromorphism if we wish to distinguish it from one coming from C or D . The
inclusion ι is a sieve, and υ is a cosieve inclusion.

We seek to identify classes of profunctors for which computing the isotropy group of
the collage is manageable. The free profunctor F(P ) on a family of sets P (X, Y ) indexed
by the objects of C× D is explicitly described as

F(P )(C,D) =
∐
X,Y

C(C,X)× P (X, Y )× D(Y,D) .
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Consequently, the collage of F(P ) has the property that for any two heteromorphisms
(f,m, g) and (f ′,m′, g′) , we have

(f,m, g) = (f ′,m′, g′)⇐⇒ f = f ′ ,m = m′ , g = g′ .

It is easily seen that in the collage of such a profunctor, non-trivial automorphisms never
lift along heteromorphisms, making the isotropy of such a collage uninteresting. Conse-
quently, we wish to impose relations specifying lifts along heteromorphisms. The data
necessary to do so is formalized in the following definition.

6.3. Definition. [A-system] Let C,D be small categories. An A-system P = (P, p,Φ)
from C to D consists of:

• for each pair of objects (X, Y ) of C×D , a set P (X, Y ) (whose elements we think of
and refer to as generating heteromorphisms); we may equivalently regard this data
as a map p : P → Ob(C)×Ob(D) such that P (X, Y ) = p−1(X, Y ) .

• for each generating heteromorphism m ∈ P (X, Y ) , a group homomorphism φm :
Aut(Y )→ Aut(X) ; this may be regarded as a functor Φ making the following com-
mute: ∐

X,Y P (X, Y ) = P

p

��

Φ // Grp→

��
Ob(C)×Ob(D)

Aut(−)×Aut(−)
// Grp× Grp

where the right vertical morphism forgets the homomorphism.

A morphism of A-systems from (P, p,Φ) to (Q, q,Ψ) is a function t : P → Q making the
two diagrams below commute:

P
t //

p &&

Q

qxx
Ob(C)×Ob(D)

P
t //

Φ !!

Q

Ψ}}
Grp→

A-systems and their morphisms form a category A−Sys(C,D) .

The categories A−Sys(C,D) are easily seen to be complete and cocomplete: limits and
colimits are simply computed as in the slice category Set/(Ob(C)×Ob(D)×Ob(Grp→)) .

6.4. Construction. From an A-system P = (P, p,Φ) we construct a profunctor P =
R(P, p, φ) : C # D by first forming the free profunctor on the indexed set {P (X, Y ) |
X ∈ Ob(C), Y ∈ Ob(D)} , and then quotienting by the relations mφm(β) = β m for all
m ∈ P (X, Y ), β ∈ Aut(Y ) . Precisely:

P(C,D) =
∐
X,Y

[C(C,X)× P (X, Y )× D(Y,D)]/ ∼
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such that

(f,m, g) ∼ (f ′,m′, g′)⇐⇒ m = m′ and ∃β ∈ Aut(Y ) . f φm(β) = f ′ , β g′ = g . (13)

The assignment (P, p,Φ) 7→ R(P, p,Φ) is a functor

R : A−Sys(C,D)→ Prof(C,D) .

There are two key points about the general construction that are important for ana-
lyzing the isotropy of the collage in § 7. The first is the behaviour of generating hetero-
morphisms regarding isotropy: these maps have the unique lifting property with respect
to automorphisms in the sense that for every m ∈ P (X, Y ) and every automorphism
β ∈ Aut(Y ) , there is exactly one way φm(β) to lift β along m . The second point is
that when m,m′ are two generating heteromorphisms with m 6= m′ , there is never a
commutative diagram containing both m and m′ .

We shall need one further ingredient. Fixing the category D but considering a functor
F : C→ C′ , we obtain an induced functor

F∗ : A−Sys(C,D)→ A−Sys(C′,D)

given by postcomposition: for any object P = (P, p,Φ) of A−Sys(C,D) we consider

F∗P = (P, (|F | × 1)p, FΦ) ,

where FΦ takes m ∈ P (X, Y ) to the composite

Aut(Y )
φm // Aut(X) F // Aut(FX) .

The induced profunctor R(F∗P ) : C′ # D satisfies

R(F∗P )(C ′, D) =
∐
X,Y

[C′(C ′, FX)× P (X, Y )× D(Y,D)]/ ∼

with

(f,m, g) ∼ (f ′,m′, g′)⇐⇒ m = m′ and ∃β ∈ Aut(Y ). f F (φm(β)) = f ′ , β g′ = g . (14)

6.5. Lemma. Let F• : C′ # C denote the induced corepresentable profunctor associated
with a functor F : C→ C′ . Then the square

A−Sys(C,D) R //

F∗
��

Prof(C,D)

−◦F•
��

A−Sys(C′,D)
R

// Prof(C′,D)

commutes. Moreover, the collage of R(F∗P ) is the pushout

C

F
��

ι // C ∗P D

��
C′

ι′
// C′ ∗F∗P D .
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Proof. In fact, the two statements are equivalent because precomposing a profunctor
with F• corresponds on the level of collages to forming the pushout. We therefore only
prove the second statement. Suppose we are given functors M : C′ → B and N : C∗D→ B
for which MF = Nι . We define the extension R : C′ ∗ D → B as follows. R sends an
object X in the image of ι′ to MX and an object Y in the image of υ′ : D → C′ ∗ D to
NY . For any morphism [f,m, g] : C ′ → D in C′ ∗ D , i.e., f : C ′ → FX , m ∈ P (X, Y ) ,
and g : Y → D , define R[f,m, g] = N [1,m, g]Mf . This evidently makes the relevant
triangles commute and is unique with that property.

6.6. Definition of the categories X[κ]. By transfinite induction we shall define for
each ordinal κ a small category X[κ] as well as full sieve inclusion functors

ι = ιλ<κ : X[λ]→ X[κ]

for each λ < κ ; together these form a functor X[−] : Ord→ Cat . In addition, we define for
each κ > 1 (except for κ = λ+1 where λ is a limit ordinal) profunctors P [κ] : X[κ] # X[2]
and Q[κ] : X[κ] # X[1] , arising from A-systems. We define:

• X[0] = ∅, the empty category.

• X[1] is the category with a single object C , and X[1](C,C) = {1, λ1, λ2, λ1λ2} where
each of these maps squares to the identity; hence X[1](C,C) ∼= Z2 × Z2 .

• X[2] = X is the category described in § 4. The functor ι : X[1]→ X[2] is the evident
full inclusion.

Consider the profunctor P [2] = S : X # X given by the A-system S = (S, s, σ) such
that

• s−1(A,C) = {v, w} (and all other fibers are empty);

• σv, σw : Aut(C)→ Aut(A) are given on generators by

σv(γ) = α, σv(δ) = 1 ; σw(γ) = 1, σw(δ) = α .

The profunctor T = Q[2] : X # X[1] is given by the A-system from X to X[1] given by
simply restricting S to this smaller category.
Successor case, standard: Suppose that X[κ] is defined, where κ is not a limit ordinal
or a successor of a limit ordinal. By the induction hypothesis we have a profunctor
P [κ] : X[κ] # X . We define X[κ+ 1] = X[κ] ∗P[κ] X :

X[κ]
ικ+1
κ // X[κ+ 1] = X[κ] ∗ X Xυκ+1

κoo

To define the profunctors P [κ+ 1] : X[κ+ 1] # X and Q[κ+ 1] : X[κ+ 1] # X[1] we use
the inclusion υκ+1

κ : X→ X[κ+ 1] , allowing us to set P [κ+ 1] = S ◦ (υκ+1
κ )• (Lemma 6.5).

Similarly we let Q[κ+ 1] = T ◦ (υκ+1
κ )• .

Successor case, exceptions: If κ is a limit ordinal, then we shall define X[κ+1] and X[κ+2]
as the collages
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• X[κ+ 1] = X[κ] ∗Q[κ] X[1] and

• X[κ+ 2] = X[κ] ∗P[κ] X .

We also specify the profunctors P [κ + 2] : X[κ + 2] # X and Q[κ + 2] : X[κ + 2] # X[1]
using the cosieve inclusion υκ+2

κ : X → X[κ + 2] and setting P [κ + 2] = S ◦ (υκ+2
κ )•

(Lemma 6.5). Similarly we let Q[κ+ 2] = T ◦ (υκ+2
κ )• .

Limit case: Suppose that κ is a limit ordinal. By induction, we have constructed a chain

X[0]→ X[1]→ · · · → X[λ]→ X[λ+ 1]→ · · ·

Then define

• X[κ] = Colimλ<κX[λ] .

It remains to define the profunctors P [κ] : X[κ] # X and Q[κ] : X[κ] # X[1] . We
remark first that we also have X[κ] = Colimλ=λ′+2<κX[λ] . For each λ = λ′ + 2 < κ ,
by the induction hypothesis we are given a profunctor P [λ] : X[λ] # X , arising from
an A-system say as P [λ] = R(P [λ]) . Using the cocone inclusion ικλ : X[λ] → X[κ]
we may consider the induced A-system (ικλ)∗(P [λ]) . Doing this for each λ thus gives a
family of A-systems from X[κ] to X . The profunctor corresponding to the coproduct in
A−Sys(X[κ],X) of this family is the desired P [κ]:

P [κ] = R(
∐

λ=λ′+2<κ

P [λ]) .

Informally, this system contains two heteromorphisms to connect the new copy of X with
each of the copies of X occurring in X[κ] . We define Q[κ] in exactly the same way,
replacing the system P [λ] by Q[λ] . This concludes the definition of the sequence of
categories X[κ] .

Ultimately in Prop. 8.8 we establish that for any ordinal κ , the isotropy rank of X[κ]
is κ . The proof is by transfinite induction; the base cases κ ≤ 2 are taken care of in § 4.
The inductive steps involve an analysis of the behaviour of isotropy with respect to taking
sequential colimits of categories and of collages, carried out in § 7.

7. Isotropy and profunctors

Having constructed the categories X[κ] using collages of profunctors we are led to investi-
gate the isotropy of collages. We focus on profunctors arising from A-systems as these are
the ones that give us some control over the isotropy. We begin by describing the isotropy
group of the collage as a certain pullback. We investigate the isotropy quotient, and then
look at the sequence of higher quotients obtaining sufficient conditions on the profunctor
for finding the isotropy rank of a collage.



HIGHER ISOTROPY 563

7.1. The isotropy group of a collage. We are able to develop a manageable de-
scription of the isotropy of the collage when the profunctor arises from an A-system
(§ 6.2). Throughout, we consider such a fixed profunctor P = R(P, p,Φ) whose collage
we denote

C ι // C ∗ D D .υoo

Recall from Section 3.11 that a functor is a sieve inclusion if it is full and faithful and
if there are no morphisms from objects outside its image to objects within its image.
Therefore the inclusion functor ι is a sieve inclusion, and by Proposition 3.13 every object
C of C we have

ZC∗D(C) ∼= ZC(C) ,

where we identify C with ι(C) . It thus remains to describe ZC∗D(D) for objects D of D .
For any object D of D we have a group homomorphism

ρD : ZC∗D(D)→ ZD(D) (Prop. 3.12) .

We also have the unit of ι∗ a ι∗ at ZC∗D , which according to Lemma 3.15 may be identified
with

ηD : ZC∗D(D)→ lim
v:C→D

ZC(C) ,

where the limit is taken over the comma category ι↓D of heteromorphisms v : C → D .
The following analysis of ι ↓ D ultimately takes us to Theorem 7.2, stating that the
isotropy group ZC∗D(D) is recovered as the pullback (15).

A heteromorphism v : C → D has the form v = [f,m, g] with f : C → X , m ∈
P (X, Y ) and g : Y → D . The equivalence relation on such triples is (φm(β)f,m, g) ∼
(f,m, gβ) where β ∈ Aut(Y ) . We observe first that the objects of the form [1,m, g] :
C → D form a final subcategory of ι ↓ D . Moreover, this subcategory is a groupoid: if

t : [1,m, g]→ [1,m′, g′]

is a morphism of ι ↓ D , i.e., [1,m, g] = [1,m′, g′] t , then m = m′ and we obtain an
automorphism β with g′β = g and t = φm(β) . Thus, t is an isomorphism.

Putting things together we find that the limit defining ι∗ι
∗ZC∗D(D) may be identified

with the subgroup

H(D) ⊆
∏

g:Y→D
m∈P (X,Y )

ZC(X) ; 〈θm,g〉 ∈ H(D)⇔ ∀β ∈ Aut(Y ) θm,gβ = φm(β)∗(θm,g)

and the unit ηD with the map ZC∗D(D)→ H(D) that sends an element τ to the tuple

ηD(τ) = 〈[1,m, g]∗(τ)〉m,g ∈ H(D) .
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Now consider the following diagram in which the left hand vertical map is the unit ηD
just discussed, and where the top horizontal map is the comparison map ρD .

ZC∗D(D)

ηD

��

ρD // ZD(D)

j
��∏

g:Y→D ZD(Y )∏
g:Y→D νY

��∏
g:Y→D Aut(Y )

Φ
��

H(D)
⊆ //

∏
g:Y→D

m∈P (X,Y )
ZC(X)

∏
g,m νX //

∏
g:Y→D

m∈P (X,Y )
Aut(X)

(15)

The map j sends τ ∈ ZD(D) to 〈g∗τ〉g:Y→D and the map Φ is defined through its compo-
nents

Φm,g :
∏

g:Y→D

Aut(Y )→ Aut(X); Φm,g(〈βk〉k:Y→D) = φm(βg) ∈ Aut(X) .

We offer the following intuitive picture and explanation of the commutativity of dia-
gram (15).

X

φm(τg)
��

m // Y

τg
��

g // D

τD
��

X m
// Y g

// D

Suppose we have an element τ ∈ ZC∗D(D) . For any g : Y → D , we get a component
τg ∈ Aut(Y ) . By definition, τg is part of isotropy, and hence for a given heteromorphism
m : X → Y , τg must lift against m . But by definition of the profunctor giving rise to
the collage there is exactly one such lift, namely φm(τg) : this lift does not depend on
any information about τ other than the component τg . Of course, the automorphism
τ[1,m,g] = φm(τg) must itself be isotropy, but since X is an object of C and C is a sieve,
this simply means that it is in the image of ZC(X)→ Aut(X) .

7.2. Theorem. The square (15) is a pullback.

Proof. We have already explained why the diagram commutes. Let us therefore consider
an element τ ∈ ZD(D) and an element θ = 〈θm,g〉 ∈ H(D) which get mapped to the same
element of

∏
m,g Aut(X) . This agreement means that for each g : Y → D and each

m ∈ P (X, Y ) , the underlying component (θm,g)X ∈ Aut(X) is equal to φm(τg) . This data
may be used to construct an element ζ of ZC∗D(D) : we define ζ through its components
ζv , where v : U → D is a morphism in C ∗ D .

ζv =

{
τg if v is in D

(θm,g)f if v = [f,m, g]
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We must show that this is well-defined: if [f,m, gβ] = [fφm(β),m, g] , then we wish to
obtain (θm,gβ)f = (θm,g)fφm(β) . Since θm,g is an element of isotropy and hence natural, we
have (θm,g)fφm(β) = (φm(β)∗(θm,g))f , which equals (θm,gβ))f because θ ∈ H(D) .

We wish to show that ζ is natural, i.e., that given w : V → U and v : U → D we have
ζvw = wζvw . This is immediate from the naturality of τ when both v, w are in D. There
are two remaining cases: where v is in D and w is a heteromorphism, and where v is a
heteromorphism and w is in C . Suppose first that v = [f,m, g] , and w : C ′ → C is a
morphism of C . Then ζvw = (θm,g)fw , and naturality of θ gives

wζvw = w(θm,g)fw = (θm,g)fw = ζvw

as required. Now suppose v : D → D′ is in D and w = [f,m, g] is a heteromorphism.
Then ζvw = (θm,vg)f . Consider the diagram

C

ζvw=(θm,vg)f
��

f // X m //

φm(τvg)
��

Y
g //

τvg
��

D v //

τv
��

D′

τD′
��

C
f
// X m

// Y g
// D v

// D′

in which the two squares on the right hand side commute by naturality of τ , the second
square commutes by definition of the equivalence relation on maps in C ∗D , and the first
square commutes because θ is assumed to agree with τ . We thus get

wζvw = [f,m, g]ζvw = τv[f,m, g] = ζvw

as needed.

7.3. The isotropy quotient of a collage. The restriction homomorphisms

ρD : ZC∗D(D)→ ZD(D)

of a general profunctor P : C # D induces a congruence ∼P on D via the composite

ZC∗D(D)
ρD // ZD(D)

νD // AutD(D) . (16)

Thus we only quotient out those isotropy maps in D that are also isotropy when considered
in C ∗ D . Explicitly, for g, h : D → E in D ,

g ∼P h ⇔ ∃τ ∈ ZC∗D(D). g ◦ τD = h .

Consequently, we have the following commutative diagram.

C

����

ι // C ∗P D

����

Dυoo

����
C{1}

ι{1}
// (C ∗P D){1} D/∼Pυ′oo

(17)
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Alternatively, D/∼P is the bijective-on-objects, fully-faithful factorization of the compos-
ite

D→ C ∗ D→ (C ∗ D){1} .

In general, D/∼P is not the isotropy quotient of D because the restriction maps ρD need
not be surjective. The right hand square in diagram (17) is in fact a pullback. However,
the bottom row of the diagram is itself a collage of an induced profunctor

P{1} : C{1} # D/∼P ,

to which we refer as the quotient of P . Explicitly, we may consider the left Kan extension
of P along the quotient map depicted vertically in the following diagram.

Cop × D

����

P // Set

C{1}op × D/∼P
P{1}=Lan(P)

AA

⇒

A straightforward calculation reveals that P{1} is given as P{1}(C,D) = P(C,D)/∼ ,
where ∼ is the isotropy congruence on C ∗ D . We easily obtain:

7.4. Lemma. Let P : C # D be a profunctor. Then the bottom row of (17) is isomorphic
to the collage of the induced profunctor P{1}.

We return to the case where a profunctor P is constructed from an A-system P =
(P, p,Φ) as in 6.4. The quotient of P comes from the A-system P {1} , which has exactly

the same generating heteromorphisms as P , and with induced φ
{1}
m depicted below.

AutD(Y )
φm //

����

AutC(X)

����
AutD{1}(Y )

φ
{1}
m

// AutC{1}(Y )

The map φ
{1}
m is well-defined because if β ∈ AutD(Y ) is isotropy, then so is φm(β) . We

conclude the following.

7.5. Lemma. Let P = R(P ) : C # D be a profunctor arising from P = (P, p,Φ) . Then
the quotient profunctor satisfies P{1} = R(P {1}) .

We refer to the A-system P {1} obtained in this manner as the quotient of P .
We aim to identify specific cases where the congruence ∼P on D induced by P is

either trivial or the entire isotropy congruence. It is convenient to rewrite the pullback
diagram (15) for ZC∗D(D) . Observe that the bottom composite of (15) factors through
the subgroup

K(D) = {〈σm,g〉m,g | ∀β ∈ Aut(Y ). φm(β)−1σm,gφm(β) = σm,g}
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of
∏

m,g Aut(X) . In fact, it is easily seen that this makes the square

H(D) //
��

��

K(D)
��

��∏
m,g ZC(X) //

∏
m,g Aut(X)

(18)

a pullback. The vertical composite of (15) clearly factors through K(D) , so that the
following diagram is a pullback as well.

ZC∗D(D) //

��

ZD(D)

��
H(D) // K(D)

(19)

We exploit this in the following lemma. A category is called rigid when it has no non-
trivial automorphisms. In particular, such a category is anisotropic.

7.6. Lemma. [Rigidity Lemma] Let P = R(P, p,Φ) : C # D .

(i) Suppose that C is rigid. Then the canonical map υ∗ZC∗D → ZD is an isomorphism,
and the quotient collage is

C // C ∗ D

����

Dυoo

����
C // C ∗ D{1} D{1}oo

(20)

(ii) Let C be such that C{1} is rigid. Then the canonical map υ∗ZC∗D → ZD is a surjec-
tion, and the quotient collage of P is

C

����

// C ∗ D

����

Dυoo

����
C{1} // C{1} ∗ D{1} D{1} .υ{1}oo

(21)

Proof. (i) is an immediate consequence of (ii). To see why (ii) is true, note that it
suffices to show that the map H(D) → K(D) is surjective because diagram (19) is a
pullback. In turn, for this it suffices that

∏
m,g ZC(X)→

∏
m,g Aut(X) is surjective because

diagram (18) is a pullback. However, each of the components νX : ZC(X) → Aut(X) is
trivially surjective because the cokernel Aut(X)/I must be trivial since the quotient of C
is rigid.
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While the rigidity lemma gives sufficient conditions for the induced congruence on
D to be the full isotropy congruence, the following lemma gives a condition for it to be
trivial.

7.7. Lemma. Let P = R(P, p,Φ) : C # D , and suppose that for each τ ∈ ZD(D) with
τD 6= 1 there are g : Y → D and m ∈ P (X, Y ) with IR(φm(τg)) > 1 . Then ZC∗D(D) = 1 .
Consequently, the quotient collage is as follows.

C

����

// C ∗ D

����

Dυoo

C{1} // C{1} ∗ D Doo

(22)

Proof. This is a consequence of Theorem 7.2: an element τ of ZD(D) with the stated
property induces an element of

∏
m,g Aut(X) that cannot be in the image of

∏
m,g ZC(X) .

Thus, the pullback (15) is trivial.

For future reference we shall call a profunctor P obstructed if ∼P is trivial, and un-
obstructed if ∼P is the full isotropy congruence. Of course, these are two extremes as in
general the congruence ∼P is somewhere between the two.

7.8. Higher quotients of a collage. We consider the iterated isotropy quotients of
C ∗P D where P = R(P, p,Φ) is a profunctor coming from an A-system. The pattern we
have discovered, namely that the quotient of the collage of P is the collage of the induced
P{1}, persists into the transfinite.

Consider the case of a limit ordinal κ . On the one hand, by definition the κ-th isotropy
quotient of C∗D is Colimλ<κ(C∗D){λ} . On the other hand, we have a congruence ∼P,κ on
D induced by the composite D→ C ∗D→ (C ∗D){κ} , making the following commutative
diagram.

C
����

// C ∗ D
����

Doo

����
...

����

...

����

...

����
C{λ} //

����

(C ∗ D){λ}

����

D/∼P,λoo

����
C{λ+1} //

����

(C ∗ D){λ+1}

����

D/∼P,λ+1
oo

����
...

����

...

����

...

����
C{κ} // (C ∗ D){κ} D/∼P,κoo

It is easily seen that because each of the squares on the right side of the sequence is
a pullback, the sequence of quotients of D is a colimit diagram, so that D/∼P,κ is the
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least congruence on D containing all the approximating ∼P,λ . The bottom row is again
a collage; the corresponding profunctor P{κ} may be given by

P{κ}(C,D) = (C ∗ D){κ}(C,D) .

Moreover, using the same construction as in Lemma 7.5 there is an A-system P {κ} from
C[κ] to D for which P [κ] = R(P {κ}) : the set of generating heteromorphisms from X to

Y is P (X, Y ), while to m ∈ P (X, Y ) we associate the unique group homomorphism φ
{κ}
m

making the following diagram commute:

AutD(Y )
φm //

����

AutC(X)

����
AutD/∼P,κ(Y )

φ
{κ}
m

// AutC{κ}(Y )

This is well-defined by virtue of the definition of ∼P,κ .

7.9. Lemma. For each ordinal λ , the λ-th row of the quotient sequence of P = R(P )
is isomorphic to the collage of P{λ} : C{λ} # D/∼P,λ . Moreover, P [κ] arises from the
induced A-system P {κ} .

From this picture we can derive an upper bound for the isotropy rank of a collage: we
always have

IR(C ∗ D) ≤ IR(C) + IR(D) (ordinal sum) .

Under additional assumptions on P we can be more specific. For example, consider the
following condition, which should be compared with that of Lemma 7.7.

7.10. Definition. An A-system P = (P, p,Φ) from C to D (and its associated profunc-
tor) is called maximally obstructive if for each D in D and each τ ∈ ZD(D) with τD 6= 1
we have ∨

g:Y→D
m∈P (X,Y )

IR(φm(τg)) = IR(C) .

It immediately follows from Def. 7.10 that if P is maximally obstructive and IR(C) > 1 ,
then P = R(P ) is obstructed. Therefore, by Lemma 7.7 it induces the trivial congruence
on D .

7.11. Proposition. Let P be maximally obstructive, and let P = R(P ) . Then:

(i) all P {κ} are maximally obstructive;

(ii) for all λ < IR(C), the induced P{λ} are obstructed;

(iii) when 0 ≤ IR(α) ≤ 1 for each automorphism of C , the induced isotropy congruence
on D is the full isotropy congruence;
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Proof. P is maximally obstructive if and only if for each τ ∈ ZD(D) , the family

{φm(τg) | g : Y → D,m ∈ P (X, Y )}

is dense in C . Being a dense family descends to all higher quotients (Theorem 5.14). This
implies immediately that each P {κ} is maximally obstructive as well.

If also IR(C) > 1 , then Theorem 7.2 implies that no element τ ∈ ZD can be isotropy
in C ∗ D because a necessary condition is that each φm(τg) is isotropy in C .

Finally, if all automorphisms of C are isotropy, then again by Theorem 7.2 we find
that all elements τ ∈ ZD are in the image of ZC∗D(D)→ ZD(D) .

We stress that in (iii) we cannot weaken the hypothesis to 0 ≤ IR(C) ≤ 1 for it could
happen that there are automorphisms α with IR(α) = −∞ . If we had φm(τ) = α for such
α , then IR(τ) = −∞ as well. The following definition captures the condition we need.

7.12. Definition. An A-system P from C to D is suitable if it is maximally obstructive
and if for all m ∈ P (X, Y ) we have IR(φm(β)) ≥ 0 for all β ∈ AutD(Y ) .

All the categories that interest us in this paper are eventually rigid in the sense that
all automorphisms have non-negative isotropy rank. If C is an eventually rigid category,
any maximally obstructive profunctor with domain C is automatically suitable.

Let P be suitable, and suppose κ = IR(C), κ′ = IR(D) . The isotropy sequence of P
can take one of two forms depending on whether κ is a limit ordinal or a successor. When
κ is a limit ordinal we have

C
����

// C ∗ D
����

Doo

C{κ} // (C ∗ D){κ}

����

Doo

����
C{κ} // (C ∗ D){κ+κ′} D{κ′}oo

so that IR(C ∗ D) = κ + κ′ , with end result (C ∗ D){κ+κ′} ∼= C{κ} ∗ D{κ′} . On the other
hand, when IR(C) = κ = λ+ 1 , the sequence is as follows.

C
����

// C ∗ D
����

Doo

C{λ} //

����

(C ∗ D){λ}

����

Doo

����
C{λ+1} // (C ∗ D){λ+1}

����

D{1}oo

����
C{λ+1} // (C ∗ D){λ+κ′} D{κ′}oo

The only aspect that needs commenting is the fact that at stage λ the induced congruence
on D is the full isotropy congruence. However, this follows from Proposition 7.11. We
have therefore established the following.
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7.13. Theorem. Let P = R(P ) : C # D be suitable (Def. 7.12). Then

IR(C ∗ D) =

{
κ+ IR(D) if κ = IR(C) is a limit
λ+ IR(D) if λ+ 1 = IR(C) is a successor .

7.14. Proposition. Let P = R(P ) : C # D and Q = R(Q) : D # B be suitable. Then
the induced υ∗Q : C ∗F D # B is also suitable.

Proof. Any dense family A in D gives a dense family {υ(α) | α ∈ A} in C ∗ D since P
is suitable. Thus, if Q is suitable, then the family

{φm(τg) | τ ∈ ZB(D), g : Y → D, m ∈ Q(X, Y )}

is dense in C ∗ D because it is dense in D .

8. Main results

We turn to an analysis of the isotropy of the categories X[κ] defined in § 6. We first
study the problem of characterizing the isotropy group and rank of a category which
arises as a sequential colimit of categories. Together with the results on collages (§ 7) we
then have enough machinery to prove the desired results. As another application of these
techniques we shall construct, for each κ , a small category D[κ] for which the sequence
of subgroups (12) is strictly increasing up to rank κ .

8.1. Isotropy and colimits. We establish suitable and sufficient conditions on a se-
quential diagram of categories for computing the isotropy rank of the colimit in terms of
the ranks of the approximations. Throughout, we consider an ordinal κ (regarded as a
small category) and a cocontinuous functor

C[−] : κ→ Cat . (23)

We write ι = ιλ′<λ : C[λ′]→ C[λ] for the transition maps, and

C[κ] = Colimλ<κC[λ] .

Our goal is to identify conditions on (23) that give us control over the isotropy of the
colimit C[κ] .

Suppose that the functor (23) has the property that each of the transition maps
preserves isotropy. We then obtain an induced diagram

C[0]

����

// C[1]

����

// · · · // C[λ]

����

// C[λ+ 1]

����

// · · · // C[κ]

K
��

C[0]{1} // C[1]{1} // · · · // C[λ]{1} // C[λ+ 1]{1} // · · · // Colimλ(C[λ]{1})

where in each row we form the colimit, and where the vertical K is induced by the
colimiting property of C[κ] . We would like to compare the functor K with the isotropy
quotient of C[κ]. To this end, we need to ensure that the maps C[λ] → C[κ] preserve
isotropy as well. The following lemma provides a sufficient condition.



572 J. FUNK, P. HOFSTRA, AND S. KHAN

8.2. Lemma. Suppose that all of the transition maps C[λ]→ C[λ′] are stable (§ 3). Then
the components of the colimiting cocone C[λ]→ C[κ] preserve isotropy.

Proof. Assume stability of the transition functors C[λ]→ C[λ′], and consider an element
of isotropy τ ∈ ZC[λ](C). We shall show that this induces a compatible element of isotropy
σ ∈ ZC[κ]. The component of σ at 1C may be taken to be [τC ], the image under C[λ]→ C[κ]
of τC . Now given [f ] : D → C in C[κ], pick λ′ ≥ λ for which [f ] is in the image of
C[λ′] → C[κ]. Since C[λ] → C[λ′] is assumed to be stable, we may consider the unique
τ ′ ∈ ZC[λ′] compatible with τ ; this τ ′ has a component τ ′f at f . We can now set σ[f ] to be
[τ ′f ]. It is routine to check that this is well-defined, that σ is indeed an element of isotropy,
and that it is compatible with τ .

In particular, in the situation of the above lemma, we obtain, for each λ < κ, a
factorization

C[λ] //

����

C[κ]

����
C[λ]{1} // C[κ]{1}

(24)

which in turn gives a unique factorization

C[κ]

'' ''
K
��

Colimλ(C[λ]{1})
L
// C[κ]{1}

(25)

of the isotropy quotient through K .

8.3. Example. This example shows that even if all transition maps of (23) are stable,
the comparison map L need not be an equivalence. Consider the following countable
sequence of inclusions of categories C[n] :

•

��
•

��

•

��

α1ee

• • α0ee • α0ee

C[0] // C[1] // C[2] // · · ·

The idea is that α0 doesn’t lift along the vertical map in C[1] , but lifts to α1 at the next
stage. Similarly, α1 doesn’t lift in C[2] , but does lift in the next stage. Consequently,
none of the αi lift along all maps, and all C[i] have trivial isotropy group. However, in
the colimit C[ω] , α0 is part of isotropy, so that the isotropy group of C[ω] is non-trivial.
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Example 8.3 works essentially because the transition maps are not full inclusions. This
explains the assumptions in the following theorem.

8.4. Theorem. Suppose that a cocontinuous functor (23) has the property that its tran-
sition maps are full inclusions that are stable. Then the canonical comparison map L
in (25) is an equivalence. Hence, C[κ]{1} ' Colimλ(C[λ]{1}) .

Proof. We show that an automorphism α ∈ Aut(X) in C[κ] is isotropy if and only if
there is a stage λ < κ where α is isotropy. Pick any λ for which α is in C[λ] . The map
ι : C[λ]→ C[κ] is full and faithful, and therefore by Proposition 3.12 gives a comparison
homomorphism ρ : ZC[κ](ιX) → ZC[λ](X) . Thus, if α is isotropy, then applying ρ yields
an element of isotropy in C[λ] whose underlying automorphism is α . This proves that the
subgroup IC[κ](X) ⊆ Aut(X) in C[κ] is the union of the approximants IC[λ](X) . Hence,
the isotropy congruence coincides with the congruence induced by K .

We would like to have a similar result for the iterated isotropy quotients. Using
Theorem 5.10 we arrive at the following sufficient condition.

8.5. Theorem. Suppose that a cocontinuous functor (23) has the property that its tran-
sition maps are sieve inclusions (§ 3.11). Write C[κ] = Colimλ<κC[λ] . Then:

(i) for each ordinal θ , the canonical map Colimλ<κ(C[λ]{θ}) → C[κ]{θ} is an isomor-
phism.

(ii) IR(C[κ]) =
∨
λ<κ IR(C[λ]) .

Proof. It follows from Theorem 5.10 that each morphism C[λ]{θ} → C[λ′]{θ} preserves
isotropy, and is fully faithful. Using induction on θ (i) now follows from Theorem 8.4. For
(ii) suppose first that we have a non-trivial automorphism α in C[λ]{θ} that is isotropy.
Then the image of α under the transition map C[λ]{θ} → C[κ]{θ} is again non-trivial
and isotropy. This shows that IR(C[κ]) ≥ IR(C[λ]) for all λ < κ . Therefore, we have
IR(C[κ]) ≥

∨
λ<κ IR(C[λ]) . If this inequality were strict, then there would be an ordinal

θ =
∨
λ IR(C[λ]) at which the isotropy quotient C[κ]{θ} → C[κ]{θ+1} is non-trivial. How-

ever, we have already seen that the isotropy congruence on the colimit is the union of
those of the approximants, which is a contradiction.

We end the discussion of isotropy of colimits with a corollary concerning profunctors
out of colimits, which we use in Prop. 8.8. Suppose that for each λ < κ we are given an
A-system P [λ] from C[λ] to D . Using the cocone inclusions ικλ we may lift these (using
the method described in Section 6.2) to A-systems from C[κ] to D , and then form their
coproduct:

P [κ] =def

∐
λ<κ

(ικλ)∗(P [λ]) .
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8.6. Corollary. Let C[−] : κ→ Cat be a sequence of categories satisfying the assump-
tions of Theorem 8.5. For each λ < κ , let P [λ] be an A-system from C[λ] to D , inducing
P [κ] as described above. If∨

{λ < κ | P [λ] is maximally obstructive } = κ ,

then P [κ] is maximally obstructive as well.

Proof. The cofinality assumption says that removing those λ for which P [λ] is not
maximally obstructive does not affect the colimit. Hence, without loss of generality we
may assume that all P [λ] are maximally obstructive. Then for τ ∈ ZD(D) with τD 6= 1 ,
we have∨

g:Y→D
m∈P [κ](X,Y )

IR(φm(τg)) =
∨
λ<κ

∨
g:Y→D

m∈P [λ](X,Y )
IR(φm(τg)) def. of P [κ]

=
∨
λ<κ IR(C[λ]) P [λ] is max. obstr.

= IR(C[κ]) by Thm. 8.5

8.7. Proof of main result. We now look at the specific case of the categories X[κ] ,
as defined in Section 6.6.

8.8. Proposition. For each ordinal κ:

(i) IR(X[κ]) = κ ;

(ii) X[κ] is eventually rigid in the sense that all automorphisms have non-negative isotropy
rank;

(iii) if κ is not a successor of a limit ordinal, then the profunctors P [κ] : X[κ] # X and
Q[κ] : X[κ] # X[1] are maximally obstructive (equivalently, suitable).

Proof. We argue by transfinite induction on κ . In each case, the claim about eventual
rigidity is easily seen.
Base case. For κ = 0, 1, 2 , the claims about isotropy ranks have been established in
§ 4. The fact that P [2] : X[2] # X and Q[2] are maximally obstructive is immediate by
inspection.
Limit case. Suppose that κ is a limit ordinal. We have X[κ] = Colimλ<κX[λ] : this has
isotropy rank

IR(X[κ]) = IR(Colimλ<κX[λ])
=

∨
λ<κ IR(X[λ]) by Theorem 8.5

=
∨
λ<κ λ induction hypothesis

= κ .

Thus, it remains to consider the profunctors P [κ] : X[κ] # X[2] and Q[κ] : X[κ] #
X[1] . By the induction hypothesis, we know that all of the P [λ] and Q[λ] are maximally
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obstructive; since the subset {λ < κ | λ is not a successor of a limit ordinal} is cofinal,
by Corollary 8.6 the induced P [κ] and Q[κ] are maximally obstructive as well.
Successor case, exceptions. Suppose the results hold for κ where κ is a limit ordinal.
Consider X[κ + 1] , which is defined to be X[κ + 1] = X[κ] ∗Q[κ] X[1] for the maximally
obstructive Q[κ] . Therefore, by Theorem 7.13 we have IR(X[κ+1]) = κ+ IR(X[1]) = κ+1
as required.
Successor case, standard. If κ = λ+1 is a successor ordinal, then X[κ+1] = X[λ]∗P[λ]X[2] ,
so that IR(X[κ + 1]) = λ + 2 = κ + 1 , again by Theorem 7.13. By Proposition 7.14, it
is immediate from their construction that the profunctors P [κ + 1] and Q[κ + 1] are
maximally obstructive.

8.9. Application. Given an ordinal κ , we construct a category D[κ] containing an
object Y with the property that the chain of subgroups (12) of Aut(Y ) induced by the
higher isotropy groups is strict up to κ .

Let F (κ) denote the free group on κ generators, considered as a category with a single
object. Let tλ denote the generator corresponding to λ < κ . We construct a suitable
profunctor whose task it is to force IR(tλ) = λ+1 . Choose for each λ < κ a small category
Cλ whose isotropy rank is λ+ 1 . Next choose an automorphism τλ ∈ Aut(Cλ) in Cλ with
IR(τλ) = λ + 1 (Lemma 5.13). Then define an A-system Aλ from Cλ to F (κ) with one
generating heteromorphism and corresponding group homomorphism F (κ) → Aut(Cλ) ,
which sends the generator tλ to τλ and all other generators to 1 . Let C =

∐
λ<κCλ , and

write iλ : Cλ → C for the induced A-system from C to F (κ) given by

A =
∐
λ<κ

(iλ)∗Aλ .

Then it is easily seen that A is suitable, and that each tλ has rank λ + 1 as promised.
Hence the collage D[κ] of A has the desired properties.

9. Topos-theoretic aspects

We apply the theory of isotropy for small categories that we have developed to isotropy for
toposes [Funk et al., 2012]. After a brief and informal recapitulation of isotropy groups of
toposes we prove that the isotropy quotient of a presheaf topos is equivalent to presheaves
on the isotropy quotient of the underlying small category. We show how this extends to
general sites. Finally, we prove that every Grothendieck topos has a well-defined isotropy
rank.

9.1. The isotropy group of a topos. If X denotes an object of a topos E , then
an automorphism of the geometric morphism E/X → E associated with X may be re-
garded as a natural automorphism of the left adjoint ΣX : E/X → E . The set of these
automorphisms forms a group Z(X) , and by whiskering a functor

Z : Eop → Grp .



576 J. FUNK, P. HOFSTRA, AND S. KHAN

It follows that Z is representable in the sense that there is an object Z of E and a natural
bijection

E(X,Z) ∼= Z(X) .

It follows also that Z carries the structure of a group object internal to E , which we call
the isotropy group of E . We say that a topos E is anisotropic if Z is trivial.

9.2. Proposition. The isotropy group of a small category C as defined in Def. 2.2 and
the isotropy group of the topos E = SetC

op

as defined above coincide.

Thus, we may equally regard ZC as a presheaf of groups on C , or as a group internal
to the topos SetC

op

.
The role of the isotropy group of E is clarified through its universal action; every object

X of E carries a canonical action by the group Z :

θX : X × Z→ X ; θX(f, τ) = f · τ = fτY . (26)

The following diagram (left) explains the universal action.

Y
(f,τ)

{{

τY //

f ·τ

  

Y

f~~
X × Z

θX // X

C
(x,τ)

{{

τC //

x·τ

��

C

x��
X × Z

θX // X

The same diagram above (right) interpreted for the topos of presheaves on C recovers the
universal action discussed in § 2.11. Moreover, every morphism of E is equivariant with
respect to the universal action, the action of Z on itself must be conjugation, and the
isotropy group Z is terminal with these properties in a certain sense [Funk et al., 2012].

9.3. Isotropy quotient of a topos. We shall say that an object X of a topos E is
isotropically trivial if the universal action θX is trivial, i.e., is the projection. The inclusion
in E of the full subcategory Eθ of isotropically trivial objects is the inverse image functor
ψ∗ of a connected, atomic geometric morphism

ψ : E → Eθ . (27)

The left adjoint ψ! a ψ∗ is given by an “orbit space” construction, as in the following
coequalizer diagram:

X × Z
θX
''

πX

77 X // // ψ!X ψ∗(X) // X

θ̂X ))

π̂X

77X
Z .

The right adjoint ψ∗ a ψ∗ produces the largest subobject on which the action of Z is
trivial, given by the above equalizer diagram of exponential transposes.

We refer to ψ (27) as the (first) isotropy quotient of E . When we wish to consider the
iterated quotients we favour the notation E{1} for the first isotropy quotient. It follows
that a topos E is anisotropic if and only if (27) is an equivalence.
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9.4. Proposition. The geometric morphism of presheaf toposes associated with the cat-
egory isotropy quotient ψ : C → C/I is equivalent to the isotropy quotient (27) for
E = SetC

op

.

Proof. Assume that a presheaf P on C factors through the functor ψop , so that it is an
object of SetC/I

op

. This means that for each α ∈ I , we have P (α) = 1 . Then the universal
action of Z on P must be trivial because the universal action is determined entirely by
the action on P of morphisms νC(τ) = τC . Therefore, P is an object of Eθ . Conversely,
if P is an object of Eθ , then P (τC) = 1 for all τ ∈ Z(C) , so that P factors through ψop .

9.5. Remark. A consequence of Prop. 9.4 is that the isotropy quotient of a small cate-
gory commutes with splitting idempotents in the sense that the isotropy quotient of the
idempotent splitting of a small category is equivalent to the idempotent splitting of its
isotropy quotient.

9.6. Extension to sites. It turns out that if a Grothendieck site (C, J) is subcanonical
in the sense that the representable presheaves are sheaves, then the isotropy group of
presheaves SetC

op

is a sheaf, and it is the isotropy group of the sheaf topos Sh(C, J)
[Funk et al., 2012]. The following example illustrates the necessity of the assumption of
subcanonicity.

9.7. Example. Let C be the category with two objects A,B, one non-trivial automor-
phism α ∈ Aut(A), and C(B,A) = {f, αf}. Thus α is not isotropy, and C has trivial
isotropy. However, when we consider the topology on C for which f is a cover, the re-
sulting subtopos is simply the topos of G-sets for which G = Aut(A). The latter has
non-trivial isotropy. Informally speaking, non-subcanonical topologies can remove the
obstruction to an automorphism being isotropy.

For a given subcanonical site (C, J) consider the topology J/I on C/I induced by the
isotropy quotient ψ : C → C/I . A sieve S on an object C of C/I is covering if and only
if it is the image of a covering sieve in C . Because of the nature of the congruence, and
the fact that f ∈ S if and only if fα ∈ S when α is an isomorphism, this actually means
that ψ creates covers. Indeed, once f ∈ S , then all g with g ∼ f must also be in S .

9.8. Proposition. If a site (C, J) is subcanonical, then the geometric morphism associ-
ated with the site morphism ψ : (C, J)→ (C/I, J/I) is equivalent to the isotropy quotient
(27) for E = Sh(C, J) .

Proof. We must show that a sheaf on (C/I, J/I) is the same thing as a sheaf on (C, J)
on which the isotropy group Z of C acts trivially. If F is a sheaf on (C/I, J/I) , then F is
a presheaf on C/I , so Z acts trivially on it. And when regarded as a presheaf on C , F is
a J-sheaf because the quotient map ψ creates covers. The converse is similar.
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As a matter of fact, in the above situation there is a commutative diagram of toposes

Sh(C, J)
��

��

// Sh(C/I, J/I)
��

��

SetC
op // SetC/I

op

where the horizontal maps are the isotropy quotients. The category

Sh(C, J)θ ' Sh(C/I, J/I)

is simply the intersection of the two subcategories Sh(C, J) and (SetC
op

)θ of SetC
op

.
We also need the following consequence.

9.9. Corollary. If a category C is anisotropic, then so is Sh(C, J) for any subcanonical
topology J on C .

9.10. Rank of a topos. We consider the notion of isotropy rank for toposes. We find
that it agrees with isotropy rank for small categories in the case of a presheaf topos.

For a Grothendieck topos E , we define by transfinite induction the following sequence
of toposes:

• E{0} = E

• E{λ+1} = E{λ}θ , the isotropy quotient of E{λ}

• E{κ} = Colimλ<κE{λ} , where this colimit is taken in the category of Grothendieck
toposes and geometric morphisms.

Thus, we have the following sequence Grothendieck toposes and geometric morphisms.

E → E{1} → E{2} → · · · → E{ω} → E{ω+1} → · · · . (28)

9.11. Proposition. For any ordinal κ , the composite

ψκ : E → E{κ} (29)

is connected, atomic.

Proof. A successor quotient E{λ+1} is a full subcategory of E{λ} , which is closed under
subquotients and contains the subobject classifier. In the case of a limit ordinal κ , the
topos E{κ} is as a full subcategory of E simply the intersection of the subcategories E{λ} for
λ < κ . Consequently, E{κ} is also closed under subquotients and the subobject classifier
in E .
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9.12. Definition. For a Grothendieck topos E , we let the isotropy rank of E be the
least ordinal κ for which the isotropy quotient E{κ} → E{κ+1} is an equivalence. Let IR(E)
denote the isotropy rank of E .

Equivalently, IR(E) is the least ordinal κ such that E{κ} in (28) is anisotropic.
In order to show that an arbitrary Grothendieck topos has an isotropy rank we find

that Proposition 9.8 does not help us because as it happens the isotropy quotient of a
subcanonical site may not be subcanonical. However, the following approach based on
the notion of isotropy rank of an object solves the problem.

For any object A of E , consider the sequence

A = A0
// // A1

// // A2
// // · · · // // Aω // // Aω+1

// // · · · (30)

of objects in E . In this sequence, Aκ denotes the orbit object ψκ
∗ψκ!(A) associated with

ψκ (29). Every morphism in the sequence is a counit of an adjunction for a correspond-
ing geometric morphism in the sequence (28): they are all epimorphisms. Because a
Grothendieck topos is co-wellpowered there must be a least ordinal at which (30) stabi-
lizes in the following sense.

9.13. Definition. The isotropy rank of an object A of a topos E is the least ordinal κ
for which Aκ → Aκ+1 is an isomorphism. Let IR(A) denote the isotropy rank of A .

Equivalently, IR(A) is the least ordinal κ for which Aκ in (30) is isotropically trivial
in E{κ} .

For the following we rely on the fact that if φ : E → F is connected, atomic and X is
a generator of E , then φ!(X) is a generator of F (Prop. 6.3, [Funk et al., 2012]).

9.14. Theorem. Every Grothendieck topos has an isotropy rank. Moreover, if X is a
generator of E , then IR(E) = IR(X) .

Proof. For any ordinal λ , if X is a generator of E , then Xλ is a generator of E{λ} , so that
as a subcategory of E , E{λ} is generated from Xλ by taking all subquotients of copowers
of Xλ . Therefore, because the sequence (30) of quotients of X stabilizes at some ordinal,
so must the sequence (28) of quotients of E .

We may now prove that isotropy rank for toposes agrees with isotropy rank for small
categories in the presheaf case.

9.15. Proposition. If C is a small category, then for any ordinal κ , we have

SetC
op{κ} ' SetC

{κ}op
.

Proof. This is vacuously true for κ = 0 . It is proved for successor ordinals in Prop. 9.4.
If κ is a limit ordinal, then we may use the fact that the free cocompletion C 7→ SetC

op

commutes with colimits. In other words, for any small diagram F : D → Cat of small
categories, we have

ColimD (Set−
op ◦ F ) ' Set(ColimDF )op .
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9.16. Proposition. For a small category C , we have IR(SetC
op

) = IR(C) .

Proof. This is an immediate consequence of Proposition 9.15 and Corollary 5.6.

9.17. Anisotropic objects and isotropy rank. We consider a few implications of
the existence of the sequence of isotropy quotients of a topos. We recall the ‘fundamental
lemma’ of isotropy theory [Funk & Hofstra, 2018], which states that for any object A of
E , the following two squares are canonically equivalent:

E/A

��

ψ/A // E{1}/ψ!(A)

��
E

ψ
// E{1}

E/A

��

ψ′ // (E/A){1}

��
E

ψ
// E{1}

where the left-hand square arises from factoring the composite E/A → E → E{1} as a
connected, atomic map followed by an étale map, and where the right-hand map arises
from taking the isotropy quotient of E/A . In words, the isotropy quotient of a slice over
A is the slice of the quotient by the orbit space of A . Our first aim is to generalize this
to higher quotients, and prove the following.

9.18. Theorem. For a Grothendieck topos E, an object A of E and an ordinal κ, we
have

(E/A){κ} ' E{κ}/Aκ . (31)

Proof. We argue by transfinite induction on κ . The successor case is taken care of by
the fundamental lemma. We must therefore investigate the case of a limit ordinal κ . It
suffices to prove that for any κ-indexed sequence of connected atomic toposes

E0
ψ0 // E1

ψ1 // · · · // Eκ = Colimλ<κEλ

and induced sequence

A = A0 → A1 → · · · → Aκ = Colimλ<κAλ

(the colimit of the sequence (30)) the top sequence in

E0/A0

��

ψ0/A0 // E1/A1

��

ψ1/A1 // · · · // Eκ/Aκ

��
E0

ψ0 // E1
ψ1 // · · · // Eκ = Colimλ<κEλ

is again a colimit. This is a routine argument which we leave to the reader.
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Let us say that an object A of a topos E is anisotropic if the slice topos E/A is
anisotropic. It follows that A is anisotropic if and only if the canonical action θA (26)
is free in the sense that the map A × Z → A × A , which we may write in element-style
notation as (a, z) 7→ (az, a) , is injective.

9.19. Lemma. If A is anisotropic object of a topos E , then for any ordinal κ , Aκ is an
anisotropic object of E{κ} .

Proof. If A is an anisotropic object of E , then the anisotropic E/A is equivalent to
(E/A){κ} , whence to E{κ}/Aκ by (31). Therefore, the latter topos is anisotropic, so that
Aκ is an anisotropic object of E{κ} .

9.20. Lemma. If a topos has a globally supported, anisotropic, isotropically trivial object,
then the topos is anisotropic.

Proof. Suppose that A is such an object of a topos E . By isotropically trivial, the
isotropy group of E/A is the projection A× Z→ A . By anisotropic, A ∼= A× Z over A .
By globally supported, we have Z ∼= 1 .

Compare the following result with Theorem 9.14.

9.21. Proposition. If A is a globally supported, anisotropic object of a topos E , then
IR(E) = IR(A) .

Proof. It suffices to prove that IR(E) ≤ IR(A) . Suppose that κ is an ordinal such that
Aκ is isotropically trivial in E{κ} . Aκ is also anisotropic E{κ} (Lemma 9.19), and globally
supported. By Lemma 9.20, E{κ} is anisotropic.

10. Conclusion and Further Remarks

The results in the present paper are a first step towards a systematic study of the notion
of higher isotropy for small categories, establishing among other things the existence of
small categories with arbitrarily high isotropy rank.

There are several possible avenues of investigation left open for future work. The first
is somewhat technical, aiming to make the idea of isotropy as generalized conjugation
more precise by means of a monad T on Cat that freely turns a category C into one
in which Aut(−) is functorial and isotropy is full. An algebra TC → C amounts to a
homomorphic section Aut(C)→ Z(C) of νC for each C .

In the present paper we have only presented those aspects of the functoriality of the
isotropy group needed for the main results. It should be interesting to develop the theory
of isotropy spans in more detail on the level of geometric morphisms.

The concept of isotropy group admits generalizations in several directions. One of
these is due to Simon Henry [Henry, 2017], which he calls the localic isotropy group. This
is a localic group internal to the topos, which sometimes carries more information than
the discrete isotropy group discussed in our work. Henry shows that it is possible to form
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the isotropy quotient of a topos with respect to the localic isotropy group; interestingly,
this quotient is then anisotropic, so that there is no higher isotropy in this sense.

Another interesting generalization is from groups to monoids (or even to Lawvere
Theories). As the authors of the present paper recently learned, Peter Freyd’s concept
of core algebras [Freyd, 2007] is closely related to the isotropy group; in fact, the core
of a Grothendieck topos could be called the isotropy monoid of the topos. We believe
that the techniques and concepts offered in the present paper should have interesting
interpretations for Freyd’s original motivation, namely parametric polymorphism.
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