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THEORY OF INTERLEAVINGS ON CATEGORIES WITH A FLOW

V. DE SILVA, E. MUNCH, A. STEFANOU

Abstract. The interleaving distance was originally defined in the field of Topological
Data Analysis (TDA) by Chazal et al. as a metric on the class of persistence modules
parametrized over the real line. Bubenik et al. subsequently extended the definition
to categories of functors on a poset, the objects in these categories being regarded as
‘generalized persistence modules’. These metrics typically depend on the choice of a
lax semigroup of endomorphisms of the poset. The purpose of the present paper is
to develop a more general framework for the notion of interleaving distance using the
theory of ‘actegories’. Specifically, we extend the notion of interleaving distance to
arbitrary categories equipped with a flow, i.e. a lax monoidal action by the monoid
[0,∞). In this way, the class of objects in such a category acquires the structure of a
Lawvere metric space. Functors that are colax [0,∞)-equivariant yield maps that are
1-Lipschitz. This leads to concise proofs of various known stability results from TDA,
by considering appropriate colax [0,∞)-equivariant functors. Along the way, we show
that several common metrics, including the Hausdorff distance and the L∞-norm, can
be realized as interleaving distances in this general perspective.

1. Introduction

Behind every data analysis tool is an implicit reliance on metrics between the data points.
If the data points are embedded in some metric space, such as Euclidean space, we use the
distance inherited from the space to describe proximity. In particular, clustering arises
by looking for groups of data points which are “close” in some chosen metric, but far
in that metric from other data points. The tools of Topological Data Analysis exploit
this idea of studying a collection of points with a metric (that is, finite metric spaces) by
constructing topological signatures which represent some aspect of the data, and using
these signatures as proxies for the original data sets. Some commonly used topological
signatures include persistence diagrams [13], persistence modules [24, 5], Reeb graphs
[21, 9], and Mapper [22]. Indeed, arguably the most powerful theorem in TDA is the
stability theorem of Cohen-Steiner et al. [7, 5] which states that for a certain choice of
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metric1 on the persistence diagrams arising from point clouds, the distance between the
signatures can be no greater than the Hausdorff distance between the point clouds from
which they were constructed. In other words, the persistence diagram is statistically
robust with respect to perturbations that are small in the Hausdorff distance.

The stability theorem falls naturally into two parts [5, 3]: both of the transformations
in the sequence

data
(i)−→ persistence module

(ii)−→ persistence diagram

are individually 1-Lipschitz.2 This factorization was not noticed for a while, partly because
the original algorithm for constructing persistence diagrams from data [13] proceeded di-
rectly without reference to persistence modules. Chazal et al. [5] were the first to draw
attention to this division of labor, defining the ‘interleaving distance’ between persistence
modules which makes possible to contemplate Lipschitzity for the two maps separately.
In [3], the stability of parts (i) and (ii) are respectively called ‘soft’ stability and ‘hard’
stability: part (i) operates at an abstract algebraic/categorical level, while part (ii) re-
quires a detailed study of the relationship between persistence modules and their diagrams
[7, 5, 6, 1].

In this paper we study generalizations of the interleaving distance, and of part (i)
of the stability theorem. Let us recall the main concepts. A persistence module is a
1-parameter diagram of vector spaces and linear maps; most concisely it is a functor

F : (R,≤)→ Vect

from the real line (viewed as a poset category) to the category of vector spaces over some
field. These are typically obtained in TDA by constructing, from data, a 1-parameter
nested family of simplicial complexes (perhaps approximating the finite data set at dif-
ferent scales) and applying a homology functor with field coefficients. The persistence
diagram is a representation of the structure of the rank function

rst = rank[F(s)→ F(t)]

by a collection of pairs (b, d) where b < d, so that rst (roughly speaking) counts those pairs
for which b ≤ s ≤ t < d. We will say nothing more about persistence diagrams.

Now let us compare two persistence modules F,G : (R,≤) → Vect. We consider
them to be ‘the same’ if there exist natural transformations ϕ : F ⇒ G and ψ : G ⇒ F
such that ϕψ = IG and ψϕ = IF; that is, if there is an isomorphism between them.
Chazal et al. [5] extend this idea to the notion of an ε-interleaving, thought of as an
ε-approximate isomorphism. This is a pair of natural transformations ϕ : F ⇒ GTε

and ψ : G ⇒ FTε, where Tε : (R,≤) → (R,≤) is a functor together with a natural

1The bottleneck distance
2Strictly speaking, there are many possible choices of transformation (i), and most of the standard

ones are Lipschitz for some specific constant, usually 1 or 2.
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transformation ηε : I(R,≤) ⇒ Tε, called a translation functor, defined by a 7→ a + ε,
such that the diagrams

F G

FTε GTε

FT2ε GT2ε

Fηε

ψ

Gηε

FηεTε

ϕ

GηεTεψTεϕTε

commute. The interleaving distance between F,G is simply defined to be the infimum of
those values ε for which an ε-interleaving exists.

This beautiful and powerful idea was extended by Bubenik et al. [4, 3] (see also
Lesnick [17]), to general functor categories DP , for P a poset category and D an ar-
bitrary category. In that work, interleavings are defined with respect to a particular
collection of endomorphisms on P , again called ‘translations’. The easiest approach is to
select a preferred 1-parameter family of translations (Tε) and define ε-interleavings with
respect to those. This general approach turns out to be quite fruitful. If P = (R,≤)
and D = Vect then we recover the original interleaving distance on persistence modules.
If P = (R,≤) and D = Set, then the objects of DP can be thought of as ‘merge trees’
and we recover a metric defined by Morozov et al. [19, 23]. And if P = Int, the poset
category of real open intervals with Tε being the operation that thickens an interval by ε
on each side and D = Set, then the objects of DP can be interpreted as Reeb graphs and
we recover the metric defined in [9].3

In this paper, we extend the idea of interleavings yet further to be defined on arbitrary
categories C with the additional structure of a coherent [0,∞)-action. These categories
are sometimes called [0,∞)-actegories.4 However, in this paper any coherent [0,∞)-action
will be called a flow for simplicity.5 We give precise definitions in due course. The upshot
of this work is that categories with a flow inherit the structure of a symmetric Lawvere
metric space: there is a map dC : obj C × obj C → [0,∞], satisfying the relations
dC(a, a) = 0, and dC(a, b) = dC(b, a), and dC(a, c) ≤ dC(a, b) + dC(b, c).

6

One pleasant outcome is that many commonly used metrics can be realized as inter-
leaving distances. We will show that these include the Hausdorff distance, the L∞ distance
on Rn, and the extended L∞ distance on R-spaces and M-spaces in general, where M is
any metric space. A final bonus is that we can retrieve several of the usual soft stability
theorems as special instances of a single theorem, which asserts that functors between
categories with a flow that are colax [0,∞)-equivariant give rise to maps which are 1-

3Strictly speaking, merge trees and Reeb graphs correspond to objects in subcategories of their re-
spective functor categories, specified by suitable regularity conditions (and a cosheaf hypothesis in the
case of Reeb graphs).

4There are many different types of actegory [14], so the meaning of the word is not well-specified.
5A preprint of this paper referenced the ‘categories with a flow’ construction as ‘[0,∞)-actegories’ [10].
6Lawvere metric spaces (in the absence of the symmetry relation) may be thought of as categories

enriched over the symmetric monoidal category ([0,∞],≥,+), through the equation homC(a, b) = dC(a, b).
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Lipschitz. While those original theorems are not difficult to prove, we find it illuminating
to view those theorems through the unified viewpoint developed here.

Outline In Section 2, we define categories with a flow and define the interleaving distance.
In Section 3, we show that several common metrics are interleaving distances. In Section 4,
we define colax [0,∞)-equivariant functors between categories with a flow and show that
they give rise to 1-Lipschitz maps. Various soft stability results from TDA are deduced
from this. In Section 5, we show that the interleaving process is functorial, and we explain
how to view categories with a flow and colax [0,∞)-equivariant functors in terms of higher
category theory.

2. Interleavings on categories with a flow

In this section we define categories with a flow and show that these categories are sym-
metric Lawvere spaces. Specifically, we show that every flow T on a category C induces
an extended pseudometric d(C,T ) on C called the interleaving distance. Our construction
extends the definition of the interleaving distance from the context of functor categories
DP of generalized persistence modules [3], to the context of arbitrary categories with a
flow C.

2.1. A review on actegories. A monoidal category V = (V ,⊗, I, a, `, r) is a category
with a notion of a tensor product. A lax monoidal functor F : V → V ′ between monoidal
categories V = (V ,⊗, I, a, `, r) and V ′ = (V ′,⊗′, I ′, a′, `′, r′) consists of a triple F =
(F, u, µ) where F : V → V ′ is an ordinary functor, µ is a natural transformation with
components µx,y : F(x) ⊗′ F(y) ⇒ F(x ⊗ y), and x, y ∈ obj V and u : I ′ ⇒ F(I) is a
natural transformation. These data are such that the diagrams

((F(x)⊗′ F(y))⊗′ F(z) F(x⊗ y)⊗′ F(z) F((x⊗ y)⊗ z)

F(x)⊗′ (F(y)⊗′ F(z)) F(x)⊗′ F(y ⊗ z) F(x⊗ (y ⊗ z))

a′
F(x),F(y),F(z)

µx,y⊗′1F(z) µx⊗y,z

F(ax,y,z)

1F(x)⊗′µy⊗z µx,y⊗z

and

I ′ ⊗′ F(x) F(I)⊗′ F(x)

F(x) F(I ⊗ x)

`′
F(x)

u⊗′1F(x)

µI,x

F(`x)
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and

F(x)⊗′ I ′ F(x)⊗′ F(I)

F(x) F(x⊗ I)

r′
F(x)

1F(x)⊗′u

µx,I

F(rx)

commute for all the objects involved. Note that for any category C, the category of
endofunctors End(C) = CC is monoidal. In this case, the horizontal composition is used
for the composition of functors and the Godement product for the composition of natural
transformations.

Given a monoidal category V = (V ,⊗, I) a coherent action of V on C is a lax
monoidal functor V → End(C) of monoidal categories [15, 14]. Actions of monoidal
categories appeared firstly in a paper of Benabou [2] and then in Pareigis [20] (Street has
suggested the term actegories). A V-actegory is a category C together with a coherent
action of V on C. A morphism of V-actegories, called a colax V-equivariant functor, is
a functor H : C → D that commutes with the coherent actions of C and D up to coherent
natural transformations.

2.2. Categories with a flow. Consider the monoidal category (([0,∞),≤),+, 0)
whose tensor product is given by the addition operation:

+ : ([0,∞),≤)× ([0,∞),≤)→ ([0,∞),≤).

(ε, ζ) 7→ ε+ ζ

((ε ≤ ε′), (ζ ≤ ζ ′)) 7→ (ε ≤ ε′) + (ζ ≤ ζ ′) := (ε+ ζ ≤ ε′ + ζ ′).

and the tensor unit is given by the zero element 0.

2.3. Definition. A coherent [0,∞)-action T = (T , u, µ) on a category C is said to be a
flow. Specifically, a flow T on a category C consists of

• a functor T : ([0,∞),≤)→ End(C), ε 7→ Tε,

• a natural transformation u : IC ⇒ T0, where IC is the identity endofunctor of C, and

• a collection of natural transformations µε,ζ : TεTζ ⇒ Tε+ζ, ε, ζ ≥ 0,
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such that the diagrams

Tε Tε

T0Tε Tε TεT0 Tε

TεTζTδ TεTζ+δ TεTζ Tε+ζ

Tε+ζTδ Tε+ζ+δ TδTκ Tδ+κ

uITε ITεu

µ0,ε µε,0

ITεµζ,δ

µε,ζITδ µε,ζ+δ

µε,ζ

T(ε≤δ)T(ζ≤κ)

T(ε+ζ≤δ+κ)

µε+ζ,δ

µδ,κ

commute for every ε, ζ, δ, κ ≥ 0. A category C with a flow T is denoted by (C, T ).

2.4. Definition. Let a category with a flow (C, T ) be given. Then for each ε ≥ 0, we call
the endofunctor Tε : C → C the ε-translation of C. We call u and µε,ζ the coherence
natural transformations. If the coherence natural transformations are all identities,
the flow is called strict.

A strict flow T on a category C is a functor T : [0,∞)→ End(C), ε 7→ Tε, such that
T0 = IC and TεTζ = Tε+ζ , for all ε, ζ ≥ 0.

2.5. Interleavings on categories with a flow. Given a category C a flow T on
C enables us to measure ‘how far’ two objects in C are from being isomorphic up to a
coherence natural transformation.

2.6. Definition. Let a, b be two objects in C. A weak ε-interleaving of a and b,
denoted (ϕ, ψ), consists of a pair of morphisms ϕ : a → Tεb and ψ : b → Tεa in C such
that the diagrams

T0a a b T0b

Tεa Tεb

T2εa TεTεa TεTεb T2εb

T(0≤2ε),a

ua ub
ψ

T(0≤2ε),b

ϕ

Tεψ

µε,ε,a

Tεϕ

µε,ε,b

(1)

commute. We say that a, b are weakly ε-interleaved if there exists a weak ε-interleaving
(ϕ, ψ) of a and b. The interleaving distance with respect to T for a pair of objects
a, b in C is defined to be

d(C,T )(a, b) = inf{ε ≥ 0 | a, b are weakly ε-interleaved}.
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If a and b are not weakly interleaved for any ε, we set d(C,T )(a, b) =∞.

We use the term “weakly” to distinguish Definition 2.6 from the interleavings in the
restricted setting, Definition 3.3, which will be further discussed in Section 3.1.

2.7. Theorem. d(C,T ) is an extended pseudometric on obj C.

Proof. For the sake of brevity in this proof, we write d = d(C,T ). It is clear by definition
that d is symmetric. Setting ϕ = ψ = ua gives a 0-interleaving of a with itself, hence
d(a, a) = 0 for any object a in C.

Next, we show that the triangle inequality holds. Let a, b, c ∈ C. If either d(a, b) =∞
or d(b, c) = ∞, then trivially d(a, c) ≤ d(a, b) + d(b, c). Now, suppose that for some
0 ≤ ε, ζ < ∞, the objects a, b are ε-interleaved via (ϕ, ψ) and the objects b, c are ζ-
interleaved via (ϕ′, ψ′). Define ϕ′′ : a→ Tε+ζc and ψ′′ : c→ Tε+ζa by

a Tεb TεTζc Tε+ζc
ϕ

ϕ′′

Tεϕ′ µε,ζ,c
and c Tζb TζTεa Tζ+εa

ψ′

ψ′′

Tζψ µζ,ε,a

respectively. We claim that (ϕ′′, ψ′′) is an (ε + ζ)-interleaving of a and c. Showing that
the left half of Diagram 1 commutes means showing

µε+ζ,ε+ζ,a ◦ Tε+ζ [ψ′′] ◦ ϕ′′ = T(0≤2(ε+ζ)),a ◦ ua. (2)

Indeed, via functoriality and the definition of interleaving, we have the following commu-
tative diagram with Equation 2 as the perimeter.

T0a a

Tεb

T2εa TεTεa TεTεa TεT0b TεTζc

TεTεa TεT0Tεa TεT2ζb TεTζTζb Tε+ζc

Tε+2ζTεa TεT2ζTεa TεTζTζTεa Tε+ζTζb

Tε+ζTζTεa

T2(ε+ζ)a Tε+ζTε+ζa

T(0≤2ε),a

T(0≤2(ε+ζ)),a

ua

ϕ

ϕ′′

Tεψ Tεub Tεϕ′

T(2ε≤2(ε+ζ)),a

µε,ε,a

TεuTεa TεT0ψ TεT(0≤2ζ),b µε,ζ,cTεTζψ′µε,ε,a

T(ε≤ε+2ζ),Tεa

µε,0,Tεa

Tεµ0,ε,a

TεT(0≤2ζ),Tεa TεT2ζψ

Tεµζ,ζ,b

TεTζTζψ µε,ζ,Tζb Tε+ζψ′

Tε+ζ [ψ′′]

µε+2ζ,ε,a

µε,2ζ,Tεa Tεµζ,ζ,Tεa

µε,ζ,TζTεa Tε+ζTζψ

Tε+ζµζ,ε,a

µε+ζ,ζ,Tεa

µε+ζ,ε+ζ,a
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Interchanging a with c and an analogous argument gives the other half of the interleaving.
Thus, (ϕ′′, ψ′′) forms an (ε+ ζ)-interleaving of a and c. Therefore, d(C,T ) has the triangle
inequality and so it defines an extended pseudometric on the objects of C.

Theorem 2.7 says that every flow T on a category C induces an interleaving distance
d(C,T ) on C, making a symmetric Lawvere metric space (C, d(C,T )). Notice that the defini-
tion of the interleaving distance depends not only on the category C but also on the choice
of the flow T on C. That means there are possibly many different interleaving distances
for the same category. When a particular choice of T is implicit, we abuse notation and
write dC for the interleaving distance.

3. Examples

In this section, we show that many commonly used metrics are actually special cases of
the interleaving distance. For a given flow Ω on a poset P , we discuss how DP inherits
a flow T from Ω, so that the notion of an Ωε-interleaving in the context of categories
of generalized persistence modules DP as defined in [3] become a special case of a weak
ε-interleaving in the context of categories with a flow. In addition, we show that this
abstract definition of the interleaving distance unifies some important distances which are
commonly used in TDA and real analysis in general. Namely we show that the Hausdorff
and the L∞-distances are examples of interleaving distances in this general perspective.

3.1. Interleavings on generalized persistence modules. One of the most im-
portant tools of applied topology for the study of data is persistent homology [13, 24]. The
traditional presentation of persistence investigates a functor from the set of real numbers
(R,≤) viewed as a poset, to the category Vectk of k-vector spaces, for some field k; such
functors are called persistence modules. Interest in defining a metric for comparison
of such objects led to the original definition of the interleaving distance [5], a generaliza-
tion of the bottleneck distance (see, e.g., [12]) which is commonly used in computational
applications. In this section, we discuss the relationship between our Definition 2.6 and
the interleaving distance as previously defined. In particular, we will follow the definition
as presented in [3] for generalized persistence modules.

Let P be a poset. A translation on P is an endofunctor Γ : P → P together with a
natural transformation η : IP ⇒ Γ. The collection TransP of all translations in P forms a
full subcategory of End(P); in particular it is a strict monoidal category [3, Section 5.1].
A superlinear family of translations Ω, is a family of translations Ωε on P , for ε ≥ 0,
such that and IP ≤ Ω0 and ΩεΩζ ≤ Ωε+ζ . As indicated in [3, Section 5.1], a superlinear
family of translations is simply a lax monoidal functor

Ω : ([0,∞),+, 0)→ TransP

between strict monoidal categories.
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3.2. Definition. Let P be a poset together with a superlinear family of translations
Ω and let D be any category. Then we call any functor F : P → D a generalized
persistence module. We call the functor category DP a generalized persistence
module category, or simply a GPM-category.

Let Ω be a superlinear family of translations on P and let ε ≥ 0. By definition, the
translation Ωε : P → P is equipped with a natural transformation ηε : IP ⇒ Ωε. This
induces a natural transformation Fηε : F ⇒ FΩε. Notice that when P = (R,≤) and
D = Vect we have the standard persistence module framework.

3.3. Definition. [3] Let Ω be a superlinear family of translations on a poset P, and let
D be a category. Two generalized persistence modules F,G : P → D are Ωε-interleaved
if there exist a pair of natural transformations ϕ : F⇒ GΩε and ψ : G⇒ FΩε such that
the diagram

F G

FΩε GΩε

FΩεΩε GΩεΩε

Fηε

ψ

Gηε

FηεΩε

ϕ

GηεΩεψΩεϕΩε

(3)

commutes. We call every such pair (ϕ, ψ) an Ωε-interleaving.
The interleaving distance with respect to Ω is

dΩ(F,G) = inf{ε ≥ 0 | F,G are Ωε-interleaved}.

If F and G are not interleaved for any ε, we set dΩ(F,G) =∞.

This definition gives an extended pseudometric on DP [3, Theorem 3.21]. Notice how
similar this definition is to Definition 2.6. In particular, in Diagram 3 the parallelograms
commute by definition, so checking commutativity splits into checking the two triangles
commute. On the other hand, Diagram 1 requires checking that two pentagons commute.
Essentially, the difference between the definitions comes down to working around the
definition of the coherence natural transformations; if the flow is strict and thus the
coherence natural transformations are identities, the pentagon diagrams will collapse down
into triangles. We will now investigate the exact relationship between the two definitions.

3.4. Lemma. Let P = (P ,≤) be a poset. Any superlinear family of translations on P
forms a flow on P and vice versa.

Proof. Assume that P is equipped with a superlinear family of translations

Ω : ([0,∞),+, 0)→ TransP .

By definition, for each ε ≥ 0, the endofunctor Ωε : P → P is equipped with a natural
transformation ηε : IP ⇒ Ωε. Because P is a poset, ηε : IP ⇒ Ωε factors through η0;
i.e. the diagram
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IP Ω0

Ωε,

η0

ηε
Ω(0≤ε)

commutes. Set u = η0, and set µε,ζ to be the natural transformation induced by ΩεΩζ ≤
Ωε+ζ . Then it is easy to check that (Ω, u, µ) forms a flow on P .

Vice versa, assume that (Ω, u, µ) is a flow on P . Set η0 = u and ηε = Ω(0≤ε) ◦ u. Each
endofunctor Ωε of P is equipped with ηε : IP ⇒ Ωε. It is again easy to check that Ω forms
a superlinear family of translations on P .

Therefore a superlinear family of translations on P is the same thing as a flow on P .
However, in order to use Definition 2.6, we need a flow on DP . Assume we have a flow Ω
on P . Then we can define the flow T on DP induced by Ω as a pre-composition with Ω;
specifically, − ·Ωε : DP → DP . Moreover define the coherence natural transformations of
this flow to be the pre-compositions of the coherence natural transformations defined in
the proof of Lemma 3.4; specifically −·u : IDP ⇒ −·Ω0 and −·µε,ζ : −·ΩεΩζ ⇒ −·Ωε+ζ .
It is then a formality to check that the collection {− ·Ωε}ε≥0 together with the coherence
natural transformations forms a flow on DP , denoted by − · Ω.

Our next task is to investigate the relationship between Definitions 2.6 and 3.3.

3.5. Theorem. Let Ω be a superlinear family of translations on P and − ·Ω the induced
flow on DP . Then for any F,G : P → D, if F,G are Ωε-interleaved, then F,G are
weakly ε-interleaved. This implies

d(DP ,−·Ω)(F,G) ≤ dΩ(F,G).

In the case that Ω is a strict flow on P, the above is an equality.

Proof. Assume that F,G are Ωε-interleaved (Definition 3.3) and let ηε : IP ⇒ Ωε

be the natural transformation coming from the superlinear family of translations. Let
T = − · Ω be the induced flow on DP with coherence natural transformations û = − · u
and µ̂ε,ζ = − · µε,ζ .

Consider the following diagram.

FΩ0 F

FΩε FΩε GΩε

FΩ0Ωε

FΩ2ε FΩεΩε

FΩ(0≤ε)

FΩ(0≤2ε)

Fηε
ϕ

Fu

FΩ(ε≤2ε)

FηεΩε

Fη0Ωε

ψΩε

Fµ0,ε

FΩ(0≤ε)Ωε

Fµε,ε

(4)
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The rightmost triangle commutes because ϕ and ψ form a Ωε-interleaving, while the rest
of the cells commute by definition of a flow (Definition 2.3). The perimeter of Diagram 4
gives the left half of Diagram 1. An analogous argument gives the other commuting
pentagon; thus F,G are weakly ε-interleaved.

When the flow Ω on P is strict, Fµε,ζ and Fu are identities by definition. Thus, a weak
ε-interleaving immediately induces an Ωε-interleaving, and so the interleaving distances
agree.

3.6. Interleavings on posets. Rather than passing from a flow on a poset P to a
flow on DP , we now look at the interleaving distance induced on P itself. Let P be a
poset together with a flow Ω, and let dP be the interleaving distance on P induced by
Ω (Definition 2.6). The extra structure of the poset category makes characterizing the
interleaving distance rather simple, as seen in the following lemma.

3.7. Lemma. Two objects a, b ∈ obj P are ε-interleaved if and only if there exist mor-
phisms ϕ : a→ Ωεb and ψ : b→ Ωεa. So, the interleaving distance on P induced by Ω is
given by

dP(a, b) = inf{ε ≥ 0 | ∃ ϕ : a→ Ωεb and ψ : b→ Ωεa}.

Proof. Let a and b be two objects in P and let morphisms ϕ : a→ Ωεb and ψ : b→ Ωεa
be given. Then all morphisms of Diagram 1 exist and, because P is a poset, the diagram
must commute. Thus any pair of morphisms ϕ and ψ gives rise to an ε-interleaving and
the lemma follows.

We now show how to realize the Hausdorff distance on subsets of a metric space and
the L∞-distance on Rn as interleaving distances on poset categories with flows.

3.7.1. The Hausdorff Distance. Fix a metric space (X, d). Let S(X) be the poset
category consisting of all nonempty subsets of X with poset given by inclusion. Define
Aε = ∪a∈A{x ∈ X | d(a, x) ≤ ε}. The Hausdorff distance is an extended pseudometric
on S(X) given by

dH(A,B) = inf{ε ≥ 0 | A ⊂ Bε and B ⊂ Aε}.

We define a flow Ω on S(X) as follows. For each ε ≥ 0, define the ε-translation Ωε on
S(X) by Ωε(A) := Aε and Ωε[A ⊆ B] the induced inclusion Aε ⊆ Bε. Define the coherence
natural transformations u : IP ⇒ Ω0 and µε,ζ : ΩεΩζ ⇒ Ωε+ζ , ε, ζ ≥ 0, to be the obvious
families of inclusions uA : A ⊆ A0 and µε,ζ,A : (Aε)ζ ⊆ Aε+ζ , A ⊂ X. Naturality follows
from the poset structure of S(X). Again by the poset structure of S(X), it is easy to check
that Ω = (Ω, u, µ) is a flow on S(X).

3.8. Theorem. The interleaving distance on S(X) induced by the flow Ω, coincides with
the Hausdorff distance on S(X). Specifically, for any A,B ∈ S(X),

dS(X)(A,B) = dH(A,B)

Proof. Clear, by definition of the Hausdorff distance and Lemma 3.7.
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3.8.1. L∞-distance on Rn. Let Rn be the set of all n-tuples of real numbers. The
L∞-norm on Rn is defined as follows. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two
n-tuples in Rn. Then define

‖a− b‖∞ = max{|ai − bi| : i = 1, . . . , n}

We now realize this metric as an interleaving distance. Consider Rn as the poset (Rn,≤)
where a ≤ b when ai ≤ bi for all i = 1, . . . , n. Define a strict flow Ω on (Rn,≤) as follows.
Let ε ≥ 0 and, for ease of notation, let a+ε = (a1 +ε, · · · , an+ε). Define the ε-translation
Ωε : (Rn,≤)→ (Rn,≤) by Ωε(a) = a+ ε and Ωε[a ≤ b] = (a+ ε ≤ b+ ε).

Let ε, ζ ≥ 0 and define Ω(ε≤ζ)(a) = (a + ε ≤ a + ζ). Clearly this collection forms a
natural transformation Ω(ε≤ζ) : Ωε ⇒ Ωζ . We easily check that

Ω : [0,∞)→ End(Rn,≤), ε 7→ Ωε

forms a strict [0,∞)-monoidal functor, i.e. a strict flow on (Rn,≤). Denote the associated
interleaving distance by d(Rn,≤).

3.9. Theorem. The interleaving distance on Rn induced by the strict flow Ω, coincides
with the L∞-distance on Rn. That is, for any a, b ∈ Rn,

d(Rn,≤)(a, b) = ‖a− b‖∞.

Proof. Let a, b ∈ Rn be two n-tuples. By Lemma 3.7, we have

d(Rn,≤)(a, b) = inf{ε ≥ 0 | a ≤ b+ ε and b ≤ a+ ε}
= inf{ε ≥ 0 | bi − ε ≤ ai ≤ bi + ε for all i = 1, . . . , n}
= inf{ε ≥ 0 | |ai − bi| ≤ ε for all i = 1, . . . , n}
= max{|ai − bi| : i = 1, . . . , n}
= ‖a− b‖∞

as claimed.

3.10. Interleavings on slice categories. Let C be a category and let c be an object
in C. With this data we can construct a category denoted (C ↓ c) called a slice category.
The objects in (C ↓ c) are tuples, (a, f), where a is an object in C and f ∈ HomC(a, c).
The morphisms ϕ : (a, f) → (b, g) in (C ↓ c) are morphisms ϕ : a → b in C such that
g ◦ ϕ = f . Now we define the L∞-distance on the slice category (Top ↓ R) and then
generalize to (Top ↓M) for an arbitrary metric space M and realize them as examples of
the interleaving distance.

3.10.1. The L∞-distance on (Top ↓ R). Given f : X→ R and g : X→ R define their
L∞-distance as

||f − g||∞ = sup
x∈X
|f(x)− g(x)|.
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Note that this definition requires the same domain for f and g. We can extend the
definition of the L∞-distance to arbitrary R-valued functions. Consider the slice category
(Top ↓ R), whose objects are pairs (X, f) consisting of a topological space X and an R-
valued function f on X, called R-spaces. A morphism ϕ : (X, f)→ (Y, g) in (Top ↓ R)
is a continuous map ϕ : X→ Y such that ϕ ◦ g = f , called a function preserving map.

3.11. Definition. For general R-valued functions f : X → R and g : Y → R, the
L∞-distance is defined to be

d∞((X, f), (Y, g)) = inf
Φ:X→Y

||f − g ◦ Φ||∞

where Φ runs over all homeomorphisms. If X and Y are not homeomorphic, we set
d∞(f, g) =∞.

It is immediate that for f and g defined on the same domain, d∞(f, g) ≤ ‖f − g‖∞.
We now realize d∞ as an interleaving distance on (Top ↓ R) by defining a flow T on

(Top ↓ R) as follows.

• Let ε ≥ 0. For (X, f) ∈ obj (Top ↓ R), Tε(X, f) = (Xε, fε) where Xε = X × [−ε, ε]
and fε(x, t) = f(x) + t.

• For a morphism ϕ : (X, f)→ (Y, g), let Tε[ϕ] : (Xε, fε)→ (Yε, gε), (x, t) 7→ (ϕ(x), t).

• Let 0 ≤ ε ≤ ζ. Define T(ε≤ζ) : Tε ⇒ Tζ to be the natural transformation (Xε, fε)→
(Xζ , fζ), (x, t) 7→ (x, t).

• For (X, f) ∈ obj (Top ↓ R), take uf : (X, f)→ (X0, f0), x 7→ (x, 0).

• Let ε, ζ ≥ 0. For (X, f) ∈ obj (Top ↓ R), consider µε,ζ,f : ((Xζ)ε, (fζ)ε) →
(Xε+ζ , fε+ζ), ((x, t), s) 7→ (x, t+ s).

It is largely bookkeeping to check that T = (T , u, µ) is a flow on (Top ↓ R).

3.12. Theorem. The interleaving distance d((Top↓R),T ) coincides with the distance d∞.
That is, given (X, f), (Y, g) in (Top ↓ R),

d((Top↓R),T )((X, f), (Y, g)) = d∞((X, f), (Y, g)).

Proof. Let ε ≥ 0. It suffices to show that (X, f) and (Y, g) are weakly ε-interleaved if
and only if for some homeomorphism Φ : X→ Y, |f(x)− g(Φ(x))| ≤ ε for all x ∈ X.

Suppose that (X, f) and (Y, g) are weakly ε-interleaved via a pair of morphisms ϕ :
(X, f) → Tε(Y, g) and ψ : (Y, g) → Tε(X, f). Let Φ = p1 ◦ ϕ and Ψ = p1 ◦ ψ be the
projections of ϕ and ψ to the first coordinate. Since the morphisms ϕ : (X, f)→ Tε(Y, g)
and ψ : (Y, g)→ Tε(X, f) are function preserving maps, we can write

ϕ(x) =
(
Φ(x), f(x)− gΦ(x)

)
ψ(y) =

(
Ψ(y), g(y)− fΨ(y)

)
.
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As (ϕ, ψ) is a weak ε-interleaving, we can chase an element around the left pentagon of
the commutative diagram of Equation 1 to see that

(x, 0) = (ΨΦ(x), f(x)− f(ΨΦ(x))).

So, ΨΦ = IX and a similar argument gives that ΦΨ = IY. Therefore, Φ is a homeomor-
phism. Because ϕ : (X, f) → Tε(Y, g) is function preserving map, the map Φ further
satisfies |f(x)− g(Φ(x))| ≤ ε for all x ∈ X.

Now, assume that there exists a homeomorphism Φ : X → Y such that |f(x) −
g(Φ(x))| ≤ ε for all x ∈ X and define Ψ = Φ−1. Define the morphisms ϕ : (X, f)→ (Yε, gε)
and ψ : (Y, g)→ (Xε, fε) by the formulas

ϕ(x) =
(
Φ(x), f(x)− gΦ(x)

)
and

ψ(y) =
(
Ψ(y), g(y)− fΨ(y)

)
.

It is easy to check that these are function preserving maps. Again, diagram chasing shows
that the diagram of Equation 1 commutes, so ϕ and ψ form a weak ε-interleaving of (X, f)
and (Y, g).

This example shows that one needs to work the coherence natural transformations in
Definition 2.6 to define weak ε-interleavings rather than working with a strict analogue
of Definition 3.3. That is to say, a definition which checks if the pentagons in Diagram 1
commute rather than just triangles as in Equation 3.3. With the choice of category of
R-spaces as a slice category, Theorem 3.12 cannot be proven considering the condition on
the interleaving relation of Equation 1 that triangles commute for the definition of the
ε-interleaving relation because only after composing with the coherence natural transfor-
mations µε,ε, can the point

(ΨΦ(x), f(x)− g(Φ(x)), g(Φ(x))− f(ΨΦ(x)))

be identified with (x, 0).
In [17, Remark 5.1], the author discusses a similar result to Theorem 3.12. However,

he considers the category of R-spaces with a larger collection of morphisms than those in
the slice category. This relaxation in the category means the flow is strict, and thus the
interleaving relation consists of triangles rather than pentagons. Working with these slice
categories as defined has the added benefit that it is easier to define both the sublevel and
level set filtration functors, which in turn, provides us with the stability of both sublevel
set and level set persistent homology as will be discussed in Section 4.8.

3.12.1. The L∞-distance on (Top ↓M). We now extend the d∞ distance to arbitrary
metric spaces. Fix a metric space (M, d).

3.13. Definition. For general M-valued functions f : X → M and g : Y → M, the
L∞-distance is defined to be

d∞(f, g) = inf
Φ:X→Y

sup
x∈X

d(f(x), g(Φ(x)))
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where Φ runs over all homeomorphisms. If X and Y are not homeomorphic, we set
d∞(f, g) =∞.

We now show how d∞ can be realized as an interleaving distance on (Top ↓ M).

We define a flow T̂ on (Top ↓ M), which is very similar to the flow T as defined in
Section 3.10.1, as follows.

• For (X, f) ∈ obj (Top ↓ M), T̂ε(X, f) = (Qε(X, f), p2) where Qε(X, f) := {(x,m) ∈
X×M | d(f(x),m) ≤ ε} and p2 is the projection to the second coordinate.

• For a morphism ϕ : (X, f) → (Y, g), let T̂ε[ϕ] : (Qε(X, f), p2) → (Qε(Y, g), p2),
(x,m) 7→ (ϕ(x),m).

• Let 0 ≤ ε ≤ ζ. Define T̂(ε≤ζ) : T̂ε ⇒ T̂ζ to be the natural transformation
(Qε(X, f), p2)→ (Qζ(X, f), p2), (x,m) 7→ (x,m).

• For (X, f) ∈ obj (Top ↓M), take ûf : (X, f)→ (Q0(X, f), p2), x 7→ (x, f(x)).

• Let ε, ζ ≥ 0. For (X, f) ∈ obj (Top ↓ M), consider µ̂ε,ζ,f : (Qε(Qζ(X, f), p2), p2)→
(Qε+ζ(X, f), p2), ((x, t), s) 7→ (x, s).

Again it is a formality to check that (T̂ , û, µ̂) is a flow on (Top ↓M).

3.14. Theorem. If (M, d) = (R, || · ||∞), then

((Top ↓ R), T̂ ) ∼= ((Top ↓ R), T ).

That is, for every ε ≥ 0, T̂ε is naturally isomorphic to Tε as defined in Section 3.10.1.

Proof. Let ε ≥ 0 and let (X, f) be an M-space. We claim that T̂ε(X, f) ∼= Tε(X, f).
Consider the function preserving maps (Qε(X, f), p2)→ (Xε, fε), (x,m) 7→ (x,m− f(x))
and (Xε, fε) → (Qε(X, f), p2), (x, t) 7→ (x, t + f(x)). Then it is easy to check that they
are inverses, thus we get an isomorphism as desired.

3.15. Theorem. The interleaving distance d((Top↓M),T̂ ) coincides with the distance d∞.

That is, given (X, f), (Y, g) in (Top ↓M),

d((Top↓M),T̂ )((X, f), (Y, g)) = d∞((X, f), (Y, g)).

Proof. This proof proceeds in exactly the same manner as that of Theorem 3.12.
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4. Stability Theorems

So far, we have seen that the interleaving distance gives a very general framework for
defining a distance on a category, and that this framework encompasses many commonly
used metrics. The next goal is to understand how these metrics relate to each other. In
particular, in this section we define colax [0,∞)-equivariant functors of categories with
a flow and show that they are 1-Lipschitz (non-expansive) to the respective interleaving
distances. We then show that some important 1-Lipschitz maps known from TDA can
be realized as colax [0,∞)-equivariant functors of categories with a flow, thus giving
alternative proofs to integral stability results.

4.1. Stability of [0,∞)-equivariant functors. Firstly, we define maps between
categories with a flow.

4.2. Definition. A colax [0,∞)-equivariant functor H : C → D of categories with
a flow C = (C, T , u, µ) and D = (D,S, v, λ) is an ordinary functor H : C → D together
with, for each ε ≥ 0, a natural transformation ηε : HTε ⇒ SεH such that the diagrams

H

HT0 S0H

IHu vIH

η0

HTε SεH

HTζ SζH

ηε

IHT(ε≤ζ) S(ε≤ζ)IH
ηζ

HTεTζ SεHTζ SεSζH

HTε+ζ Sε+ζH

ηεITζ

IHµε,ζ

ISεηζ

λε,ζIH

ηε+ζ

commute for all ε, ζ ≥ 0.

If all ηε are identities then H is called a strict [0,∞)-equivariant functor. If
the categories (C, T ), (D,S) have strict flows, then a strict [0,∞)-equivariant functor
H : (C, T ) → (D,S) is simply a functor H : C → D such that HTε = SεH for all ε ≥ 0.
If in particular H : C → D is an equivalence of categories, then H is called a strict
[0,∞)-equivariant equivalence.

With these definitions in hand, we now turn to understanding the relationship between
the different metrics under a colax [0,∞)-equivariant functor.

4.3. Theorem. Let H : C → D be a colax [0,∞)-equivariant functor of categories with
a flow C = (C, T , u, µ) and D = (D,S, v, λ). Then, H : C → D is 1-Lipschitz to the
respective interleaving distances, i.e.

d(D,S)(Ha,Hb) ≤ d(C,T )(a, b)

for every pair of objects a, b in C.



THEORY OF INTERLEAVINGS ON CATEGORIES WITH A FLOW 599

Proof. To show that H is 1-Lipschitz we have to show that H sends weak ε-interleavings
in C to weak ε-interleavings in D. Specifically, let a, b be two objects in C which are
weakly ε-interleaved; we will show that Ha,Hb are also weakly ε-interleaved.

Since a, b are weakly ε-interleaved, there exists a pair of morphisms ϕ : a → Tεb and
ψ : b→ Tεa in C, such that the diagram of Equation 1 commutes.

Consider the following diagram.

S0Ha Ha

HT0a HTεb

HT2εa HTεTεa SεHb

SεHTεa

S2εHa SεSεHa

T(0≤2ε),Ha

vHa

Hua

Hϕ
η0,a

HT(0≤2ε),a
HTεψ ηε,b

η2ε,a

Hµε,ε,a

ηε,Tεa

SεHψ

Sεηε,a
λε,ε,Ha

(5)

Proceeding clockwise numbering the triangle as 1, the second region commutes as it is the
functor H applied to the left side of Equation 1, the third region commutes by definition
of ηε as a natural transformation, the fifth region commutes by the square diagram of
Definition 4.2, and the first and fourth regions commute by the additional commutative
diagrams of Definition 4.2.

Define Φ = ηε,b ◦ Hϕ and Ψ = ηε,a ◦ Hψ. Since Diagram 5 commutes, we get

λε,ε,Ha ◦ SεΨ ◦ Φ = T(0≤2ε),Ha ◦ vHa.

Similarly we can construct an analogous diagram to show that

λε,ε,Hb ◦ SεΦ ◦Ψ = T(0≤2ε),Hb ◦ vHb.

Therefore (Φ,Ψ) forms a weak ε-interleaving of Ha,Hb.

4.4. Stability of post-compositions between GPM-categories. Let (P ,Ω, u, µ)
be a poset with a flow (equivalently a superlinear family by Lemma 3.4) and let (DP , T )
and (EP ,S) be two GPM-categories with flows induced by the flow Ω on the poset P .
Namely, Tε = −·Ωε and Sε = −·Ωε are the ε-translations on DP and EP respectively. Now
let H : D → E be a functor and consider the post-composition functor H · − : DP → EP ,
that sends each functor F : P → D to the functor HF : P → E .

In [3], the authors investigate the Lipschitz properties of such functors H with respect
to interleavings in the sense of Definition 3.3. Here, we show that these functors fit into
our flow framework, and we see how this is connected to their result.
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4.5. Theorem. The post composition functor H = H · − is colax [0,∞)-equivariant.

Proof. Clearly H is a functor, so we need to construct a natural transformation ηε :
HTε ⇒ SεH. This is just the identity transformation: ηε,F : H(FΩε) = (HF)Ωε, whose
naturality follows from the associativity property of composition of functors. It is easy to
check using naturality that H together with ηε, for ε ≥ 0, satisfies the required commu-
tative diagrams of Definition 4.2.

4.6. Corollary. Let F,G ∈ DP and H : D → E. Then

d(DP ,−·Ω)(HF,HG) ≤ d(EP ,−·Ω)(F,G).

Proof. The proof follows from combining Theorem 4.5 with Theorem 4.3.

We note that this corollary is closely related to the following theorem from [3].

4.7. Theorem. [Bubenik et al. [3]; Theorem 3.16] Let F,G ∈ DP and H : D → E. Then

dΩ(HF,HG) ≤ dΩ(F,G).

In particular, if the flow Ω on P is strict, Theorem 4.7 is also a corollary of Theorem 4.5.

4.8. Stability of persistent homology. In this section, we show that some of the
key stability results of persistent homology are special cases of Theorem 4.3. (These
are the ‘soft’ stability theorems, in the language of Bubenik et al. [3]. The stability of
persistence diagrams requires other technology.)

4.8.1. L∞-stability of sublevel set persistent homology. Let ((Top ↓ R), T )
be the category with a flow of R-spaces with the flow T as defined in Section 3.10.1,
notably Tε(X, f) = (Xε, fε). Let (Top(R,≤),−·Ω) be the GPM-category of one dimensional
persistence modules with the strict flow − · Ω which is induced (as a pre-composition)
by the ε-shift functors Ωε : a 7→ a + ε on the poset (R,≤). Define the sublevel set
filtration functor S : (Top ↓ R) → Top(R,≤) which sends an R-space (X, f) to its
sublevel set filtration S(X, f) = f−1: a 7→ f−1(−∞, a].

4.9. Theorem. The sublevel set filtration functor S is colax [0,∞)-equivariant.

Proof. Firstly we need to construct for each ε ≥ 0, a natural transformation ηε : STε ⇒
(− · Ωε)S, where ηε,f : f−1

ε 7→ f−1Ωε. Define ηε,f = (ηε,f,a)a≥0, where ηε,f,a := p1 :
f−1
ε (−∞, a] → f−1(−∞, a + ε] is the projection of f−1

ε (−∞, a] ⊆ X × [−ε, ε] to the first
coordinate. Then we check that the diagram

f−1
ε (−∞, a] f−1(−∞, a+ ε]

g−1
ε (−∞, a] g−1(−∞, a+ ε]

p1

ϕε ϕ

p1

(x, t) x

(ϕ(x), t) ϕ(x)
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commutes for any morphism ϕ in the slice category. Thus the collection ηε = (ηε,f )f forms
a natural transformation, i.e the diagram

f−1
ε f−1Ωε

g−1
ε g−1Ωε

ηε,f

Tε[ϕ]◦− Sε[ϕ◦−]

ηε,g

commutes. Hence ηε : STε ⇒ (− · Ωε)S. It is then a formality to check that the sublevel
set filtration functor S together with the natural transformations ηε satisfy the axioms of
a colax [0,∞)-equivariant functor.

Let k be field and p a nonnegative integer. Consider the p-dimensional homology
functor (with coefficients in k), Hp : Top → Vectk. We define the p-dimensional
sublevel set persistent homology functor HpS as the composition

((Top ↓ R), T ) (Top(R,≤),− · Ω) (Vect
(R,≤)
k − ·Ω).S

HpS

Hp·−

4.10. Lemma. The p-dimensional sublevel set persistent homology functor HpS is colax
[0,∞)-equivariant.

Proof. Post-composing with the p-dimensional homology functor Hp, is a functor of
GPM-categories with the same domain poset (R,≤), and so, by Theorem 3.5, the functor
Hp · − forms an colax [0,∞)-equivariant functor of categories with a flow. Also the
sublevel set filtration functor S is colax [0,∞)-equivariant. Hence, their composition
HpS is a colax [0,∞)-equivariant functor of categories with a flow.

4.11. Corollary. [Cohen-Steiner et al. [7]] Sublevel set persistence HpS is 1-Lipschitz
with respect to the interleaving distance, i.e.

d
Vect

(R,≤)
k

(HpS(X),HpS(Y)) ≤ d∞(X,Y).

Proof. The proof follows directly from Lemma 4.10 and Theorem 4.3.

4.11.1. L∞-stability of level set persistent homology. Let (M, d) be a metric

space. Let ((Top ↓ M), T̂ ) be the slice category of M-spaces with the flow T̂ as defined
in Section 3.12.1. Let Open(M) be the poset whose objects are open subsets U of M and

morphisms are inclusions. Consider the ε-translations on Open(M), Ω̂ε : Open(M) →
Open(M), U 7→ U ε, where

U ε := ∪y∈U{m ∈M | d(m, y) ≤ ε}
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We easily check that the collection Ω̂ of all ε-translations Ω̂ε on Open(M) forms a flow
on the poset Open(M). Let TopOpen(M) be the GPM-category of pre-cosheaves on M.

Then, Ω̂ induces a flow − · Ω̂ on TopOpen(M) (induced by pre-composition). Consider the
level set filtration functor L : (Top ↓M)→ TopOpen(M) that sends an M-space (X, f)
to its level set filtration

L(X, f) := f−1 : U 7→ f−1(U).

4.12. Theorem. The level set filtration functor L is colax [0,∞)-equivariant.

Proof. Firstly we need to construct a natural transformation ηε : LT̂ε ⇒ (− · Ω̂ε)L,

where ηε,f : LT̂ε(X, f)(U) 7→ f−1Ω̂ε(U). That is, to construct for each M-space, (X, f) a
family of maps ηε,f,U : p−1

2 (U) 7→ f−1(U ε) natural for all U and for all (X, f). Same as
before define ηε,f,U to be the restriction to the projection on the first coordinate. Then
we easily check that the diagram

p−1
2 (U) f−1(U ε)

p−1
2 (U) g−1(U ε)

p1

T̂ε[ϕ] ϕ

p1

(x,m) x

(ϕ(x),m) ϕ(x)

commutes. Thus the collection ηε = (ηε,f )f forms a natural transformation, i.e. the
diagram

f−1
ε f−1Ω̂ε

g−1
ε g−1Ω̂ε

ηε,f

T̂ε[ϕ]◦− ϕΩ̂ε

ηε,g

commutes. Hence ηε : LT̂ε ⇒ (− · Ω̂ε)L. Then it is a formality to check that the level
set filtration functor L together with ηε satisfies the axioms of a colax [0,∞)-equivariant
functor.

Let k be field and p a nonnegative integer. Consider the p-dimensional homology
functor (with coefficients in k), Hp : Top→ Vectk. We define the p-dimensional level
set persistent homology HpL as the composition

((Top ↓M), T̂ ) (TopOpen(M),− · Ω̂) (Vect
Open(M)
k ,− · Ω̂).L

HpL

Hp·−

4.13. Lemma. The p-dimensional level set persistent homology functor HpL is colax
[0,∞)-equivariant.
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Proof. Post-composing with the p-dimensional homology functorHp is a functor between
GPM-categories with the same exponent poset Open(M), and so, by Theorem 3.5 the
functor Hp ·− is colax [0,∞)-equivariant. The same holds for L. Hence, their composition
HpL is colax [0,∞)-equivariant.

4.14. Corollary. [Curry [8, Lemma 15.1.9]] Level set persistence HpL is 1-Lipschitz
with respect to the interleaving distance, i.e.

d
Vect

(R,≤)
k

(HpL(X),HpL(Y)) ≤ d∞(X,Y).

Proof. The proof follows directly from Lemma 4.13 and Theorem 4.3.

5. Concluding Remarks

5.1. Categories with a flow viewed as lax 2-functors. In more generality one
can formalize additional constructions defined on categories by enriching the structure of
the category in the weak, strict or strong sense. A common example of (weakly) strictly
enriched categories are (bi)2-categories [16]. Any (bi)2-category is a category (weakly)
enriched over the monoidal category Cat of all small categories. Then a lax 2-functor is
a weakly Cat-enriched functor and an oplax 2-natural transformation is a weakly Cat-
enriched natural transformation and so on. Recall from [18] that a metacategory is any
model of the first-order theory of categories, and a category is a metacategory whose
morphisms form sets. Moreover, assuming the existence of one Grothendieck universe
U , sets and categories in U are called small and categories not in U are called large.
Therefore, we have the large category Cat of all small categories, and the metacategory
CAT of all (possibly large) categories. The category Cat forms a 2-category with the
composition operation ◦ on functors and natural transformations. Similarly, CAT forms
a meta 2-category with respect to the composition operation ◦. We remark that the
monoidal category [0,∞) can be seen also as a strict 2-category with one object denoted
by B[0,∞). Given these facts, we can define equivalently any category with a flow as a
lax 2-functor

B[0,∞) −−−→ CAT

from the strict 2-category B[0,∞) to the meta 2-category CAT of all categories.
Let (C, T ) and (D,S) be two categories with a flow. Thinking of a category with a

flow conceptually as a lax 2-functor from the 2-category B[0,∞) to the meta 2-category
CAT, we can equivalently define a colax [0,∞)-equivariant functor H : (C, T ) → (D,S)
as an oplax natural transformation between these lax 2-functors.

B[0,∞) CAT

(C,T )

(D,S)

H
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5.2. Summary theorem. In this paper we showed that the interleaving construction
assigns

• to each category with a flow (C, T ) the structure of a Lawvere metric space (C, d(C,T )),

• to each colax [0,∞)-equivariant functor H : C → D the structure of a 1-Lipschitz
map H : (C, d(C,T ))→ (D, d(D,S)) with respect to the interleaving distances.

Define

• [0,∞)-ACT to be the metacategory whose objects are categories with a flow and
whose morphisms are colax [0,∞)-equivariant functors, and

• [0,∞]-CAT to be the metacategory whose objects are [0,∞]-enriched categories
(Lawvere metric spaces) and whose morphisms are [0,∞]-enriched functors (namely
1-Lipschitz maps).

We have the following meta-theorem for the interleaving construction.

5.3. Theorem. The interleaving construction

[0,∞)-ACT
I−→ [0,∞]-CAT

(C, T ) 7→ (C, d(C,T ))

(C, T )
H−→ (D,S) 7→ (C, d(C,T ))

H−→ (D, d(D,S))

is functorial.

Proof. Indeed, if H : (C, T ) → (D,S) and K : (D,S) → (E ,U) are colax [0,∞)-
equivariant functors, then we get

• I[K]I[H] = KH = I[KH] and

• I[I[0,∞)-ACT] = I[0,∞]-CAT, because the interleaving construction sends each identity
equivalence I(C,T ) to the identity isometry I(C,d(C,T )).

5.4. Discussion. In this paper, we gave a generalization of the interleaving distance,
originally defined in the context of Topological Data Analysis (TDA), to the context of
arbitrary categories with a flow. We showed that many common metrics, not just those
arising in TDA, can be viewed in this light. We also investigated colax [0,∞)-equivariant
functors of categories with a flow, and provided a general stability result which specializes,
in particular, to the seminal stability theorem for persistence diagrams.

In [9], it was shown that another commonly used tool in TDA, the Reeb graph [21],
can be represented by particularly well behaved cosheaves. In a subsequent paper [11], we
will show that the coherent [0,∞) framework created here also generalizes the stability
theorem for the interleaving distance for Reeb graphs. Further, we can define different
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oplax natural transformations to find bounds for the Reeb graph interleaving distance
by the interleaving distance for simpler objects as exact computation of the Reeb graph
interleaving distance is graph isomorphism hard.

Because this metric is so general, we expect that there are other example categories
we have not yet thought of where this interleaving distance idea will be useful. We should
note that the infrastructure built here also has some immediate generalizations which we
have not expanded on, such as replacing the functors or natural transformations with any
combination of lax or oplax structures. The restriction to lax functors and oplax natural
transformations in this paper was merely due to the applications we are interested in.
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