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SPHERES AS FROBENIUS OBJECTS

DJORDJE BARALIĆ, ZORAN PETRIĆ AND SONJA TELEBAKOVIĆ

Abstract.

Following the pattern of the Frobenius structure usually assigned to the 1-dimensional
sphere, we investigate the Frobenius structures of spheres in all other dimensions. Start-
ing from dimension d = 1, all the spheres are commutative Frobenius objects in cate-
gories whose arrows are (d + 1)-dimensional cobordisms. With respect to the language of
Frobenius objects, there is no distinction between these spheres—they are all free of ad-
ditional equations formulated in this language. The corresponding structure makes out
of the 0-dimensional sphere not a commutative but a symmetric Frobenius object. This
sphere is mapped to a matrix Frobenius algebra by a 1-dimensional topological quantum
field theory, which corresponds to the representation of a class of diagrammatic algebras
given by Richard Brauer.

1. Introduction

A Frobenius structure of one dimensional sphere S1 is thoroughly investigated in a series
of papers and books (see [6], [1], [14] and references therein). It is not the case that S1 as
a commutative Frobenius object of the category of 2-cobordisms is dealt with separately,
but always in the context of two dimensional topological quantum field theories and in
connection with Frobenius algebras. A Frobenius structure of spheres of other dimensions
is investigated in [6] and [25].

It is straightforward to conclude that for every d ≥ 1, the sphere Sd−1 is a symmetric
Frobenius object in the category dCob of d-cobordisms. Also, it is straightforward to
conclude that for every d ≥ 2, the sphere Sd−1 is a commutative Frobenius object in this
category. (The author of [25] claims in Proposition 1 that every sphere is a commutative
Frobenius object, which is not true for the case of S0.) This means that increasing the
dimension of a sphere from 0 to 1 produces a narrowing of the class of symmetric to the
class of commutative Frobenius objects. Hence, it is natural to ask the following question:
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how many such steps are there, which produce new classes of Frobenius objects, induced
by increasing the dimension of spheres?

The notion of commutative Frobenius object is not Post complete, i.e. adding a new
equality between the canonical arrows (those relevant for the Frobenius structure) does
not produce a collapse—some canonical arrows with the same source and target remain
different. Hence, there are different classes of commutative Frobenius objects. If for a pair
of different closed 2-manifolds, one forms the corresponding equality of canonical arrows,
then all the commutative Frobenius objects satisfying this new equality form a proper
subclass of commutative Frobenius objects. There are infinitely many such classes and
[21, Proposition 2.4] provides a way to classify all the commutative Frobenius objects into
classes corresponding to pairs of closed 2-manifolds.

For example, the class of commutative Frobenius objects satisfying the equality: co-
multiplication followed by multiplication equals identity (a special Frobenius algebra is
such an object) is a proper subclass of the commutative Frobenius objects satisfying the
equality: unit followed by comultiplication followed by multiplication followed by counit
equals unit followed by counit. In terms of 2-manifolds, the latter class corresponds to
the pair consisting of the torus S1 × S1 and the sphere S2.

The purpose of this paper is to show that no proper subclass of commutative Frobenius
objects includes Sd−1, for d ≥ 2. In order to do this, we construct a symmetric monoidal
category K with a universal commutative Frobenius object, and show that for every
d ≥ 2, every symmetric monoidal functor from K to dCob that maps this object to Sd−1

is faithful.
The paper is organized so that some basic notions from category theory, which are nec-

essary for understanding the results, are given in this introductory section. The category
dCobS, whose objects are finite collections of (d−1)-dimensional spheres and arrows are
equivalence classes of topological d-cobordisms, is introduced in Sections 2 and 9. This
category is an ambient for a Frobenius object Sd−1. The category dCobS is a full subcat-
egory of the category dCob whose objects are the (d−1)-dimensional closed topological
manifolds.

In Section 3, we justify our restriction of objects of the category of d-cobordisms to
collections of spheres. The results of this section heavily depend on some topological facts
that are listed in Section 10. In Section 4, the pattern followed by us is explained in order
to define a Frobenius structure of a sphere.

Section 5 is devoted to the case of S0 and a classical result of Richard Brauer concerning
a matrix representation of a class of diagrammatic algebras. This matrix representation
is generalized by Došen and the second author (see [10] and [11]) to cover a category
and not just a monoid of diagrams. This generalization is a one dimensional topological
quantum field theory that maps S0 to a matrix Frobenius algebra, which is usually the
first example of a Frobenius algebra one finds in the literature.

Section 6 serves to define a symmetric strict monoidal category K with a universal
commutative Frobenius object in it. This category is built out of a syntax material.
Technical details of this construction are given in Section 11. A normal form for arrows
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of this category is given in Section 7.
The main result of Section 8 is that, for every d ≥ 2, the category K is embeddable

into dCobS. The image of the universal Frobenius object through this embedding is the
sphere Sd−1. Such a result is a completeness result from the point of view of a logician and
a coherence result from the point of view of a category theorist. It says that with respect
to the language of Frobenius objects there is no distinction between spheres starting from
dimension d = 1, i.e. they are all free of additional equations formulated in this language.
This provides the answer to the question from the second paragraph.

Almost all the categories we deal with in this paper are skeletal in the sense that
there are no two different isomorphic objects in them. Hence, all the monoidal categories
mentioned below will be strict monoidal. In this way we lose some interesting combina-
torics tied to associativity, but this enables us to emphasize the combinatorial structure
we investigate.

A strict monoidal category is a triple (M,⊗, e) consisting of a categoryM, a bifunctor
⊗ : M×M → M, which is associative, and an object e, which is a left and right unit
for ⊗. It is symmetric when there is a natural transformation τ with components

τA,B : A⊗B → B ⊗ A,

which means that for every pair of arrows f : A→ A′ and g : B → B′ the diagram

A⊗B

A′ ⊗B′

B ⊗ A

B′ ⊗ A′

τA,B

τA′,B′

f ⊗ g g ⊗ f

-

-
? ?

commutes, this transformation is self-inverse, i.e. τB,A ◦ τA,B = 1A⊗B, and it satisfies
τA⊗B,C = (τA,C ⊗ 1B) ◦ (1A ⊗ τB,C) (cf. the equations (str), (cat), (fun), (nat), (inv) and
(hex ) of Section 11). The main example of symmetric strict monoidal categories in this
paper are the categories dCobS and dCob introduced in Section 2.

A monoid (M,µ♦ : M ⊗M → M, η♦ : e → M) in a strict monoidal category M is a
triple consisting of an object M of M, and two arrows µ♦ and η♦ of M, such that the
following diagrams commute

M ⊗M ⊗M

M ⊗M

M ⊗M

M

µ♦ ⊗ 1M

µ♦

1M ⊗ µ♦ µ♦

-

-
? ?

M ⊗M M ⊗MM

M

� -

?

HHH
Hj

���
��

η♦⊗ 1M 1M ⊗η♦

1M
µ♦ µ♦

(cf. the equations (assoc) and (unit) of Section 11).
A comonoid (M,µ� : M →M⊗M, η� : M → e) inM is defined in a dual manner (cf.

the equations (coass) and (counit) of Section 11). A Frobenius object inM is a quintuple

(M,µ♦ : M ⊗M →M, η♦ : e→M,µ� : M →M ⊗M, η� : M → e)
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such that (M,µ♦, η♦) is a monoid, (M,µ�, η�) is a comonoid, and the following Frobenius
equations (cf. the equations (Frob) of Section 11) hold

(1M ⊗ µ♦) ◦ (µ� ⊗ 1M) = µ� ◦ µ♦ = (µ♦ ⊗ 1M) ◦ (1M ⊗ µ�).

If M is symmetric, then a Frobenius object (M,µ♦, η♦, µ�, η�) is commutative when

µ♦ ◦ τM,M = µ♦ and τM,M ◦ µ� = µ�

(cf. the equations (com) and (cocom) of Section 11, which are interderivable in the presence
of other equations), and it is symmetric when

η� ◦ µ♦ ◦ τM,M = η� ◦ µ♦ and τM,M ◦ µ� ◦ η♦ = µ� ◦ η♦.

A functor between two symmetric strict monoidal categories is symmetric monoidal
when it preserves the symmetric monoidal structure on the nose, i.e. it maps tensor to
tensor, unit to unit and symmetry to symmetry. According to our intention to work with
strict monoidal structures, by a d-dimensional topological quantum field theory (dTQFT)
we mean here a symmetric monoidal functor between the category dCob and a strict
monoidal category equivalent to the category of finite dimensional vector spaces over a
chosen field. This strictification is supported by [19, Section XI.3, Theorem 1].

In some parts of the text, a natural number (finite ordinal) n is considered to be the
set {0, . . . , n− 1}. It will be clear from the context when this is assumed.

2. The category dCobS

By a d-manifold we mean here a compact, oriented d-dimensional ∂-manifold (see Sec-
tion 9). It is closed when its boundary is empty.

For d ≥ 1 and i ∈ N, let Si be the (d−1)-dimensional sphere in Rd with the center
(3i, 0, . . . , 0) and the radius 1. Assume that an orientation of S0 is chosen, and that Si
is oriented so that the translation by the vector (3i, 0, . . . , 0) is an orientation preserving
homeomorphism from S0 to Si. Let 0 denote the empty set, and for n > 0, let n denote
the closed (d−1)-manifold S0 ∪ . . . ∪ Sn−1.

Let M be a d-manifold such that its boundary ∂M is a disjoint union of Σ0 homeo-
morphic to n and Σ1 homeomorphic to m. We assume that the orientations of Σ0 and Σ1

are induced from the orientation of M (see Section 9).
Let f0 : n→M and f1 : m→M be two embeddings whose images are respectively Σ0

and Σ1. Assume that f0 preserves, while f1 reverses the orientation. The triple (M, f0, f1)
is a d-cobordism, or simply a cobordism, from n to m. We call Σ0 and Σ1, respectively,
the ingoing and outgoing boundary of M in this cobordism.

Two d-cobordisms K = (M, f0, f1) and K ′ = (M ′, f ′0, f
′
1) are equivalent, which we

denote by K ∼ K ′, when there is an orientation preserving homeomorphism F : M →M ′

such that the following diagram commutes.
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n

M

M ′

m

f0 f1

f ′0 f ′1

F
��

�
�*

H
HHHj

HH
H
HY

�
����

?

The category dCobS has 0, 1, 2, . . . as objects and equivalence classes of d-cobordisms
as arrows. The identity arrow from n to n in dCobS is the equivalence class of the
d-cobordism

n nn× I
〈1, c0〉 〈1, c1〉

- �

where I is the unit interval [0, 1], 1 is the identity map on n, c0, c1 : n → I are the
constant maps c0(x) = 0 and c1(x) = 1, and for f : C → A, and g : C → B, the pairing
〈f, g〉 : C → A×B is defined by 〈f, g〉(c) = (f(c), g(c)).

Composition of cobordisms (M, f0, f1) : n → m and (N, g0, g1) : m → k consists
of the d-manifold N +g0,f1 M obtained by gluing (see Section 9) and two maps j ◦ f0
and i ◦ g1, where i : N → N +g0,f1 M and j : M → N +g0,f1 M are the embeddings
in the corresponding pushout diagram (see Section 9). Equivalence of cobordisms is a
congruence with respect to the composition.

When d = 2, the category dCobS is isomorphic to the category 2-Cobord of [1,
Section 4]. The category dCobS is strict monoidal with respect to the sum on objects
(n+m = n+m) and the following operation of “putting side by side” on arrows. First, for
two d-manifolds N and M , we denote by N+M the disjoint union (N×{0})∪(M×{1}),
and for two functions f : n→ N and g : m→M , we denote by f + g : n+m→ N +M
the following function

(f + g)(x) =

{
(f(x), 0), x ∈ n
(g(x− (3n, 0, . . . , 0)), 1), x 6∈ n.

Then, the “putting side by side” of (N, f0, f1) and (M, g0, g1) is the d-cobordism

(N +M, f0 + g0, f1 + g1).

The category dCobS is also symmetric monoidal with respect to the family of d-
cobordisms τn,m, defined as

n+m m+ n,(n+m)× I
〈1, c0〉 〈f, c1〉

- �

where f : n+m → n+m translates the spheres Si, 0 ≤ i ≤ n − 1, by the vector
(3m, 0, . . . , 0), and the spheres Sj, n ≤ j ≤ n+m− 1, by the vector (−3n, 0, . . . , 0).

The category dCobS is skeletal, i.e. there are no two different isomorphic objects in
dCobS. This is shown below (see Section 5 and Corollary 8.4). It is a full subcategory of
the category dCob, whose objects are all closed (d−1)-manifolds, and whose arrows are
based on arbitrary d-manifolds, and not only on those with boundaries homeomorphic to
collections of spheres. The symmetric monoidal structure of the category dCob is defined
as for dCobS.
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3. Why spheres?

In this section we explain why we work in dCobS and not in dCob, and why we deal with
topological and not with smooth manifolds. The main reason is that dealing with arrows
of dCobS is simplified to a certain extent by “irrelevance” of gluing. Section 10 serves to
prepare the ground for the results of this section. The ambient consisting of collections of
spheres is sufficient for our purposes, since we investigate spheres as Frobenius objects.

3.1. Lemma. If f : 1 → 1 is an orientation preserving homeomorphism, then the cobor-
disms (1× I, 〈1, c0〉, 〈1, c1〉) and (1× I, 〈1, c0〉, 〈f, c1〉) are equivalent.

Proof. Let F : 1 × I → 1 × I be the homeomorphism from Proposition 10.9 such
that F (x, 0) = (x, 0) and F (x, 1) = (f(x), 1). Then F makes the following diagram
commutative.

1

1× I

1× I

1

〈1, c0〉 〈1, c1〉

〈1, c0〉 〈f, c1〉
F

��
�
�*

HH
HHj

HH
H

HY

��
���

?

3.2. Lemma. If u, v : 1 → Σ are two orientation preserving homeomorphisms, then the
cobordisms K1 = (Σ×I, 〈v, c0〉, 〈v, c1〉), K2 = (Σ×I, 〈v, c0〉, 〈u, c1〉) and (1×I, 〈1, c0〉, 〈1, c1〉)
are equivalent.

Proof. The homeomorphism F in the center of the following diagram is the one from
Lemma 3.1 obtained for f = v−1 ◦ u.

1

Σ× I

1× I

Σ× I

1× I
1

〈v, c0〉

〈v, c0〉

〈u, c1〉

〈v, c1〉

〈1, c0〉

〈1, c0〉

〈f, c1〉

〈1, c1〉

F

v−1 × 1

v × 1
?

?

?

PPPPq

��
��1

����)

PP
PPi

-

-

�

�
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3.3. Lemma. If u, v : 1 → Σ are two orientation preserving homeomorphisms, where Σ
is a part of the boundary of a d-manifold M , then the cobordisms (M, f + u + g, h) and
(M, f + v + g, h) are equivalent.

Proof. Let K1 and K2 be the cobordisms from Lemma 3.2. For n and m being the
sources of f and g respectively, we have

(M, f + u+ g, h) ∼ (M, f + u+ g, h) ◦ 1n+1+m

∼ (M, f + u+ g, h) ◦ (1n +K2 + 1m)

= (M, f + v + g, h) ◦ (1n +K1 + 1m)

∼ (M, f + v + g, h) ◦ 1n+1+m

∼ (M, f + v + g, h).

By iterating Lemma 3.3 and an analogous result concerning the outgoing boundary of
M , we obtain the following result in which “connected components” should be replaced
by “pairs of points”, when d = 1.

3.4. Corollary. Every arrow of dCobS is completely determined by a d-manifold and
two sequences—one of connected components of the ingoing boundary and the other of
connected components of the outgoing boundary.

Hence, we may denote an arrow from n tom by (M,Σ0,Σ1), where Σ0 = (Σ0
0, . . . ,Σ

n−1
0 )

is a sequence of all the connected components (or pairs of points, when d = 1) of the
ingoing boundary and Σ1 = (Σ0

1, . . . ,Σ
m−1
1 ) is a sequence of all the connected components

of the outgoing boundary of M .

3.5. Proposition. Two cobordisms (M,Σ0,Σ1) and (N,∆0,∆1) are equivalent iff the
corresponding sequences are of the same length and there is a homeomorphism F : M → N
such that for every i ∈ {0, 1} and every j, the image of F restricted to Σj

i is ∆j
i .

Proof. The direction from left to right follows from the definition of equivalence. For
the other direction, for every j, let hj0 : 1 → Σj

0 be an orientation preserving home-
omorphism and let hj1 : 1 → Σj

1 be an orientation reversing homeomorphism. Define
gji : 1 → ∆j

i to be F ◦ hji . Then F underlies the equivalence of (M,
∑n−1

j=0 h
j
0,
∑m−1

j=0 h
j
1)

and (N,
∑n−1

j=0 g
j
0,
∑m−1

j=0 g
j
1).

However, if for d ≥ 3 we allow closed (d−1)-manifolds other than collections of spheres
to be objects of the category of d-cobordisms, then it would not be the case that the arrows
of such a category are determined just by manifolds and sequences of ingoing and outgoing
boundaries. For example, a solid torus with the torus as the ingoing boundary and the
empty set as the outgoing boundary does not determine a 3-cobordism. The identity map
and an orientation preserving homeomorphism of the torus that interchanges parallels and
meridians define two different 3-cobordisms. By the result of Lickorish, [16], every closed,
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connected, 3-manifold is obtainable from S3 by removing a finite collection of solid tori,
and then sewing them back. For example, if one removes an unknotted solid torus from
S3 and sew it back according to a homeomorphism of torus that interchanges parallels
and meridians, then the resulting 3-manifold is S2 × S1.

In case of the category of smooth d-cobordisms as arrows and collections of spheres as
objects, the analogues of Corollary 3.4 and Proposition 3.5 do not hold for every d. For
example, the manifold Sd−1 × I with Sd−1 × {0} as the ingoing and Sd−1 × {1} as the
outgoing boundary does not determine a d-cobordism. This is shown as follows.

A pseudo-isotopy of a smooth closed manifold M is a diffeomorphism F of M × I
that restricts to the identity on M × {0}. The restriction of F to M × {1} is, up to the
identification of M × {1} with M , a diffeomorphism f : M → M . One says that f is
pseudo-isotopic to the identity.

By a definition analogous to the one given in Section 2 (cf. [14, 1.2.17]), two smooth
d-cobordisms (Sd−1 × I, 〈1, c0〉, 〈1, c1〉) and (Sd−1 × I, 〈1, c0〉, 〈f, c1〉) are equivalent when
there is an orientation preserving diffeomorphism F : Sd−1 × I → Sd−1 × I such that the
following diagram commutes.

Sd−1

Sd−1 × I

Sd−1 × I

Sd−1

〈1, c0〉 〈1, c1〉

〈1, c0〉 〈f, c1〉
F

��
�
�*

H
HHHj

HH
H

HY

�
����

?

This is equivalent to the fact that f is pseudo-isotopic to the identity on Sd−1. Since it is
not the case that for every d every orientation preserving diffeomorphism of Sd−1 is pseudo-
isotopic to the identity (see [12], [3] and [5]), we have that there is not always a unique
d-cobordism corresponding to Sd−1 × I, with chosen ingoing and outgoing boundaries.

However, for d ≤ 6 (and not only for these dimensions), every orientation preserving
diffeomorphism of Sd−1 is pseudo-isotopic to the identity. This fact, for d = 2, is implicitly
used by Kock, [14], in order to pass from smooth 2-cobordisms to the pictures representing
the underlying manifolds. A result analogous to our Corollary 3.4 holds for 2-cobordisms
of [14].

4. A Frobenius structure of spheres

In this section we follow the pattern given for S1 in [1] and [14] in order to define a
Frobenius structure for a sphere of any finite dimension.

For an oriented d-disc D and its boundary ∂D, let η♦ be the d-cobordism (D, ∅, (∂D))
and let η� be the d-cobordism (D, (∂D), ∅).

On the other hand, for D1 and D2 being two nonintersecting d-discs in the interior
of D, let M be a d-manifold obtained from D by removing the interiors of D1 and D2.
We define µ♦ to be the d-cobordism (M, (∂D1, ∂D2), (∂D)) and µ� to be the d-cobordism
(M, (∂D), (∂D1, ∂D2)).
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Figure 1: unit, counit

Figure 2: multiplication, comultiplication

It is not difficult to see that the above cobordisms, together with the symmetric
monoidal structure of dCobS, satisfy the conditions necessary for S0 to be a symmetric
Frobenius object of 1CobS, and Sd−1, for d ≥ 2 to be a commutative Frobenius object
of dCobS. For example, the equation (assoc), for d = 3, is illustrated by the following
picture.

Figure 3: associativity

The defined Frobenius structure of Sd−1 guarantees that every dTQFT maps this
sphere to a Frobenius algebra. The image of Sd−1 by a dTQFT is a commutative Frobenius
algebra when d ≥ 2. This is a part of [25, Proposition 1], which is essentially due to
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Dijkgraaf, [6].

5. Brauerian representation as a 1TQFT

In this section, we pay attention to 1CobS in particular. We show that Brauer, [2],
anticipated 1TQFT by his matrix representation of a class of diagrammatic algebras.
When restricted to 1CobS, such a representation determines a matrix Frobenius algebra
as the image of the Frobenius object S0.

Following the definition given in Section 2, the category 1CobS has objects 0, 1, 2, . . .,
where 0 is the empty set and n is the 0-dimensional manifold {−1, 1, . . . , 3n− 4, 3n− 2}
for which we fix the orientation

ε(x) =

{
1, x = 3i− 1,
−1, x = 3i+ 1.

Hence, we may envisage an object of 1CobS as a finite sequence built out of the pair
+−. The arrows of 1CobS are the equivalence classes of 1-cobordisms. For example, the
cobordism (M, f0, f1) : 2→ 1

?
f0(4)

f0(−1)

?
f0(1)

f1(1)

?
f1(−1)

f0(2)

��
��

6M

is illustrated by the following picture

@
@

@I

�
�
�

	

���
��

6

+ − + −

+ −

The category 1CobS is skeletal. If there is an isomorphism K between n and m, then
it is easy to see that there are no cup components in K, i.e. components presented by

-

+ −
or �

− +

Otherwise, there would be such components in K−1 ◦ K : n → n, which is impossible.
Analogously, there are no cap components in K, hence n = m, which implies n = m (cf.
Proposition 8.3).

For the infinite sequence −1, 1, 2, 4, . . . , 3i−1, 3i+1, . . . let n denote the set of its first
n members. In order to obtain a symmetric strict monoidal category containing 1CobS
as a full subcategory, let 1Cob be the category whose set of objects is

{(n, ε) | n ∈ N, ε : n→ {−1, 1}}
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and whose arrows are the equivalence classes of cobordisms of the form

(M, f0 : (n, ε0)→M, f1 : (m, ε1)→M),

where M is a 1-manifold such that its boundary ∂M is a disjoint union of Σ0 and Σ1, and
f0 is an orientation preserving embedding whose image is Σ0, while f1 is an orientation
reversing embedding whose image is Σ1. The symmetric monoidal structure of 1Cob is
defined as for 1CobS by “putting side by side” and by using the symmetry defined in an
analogous way as τn,m defined in Section 2. A connected component of M homeomorphic

to S1 is called circular component of the cobordism. Again, as in Corollary 3.4, every
arrow of 1Cob is completely determined by a 1-manifold M and two sequences Σ0 =
(Σ0

0, . . . ,Σ
n−1
0 ) and Σ1 = (Σ0

1, . . . ,Σ
m−1
1 ) of points, one of the ingoing boundary and the

other of the outgoing boundary. The category 1Cob is not skeletal since we have two
different objects (2, ε0) and (2, ε1) with ε0(−1) = 1, ε0(1) = −1, ε1(−1) = −1, ε1(1) = 1,
which are isomorphic via symmetry.

Brauer, [2], introduced a class of diagrammatic algebras and found their matrix rep-
resentation. In [9, Section 6] a generalization of this representation to a category of
diagrams is given (see also [8] and [11, Section 14]). This generalization leads to the
following assignment of matrices to the arrows of 1Cob.

Let F be a field of characteristic 0 and let p be a natural number greater than or equal
to 2. For an arrow K = (M,Σ0,Σ1) : (n, ε0) → (m, ε1) of 1Cob, let ρK be the following
equivalence relation on the disjoint union (n × {0}) ∪ (m × {1}) of finite ordinals n =
{0, . . . , n−1} and m = {0, . . . ,m−1}. For (i, k) and (j, l) elements of (n×{0})∪(m×{1}),
we have that (i, k)ρK(j, l) when the points Σi

k and Σj
l belong to the same connected

component of M .
For every K : (n, ε0) → (m, ε1) we define a matrix A(K) ∈ Mpm×pn in the following

way. For a0 such that 0 ≤ a0 < pn, which denotes a column of A(K), and a1 such that
0 ≤ a1 < pm, which denotes a row of A(K), write a0 in the base p system with n digits
a00 . . . a

n−1
0 , and a1 in the base p system with m digits a01 . . . a

m−1
1 . For example, if p = 2,

n = 5, m = 3, a0 = 10, a1 = 5, we have a0 = 01010 and a1 = 101.
We define the (a1, a0) element of A(K) to be 1 when for every (i, k) and (j, l) from

(n× {0}) ∪ (m× {1}) we have that

(i, k)ρK(j, l) ⇒ aik = ajl ;

otherwise it is 0.
If we take K to be given by the following picture,

@
@
@I

�
�
��

�
��

− − + + −

− − +

-

	

and we take p = 2 as above, then the (5, 10) element of A(K) is 1 since the sequences
01010 and 101 “match” into the picture of ρK .
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Let MatF be the category whose objects are vector spaces Fn, n ≥ 1, and whose
arrows from Fn to Fm are m× n matrices over the field F . The identity matrix of order
n is the identity arrow on Fn and matrix multiplication is the composition of arrows.
One can identify the objects of MatF with natural numbers (the dimensions of vector
spaces) as it was done in [11]. The category MatF may be considered as a skeleton of
the category VectF of finite-dimensional vector spaces over F . Hence, MatF and VectF
are equivalent.

The category MatF is symmetric strict monoidal with respect to the multiplication on
objects considered as natural numbers, and the Kronecker product on arrows (matrices).
The symmetry is brought by the family of nm × mn permutation matrices Sn,m. The
matrix Sn,m is the matrix representation of the linear map σ : Fn⊗Fm → Fm⊗Fn with
respect to the standard ordered bases, defined on the basis vectors by σ(ei⊗fj) = fj⊗ ei.
For example, S3,2 is the matrix 

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


Consider the following functor B from 1Cob to MatF . On objects it is defined by

B(n, ε) = pn and on arrows we define it as

B(K) = pc · A(K),

where c is the number of circular components of K, and A(K) is the 0− 1 matrix defined
above. That this is indeed a functor stems from [9, Section 5, Proposition 4] and that it
is faithful stems from [11, Section 14]. We shall not go here into any more detail about
this matter.

In order to conclude that this functor is monoidal, note that for matrices X ∈Mm×n
and Y ∈Mk×l we have Z = X ⊗ Y ∈M(m·k)×(n·l) and

xi,j · yq,r = zi·k+q,j·l+r.

If K is obtained from K1 and K2 by “putting side by side” and Z is the matrix A(K),
while X and Y are A(K1) and A(K2) respectively, then

zi·k+q,j·l+r = 1 iff xi,j = yq,r = 1.

In our example for K1 and K2, respectively being
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and

we have z5,10 = x2,1 · y1,2.
It is easy to check that B maps symmetry to symmetry. Consequently, the functor B

may be said to be a 1TQFT.
Let us now restrict the functor B to the category 1CobS. Since S0, i.e. the object 1

is equipped with a Frobenius structure in 1CobS, consequently in 1Cob, the image of 1
by the monoidal functor B is a Frobenius algebra. It is interesting that B brings to B(1)
the structure of a matrix Frobenius algebra (for the notion of matrix Frobenius algebra
see [14, 2.2.16]).

Note that B(1) is p2, i.e. the vector space Fp2 . Every vector

~v =

 v0
...

vp2−1

 ∈ Fp2
corresponds to the matrix H(~v) ∈Mp×p whose (i, j) member is vi·p+j. This is the standard
isomorphism H : Fp2 → Mp×p. In order to show that B brings the structure of a
matrix Frobenius algebra to Mp×p = B(1), it suffices to show that B(µ♦) represents the
multiplication of matrices and that B(η�) represents the trace form.

The arrow µ♦ : 2→ 1 of 1Cob is presented by the following picture

@
@@

�
���

+ − + −

+ −

�

R

and the corresponding matrix B(µ♦) is in Mp2×p4 . Our goal is to show that for the
standard isomorphism

H2 : Fp4 →Mp2×p2

defined as H above (i.e. (i, j) member of H2(~v) is vi·p2+j) and arbitrary matrices X, Y ∈
Mp×p we have that

H(B(µ♦)H−12 (X ⊗ Y )) = XY.

When p = 2, the matrix B(µ♦) is
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1


and H−12 (X ⊗ Y ) is the vector

~v =

 v0...
v15

 ∈ F16
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where v0 = x00 · y00, v1 = x00 · y01, v6 = x01 · y10, v7 = x01 · y11, v8 = x10 · y00, v9 = x10 · y01,
v14 = x11 · y10 and v15 = x11 · y11. Hence, B(µ♦)H−12 (X ⊗ Y ) is

x00 · y00 + x01 · y10
x00 · y01 + x01 · y11
x10 · y00 + x11 · y10
x10 · y01 + x11 · y11


which is mapped to XY by H.

For the general case, let ~u = B(µ♦)H−12 (X ⊗ Y ) and A = H(~u). We want to show
that for 0 ≤ i, j ≤ p− 1,

ai,j =

p−1∑
k=0

xi,k · yk,j.

Since the element ai,j is equal to ui·p+j, we are interested in the (i · p+ j)-th row of the
matrix B(µ♦). In this row, which in the base p system is presented by the sequence ij,
the entry 1 occurs p times in the columns presented in the base p system by the sequences

i00j, i11j, . . . ikkj, . . . i(p− 1)(p− 1)j,

and all the other elements are 0. The column presented by ikkj is actually the (i · p3 + k ·
p2 +k ·p+ j)-th column of the matrix B(µ♦). Since the corresponding row of H−12 (X⊗Y )
is equal to xi,k · yk,j, we have that

ai,j = ui·p+j =

p−1∑
k=0

xi,k · yk,j.

The arrow η� : 1→ 0 of 1Cob is presented by the following picture

-

+ −

and the corresponding matrix B(η�) is inM1×p2 . Our goal is to show that for an arbitrary
matrix X ∈Mp×p we have that

B(η�)H−1(X) = tr(X).

When p = 2, this equality reads

[
1 0 0 1

] 
x00
x01
x10
x11

 = x00 + x11.
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For the general case, in the row of the matrix B(η�) the entry 1 occurs p times in the
columns presented in the base p system by the sequences

00, 11, . . . kk, . . . (p− 1)(p− 1),

and all the other elements are 0. The column presented by kk is actually the (k ·p+k)-th
column of the matrix B(η�). Since the corresponding row of H−1(X) is equal to xk,k, we
have that

B(η�)H−1(X) =

p−1∑
k=0

xk,k.

6. The category K

Our intention is to define the category K as a PROP, in the sense of [18, Chapter V],
having 1 as the universal commutative Frobenius object, in the same sense as 1, as an
object of the simplicial category ∆ is the universal monoid. The category ∆ is introduced
in [19, Section VII.5] as the concrete category of monotone functions between finite or-
dinals. Alternatively, this category could be introduced in a pure syntactical manner by
generators and relations, via [19, Proposition 2, Section VII.5].

We choose this alternative approach and present the category K by generators and
relations. In this way we stipulate the intended universal property in its definition.

More formally, consider the category F whose objects are symmetric strict monoidal
categories with one distinguished commutative Frobenius object and whose arrows are
symmetric monoidal functors preserving distinguished objects and their Frobenius struc-
tures. Since the notions of symmetric strict monoidal category and commutative Frobe-
nius object are purely equational, the forgetful functor G from F to the category Set of
sets and functions, which maps an object of F , i.e. a symmetric monoidal category, to
the set of its objects, has a left adjoint F . As in universal algebra, FX, for a set X is
built out of a term model. Our category K is F∅. What follows is a brief description of
our construction of K and we refer to Section 11 for details.

The category K has the set of finite ordinals ω as the set of objects. The ordinal n is
interpreted as the n-th tensor power of the distinguished commutative Frobenius object.
Hence, the monoidal structure on objects is given by addition. In order to define the
arrows of this category, an equational system is introduced in Section 11.

Briefly, as in every syntactical construction of a free object, words built out of 1, ◦,
⊗, τ , µ♦, η♦, µ� and η� denoting the arrows of K are introduced. We call these words
terms. Every such a term has its source and target. The terms are quotient by the
smallest equivalence relation guaranteeing that 1 is a commutative Frobenius object in
K. (See Section 11 for details.) The equivalence class of a term f is denoted by [f ] and
{[f ] | f is a term} is the set of arrows of K. The source of [f ] is the source of f and the
same holds for targets. The identity arrow on n is [1n] and [g] ◦ [f ] is [g ◦ f ].

The category K is strict monoidal with respect to the monoidal structure given by ⊗
and 0. Its symmetry is given by the family of τ arrows. It is skeletal by Corollary 8.4.
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The category K, since it is the image of the initial object in Set under the functor
F , has the following universal property: for every commutative Frobenius object M in
a symmetric strict monoidal category M, there is a unique symmetric monoidal functor
U : K → M such that U(1) = M , and U preserves the Frobenius structure. Hence, for
d ≥ 2, there is a unique symmetric monoidal functor from K to dCobS that maps 1 to 1.
We call this functor the interpretation of K in dCobS. That the interpretation is faithful
is shown in Section 8.

The equations (cat) (see Section 11) are usually not mentioned in the calculations
that follow. Hence, we omit parenthesis tied to nested compositions, and erase or add
compositions with identities, when necessary.

6.1. Remark. We could start with the category 2CobS instead of K (cf. Corollary 8.8),
which would be more in the style of the definition of the simplicial category given in [19,
Section VII.5]. However, for the proof of our main result, if we relied on 2CobS instead
on K, then we would miss the syntax necessary for our approach. This would lead to a
certain amount of imprecision.

7. Normal form for arrows of K

In this section, we define a normal form for terms and show that every arrow of K is
representable by a term in normal form. This normal form is essentially the same as
the one given in [14, 1.4.16]. The normal form is then used in Section 8 for the proof of
faithfulness of the interpretation. Some proofs are illustrated by pictures corresponding
to the interpretation of K in 2CobS.

We start with some auxiliary notions. Let V−1 = η♦, Λ−1 = η�, V0 = H0 = Λ0 = 11,
and for n ≥ 1, let

Vn = µ♦ ◦ (µ♦ ⊗ 11) ◦ . . . ◦ (µ♦ ⊗ 1n−1) : n+ 1→ 1,

Hn = (µ♦ ◦ µ�) ◦ . . . ◦ (µ♦ ◦ µ�)︸ ︷︷ ︸
n

: 1→ 1,

Λn = (µ� ⊗ 1n−1) ◦ . . . ◦ (µ� ⊗ 11) ◦ µ� : 1→ n+ 1.

With the help of these terms, for n,m, p ≥ 0, we define Ep,m,n as

Λp−1 ◦Hm ◦ Vn−1 : n→ p

A term is a τ -term when µ♦, η♦, µ� and η� do not occur in it. For every τ -term
f : n→ n there exists a unique permutation on n that corresponds to f .

A term is special when it is a τ -term, or for k ≥ 1, it is of the form

π ◦
k⊗
i=1

Epi,mi,ni
◦ χ,

where π and χ are τ -terms. We call χ, the head,
⊗k

i=1Epi,mi,ni
, the center, and π, the tail

of this term.
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7.1. Proposition. Every term is equal to a special term.

We use the following lemmata in the proof of Proposition 7.1.

7.2. Lemma. Every term is equal to a term of the form fn ◦ . . . ◦ f0, n ≥ 0, where every
fi is of the form 1l ⊗ β ⊗ 1r, for l, r ≥ 0 and β ∈ {τ, µ�, η�, η♦, µ♦}.

Proof. By relying on the equations

f1 ⊗ f2 = (f1 ⊗ 1m2) ◦ (1n1 ⊗ f2) and (g ◦ f)⊗ 1m = (g ⊗ 1m) ◦ (f ⊗ 1m),

derived from (cat) and (fun).

7.3. Lemma. For every permutation on n, there is a τ -term π : n → n such that this
permutation corresponds to π. If the permutations corresponding to two τ -terms are equal,
then these terms are equal in K.

Proof. By symmetric monoidal coherence (see [17]).

From now on, we identify a τ -term with the corresponding permutation.

7.4. Lemma. For every τ -term π : p→ p and every l ∈ p, there is a τ -term π′ : p− 1→
p− 1 such that for j = π−1(l), π is equal to

(τ1,l ⊗ 1p−l−1) ◦ (11 ⊗ π′) ◦ (τj,1 ⊗ 1p−j−1).

Proof. The permutation corresponding to

(τl,1 ⊗ 1p−l−1) ◦ π ◦ (τ1,j ⊗ 1p−j−1)

has 0 as a fix point. Hence, by Lemma 7.3, there is a τ -term π′ such that this permutation
corresponds to 11 ⊗ π′. By Lemma 7.3 and (inv) this concludes the proof.

By relying on (fun), (coass) and (counit), we obtain the following two lemmata.

Figure 4: Lemma 7.5

7.5. Lemma. For l + r = n ≥ 0, we have (1l ⊗ µ� ⊗ 1r) ◦ Λn = Λn+1.

7.6. Lemma. For l + r = n ≥ 0, we have (1l⊗ η�⊗1r) ◦ Λn =Λn−1.

7.7. Lemma. For every τ -term π : l + r → l + r, we have

(1l⊗ η♦ ⊗ 1r) ◦ π = (τ1,l ⊗ 1r) ◦ (11 ⊗ π) ◦ (η♦ ⊗ 1l+r).
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Figure 5: Lemma 7.6

Proof. We prove this from right to left, by relying on (fun), (nat) and the equation
τ0,l = 1l, which is derivable by (inv), (hex ) and (str) as follows

1l = τl,0 ◦ τ0,l = τl,0 ◦ τ0+0,l = τl,0 ◦ (τ0,l ⊗ 10) ◦ (10 ⊗ τ0,l)
= τl,0 ◦ τ0,l ◦ τ0,l = τ0,l.

Figure 6: Lemma 7.7

By relying on (coass), (assoc), (cocom), (com), and the fact that every permutation
is equal to a composition of transpositions, we can prove the following.

7.8. Lemma. For every τ -term π : n+ 1→ n+ 1, we have π ◦Λn = Λn, and Vn ◦π = Vn.

Figure 7: Lemma 7.8

For a τ -term π : p → p with p ≥ 2, we say that l, l + 1 ∈ p are parallel in π when
π−1(l + 1) = π−1(l) + 1, i.e. for some j ∈ p, π(j) = l and π(j + 1) = l + 1.
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7.9. Lemma. For a special term f , which is not a τ -term, with the target p ≥ 2, and
every l ∈ p− 1, there is a special term equal to f , such that l, l+ 1 are parallel in its tail.

Proof. Let f be π ◦
⊗k

i=1Epi,mi,ni
◦ χ. If l and l + 1 are tied by π to the target of one

E in the center of f , i.e. there is j ∈ {1, . . . , k} such that

j−1∑
i=1

pi ≤ π−1(l), π−1(l + 1) <

j∑
i=1

pi,

then, if necessary, by Lemma 7.8 a τ -term could be added in between the tail and the
center of f in order to obtain a new tail such that l, l + 1 are parallel in it.

Figure 8: Lemma 7.9

If this is not the case, then by the following corollary of (nat) and (inv)

f1 ⊗ f2 = τm2,m1 ◦ (f2 ⊗ f1) ◦ τn1,n2 ,

we may assume, without loss of generality, that there is j ∈ {1, . . . , k} such that

j−1∑
i=1

pi ≤ π−1(l) <

j∑
i=1

pi ≤ π−1(l + 1) <

j+1∑
i=1

pi.

If necessary, by Lemma 7.8 a new τ -term could be added in between the tail and the
center of f in order to obtain a new tail such that l, l + 1 are parallel in it.
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The proof of the following lemma is akin to the proof of Lemma 7.4.

7.10. Lemma. For every τ -term π : p → p and every l ∈ p − 1 such that l, l + 1 are
parallel in π, there is a τ -term π′ : p− 2→ p− 2 such that for j = π−1(l), π is equal to

(τ2,l ⊗ 1p−l−2) ◦ (12 ⊗ π′) ◦ (τj,2 ⊗ 1p−j−2).

By Lemma 7.8 and the equations (nat), (fun) and (Frob), we have the following.

7.11. Lemma. For n ≥ 1, (1l ⊗ µ♦ ⊗ 1n−l−1) ◦ Λn = Λn−1 ◦H1.

Figure 9: Lemma 7.11

By the equations (fun) and (Frob), we have the following.

7.12. Lemma. For n,m ≥ 0, (1n ⊗ µ♦ ⊗ 1m) ◦ (Λn ⊗ Λm) = Λn+m ◦ µ♦.

By the equations (fun), (assoc) and (Frob), we have the following.

7.13. Lemma. For n,m ≥ 0, µ♦ ◦ (Hn ⊗Hm) = Hn+m ◦ µ♦.

By the equations (fun), (assoc) or (unit), we have the following.

7.14. Lemma. For n,m ≥ −1, µ♦ ◦ (Vn ⊗ Vm) = Vn+m+1.
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Figure 10: Lemma 7.12

Figure 11: Lemma 7.13

Proof of Proposition 7.1. Let f be a term. By Lemma 7.2, f is equal to a term
of the form fn ◦ . . . ◦ f0, where every fi is of the form 1l ⊗ β ⊗ 1r, for l, r ≥ 0 and
β ∈ {τ, µ�, η�, η♦, µ♦}. We proceed by induction on n ≥ 0. (The indices of identities not
important for our calculations are usually omitted.)

If n = 0, then since 1l ⊗ β ⊗ 1r is special, we are done.
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Figure 12: Lemma 7.14, m = −1

Figure 13: Lemma 7.14

If n > 0, then by the induction hypothesis, fn−1 ◦ . . . ◦ f0 is equal to a term of the
form π ◦

⊗k
i=1Epi,mi,ni

◦ χ. We have the following cases concerning fn.

If fn is 1l ⊗ τ ⊗ 1r, then fn ◦ π is a τ -term and we are done.

If fn is 1l ⊗ µ� ⊗ 1r, then by Lemma 7.4, we have a τ -term π′ such that

fn ◦ π = (1l ⊗ µ� ⊗ 1) ◦ (τ1,l ⊗ 1) ◦ (11 ⊗ π′) ◦ (τj,1 ⊗ 1)

= (τ2,l ⊗ 1) ◦ (µ� ⊗ 1) ◦ (11 ⊗ π′) ◦ (τj,1 ⊗ 1) (nat)

= (τ2,l ⊗ 1) ◦ (12 ⊗ π′) ◦ (µ� ⊗ 1) ◦ (τj,1 ⊗ 1) (cat), (fun)

= (τ2,l ⊗ 1) ◦ (12 ⊗ π′) ◦ (τj,2 ⊗ 1) ◦ (1j ⊗ µ� ⊗ 1) (nat)

Then for some u ∈ k, by (fun), (1j ⊗ µ� ⊗ 1) ◦
⊗k

i=1Epi,mi,ni
is equal to

(1⊗ ((1⊗ µ� ⊗ 1) ◦ Epu,mu,nu)⊗ 1) ◦ (
u−1⊗
i=1

Epi,mi,ni
⊗ 1nu ⊗

k⊗
i=u+1

Epi,mi,ni
),

which is, with the help of Lemma 7.5 and (fun) again, equal to the new center

u−1⊗
i=1

Epi,mi,ni
⊗ Epu+1,mu,nu ⊗

k⊗
i=u+1

Epi,mi,ni
.

If fn is 1l ⊗ η� ⊗ 1r, then we proceed as in the preceding case, just by relying on
Lemma 7.6 instead of Lemma 7.5 in order to obtain the new center

u−1⊗
i=1

Epi,mi,ni
⊗ Epu−1,mu,nu ⊗

k⊗
i=u+1

Epi,mi,ni
.
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If fn is 1l ⊗ η♦ ⊗ 1r, then by relying on Lemma 7.7 we have the following

fn ◦ π ◦
⊗k

i=1Epi,mi,ni
= (τ1,l ⊗ 1) ◦ (11 ⊗ π) ◦ (η♦ ⊗ 1) ◦

⊗k
i=1Epi,mi,ni

= (τ1,l ⊗ 1) ◦ (11 ⊗ π) ◦
⊗k

i=0Epi,mi,ni
(fun),

where p0 = 1 and m0 = n0 = 0.

If fn is 1l ⊗ µ♦ ⊗ 1r, then by Lemmata 7.9 and 7.10, we may assume that the tail π
of a special term equal to fn−1 ◦ . . . ◦ f0 is of the form

(τ2,l ⊗ 1p−l−2) ◦ (12 ⊗ π′) ◦ (τj,2 ⊗ 1p−j−2).

As above, we obtain

fn ◦ π = (τ1,l ⊗ 1) ◦ (11 ⊗ π′) ◦ (τj,1 ⊗ 1) ◦ (1j ⊗ µ♦ ⊗ 1).

There are two possibilities concerning the term

(1j ⊗ µ♦ ⊗ 1) ◦
k⊗
i=1

Epi,mi,ni
.

Either it is equal to

(1⊗ ((1⊗ µ♦ ⊗ 1) ◦ Epu,mu,nu)⊗ 1) ◦ (
u−1⊗
i=1

Epi,mi,ni
⊗ 1nu ⊗

k⊗
i=u+1

Epi,mi,ni
)

when we apply Lemma 7.11, with the help of (fun), in order to obtain

u−1⊗
i=1

Epi,mi,ni
⊗ Epu−1,mu+1,nu ⊗

k⊗
i=u+1

Epi,mi,ni
,

or it is equal to

(1⊗ ((1⊗ µ♦ ⊗ 1) ◦ (Epu,mu,nu ⊗ Epu+1,mu+1,nu+1))⊗ 1)◦

(
⊗u−1

i=1 Epi,mi,ni
⊗ 1nu+nu+1 ⊗

⊗k
i=u+2Epi,mi,ni

)

when we apply Lemmata 7.12, 7.13 and 7.14 in order to obtain

u−1⊗
i=1

Epi,mi,ni
⊗ Epu+pu+1−1,mu+mu+1,nu+nu+1 ⊗

k⊗
i=u+2

Epi,mi,ni
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For a, b, c, d ≥ 0, and ni, qi, si, ui ≥ 1 consider a special term of the form

π ◦ (
a⊗
i=1

E0,mi,0 ⊗
b⊗
i=1

E0,pi,ni
⊗

c⊗
i=1

Eqi,ri,0 ⊗
d⊗
i=1

Esi,ti,ui) ◦ χ.

If b ≥ 1, let β1 = 0, and let βi = n1 + . . .+ ni−1, for i ∈ {2, . . . , b}.
If d ≥ 1, let δ1 = n1 + . . . + nb, δ1 = q1 + . . . + qc, and for i ∈ {2, . . . , d}, let

δi = n1 + . . .+ nb + . . .+ u1 + . . .+ ui−1 and δi = q1 + . . .+ qc + . . .+ s1 + . . .+ si−1.
If c ≥ 1, let γ1 = 0, and for i ∈ {2, . . . , c}, let γi = q1 + . . .+ qi−1. Such a special term

is in normal form when
m1 ≤ m2 ≤ . . . ≤ ma,

χ−1(β1) < χ−1(β2) < . . . < χ−1(βb),

π(γ1) < π(γ2) < . . . < π(γc),

π(δ1) < π(δ2) < . . . < π(δd),

for every i ∈ {1, . . . , b}

χ−1(βi) < χ−1(βi + 1) < . . . < χ−1(βi + ni − 1),

for every i ∈ {1, . . . , d}

χ−1(δi) < χ−1(δi + 1) < . . . < χ−1(δi + ui − 1),

π(δi) < π(δi + 1) < . . . < π(δi + si − 1),

and finally, for every i ∈ {1, . . . , c}

π(γi) < π(γi + 1) < . . . < π(γi + qi − 1).

By Proposition 7.1, Lemma 7.8 and the equation

f1 ⊗ f2 = τm2,m1 ◦ (f2 ⊗ f1) ◦ τn1,n2 ,

which follows from (nat) and (inv), we can prove the following.

7.15. Theorem. Every term is equal to a term in normal form.

8. Faithfulness of the interpretation

The aim of this section is to prove the following result.
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8.1. Theorem. For every d ≥ 2, the interpretation of K in dCobS is faithful.

For the proof of this theorem, we need some auxiliary notions and results. Every
d-cobordism K = (M,Σ0,Σ1) : n → m, Σ0 = (Σ0

0, . . . ,Σ
n−1
0 ) and Σ1 = (Σ0

1, . . . ,Σ
m−1
1 ),

induces the following equivalence relation ρK on the set (n × {0}) ∪ (m × {1}) (cf. the
relation with the same name defined in Section 5). For (i, k) and (j, l) elements of (n ×
{0})∪(m×{1}), we have that (i, k)ρK(j, l) when Σi

k and Σj
l belong to the same connected

component of M .
From Proposition 3.5, and since homeomorphisms preserve connected components, we

have the following lemma.

8.2. Lemma. If two d-cobordisms K = (M,Σ0,Σ1) and L = (N,∆0,∆1) are equivalent,
then ρK = ρL.

The following proposition serves to prove that our categories are skeletal.

8.3. Proposition. If K : n→ m is an isomorphism, then n = m.

Proof. We prove that every equivalence class of ρK has two elements, one with the second
component 0 and the other with the second component 1, from which the proposition
follows. Let L : m→ n be the inverse of K.

Suppose that an equivalence class of ρK is a singleton {(i, 0)}. Then {(i, 0)} is an
equivalence class of ρL◦K , which is impossible by Lemma 8.2, since L ◦K is equivalent to
the identity d-cobordism.

Suppose that for i 6= j, an equivalence class of ρK contains both (i, 0) and (j, 0). Then
an equivalence class of ρL◦K contains both (i, 0) and (j, 0), which is again impossible by
Lemma 8.2.

We proceed analogously, by relying on ρK◦L, in cases when an equivalence class of ρK
is a singleton {(i, 1)} or when for i 6= j, an equivalence class of ρK contains both (i, 1)
and (j, 1).

8.4. Corollary. The categories dCobS, for d ≥ 2, and K are skeletal.

That 1CobS is also skeletal is proved in Section 5. The following implication has a
trivial converse.

8.5. Lemma. If E0,n,0 ∼ E0,m,0, then n = m.

Proof. The d-manifolds underlying the cobordisms E0,n,0 and E0,m,0 are closed, and these
d-cobordisms can be identified with the underlying manifolds. Moreover, E0,n,0 ∼ E0,m,0

means that these manifolds are homeomorphic. In the case when d = 2, we have that n
is the genus of E0,n,0, and when d ≥ 3, we have that E0,1,0 is homeomorphic to Sd−1×S1,
which with the help of Van Kampen’s Theorem asserts that the fundamental group of
E0,n,0 is the free group with n generators.
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In the sequel, we assume that f and f ′ are two normal forms

π ◦ (
a⊗
i=1

E0,mi,0 ⊗
b⊗
i=1

E0,pi,ni
⊗

c⊗
i=1

Eqi,ri,0 ⊗
d⊗
i=1

Esi,ti,ui) ◦ χ

and

π′ ◦ (
a′⊗
i=1

E0,m′i,0
⊗

b′⊗
i=1

E0,p′i,n
′
i
⊗

c′⊗
i=1

Eq′i,r′i,0 ⊗
d′⊗
i=1

Es′i,t′i,u′i) ◦ χ
′.

8.6. Proposition. If f ∼ f ′, then a = a′ and mi = m′i for every 1 ≤ i ≤ a.

Proof. Since every homeomorphism justifying f ∼ f ′ maps the closed components of f
to the closed components of f ′, there must be a bijection from {1, . . . , a} to {1, . . . , a′}
such that E0,mi,0 ∼ E0,m′j ,0

, for j corresponding to i by this bijection. Hence, we have

a = a′, and by Lemma 8.5, since the sequences (mi) and (m′i) are increasing, we conclude
that mi = m′i for every 1 ≤ i ≤ a.

The following proposition has Theorem 8.1 as an immediate corollary.

8.7. Proposition. If f ∼ f ′, then f and f ′ are identical.

Proof. By Proposition 3.5 we have that f and f ′ are of the same type n → m. We
proceed by induction on n+m. If n+m = 0, then we apply Proposition 8.6.

If n+m > 0, let ρ be the equivalence relation corresponding, by Lemma 8.2, both to
f and f ′. Suppose that b > 0, hence E0,p1,n1 appears in f . The relation ρ guaranties that
b′ > 0. Let X = χ−1[{0, . . . , n1−1}]. The set X×{0} is an equivalence class of ρ, namely
the equivalence class of (χ−1(0), 0). Our normal form and the relation ρ guarantee that
n′1 = n1, and that χ and χ′ coincide on X.

Let g be the term g0 ⊗ . . .⊗ gn−1, where

gi =

{
11, i 6∈ X,
η♦, i ∈ X.

By relying on the equation (nat), f ◦ g is equal to the normal form f1

π ◦ (A⊗
b⊗
i=2

E0,pi,ni
⊗ C ⊗D) ◦ χ1,

where A is of the form
k⊗
i=1

E0,mi,0 ⊗ E0,p1,0 ⊗
a⊗

i=k+1

E0,mi,0,

while C is
⊗c

i=1Eqi,ri,0, and D is
⊗d

i=1Esi,ti,ui . Analogously, we conclude that f ′ ◦ g is
equal to the normal form f ′1

π′ ◦ (A′ ⊗
b′⊗
i=2

E0,p′i,n
′
i
⊗ C ′ ⊗D′) ◦ χ′1,
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with the abbreviations A′, C ′ and D′ as above.
From f ◦ g ∼ f ′ ◦ g, since the interpretation is a functor, it follows that f1 ∼ f ′1. By the

induction hypothesis f1 and f ′1 are identical. We have that
⊗a

i=1E0,mi,0 and
⊗a′

i=1E0,m′i,0

are identical, by Proposition 8.6, which together with the fact that A and A′ are identical
delivers that p1 = p′1. It remains only to prove that the permutations χ and χ′ are equal,
which follows from the fact that χ1 and χ′1 are equal and that χ and χ′ coincide on X.

We proceed analogously in all the other situations (b = 0 and c > 0, or b = c = 0 and
d > 0).

Since the interpretation of K in dCobS is one-one on objects, it is an embedding. The
following corollary asserting that 2CobS is a PROP having 1 as the universal commutative
Frobenius object is already given in [14, Theorem 3.6.19].

8.8. Corollary. The category K is isomorphic to 2CobS.

Proof. From the classification theorem for 2-manifolds (see for example [26, VI.40]) it
follows that, in the case d = 2, the interpretation is full.

However, for d > 2, the interpretation is not full, and hence not an isomorphism.

Appendix

9. Topological manifolds, orientation and gluing

For n ≥ 0, an n-dimensional manifold M is a second countable Hausdorff space that is
locally Euclidean of dimension n. This means that the topology of M admits a countable
basis, that there are disjoint neighborhoods of every pair of distinct points in M , and that
every point in M has a neighborhood homeomorphic to an open subset of Rn. A chart
of M is a homeomorphism ϕ : U → U ′, where U ⊆ M and U ′ ⊆ Rn are open. An atlas
of M is a collection of its charts {ϕi : Ui → U ′i | i ∈ I} such that

⋃
{Ui | i ∈ I} = M .

For n ≥ 1, an n-dimensional manifold with boundary, shortly ∂-manifold, is a second
countable Hausdorff space in which every point has a neighborhood homeomorphic to an
open subset of the halfspace

π+
n = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}.

A chart of an n-dimensional ∂-manifold M is a homeomorphism ϕ : U → U ′, where
U ⊆ M and U ′ ⊆ π+

n are open. An atlas of M is again a collection of its charts whose
domains cover M .

A boundary point of M is a point mapped to a point in the hyperplane

πn = {(x1, . . . , xn) ∈ Rn | xn = 0}

by some chart, otherwise, it is an interior point of M . The set of boundary points of
M is its boundary ∂M , which is an (n− 1)-dimensional manifold, and the set of interior
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points of M is its interior IntM , which is an n-dimensional manifold. The interior IntU
of an open subset U of M is U − ∂M . Every n-dimensional manifold, for n ≥ 1, is an
n-dimensional ∂-manifold, with the empty boundary.

A homeomorphism f : U → V for open U, V ⊆ Rn, n ≥ 1, is orientation preserving
when for every x ∈ U the following isomorphism of homology groups with coefficients in
Z is the identity

Hn(Rn,Rn− {0})
∼=→ Hn(U,U − {x}) f∗→ Hn(V, V − {f(x)})

∼=→ Hn(Rn,Rn− {0}).

Here, the first isomorphism is the composition

Hn(Rn,Rn− {0}) (tx)∗−→ Hn(Rn,Rn− {x}) excision−→ Hn(U,U − {x}),

where tx : Rn → Rn is the translation by x, and the last isomorphism is defined analo-
gously.

9.1. Lemma. Let {Wi | i ∈ I} be an open cover of an open subset U of Rn. A homeo-
morphism f : U → V , for V an open subset of Rn, is orientation preserving iff for every
i ∈ I, the restriction of f to Wi is orientation preserving.

An atlas {ϕi : Ui → U ′i | i ∈ I} of an n-dimensional manifold, n ≥ 1, is oriented when
for every i, j ∈ I, the homeomorphism

ϕi ◦ ϕ−1j : ϕj[Ui ∩ Uj]→ ϕi[Ui ∩ Uj]

is orientation preserving. A manifold possessing such an atlas is orientable. An oriented
atlas is maximal when it cannot be enlarged to an oriented atlas of the manifold by adding
another chart.

Two oriented atlases {ϕi : Ui → U ′i | i ∈ I} and {ψj : Vj → V ′j | j ∈ J} of the same
manifold are equivalent when, for every i ∈ I and every j ∈ J , the homeomorphism

ϕi ◦ ψ−1j : ψj[Ui ∩ Vj]→ ϕi[Ui ∩ Vj]

is orientation preserving (cf. [27, Definition 21.11]).

9.2. Proposition. If two oriented atlases of a manifold are equivalent, then their union
is an oriented atlas of this manifold.

With the help of Lemma 9.1 for transitivity, we can prove the following.

9.3. Proposition. The above relation is an equivalence relation on the set of oriented
atlases of an orientable manifold.

If an orientable manifold is connected, then this equivalence relation has exactly two
classes. As a corollary of Propositions 9.2 and 9.3, we have the following.
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9.4. Proposition. Every oriented atlas could be enlarged to a unique maximal oriented
atlas.

An orientation of a 0-dimensional manifold M is a function ε : M → {−1, 1}. For
n ≥ 1, an orientation of an orientable n-dimensional manifold M is a choice of its maximal
oriented atlas OM . The orientation opposite to OM is obtained by composing every chart
in it by a reflection of Rn, for example with respect to πn.

The orientation of the product of two oriented manifolds M and N is given by the
maximal oriented atlas containing the products of charts in OM with charts in ON . A
homeomorphism f between two oriented n-dimensional manifolds M and N is orientation
preserving when for every chart ϕ : U → U ′ of M , for g being the restriction of f−1 to
f [U ], we have that

ϕ ∈ OM iff ϕ ◦ g ∈ ON .

An embedding of an n-dimensional manifold into an n-dimensional manifold is orien-
tation preserving when its restriction to the image is such. An orientation reversing
homeomorphism (embedding) from M to N is an orientation preserving homeomorphism
(embedding) from M to N with the opposite orientation.

An n-dimensional ∂-manifold, for n ≥ 1, is orientable when its interior is orientable
and an orientation of the interior is an orientation of the ∂-manifold. We denote the
orientation of an oriented ∂-manifold M again by OM . We say that an oriented n-
dimensional ∂-manifold M ⊆ Rn is oriented by the identity when its orientation contains
the charts 1U : U → U for every open U ⊆ IntM .

The orientation of an oriented ∂-manifold induces the orientation of its boundary in
the following way. For an oriented 1-dimensional ∂-manifold M and x ∈ ∂M , we orient
x by ε(x) = 1, when for a neighborhood U of x in M there is a chart ϕ : U → U ′,
U ′ ⊆ {y ∈ R | y ≥ 0}, such that its restriction to IntU is in OM . Otherwise, we orient
x by ε(x) = −1. For example, if I = [0, 1] is oriented by the identity, then ε(0) = 1 and
ε(1) = −1. (Note that this is opposite to the orientation given in [15] but it is consistent
with the orientation given in [14].)

An orientation of the sphere S0 is taken to be induced from an orientation of the
interval [−1, 1]. Hence, in every orientation of S0, one point is positive and the other is
negative.

For n ≥ 2, an oriented n-dimensional ∂-manifold M induces the orientation of ∂M
given by the maximal oriented atlas containing the restriction of ϕ to ∂U for every chart
ϕ : U → U ′, U ′ ⊆ π+

n , whose restriction to IntU belongs to OM . For example, if π+
n

is oriented by the identity, then its boundary πn is oriented by the identity. If π−n =
{(x1, . . . , xn) ∈ Rn | xn ≤ 0} is oriented by the identity, then its boundary πn is oriented
by the maximal oriented atlas containing the restriction of the reflection g : πn → πn,
given by

g(x1, x2, . . . , xn−1, 0) = (−x1, x2, . . . , xn−1, 0),

to every open U ⊆ πn, i.e. it has the opposite orientation from the one in the previous
example.
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Let ΣM be a collection of connected components of the boundary of an n-dimensional
∂-manifold M . An embedding of an oriented (n − 1)-manifold into M , whose image is
ΣM , is orientation preserving (reversing) when its restriction to the image, with respect
to the induced orientation of ΣM , is such.

We discuss now pushouts in the category of topological spaces, and in particular the
case involving ∂-manifolds and oriented ∂-manifolds. For topological spaces X, Y and Z
and continuous functions f : Z → X and g : Z → Y , let � be the smallest equivalence
relation on the disjoint union

X + Y = (X × {0}) ∪ (Y × {1})

such that for every z ∈ Z we have that (f(z), 0) � (g(z), 1).
For functions i : X → (X +Y )/� and j : Y → (X +Y )/� defined by i(x) = [(x, 0)]�

and j(y) = [(y, 1)]�, let the topological space X +f,g Y be given by the set (X + Y )/�
with the topology

T = {U ⊆ (X + Y )/� | i−1[U ] is open in X and j−1[U ] is open in Y }.

This is a pushout in the category of topological spaces, i.e. we have the commutative
diagram

Z

X

Y

X +f,g Y

g

i

f j

-

-
? ?

with the following universal property. For every pair of continuous functions i′ : X → A
and j′ : Y → A such that i′ ◦ f = j′ ◦ g, there is a unique continuous function h :
X +f,g Y → A such that h ◦ i = i′ and h ◦ j = j′.

Let M and N be two n-dimensional ∂-manifolds and let ΣM and ΣN be collections
of connected components of ∂M and ∂N respectively, such that ΣM and ΣN are both
homeomorphic to an (n− 1)-dimensional manifold Σ. Let f : Σ→M and g : Σ→ N be
two embeddings whose images are ΣM and ΣN respectively.

9.5. Proposition. The space M +f,g N is an n-dimensional ∂-manifold.

Proof. Note that for an n-dimensional ∂-manifold M we have that if K is a connected
component of ∂M , thenM−K is an n-dimensional ∂-manifold whose boundary is ∂M−K.
Then we rely on [7, Chapter VIII, Proposition 1.11].

In the case when M and N are two orientable n-dimensional ∂-manifolds and ΣM ,
ΣN and Σ are as above, let f : Σ → M be an orientation preserving embedding whose
image is ΣM , and let g : Σ → N be an orientation reversing embedding whose image is
ΣN . Then the n-dimensional ∂-manifold M +f,g N is orientable.

For charts ϕ : U → U ′ and ψ : V → V ′ of M and N respectively, such that there is
Γ ⊆ Σ, possibly empty, with ∂U = f [Γ] and ∂V = g[Γ], let ϕ+f,gψ be the homeomorphism
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from U +f,g V to U ′ +ϕ◦f,ψ◦g V
′, where by f and g we mean their restrictions to Γ. This

homeomorphism exists by the universal property of pushout. We define the orientation
of M +f,g N to be the maximal oriented atlas containing ϕ+f,g ψ for every pair of charts
ϕ and ψ as above such that the restriction of ϕ to IntU is in OM and the restriction
of ψ to IntV is in ON . In this way the restrictions to the interiors of the embeddings
i : M →M +f,g N and j : N →M +f,g N are orientation preserving.

Locally, the situation is completely illustrated by the following example. For n ≥ 2, let
π+
n and πn be oriented by the identity. For f, g : πn → π+

n being orientation preserving,
respectively orientation reversing, embeddings, with πn as the image, consider the n-
dimensional manifold π+

n +f,g π
+
n . Without loss of generality, we may assume that f is the

inclusion and that g is the reflection

g(x1, x2, . . . , xn−1, 0) = (−x1, x2, . . . , xn−1, 0).

Let g : π+
n → π−n be the composition of two reflections of Rn—one with respect to

the hyperplane π1 = {(x1, . . . , xn) ∈ Rn | x1 = 0} and the other with respect to the
hyperplane πn. Note that g is orientation preserving and its restriction to πn is the
reflection g : πn → πn from above. Hence, g reverses the orientation of the boundary.
However, the composition g ◦ g : πn → π−n is the inclusion.

Now we have the following commutative diagram

π+
n

π+
n

π+
n

π−n

πn

π+
n +f,g π

+
n

Rn

⊇

⊇⊆

g

1 gi j

h

� -

? ?

pppppppppp?
- �

PPPPPPq

������)

which by the universal property of pushout leads to the homeomorphism
h : π+

n +f,g π
+
n → Rn. This homeomorphism is orientation preserving when Rn is oriented

by the identity.

10. Some topological remarks

The classical results formulated in this section are used in Section 3. The following
theorem is proved for n = 2 by Radó, [24], for n = 3 by Moise, [20], for n = 4 by Quinn,
[22], for n ≥ 5 by Kirby, [13], and it is trivial for n = 1.

10.1. Theorem. [Annulus conjecture, ACn] Let f, g : Sn−1 → Rn be disjoint, locally flat
embeddings with f [Sn−1] inside the bounded component of Rn − g[Sn−1]. Then the closed
region bounded by f [Sn−1] and g[Sn−1] is homeomorphic to Sn−1 × I.
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A homeomorphism from Rn to Rn or from Sn to Sn is called stable, when it is equal
to a finite composition of homeomorphisms each of which is the identity on some non-
empty open set. Brown and Gluck, [4], proved that Annulus conjecture is equivalent to
the following statement, which is hence a theorem.

10.2. Theorem. [Stable homeomorphism conjecture] Any orientation preserving home-
omorphism of Rn is stable.

Two homeomorphisms f, g : X → Y are isotopic when there is a homotopy Φ :
X × I → Y from f to g such that every Φt : X → Y is a homeomorphism. Such a
homotopy is called isotopy.

10.3. Theorem. [Alexander] Every homeomorphism from Rn to Rn, or from Sn to Sn,
whose restriction to some non-empty open set is the identity, is isotopic to the identity.

10.4. Lemma. If Φt : X → X is an isotopy from f to g and Γt : X → X is an isotopy
from u to v, then Γt ◦ Φt is an isotopy from u ◦ f to v ◦ g.

10.5. Proposition. Every orientation preserving homeomorphism f : Sn → Sn is iso-
topic to the identity.

Proof. Let p ∈ Sn and let g : Sn → Sn be a homeomorphism whose restriction to some
non-empty open set is the identity, and such that g(f(p)) = p. (It is not difficult to
construct such a g). For h = g ◦ f we have that its restriction to Sn − {p}, which is
homeomorphic to Rn, is a homeomorphism from Sn − {p} to Sn − {p}.

By Theorem 10.2, we have that this restriction is equal to a composition of home-
omorphisms hk ◦ . . . ◦ h1 such that every hi restricted to some non-empty open set is
the identity. If we define hi(p) = p, then every hi : Sn → Sn is a homeomorphism and
f = g−1 ◦hk ◦ . . .◦h1. Hence, f is stable. By Theorem 10.3, and Lemma 10.4, f is isotopic
to the identity.

10.6. Theorem. [Invariance of Domain Theorem] If M and N are topological n-manifolds
without boundaries and f : M → N is a continuous 1-1 map, then f is an open map.

10.7. Lemma. [Pasting Lemma] For X, Y both closed or both open subsets of A = X∪Y ,
if for f : A → B both its restrictions to X and Y are continuous, then f is continuous
too.

10.8. Proposition. If Φt : Sn → Sn is an isotopy from the identity to f , then F :
Sn × I → Sn × I defined by F (x, t) = (Φt(x), t) is a homeomorphism.

Proof. We have that F is continuous and that F−1 defined by F−1(x, t) = (Φ−1t (x), t) is
its inverse. It remains to prove that F−1 is continuous.

Let G : Sn ×R→ Sn ×R be defined by

G(x, t) =


(x, t), (x, t) ∈ Sn × (−∞, 0],
F (x, t), (x, t) ∈ Sn × [0, 1],
(f(x), t), (x, t) ∈ Sn × [1,+∞).
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We have that G is 1-1 and by Lemma 10.7 it is continuous. The (n+ 1)-manifold Sn×R
is without boundary, and by Theorem 10.6, we have that G is open. Hence, F is open,
which means that F−1 is continuous.

As a corollary of Propositions 10.5 and 10.8, we have the following.

10.9. Proposition. If f : Sn → Sn is an orientation preserving homeomorphism, then
there exists a homeomorphism F : Sn × I → Sn × I such that F (x, 0) = (x, 0) and
F (x, 1) = (f(x), 1).

11. The equational system K
To define the arrows of K, we need an equational system, denoted by K. We start with
an inductive definition of terms.

1. For n,m ∈ ω, the words 1n : n→ n, τn,m : n+m→ m+ n,
µ♦ : 2→ 1, η♦ : 0→ 1, µ� : 1→ 2, η� : 1→ 0, are primitive terms.

2. If f : n→ m and g : m→ p are terms, then (g ◦ f) : n→ p is a term.

3. If f1 : n1 → m1 and f2 : n2 → m2 are terms, then
(f1 ⊗ f2) : n1 + n2 → m1 +m2 is a term.

4. Nothing else is a term.

A type is a word of the form n → m, where n,m ∈ ω. We say that n → m is a type
of a term f : n→ m, and we say that this term has n as the source and m as the target.
Usually, we omit the type in writing a term and by a term we mean just its part before
the colon symbol. Also, we omit the outermost parenthesis in terms.

The language of K consists of words of the form f = g, where f and g are terms with
the same type. Besides f = f , the axiom schemata of K are the following.

f ⊗ 10 = f = 10 ⊗ f, (f1 ⊗ f2)⊗ f3 = f1 ⊗ (f2 ⊗ f3). (str)

For f : n→ m, g : m→ p and h : p→ q,

f ◦ 1n = f = 1m ◦ f, (h ◦ g) ◦ f = h ◦ (g ◦ f). (cat)

1n ⊗ 1m = 1n+m, (g1 ◦ f1)⊗ (g2 ◦ f2) = (g1 ⊗ g2) ◦ (f1 ⊗ f2). (fun)

τm1,m2 ◦ (f1 ⊗ f2) = (f2 ⊗ f1) ◦ τn1,n2 . (nat)

τm,n ◦ τn,m = 1n+m. (inv)
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τn+m,p = (τn,p ⊗ 1m) ◦ (1n ⊗ τm,p). (hex )

µ♦ ◦ (µ♦ ⊗ 11) = µ♦ ◦ (11 ⊗ µ♦). (assoc)

µ♦ ◦ (η♦ ⊗ 11) = 11 = µ♦ ◦ (11 ⊗ η♦). (unit)

(µ� ⊗ 11) ◦ µ� = (11 ⊗ µ�) ◦ µ�. (coass)

(η� ⊗ 11) ◦ µ� = 11 = (11 ⊗ η�) ◦ µ�. (counit)

(µ♦ ⊗ 11) ◦ (11 ⊗ µ�) = µ� ◦ µ♦ = (11 ⊗ µ♦) ◦ (µ� ⊗ 11). (Frob)

µ♦ ◦ τ1,1 = µ♦. (com)

τ1,1 ◦ µ� = µ�. (cocom)

The inference figures of K are the following.

f = g

g = f

f = g g = h

f = h

f1 : n→ m = f2 : n→ m g1 : m→ p = g2 : m→ p

g1 ◦ f1 = g2 ◦ f2

f1 = g1 f2 = g2

f1 ⊗ f2 = g1 ⊗ g2
We say that terms f and g are equal, when f = g is a theorem of K, and we denote

this by f ≡ g. The relation ≡ is an equivalence relation and [f ] is the equivalence class
of a term f .
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