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CROSSED PRODUCTS OF CROSSED MODULES OF HOPF
MONOIDS

J.N. ALONSO ÁLVAREZ, J.M. FERNÁNDEZ VILABOA, AND R. GONZÁLEZ
RODRÍGUEZ

Abstract. In this paper we consider a crossed product of two crossed modules of
Hopf monoids in a strict symmetric monoidal category C and give necessary and sufficient
conditions to get a new crossed module of Hopf monoids in C. Moreover we introduce the
notion of projection of crossed modules of Hopf monoids and show that with additional
hypotheses, any of these projections defines a new crossed module of Hopf monoids and
allows us to construct an example of this kind of crossed product. Finally, we develop the
explicit computations of a crossed product associated to a projection of crossed modules
in groups.

1. Introduction

Motivated by the semidirect product construction in the theory of groups and taking into
account that the group algebra is a Hopf algebra, Molnar [Molnar, 1997] introduced, in a
category of vector spaces over a field k, the smash product B#H of a Hopf algebra B by a
cocommutative Hopf algebraH and gave sufficient conditions to assure that this product is
compatible with the tensor product coalgebra structure. This work was initially extended
by Radford [Radford, 1985], who found necessary and sufficient conditions for the smash
product algebra structure and the smash coproduct coalgebra structure to afford a Hopf
algebra structure and characterized such objects via bialgebra projections. Later, Majid
[Majid, 1994] interpreted this result in the modern context of braided categories. Also, but
in a different direction, Majid [Majid, 1995] gave a different version by considering two-
cocycles. More precisely, he established conditions to assure that a product modified with
a two-cocycle be compatible with the tensor product coalgebra structure. This result
was extended to a braided category in [Alonso Álvarez, Fernández Vilaboa, González
Rodŕıguez, 2001].

On the other hand, crossed modules of groups were initially defined by Whitehead
[Whitehead, 1949] as models for (homotopy) 2-types. Recall that the triple (A,H, ∂) is a
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crossed module if, for the group morphism ∂ : A→ H and the action ϕA(h, a) = ha, the
following identities

(i) ∂(ha) = h∂(a)h−1,

(ii) ∂(a)a′ = aa′a−1 (Peiffer identity).

hold. An immediate generalization of this notion is obtained if we consider group algebras
in place of groups and it is easy to extend the notion to the more general context of Hopf
algebras. Unfortunately, there is no agreement as to the definition of a crossed module of
Hopf algebras. The most general notion was given by Frégier and Wageman in [Frégier,
Wagemann, 2011]. If ⊗ denotes the tensor product in k −Vect, they consider two Hopf
algebras A and H, an action ϕA : H ⊗ A → A, such that (A,ϕA) is a left H-module
algebra (coalgebra), and a Hopf algebra morphism ∂ : A→ H satisfying

∂ ◦ ϕA = adH ◦ (idH ⊗ ∂), (1)

and the Peiffer identity
ϕA ◦ (∂ ⊗ idA) = adA, (2)

where adH , adA denote the adjoint action for H and A respectively. The notion given by
Majid [Majid, 2012] (see also [Faria, 2016]) assumes (1), (2), the condition of morphism
of H-modules for the antipode of A, and the equality

(idH ⊗ ϕA) ◦ (δH ⊗ idA) = (idH ⊗ ϕA) ◦ ((cH,H ◦ δH)⊗ idA) (3)

where δH is the coproduct of H and cH,H the twist in k − Vect. On the other hand,
in a monoidal setting, Fernández Vilaboa and López López [Fernández Vilaboa, López
López, 2007] assume also that H is cocommutative and impose constraints coming from
compatibility with cocommutativity.

In this work, we will consider the monoidal version of the Frégier and Wageman notion
with the additional equality (3). As Majid pointed in [Majid, 2012], the main reason for
assuming this condition is that (3) is a necessary condition to ensure that a crossed
product of Hopf monoids be compatible with the tensor coproduct. But we also want to
emphasize that, as we prove in this paper, (3) allows us to ensure that any Hopf monoid H
induces a crossed module of Hopf monoids (H,H, idH), in a similar way to what happens
in the group setting. In any case, we do not make any assumption on cocommutativity,
nor do we ask that the antipode be a morphism of left H-modules. As a consequence, our
definition is more general that the ones given in [Fernández Vilaboa, López López, 2007]
and [Majid, 2012]. Finally, we want to point out that, although our definition of crossed
module of Hopf monoids is equivalent to the one drawn up in terms of module monoid
and comonoid structures, we have written it in terms of entwining structures in order
to illustrate the possibility of working with crossed modules through the usual entwining
techniques.

An outline of the paper is as follows: after this introduction, in section 2 we give the
necessary and sufficient conditions to ensure that a crossed product of two crossed modules
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of Hopf monoids be a crossed module of Hopf monoids. As an application, in section 3
we introduce the notion of projection of crossed modules of Hopf monoids and show that
with some additional hypotheses, any of these projections defines a new crossed module
of Hopf monoids and allows us to construct an example of this kind of crossed product.
Finally, we develop the explicit computations for a crossed product of two crossed modules
of Hopf monoids in the case where the Hopf monoids are groups.

An immediate application of the results presented in this paper is the possibility of
building new crossed modules of Hopf monoids through crossed products. But we also
want to point out that, even though in this paper we work in a monoidal symmetric
setting, the definition of crossed module of Hopf monoids and the main results about this
objects can be formulated and obtained with similar proofs in a braided context using the
corresponding definition of cocommutativity class in a braided category.

2. Crossed product of crossed modules

Throughout this paper C denotes a strict symmetric monoidal category with tensor prod-
uct ⊗, unit object K and natural isomorphism of symmetry c. We also assume that in C
every idempotent morphism splits, i.e., for any morphism q : M →M such that q ◦ q = q
there exists an object Z, called the image of q, and morphisms i : Z → M , p : M → Z
such that q = i ◦ p and p ◦ i = idZ where idZ denotes the identity morphism for Z. The
morphisms p and i will be called a factorization of q. Note that Z, p and i are unique
up to isomorphism. The categories satisfying this property constitute a broad class that
includes, among others, categories with epi-monic decomposition for morphisms and cat-
egories with (co)equalizers (see [Borceux, 1994] for details). For each object M in C, we
denote the identity morphism by idM : M → M and, for simplicity of notation, given
objects M , N and P in C and a morphism f : M → N , we write P ⊗ f for idP ⊗ f
and f ⊗ P for f ⊗ idP . There is no loss of generality in assuming the strictness of C
because it is well known that we can construct a strict monoidal category Cst which is
tensor equivalent to C (see [Kassel, 1995] for the details). As a consequence, the results
proved in this paper hold for every non-strict symmetric monoidal category (for example
k −Vect).

A monoid in C is a triple A = (A, ηA, µA) where A is an object in C and ηA : K → A
(unit), µA : A ⊗ A → A (product) are morphisms in C such that µA ◦ (A ⊗ ηA) = idA =
µA ◦ (ηA ⊗ A), µA ◦ (A⊗ µA) = µA ◦ (µA ⊗ A). Given two monoids A = (A, ηA, µA) and
B = (B, ηB, µB), f : A→ B is a monoid morphism if µB ◦ (f ⊗ f) = f ◦ µA, f ◦ ηA = ηB.
Also, if A, B are monoids in C, the object A⊗B is a monoid in C where ηA⊗B = ηA⊗ ηB
and µA⊗B = (µA ⊗ µB) ◦ (A⊗ cB,A ⊗B).

A comonoid in C is a triple D = (D, εD, δD) where D is an object in C and εD : D → K
(counit), δD : D → D ⊗ D (coproduct) are morphisms in C such that (εD ⊗ D) ◦ δD =
idD = (D⊗εD)◦δD, (δD⊗D)◦δD = (D⊗δD)◦δD. If D = (D, εD, δD) and E = (E, εE, δE)
are comonoids, f : D → E is a comonoid morphism if (f ⊗ f) ◦ δD = δE ◦ f , εE ◦ f = εD.
When D, E are comonoids in C, D ⊗ E is a comonoid in C where εD⊗E = εD ⊗ εE and
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δD⊗E = (D ⊗ cD,E ⊗ E) ◦ (δD ⊗ δE).
If A is a monoid, B is a comonoid and f : B → A, g : B → A are morphisms, we

define the convolution product by f ∗ g = µA ◦ (f ⊗ g) ◦ δB.
A bimonoid H is a monoid (H, ηH , µH) and a comonoid (H, εH , δH) such that ηH and

µH are morphisms of comonoids (equivalently, εH and δH are morphisms of monoids), i.e.,
δH ◦ ηH = ηH ◦ ηH and δH ◦ µH = µH⊗H ◦ (δH ⊗ δH). If moreover there exists a morphism
λH : H → H (called the antipode of H) such that idH ∗ λH = λH ∗ idH = εH ⊗ ηH , we
will say that H is a Hopf monoid. Moreover, if H and G are Hopf monoids, f : H → G is
a morphism of Hopf monoids if it is a monoid and comonoid morphism. It is not difficult
to see that in this case λG ◦ f = f ◦λH . Note that a Hopf monoid in k−Vect is precisely
a classical Hopf algebra.

2.1. Definition. Let H be a Hopf monoid. An object A in C is said to be a left H-
module if there is a morphism φA : H ⊗ A→ A in C satisfying that φA ◦ (ηH ⊗ A) = idA
and φA ◦ (H ⊗ φA) = φA ◦ (µH ⊗ A). Given two left H-modules (A, φA) and (B, φB),
f : A→ B is a morphism of left H-modules if φB ◦ (H ⊗ f) = f ◦ φA.

We will say that a left H-module (A, φA) is in the cocommutativity class of H if cH,A is
a morphism of left H-modules, considering φH⊗A = (µH⊗φA)◦(H⊗cH,H⊗A)◦(δH⊗H⊗A)
and φA⊗H = (φA ⊗ µH) ◦ (H ⊗ cH,A ⊗H) ◦ (δH ⊗ A⊗H). By Proposition 2.4 of [Alonso

Álvarez, Fernández Vilaboa, González Rodŕıguez, 2001] this is equivalent to the condition

(φA ⊗H) ◦ (H ⊗ cH,A) ◦ (δH ⊗ A) = cH,A ◦ (H ⊗ φA) ◦ (δH ⊗ A) (4)

holds. Finally, if A is a monoid and ηA and µA are left H-module morphisms, i.e.,
φA◦(H⊗ηA) = εH⊗ηA and φA◦(H⊗µA) = µA◦(φA⊗φA)◦(H⊗cH,A⊗A)◦(δH⊗A⊗A),
we will say that A is a left H-module monoid. If A is a comonoid and εA and δA are left
H-module morphisms, that is, εA ◦ φA = εH ⊗ εA and δA ◦ φA = (φA ⊗ φA) ◦ δH⊗A, A is
said to be a left H-module comonoid.

2.2. Examples.

(a) Let H be a Hopf monoid. Then H is a left H-module comonoid via µH .

(b) If H is a Hopf monoid, A a monoid and f : H → A a monoid morphism, we can
define the adjoint action of H on A associated to f (see [Molnar, 1997]) as

adf,A = µA ◦ (µA ⊗ A) ◦ (f ⊗ A⊗ (f ◦ λH)) ◦ (H ⊗ cH,A) ◦ (δH ⊗ A).

Then A is a left H-module monoid via adf,A. In particular, if A = H and f = idH
the action defined above (called the adjoint action of H) is the following:

adidH ,H = µH ◦ (µH ⊗ λH) ◦ (H ⊗ cH,H) ◦ (δH ⊗H).

In what follows we will denote this action by adH .

It is obvious that if H is cocommutative (i.e., δH = cH,H ◦ δH), any left H-module is
in the cocommutativity class of H. Therefore the following result improves Proposition
2.5 (a) in [Molnar, 1997] (note that in the ’if’ part we only need that A be a bimonoid).
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2.3. Proposition. Let H and A be Hopf monoids, and let f : H → A be a bimonoid
morphism. The following assertions are equivalent.

(i) (adf,A ⊗ (f ◦ λH)) ◦ (H ⊗ cH,A) ◦ (δH ⊗ A) = cA,A ◦ ((f ◦ λH)⊗ adf,A) ◦ (δH ⊗ A).

(ii) A is a left H-module comonoid via adf,A.

As a consequence, if λH is an isomorphism we have that H is a left H-module comonoid
via adH if and only if (H, adH) is in the cocommutativity class of H.

Proof. (i) ⇒ (ii). Trivially, εA ◦ adf,A = εH ⊗ εA. Moreover

δA ◦ adf,A

= µA⊗A ◦ (µA⊗A ⊗ (((f ◦ λH)⊗ (f ◦ λH)) ◦ cH,H ◦ δH)) ◦ (((f ⊗ f) ◦ δH)⊗ δA ⊗H)

◦(H ⊗ cH,A) ◦ (δH ⊗ A) (A is a bimonoid, f is a bimonoid morphism, λH is anticomultiplicative)

= (µA ⊗ A) ◦ (A⊗ cA,A) ◦ (A⊗ ((adf,A ⊗ (f ◦ λH)) ◦ (H ⊗ cH,A) ◦ (δH ⊗ A)))

◦((µA ◦ (f ⊗ A))⊗H ⊗ A) ◦ δH⊗A (naturality)

= (µA ⊗ A) ◦ (A⊗ cA,A) ◦ (A⊗ ((A⊗ (f ◦ λH)) ◦ cH,A ◦ (H ⊗ adf,A) ◦ (δH ⊗ A)))

◦((µA ◦ (f ⊗ A))⊗H ⊗ A) ◦ δH⊗A ((i))

= (adf,A ⊗ adf,A) ◦ δH⊗A (naturality),

and then adf,A is a comonoid morphism.
(ii) ⇒ (i). Assume that δA ◦ adf,A = (adf,A ⊗ adf,A) ◦ δH⊗A. First of all we will show

that the equality

((µA ◦ (A⊗ (f ◦ λH)))⊗ adf,A) ◦ (A⊗ (cH,H ◦ δH)⊗ A) ◦ (cH,A ⊗ A) ◦ (H ⊗ δA)

= ((µA ◦ (A⊗ (f ◦ λH)))⊗ adf,A) ◦ (A⊗ δH ⊗ A) ◦ (cH,A ⊗ A) ◦ (H ⊗ δA) (5)

holds. Indeed,

((µA ◦ (A⊗ (f ◦ λH)))⊗ adf,A) ◦ (A⊗ (cH,H ◦ δH)⊗ A) ◦ (cH,A ⊗ A) ◦ (H ⊗ δA)

= µA⊗A ◦ (A⊗A⊗A⊗ (µA ◦ cA,A))◦ (A⊗ f ⊗ (((f ◦λH)⊗ (f ◦λH))◦ cH,H ◦ δH)⊗A)

◦(A⊗ δH ⊗ A) ◦ (cH,A ⊗ A) ◦ (H ⊗ δA) (naturality)

= (A⊗ µA) ◦ (cA,A⊗A) ◦ (f ⊗ (µA⊗A ◦ (δA⊗ (δA ◦ f ◦ λH)))) ◦ (H ⊗ cH,A) ◦ (δH ⊗A)

(λH is anticomultiplicative, f is a comonoid morphism)

= µA⊗A ◦ (A⊗µA⊗ δA) ◦ (cA,A⊗A⊗ (f ◦λH)) ◦ (f ⊗ δA⊗H) ◦ (H⊗ cH,A) ◦ (δH ⊗A)
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(naturality)

= µA⊗A◦(µA⊗A⊗(δA◦f ◦λH))◦((f ◦(µH ◦(λH⊗H)◦δH))⊗f⊗δA⊗H)◦(δH⊗cH,A)

◦(δH ⊗ A) (f is a monoid morphism, H is a Hopf monoid)

= (µA⊗A)◦ (A⊗µA⊗A)◦ (A⊗µA⊗A⊗δA)◦ ((f ◦λH)⊗ ((f⊗f)◦δH)⊗δA⊗ (f ◦λH))

◦(H ⊗H ⊗ cH,A) ◦ (H ⊗ δH ⊗ A) ◦ (δH ⊗ A) (f is a bimonoid morphism)

= (µA ⊗ A) ◦ (A⊗ (δA ◦ adf,A)) ◦ ((((f ◦ λH)⊗H) ◦ δH)⊗ A) (A is a bimonoid)

= (µA ⊗A) ◦ (f ⊗ adf,A ⊗ adf,A) ◦ (λH ⊗ δH⊗A) ◦ (δH ⊗A) (adf,A is a comonoid morphism)

= (µA⊗A)◦((µA◦(f⊗A))⊗(f◦λH)◦adf,A)◦((µH◦(λH⊗H)◦δH)⊗A⊗δH⊗A)◦δH⊗A

(f is a bimonoid morphism, A is a bimonoid)

= ((µA ◦ (A⊗ (f ◦λH)))⊗ adf,A) ◦ (A⊗ δH ⊗A) ◦ (cH,A⊗A) ◦ (H ⊗ δA) (f is a bimonoid

morphism, A is a Hopf monoid).

Then

cA,A◦(µA⊗A)◦(A⊗(((µA◦(A⊗(f ◦λH)))⊗adf,A)◦(A⊗(cH,H◦δH)⊗A)◦(cH,A⊗A)

◦(H ⊗ δA))) ◦ (cH,A ⊗ A) ◦ (H ⊗ ((λA ⊗ A) ◦ δA))

= cA,A ◦ (µA⊗A) ◦ ((µA ◦ (λA⊗A) ◦ δA)⊗ (f ◦ λH)⊗ adf,A) ◦ (A⊗ (cH,H ◦ δH)⊗A)

◦(cH,A ⊗ A) ◦ (H ⊗ δA) (naturality)

= (adf,A ⊗ (f ◦ λH)) ◦ (H ⊗ cH,A) ◦ (δH ⊗ A) (A is a Hopf monoid),

and on the other hand,

cA,A◦(µA⊗A)◦(A⊗(((µA◦(A⊗(f◦λH)))⊗adf,A)◦(A⊗δH⊗A)◦(cH,A⊗A)◦(H⊗δA)))

◦(cH,A ⊗ A) ◦ (H ⊗ ((λA ⊗ A) ◦ δA))

= cA,A ◦ (µA⊗A)◦ ((µA ◦ (λA⊗A)◦δA)⊗ (f ◦λH)⊗adf,A)◦ (A⊗δH⊗A)◦ (cH,A⊗A)

◦(H ⊗ δA)(naturality)

= cA,A ◦ ((f ◦ λH)⊗ adf,A) ◦ (δH ⊗ A) (A is a Hopf monoid),

and the proof is complete.
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Now we recall the notion of entwining structure introduced in [Brzeziński, Majid,
1998].

2.4. Definition. A left-left entwining structure on C consists of a triple (A,D, ψA,D),
where A is a monoid, D a comonoid, and ψA,D : A⊗D → D⊗A is a morphism satisfying
the relations

(a1) ψA,D ◦ (ηA ⊗D) = D ⊗ ηA,

(a2) (D ⊗ µA) ◦ (ψA,D ⊗ A) ◦ (A⊗ ψA,D) = ψA,D ◦ (µA ⊗D),

(a3) (δD ⊗ A) ◦ ψA,D = (D ⊗ ψA,D) ◦ (ψA,D ⊗D) ◦ (A⊗ δD),

(a4) (εD ⊗ A) ◦ ψA,D = A⊗ εD.
If we only have the conditions (a1) and (a2) we will say that (A,D, ψA,D) is a left-left

semi-entwining structure. In a similar way, we can define the notions of right-right, right-
left and left-right (semi)entwining structure. In particular, (A,D, ψD,A : D⊗A→ A⊗D)
will be a right-right semi-entwining structure if conditions

(b1) ψD,A ◦ (D ⊗ ηA) = ηA ⊗D,

(b2) (µA ⊗D) ◦ (A⊗ ψD,A) ◦ (ψD,A ⊗ A) = ψD,A ◦ (D ⊗ µA),

hold.
We will say that a left-left entwining structure (A,D, ψA,D) is in the cocommutativity

class of D if condition

(D ⊗ ψA,D) ◦ (cA,D ⊗D) ◦ (A⊗ δD) = (D ⊗ cA,D) ◦ (ψA,D ⊗D) ◦ (A⊗ δD) (6)

holds. In a similar way, a right-right entwining structure (A,D, ψD,A) is in the cocommu-
tativity class of D if it satisfies that

(ψD,A ⊗D) ◦ (D ⊗ cD,A) ◦ (δD ⊗ A) = (cD,A ⊗D) ◦ (D ⊗ ψD,A) ◦ (δD ⊗ A). (7)

2.5. Example. Let H be a Hopf monoid. Then

(H,H, ψH,H = (µH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))

is a left-left entwining structure on C.

2.6. Lemma. Let X and Y be monoids and comonoids and let ψY,X : Y ⊗X → X⊗Y be a
morphism such that (a4) of Definition 2.4 holds. The following assertions are equivalent.

(i) δX⊗Y ◦ ψY,X = (ψY,X ⊗ ψY,X) ◦ δY⊗X .

(ii) ψY,X is in the cocommutativity class of Y , i.e.,

(ψY,X ⊗ Y ) ◦ (Y ⊗ cY,X) ◦ (δY ⊗X) = (cY,X ⊗ Y ) ◦ (Y ⊗ ψY,X) ◦ (δY ⊗X), (8)

and satisfies (a3) of Definition 2.4 and the equality

(X ⊗ δY ) ◦ ψY,X = (ψY,X ⊗ Y ) ◦ (Y ⊗ cY,X) ◦ (δY ⊗X). (9)
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Proof. (i) ⇒ (ii) We get (9) by composing in (i) on the left with X ⊗ Y ⊗ εX ⊗ Y and
using (a4) of Definition 2.4. Note that as a consequence we have that

(X ⊗ εY ⊗ Y ) ◦ (ψY,X ⊗ Y ) ◦ (Y ⊗ cY,X) ◦ (δY ⊗X) = ψY,X . (10)

Moreover,

(δX ⊗ Y ) ◦ ψY,X

= (X ⊗ εY ⊗X ⊗ Y ) ◦ δX⊗Y ◦ ψY,X (X is a comonoid)

= (X ⊗ εY ⊗X ⊗ Y ) ◦ (ψY,X ⊗ ψY,X) ◦ δY⊗X ((i))

= (X ⊗ ψY,X) ◦ (ψY,X ⊗X) ◦ (Y ⊗ δX) ((10)),

and we get (a3). Finally,

(X ⊗ δY ) ◦ ψY,X

= (εX ⊗ cY,X ⊗ Y ) ◦ δX⊗Y ◦ ψY,X (X is a comonoid)

= (εX ⊗ cY,X ⊗ Y ) ◦ (ψY,X ⊗ ψY,X) ◦ δY⊗X ((i))

= (cY,X ⊗ Y ) ◦ (Y ⊗ ψY,X) ◦ (δY ⊗X) ((a4) of Definition 2.4).

(ii) ⇒ (i)

δX⊗Y ◦ ψY,X

= (X ⊗ cX,Y ⊗ Y ) ◦ (δX ⊗ Y ⊗ Y ) ◦ (cY,X ⊗ Y ) ◦ (Y ⊗ ψY,X) ◦ (δY ⊗X) ((9), (8))

= (cY,X ⊗X ⊗ Y ) ◦ (Y ⊗ ((δX ⊗ Y ) ◦ ψY,X)) ◦ (δY ⊗X) (naturality)

= (cY,X ⊗X ⊗ Y ) ◦ (Y ⊗ ((X ⊗ ψY,X) ◦ (ψY,X ⊗X) ◦ (Y ⊗ δX))) ◦ (δY ⊗X) ((a3) of

Definition 2.4)

= (ψY,X ⊗ ψY,X) ◦ δY⊗X ((8)).

In the following Proposition we establish the connection between entwining and module
monoid and comonoid structures.

2.7. Proposition. Let X and Y be bimonoids. The following assertions are equivalent.

(i) There is a morphism ψY,X : Y ⊗ X → X ⊗ Y such that (Y,X, ψY,X) is a left-left
entwining structure and a right-right semi-entwining structure satisfying (9).

(ii) There is a morphism φX : Y ⊗X → X such that (X,φX) is a left Y -module monoid
and comonoid.

Moreover, ψY,X is in the cocommutativity class of Y iff so is (X,φX).

Proof. (i) ⇒ (ii) Define φX = (X ⊗ εY ) ◦ ψY,X .
(ii) ⇒ (i) Define ψY,X = (φX ⊗ Y ) ◦ (Y ⊗ cY,X) ◦ (δY ⊗X).
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Now we introduce our definition of crossed module of Hopf monoids. We have drafted
this notion in terms of entwining structures in order to illustrate the possibility of working
in crossed modules through the usual entwining techniques. Note that, by Proposition
2.7, the definition is equivalent to the one drawn up in terms of module monoid and
comonoid structures. To make the relationship clear, we also write the classical version
at the end of our definition. In what follows we will use entwining or module structures
indifferently.

2.8. Definition. Let β : X → Y be a morphism of Hopf monoids and let ψY,X :
Y ⊗X → X ⊗ Y be a morphism. We will say that XY = (X, Y, β) is a crossed module of
Hopf monoids if

(c1) ψY,X is a left-left entwining structure and a right-right semi-entwining structure
satisfying (8) and (9).

(c2) (β ⊗ εY ) ◦ ψY,X = adY ◦ (Y ⊗ β).

(c3) (X ⊗ εY ) ◦ ψY,X ◦ (β ⊗X) = adX .

A morphism between two crossed modules of Hopf monoids XY = (X, Y, β) and
TG = (T,G, ∂) is a pair of Hopf monoid morphisms u : X → T and v : Y → G such that
v ◦ β = ∂ ◦ u and (u⊗ εY ) ◦ ψY,X = (T ⊗ εG) ◦ ψG,T ◦ (v ⊗ u).

Equivalently, XY = (X, Y, β) is a crossed module of Hopf monoids if there is a mor-
phism φX : Y ⊗X → X such that

(d1) (X,φX) is a left Y -module monoid and comonoid satisfying (4).

(d2) β ◦ φX = adY ◦ (Y ⊗ β).

(d3) (Peiffer identity) φX ◦ (β ⊗X) = adX ,

and a morphism between two crossed modules of Hopf monoids XY and TG is a pair
of Hopf monoid morphisms u : X → T and v : Y → G such that v ◦ β = ∂ ◦ u and
u ◦ φX = φT ◦ (v ⊗ u).

2.9. Example. Let H be a Hopf monoid such that the antipode is an isomorphism. By
Proposition 2.3, (H,H, idH) is a crossed module of Hopf monoids if and only if the adjoint
action adH is in the cocommutativity class of H.

Note that our definition of crossed module of Hopf monoids is slightly different from the
definition of crossed module of Hopf algebras given by Frégier and Wagemann [Frégier,
Wagemann, 2011] because of condition (4). The reason for assuming this condition is
to ensure that, as in the group setting, any Hopf monoid H induces a crossed module
of Hopf monoids HH = (H,H, idH). In any case, we do not make any assumption on
cocommutativity, nor do we ask that the antipode be a morphism of left H-modules. As
a consequence, our definition is more general that the ones given in [Fernández Vilaboa,
López López, 2007] and [Majid, 2012].
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Let Y be a Hopf monoid and let (X,φX) be a left Y -module monoid. Then the smash
product of X by Y defined as

X#Y = (X ⊗ Y, ηX#Y = ηX⊗Y , µX#Y = (µX ⊗ µY ) ◦ (X ⊗ ψY,X ⊗ Y ))

in [Sweedler, 1969], is a monoid, where ψY,X = (φX ⊗ Y ) ◦ (Y ⊗ cY,X) ◦ (δY ⊗X).

2.10. Proposition. Let X and Y be Hopf monoids and let ψY,X be a left-left entwining
structure and a right-right semi-entwining structure satisfying (8) and (9). Then the
tensor product comonoid structure is compatible with the smash product monoid structure,
making

X ./ Y = (X ⊗ Y, ηX./Y = ηX#Y , µX./Y = µX#Y , εX./Y = εX⊗Y , δX./Y = δX⊗Y )

a Hopf monoid with antipode λX./Y = ψY,X ◦ (λY ⊗ λX) ◦ cX,Y .

Proof. It is a particular case of Proposition 3.8 of [Alonso Álvarez, Fernández Vilaboa,
González Rodŕıguez, 2001]. Note that in this case the cocycle is trivial and then we do
not need that the antipode of Y be invertible.

The main goal of this section is to construct the crossed product of two crossed modules
of Hopf monoids. In order to do so, in what follows we consider two crossed modules
of Hopf monoids XY = (X, Y, β) and TG = (T,G, ∂) and denote the corresponding
entwining structures by ψY,X and ψG,T , respectively. Moreover, let t : Y ⊗ T → X be
a morphism and assume that ψG,X : G ⊗ X → X ⊗ G, ψT,X : T ⊗ X → X ⊗ T and
ψG,Y : G ⊗ Y → Y ⊗ G are three left-left entwining structures and right-right semi-
entwining structures such that (8), (9) and the Yang-Baxter condition

(ψY,X ⊗G) ◦ (Y ⊗ ψG,X) ◦ (ψG,Y ⊗X) = (X ⊗ ψG,Y ) ◦ (ψG,X ⊗ Y ) ◦ (G⊗ ψY,X) (11)

holds. Now define the morphism

φX./T : Y ./ G⊗X ./ T → X ./ T

as

φX./T = (µX ⊗ T ) ◦ (X ⊗ t⊗ T ) ◦ (X ⊗ Y ⊗ δT ⊗ εG) ◦ (ψY,X ⊗ ψG,T ) ◦ (Y ⊗ ψG,X ⊗ T ).

In the following technical lemmas we will give the necessary and sufficient conditions
to get that X ./ T is a left Y ./ G-module monoid and comonoid with action φX./T .

2.11. Lemma. The following assertions are equivalent.

(i) (X ./ T, φX./T ) is a left Y ./ G-module.

(ii) The equalities
t ◦ (ηY ⊗ T ) = εT ⊗ ηX , (12)

(t⊗ εG) ◦ (Y ⊗ ψG,T ) ◦ (ψG,Y ⊗ T ) = (X ⊗ εG) ◦ ψG,X ◦ (G⊗ t), (13)

and

t ◦ (µY ⊗ T ) = µX ◦ (X ⊗ t) ◦ (ψY,X ⊗ T ) ◦ (Y ⊗ t⊗ T ) ◦ (Y ⊗ Y ⊗ δT ) (14)

hold.
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Proof. (i) ⇒ (ii). Assume that (X ./ T, φX./T ) is a left Y ./ G-module. Then

εT ⊗ ηX

= (X ⊗ εT ) ◦ φX./T ◦ (ηY ⊗ ηG ⊗ ηX ⊗ T ) (X ./ T is a left Y ./ G-module)

= t ◦ (ηY ⊗ T ) ((a1) of Definition 2.4),

and we get (12). Moreover,

(t⊗ εG) ◦ (Y ⊗ ψG,T ) ◦ (ψG,Y ⊗ T )

= (X ⊗ εT ) ◦ φX./T ◦ (µY ./G ⊗X ⊗ T ) ◦ (ηY ⊗G⊗ Y ⊗ ηG ⊗ ηX ⊗ T )

(T is a comonoid, G and Y are monoids, (b1) of Definition 2.4)

= (X ⊗ εT ) ◦ φX./T ◦ (Y ⊗G⊗ φX./T ) ◦ (ηY ⊗G⊗ Y ⊗ ηG ⊗ ηX ⊗ T )

(X ./ T is a left Y ./ G-module)

= (X ⊗ εG) ◦ ψG,X ◦ (G⊗ t)

(T is a comonoid, G is a Hopf monoid, X is a monoid, (a1), (a4) and (b1) of Definition 2.4, (12)),

and we obtain (13).
Finally, in a similar way we get (14). Indeed,

t ◦ (µY ⊗ T )

= (X ⊗ εT ) ◦ φX./T ◦ (µY ./G ⊗X ⊗ T ) ◦ (Y ⊗ ηG ⊗ Y ⊗ ηG ⊗ ηX ⊗ T )

= (X ⊗ εT ) ◦ φX./T ◦ (Y ⊗G⊗ φX./T ) ◦ (Y ⊗ ηG ⊗ Y ⊗ ηG ⊗ ηX ⊗ T )

= µX ◦ (X ⊗ t) ◦ (ψY,X ⊗ T ) ◦ (Y ⊗ t⊗ T ) ◦ (Y ⊗ Y ⊗ δT ).

(ii) ⇒ (i). By (a1) and (12), and using that G and X are Hopf monoids, it is easy to see
that

φX./T ◦ (ηY⊗G ⊗X ⊗ T ) = idX./T .

Moreover, by (9), (10) and (13) we have that

(t⊗G) ◦ (Y ⊗ ψG,T ) ◦ (ψG,Y ⊗ T ) = ψG,X ◦ (G⊗ t), (15)

and then

φX./T ◦ (Y ⊗G⊗ φX./T )

= (µX ⊗ T ) ◦ (X ⊗ t⊗ T ) ◦ (µX ⊗ Y ⊗ δT ⊗ εG) ◦ (X ⊗ ψY,X ⊗ ψG,T )

◦(ψY,X ⊗ (ψG,X ◦ (G⊗ t))⊗T ) ◦ (Y ⊗ψG,X ⊗Y ⊗ δT ⊗ εG) ◦ (Y ⊗G⊗ψY,X ⊗ψG,T )
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◦(Y ⊗G⊗ Y ⊗ ψG,X ⊗ T ) ((b2) of Definition 2.4)

= (µX ⊗ T ) ◦ (X ⊗ t⊗ T ) ◦ (µX ⊗ Y ⊗ δT ⊗ εG) ◦ (X ⊗ ψY,X ⊗ ψG,T )

◦(ψY,X ⊗ ((t⊗G) ◦ (Y ⊗ ψG,T ) ◦ (ψG,Y ⊗ T ))⊗ T ) ◦ (Y ⊗ ψG,X ⊗ Y ⊗ δT ⊗ εG)

◦(Y ⊗G⊗ ψY,X ⊗ ψG,T ) ◦ (Y ⊗G⊗ Y ⊗ ψG,X ⊗ T ) ((15))

= (µX ⊗ T ) ◦ (X ⊗ (µX ◦ (X ⊗ t) ◦ (ψY,X ⊗ T ) ◦ (Y ⊗ t⊗ T ) ◦ (Y ⊗ Y ⊗ δT ))⊗ T )

◦(X ⊗Y ⊗Y ⊗ δT ⊗ εG) ◦ (ψY,X ⊗Y ⊗ψG,T ⊗ εG) ◦ (Y ⊗ ((X ⊗ψG,Y ) ◦ (ψG,X ⊗Y )

◦(G⊗ ψY,X))⊗ ψG,T ) ◦ (Y ⊗G⊗ Y ⊗ ψG,X ⊗ T ) ((a3) of Definition 2.4)

= (µX⊗T )◦(X⊗(t◦(µY ⊗T ))⊗T )◦(X⊗Y ⊗Y ⊗δT ⊗εG)◦(ψY,X⊗Y ⊗ψG,T ⊗εG)

◦(Y ⊗ ((ψY,X ⊗G) ◦ (Y ⊗ ψG,X) ◦ (ψG,Y ⊗X))⊗ ψG,T ) ◦ (Y ⊗G⊗ Y ⊗ ψG,X ⊗ T )

((14), (11))

= (µX⊗T )◦(X⊗t⊗T )◦(X⊗Y ⊗δT⊗(εG◦µG))◦(ψY,X⊗ψG,T⊗G)◦(µY⊗ψG,X⊗ψG,T )

◦(Y ⊗ ψG,Y ⊗ ψG,X ⊗ T ) ((b2) of Definition 2.4, G is a Hopf monoid)

= φX./T ◦ (µY ./G ⊗X ⊗ T ) ((b2) of Definition 2.4),

and the proof is complete.

2.12. Lemma. The following assertions are equivalent.

(i) φX./T is a monoid morphism.

(ii) The equalities
t ◦ (Y ⊗ ηT ) = εY ⊗ ηX , (16)

t ◦ (Y ⊗ µT ) = (17)

(µX ⊗ εT ) ◦ (t⊗ ψT,X) ◦ (Y ⊗ δT ⊗X) ◦ (Y ⊗ T ⊗ t) ◦ (Y ⊗ cY,T ⊗ T ) ◦ (δY ⊗ T ⊗ T )

and
µX ◦ (X ⊗ t) ◦ (ψY,X ⊗ T ) ◦ (Y ⊗ ψT,X) (18)

= (µX ⊗ εT ) ◦ (t⊗ ψT,X ⊗ εY ) ◦ (Y ⊗ δT ⊗ ψY,X) ◦ (Y ⊗ cY,T ⊗X) ◦ (δY ⊗ T ⊗X),

hold.
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Proof. (i) ⇒ (ii). Assume that φX./T is a monoid morphism. Then

εY ⊗ ηX = (X ⊗ εT ) ◦ φX./T ◦ (Y ⊗ ηG ⊗ ηX ⊗ ηT ) = t ◦ (Y ⊗ ηT )

and we get (16). Moreover, using that G and T are Hopf monoids, and (a1) and (b1) of
Definition 2.4, we have that

t ◦ (Y ⊗ µT )

= (X ⊗ εT ) ◦ φX./T ◦ (Y ⊗G⊗ µX./T ) ◦ (Y ⊗ ηG ⊗ ηX ⊗ T ⊗ ηX ⊗ T )

= (X ⊗ εT ) ◦ µX./T ◦ (φX./T ⊗ φX./T ) ◦ (Y ⊗G⊗ cY⊗G,X⊗T ⊗X ⊗ T )

◦(δY⊗G ⊗X ⊗ T ⊗X ⊗ T ) ◦ (Y ⊗ ηG ⊗ ηX ⊗ T ⊗ ηX ⊗ T )

= (µX ⊗ εT ) ◦ (t⊗ψT,X) ◦ (Y ⊗ δT ⊗X) ◦ (Y ⊗T ⊗ t) ◦ (Y ⊗ cY,T ⊗T ) ◦ (δY ⊗T ⊗T ).

Finally,

µX ◦ (X ⊗ t) ◦ (ψY,X ⊗ T ) ◦ (Y ⊗ ψT,X)

= (X ⊗ εT ) ◦ φX./T ◦ (Y ⊗G⊗ µX./T ) ◦ (Y ⊗ ηG ⊗ ηX ⊗ T ⊗X ⊗ ηT )

= (X ⊗ εT ) ◦ µX./T ◦ (φX./T ⊗ φX./T ) ◦ (Y ⊗G⊗ cY⊗G,X⊗T ⊗X ⊗ T )

◦(δY⊗G ⊗X ⊗ T ⊗X ⊗ T ) ◦ (Y ⊗ ηG ⊗ ηX ⊗ T ⊗X ⊗ ηT )

= (µX ⊗ εT ) ◦ (t⊗ ψT,X ⊗ εY ) ◦ (Y ⊗ δT ⊗ ψY,X) ◦ (Y ⊗ cY,T ⊗X) ◦ (δY ⊗ T ⊗X).

(ii)⇒ (i). Using that T and X are Hopf monoids, (a1) and (b1) of Definition 2.4, and
(16), it is easy to see that φX./T ◦ (Y ⊗ G ⊗ ηX ⊗ ηT ) = εY⊗G ⊗ ηX ⊗ ηT . On the other
hand, the equality

(µX ⊗ T ⊗ Y ) ◦ (t⊗ ψT,X ⊗ Y ) ◦ (Y ⊗ δT ⊗ ψY,X) ◦ (Y ⊗ cY,T ⊗X) ◦ (δY ⊗ T ⊗X)

= (µX ⊗ T ⊗ Y ) ◦ (X ⊗ t⊗ cY,T ) ◦ (X ⊗ δY⊗T ) ◦ (ψY,X ⊗ T ) ◦ (Y ⊗ ψT,X) (19)

holds. Indeed,

(µX ⊗ T ⊗ Y ) ◦ (t⊗ ψT,X ⊗ Y ) ◦ (Y ⊗ δT ⊗ ψY,X) ◦ (Y ⊗ cY,T ⊗X) ◦ (δY ⊗ T ⊗X)

= (µX ⊗ T ⊗ Y ) ◦ (t⊗ ((X ⊗ εT ⊗ T ) ◦ (ψT,X ⊗ T ) ◦ (T ⊗ cT,X) ◦ (δT ⊗X))⊗ Y )

◦(Y ⊗ δT ⊗ ((X ⊗ εY ⊗ Y ) ◦ (ψY,X ⊗ Y ) ◦ (Y ⊗ cY,X) ◦ (δY ⊗X))) ◦ (Y ⊗ cY,T ⊗X)

◦(δY ⊗ T ⊗X) ((10))

= (((µX⊗εT )◦(t⊗ψT,X⊗εY )◦(Y ⊗δT⊗ψY,X)◦(Y ⊗cY,T⊗X)◦(δY ⊗T⊗X))⊗T⊗Y )

◦(Y ⊗ T ⊗ cT,X ⊗ Y ) ◦ (Y ⊗ δT ⊗ cY,X) ◦ (Y ⊗ cY,T ⊗X) ◦ (δY ⊗ T ⊗X) (naturality)
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= ((µX ◦(X⊗t)◦(ψY,X⊗T )◦(Y ⊗ψT,X))⊗T⊗Y )◦(Y ⊗T⊗cT,X⊗Y )◦(Y ⊗δT⊗cY,X)

◦(Y ⊗ cY,T ⊗X) ◦ (δY ⊗ T ⊗X) ((18))

= (µX ⊗ T ⊗ Y ) ◦ (X ⊗ t⊗ cY,T ) ◦ (X ⊗ δY⊗T ) ◦ (ψY,X ⊗ T ) ◦ (Y ⊗ ψT,X) ((9)).

As a consequence,

µX./T ◦ (φX./T ⊗ φX./T ) ◦ (Y ⊗G⊗ cY⊗G,X⊗T ⊗X ⊗ T ) ◦ (δY⊗G⊗X ⊗ T ⊗X ⊗ T )

= µX./T ◦((µX ◦(X⊗t))⊗T ⊗(µX ◦(X⊗t))⊗T ⊗εG)◦(X⊗Y ⊗δT ⊗ψY,X⊗δT ⊗G)

◦(X ⊗ Y ⊗ cY,T ⊗X ⊗ ψG,T ) ◦ (X ⊗ δY ⊗ T ⊗ ψG,X ⊗ T ) ◦ (ψY,X ⊗ ψG,T ⊗X ⊗ T )

◦(Y ⊗ ψG,X ⊗ T ⊗X ⊗ T ) ((9), naturality)

= (µX ⊗ T ) ◦ (X ⊗ µX./T ) ◦ (X ⊗X ⊗ T ⊗ ((t⊗ T ) ◦ (Y ⊗ δT ))⊗ εG)

◦(X ⊗ ((µX ⊗ T ⊗ Y ) ◦ (t⊗ ψT,X ⊗ Y ) ◦ (Y ⊗ δT ⊗ ψY,X) ◦ (Y ⊗ cY,T ⊗X)

◦(δY ⊗ T ⊗X))⊗ ψG,T ) ◦ (X ⊗ Y ⊗ T ⊗ ψG,X ⊗ T ) ◦ (ψY,X ⊗ ψG,T ⊗X ⊗ T )

◦(Y ⊗ ψG,X ⊗ T ⊗X ⊗ T ) ((a2) of Definition 2.4)

= (µX ⊗ T ) ◦ (X ⊗ µX./T ) ◦ (X ⊗X ⊗ T ⊗ ((t⊗ T ) ◦ (Y ⊗ δT ))⊗ εG)

◦(X⊗((µX⊗T ⊗Y )◦(X⊗ t⊗cY,T )◦(X⊗δY⊗T )◦(ψY,X⊗T )◦(Y ⊗ψT,X))⊗ψG,T )

◦(X ⊗Y ⊗T ⊗ψG,X ⊗T ) ◦ (ψY,X ⊗ψG,T ⊗X ⊗T ) ◦ (Y ⊗ψG,X ⊗T ⊗X ⊗T ) ((19))

= (µX⊗T )◦ (X⊗ ((µX⊗εT )◦ (t⊗ψT,X)◦ (Y ⊗δT ⊗X)◦ (Y ⊗T ⊗ t)◦ (Y ⊗cY,T ⊗T )

◦(δY ⊗ T ⊗ T ))⊗ µT ) ◦ (X ⊗ Y ⊗ δT⊗T ⊗ εG) ◦ (ψY,X ⊗ T ⊗ ψG,T )

◦(Y ⊗ ((X ⊗ ψG,T ) ◦ (ψG,X ⊗ T ) ◦ (G⊗ µX ⊗ T ))⊗ T ) ◦ (Y ⊗G⊗X ⊗ ψT,X ⊗ T )

((10), (b2) of Definition 2.4, (11))

= (µX ⊗ T ) ◦ (X ⊗ (t ◦ (Y ⊗ µT ))⊗ µT ) ◦ (X ⊗ Y ⊗ δT⊗T ⊗ εG) ◦ (ψY,X ⊗ T ⊗ ψG,T )

◦(Y ⊗ ((X ⊗ ψG,T ) ◦ (ψG,X ⊗ T ) ◦ (G⊗ µX ⊗ T ))⊗ T ) ◦ (Y ⊗G⊗X ⊗ ψT,X ⊗ T )

(by (17))

= φX./T ◦ (Y ⊗G⊗ µX./T ) (T is a Hopf monoid, (b2) of Definition 2.4).
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2.13. Lemma. The following assertions are equivalent.

(i) φX./T is a comonoid morphism.

(ii) The map t is a comonoid morphism and the equality

cX,T ◦ (t⊗ T ) ◦ (Y ⊗ δT ) = (T ⊗ t) ◦ (cY,T ⊗ T ) ◦ (Y ⊗ δT ) (20)

holds.

Proof. (i) ⇒ (ii). In a similar way to the ’if’ part of Lemma 2.11, we get that εX ◦ t =
εY ⊗ εT by composing φX./T with εX ⊗ εT on the left and with Y ⊗ ηG ⊗ ηX ⊗ T on the
right and using that φX./T is a comonoid morphism. On the other hand, by (a1) and (b1)
of Definition 2.4 and taking into account that G and T are Hopf monoids,

δX ◦ t

= (X ⊗ εT ⊗X ⊗ εT ) ◦ δX⊗T ◦ φX./T ◦ (Y ⊗ ηG ⊗ ηX ⊗ T )

= (X ⊗ εT ⊗X ⊗ εT ) ◦ (φX./T ⊗ φX./T ) ◦ δY⊗G⊗X⊗T ◦ (Y ⊗ ηG ⊗ ηX ⊗ T )

= (t⊗ t) ◦ δY⊗T .

Finally, using (a1), (b1) of Definition 2.4 and that εX ◦ t = εY ⊗ εT ,

cX,T ◦ (t⊗ T ) ◦ (Y ⊗ δT )

= (εX ⊗ T ⊗X ⊗ εT ) ◦ δX⊗T ◦ φX./T ◦ (Y ⊗ ηG ⊗ ηX ⊗ T )

= (εX ⊗ T ⊗X ⊗ εT ) ◦ (φX./T ⊗ φX./T ) ◦ δY⊗G⊗X⊗T ◦ (Y ⊗ ηG ⊗ ηX ⊗ T )

= (T ⊗ t) ◦ (cY,T ⊗ T ) ◦ (Y ⊗ δT ).

(ii) ⇒ (i). Using that X and T are Hopf monoids, t a comonoid morphism and (a4)
of Definition 2.4, it is easy to see that (εX ⊗ εT ) ◦ φX./T = εY ⊗ εG ⊗ εX ⊗ εT . Moreover,

δX./T ◦ φX./T

= (X⊗cX,T ⊗T )◦(µX⊗X⊗δT )◦(δX⊗ t⊗ t⊗T )◦(X⊗δY⊗T ⊗T )◦(X⊗Y ⊗δT ⊗εG)

◦(ψY,X ⊗ ψG,T ) ◦ (Y ⊗ ψG,X ⊗ T ) (X is a Hopf monoid, t is a comonoid morphism)

= (X ⊗ cX,T ⊗ T ) ◦ (µX⊗X ⊗ T ⊗ T ) ◦ (X ⊗X ⊗ t⊗ ((t⊗ T ) ◦ (Y ⊗ δT ))⊗ T )

◦(X⊗ cY,X ⊗ cY,T ⊗ δT ) ◦ (ψY,X ⊗ψY,X ⊗ δT ⊗ εG) ◦ (δY⊗X ⊗ψG,T ) ◦ (Y ⊗ψG,X ⊗T )

((8), (9))

= (X⊗cX,T⊗T )◦(µX⊗X⊗T⊗T )◦(X⊗X⊗t⊗(cT,X◦(T⊗t)◦(cY,T⊗T )◦(Y ⊗δT ))⊗T )
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◦(X⊗ cY,X ⊗ cY,T ⊗ δT ) ◦ (ψY,X ⊗ψY,X ⊗ δT ⊗ εG) ◦ (δY⊗X ⊗ψG,T ) ◦ (Y ⊗ψG,X ⊗T )

((20))

= ((µX ◦ (X ⊗ t))⊗ T ⊗ (µX ◦ (X ⊗ t))⊗ T ) ◦ (ψY,X ⊗ δT ⊗ ψY,X ⊗ δT )

◦(Y⊗X⊗((cY,T⊗X)◦(Y⊗cX,T ))⊗εG⊗T⊗εG)◦(δY⊗X⊗ψG,T⊗ψG,T )◦(Y⊗X⊗δG⊗T )

◦(Y ⊗ ψG,X ⊗ T ) ((a3) of Definition 2.4, (10),

= (φX./T ⊗ φX./T ) ◦ δY⊗G⊗X⊗T ((9), (8)),

and then φX./T is a comonoid morphism.

2.14. Lemma. If (12) and (16) hold, the following assertions are equivalent.

(i) (X ./ T, φX./T ) is in the cocommutativity class of Y ⊗G.

(ii) ψY,X is in the cocommutativity class of Y , ψG,T and ψG,X are in the cocommutativity
class of G and the equality

(t⊗ Y ) ◦ (Y ⊗ cY,T ) ◦ (δY ⊗ T ) = cY,X ◦ (Y ⊗ t) ◦ (δY ⊗ T ) (21)

holds.

Proof. (i)⇒ (ii). Using that T and G are Hopf monoids, (a1) and (b1) of Definition 2.4
and the hypothesis we obtain (21) because

(t⊗ Y ) ◦ (Y ⊗ cY,T ) ◦ (δY ⊗ T )

= (X ⊗ εT ⊗ Y ⊗ εG) ◦ (φX./T ⊗ Y ⊗G) ◦ (Y ⊗G⊗ cY⊗G,X⊗T ) ◦ (δY⊗G ⊗X ⊗ T )

◦(Y ⊗ ηG ⊗ ηX ⊗ T )

= (X⊗εT⊗Y ⊗εG)◦cY⊗G,X⊗T ◦(Y ⊗G⊗φX./T )◦(δY⊗G⊗X⊗T )◦(Y ⊗ηG⊗ηX⊗T )

= cY,X ◦ (Y ⊗ t) ◦ (δY ⊗ T ).

To finish the ’if’ part we will show that ψY,X is in the cocommutativity class of Y .
The proof for ψG,T and ψG,X follows a similar pattern. First of all, consider the cocom-
mutativity class condition for φX./T . By composing with X ⊗ εT ⊗Y ⊗ εG on the left and
with Y ⊗ ηG ⊗X ⊗ ηT on the right, and using that T and G are Hopf monoids, (a1) of
Definition 2.4, (10) and (16), we obtain that ψY,X = (cY,X ⊗ εY ) ◦ (Y ⊗ ψY,X) ◦ (δY ⊗X).
Then, by coassociativity and (10),

(ψY,X ⊗ Y ) ◦ (Y ⊗ cY,X) ◦ (δY ⊗X)

= (((cY,X ⊗ εY ) ◦ (Y ⊗ ψY,X) ◦ (δY ⊗X))⊗ Y ) ◦ (Y ⊗ cY,X) ◦ (δY ⊗X)
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= (((cY,X ⊗ εY ) ◦ (Y ⊗ ψY,X))⊗ Y ) ◦ (Y ⊗ Y ⊗ cY,X) ◦ (Y ⊗ δY ⊗X) ◦ (δY ⊗X)

= (cY,X ⊗ Y ) ◦ (Y ⊗ ψY,X) ◦ (δY ⊗X).

(ii) ⇒ (i). Indeed,

cY⊗G,X⊗T ◦ (Y ⊗G⊗ φX./T ) ◦ (δY⊗G ⊗X ⊗ T )

= (X⊗cY,T⊗G)◦(cY,X⊗cG,T )◦(Y ⊗(cG,X ◦(G⊗µX)◦(cX,G⊗t)◦(X⊗cY,G⊗T ))⊗T )

◦(Y ⊗ψY,X⊗G⊗ δT ⊗ εG)◦ (δY ⊗ψG,X⊗ψG,T )◦ (Y ⊗ ((G⊗ cG,X)◦ (δG⊗X))⊗T )

(ψG,X is in the cocommutativity class of G)

= (X ⊗ cY,T ⊗G) ◦ (cY,X ⊗ T ⊗G) ◦ (Y ⊗ (µX ◦ (X ⊗ t) ◦ (ψY,X ⊗ T ))⊗ T ⊗G)

◦(δY ⊗X ⊗ δT ⊗G)(Y ⊗ ((cT,X ⊗G) ◦ (T ⊗ ψG,X) ◦ (ψG,T ⊗X) ◦ (G⊗ cX,T )))

(ψG,T is in the cocommutativity class of G)

= ((µX ◦cX,X)⊗cY,T⊗G)◦(X⊗ψY,X⊗T⊗G)◦((cY,X ◦(Y ⊗t)◦(δY ⊗T ))⊗cT,X⊗G)

◦(Y ⊗ δT ⊗ ψG,X) ◦ (Y ⊗ ψG,T ⊗X) ◦ (Y ⊗G⊗ cX,T ) (ψY,X is in the cocommutativity class

of X)

= ((µX◦cX,X)⊗cY,T⊗G)◦(X⊗ψY,X⊗T⊗G)◦(((t⊗Y )◦(Y⊗cY,T )◦(δY⊗T ))⊗cT,X⊗G)

◦(Y ⊗ δT ⊗ ψG,X) ◦ (Y ⊗ ψG,T ⊗X) ◦ (Y ⊗G⊗ cX,T ) ((21))

= ((µX ◦cX,X)⊗T⊗Y ⊗G)◦(t⊗cT,X⊗Y ⊗G)◦(Y ⊗δT⊗ψY,X⊗G)◦(Y ⊗cY,T⊗ψG,X)

◦(δY ⊗ ((T ⊗ εG ⊗G) ◦ (ψG,T ⊗G) ◦ (G⊗ cG,T ) ◦ (δG ⊗ T ))⊗X) ◦ (Y ⊗G⊗ cX,T )

((10))

= (((µX ⊗ T ) ◦ (X ⊗ t⊗ T ) ◦ (X ⊗ Y ⊗ δT ))⊗ Y ⊗G) ◦ (X ⊗ Y ⊗ cY,T ⊗ εG ⊗G)

◦(((ψY,X ⊗ Y ) ◦ (Y ⊗ cY,X) ◦ (δY ⊗X))⊗ ((ψG,T ⊗G) ◦ (G⊗ cG,T )))

◦(Y ⊗ ((ψG,X ⊗G) ◦ (G⊗ cG,X) ◦ (δG ⊗X))⊗ T )

(ψG,X and ψY,X are in the cocommutativity class of G and Y , respectively)

= (φX./T ⊗ Y ⊗G) ◦ (Y ⊗G⊗ cY⊗G,X⊗T ) ◦ (δY⊗G ⊗X ⊗ T ) (naturality).
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2.15. Lemma. The following assertions are equivalent.

(i) (β ⊗ ∂) ◦ φX./T = adY ./G ◦ (Y ⊗G⊗ β ⊗ ∂)

(ii) The equalities

((β ◦ t)⊗ ∂) ◦ (Y ⊗ δT ) = (µY ⊗G) ◦ (Y ⊗ (ψG,Y ◦ cY,G ◦ (λY ⊗ ∂))) ◦ (δY ⊗ T ) (22)

and
(β ⊗G) ◦ ψG,X = ψG,Y ◦ (G⊗ β) (23)

hold.

Proof. (i)⇒ (ii). Using that β is a monoid morphism, G and T Hopf monoids, and (a1)
and (b1) of Definition 2.4, we get (22) because

((β ◦ t)⊗ ∂) ◦ (Y ⊗ δT )

= (β ⊗ ∂) ◦ φX./T ◦ (Y ⊗ ηG ⊗ ηX ⊗ T )

= adY ./G ◦ (Y ⊗G⊗ β ⊗ ∂) ◦ (Y ⊗ ηG ⊗ ηX ⊗ T )

= (µY ⊗G) ◦ (Y ⊗ (ψG,Y ◦ cY,G ◦ (λY ⊗ ∂))) ◦ (δY ⊗ T ),

On the other hand, by composing with Y ⊗ εG on the left and with Y ⊗ ηT on the
right we obtain that β ◦ t ◦ (Y ⊗ ηT ) = εY ⊗ ηY and then

(β ⊗ εG) ◦ ψG,X

= (Y ⊗ εG) ◦ (β ⊗ ∂) ◦ φX./T ◦ (ηY ⊗G⊗X ⊗ ηT )

= (Y ⊗ εG) ◦ adY ./G ◦ (Y ⊗G⊗ β ⊗ ∂) ◦ (ηY ⊗G⊗X ⊗ ηT )

= (Y ⊗ εG) ◦ ψG,Y ◦ (G⊗ β).

As a consequence, using (10),

(β ⊗G) ◦ ψG,X

= (β ⊗ εG ⊗G) ◦ (ψG,X ⊗G) ◦ (G⊗ cG,X) ◦ (δG ⊗X)

= (Y ⊗ εG ⊗G) ◦ (ψG,Y ⊗G) ◦ (G⊗ β ⊗G) ◦ (G⊗ cG,X) ◦ (δG ⊗X)

= ψG,Y ◦ (G⊗ β),

and we obtain (23).
(ii) ⇒ (i). First of all, by (10) and (c2) of Definition 2.8 it is easy to see that

(β ⊗ Y ) ◦ ψY,X = (adY ⊗ Y ) ◦ (Y ⊗ cY,Y ) ◦ (δY ⊗ β). (24)

Therefore
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(β ⊗ ∂) ◦ φX./T

= (µY ⊗G) ◦ (β ⊗ (((β ◦ t)⊗ ∂) ◦ (Y ⊗ δT ))⊗ εG) ◦ (ψY,X ⊗ ψG,T ) ◦ (Y ⊗ ψG,X ⊗ T )

(β is a monoid morphism)

= (µY ⊗G) ◦ (adY ⊗ ((µY ⊗G) ◦ (Y ⊗ (ψG,Y ◦ cY,G ◦ (λY ⊗ ∂))) ◦ (δY ⊗ T ))⊗ εG)

◦(Y ⊗ cY,Y ⊗ ψG,T ) ◦ (δY ⊗ ((β ⊗G) ◦ ψG,X)⊗ T ) ((22), (24))

= (µY ⊗G)◦((µY ◦(µY ⊗(µY ◦(λY ⊗Y )◦δY )))⊗(ψG,Y ◦cY,G))◦(Y ⊗cY,Y ⊗λY ⊗adG)

◦(δY ⊗ cY,Y ⊗G⊗G) ◦ (δY ⊗ (ψG,Y ◦ (G⊗ β))⊗ ∂) ((23), (c2) of Definition 2.8)

= (µY ⊗G) ◦ (Y ⊗ (ψG,Y ◦ cY,G)) ◦ (µY ⊗ λY ⊗ µG) ◦ (Y ⊗ cY,Y ⊗ µG ⊗G)

◦(δY ⊗Y ⊗G⊗ (cG,G ◦ (λG⊗G))) ◦ (Y ⊗ ((ψG,Y ⊗G) ◦ (G⊗ cG,Y ) ◦ (δG⊗Y ))⊗G)

◦(Y ⊗G⊗ β ⊗ ∂) (Y is a Hopf monoid, (9))

= adY ./G ◦ (Y ⊗G⊗ β ⊗ ∂) ((b2) of Definition 2.4).

2.16. Lemma. The following assertions are equivalent.

(i) φX./T ◦ (β ⊗ ∂ ⊗X ⊗ T ) = adX./T

(ii) The equalities

(t⊗ T ) ◦ (β ⊗ δT ) = (µX ⊗ T ) ◦ (X ⊗ (ψT,X ◦ cX,T ◦ (λX ⊗ T ))) ◦ (δX ⊗ T ) (25)

and
ψG,X ◦ (∂ ⊗X) = (X ⊗ ∂) ◦ ψT,X (26)

hold.

Proof. (i) ⇒ (ii). Using that ∂ is a monoid morphism, G a Hopf monoid, and (a1) and
(b1) of Definition 2.4,

(t⊗ T ) ◦ (β ⊗ δT )

= φX./T ◦ (β ⊗ ∂ ⊗X ⊗ T ) ◦ (X ⊗ ηT ⊗ ηX ⊗ T )

= adX./T ◦ (X ⊗ ηT ⊗ ηX ⊗ T )

= (µX ⊗ T ) ◦ (X ⊗ (ψT,X ◦ cX,T ◦ (λX ⊗ T ))) ◦ (δX ⊗ T ),

and we get (25). By composing in this equality with X ⊗ εT on the left and with ηX ⊗ T
on the right we obtain that t ◦ (ηY ⊗ T ) = εT ⊗ ηX and then
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(X ⊗ εG) ◦ ψG,X ◦ (∂ ⊗X)

= (X ⊗ εT ) ◦ φX./T ◦ (β ⊗ ∂ ⊗X ⊗ T ) ◦ (ηX ⊗ T ⊗X ⊗ ηT )

= (X ⊗ εT ) ◦ adX./T ◦ (ηX ⊗ T ⊗X ⊗ ηT )

= (X ⊗ εT ) ◦ ψT,X .

As a consequence, using (10) and that ∂ is a comonoid morphism,

(X ⊗ ∂) ◦ ψT,X

= (X ⊗ εT ⊗ ∂) ◦ (ψT,X ⊗ T ) ◦ (T ⊗ cT,X) ◦ (δT ⊗X)

= (X ⊗ εG ⊗ ∂) ◦ (ψG,X ⊗ T ) ◦ (∂ ⊗ cT,X) ◦ (δT ⊗X)

= ψG,X ◦ (∂ ⊗X),

and we obtain (26).
(ii) ⇒ (i). In a similar way to (24) it is easy to see that

ψY,X ◦ (β ⊗X) = (adX ⊗ β) ◦ (X ⊗ cX,X) ◦ (δX ⊗X). (27)

Therefore

φX./T ◦ (β ⊗ ∂ ⊗X ⊗ T )

= (µX⊗T )◦(X⊗((t⊗T )◦(β⊗δT )))◦(((adX⊗X)◦(X⊗cX,X)◦(δX⊗X))⊗((T⊗εG)

◦ψG,T ◦ (∂ ⊗ T )) ◦ (X ⊗ ψT,X ⊗ T ) ((26), (27))

= (µX ⊗ T ) ◦ (X ⊗ ((µX ⊗ T ) ◦ (X ⊗ (ψT,X ◦ cX,T ◦ (λX ⊗ T ))) ◦ (δX ⊗ T )))

◦(((adX ⊗X) ◦ (X ⊗ cX,X) ◦ (δX ⊗X))⊗ adT ) ◦ (X ⊗ ψT,X ⊗ T ) ((c3) of Definition 2.8,

(25))

= (µX ⊗T ) ◦ (µX ⊗X ⊗T ) ◦ (X ⊗ (µX ◦ (λX ⊗X) ◦ δX))⊗ (ψT,X ◦ cX,T ◦ (λX ⊗T )))

◦(µX ⊗ δX ⊗ adT ) ◦ (X ⊗ cX,X ⊗ T ⊗ T ) ◦ (δX ⊗ ψT,X ⊗ T ) (naturality)

= (µX ⊗ T ) ◦ (X ⊗ (ψT,X ◦ cX,T ◦ (λX ⊗ T ))) ◦ (((µX ⊗X) ◦ (X ⊗ cX,X)

◦(δX ⊗X))⊗ (µT ◦ (µT ⊗ λT ) ◦ (T ⊗ cT,T ) ◦ (δT ⊗ T ))) ◦ (X ⊗ψT,X ⊗ T ) (X is a Hopf

monoid)

= adX./T ((b2) of Definition 2.4, (9)),

and the proof is complete.
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As a direct consequence of the Lemma we have the main result of this section that gives
the necessary and sufficient conditions to assure that a crossed product of two crossed
modules of Hopf monoids is a crossed module of Hopf monoids.

2.17. Theorem. Let TG = (T,G, ∂) and XY = (X, Y, β) be crossed modules of Hopf
monoids and denote the corresponding entwining structures by ψG,T : G⊗T → T ⊗G and
ψY,X : Y ⊗X → X ⊗ Y , respectively. Let t : Y ⊗ T → X be a morphism and assume that
ψG,X : G ⊗X → X ⊗ G, ψT,X : T ⊗X → X ⊗ T and ψG,Y : G ⊗ Y → Y ⊗ G are three
left-left entwining structures and right-right semi-entwining structures such that (8), (9)
and (11) hold. Then the following assertions are equivalent.

(i) XY ./ TG = (X ./ T, Y ./ G, β⊗∂) is a crossed module of Hopf monoids via φX./T .

(ii) The morphism t is a comonoid morphism and the equalities (12), (13), (14), (16),
(17), (18), (20), (22), (23), (25) and (26) hold.

Moreover, in this case, (X ./ T, φX./T ) is in the cocommutativity class of Y ./ G if and
only if ψY,X is in the cocommutativity class of Y , ψG,T and ψG,X are in the cocommutativity
class of G and condition (21) holds.

3. Projections of crossed modules of Hopf monoids

Projections of Hopf algebras were introduced by Radford [Radford, 1985]. In this section
we develop an example of crossed product of crossed modules by working with projections
of Hopf monoids. First of all we recall the notion and the main properties of a projection
of Hopf monoids. The interested reader can see the proofs in [Alonso Álvarez, Fernández
Vilaboa, 2000], [Majid, 1994] or [Radford, 1985].

3.1. Definition. A projection of Hopf monoids is a quartet (T,B, u, w) where T , B
are Hopf monoids, and u : T → B, w : B → T are Hopf monoid morphisms such that
w ◦ u = idT .

A morphism between projections of Hopf monoids (T,B, u, w) and (G,H, v, y) is a
pair (∂, γ), where ∂ : T → G, γ : B → H are Hopf monoid morphisms such that

v ◦ ∂ = γ ◦ u, ∂ ◦ w = y ◦ γ. (28)

Let (T,B, u, w) be a projection of Hopf monoids. The morphism

qB = µB ◦ (B ⊗ (u ◦ λT ◦ w)) ◦ δB

is an idempotent and, as a consequence, there exist an epimorphism pB, a monomorphism
iB, and an object BT such that the diagram

-

HH
HHj �

��>
B B

BT

qB

pB iB
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commutes and pB ◦ iB = idBT
. Also,

- -
-BT B B ⊗ T

iB
(B ⊗ w) ◦ δB

B ⊗ ηT

is an equalizer diagram and

-
-

-
µB ◦ (B ⊗ u)

B ⊗ εT

pB
B ⊗ T B BT

is a coequalizer diagram.
It is easy to see that iB (pB) is a monoid and comonoid morphism, where the monoid

and comonoid structures in BT are ηBT
= pB ◦ ηB, µBT

= pB ◦ µB ◦ (iB ⊗ iB), and
εBT

= εB ◦ iB, δBT
= (pB ⊗ pB) ◦ δB ◦ iB, respectively. Also, the equalities

δB ◦ iB = (B ⊗ qB) ◦ δB ◦ iB, pB ◦ µB = pB ◦ µB ◦ (B ⊗ qB) (29)

hold. On the other hand, the morphism adu,B ◦ (T ⊗ iB) factorizes through the equalizer
iB, and the factorization φBT

= pB ◦ µB ◦ (u⊗ iB) : T ⊗BT → BT gives a left H-module
monoid and comonoid structure for BT . Moreover, if iB is a comonoid morphism, BT is
a Hopf monoid with antipode λBT

= pB ◦ λB ◦ iB and, as a consequence of Proposition
2.3, (BT , φBT

) is in the cocommutativity class of T . Finally, there is a Hopf monoid
isomorphism between BT ./ T and B defined as πB = µB ◦ (iB ⊗ u) and with inverse
π−1
B = (pB ⊗ w) ◦ δB.

Now we apply the general theory of Hopf monoid projections to study projections
between crossed modules of Hopf monoids.

3.2. Definition. Let TG = (T,G, ∂) and BH = (B,H, γ) be crossed modules of Hopf
monoids and assume that (T,B, u, w) and (G,H, v, y) are projections of Hopf monoids.
We say that

(BH,TG, (u, v), (w, y))

is a projection of crossed modules of Hopf monoids if (∂, γ) is a morphism between
(T,B, u, w) and (G,H, v, y) such that the equalities

(u⊗εG)◦ψG,T = (B⊗εH)◦ψH,B◦(v⊗u), (w⊗εH)◦ψH,B = (T⊗εG)◦ψG,T ◦(y⊗w), (30)

hold (equivalently, if φT and φB are the leftG-module andH-module monoid and comonoid
structures for T and B, respectively, and the following equalities hold:

u ◦ φT = φB ◦ (v ⊗ u), w ◦ φB = φT ◦ (y ⊗ w)). (31)
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3.3. Proposition. Let TG = (T,G, ∂) and BH = (B,H, γ) be crossed modules of Hopf
monoids and denote the corresponding entwining structures by ψG,T : G ⊗ T → T ⊗ G
and ψY,X : Y ⊗X → X ⊗ Y , respectively. Let (BH,TG, (u, v), (w, y)) be a projection of
crossed modules of Hopf monoids such that iB and iH are comonoid morphisms. Then

(BT , HG, σ = pH ◦ γ ◦ iB)

is a crossed module of Hopf monoids and the left HG-module monoid and comonoid struc-
ture for BT , defined as ϕBT

= pB ◦ φB ◦ (iH ⊗ iB), is in the cocommutativity class of
HG.

Proof. Taking into account that pH , γ and iB are comonoid morphisms, so is σ. More-
over, the equality

qH ◦ γ = γ ◦ qB (32)

holds. Indeed,

qH ◦ γ

= µH ◦ (γ ⊗ (v ◦ λG ◦ y ◦ γ)) ◦ δB (γ is a comonoid morphism)

= µH ◦ (γ ⊗ (v ◦ λG ◦ ∂ ◦ w)) ◦ δB ((28))

= µH ◦ (γ ⊗ (γ ◦ u ◦ λT ◦ w)) ◦ δB (∂ is a Hopf monoid morphism, (28))

= γ ◦ qB (γ is a monoid morphism).

As a consequence it is easy to see that σ is a monoid morphism and then we get that
σ is a Hopf monoid morphism. Now consider the morphism ϕBT

= pB ◦ φB ◦ (iH ⊗ iB).
Trivially, ϕBT

◦ (ηHG
⊗ BT ) = idBT

. Moreover, if φB is the left H-module monoid and
comonoid structure for B, the equality

qB ◦ φB ◦ (H ⊗ iB) = φB ◦ (H ⊗ iB) (33)

holds, because

qB ◦ φB ◦ (H ⊗ iB)

= µB ◦ (φB ⊗ (u ◦ λT ◦ w ◦ φB)) ◦ δH⊗B ◦ (H ⊗ iB) (φB is a comonoid morphism)

= µB ◦ (φB ⊗ (u ◦ λT ◦ φT ◦ (y ⊗ w))) ◦ δH⊗B ◦ (H ⊗ iB) ((30))

= φB ◦ (H ⊗ iB) (properties of iB , φB is a comonoid morphism),

and then ϕBT
◦ (HG ⊗ ϕBT

) = ϕBT
◦ (µHG

⊗BT ).
On the other hand, ϕBT

◦ (HG ⊗ ηBT
) = εHG

⊗ ηBT
and, using that φB is a monoid

morphism, iB a comonoid morphism and (33), we get that ϕBT
◦ (HG ⊗ µBT

) = µBT
◦

(ϕBT
⊗ϕBT

)◦(HG⊗cHG,BT
⊗BT )◦(δHG

⊗BT⊗BT ) and then (BT , ϕBT
) is a left HG-module

monoid. In a similar way, but using that φB is a comonoid morphism, it is not difficult to
see that εBT

◦ϕBT
= εHG

⊗εBT
and δBT

◦ϕBT
= (ϕBT

⊗ϕBT
)◦δHG⊗BT

and then (BT , ϕBT
)

is a left HG-module comonoid. As far as condition (c2),
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adHG
◦ (HG ⊗ σ)

= pH ◦ µH ◦ (H ⊗ qH) ◦ ((qH ◦ µH ◦ (H ⊗ qH))⊗H) ◦ (H ⊗ (cH,H ◦ (λH ⊗H)))

◦(((qH ⊗ qH) ◦ δH ◦ iH)⊗ (γ ◦ iB)) (definitions)

= pH ◦ adH ◦ (iH ⊗ (γ ◦ iB)) (iB is a monoid and comonoid morphism, (29))

= pH ◦ γ ◦ φB ◦ (iH ⊗ iB) ((c2) of Definition 2.8 for (B,H, γ))

= σ ◦ ϕBT
((33)).

In a similar way it is easy to see condition (c3). Finally (BT , ϕBT
) is in the cocommu-

tativity class of HG by applying that (B, φB) is in the cocommutativity class of H, and
the proof is complete.

3.4. Theorem. Let TG = (T,G, ∂) and BH = (B,H, γ) be crossed modules of Hopf
monoids and denote the corresponding entwining structures by ψG,T : G⊗T → T ⊗G and
ψY,X : Y ⊗X → X ⊗ Y , respectively. Let

(BH,TG, (u, v), (w, y))

be a projection of crossed modules of Hopf monoids such that iB and iH are comonoid
morphisms. Then

(BT ./ T,HG ./ G, χ = σ ⊗ ∂)

is a crossed module of Hopf monoids and (BT , HG, γ
′) ./ TG ' BH, where γ′ is the

restriction of γ to BT . Moreover, the left HG ./ G-module monoid and comonoid structure
for BT ./ T is in the cocommutativity class of HG ./ G.

Proof. By [Radford, 1985], we know that BT ./ T and HG ./ G are Hopf monoids and
there is a left T -module monoid and comonoid structure for BT and a left G-module
monoid and comonoid structure for HG such that (BT , φBT

) and (HG, φHG
) are in the

cocommutativity class of T and G, respectively. Moreover, by Proposition 3.3 we have
that (BT , HG, σ) is a crossed module of Hopf monoids and the left HG-module monoid and
comonoid (BT , ϕBT

) is in the cocommutativity class of HG. Now consider the morphisms

ψT,BT
= (φBT

⊗ T ) ◦ (T ⊗ cT,BT
) ◦ (δT ⊗BT ),

ψG,HG
= (φHG

⊗G) ◦ (G⊗ cG,HG
) ◦ (δG ⊗HG)

and
ψG,BT

= ((pB ◦ φB ◦ (v ⊗ iB))⊗G) ◦ (G⊗ cG,BT
) ◦ (δG ⊗BT ).

It is not difficult to see that these morphism are left-left entwining and right-right
semi-entwining structures and satisfy (8) and (9). Then, define

φBT ./T : HG ./ G⊗BT ./ T → BT ./ T
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as

φBT ./T = (µBT
⊗T )◦(BT⊗t⊗T )◦(BT⊗HG⊗δT⊗εG)◦(ψHG,BT

⊗ψG,T )◦(HG⊗ψG,BT
⊗T ),

where t = pB ◦φB ◦ (iH ⊗ u). We will see that φBT ./T = π−1
B ◦φB ◦ (πH ⊗ πB). First of all,

note that the equalities

(πH⊗G)◦ (HG⊗ δG) = (H⊗y)◦ δH ◦πH , (πB⊗T )◦ (BT ⊗ δT ) = (B⊗w)◦ δB ◦πB (34)

hold. Indeed,

(πH ⊗G) ◦ (HG ⊗ δG)

= (µH ⊗G) ◦ (iH ⊗ ((v ⊗ (y ◦ v)) ◦ δG))

= µH⊗G ◦ (((H ⊗ y) ◦ δH ◦ iH)⊗ ((H ⊗ y) ◦ δH ◦ v))

= (H ⊗ y) ◦ δH ◦ πH ,

and in a similar way for the second equality. Then

φBT ./T

= ((pB ◦µB ◦ (qB⊗ qB) ◦ (φB⊗φB) ◦ (iH ⊗B⊗ iH ⊗B))⊗T ) ◦ (HG⊗ cHG,B⊗u⊗T )

◦(δHG
⊗(qB ◦φB ◦(H⊗ iB))⊗(δT ◦φT ))◦(HG⊗v⊗cG,BT

⊗T )◦(HG⊗δG⊗BT ⊗T )

(definitions)

= ((pB ◦ µB ◦ (φB ⊗ φB))⊗ T ) ◦ (H ⊗ φB ⊗H ⊗ (((u ◦ φT )⊗ φT ) ◦ δG⊗T ))

◦(H⊗H⊗cH,B⊗G⊗T )◦(H⊗cH,H⊗cG,B⊗T )◦((δH ◦iH)⊗((v⊗G)◦δG)⊗iB⊗T )

(iH is a comonoid morphism, T is a left G-module comonoid, (33), (29))

= ((pB ◦ µB ◦ (φB ⊗ φB))⊗ T ) ◦ (H ⊗ cH,B ⊗ u⊗ φT ) ◦ (µH⊗H ⊗B ⊗ cG,T ⊗ T )

◦((δH ◦ iH)⊗ ((v ⊗ v) ◦ δG)⊗ cG,B ⊗ δT ) ◦ (HG ⊗ δG ⊗ iB ⊗ T )

(B is a left H-module, (31))

= ((pB ◦ µB ◦ (φB ⊗ φB) ◦ (H ⊗ cH,B ⊗B) ◦ ((δH ◦ µH)⊗B ⊗ u))⊗ φT )

◦(iH ⊗ v ⊗B ⊗ cG,T ⊗ T ) ◦ (HG ⊗G⊗ cG,B ⊗ δT ) ◦ (HG ⊗ δG ⊗ iB ⊗ T )

(v is a comonoid morphism, H is a Hopf monoid)

= ((pB ◦ φB)⊗ φT ) ◦ (H ⊗ cG,B ⊗ T ) ◦ (πH ⊗G⊗ πB ⊗ T ) ◦ (HG ⊗ δG ⊗BT ⊗ δT )

(B is a left H-module monoid)
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= ((pB ◦ φB)⊗ (φT ◦ (y ⊗ w))) ◦ δH⊗B ◦ (πH ⊗ πB) ((34))

= ((pB ◦ φB)⊗ (w ◦ φB)) ◦ δH⊗B ◦ (πH ⊗ πB) ((31))

= π−1
B ◦ φB ◦ (πH ⊗ πB) (B is a left H-module comonoid).

As a consequence, it is easy to see that (BT ./ T, φBT ./T ) is a left HG ./ G-module
monoid and comonoid and φBT ./T is in the cocommutativity class of HG ./ G because φB
is in the cocommutativity class of H.

On the other hand, and by similar techniques,

π−1
H ◦ γ ◦ πB

= (pH ⊗ y) ◦ µH⊗H ◦ (δH ⊗ δH) ◦ ((γ ◦ iB)⊗ (γ ◦ u))

= (pH ⊗G) ◦ µH⊗G ◦ (γ ⊗ (y ◦ γ)⊗H ⊗ y) ◦ ((δB ◦ iB)⊗ (δH ◦ v ◦ ∂))

= (pH ⊗G) ◦ µH⊗G ◦ (γ ⊗ ∂ ⊗ v ⊗ (y ◦ v)) ◦ (((B ⊗ w) ◦ δB ◦ iB)⊗ (δG ◦ ∂)

= ((pH ◦ µH ◦ (H ⊗ qH) ◦ (γ ⊗ v))⊗G) ◦ (iB ⊗ (δG ◦ ∂))

= ((pH ◦ µH ◦ (γ ⊗ (ηH ◦ εG)))⊗G) ◦ (iB ⊗ (δG ◦ ∂))

= σ ⊗ ∂

= χ,

and then we get that conditions (d2) and (d3) of Definition 2.8 hold. Finally,

πH ◦ χ = πH ◦ π−1
H ◦ γ ◦ πB = γ ◦ πB

and
πB ◦ φBT ./T = πB ◦ π−1

B ◦ φB ◦ (πH ⊗ πB) = φB ◦ (πH ⊗ πB)

and then (πB, πH) is an isomorphism of crossed modules of Hopf monoids.

3.5. Example. The category Set of sets is a non-strict monoidal category, where the
tensor product is the cartesian product and the unit object is a one element set; the asso-
ciative and unit constraints are obvious (for simplicity of notation, relying on coherence,
we omit explicit mention of them). A group G is an example of a cocommutative Hopf
monoid in Set where the comultiplication is the duplication, the counit is the obvious
one, and the antipode is λG(g) = g−1. A morphism between two groups is a Hopf monoid
morphism between the corresponding Hopf monoids in Set.

Let T and G be groups with a morphism ∂ : T → G of groups. Let ϕT : G× T → T ,
ϕT (g, t) = gt, be an action of G over T , that is, a morphism satisfying the axioms
of identity, i.e., ϕT (eG, t) = t where eG is the unit element of G, and compatibility,
i.e., ϕT (gg′, t) = ϕT (g, ϕT (g′, t)). Note that, under these conditions, it is easy to show
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that (T, ϕT ) is a left G-module monoid and comonoid in Set. The notion of crossed
module of groups was introduced by Whitehead [Whitehead, 1949] in his investigation
of the monoidal structure of second relative homotopy groups. Recall that the triple
TG = (T,G, ∂) is a crossed module if, for the group morphism ∂ : T → G and the action
ϕT (g, t) = gt, the following identities

(i) ∂(gt) = g∂(t)g−1 (Precrossed identity),

(ii) ∂(t)t′ = tt′t−1 (Peiffer identity).

hold. Then, any crossed module TG is an example of a crossed module of Hopf algebras,
in the sense of Frégier and Wagemann [Frégier, Wagemann, 2011], in the category of Set.
Also, it is a crossed module of Hopf monoids in the sense of Definition 2.8, because in this
setting the condition (4) holds trivially.

Let TG = (T,G, ∂) and BH = (B,H, γ) be crossed modules. We will say that (u, v)
is a morphism of crossed modules between TG and BH if

(i) u : T → B, v : G→ H are group morphisms,

(ii) v ◦ ∂ = γ ◦ u,

(ii) For all g ∈ G, t ∈ T, u(gt) = v(g)u(t) (u(ϕT (g, t)) = ϕB(v(g), u(t))).

Therefore, (u, v) : TG → BH is a morphism of crossed modules of Hopf monoids in
Set.

As a consequence, in the following, the terms ”crossed module” and ”crossed module
of Hopf monoids” are interchangeably used throughout this example.

Let TG = (T,G, ∂) and BH = (B,H, γ) be crossed modules. Let ΨG,T : G × T →
T ×G, ΨH,B : H ×B → B ×H

ψG,T (g, t) = (gt, g), ψH,B(h, b) = (hb, h)

be the corresponding entwining structures. The morphisms ψG,T and ψH,B trivially satisfy
(a4) of Definition 2.4, (8) and (9).

Let (BH,TG, (u, v), (w, y)) be a projection of crossed modules. Then the idempotent
morphism qB : B → B is defined by

qB(b) = b(u ◦ w)(b−1)

and
BT = ker(w)

because, by the general theory of projections, BT is the equalizer of the morphisms

b→ (b, eT ), b→ (b, w(b)).
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The associated action ϕBT
: T ×BT → BT is

ϕBT
(t, b) = u(t)bu(t−1)

and the coaction ρBT
: BT → T ×BT is trivial, i.e., ρBT

(b) = (eT , b). Therefore iT : BT →
B is a comonoid morphism.

The cartesian product BT × T is a group, denoted by BT ./ T , with product

µBT ./T = (µBT
× µT ) ◦ (BT × ψT,BT

× T ),

where ψT,BT
= (ϕBT

× T ) ◦ (T × cT,BT
) ◦ (δT ×BT ).

Then ψT,BT
(t, b) = (u(t)bu(t−1), t) and, as a consequence,

µBT ./T ((b, t), (b′, t′)) = (bu(t)b′u(t−1), tt′).

For this product, the unit is (eB, eT ) and the inverse of (b, t) is

(b, t)−1 = (u(t−1)b−1u(t), t−1).

Similarly, qH : H → H is defined by

qH(h) = h(v ◦ y)(h−1)

and
HG = ker(y).

The associated action ϕHG
: G×HG → HG is

ϕHG
(g, h) = v(g)hv(g−1)

and the coaction ρHG
: HG → G×HG is also trivial. Therefore iG : HG → H is a comonoid

morphism.
The cartesian product HG ×G is a group, denoted by HG ./ G, with product

µHG./G = (µHG
× µG) ◦ (HG × ψG,HG

×G)

with
ψG,HG

= (ϕHG
×G) ◦ (G× cG,HG

) ◦ (δG ×HG).

Then ψG,HG
(g, h) = (v(g)hv(g−1), g) and

µHG./G((h, g), (h′, g′)) = (hv(g)h′v(g−1), gg′).

For this product, the unit is (eH , eG) and the inverse of (h, g) is

(h, g)−1 = (v(g−1)h−1v(g), g−1).
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In these conditions there exist two group isomorphisms

ωB : BT ./ T → B, ωH : HG ./ G→ H

defined by
ωB(b, t) = bu(t), ωH(h, g) = hv(g)

and with inverses

ω−1
B (b) = (b(u ◦ w)(b−1), w(b)), ω−1

H (h) = (h(v ◦ y)(h−1), y(h)).

Moreover, the triple
(BT ./ T,HG ./ G, α)

is a crossed module where, if γ′ is the restriction of γ to BT ,

α = γ′ × ∂

and

ϕBT ./T = (µBT
× T ) ◦ (BT ⊗ ΓT ⊗ T ) ◦ (ψHG,BT

⊗ (δT ◦ ϕT )) ◦ (HG ⊗ ψG,BT
⊗ T )

is the morphism defined in Section 1. In our example we have

ψG,BT
= (mBT

×G) ◦ (G× cG,BT
) ◦ (δG ×BT ) : G×BT → BT ×G,

where
mBT

: G×BT → BT , mBT
(g, b) = v(g)b

and then,
ψG,BT

(g, b) = (v(g)b, g).

On the other hand,

ψHG,BT
= (φBT

×HG) ◦ (HG × cHG,BT
) ◦ (δHG

×BT ) : HG ×BT → BT ×HG

where
φBT

: HG ×BT → BT , φBT
(h, b) = hb

and, as a consequence
ψHG,BT

(h, b) = (hb, h).

The morphism ΓT : HG × T → BT is defined by

ΓT (h, t) = hu(t)u(t−1)

and then
ϕBT ./T ((h, g), (b, t)) = (hv(g)(bu(t))u(g(t−1)), gt).
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The pair (ωB, ωH) is an isomorphism between the crossed modules (BT ./ T,HG ./
G, α) and BH with inverse (ω−1

B , ω−1
H ). Also, (BT , HG, γ

′) is a crossed module with action
φBT

and using the general theory we can assert that

(BT , HG, γ
′) ./ TG = (BT ./ T,HG ./ G, α) ' BB.

A particular case of this example is the one associated to the projection

(BB,TT, (u, u), (w,w)),

where BB = (B,B, idB) and TT = (T, T, idT ) with the corresponding adjoint actions.
Then,

(BT , BT , idBT
) ./ TT = (BT ./ T,BT ./ T, idBT ./T ) ' BB

and the identity
ϕBT ./T ((b, t), (b′, t′)) = (b, t)(b′, t′)(b, t)−1

holds.
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