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T0 TOPOLOGICAL SPACES AND T0 POSETS
IN THE TOPOS OF M -SETS

M.M. EBRAHIMI, M. MAHMOUDI, AND A.H. NEJAH

Abstract. In this paper, we introduce the concept of a topological space in the topos
M -Set of M -sets, for a monoid M . We do this by replacing the notion of open “subset”
by open “subobject” in the definition of a topology. We prove that the resulting category
has an open subobject classifier, which is the counterpart of the Sierpinski space in this
topos. We also study the relation between the given notion of topology and the notion
of a poset in this universe. In fact, the counterpart of the specialization pre-order
is given for topological spaces in M -Set, and it is shown that, similar to the classic
case, for a special kind of topological spaces in M -Set, namely T0 ones, it is a partial
order. Furthermore, we obtain the universal T0 space, and give the adjunction between
topological spaces and T0 posets, in M -Set.

1. Introduction

Topoi are categories which behave like the category Set, of sets and functions between
them. Naturally one tries to reconstruct the classical mathematics in such categories. The
difference between classical mathematics and topos base mathematics is that the latter is
in some sense constructive. In fact, the internal logic of a topos is intuitionistic, and so
topoi provide a convenient set up for constructive mathematics.

One of the most important features of constructive mathematics is in computer science
and semantic of programing languages. Since programs are constructive in nature we
expect that their semantics would be so.

Dana Scott introduced a topology as a mathematical semantic of a functional pro-
gramming language (see [A Compendium of Continuous Lattices], [Continuous Lattices
and Domains]). The Scott topology is a T0-space (see [Domain Theory]). It is known that
there exists an adjunction between the category of pre-ordered sets and topological spaces
(see [Topological Duality in Semantics]). Also, if one changes pre-ordered sets to ordered
sets, the adjunction will be between posets and T0 topological spaces. Dana Scott in a talk
in 1980 proposed that intuitionistic set theory might provide a more powerful framework
for denotational semantics, and suggested the study of mathematical structures in a topos
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as mathematical semantics.
In this paper, to get through the first step toward studying topological semantics

in a topos, we study the notion of a topology, a T0 topology, and its relation with the
notion of a poset in a topos. The topos which we chose as our universe is one of the
most famous and useful Grothendieck topoi (elementary topoi), namely the topos of
presheaves on a monoid. This topos is isomorphic to the the topos of monoid actions,
also called dynamical systems, a kind of automata. The T0-spaces we introduce, are
inspired by Hyland’s generalization of T0 spaces in a topos, called Σ-spaces in [First steps
in synthetic domain theory], where Σ is the generalization of the Sierpinski space. Recall
that the classic Sierpinski space classifies open subsets of topological spaces. We define
the notion of the “Sierpinski space” Σ in the topos of monoid actions in such a way that
it becomes the open subobject classifier for topological spaces in our universe. Moreover,
we give an adjunction between T0 topological spaces and a kind of posets in this topos,
which we call them T0 posets.

2. Preliminaries

In this section, we recall the preliminary notions needed in this paper. For more infor-
mation about the category of M -sets one can see [The category of M -sets], [Topoi: The
Categorial Analysis of Logic]; and about topos theory may see [Sketches of an Elephant:
A Topos Theory Compendium].

2.1. M-sets. Let M be a monoid with e as its identity. An M -set is a set X with a
function µ : M ×X → X, called the action of M on X, such that, denoting µ(s, x) = sx,

ex = x, (st)x = s(tx).

A subset A of an M -set X is called a sub M -set of X if it is closed under the action
of M on X. That is, for each x ∈ A and s ∈M we have sx ∈ A.

A function f : X → Y between M -sets is called equivariant (or action-preserving) if
for each s ∈M and x ∈ X we have f(sx) = sf(x).

Notice that, one can consider an M -set X as an algebra such that the action of each
s ∈M is considered as a unary operation λs : X → X,λs(x) = sx. In this way an action-
preserving map between two M -sets is just a homomorphism between such algebras. Thus,
one has the equational category M -Set, of all M -sets with equivariant maps between
them. This view, in particular, gives that products in M -Set is the cartesian product
with the pointwise action. Also, monomorphisms in this category are one-one action-
preserving maps, and therefore subobjects (monomorphisms) can be identified by sub
M -sets.

2.2. The topos of M-sets. If one considers a monoid M as a one object category (M
as its only object, elements of M as morphisms, and the binary operation of M as the
composition), then the category of M -sets is isomorphic to the functor category SetM (see
[The category of M -sets]). Thus one can immediately conclude that M -Set is a topos.
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In what follows we bring some of the ingredients of this topos which we need in this
paper. For details one can see [The category of M -sets] and [Topoi: The Categorial
Analysis of Logic].

A subset I of a monoid M is said to be a left ideal if it is a sub M -set of the M -set M
(with its binary operation as the action). That is, for all s ∈M , x ∈ I, we have sx ∈ I.

The set of all left ideals of M is denoted by LM . Notice that LM is an M -set with the
following action of M on it, called the action by division:

s.I = {t ∈M : ts ∈ I},

for s ∈M and I ∈ LM .

Subobject Classifier. Recall that the subobject classifer in a topos E , with 1 as its
terminal object, is an object Ω together with an arrow t : 1→ Ω, called the truth arrow,
such that for every monomorphism f : A→ X there is a unique arrow χ

A
or χ

f
: X → Ω,

called the classifying arrow making the square

1 Ω
t

//

A

1

!

��

A X
f // X

Ω

χf

��

a pullback. The subobject classifier Ω in the topos M -Set is LM , and the truth arrow is
t : 1 = {∗} → LM with t(∗) = M . Also, the classifying morphism of a sub M -set A of an
M -set X is defined as χ

A
: X −→ LM ,

a 7→ χ
A

(a) = {s ∈M : sa ∈ A}.

Exponentiation. Also, recall that for objects X and Y in a topos, the exponential
object is an object Y X together with an arrow ev : Y X ×X → Y , called the evaluation
arrow, such that for every arrow g : Z×X → Y there is a unique arrow ĝ : Z → Y X with
ev ◦ (ĝ × idX) = g.

The exponential object Y X of two M -sets X and Y in the topos M -Set is the set

{f : M ×X → Y : f is action-preserving},

equipped with the action

(mf) : M ×X → Y, (s, x) 7→ f(sm, x),

for s,m ∈M and f ∈ Y X . The evaluation arrow evXY : Y X ×X → Y is defined by

evXY (f, x) = f(e, x).
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Also, given an equivariant map g : Z ×X → Y , the unique arrow ĝ : Z → Y X is defined
by ĝ(z)(s, x) = g(sz, x), for x ∈ X, s ∈M, z ∈ Z.

Notice, that we may consider an element f : M ×X → Y as a family (fs)s∈M of maps
fs : X → Y (having f , one defines each fs as fs(x) = f(s, x)) with the compatibility
property that mfs(x) = fms(mx) for s,m ∈ M and x ∈ X. Applying this notation, the
action of M on Y X is then defined as m(fs)s∈M = (fsm)s∈M , for s,m ∈M .

3. Topological spaces in M-Set

There is a rich connection between classical domain theory and general topology (see
[Domain Theory] and [Continuous Lattices and Domains]). Our aim in this section is to
introduce a notion of topology in the topos of M -sets. We then define a counterpart of
the Sierpinski space in this topos, and prove that, similar to the classic case, it is the open
subobject classifier in this topos. Furthermore, we show that the category of topological
spaces in the topos of M -sets has arbitrary products.

3.1. Definition. A topological space in M-Set or simply an M-topological space, is an
M-set X with a topology on it such that its open subsets are sub M-sets of X.

We call open sub M-sets of an M-topological space X, an M-open subset, and denote
the set of all M-open subsets by MO(X).

3.2. Example. (1) For any M -set X, {X, ∅} is clearly an M -topology on it.
(2) For any M -set X, the set Sub(X) of all sub M -sets forms the largest M -topology

on X. This is because, sub M -sets are closed under arbitrary union and finite intersections
(also, ∅ and M are sub M -sets).

Another example of an M -topology which we use it later on, is the “upper topology”
on an M -poset. To introduce it, we need to give the definition of an M -poset (for the
definition of a poset in a topos, in general, one can see [Sketches of an Elephant: A Topos
Theory Compendium]).

3.3. Definition. A poset in M-Set or simply, an M-poset is a poset (P ;≤) with an
action of M on it such that for each x, y ∈ P and s ∈M we have x ≤ y implies sx ≤ sy.

An upper sub M-set U of an M-poset P is a sub M-set of P which is also upper closed;
that is, for u ∈ U and x ∈ P with u ≤ x, we have x ∈ U .

3.4. Example. Since the upper sub M -sets of an M -poset P are clearly closed under
arbitrary unions and finite intersections (also, ∅ and P are upper sub M -sets) we get that
upper sub M -sets of an M -poset form an M -topology. We call this M -topological space,
the upper set M-topology on P .

3.5. Definition. By a base for an M-topology on an M-set X, we mean a base for its
related topology whose members are sub M-sets. That is, a collection B of sub M-sets of
X such that (1)

⋃
B = X; (2) for B1, B2 ∈ B and x ∈ B1 ∩B2, there exists B3 ∈ B such

that x ∈ B3 and B3 ⊆ B1 ∩B2.
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As in the classic case, we have

3.6. Remark. If B is a base for an M -set X, then there exists a smallest M -topology
on X containing B. This is because, one can define the M -topology τ generated by B by
taking M -open subsets as the unions of elements of B.

3.7. Definition. We call an action-preserving continuous map between M-topological
spaces, an M-continuous map.

We denote the category of M -topological spaces together with M -continuous maps by
M -Top.

3.8. Remark. (a) The category M -Top is a complete category. In fact
(a1) For a family {Xi : i ∈ I} of M -topological spaces, the product M -set

∏
i∈I Xi

(with the pointwise actions) equipped with the M -topology generated by the base

B = {
∏
i∈I

Ui : Ui ∈MO(Xi) and Ui = Xi for all but a finite number}

is an M -topological space. This product with the classic projection maps pi :
∏

i∈I Xi →
Xi, (xi)i∈I 7→ xi, i ∈ I, which are clearly M -continuous, is actually the product in the
category M -Top. In fact, for a given family fi : Y → Xi, i ∈ I, of M -continuous
maps, there exists a unique M -continuous map f

.
= (fi)i∈I : Y →

∏
i∈I Xi such that

pif = fi, for each i ∈ I. The continuity of f is because for a base member
∏

i∈I Ui, where
Ui ∈MO(Xi), and Ui = Xi for all i but a finite number, we have

f−1(
∏
i∈I

Ui) =
⋂
i∈I

f−1i (Ui) = Y ∩
n⋂
k=1

f−1ik (Ui) =
n⋂
k=1

f−1ik (Ui) ∈MO(Y )

for some n ∈ N .
(a2) For M -topological spaces X, Y , and M -continuous maps f, g : X → Y , the sub

M -set E = {x ∈ X : f(x) = g(x)} of X is the equalizer of f and g in M -Top with the
subspace topology; that is M -open subsets of E are intersections of M -open subsets of X
with E.

(b) The category M -Top is a cocomplete category. In fact,
(b1) For a family {Xi : i ∈ I} of M -topological spaces, the coproduct M -topological

space
⊔
i∈I Xi is the disjoint union of Xi’s with the same action sx in Xi for s ∈ M and

x ∈ Xi, and with the M -topology generated by the union of MO(Xi), for all i ∈ I.
(b2) The coequalizer of a pair f, g : X → Y in M -Top is computed as in M -Set with

the quotient topology, that is, if q : Y → Z is the coequalizer in M -Set, then one takes
the sub M -sets U of Z for which q−1(U) ∈MO(Y ) as M -open subsets of Z.

We close this section by introducing the M -topology counterpart of the Sierpinski
space Σ which classifies M -open subsets; that is, for each M -open subset U of an M -
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topological space X, there exists a unique M -continuous map χ
U

such that

1 Σ
t

//

U

1

!

��

U X
iU // X

Σ

χU

��

is a pullback square in M -Top.

3.9. Definition. We call the M-topological space (LM ; τ = {LM , {M}, ∅}), the Sierpin-
ski M- topological space, and denote it by Σ.

3.10. Lemma. For each M-open subset U of an M-topological space X, the classifying
arrow χ

U
: X → Σ, x 7→ χ

U
(x) = {s ∈M : sx ∈ U}, is M-continuous.

Proof. As we remarked in preliminaries, LM is the subobject classifier in M -Set and the
above defined χ

U
is the classifying arrow in M -Set. To show that χ

U
is M -continuous, it

is enough to notice that χ−1
U

({M}) = U is M -open in X.

Also, notice that the truth arrow t : 1 = {∗} → Σ is clearly M -continuous.

3.11. Note. (1) Notice that, the truth arrow t : 1 = {∗} → Σ, ∗ 7→ M , is clearly
M -continuous.

(2) The converse of Lemma 3.10 is also true; that is, the pullback of the truth arrow
along anyM -continuous map f : X → Σ gives anM -open subset ofX, which is f−1({M}).

3.12. Theorem. Σ is the M-open subset classifier in M-Top.

Proof. Let X be an M -topological space and U be an M -open subset of it. Then, since
LM is the subobject classifier in M -Set, the classifying arrow χ

U
makes the square

1 LMt
//

U

1

!

��

U X
iU // X

LM

χU

��

into a pullback square in M-Set. But, by Lemma 3.10, χ
U

is continuous, so the above
square is a commutative square in M-Top, where U is considered with subspace topology.
To see that this square is a pullback in M -Top, let A be an M -topological space and
f : A → X be an M -continuous function such that χ

U
f = t◦!A, where !A : A → 1 is the

unique arrow to the terminal object. Then there exists a unique action-preserving map
g : A → U such that iUg = f , !U ◦ g =!A. To show that g is also continuous, take an
M -open subset V of U . Since we have g−1(V ) = g−1i−1U (V ) = f−1(V ), V is an M -open
subset of X, and f is continuous, we get that g−1(V ) is M -open in A.
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Now, we show that χ
U

is the only M -continuous map which makes the above diagram
a pullback in M-Top. Let ψ : X → Σ be an M -continuous map such that

1 Σ
t

//

U

1

!

��

U X
iU // X

Σ

ψ

��

is a pullback in M-Top. We show that the above diagram is also a pullback in M -Set and
then it is concluded that ψ = χ

U
. Let A be an M -set and f : A → X be an equivariant

map such that ψf = t◦!A. Then, by endowing the sub M -sets f−1(V ) to A, for M -open
subsets V of X, we make A into an M -topological space and f into an M -continuous map.
Thus there exists a unique M -continuous map g : A→ U such that iUg = f . Finally, one
can see that if there exists another action-preserving map h : A→ U such that iUh = f ,
then h is also continuous, since f is so, and hence h = g.

3.13. Corollary. For each M-topological space X,

MO(X) ∼= HomM−Top(X,Σ).

4. T0 topological spaces in M -Set

Recall that, in the theory of classical topology, a T0 space is a topological space whose
open subsets separate distinct points of the space. Also, recall that the specialization
pre-order on topological spaces, which relates posets and T0 spaces and it is proved that
specialization pre-order is a partial order if and only if the space is T0.

In this section, we introduce the notion of T0 M -topological spaces, and define a
“specialization order” on these spaces which gives a relation between M -topological spaces
and M -posets in a similar way to the ordinary case.

More precisely, a topological space X is T0 if and only if for each distinct elements x
and y of X, there exists an open subset U such that x ∈ U and y /∈ U or there exists an
open subset U such that y ∈ U and x /∈ U . Recalling the definition of the characteristic
(classifying) map of U in Set (χ

U
(z) = 1 if and only if z ∈ U), the separation axiom of T0

states that for each x 6= y in X, there exists an open subset U such that χ
U

(x) 6= χ
U

(y).
Now, applying this interpretation, we give the following notion of T0 for M -topological
spaces.

4.1. Definition. We say that an M-topological space X is T0 (or M-T0) whenever for
each pair of distinct points x, y ∈ X, there exists an M-open subset U such that χ

U
(x) 6=

χ
U

(y).
In other words, for each x 6= y in X, there exists an M-open subset U such that sx ∈ U

and sy 6∈ U for some s ∈M (or ty ∈ U and tx 6∈ U , for some t ∈M).
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We denote the category of T0 M -topological spaces with M -continuous maps between
them by M -Top0.

4.2. Example. (a) The Sierpinski space Σ defined in Definition 3.9 is a T0 M -topological
space. This is because, for every ideal I of M , using the fact that s · I = M if and only
s ∈ I, one gets

χ{M}(I) = {s ∈M : s · I = M} = I.

(b) Arbitrary products of T0 M -topological spaces is clearly a T0 M -topological space.
So, any product of Σ with itself is T0.

The following theorem gives a characterization of T0 M -topological spaces as subspaces
of a product of the Sierpinski M -topological space.

4.3. Theorem. An M-topological space X is T0 if and only if X is homeomorphic to a
subspace of the product M-topological space

∏
MO(X) Σ.

Proof. It is enough to notice that X is a T0 M -topological space if and only if the
universal M -continuous map (χ

U
)U∈MO(X) : X →

∏
MO(X) Σ to the product (see Remark

3.8) is one-one. Notice that ker(χ
U

)U∈MO(X) =
⋂
U∈MO(X) ker(χ

U
).

In the following, we give some equivalent conditions to the T0 axiom.

4.4. Remark. An M -topological space X is T0 if and only if for each x, y ∈ X there
exist s ∈M and an M -open subset U of X such that χ

U
(sx) 6= χ

U
(sy).

To prove the non-clear part, let x, y ∈ X and there exist s ∈ M such that χU(sx) 6=
χU(sy). Then, taking m ∈M with m ∈ χ

U
(sx) \ χ

U
(sy), we have ms ∈ χ

U
(x) \ χ

U
(y).

Recall that in the classic topology, the specialization order is a partial order if and
only if the space is T0. In the following, we define the counterpart of the specialization
order for topological spaces in M -Set, and show the similar result regarding this order
and T0 M -topological spaces.

4.5. Definition. Let X be an M-topological space. Define the M- specialization pre-
order on X as

x ≤Ms y ⇔ ∀U ∈MO(X), χ
U

(x) ⊆ χ
U

(y).

As in the classical case, the M -specialization order is a pre-order. Also, similar to the
ordinary case we have the following result.

4.6. Lemma. An M-topological space X is T0 if and only if the M-specialization pre-order
is a partial order on X.

Proof. Let X be a T0 M -topological space. To see that ≤Ms is anti-symmetric, assume

x ≤Ms y and y ≤Ms x.

Then, for each M -open subset U of X, we have χ
U

(x) ⊆ χ
U

(y), χ
U

(y) ⊆ χ
U

(x), and hence
χ
U

(x) = χ
U

(y). Since X is T0, we get x = y.
On the other hand, let ≤Ms be a partial order on X, x, y ∈ X, and for each M -open

subset U of X, we have χ
U

(x) = χ
U

(y). Then x ≤Ms y and y ≤Ms x, and hence x = y.
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Now, applying the above lemma and using the fact that for any ideals I and J of M ,
I ⊆ J implies s · I ⊆ s · J , for all s ∈M , we get the following theorem.

4.7. Theorem. An M-topological space X is T0 if and only if (X;≤Ms) is an M-poset.

5. Constructing T0 topological spaces in M -Set

In this section, we show how one can construct a T0 M -topological space from a given
M -topological space, and in a universal way.

5.1. Definition. Let X be a T0 M-topological space. Define the relation ≡ on X by

x ≡ y ⇔ ∀ U ∈MO(X), χ
U

(x) = χ
U

(y).

5.2. Remark. For any T0 M -topological space X, ≡ is an M -set congruence on X. It is
clearly an equivalence relation, also it is compatible with the action, because each χ

U
is

equivariant.

5.3. Lemma. The M-set X/≡ with the quotient topology is an M-topological space.

Proof. Recall that the open subsets of the quotient topology are of the form V ⊆ X/≡,
where π−1(V ) is an open subset of X, and π : X → X/≡ is the natural onto map which
takes x ∈ X to [x]≡. Now, it is enough to notice that for each open subset V of X/≡,
π−1(V ) is a sub M -set of the M -topological space X, and hence V = π(π−1(V )) is a sub
M -set of X/≡, because π is an M -set map.

5.4. Theorem. For any topological M-topological space X, the M-topology X/≡ is T0.

Proof. Let [x] and [y] be members of X/≡ such that for each M -open subset V of X/≡
we have χ

V
([x]) = χ

V
([y]). We show that [x] = [y], that is, for every U ∈ MO(X),

χ
U

(x) = χ
U

(y).
First, we prove that π : X → X/≡ is an open map. Let U ∈MO(X). Then to prove

that π(U) is open in X/≡, we show π−1(π(U)) = U . But, the fact that U ⊆ π−1(π(U))
is true for any function, and for the converse, take z ∈ π−1(π(U)). Then [z] ∈ π(U), and
hence there exists z′ ∈ U such that [z] = [z′]. Thus, z ≡ z′, and so χ

U
(z) = χ

U
(z′) = M .

Therefore, z ∈ U as required.
Now, let U ∈MO(X) and m ∈ χ

U
(x). Then mx ∈ U , and hence m[x] = [mx] ∈ π(U).

This means m ∈ χ
π(U)

([x]). But, by hypothesis,

χ
π(U)

([x]) = χ
π(U)

([y]),

since π(U) is an M -open subset. Therefore, m ∈ χ
π(U)

([y]), and so [my] ∈ π(U). Thus,
we have [my] = [y′], for some y′ ∈ U , and hence χ

U
(my) = χ

U
(y′) = M . Therefore,

my ∈ U , and so m ∈ χ
U

(y), as required. So, χ
U

(x) ⊆ χ
U

(y); the reverse inclusion is
proved similarly.
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5.5. Lemma. The assignment X 7→ X/≡ is functorial.

Proof. Define F : M -Top →M -Top0 by F (X) = X/≡, for an M -topological space X.
Also, for an M -continuous map f : X → Y , define F (f) = f̄ , where f̄ : X/≡ → Y/≡ is
defined as f̄([x]) = [f(x)]. Using the definition of ≡ and the fact that f is equivariant,
one gets that f is well-defined and equivariant. To show that f̄ is continuous, let V be
an M -open subset of Y/≡. Then, π−1Y (V ) is M -open in Y . To see that π−1X (f̄−1(V )) is
M -open in X, we notice that

π−1X (f̄−1(V )) = (f̄πX)−1(V ) = (πY f)−1(V )) = f−1(π−1Y (V )),

which is M -open in X, because f is continuous.

5.6. Lemma. For any M-topological space X, π : X → X/≡ is a universal arrow to T0
M-topological spaces.

Proof. Let X be an M -topological space and Y be a T0 M -topological space, and f :
X → Y be an M -continuous map. Then we show that there exists a unique M -continuous
map g : X/≡ → Y such that gπX = f . Define g : X/≡ → Y by g([x]) = f(x).
The assignment g is well-defined, for if [x] = [y], then for every U ∈ MO(X), we have
χ
U

(x) = χ
U

(y). But, for every V ∈MO(Y ), using the fact that f is equivariant, one can
easily get that χ

V
(f(x)) = χ

f−1(V )
(x). So, for every V ∈MO(Y ), we have

χ
V

(f(x)) = χ
f−1(V )

(x) = χ
f−1(V )

(y) = χ
V

(f(y)).

Now, since Y is a T0 M -topological space, we get f(x) = f(y).
Obviously, g is action-preserving. Also, g is continuous, because for any M -open subset

V of Y , we have g−1(V ) = πX(f−1(V )), which is M -open in X/ ≡, since πX is M -open
and f is continuous.

Now, applying the above lemma, we get the following result.

5.7. Theorem. The functor F in Lemma 5.5 is a left adjoint to the inclusion functor
i : M-Top0 →M-Top.

6. Adjunction between T0 topological spaces and T0 posets in M -Set

In the category Set, for each ordinary poset (P ;≤), there exists a topological space X
such that (X;≤s) ∼= (P ;≤). The space X is in fact the poset P with upper topology
(upper subsets as open subsets). The following example shows that this is not generally
true in M -Set.

In the category Set, for each ordinary poset (P ;≤), there exists a topological space
X such that (X;≤s) ∼= (P ;≤). The space X is in fact the poset P with upper topology
(upper subsets as open subsets). The following example shows that this is not generally
true in M -Set.
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6.1. Example. Let M be the monoid (N ; +, 0) of natural numbers and P = {0, 1} the
M -poset with the equality relation and the action given by

µ 0 1
2k 0 1

2k+1 1 0

Then there is no M -topological space X with (X;≤Ms) ∼= (P ; =). On the contrary, if
there exists such an M -topological space X. Then, taking φ : P → X as the assumed
isomorphism, we have X = {φ(0), φ(1)}. Now, for any M -open subset U of X, we have
φ(0) ∈ U if and only if φ(1) ∈ U . Thus the only possible topology on X is {X, ∅}. But,
the specialization pre-order on X is not a partial order, since for each M -open subset U ,
we have χ

U
(0) = χ

U
(1) while 0 6= 1.

In this section, to prove the counterpart of the above result for M -topological spaces
and M -posets, we define the notion of a T0 M -poset, and show that there exists an
adjunction between the category of T0 M -topological spaces and T0 M -posets.

6.2. Definition. We call an M-poset P a T0 M-poset if its upper set M-topology is a
T0 M-topological space.

In other words, for each p, q ∈ P there exists an upper sub M-set U of P such that
χ
U

(x) 6= χ
U

(y).

We denote the category of T0 M -posets with action-preserving monotone (call them
M -monotone) maps between them by M -Pos0.

The M -poset P given in Example 6.1 is not T0. The following theorem shows that
one may correspond a T0 M -poset related to any T0 M -topological space.

6.3. Lemma. For any M-topological space X, the M-open subsets of X are upper closed
subsets of the pre-ordered set (X;≤Ms).

Proof. Let U be an M -open subset of an M -topological space X, a ∈ U and a ≤Ms b.
Then χ

U
(a) = M and χ

U
(a) ⊆ χ

U
(b). Therefore, χ

U
(b) = M and so b ∈ U .

6.4. Theorem. For any T0 M-topological space X, the pre-ordered set (X;≤Ms) is a T0
M-poset.

Proof. By Theorem 4.7, P
.
= (X;≤Ms) is an M -poset. Also, by Lemma 6.3, the M -open

subsets of X are upper closed subsets of P .
Now, taking p, q ∈ P , since X is T0, there exists a M -set of X such that χ

U
(x) 6= χ

U
(y).

But, by Lemma 6.3, the M -open subsets of X are upper closed subsets of P . So, P is a
T0 M -poset.
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6.5. Theorem. There is an adjunction between the categories M-Pos0 and M-Top0.

Proof. Define F : M -Pos0 → M -Top0 by F (P ) = U(P ), where U(P ) is P with the
upper set M -topology on it, which is T0, by Lemma 6.4. Also, for a monotone map
f : P → Q between T0 M -posets, define Ff : U(P ) → U(Q) as Ff = f . Notice that
f : U(P ) → U(Q) is M -continuous, because for any upper sub M -set A of Q, f−1(A) is
an upper sub M-set of P .

Also, define G : M -Top0 → M -Pos0 by G(X) = (X;≤Ms) which is T0, by Lemma
6.4, and for an M -continuous map f : X → Y , define Gf = f . Notice that f : (X;≤Ms

) → (Y ;≤Ms) is M -monotone. This is because, for x, y ∈ X if x ≤Ms y, and V is an
M -open subset of Y , then we have χ

V
(f(x)) ⊆ χ

V
(f(y)). To see this, let m ∈ χ

V
(f(x)).

Then f(mx) = mf(x) ∈ V , and so mx ∈ f−1(V ), where f−1(V ) is an M -open subset
of X, since f is continuous. This means m ∈ χf−1(V )(x). But, since x ≤Ms y, we have
χ
f−1(V )

(x) ⊆ χ
f−1(V )

(y). Thus m ∈ χ
f−1(V )

(y), and hence my ∈ f−1(V ). Therefore,

mf(y) = f(my) ∈ V and so m ∈ χ
V

(f(y)). Thus f(x) ≤Ms f(y).
Now we show that F is the left adjoint to G. To see this, we give the unit η :

idM−Pos0 → GF of the adjunction. Let P be a T0 M -poset. Then, define ηP (p) = p, for
p ∈ P . It is obvious that ηP is action-preserving. To see that it is monotone, let p ≤ q in
P and U be an M -open subset of U(P ). That is, U is an upper closed sub M -set of P .
We have to show that χ

U
(p) ⊆ χ

U
(q). Let m ∈ χ

U
(p). Then mp ∈ U , but mp ≤ mq, so

mq ∈ U , and hence m ∈ χ
U

(q).
Now, let f : P → G(X) be a monotone map. Then f : F (P ) → X is the unique

M -continuous map such that fηP = f . The fact that f is action-preserving, is obvious.
To see that it is continuous, let U ⊆ X be an M -open subset of X. We have to show
that f−1(U) is an upper closed sub M -set of P . Let x ∈ f−1(U) and x ≤ y in P . Then
f(x) ∈ U and f(x) ≤Ms f(y). So χ

U
(f(x)) = M . But χ

U
(f(x)) ⊆ χ

U
(f(y)), and so we

have χ
U

(f(y)) = M . Therefore f(y) ∈ U , and so y ∈ f−1(U).
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
Julie Bergner, University of Virginia: jeb2md (at) virginia.edu
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